The goal of this work is to prove the existence of a solution to the following transport equation:

$$\partial_t \mu_t + \text{div}_x (b(\mu, \cdot, \cdot) \mu_t) = 0, \quad \mu_0 = \nu, \quad (1)$$

where

$$b = (b^i)_{i=1}^d : \mathcal{M}_0(\mathbb{R}^d \times [0, 1]) \times \mathbb{R}^d \times [0, 1] \to \mathbb{R}^d$$

is a Borel mapping and $\mathcal{M}_0(\mathbb{R}^d \times [0, 1])$ is the space of finite Borel measures on $\mathbb{R}^d \times [0, 1]$ equipped with the weak topology.

We shall say that a family $\mu := (\mu_t)_{t \in [0,1]}$ of finite Borel measures (regarded also as the measure $\mu_t(dx) dt$ on $\mathbb{R}^d \times [0, 1]$) satisfies equation (1) if $b(\mu, \cdot, \cdot) \in L^1(S \times [0, 1], \mu_t(dx) dt)$ for every compact set $S \subset \mathbb{R}^d$, that is, the function $|b(\mu, \cdot, \cdot)|$ is integrable with respect to $|\mu|$ on every compact set in $\mathbb{R}^d \times [0, 1]$, and for all $t \in [0, 1]$ the following identity holds:

$$\int_{\mathbb{R}^d} \varphi(x) \mu_t(dx) - \int_{\mathbb{R}^d} \varphi(x) \nu(dx) = \int_0^t \int_{\mathbb{R}^d} (b(\mu, x, s), \nabla \varphi(x)) \mu_s(dx) ds \quad \forall \varphi \in C_0^\infty(\mathbb{R}^d).$$

This equation has been an object of intensive studies over the past decade. For recent surveys, see [1], [2], [3], and [4]; in particular, nonlinear equations are considered in [4]. A typical condition on b in the linear case is the inclusion $b \in L^1([0,1], W^{1,\infty}(\mathbb{R}^d))$ or the requirement that b is a BV function with respect to x (see [1], [2]). Our aim is to prove the existence assuming only some conditions on the growth of b. In this paper we only consider probability measures. The spaces of probability measures on $\mathbb{R}^d \times [0, 1]$ and \mathbb{R}^d equipped with the weak topology will be denoted by $\mathcal{P}(\mathbb{R}^d \times [0, 1])$ and $\mathcal{P}(\mathbb{R}^d)$, respectively. Our main result is the following theorem.

Theorem 1. Let ν be a probability measure on \mathbb{R}^d. Suppose that

(i) for every fixed measure $\mu \in \mathcal{P}(\mathbb{R}^d \times [0, 1])$, the mapping $x \mapsto b(\mu, x, t)$ is continuous for almost every t and one has uniform convergence $b(\mu_j, x, t) \to b(\mu, x, t)$ on compact sets whenever $\mu_j \to \mu$ weakly;

(ii) there exist numbers $c \in (0, \infty)$ and $k \in \mathbb{N}$ such that for all $(x, t) \in \mathbb{R}^d \times [0, 1]$ and all $\mu \in \mathcal{P}(\mathbb{R}^d \times [0, 1])$ one has

$$b(\mu, x, t) \leq c(1 + |x|^2),$$

$$|b(\mu, x, t)| \leq c(1 + |x|^{2k}), \quad \int_{\mathbb{R}^d} |x|^{2k} \nu(dx) < \infty.$$

Then there exists a family $\mu = (\mu_t)_{t \in [0,1]}$ of probability measures satisfying (1).

Under condition (ii), condition (i) can be reformulated as follows: for every fixed measure μ, the mapping $x \mapsto b(\mu, x, t)$ is continuous for a.e. t and for each compact set $S \subset \mathbb{R}^d$, the mapping b generates a continuous mapping

$$F : \mathcal{P}(\mathbb{R}^d \times [0, 1]) \to L^\infty([0, 1], C(S))$$

defined by $F(\mu)(t)(x) := b(\mu, x, t)$.

