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Michael Röckner, Gerald Trutnau

Universität Bielefeld, Fakultät für Mathematik, Postfach 100131 D-33501 Bielefeld, Ger-
many (e-mail: roeckner@math.uni-bielefeld.de, trutnau@math.uni-bielefeld.de)

Summary. Given a right-continuous Markov process (Xt)t≥0 on a second countable
metrizable space E with transition semigroup (pt)t≥0, we prove that there exists a σ-finite
Borel measure µ with full support on E, and a closed and densely defined linear opera-
tor (Lp, D(Lp)) generating (pt)t≥0 on Lp(E; µ). In particular, we solve the corresponding
Cauchy problem in Lp(E; µ) for any initial condition u ∈ D(Lp). Furthermore, for any
real β > 0 we show that there exists a generalized Dirichlet form which is associated to
(e−βtpt)t≥0. If the β-subprocess of (Xt)t≥0 corresponding to (e−βtpt)t≥0, β > 0, is µ-special
standard then all results from generalized Dirichlet form theory become available, and
Fukushima’s decomposition holds for u ∈ D(L2). If (Xt)t≥0 is transient, then β can be
chosen to be zero.
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1 Introduction and motivation

The notion of an infinitesimal generator of a Markov process is central and widely used in
the theory of Markov processes to describe their properties by analytic means (cf. [1]). In
general, however, it is difficult to prove in what sense the infinitesimal generator describes
the Markov process uniquely. In the simple case when the state space is locally compact
and the transition semigroup maps the set of all continuous functions vanishing at infinity
into itself, this is classical (cf. e.g. [6]). If the Markov process is symmetric, this is also
well-understood by working on L2(µ) where µ is the symmetrizing measure (cf. e.g. [3], or
the generalization [4]). In this note we show that for any right-continuous Markov process
on a polish state space E one can completely determine its generator on L2(µ) where µ is
a suitable reference measure on E, such that the Markov process is uniquely determined
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by it µ-a.e. In particular it has (at least in the transient case) a corresponding generalized
Dirichlet form associated to it, which, in case the Markov process belongs to the well-
known class of special standard processes, is quasi-regular. In this case all the theory
of quasi-regular generalized Dirichlet forms from [7], in particular its well-developed L2-
potential theory, and the theory of smooth measures and additive functionals from [8],
applies. Moreover, the extended version of the well-known Fukushima decomposition to
the case of generalized Dirichlet forms, which in its full generality is an extension of the
classical semimartingale decomposition, holds (see the final Remark 3.3(ii), (iii) and (iv)).
A main point is that the above mentioned reference measure can be constructed to have
full topological support, that is, µ(U) > 0, if ∅ 6= U ⊂ E, U open. In particular, if
the Markov process is Feller, i.e. its transition semigroup maps the set of all bounded
continuous functions into itself, then its infinitesimal generator on L2(µ) determines the
Markov process uniquely (not only up to a µ-zero set) among all Feller Markov processes.
In particular, we fully recover the classical results.

2 Construction of Lp-semigroups

Let E be a separable and metrizable topological space. Adjoining an extra point ∆ (the
cemetery) to the measurable space (E,B(E)) let E∆ := E ∪ {∆} and B(E∆) = B(E) ∪
{B ∪ {∆}|B ∈ B(E)}. As usual, any function f on E is considered as a function on E∆

with f(∆) := 0.
We shall first give here the exact definition of what we mean by a right-continuous Markov
process. Denote by P (G) the set of all probability measures on a measurable space (G,G)
and let G∗ be the σ-algebra of universally measurable sets in G, i.e. G∗ :=

⋂
P∈P (G) GP

and GP is the completion of G w.r.t. P . Furthermore Gb, G+, G+
b , denote the bounded,

positive, bounded and positive, respectively, measurable functions on G. We denote by
C(E), Cb(E), the continuous, respectively bounded and continuous functions f : E → R.
Since E is metrizable, we have σ(C(E)) = B(E).

Definition 2.1 M = (Ω,M, (Xt)t≥0, (Px)x∈E∆
) is called a (temporally homogeneous)

right-continuous Markov process with state space E, life time ζ, and corresponding
filtration (Mt)t≥0, if

(M.1) Xt : Ω → E∆ is Mt/B(E∆)- measurable for all t ≥ 0, Xt(ω) = ∆ ⇔ t ≥ ζ(ω)
for all ω ∈ Ω, where (Mt)t≥0 is a filtration on (Ω,M) and ζ : Ω → [0,∞] is
M-measurable.

