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Abstract. A complete description of the equilibrium thermodynamic properties of
an infinite system of interacting ν-dimensional quantum anharmonic oscillators is
given. The oscillators are indexed by the elements of a countable set L ⊂ Rd, possibly
irregular; the anharmonic potentials vary from site to site. The description is based
on the representation of the Gibbs states in terms of path measures. In particular,
it is stated that (a) the set of Gibbs measures Gt is non-void and compact; (b) every
µ ∈ Gt obeys exponential integrability estimates, the same for the whole Gt; (c) every
µ ∈ Gt has a Lebowitz-Presutti type support; (d) |Gt| = 1 at high temperatures. In
the case of ν = 1 and attractive interaction, the existence of phase transitions and
uniqueness of Gibbs measures due to quantum effects are also described. Finally, it
is shown that |Gt| = 1 at a non-zero external field.
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1. Introduction and Setup

The quantum anharmonic oscillator is a mathematical model of a local-
ized quantum particle moving in a potential field with possibly multiple
minima. Infinite systems of interacting quantum anharmonic oscillators
possess interesting properties connected with the ordering caused by
the interaction, as well as with quantum stabilization competing the
ordering. Most of the systems of this kind are related with solids, such
as ionic crystals containing localized light particles oscillating in the
field created by heavy ionic complexes, or quantum crystals consisting
entirely of such particles. For instance, a potential field with multiple
minima is seen by a helium atom located at the center of the crystal cell
in bcc helium [21]. The same situation exists in other quantum crystals,
He, H2 and to some extent Ne. An example of the ionic crystal with
∗ Supported by the DFG through the Project 436 POL 113/115/0-1; Y. Kozit-
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localized quantum particles moving in a double-well potential field is a
KDP-type ferroelectric with hydrogen bounds, in which such particles
are protons or deuterons performing one-dimensional oscillations along
the bounds. In this case the particle carries electric charge and its
displacement produces dipole moment, that should be reflected in the
choice of the inter-particle interaction. It is believed that structural
phase transitions in such ferroelectrics are triggered by ordering of
protons [13, 31, 32]. Another relevant physical object is a system of light
atoms, like Li, doped into ionic crystals, like KCl, where the quantum
particles are not necessarily regularly distributed and the anharmonic
potential may vary from site to site. At last, quantum anharmonic
oscillators are used as parts of the models describing interaction of
vibrating quantum particles with a radiation (photon) field [18, 27] or
strong electron-electron correlations caused by the interaction of elec-
trons with vibrating ions, responsible for such interesting phenomena as
superconductivity, charge density waves etc, see [16]. Thereby, systems
of quantum anharmonic oscillators with possibly irregular properties
are quite important objects of theoretical physics and their rigorous
description is still a challenging mathematical task.

The model we consider has the following heuristic Hamiltonian

H = −1
2

∑

`,`′
J``′(q`, q`′) +

∑

`

H`, (1)

where the sums run through a countable set L ⊂ Rd. This set is
equipped with the Euclidean distance |`− `′|. We suppose that

sup
`∈L

∑

`′∈L

1
(1 + |`− `′|)d+ε

< ∞, (2)

for some ε > 0. This is a kind of regularity of L, which in particular
means that big amounts of the elements of L cannot concentrate in
subsets of Rd of small volume. A regular case of L is a lattice, which
for simplicity is supposed to be Zd. In this case the model is a quantum
anharmonic crystal. The displacement q` is a ν-dimensional vector.
The interaction term in (1) is of dipole-dipole type. By (·, ·) and | · | we
denote the scalar product and norm in the Euclidean spaces Rν , Rd.
The Hamiltonian

H` = Hhar
` + V`(q`)

def=
1

2m
|p`|2 +

a

2
|q`|2 + V`(q`), a > 0, (3)

describes an isolated anharmonic oscillator of mass m and momentum
p`. The Hamiltonian Hhar

` corresponds to a quantum harmonic oscil-
lator of rigidity a. The anharmonic terms V`, which may vary from
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site to site, are supposed to obey certain uniform bounds. We do not
assume that the interaction intensities J``′ possess special properties
like translation invariance in case L = Zd or has finite range. There-
fore, our model can describe also systems with spacial irregularities like
impurities or the ones with random components.

