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Abstract

We study increasing triangular transformations T of the n-dimensional cube 2 = [0, 1]™ which transform
a measure p into a measure v, where p and v are absolutely continuous Borel probability measures with
densities p, and p,. It is shown that if there exist positive numbers € and M such that € < p, < M,
€ < py < M and numbers «, 3 > 1 that such p = afB(n — 1)"*(a+ 3)~' > 1 and g, € W*1(Q),
0, € WPL(Q), where W! denotes the Sobolev class, then the transformation 7' belongs to the class
wrl(Q).

The so called increasing triangular transformations have been investigated in work
[1]. These are transformations of the form 7' = (Ty, ..., T,,): R" — R", where T} is a
function of 1, T is a function of (x1, z3) and so on, T; is a function of (xy, ..., x;),
and T is increasing in z;. The canonical version of T is described in work [1]. Since
our statements do not depend on a Lebesgue version of T' (and do not depend on a
p-version as well because p is equivalent to Lebesgue measure), we may assume that the
transformation 7" is canonical. The main result of the paper is the following theorem.

Theorem. Let i and v be absolutely continuous Borel probability measures with
densities p,, and p, on Q =1[0,1]". Let T be an increasing triangular transformation that
transforms the measure p into v. Let us assume that there exist

(1) positive numbers € and M such that € < p, < M, € < p, < M;

(2) positive numbers o, 3 > 1 such that p, = af(n—1)" a+5)"t > 1, o, € W*(Q),
and g, € WHH(Q).

Then the transformation T belongs to the class WPm1(§2).

Proof. We shall prove the statement in the case n = 2. We recall that the Sobolev
class WP () (another notion is HP"(2)) is defined as the set of functions f € LP(Q)
whose derivatives up to order r are elements of LP(Q2) (regarding Sobolev classes the
reader is referred to [2]). In order to show that the transformation 7" belongs to the
Sobolev class we shall express its derivatives as functions of the densities of the measures
w and v. It is shown in work [1] that
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where p, and v, are conditional measures on {z} x [0, 1] (on conditional measures see
[3]). In our case the conditional measures determined by the densities
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with respect to Lebesgue measure. These densities are referred to as conditional densities.
We shall denote the projections of the measures p and v to the interval {(x,0), = € [0, 1]}
as p; and v;. We denote by F; the distribution function of an absolutely coninuous
measure { with a positive density g¢ defined on the interval [0, 1], i.e.,

Fe(x) = /Om pe(t) dt, x € [0,1].

The function F¢ has an inverse function because it is strictly increasing. Thus
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All the three functions are bounded because the densities p, and p, are bounded
and are separated from zero and thus their conditional densities and the densities of
their projections are separated from zero too. Therefore, they are integrable on {2 in any
power. It only remains to prove that the function 0,75 belongs to LP?(2). Let the density
p, be a smooth function. Then one has the equalities
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The following equality holds true as well:
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Indeed, suppose that f(z,y) = F,, , (v) and ¢(z,y) = F,, ! (y). For any z and y we
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have the equality f(z,p(z,y)) = y. Differentiation in z leads to the equality

O f(x,0(x,y)) + Oy f (2, (7, y))0p(, y) = 0.

We obtain the equality
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This leads to equality (2) in the case of smooth densities. Then we obtain the following

chain of equalities:
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In addition, one has
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Due to the inequalities p, > ¢ and fol pu(x,t)dt > ¢ for conditional density we have
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It is easy to see that, for any function f € LP(2), where p > 1, the function fol flz,t)dt
belongs to LP(€2) by Fubini’s theorem. It follows by Holder’s inequality that if f € L*(£2),
g € LA(Q), then fg € LP(Q) where p = af(a + §)~!. Thus to prove our statement in
the case of smooth a density p, it is enough to show that [0,.p,](T\ (), y)Ti(z) € L?(Q),
Oppu(z,y) € L*(Q2). The hypotheses of the theorem imply that d,p,(z,y) € L*(Q2). By
the change of variables formula and the fact that 7](z) < M/e we deduce that
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where the existence of the right hand side of the equality implies the existence of the left
hand side. Thus 0,75 belongs to LP?(2) and we obtain the following estimate:
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where C' is a constant which depends only on € and M.