(M.2) For all t ≥ 0 there exists a map θt : Ω → Ω (called the shift operator or simply the
shift) such that Xs ◦ θt = Xs+t for all s ≥ 0.

(M.3) (Px)x∈E∆
is a family of probability measures on (Ω,M), such that x 7→ Px[B] is

B(E∆)∗–measurable for all B ∈M and B(E∆)–measurable for all B ∈ σ(Xt|t ≥ 0).

(M.4) (Markov property) For all A ∈ B(E∆), s, t ≥ 0, and x ∈ E∆

Px[Xt+s ∈ A|Mt] = PXt [Xs ∈ A] Px-a.s..

2



(M.5) (Normal property) Px[X0 = x] = 1 for all x ∈ E∆.

(M.6) (Right continuity) t 7→ Xt(ω) is right continuous on [0,∞) for all ω ∈ Ω.

From now on assume that we are given a right-continuous Markov process

M = (Ω,M, (Xt)t≥0, (Px)x∈E∆
)

with state space E, and life time ζ. Let Ex denote the expectation w.r.t. Px. Since (Xt)t≥0

is measurable by (M.6),

ptf(x) := pt(x, f) := Ex[f(Xt)], x ∈ E, t ≥ 0, f ∈ B(E)b,

defines a sub-Markovian semigroup of kernels on (E,B(E)), generally referred to as the
transition semigroup of the given Markov process M. The semigroup property follows di-
rectly from the Markov property (M.4).

Let (Rα)α>0 denote the family of resolvent kernels associated to (pt)t≥0, i.e. Rα(x, B) =∫∞
0

e−αtpt1B(x)dt, ∀B ∈ B(E), x ∈ E, and α ≥ 0. Here we use the notation 1B for the
characteristic function of B.

Let {xn|n ≥ 1} be a countable dense subset in E. Fix an arbitrary γ > 0. Define a
measure on E by

m(dy) :=
∑
n≥1

1

2n
Rγ(xn, dy).

Under the following assumption

(T) there is 0 < ϕ ∈ B(E)∗b with Ex[
∫∞

0
ϕ(Xt)dt] < ∞ for all x ∈ E,

let us define

mT (dy) :=
∑
n≥1

1

2ncn

R0(xn, dy),

where cn = Exn [
∫∞

0
ϕ(Xt)dt], n ≥ 1. Clearly, cn > 0 for all n by (M.5), (M.6). If condition

(T) holds then M is said to be transient. We extend m, mT , to (E∆,B(E∆)) by setting
m({∆}) = 0, mT ({∆}) = 0. Obviously, m is a finite measure, whereas mT is in general
only σ-finite.

Let β ≥ 0. The next lemma directly implies that m (resp. mT ) is subinvariant for

pβ
t := e−βtpt; t ≥ 0,

whenever β ≥ γ (resp. β = 0).
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Lemma 2.2 (i) Let β ≥ 0, p ≥ 1. For any f ∈ B(E)+
b , t ≥ 0, we have(∫

E

(
pβ

t f(y)
)p

m(dy)

)1/p

≤ e−(β− γ
p
)t

(∫
E

fp(y)m(dy)

)1/p

.

In particular, if ‖ · ‖p denotes the norm in Lp(E; m), then for any g ∈ B(E)b we have

‖pβ
t g‖p ≤ e−(β− γ

p
)t‖g‖p.

(ii) Under assumption (T) we have for f ∈ B(E)+
b , t ≥ 0, p ≥ 1,(∫

E

(ptf(y))p mT (dy)

)1/p

≤
(∫

E

fp(y)mT (dy)

)1/p

.

In particular, if ‖·‖T,p denotes the norm in Lp(E; mT ), then for any g ∈ B(E)b∩Lp(E; mT )
we have ‖ptg‖T,p ≤ ‖g‖T,p.

Proof (i) Let f ∈ B(E)+
b . Observe that (ptf)p(xn) ≤ pt(f

p)(xn) by Jensen’s inequality.
Then ∫

E

(
pβ

t f(y)
)p

m(dy) ≤ e−pβt
∑
n≥1

1

2n
Rγpt(f

p)(xn).