A complete description of the equilibrium thermodynamic proper-
ties of infinite-particle systems may be made by constructing their
Gibbs states. The Gibbs states of a quantum model are defined as
positive normalized functionals on algebras of observables satisfying
the Kubo-Martin-Schwinger (KMS) condition [14], which reflects the
consistency between the dynamic and thermodynamic properties of the
model proper to the thermodynamic equilibrium. For a subsystem lo-
cated in a finite Λ ⊂ L described by the local Hamiltonian HΛ, the KMS
condition is formulated by means of the unitary operators exp(ıtHΛ),
t ∈ R, which are used to describe the evolution of the observables
and hence determine the dynamics of the subsystem. To describe the
dynamics of the whole model one takes the infinite-volume limit of
exp(ıtHΛ). For our model, such limits do not exist; thus, the time
automorphisms describing the dynamics of the whole infinite model
cannot be defined and the corresponding KMS conditions cannot be
formulated. This is a fundamental problem and actually there is no
canonical way to define Gibbs states, and hence to describe thermody-
namic properties of such models. In this situation one has to develop
another approach, adequate for describing relevant physical properties.
In [1], it was initiated an approach based on the fact that the local
Hamiltonians HΛ generate stochastic processes. Then the description
of the local Gibbs states, based on the properties of the semi-groups
exp(−τHΛ), τ > 0, is translated into ‘a probabilistic language’, which
opens the possibility to apply here concepts and techniques from this
domain. In this language our model is a system of infinite-dimensional
‘spins’ ω`, ` ∈ L, being continuous functions ω` : [0, β] → Rν , i.e., paths,
such that ω(0) = ω(β), where β−1 = T > 0 is temperature. Each ‘spin’
is described by the path measure of the β-periodic Ornstein-Uhlenbeck
process corresponding to Hhar

` , multiplied by a density obtained from
the anharmonic term V` by means of the Feynman-Kac formula. Finite
subsystems are associated with conditional probability measures, which
through the Dobrushin-Lanford-Ruelle (DLR) formalism determine the
set of Gibbs measures Gt. This approach is called Euclidean due to the
conceptual analogy with the Euclidean quantum field theory. Among its
achievements there is the settlement in [4, 5] of a long standing problem
of the influence of quantum effects on structural phase transitions in
quantum anharmonic crystals, first discussed in [29].
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In the present letter, we give a complete description of the set Gt

for the model (1), and hence finalize the development of the Euclidean
approach for such models. Our results fall into two groups of theo-
rems. The first group describes the general case where J``′ and V` obey
natural stability conditions only. We state that: Gt is non-void and com-
pact (Theorem 3.1); the elements of Gt obey exponential integrability
estimates (Theorem 3.2) and have a Lebowitz-Presutti type support
(Theorem 3.3); Gt contains exactly one element at high temperatures
(Theorem 3.4). The second group of theorems describes the case of
ν = 1, even V`, and J``′ ≥ 0. Here we employ the FKG order and show
that the set Gt has maximal and minimal elements (Theorem 3.5).
Then under natural additional conditions on V` we state (Theorem
3.6) that for d ≥ 3, |Gt| > 1 at big enough β, i.e., the model undergoes
a phase transition; and that |Gt| = 1 at all β if a quantum stabilization
condition is satisfied (Theorem 3.7). Finally, under a more restrictive
condition on V` we show that |Gt| = 1 at non-zero external field and
all β (Theorem 3.8).

The proof of these theorems, which will be published in a separate
article1, heavily employs probabilistic methods and is far beyond the
scope of this letter. Here we are not even discussing its scheme. Instead,
in Section 2 we give a detailed introduction into the Euclidean method
in the context of our model. A comparison with the corresponding
results known in the literature is given at the very end of the letter.

2. Gibbs States

2.1. The Model and its Local Gibbs States

We assume that the anharmonic potentials V` are continuous functions
Rν → R, such that for all ` ∈ L and x ∈ Rν ,

AV |x|2r + BV ≤ V`(x) ≤ V (x), (4)

with a certain continuous V : Rν → R and constants r > 1, AV > 0,
and BV ∈ R. An example of V` to bear in mind is

V`(x) =
r∑

s=1

b
(s)
` |x|2s − (h, x), b

(s)
` ∈ R, r ≥ 2, (5)

in which h ∈ Rν is an external field and the coefficient b
(s)
` are confined

to certain intervals such that both estimates (4) hold.

1 A preprint version appeared as [25].
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For the inter-particle interaction intensities J``′ , we assume that

J``′ = J`′`, J`` = 0, and Ĵ0
def= sup

`

∑

`′
|J``′ | < ∞. (6)

The model (1) is called ferroelectric2 if J``′ ≥ 0 for all `, `′ ∈ L. By Λ
we denote subsets of L; for a non-void finite subset, we write Λ b L. If
we say that something holds for all `, we mean it holds for all ` ∈ L;
sums like

∑
` mean

∑
`∈L.