Our approach is based on the well-known method of “vanishing viscosity” (see, e.g., [5, Theorem 4]) combined with the Schauder theorem. We replace equation (1) by the parabolic equation

$$\partial_t \mu_t - \varepsilon \Delta \mu_t + \text{div}_x (b(\mu_t, \cdot, \cdot) \mu_t) = 0, \quad \mu_0 = \nu,$$

(3)
understood as the following integral identity for all \(t \in [0, 1] \):

\[
\int_{\mathbb{R}^d} \varphi \, d\mu_t - \int_{\mathbb{R}^d} \varphi \, d\nu = \int_0^t \int_{\mathbb{R}^d} [\varepsilon \Delta \varphi + (b, \nabla \varphi)] \, d\mu_s \, ds \quad \forall \varphi \in C_0^\infty(\mathbb{R}^d). \tag{4}
\]

Under our assumptions on \(b \) in the case where \(b \) is independent of \(\mu \), the next proposition follows from the results established in [6] and [7] (see [6, Corollary 3.3, Lemma 2.1, Lemma 2.2] and [7, Theorem 3.3]).

Proposition 1. Suppose that a probability measure \(\nu \) on \(\mathbb{R}^d \) has a density \(\theta_0 \in C_0^\infty(\mathbb{R}^d) \), the coefficient \(b \) does not depend on \(\mu \), and there exists numbers \(c \in (0, \infty) \) and \(k \geq 1 \) such that for all \((x, t) \in \mathbb{R}^d \times [0, 1] \) one has

\[
(b(x, t), x) \leq c(1 + |x|^2),
\]

\[
|b(x, t)| \leq c(1 + |x|^{2k}), \quad \int_{\mathbb{R}^d} |x|^{2k} \, \nu(dx) < \infty.
\]

Then there exists a unique family \(\mu = (\mu_t)_{t \in [0, 1]} \) of probability measures on \(\mathbb{R}^d \) solving equation (3). Moreover, there exists a number \(N \) depending only on \(c \) and \(k \) and \(\int_{\mathbb{R}^d} |x|^{2k} \, d\nu \) such that

\[
\sup_{t \in [0, 1]} \int_{\mathbb{R}^d} |x|^{2k} \, d\mu_t < N.
\]

Certainly, the same is true for any interval \([0, T] \) in place of \([0, 1] \).

First we prove our main result in the case of \(b \) independent of \(\mu \) by letting \(\varepsilon \to 0 \). This case is simpler than the general one, but the proof can be extended to the infinite-dimensional case. So we assume that \(b \) does not depend on \(\mu \), the mapping \(x \mapsto b(x, t) \) is continuous for almost every \(t \), and condition (ii) of Theorem 1 is fulfilled.

Let us fix a Borel probability measure \(\nu \) on \(\mathbb{R}^d \) and a sequence of probability measures \(\nu^n = g^n(x) \, dx \), where \(g^n \in C_0^\infty(\mathbb{R}^d) \), such that \(\{\nu^n\} \) converges weakly to \(\nu \) and one has

\[
\sup_n \int_{\mathbb{R}^d} |x|^{2k} \, d\nu^n < \infty.
\]

According to Proposition 1, for each \(n \), there exists a unique family \(\mu^n = (\mu^n_t)_{t \in [0, 1]} \) of probability measures on \(\mathbb{R}^d \) satisfying the equation

\[
\partial_t \mu^n_t - n^{-1} \Delta \mu^n_t + \text{div}_x (b \mu^n_t) = 0, \quad \mu^n_0 = \nu^n
\]

in the sense that for all \(\varphi \in C_0^\infty(\mathbb{R}^d) \) and \(t \in [0, 1] \) one has

\[
\int_{\mathbb{R}^d} \varphi \, d\mu^n_t - \int_{\mathbb{R}^d} \varphi \, d\nu^n = \int_0^t \int_{\mathbb{R}^d} [n^{-1} \Delta \varphi + (b, \nabla \varphi)] \, d\mu^n_s \, ds. \tag{5}
\]