Using the Markov property for (Xt)t≥0, i.e. that Pxn-a.s., one has Exn [fp(Xt) ◦ ϑs|Ms] =
EXs [f

p(Xt)], and that fp is positive, one can easily see that

Rγpt(f
p)(xn) = eγtExn

[∫ ∞

t

e−γsfp(Xs)ds

]
≤ eγtRγ(f

p)(xn),

so that∫
E

(
pβ

t f(y)
)p

m(dy) ≤ e−(pβ−γ)t
∑
n≥1

1

2n
Rγ(f

p)(xn) = e−(pβ−γ)t

∫
E

fp(y)m(dy).

(ii) Using simply Jensen’s inequality, and the Markov property (M.4), we obtain∫
E

(ptf)(y)pmT (dy) ≤
∑
n≥1

1

2ncn

Exn

[∫ ∞

0

EXs [f(Xt)
p]ds

]
=

∑
n≥1

1

2ncn

Exn

[∫ ∞

t

f(Xs)
pds

]
≤

∫
E

f(y)pmT (dy).

�
Next we show that m, mT , has full support.

Lemma 2.3 Let ∅ 6= U ⊂ E, U be open. Then m(U) > 0, resp. mT (U) > 0.
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Proof Suppose to the contrary that m(U) = 0, resp. mT (U) = 0. Since {xn|n ≥ 1} is
dense in E, there is some n0 ≥ 1 with xn0 ∈ U . Otherwise U would be empty. Since E is
a metric space, there is a continuous f : E → [0, 1] with f(xn0) = 1 and f(E \ U) ⊂ {0}.
Since 1U ≥ f pointwise

0 = m(U) ≥
∫

E

f(y)m(dy) =
∑
n≥1

1

2n
Rγf(xn),

resp.

0 = mT (U) ≥
∫

E

f(y)mT (dy) =
∑
n≥1

1

2ncn

R0f(xn),

It follows that Rγf(xn) = 0, resp. R0f(xn) = 0, for every n. In particular Rγ′f(xn) = 0
for any γ′ ≥ γ in both cases. Since the last is the argument we need, we can now (up to
this end) treat both cases simultaneously. By right continuity of (Xt)t≥0, and Lebesgue’s
theorem, we have limt↓0 ptg(y) = g(y) for any g ∈ Cb(E), y ∈ E. Applying this, Fubini’s
theorem, and Lebesgue’s theorem, we obtain

0 = lim
γ′→∞

γ′Rγ′f(xn) = lim
γ′→∞

∫ ∞

0

e−tp t
γ′

f(xn)dt = f(xn)

for every n which contradicts f(xn0) = 1. Therefore m(U) > 0, resp. mT (U) > 0.

�

Proposition 2.4 (i) ((pβ
t )t≥0, Cb(E)), β ≥ 0, uniquely extends to a submarkovian C0-

semigroup (T β
t := e−βtTt)t≥0 on Lp(E; m). It is a semigroup of contractions on Lp(E; m)

for any β ≥ γ
p
.

(ii) Suppose that assumption (T) holds, and let A := {f · R1ϕ|f ∈ Cb(E)}. Then
((pβ

t )t≥0,A), β ≥ 0, uniquely extends to a submarkovian C0-semigroup (T β
t := e−βtTt)t≥0

of contractions on Lp(E; mT ).

Proof (i) The assertion follows easily from the fact that Cb(E) ⊂ Lp(E; m) densely,
from the right-continuity of t 7→ f(Xt), f ∈ Cb(E), and Lemma 2.2(i). In particular,
the strong continuity of (pβ

t )t≥0 on Cb(E) can be extended to the whole space Lp(E; m)
by a 3ε-argument. The submarkovian property in Lp(E; m), i.e. 0 ≤ T β

t f ≤ 1 for any
f ∈ Lp(E; m), 0 ≤ f ≤ 1, is directly inherited from (pβ

t )t≥0.
(ii) Obviously, ϕ ∈ Lp(E; mT ) for all p ≥ 1, and since mT is pt-supermedian by Lemma
2.2(ii), the same is true for R1ϕ. Therefore f ·R1ϕ ∈ Lp(E; mT ), for any f ∈ Cb(E), and
all p ≥ 1. In particular since R1ϕ > 0 pointwise, it follows that A ⊂ Lp(E; mT ) densely.
Indeed, let g ∈ Lp(E; mT )′ such that