The heuristic Hamiltonian (1) has no direct mathematical meaning
and is ‘represented’ by local Hamiltonians

HΛ = −1
2

∑

`,`′∈Λ

J``′(q`, q`′) +
∑

`∈Λ

H`, Λ b L, (7)

which by the above assumptions are essentially self-adjoint and lower
bounded operators acting in the physical Hilbert spacesHΛ = L2(Rν|Λ|).
For every β > 0,

ZΛ
def= trace[exp(−βHΛ)] < ∞; (8)

thus, one can introduce the local Gibbs state

A 7→ %Λ(A) = trace[A exp(−βHΛ)]/ZΛ, (9)

which is a positive normal functional on the algebras CΛ of all bounded
linear operators onHΛ. The dynamics of the subsytem in Λ is described
by the local time automorphisms

A 7→ aΛ
t (A) = exp (ıtHΛ) A exp (−ıtHΛ) , t ∈ R, Λ b L. (10)

Let Mcont
Λ be the algebra of all multiplication operators by bounded

continuous functions F ∈ Cb(Rν|Λ|). One can prove, see [24], that the
linear span of the operators aΛ

t1(F1) · · · aΛ
tn(Fn) with all possible choices

of n ∈ N, t1, . . . , tn ∈ R, and F1, . . . , Fn ∈ Mcont
Λ , is dense in CΛ in the

σ-weak topology. Since normal functionals are σ-weakly continuous, the
state (9) is fully determined by its values on the mentioned products,
i.e., by the local Green functions

GΛ
F1,...,Fn

(t1, . . . , tn) = %Λ

[
aΛ

t1(F1) · · · aΛ
tn(Fn)

]
. (11)

Each such a function can be looked upon, see [1, 3, 12], as the restric-
tions of a function GΛ

F1,...,Fn
analytic on the domain

Dn
β = {(t1, . . . , tn) ∈ Cn | 0 < =(t1) < · · · < =(tn) < β}, (12)

2 Usually such a model is called ‘ferromagnetic’; we adopt the above terminology
in view of the ferroelectric interpretation mentioned in Introduction.
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and continuous on its closure D̄n
β . For every n ∈ N, the subset

{(t1, . . . , tn) ∈ Dn
β | <(t1) = . . . = <(tn) = 0},

is an inner set of uniqueness for functions analytic on Dn
β , see pages

101 and 325 in [30]. This means that the Matsubara functions

ΓΛ
F1,...,Fn

(τ1, . . . , τn) def= GΛ
F1,...,Fn

(ıτ1, . . . , ıτn), (13)

defined for 0 ≤ τ1 ≤ · · · ≤ τn ≤ β, uniquely determine the cor-
responding Green functions and hence the states %Λ. They have the
property

ΓΛ
F1,...,Fn

(τ1 + ϑ, . . . , τn + ϑ) = ΓΛ
F1,...,Fn

(τ1, . . . , τn),

where addition is modulo β. This periodicity and the analyticity of the
Green functions imply the KMS property of the state %Λ [1, 12, 19]. As
was mentioned above, one cannot get the thermodynamic limits of the
automorphisms (10), which would be used to define the global KMS
states. To overcome this difficulty the states of the whole model are
constructed as probability measures on path spaces, called Euclidean
Gibbs states or Euclidean Gibbs measures. For every Λ b L, the semi-
group exp(−τHΛ), τ ∈ [0, β], generates a β-periodic Markov process,
[19, 20], associated with the probability measure µΛ such that the
functions (13) are the moments of µΛ, which fully determines the local
state (9). By means of such measures one constructs the set of Euclidean
Gibbs states Gt.

2.2. Euclidean Gibbs States

As was mentioned above, the ‘spins’ are continuous functions ω` :
[0, β] → Rν , taking equal values at the endpoints (temperature loops).
Thus, one can define them on the circle Sβ

∼= [0, β]. As single spin
spaces we use the standard Banach spaces

Cβ
def= C(Sβ → Rν), Cσ

β
def= Cσ(Sβ → Rν), σ ∈ (0, 1/2),

of all continuous and Hölder-continuous functions ω` : Sβ → Rν ,
equipped respectively with the supremum norm |ω`|Cβ

and with the
Hölder norm

|ω`|Cσ
β

= |ω`|Cβ
+ sup

τ,τ ′∈Sβ , τ 6=τ ′

|ω`(τ)− ω`(τ ′)|
|τ − τ ′|σβ

. (14)

