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Abstract

We study uniqueness of parabolic equations for measures µ(dtdx) = µt(dx)dt
of the type L∗µ = 0, satisfying µt → ν as t → 0, where each µt is a probability
measure on Rd, L = ∂t + aij(t, x)∂xi∂xj + bi(t, x)∂xj is a differential operator
on (0, T ) × Rd and ν is a given initial measure. One main result is that
uniqueness holds under uniform ellipticity and Lipschitz conditions on aij but
for bi merely local integrability and coercivity conditions are sufficient.
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1 Introduction and main result

Let T > 0, let A = (aij) be a Borel measurable mapping on [0, T ]×Rd with values in
the space of non-negative symmetric d×d matrices, and let b = (bi) : [0, T ]×Rd → Rd

be Borel measurable. Consider the differential operators

LA,bu(t, x) =
d∑

i,j=1

aij(t, x)∂i∂ju(t, x) +
d∑

i=1

bi(t, x)∂iu(t, x), (1.1)

and
Lu(t, x) : = (LA,b + ∂t)u(t, x). (1.2)

for u ∈ C∞
0 ((0, T )×Rd). Here ∂i : = ∂

∂xi
and ∂t : = ∂

∂t
. Let µ be a locally finite (not

necessarily non-negative) Borel measure on (0, T )× Rd such that aij, bi ∈ L1
loc(|µ|)

and ∫
(0,T )×Rd

Lu dµ = 0 for all u ∈ C∞
0 ((0, T )× Rd), (1.3)

abbreviated
L∗µ = 0. (1.4)
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Under reasonable regularity assumptions on the coefficients (see below) it follows
that

µ(dtdx) = µt(dx) dt

for some family of locally finite Borel measures µt, t ∈ (0, T ), on Rd. Hence one can
consider the initial value problem

∫
(0,T )×Rd

Lu dµ = 0 for all u ∈ C∞
0 ((0, T )× Rd),

lim
t→0

∫
Rd

ζ dµt =

∫
Rd

ζ dν for all ζ ∈ C∞
0 (Rd),

(1.5)

for a given locally finite Borel measure ν on Rd. We are mainly interested in the case
when the initial condition ν and each measure µt in the solution family (µt)t∈(0,T )

are probability measures. It was shown in [4] (see also [3]) that under reasonable as-
sumptions on the coefficients, there exists a solution (µt)t∈(0,T ) to the weak parabolic
initial value problem (1.5) consisting of probability measures, for any probability
measure ν on Rd as initial condition. The aim of this paper is to specify conditions
under which this solution is unique.

In the elliptic case weak equations for measures of type (1.4) have been studied
quite extensively in recent years on domains in Rd and in infinite dimensions (see
the recent paper [7] and references therein). For the so far most general existence
results we refer to [8] in the finite dimensional and to [9] (see also [13]) in the
infinite dimensional case. Regarding uniqueness, there are only two papers [11] and
[12] (the latter one a slightly more general and more self-contained than the first)
which contain general results on uniqueness and these are only in finite dimensions.

Of course, in the elliptic (time independent) case, weak equations for measures of
type (1.4) are closely connected to the question whether the solution µ is invariant
for a semigroup generated by the operator L in some sense. We warn the reader
that if this semigroup exists, the measure µ might not be invariant with respect to
it, but maybe only subinvariant. We refer to [19] (and also to [11] and [12]) for
a detailed discussion of this question with the essence that the invariance under
the semigroup is strongly related to the uniqueness of the weak elliptic problem for
measures defined analogously to (1.4).

A similar phenomenon is central also in the parabolic case studied in this paper.
The main difference is to invoke the boundary condition for t = 0 in a proper way.

In order to formulate the main results of this paper and recall the existence
result from [4] we first fix conditions on the coefficients aij, bi which will be in
force throughout the paper. Note that these conditions are purely local in space.
Let Hp,1(B) denote the set of all f ∈ Lp(U) := Lp(U, dx), where dx is Lebesgue
measure, with generalized partial derivatives ∂if ∈ Lp(U) for all 1 ≤ i ≤ d.