Moreover, there exists a number \(C \) independent of \(n \) such that

\[
\sup_{t \in [0, 1]} \int_{\mathbb{R}^d} |x|^{2k} \, d\mu^n_t < C,
\]

where \(k \) is the number from condition (ii) in Theorem 1. Therefore, the set of measures \(\{\mu^n_t: t \in [0, 1], n \in \mathbb{N}\} \) is uniformly tight on \(\mathbb{R}^d \). Now we fix a countable dense set \(\mathcal{F} \subset C_0^\infty(\mathbb{R}^d) \) (the latter space is equipped with the topology of uniform convergence of all derivatives on compact sets) and take a countable dense set \(\mathcal{T} \subset [0, 1] \). We can find a subsequence \(\{\mu^n_{t_k}\} \) which converges weakly to a probability measure \(\mu_t \) for each \(t \in \mathcal{T} \). Let us prove that

\[
\lim_{n \to \infty} \int_{\mathbb{R}^d} \varphi(x) \, d\mu^n_{t_k} = \int_{\mathbb{R}^d} \varphi(x) \, d\mu_t \tag{6}
\]
for all $t \in [0,1]$ and all $\varphi \in \mathcal{F}$. Let us fix a function $\varphi \in \mathcal{F}$. Then there is a number B such that $|b(x,t)| \leq B$ for all $x \in \text{supp } \varphi$ and $t \in [0,1]$, so we have

$$\left| \int_{\mathbb{R}^d} \varphi \, d\mu^t_k - \int_{\mathbb{R}^d} \varphi \, d\mu^s_k \right| \leq (\|\Delta \varphi\|_{\infty} + B \|\nabla \varphi\|_{\infty})|t - s|.$$

Let us fix a point $t \in [0,1]$. For any $\varepsilon > 0$ there are a number $r \in T$ and a natural number N such that for all numbers $k > N$ one has

$$\left| \int_{\mathbb{R}^d} \varphi \, d\mu^k_n - \int_{\mathbb{R}^d} \varphi \, d\mu^t_n \right| \leq \varepsilon/3, \quad \left| \int_{\mathbb{R}^d} \varphi \, d\mu^k_r - \int_{\mathbb{R}^d} \varphi \, d\mu^s_r \right| \leq \varepsilon/6.$$

Then, for all $k, l > N$, we have

$$\left| \int_{\mathbb{R}^d} \varphi \, d\mu^k_n - \int_{\mathbb{R}^d} \varphi \, d\mu^l_n \right| \leq \varepsilon.$$

Hence the sequence μ^k_n on \mathbb{R}^d is weakly fundamental and uniformly tight. Therefore, we obtain (6) for all t and all $\varphi \in \mathcal{F}$. Then equality (6) holds for all continuous functions φ with compact support. Letting $k \to \infty$ in (5) we obtain the equality

$$\int_{\mathbb{R}^d} \varphi \, d\mu_t - \int_{\mathbb{R}^d} \varphi \, d\nu = \int_0^t \int_{\mathbb{R}^d} (b, \nabla \varphi) \, d\mu_s \, ds$$

because, for almost every fixed s, by the continuity of $x \mapsto b(x,s)$, we have

$$\int_{\mathbb{R}^d} (b(x,s), \nabla \varphi(x)) \, d\mu^k_n \to \int_{\mathbb{R}^d} (b(x,s), \nabla \varphi(x)) \, d\mu_s$$

and the left-hand side is uniformly bounded, which enables us to integrate in s and obtain the aforementioned equality. This gives Theorem 1 in the linear case.

Let us proceed to the general case where b may depend on μ. We construct a solution to (1) as a weak limit of solutions to approximating nondegenerate parabolic equations with the extra terms $-\varepsilon \Delta \mu$, where the coefficient b satisfies condition (ii) of Theorem 1, but in place of condition (i) we impose the following much weaker condition:

(i) the mapping b is defined on the space $\mathcal{P}_{\text{abs}} \times \mathbb{R}^d \times [0,1]$, where the space \mathcal{P}_{abs} consists of all absolutely continuous probability measures on $\mathbb{R}^d \times [0,1]$ and is equipped with variation distance, and for Lebesgue a.e. (x,t), the mapping $\mu \mapsto b(\mu,x,t)$ is continuous in the variation distance.