We also use the Hilbert space L2
β = L2(Sβ → Rν , dτ), with the inner

product and norm (·, ·)L2
β
, | · |L2

β
. By B(Cβ), B(L2

β) we denote the
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corresponding Borel σ-algebras. In a standard way, see page 21 of [28],
one proves that

Cβ ∈ B(L2
β) and B(Cβ) = B(L2

β) ∩ Cβ. (15)

Given Λ ⊆ L, we set

ΩΛ = {ωΛ = (ω`)`∈Λ | ω` ∈ Cβ}, Ω = ΩL = {ω = (ω`)`∈L | ω` ∈ Cβ}.
These path spaces are equipped with the product topology and with
the Borel σ-algebras B(ΩΛ). Thereby, each ΩΛ is a complete separable
metric space, its elements are called configurations in Λ. For Λ ⊂ Λ′,
we write ωΛ′ = ωΛ × ωΛ′\Λ, which defines an embedding ΩΛ ↪→ ΩΛ′ by
identifying ωΛ ∈ ΩΛ with ωΛ × 0Λ′\Λ ∈ ΩΛ′ . By P(Ω) we denote the
set of all probability measures on (Ω ,B(Ω)).

The harmonic part of (3) defines the semigroup exp(−τHhar
` ), τ ∈

[0, β], and hence the β-periodic Ornstein-Uhlenbeck process [20]. Its
realization on (Cβ,B(Cβ)) is described by the Gaussian measure χ,
which we introduce as follows. In L2

β we define the Laplace-Beltrami
type operator

A =

(
−m

d2

dτ2
+ a

)
⊗ I, I = Id : Rν → Rν ,

such that A−1 is of trace class. Therefore, the Fourier transformation
∫

L2
β

exp[ı(φ, υ)L2
β
]χ(dυ) = exp

{
−1

2
(A−1φ, φ)L2

β

}
, φ ∈ L2

β. (16)

defines a Gaussian measure χ on (L2
β,B(L2

β)), possessing the property

χ(Cσ
β ) = 1, for all σ ∈ (0, 1/2). (17)

This yields χ(Cβ) = 1; hence, by (15) we redefine χ as a probability
measure on (Cβ,B(Cβ)). By standard arguments (Fernique’s theorem),
it follows from (17) that for every σ ∈ (0, 1/2), there exists λσ > 0 such
that ∫

L2
β

exp
(
λσ|υ|2Cσ

β

)
χ(dυ) < ∞. (18)

For Λ b L, we set
χΛ(dωΛ) =

∏

`∈Λ

χ(dω`), (19)

and

IΛ(ωΛ)=− 1
2

∑

`,`′∈Λ

J``′(ω`, ω`′)L2
β

+
∑

`∈Λ

∫ β

0
V`(ω`(τ))dτ. (20)
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The latter is the energy functional describing the system of interacting
paths ω`, ` ∈ Λ. Thereby, the measure µΛ is

µΛ(dωΛ) = exp {−IΛ(ωΛ)}χΛ(dωΛ)/ZΛ, (21)

where the partition function ZΛ is given by (8). Here it serves as a
normalizing factor. In what follows, the scheme described above estab-
lishes a one-to-one correspondence between the local Gibbs states (9)
and the local Euclidean Gibbs measures (21). The Euclidean Gibbs
measures corresponding to the whole system are defined in the DLR
approach, see [17]. To introduce them we need functions f : ΩΛ → R
with infinite Λ, including the Ω itself. In particular, we will use the
energy functional

IΛ(ω|ξ) = IΛ(ωΛ)−
∑

`∈Λ, `′∈Λc

J``′(ω`, ξ`′)L2
β
, ω ∈ Ω , (22)

describing the interaction of the paths inside Λ b L between themselves
and with the configuration ξ ∈ Ω fixed outside Λ. The second term here
makes sense for all ξ ∈ Ω only if J``′ has finite range. Otherwise, one
has to restrict ξ to be a tempered configuration. In one or another way,
tempered configurations appear in all problems involving unbounded
spins [11, 26]. We impose the weakest possible restrictions of this kind.
To introduce them we use weights, which by definition are the maps
wα : L2 → (0, +∞), α ∈ I = (α, α) ⊆ (0, +∞) obeying the conditions

(a) for any α ∈ I and `, wα(`, `) = 1;

(b) for any α ∈ I and `1, `2, `3,

wα(`1, `2) · wα(`2, `3) ≤ wα(`1, `3) (triangle inequality); (23)

(c) for any α, α′ ∈ I, such that α < α′, and arbitrary `, `′,

wα′(`, `′) ≤ wα(`, `′), lim
|`−`′|→+∞

wα′(`, `′)/wα(`, `′) = 0. (24)