(H1) There exists p > d + 2 such that for every open ball B ⊂ Rd one has
(a) inf(t,x)∈[0,T ]×B det A(t, x) > 0 and supt∈[0,T ], 1≤i,j≤d ‖aij(t, ·)‖Hp,1(B) < ∞,

(b)

∫ T

0

∫
B

|b(t, x)|p dxdt < ∞.

Let P(Rd) denote the set of all Borel probability measures on Rd. We introduce
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the following set of measures on (0, T )× Rd:

MA,b,ν
par := {µ| µ(dt, dx) = µt(dx)dt, µt ∈ P(Rd) ∀ t ∈ (0, T ) (1.6)

and µ solves (1.5), where |b| ∈ L1((0, T )×B, µ) for every ball B ⊂ Rd}.

Here the subscript “par” refers to “parabolic”.

Theorem 1.1. Assume (H1). Suppose, in addition, that the following condition
holds:
(H2) Each aij is Hölder continuous in t ∈ [0, T ], locally uniformly with respect to
x ∈ Rd.
Let K ⊂MA,b,ν

par be such that K is convex and for all µ ∈ K one has

(1− L)(C∞
0 ([0, T )× Rd)) is dense in L1((0, T )× Rd, µ). (1.7)

Then #K ≤ 1.

In the last section of this paper we shall specify examples of subsets K as above.
For completeness we recall the main existence result from [4]. Note that (H2) is not
needed for this.

Theorem 1.2 (cf. Theorem 3.1 in [4]). Assume that there exists p > d + 2 such
that for every ball B ⊂ Rd (H1)–(a) holds and

sup
t∈[0,T ], 1≤i≤d

‖bi(t, ·)‖Lp(B) < ∞.

Assume furthermore that there exists a nonnegative function Ψ ∈ C2(Rd) with com-
pact level sets and a constant C ∈ [0, +∞) such that

LΨ ≤ C(1 + Ψ) a.e. in (0, T )× Rd.

Then for every probability measure ν on Rd there exists a family µ = (µt)t∈(0,T ) of
probability measures on Rd satisfying (1.5). In addition, setting µ0 : = ν we have
that the function t →

∫
Rd ζdµt is continuous on [0, T ) for every ζ ∈ C∞

0 (Rd).

The organization of the rest of this paper is as follows.
In §2 we first fix some notation and recall results from [6] and [1] that we shall

use below. Then we prove that any µ ∈ MA,b,ν
par satisfying (1.7) is an extreme point

of the convex set MA,b,ν
par . This obviously implies the assertion of Theorem 1.1. The

final §3 is devoted to applications.

Let us fix some notation. If µ is a (not necessarily nonnegative) locally finite
Borel measure on an open subset Ω ⊂ Rd and p ∈ [1,∞) we denote by Lp

loc(Ω, µ)
the class of all functions f such that χf ∈ Lp(Ω, µ) for every χ ∈ C∞

0 (Rd). Here
Lp(Ω, µ) = Lp(Ω, |µ|) where |µ| is the variation of µ. Lebesgue measure is denoted by
dx, and as usual Lp

loc(Ω) : = Lp
loc(Ω, dx). The Borel σ–algebra of a topological space

X is denoted by B(X) and, for a space of real or complex valued functions F(X)
on X, we denote by F0(X) the subset of functions f ∈ F(X) with compact support,
i.e., the closure of {f 6= 0} is compact. So, C∞

0 (Ω) is the class of all infinitely
differentiable functions with compact support in Ω. Let Hp,r(Ω), p ≥ 1, r ≥ 0, be
the standard Sobolev space of functions on Ω whose generalized derivatives up to
order r are in Lp(Ω), equipped with its natural norm. Furthermore Hp,r

loc (Ω) denotes
the class of functions f on Ω such that χf ∈ Hp,r(Rd) for every χ ∈ C∞

0 (Ω).
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2 L1-uniqueness and extremality

In this section we fix LA,b and L as in (1.1), (1.2) respectively. We consider L with
domain C∞([0, T ) × Rd). We always assume (H1) to hold, but recall this in all
theorems.

Lemma 2.1. Let µ ∈ MA,b,ν
par (cf. (1.6)). Then (L, C∞

0 ([0, T ) × Rd)) is dissipative
on L1((0, T )× Rd, µ) and therefore, in particular, closable.