∫
E

g fR1ϕ dmT = 0 for all f ∈ Cb(E). Then since
gR1ϕ ∈ L1(E; mT ), it follows as above that gR1ϕ = 0, hence g = 0 mT -a.e. The assertion
(ii) now follows as in (i), if we can show the strong continuity of (pβ

t )t≥0 on A. We will
carry it out for β = 0, which is enough. Applying the simple Markov property, we obtain

pt(f ·R1ϕ)(x) = Ex

[
f(Xt)Ex

[∫ ∞

0

e−sϕ(Xs+t)ds|Mt

]]
= etEx

[
f(Xt)

∫ ∞

t

e−sϕ(Xs)ds

]
.
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Hence limt↓0 pt(f ·R1ϕ) = f ·R1ϕ pointwise, and consequently in Lp(E; mT ). This concludes
the proof.

�

3 Definition of the generalized Dirichlet form and the

Lp-Cauchy problem

From now on let

µ = m, resp. µ = mT if we assume (T ).

We would like to define the generalized Dirichlet form related to (pβ
t )t≥0.

Let β ≥ γ
p
, resp. β = 0 if we know that assumption (T) holds. Then by Proposition 2.4,

(T β
t )t≥0 is a strongly continuous contraction semigroup on Lp(E; µ), which is submarko-

vian. For p ≥ 1, define the Lp(E; µ)-generator (Lp, D(Lp)):

D(Lp) := {u ∈ Lp(E; µ)|∃ lim
t↓0

1

t
(T β

t u− u) in Lp(E; µ)}

Lpu := lim
t↓0

1

t
(T β

t u− u) if u ∈ Lp(E; µ).

Let (L̂2, D(L̂2)) be the adjoint operator of (L2, D(L2)) in L2(E; µ), (·, ·) the inner product
in L2(E; µ). Then by [7, I.Examples 4.9(ii)], (T β

t )t≥0, regarded as semigroup on L2(E; µ),
is associated to the following generalized Dirichlet form

E(u, v) :=

{
(−L2u, v) for u ∈ D(L2), v ∈ L2(E; µ)

(−L̂2v, u) for v ∈ D(L̂2), u ∈ L2(E; µ).

Remark 3.1 (i) Obviously, pβ
t f is a µ-version of T β

t f for any f ∈ B(E)b ∩ Lp(E; µ),
β ≥ 0.
(ii) Let (T̂ β

t )t≥0 be the adjoint semigroup of (T β
t )t≥0 in L2(E; µ). Clearly (T̂ β

t )t≥0 is positiv-

ity preserving since (T β
t )t≥0 is positivity preserving. Furthermore (T̂ β

t )t≥0 is sub-Markovian
for every β ≥ γ (resp. β ≥ 0 if (T) holds). Indeed, let 0 ≤ f ≤ 1, f ∈ B(E) ∩ L2(E; µ),
and g ∈ B(E)+

b ∩L2(E; µ). Then by Lemma 2.2 and since (T β
t )t≥0 is positivity preserving∫

E

g(1− T̂ β
t f)dµ ≥

∫
E

T β
t g(1− f)dµ ≥ 0.

Therefore T̂ β
t f ≤ 1. 0 ≤ T̂ β

t f follows since (T̂ β
t )t≥0 is positivity preserving.

Similarly, for any β ≥ γ
2

(resp. β ≥ 0 if (T) holds), (T̂ β
t )t≥0 is a L2(E; µ)-contraction

since (T β
t )t≥0 is a L2(E; µ)-contraction.

6



Applying our preceding results (see however Remark 3.3), we obtain:

Theorem 3.2 (i) Let M = (Ω,M, (Xt)t≥0, (Px)x∈E∆
) be a right-continuous normal Markov

process on a separable and metrizable state space E. Let (pt)t≥0 be the corresponding tran-
sition semigroup. Given any β > 0 there exists a finite measure µ with full support on E,
and a generalized Dirichlet form E on L2(E; µ) with associated semigroup (T β

t )t≥0, such
that pβ

t f := e−βtptf is an µ-version of T β
t f for any f ∈ B(E)b, t ≥ 0.