The concrete choice of the weights depends on the decay of J``′ , which
thus will be subject to the following

ASSUMPTION 2.1. For all α ∈ I,

sup
`

∑

`′
log(1 + |`− `′|) · wα(`, `′) < ∞; (25)

sup
`

∑

`′
|J``′ | ·

[
wα(`, `′)

]−1
< ∞. (26)
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One observes that (25) and (26) are competitive. Let us consider some
concrete examples. Suppose that

sup
`

∑

`′
|J``′ | · exp

(
α|`− `′|) < ∞, with a certain α > 0. (27)

The supremum of such α (possibly +∞) is denoted by α. Then we set

I = (0, α), wα(`, `′) = exp
(−α|`− `′|) . (28)

If (27) does not hold for any positive α, we assume that

sup
`

∑

`′
|J``′ | ·

(
1 + |`− `′|)αd

< ∞, with a certain α > 1, (29)

and set α to be the supremum of α obeying (29). Thereby,

I = (1, α), wα(`, `′) =
(
1 + ε|`− `′|)−αd

, α ∈ I, (30)

where ε > 0 is a certain fixed parameter, c.f., (2).
For a certain `, we introduce

Ωα =



ω ∈ Ω

∣∣∣∣∣∣
‖ω‖α

def=

[∑

`

|ω`|2L2
β
wα(`, `)

]1/2

< ∞


 . (31)

Equipped with the metric

ρα(ω, ω′) = ‖ω − ω′‖α +
∑

`

2−|`−`| · |ω` − ω′`|Cβ

1 + |ω` − ω′`|Cβ

, (32)

it becomes a complete separable metric space. The set of tempered
configurations is then defined to be

Ω t =
⋂

α∈I
Ωα. (33)

In the projective limit topology Ω t becomes a complete separable met-
ric space as well. Clearly, the topologies of the spaces Ωα, Ω t are
independent of the choice of `. By construction, for any α ∈ I, we
have continuous dense embeddings Ω t ↪→ Ωα ↪→ Ω , which yields that
Ωα,Ω t ∈ B(Ω) and the Borel σ-algebras of all these spaces coincide
with the σ-algebras induced on them by B(Ω).

By standard methods, one can prove that for every α ∈ I and Λ b L,
the map Ωα × Ωα 3 (ω, ξ) 7→ IΛ(ω|ξ) is continuous. Furthermore, for
every ball Bα(r) = {ω ∈ Ωα | ρα(0, ω) < r}, r > 0, one has

inf
ω∈Ω , ξ∈Bα(r)

IΛ(ω|ξ) > −∞, sup
ω,ξ∈Bα(r)

|IΛ(ω|ξ)| < +∞.
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Therefore, for Λ b L and ξ ∈ Ω t, the partition function

ZΛ(ξ) =
∫

ΩΛ

exp [−IΛ(ωΛ × 0Λc |ξ)]χΛ(dωΛ) (34)

is continuous and for any r > 0, infξ∈Bα(r) ZΛ(ξ) > 0. Thus, one can
define

πΛ(B|ξ) =
1

ZΛ(ξ)

∫

ΩΛ

exp [−IΛ(ωΛ × 0Λc |ξ)] IB(ωΛ × ξΛc)χΛ(dωΛ),

(35)
where ξ ∈ Ω t, Λ b L, B ∈ B(Ω), and IB stands for the indicator of B.
We also set πΛ(·|ξ) ≡ 0 for ξ ∈ Ω \ Ω t. For every ξ ∈ Ω t, πΛ(·|ξ) is a
probability measure on (Ω t,B(Ω t)). The family {πΛ}ΛbL is called the
local Gibbs specification corresponding to the model (1).

DEFINITION 2.2. A measure µ ∈ P(Ω) is called a (tempered) Eu-
clidean Gibbs measure if it satisfies the Dobrushin-Lanford-Ruelle (equi-
librium) equation ∫

Ω
πΛ(B|ω)µ(dω) = µ(B), (36)

for all Λ b L and B ∈ B(Ω). The set of all such measures is denoted
by Gt.

The elements of Gt are supported by Ω t, which follows from the cor-
responding property of πΛ. By Wt we denote the usual weak topology
on the set of all probability measures P(Ω t).

3. The Results

3.1. The general case

THEOREM 3.1. For every β > 0, the set Gt is non-void and Wt-
compact.

Next we get an exponential moment estimate, similar to (18), in which
the constant may depend on σ but is independent of µ ∈ Gt and ` ∈ L.