From now on we do not assume that the density p, is smooth, but we suppose that the
hypotheses of the theorem are fulfilled. There exists a sequence of smooth densities p,,m)
convergent to p, in the norm of W', In addition, we can choose it so that for p, ) the
hypotheses of the theorem are fulfilled with the same ¢, M and 3 for any m. Inequality
(6) applied to the densities p, ) and the corresponding triangular transformations 70"
implies the boundedness of the sequence of functions @cTQ(m) in the class LP?(Q2). Now to
prove the theorem it is enough to show that the sequence of functions 7. Q(m) converges to
Ty in LP2(Q)). Notice that because the absolute values of TQ(m) and T3 do not exceed 1, it
is enough to establish convergence in measure. It is proved in work [1] that if a sequence
of absolutely continuous probability measures v; defined on R"™ converges in variation
to measure v, then sequence of canonical triangular transformations 7),,. converge in
measure to 7),, (in work [4], a generalization is obtained in the case where measure
also vary). Because convergence of densities in W51(2) implies convergence of measures
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Now we apply induction on n and assume that the statement is proved if £ < n.
According to the construction of the canonical transformation 7' (see [1]), the first
n — 1 coordinates of the transformation 7" form the canonical transformation of the
projections of the measures on the (n — 1)-dimensional cube in the hyperplane z,, = 0.
We shall denote it by S, and the vector (xi,...,z,_1) is denoted by z. Obviously,
the hypotheses of the theorem are fulfilled for the projections of our measures. Indeed,
the densities of the projections are positive, bounded and separated from zero, their
derivatives fol O, (0, ) diy, fol Oz pu(T, xy) dx, are integrable in necessary powers.
Therefore, the components T}, i = 1, ..., n — 1, belong to the Sobolev class WPr=1:1(Q),
Pn-1 > Pn. Thus it remains to prove the membership of 9,,T,(x,z,) in L~ (Q).

We shall use the following relation for 7,,(z, x,):
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where p, and v, are conditional measures defined on the segments {z} x [0,1]. The
derivative of T,(z, z,) in x, has the same form as in (1), i.e.,
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Hence it is integrable in any power. Suppose that the density p, is a smooth function.
Then the derivative in x;, ¢ < n, has the same form as in (4), i.e.,
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Let us write out multipliers separately:
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Similarly to inequality (5) we obtain the estimate
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0
By the inductive assumption for j = 1,...,n — 1 the function 0,,Tj(x,...,z;) belongs

to LPi(Q)). In particular, for any j this expression belongs to LP»~*(€)). The function
fol |0z, pu(, )] dt belongs to L*(2) and one has 9,,p,(x,t) € LP(Q) for any j. Then by
the change of variable formula (see [1, p. 7]) we obtain
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where /M < 0, Ty(21,...,2) < M/e according to (7). Thus [0,,p,](S(x),t) belongs
to L?(Q). By using Holder’s inequality we obtain that the right hand side of inequality
(8) and therefore the left hand side belongs to LI(Q)) where 1/¢ = 1/a+1/8+ 1/pn_1,
i.e., ¢ = p,. In addition, the following chain of equalities holds true:
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where C'is a constant depending only on € and M. Then by induction we can obtain the
estimate

102, Toll om0 < Cull ol oyl oullfes (9)

where (' is a constant number depending only on € and M.

From now on we do not assume that the density p, is smooth. As in the case n = 2
let us find a sequence of smooth densities p, ) for which the hypotheses of the theorem
are fulfilled with the same ¢, M and [ for any m, and the sequence p,m) converges to
p, in WHH(Q). By inequality (9) applied to the densities p,m and the corresponding
triangular transformations 7™, it is easy to show the boundedness of the sequence of
functions @EiTém) in the class LP*(Q2). The functions T\™ converge to T, in L (Q).
Hence T, is a limit of the sequence of functions 7™ in W7=1(€2). Theorem is completely
proved.
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