(ii) If (T) holds, we may choose β = 0 in (i), simply µ is then in general only σ-finite.

We now formulate the Lp(E; µ)-Cauchy problem related to the given arbitrary Markov
process. Let (Lp, D(Lp)) be its Lp(E; µ)-generator, i.e. Lpu = limt↓0

1
t
(Ttu−u) in Lp(E; µ),

u ∈ D(Lp). Then it is well-known and easily verified that D(Lp) = D(Lp) and

Lpu = −βu + Lpu, u ∈ D(Lp).

We are looking to continuously differentiable functions u : [0,∞) → Lp(E; µ), such that
u(t) ∈ D(Lp), ∀t ≥ 0, and which solve the following problem with initial condition
u(0) = g ∈ D(Lp):

∂tu = Lpu
u(0) = g.

A solution to this problem is called a solution to the Lp(E; µ)-Cauchy problem related to
(Lp, D(Lp)) with initial condition g ∈ D(Lp). It is well-known (cf. e.g. [5, Theorem 1.2.5 c)])
that the unique solution is given by

u(t) = Ttg; t ≥ 0.

Analogously, for a given β ≥ 0, we can speak about a solution to the Lp(E; µ)-Cauchy
problem related to (Lp = −β ·+Lp, D(Lp)) with initial condition g ∈ D(Lp). Clearly, u(t)
solves Lp(E; µ)-Cauchy problem related to (Lp, D(Lp)) with initial condition g ∈ D(Lp),
if and only if e−βtu(t) solves Lp(E; µ)-Cauchy problem related to (Lp = −β ·+Lp, D(Lp))
with initial condition g ∈ D(Lp).

Remark 3.3 (i) For the last results concerning the Cauchy problem condition (T) didn’t
play any role. Condition (T) was only used to ensure the contraction property of (Tt)t≥0 on
Lp(E; mT ) which further implies that the corresponding operator (Lp, D(Lp)) is negative
definite. We could therefore have restricted our attention in this case to µ = m.
(ii) Suppose that M (satisfying (M.1)-(M.6)) has additionally left limits up to ζ Pµ-a.e.
and that E is a metrizable co-Souslin space. Then M is automatically µ-tight (see [4,
IV. Theorem 1.15, Remark 1.16]).
(iii) Suppose that M (satisfying (M.1)-(M.6)) additionally satisfies the strong Markov
property (see e.g. [4] for the definition). Then M is a so-called right process. Suppose also
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that E is a metrizable co-Souslin space. If the generalized Dirichlet form satisfies the sec-
tor condition, then M is µ-special standard (see [2]). Since the existence of left limits up to
ζ Pµ-a.e. is part of the definition of a µ-special standard process, M is then automatically
µ-tight by (ii). The investigation of the general non-sectorial case will be the subject of
forthcoming work.
(iv) If the β-subprocess of M corresponding to (pβ

t )t≥0, β ≥ 0, is actually a µ-tight µ-
special standard process, then E in Theorem 3.2 is automatically quasi-regular by [7,
IV. Theorem 3.1.], so that we may apply the full potential theory of quasi-regular general-
ized Dirichlet forms from [7], and the theory of smooth measures and additive functionals
from [8]. In particular, by Remark 3.1(ii) the dual semigroup is sub-Markovian if β ≥ γ
(resp. β ≥ 0 if (T) holds) and thus the Fukushima decomposition for generalized Dirichlet
forms, which is in general an extension of the classical semimartingale decomposition,
holds for all u ∈ D(L2) (cf. [8, Theorem 4.5(i)]) if we choose such a β. The conclusions
which can be drawn from this consideration will also be the subject of forthcoming work.

References

[1] Dynkin, E. B.: Markov processes. Vols. I, II. Die Grundlehren der Mathematis-
chen Wissenschaften, Bände 121, 122, Academic Press Inc., Publishers, New York;
Springer-Verlag, Berlin-Göttingen-Heidelberg 1965.

[2] Fitzsimmons, P. J.: On the quasi-regularity of semi-Dirichlet forms, Potential Anal.
15 (2001), no. 3, 151–185.

[3] Fukushima, M.,Oshima, Y., Takeda, M.: Dirichlet forms and Symmetric Markov
processes. Berlin-New York: Walter de Gruyter 1994.
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