THEOREM 3.2. For every σ ∈ (0, 1/2), there exists C > 0 such that,
for any ` ∈ L and µ ∈ Gt,

∫

Ω
exp

(
λσ|ω`|2Cσ

β

)
µ(dω) ≤ C, (37)

where λσ is the same as in (18).
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The set of tempered configurations Ω t, which is a supporting set for
ν ∈ Gt, was introduced in (33) by means of rather slack restrictions
of L2

β-norms of ω`. In fact, our Gibbs measures have a much smaller
support (of Lebowitz-Presutti type), which is independent of the choice
of the weights wα. Given b > 0 and σ ∈ (0, 1/2), we define

Ξ (b, σ) = {ξ ∈ Ω | (∀`0 ∈ L) (∃Λξ,`0 b L) (∀` ∈ L \ Λξ,`0) :

|ξ`|2Cσ
β
≤ b log(1 + |`− `0|)},

which is a Borel subset of Ω t.

THEOREM 3.3. For every σ ∈ (0, 1/2), there exists b > 0, which
depends on σ and on the parameters of the model only, such that

µ(Ξ (b, σ)) = 1, for all µ ∈ Gt. (38)

The last result in this group gives a sufficient condition for |Gt| = 1,
which holds at high temperatures. Let us decompose V` = V1,` + V2,`,
where V1,` ∈ C2(Rν), V2,` are such that

−a ≤ b
def= inf

`
inf

x,y∈Rν , y 6=0
(V ′′

1,`(x)y, y)/|y|2 < +∞, (39)

0 ≤ δ
def= sup

`

{
sup
x∈R

V2,`(x)− inf
x∈R

V2,`(x)

}
≤ +∞.

The role of V2,` is to produce multiple wells responsible for eventual
phase transitions.

THEOREM 3.4. The set Gt contains exactly one element if

eβδ < (a + b)/Ĵ0. (40)

The condition (40) is independent of the mass m, hence, the uniqueness
stated holds also in the quasi-classical limit m → +∞ [3].

3.2. Scalar ferroelectric models

Here we consider the case ν = 1, J``′ ≥ 0. For ω, ω̃ ∈ Ω , we set ω ≤ ω̃
if for all ` and τ ∈ [0, β], one has ω`(τ) ≤ ω̃`(τ). A function f : Ω → R
is called increasing if ω ≤ ω̃ implies f(ω) ≤ f(ω̃). For µ ∈ P(Ω t) and a
bounded continuous f : Ω t → R, we write

µ(f) =
∫

Ωt
f(ω)µ(dω).

Then for µ1, µ2 ∈ P(Ω t), we set µ1 ≤ µ2 if µ1(f) ≤ µ2(f) for all
increasing f . One can show that this is an order on P(Ω t) (the FKG
order).
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THEOREM 3.5. The set Gt has a maximal µ+ and a minimal µ−
elements. These elements are extreme; they are translation invariant if
L is a lattice and the model is translation invariant. If V`(x) = V`(−x)
for all ` ∈ L, then µ+(B) = µ−(−B) for all B ∈ B(Ω).

The next statement describes a phase transition in our model, which
corresponds to |Gt| > 1. Here we suppose that L = Zd and

inf
`,`′: |`−`′|=1

J``′
def= J > 0. (41)

For d ≥ 3, we set

θd =
1

(2π)d

∫

(−π,π]d

dp

E(p)
, E(p) =

d∑

j=1

[1− cos pj ]. (42)

Let also f : [0,+∞) → [0, 1) be the function defined implicitly by

f(t tanh t) = t−1 · tanh t, for t > 0, and f(0) = 1. (43)

It is convex and monotone decreasing on (0, +∞). Furthermore, for
every fixed α > 0, the function

(0, +∞) 3 t 7→ φ(t, α) = αtf(t/α), (44)

is monotone increasing to α2 as t → +∞. Next we suppose that all V`

are even continuous functions and the upper bound in (4) is

V (x`) =
r∑

s=1

b(s)x2s
` ; 2b(1) < −a; b(s) ≥ 0, s ≥ 2, (45)

where a is as in (3) and r ∈ N or r = +∞. In the latter case, the series
r∑

s=2

(2s)!
2s−1(s− 1)!

b(s)ts−1 def= Φ(t), (46)

converges at some t > 0. In both cases the equation

2b(1) + a + Φ(t) = 0, (47)

has a unique solution t∗ > 0. Finally, we suppose that for every `,
V (x`)− V`(x`) is an increasing function of x2

` .