In fact, we need even less: it suffices that b be defined only for μ from the subset in \mathcal{P}_{abs} consisting of measures of the form $\rho(x,t) \, dx \, dt$ such that $x \mapsto \rho(x,t)$ is a probability density for each $t \in [0,1]$.

Let us consider the following nonlinear parabolic equation:

$$\partial_t \mu_t - \varepsilon \Delta \mu_t + \text{div}_x (b(\mu, \cdot, \cdot) \mu_t) = 0, \quad \mu_0 = \nu, \quad (7)$$

where $\nu = \varrho_0(x) \, dx$ and $\varrho_0 \in C^\infty_0(\mathbb{R}^d)$.

First we prove the existence of a solution to equation (7). Suppose that we are given real numbers $\alpha > 0$ and $c_1 > 0$ and that, for each closed interval $J_r = [r, 1 - r]$ and each closed ball $B_R = \{ x \in \mathbb{R}^d : |x| \leq R \}$, where $r, R > 0$ we are given a number $c_2(r,R) > 0$. Let k be the number from condition (ii) and let $C^\alpha(E)$ denote the Banach space of α-Hölder functions on E with its natural norm.

Let us consider the set $K \subset L^4(\mathbb{R}^d \times [0,1])$ of all functions ϱ satisfying the following conditions:

$$\varrho \geq 0, \quad \int_{\mathbb{R}} \varrho(x,t) \, dx = 1, \quad \int_{\mathbb{R}^d} |x|^{2k} \varrho(x,t) \, dx \leq c_1 \quad \forall t \in [0,1],$$
\[\| \varrho \|_{C^\alpha([J, R])} \leq c_2(r, R) \quad \forall r, R > 0, \]

\(\varrho(x, 0) = \varrho_0(x) \text{ a.e.} \) and for each \(\varphi \in C_0^\infty(\mathbb{R}^d) \) the function

\[t \mapsto \int_{\mathbb{R}^d} \varphi(x) \varrho(x, t) \, dx \]

is Lipschitzian with some constant \(C(\varphi) \).

Lemma 1. The set \(\mathcal{K} \) is convex and compact in the Banach space \(L^1([0, 1] \times \mathbb{R}^d) \).

Proof. Indeed, given a sequence in \(\mathcal{K} \), by a diagonal argument we choose a subsequence \(\{ \varrho_n \} \) that converges uniformly on compact sets in \(\mathbb{R}^d \times (0, 1) \) (here we use the bounds on the H"older norms). Since

\[\int_{\mathbb{R}^d} |x|^{2k} \varrho(x, t) \, dx \leq c_1 \quad \forall t \in [0, 1], \]

the set of probability measures \(\varrho(x, t) \, dx \) on \(\mathbb{R}^d \), where \(\varrho \in \mathcal{K} \) and \(t \in [0, 1] \), is uniformly tight. Hence, for each fixed \(t \in [0, 1] \), the measures \(\varrho_n(x, t) \, dx \) on \(\mathbb{R}^d \) converge weakly to a probability measure \(\mu_t \) on \(\mathbb{R}^d \), where \(\mu_0 = \nu \). Locally uniform convergence of densities shows that \(\mu = \mu_t \, dt \) has a density \(\varrho \), which is locally Hölder continuous on \(\mathbb{R}^d \times (0, 1) \) and satisfies the equality \(\mu_t = \varrho(x, t) \, dx \). For each fixed \(\varphi \in C_0^\infty(\mathbb{R}^d) \) we have

\[\int_{\mathbb{R}^d} \varphi(x) \varrho(x, t) \, dx = \lim_{n \to \infty} \int_{\mathbb{R}^d} \varphi(x) \varrho_n(x, t) \, dx, \quad t \in [0, 1], \]

hence the left-hand side is Lipschitzian with constant \(C(\varphi) \). Therefore, \(\varrho \in \mathcal{K} \). Hence \(\varrho_n \to \varrho \) in the norm of \(L^1(\mathbb{R}^d \times [0, 1]) \); we recall that pointwise convergence of probability densities to a probability density yields convergence in mean, see [8, Theorem 2.8.9]. Obviously, \(\mathcal{K} \) is convex.