THEOREM 3.6. Let d ≥ 3 and the above assumptions hold. Then
under the condition

J > θd/8mt2∗, (48)

there exists β∗ > 0 such that |Gt| > 1 for β > β∗. The bound β∗ is the
unique solution of the equation

2θdm/J = φ(β, 4mt∗). (49)
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As is known [2, 5], quantum effects may stabilize quantum systems
preventing them from any phase transition. The next result describes
such effects for the model considered. Like above, all V` are supposed to
be even continuous functions. In addition, we suppose that there exists
a convex strictly increasing function v : R+ → R such that for every `,
V`(x`)− v(x2

`) is an increasing function of x2
` . Then the Hamiltonian

H̃` = − 1
2m

(
∂

∂x
(j)
`

)2

+
a

2
x2

` + v(x2
`),

has a discrete non-degenerate spectrum {En}n∈N. Set

∆ = min
n∈N

(En −En−1) . (50)

THEOREM 3.7. Under the above assumptions |Gt| = 1 if

m∆2 > Ĵ0. (51)

Note that (51) is a stability condition, in which m∆2 appears as the
oscillator rigidity caused by quantum effects. If it holds, a stability-
due-to-quantum-effects occurs [5]. If v is a polynomial of degree r, the
quantum rigidity m∆2 is a continuous function of the particle mass m;
it gets small as m → +∞. If m → 0+, then m∆2 = O(m−(r−1)/(r+1));
hence, (51) certainly holds in the small mass limit [2, 4, 5]. To compare
this result with Theorem 3.6, suppose that L = Zd, J``′ = J iff |` −
`′| = 1, and all V` coincide with the function given by (45). Then the
parameter (50) obeys the estimate ∆ < 1/2mt∗, see [23], where t∗ is the
same as in (48). In this case (51) may be rewritten J < 1/8dmt2∗. One
can show that θd > 1/d and dθd → 1 as d → +∞; thus, the estimates
(48) and (51) become precise in this limit.

Now let L be a lattice and the model (1) be translation invariant,
i.e., V = V`. We set

F =

{
ϕ : R→ R

∣∣∣∣∣ ϕ(t) = ϕ0 exp(γ0t)tn
∞∏

i=1

(1 + γit)

}
, (52)

where ϕ0 > 0, n ∈ N0, γi ≥ 0 for all i ∈ N0, and
∑∞

i=1 γi < ∞. Clearly,
each ϕ ∈ F can be extended to an exponential type entire function
ϕ : C→ C, which has no zeros outside of (−∞, 0]. In the next theorem
a > 0 is the same as in (3).

THEOREM 3.8. Let the model be translation invariant and the anhar-
monicity potential V be of the form

V (x) = v(x2)− hx, h ∈ R, (53)
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where v is such that for a certain b ≥ a/2, its derivative v′ obeys the
condition b + v′ ∈ F . Then |Gt| = 1 if h 6= 0.

3.3. Comments

We have given a rigorous description of the equilibrium thermodynamic
properties of the quantum model (1) based on a path representation of
local Gibbs states (9). In our approach, the model is represented by a
system of infinite-dimensional spins; its global properties are described
by the Gibbs measures constructed by means of the DLR approach.
Since the spins are infinite-dimensional, our technique is more compli-
cated than the one used for classical spins. Additional complications
arise from the fact that we study a general case, where the model has
no spacial regularity and the interaction is of infinite range. In view of
the latter property, the only way to develop the theory is to impose
a priori restrictions on the support of the Gibbs measures, which was
done by means of the weights obeying the conditions (23) – (26). These
conditions are competitive and, in principle, can contradict each other
if the interaction decays too slowly. Once they are satisfied, the set of
tempered Gibbs measures Gt is non-void, Theorem 3.1. A posteriori,
its elements have much smaller support than Ω t, established by the
conditions (23) – (26), which does not depend on the particular choice
of the weights. If the interaction has finite range, the Gibbs measures
can be defined with no support restrictions. However, in this case the
set of all such measures may contain ‘improper’ elements, which have
no physical meaning and hence should be excluded from the theory.
This can be done by means of the weights obeying the same condi-
tions, except for (26) which is obeyed automatically. Once this is done,
the tempered Gibbs measures obtained have the support described by
Theorem 3.3.

Now let us compare our results with those known for similar classical
and quantum models. For non-quantum models of unbound spins, the
existence of tempered Gibbs measures had been proven by means of
the renowned Dobrushin criterion (Theorem 1 in [15]). The methods of
its verification heavily employed the specific features of the models and
could not be helpful in our study. Our proof, which is much simpler,
is based on estimates like (37) obtained for the kernels (35). These
estimates allowed us to prove the compactness of Gt and the estimate
(37) itself. Estimates like (37) can be proven in the so called analytic
approach to the construction of Gt [6, 7], which is alternative to the
DLR approach. Our results improve the corresponding results of [6, 7]
in the following: (a) the bound (37) is much stronger; (b) we excluded
many technical restrictions on V`, e.g., differentiability. Furthermore,
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Theorem 3.4 is an improved version of the corresponding result of [8, 9];
Theorem 3.6 improves the result of [10]; Theorem 3.7 is an improved
version of the result of [4]. Theorems 3.3, 3.5, and 3.8 are strongly im-
proved and extended versions of the corresponding statements proven
for non-quantum models in [11, 26]. Except for Theorems 3.6 and 3.8,
our results can describe systems with spacial irregularities and/or with
random components.
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13. Blinc, R. and Žekš, B. (1974) Soft Modes in Ferroelectrics and Antiferro-

electrics North-Holland Publishing Company/Americal Elsevier, Amsterdam
London New York.

14. Bratteli, O. and Robinson, D. W. (1981) Operator Algebras and Quantum
Statistical Mechanics, II, Springer, Berlin Heidelberg New York.

TNAA1.tex; 31/08/2006; 15:27; p.15



16 Yuri Kozitsky and Tatiana Pasurek

15. Dobrushin, R. L. (1970) Prescribing a System of Random Variables by
Conditional Distributions. Theory Probab. Appl. 15, 458–486.

16. Freericks, J. K., Jarrell, M., and Mahan, C. D. (1996) The Anharmonic
Electron-Phonon Problem. Phys. Rev. Lett. 77, 4588–4591.

17. Georgii, H.-O. (1988) Gibbs Measures and Phase Transitions. Studies in
Mathematics, 9, Walter de Gruyter, Berlin New York.

18. Hirokawa, M., Hiroshima, F., and Spohn H. (2005), Ground State for Point
Particles Interacting Through a Massless Scalar Bose Field. Adv. Math. 191,
239–292.

19. Klein, A. and Landau, L. (1981) Stochastic Processes Associated with KMS
States. J. Funct. Anal. 42, 368–428.

20. Klein, A. and Landau, L. (1981) Periodic Gaussian Osterwalder-Schrader
Positive Processes and the Two-Sided Markov Property on the Circle. Pacific
J. Math. 94, 341–367.

21. Koeler, T. R. (1975) Lattice Dynamics of Quantum Crystals. In G. K.
Horton and A. A. Maradudin, editors, Dynamical Properties of Solids, II, Crys-
talline Solids, Applications, pages 1–104, North-Holland - Amsterdam, Oxford,
American Elsevier - New York.

22. Kozitsky, Y. (2003) Laguerre Entire Functions and the Lee-Yang Property.
Advanced special functions and related topics in differential equations (Melfi,
2001). Appl. Math. Comput. 141, no. 1, 103–112.

23. Kozitsky, Y. (2004a) Gap Estimates for Double-Well Schrödinger Operators
and Quantum Stabilization of Anharmonic Crystals. J. Dynam. Differential
Equations. 16, 385–392.

24. Kozitsky, Y. (2004b) On a Theorem of Høegh-Krohn. Lett. Math . Phys.68,
183–193.

25. Kozitsky, Y. and Pasurek, T. (2005) Euclidean Gibbs Measures of Quantum
Anharmonic Crystals. BiBoS Preprint 05-05-180.

26. Lebowitz, J. L. and Presutti, E. (1976) Statistical Mechanics of Systems of
Unbounded Spins. Commun. Math. Phys.50, 195–218.

27. Osada, H. and Spohn, H. (1999) Gibbs Mesures Relative to Brownian Motion.
Ann. Probab. 27, 1183–1207.

28. Parthasarathy, K. R. (1967) Probability Measures on Metric Spaces. Academic
Press, New York.

29. Schneider, T., Beck, H., and Stoll, E. (1976) Quantum Effects in an n-
Component Vector Model for Structural Phase Transition. Phys. Rev.B13,
1132–1130.

30. Shabat, B. V. (1992) Introduction to Complex Analysis. II: Functions of
Several Variables. Translations of Mathematical Monographs, 110. American
Mathematical Society, Providence, RI.

31. Stamenković, S. (1998) Unified Model Description of Order-Disorder and Dis-
placive Structural Phase Transitions. Condens. Mather Physics (Lviv), 1(14),
257-309.

32. Vaks, V. G. (1973) Introduction to the Microscopic Theory of Ferroelectrics.
Nauka, Moscow, (in Russian).

TNAA1.tex; 31/08/2006; 15:27; p.16