It should be noted that we obtain a convex compact set even if we omit the last condition in the definition of \(\mathcal{K} \) regulating the behavior in \(t = 0 \). However, for subsequent applications to parabolic equations the introduced class turns out to be more convenient. The probability measure with density \(\varrho \in \mathcal{K} \) on \(\mathbb{R}^d \times [0, 1] \) will be denoted by the same symbol \(\varrho \) and \(\varrho_t \) will denote both the probability density \(x \mapsto \varrho(x, t) \) on \(\mathbb{R}^d \) and the measure with this density.

Now we define a mapping \(T \): \(\mathcal{K} \to \mathcal{K} \) as follows:

\[\chi = T(\varrho) \iff \partial_t \chi_t - \varepsilon \Delta \chi_t + \text{div}_x(b(\varrho, \cdot, \cdot) \chi_t) = 0, \quad \chi_0 = \nu. \]

According to Proposition 1 and [9, Corollary 3.9], the mapping \(T \) is well-defined. Note that the Lipschitzness of the integral of \(\varphi \in C_0^\infty(\mathbb{R}^d) \) with respect to \(\chi_t(dx) \) follows from (4) due to the uniform boundedness of \(b(\varrho, x, t) \) on \(\text{supp} \, \varphi \times [0, 1] \).

Lemma 2. The mapping \(T \) is continuous.

Proof. Let \(\varrho^n, \varrho \in \mathcal{K} \), \(\| \varrho^n - \varrho \|_{L^1} \to 0 \) and \(\chi^n = T(\varrho^n) \). Since \(\mathcal{K} \) is compact, we can find a convergent subsequence \(\{ \chi^{n_k} \} \). We prove that \(\chi := \lim_{k \to \infty} \chi^{n_k} \) satisfies equation (7) with \(b = b(\varrho, \cdot, \cdot) \). For every \(\varphi \in C_0^\infty(\mathbb{R}^d) \) we have the identity

\[\int_{\mathbb{R}^d} \varphi(x) \chi^{n_k}(x, t) \, dx - \int_{\mathbb{R}^d} \varphi(x) \nu(dx) = \varepsilon \int_0^t \int_{\mathbb{R}^d} \Delta \varphi(x) \chi^{n_k}(x, s) \, dx \, ds + \]

\[+ \int_0^t \int_{\mathbb{R}^d} (b(\varrho^{n_k}, x, s), \nabla \varphi(x)) \chi^{n_k}(x, s) \, dx \, ds. \quad (8) \]

Set \(S := \text{supp} \, \varphi \). Since \(|b(\varrho^{n_k}, x, t)| \) is uniformly bounded on \(S \times [0, 1] \) and

\[\| \chi^{n_k} - \chi \|_{L^1} \to 0, \quad \| \varrho^{n_k} - \varrho \|_{L^1} \to 0, \quad |b(\varrho^{n_k}, x, t) - b(\varrho, x, t)| \to 0 \quad \text{a.e.}, \]
we can let $k \to \infty$ in (8) and obtain for all $t \in [0, 1]$

$$\int_{\mathbb{R}^d} \varphi(x) \chi(x, t) \, dx - \int_{\mathbb{R}^d} \varphi(x) \nu(dx) = \varepsilon \int_0^t \int_{\mathbb{R}^d} \Delta \varphi(x) \chi(x, s) \, dx \, ds +$$

$$+ \int_0^t \int_{\mathbb{R}^d} (b(\rho, x, s), \nabla \varphi(x)) \chi(x, s) \, dx \, ds.$$

This shows that $\chi = T(\rho)$. According to the uniqueness assertion in Proposition 1 we conclude that each subsequence in $\{\chi^n\}$ contains a subsequence convergent to χ. This yields that $\chi^n \to \chi$, hence T is continuous. \hfill \Box

Applying Schauder’s fixed point theorem we conclude that there exists $\rho \in K$ such that $\rho = T(\rho)$ and the family of measures $\mu_t = \rho(x, t) \, dx$ satisfies equation (7). Hence we arrive at the following assertion.

Proposition 2. Suppose that a probability measure ν has a density from $C^{\infty}_0(\mathbb{R}^d)$ and b and ν satisfy condition (ii) of Theorem 1 and condition (i)' above. Then there exists a family $\mu = (\mu_t)_{t \in [0, 1]}$ of probability measures on \mathbb{R}^d satisfying (7). Moreover, there exists a number N depending only on c, k and $\int_{\mathbb{R}^d} |x|^{2k} \, d\nu$ such that

$$\sup_{t \in [0, 1]} \int_{\mathbb{R}^d} |x|^{2k} \, d\mu_t < N.$$

Now we prove Theorem 1. Let us fix a probability measure ν. We can find probability measures $\nu^n = \varrho_n(x) \, dx$ weakly convergent to the measure ν such that $\varrho_n \in L^\infty(\mathbb{R}^d)$ and

$$\sup_n \int_{\mathbb{R}^d} |x|^{2k} \, d\nu^n < \infty.$$

For each $\varepsilon = n^{-1}$ we take the solution $(\mu^n_t)_{t \in [0, 1]}$ to equation (7) with $\mu^n_0 = \nu^n$. Repeating our reasoning from the linear case we find a sequence $\{n_k\}$ such that $\{\mu^n_{n_k}\}$ converges weakly to μ_t for all $t \in [0, 1]$. Denote $b(\mu, \cdot, \cdot)$ and $b(\mu^n, \cdot, \cdot)$ by b and b_k respectively. We have the identity

$$\int_{\mathbb{R}^d} \varphi \, d\mu_{n_k} - \int_{\mathbb{R}^d} \varphi \, d\nu_k = \int_0^t \int_{\mathbb{R}^d} [n_k^{-1} \Delta \varphi + (b_k, \nabla \varphi)] \, d\mu_k \, ds.$$

Let $S := \text{supp} \, \varphi$. Note that

$$\left| \int_0^t \int_{\mathbb{R}^d} (b_k, \nabla \varphi) \, d\mu_k \, ds \right| - \left| \int_0^t \int_{\mathbb{R}^d} (b, \nabla \varphi) \, d\mu_k \, ds \right| \leq$$

$$\leq \left\| b_k - b \right\|_{L^\infty(S \times [0, 1])} \left\| \nabla \varphi \right\| \infty +$$

$$+ \left| \int_0^t \int_{\mathbb{R}^d} (b, \nabla \varphi) \, d\mu_k \, ds \right| - \left| \int_0^t \int_{\mathbb{R}^d} (b, \nabla \varphi) \, d\mu_k \, ds \right|.$$

Letting $k \to \infty$ we obtain

$$\int_{\mathbb{R}^d} \varphi \, d\mu_t - \int_{\mathbb{R}^d} \varphi \, d\nu = \int_0^t \int_{\mathbb{R}^d} (b(\mu, \cdot, \cdot), \nabla \varphi) \, d\mu_k \, ds$$

since by our assumption the mapping $x \mapsto b(\mu, x, s)$ is continuous for a.e. $s \in [0, 1]$ and the function $(x, s) \mapsto |(b(\mu, x, s), \nabla \varphi(x))|$ is uniformly bounded. This completes the proof of Theorem 1.

It is worth noting that, according to (2), since the function $(b(\mu, x, t), \nabla \varphi(x))$ has bounded support and is uniformly bounded for each $\varphi \in C^{\infty}_0(\mathbb{R}^d)$, the function

$$t \mapsto \int_{\mathbb{R}^d} \varphi(x) \, \mu_t(dx)$$
is Lipschitzian. This function is continuously differentiable if \(b \) is continuous in \(t \).

Finally, we observe that positivity of measures is essential for our a priori estimates employed in the proof. The same techniques apply to much more general second order elliptic operators in place of the Laplacian: we only need the assumptions from [6], [7], and [9]. Extensions to the infinite-dimensional case in the spirit of [10] will be considered in a forthcoming paper.

The authors are grateful to Thomas Lorenz for fruitful discussions and helpful remarks. This work has been supported by the projects RFBR 07-01-00536, 08-01-91205-JF, 08-01-90431-Ukr, and the SFB 701 at Bielefeld University.

References