Proof. The last statement is standard. The first one follows by [15, Lemma 1.8,
Appendix A] and Lemma 2.7 below. �

As a consequence, we have for the closure (L
µ
, D(L

µ
)) of (L, C∞

0 ([0, T ) × Rd))
on L1((0, T )× Rd, µ) the following result, cf. [15, Appendix A].

Proposition 2.2. For µ ∈MA,b,ν
par the following assertions are equivalent:

(i) (L
µ
, D(L

µ
)) generates a C0-semigroup (T µ

t )t≥0 (i. e. a strongly continuous
semigroup of bounded operators (T µ

t )t≥0) on L1((0, T )× Rd, µ).
(ii) For one (hence all) λ ∈ (0, +∞) the set (λ − L)(C∞

0 ([0, T ) × Rd)) is dense
in L1((0, T )× Rd, µ).

(iii) (T µ
t )t≥0 is the only C0-semigroup on L1((0, T )×Rd, µ) which has a generator

extending (L, C∞
0 ([0, T )×Rd)) (i.e., “L1-uniqueness” holds for (L, C∞

0 ([0, T )×Rd)).
In case any (hence all) of the assertions (i)–(iii) hold, (T µ

t )t≥0 is a contrac-
tion semigroup, i.e., each T µ

t is a contraction on L1((0, T ) × Rd, µ) and it is sub-
Markovian, i.e., f ∈ L1((0, T ) × Rd, µ), 0 ≤ f ≤ 1 implies 0 ≤ T µ

t f ≤ 1 for all
t ≥ 0.

Proof. The equivalence of (i) and (ii) is a consequence of Lemma 2.1 and
the well known Lumer–Phillips Theorem (see e.g. [17, Chapter I, Theorem 4.3].
The implication “(i)⇒(iii)” is trivial, and “(iii)⇒(i)” is due to W. Arendt [2, 4–
II,Theorem 1.33].

For the last part, we note that (T µ
t )t≥0 must consist of contractions by the dis-

sipativity of (L, C∞([0, T )×Rd)), and the sub–Markov property was proved in [15,
Lemma 1.9]. �

Now we introduce the subset of all MA,b,ν
par for which the assertions in Proposition

2.2 hold, the subscript “cg′′ refers to “ closure generates” with Proposition 2.2–(i)
in mind. So, define

MA,b,ν
par,cg = {µ ∈ MA,b,ν

par | Proposition 2.2–(i) holds for µ}.

We note that MA,b,ν
par is a convex set and denote by ext MA,b,ν

par the set of its extreme
points.

Now we can formulate the main result of this section which obviously implies
the assertion of Theorem 1.1.

Theorem 2.3. Assume (H1). Then MA,b,ν
par,cg ⊂ ext MA,b,ν

par .

Remark 2.4. (i) See [11, Lemma 4.2] for the corresponding result in the elliptic
case.

(ii) In the proof of Theorem 2.3 below we do not really need Hypothesis (H1).
As the reader will see, the proof goes through without any changes under the much
weaker conditions (1.1)–(1.3) in [20] if, in addition, we know that all measures
satisfying the first identity in (1.5) are equivalent (i.e., have the same zero sets).
Under Hypothesis (H1) the latter follows from a result in [6] which we recall below.
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Before we can prove Theorem 2.3 we need some preparations. We first recall the
following two results from [6] and [1].

Theorem 2.5. Assume that (H1) holds. Let µ 6= 0 be a locally finite Borel measure
on (0, T ) × Rd satisfying the first identity in (1.5) (i.e., no boundary condition at
t = 0 required). Then, there exists a strictly positive function % : (0, T )× Rd → R+

such that
µ(dtdx) = %(t, x)dtdx,

% is locally Hölder continuous on (0, T )× Rd and for any (t1, t2) ⊂ (0, T ) one has∫ t2

t1

‖%(t, ·)‖p
Hp,1(B) dt < ∞

for all open balls B ∈ Rd.

Proof. We apply [6, Corollary 3.9] and the remarks following it. �

Lemma 2.6. Let m be a positive measure on a measurable space (E,B) and S a
sub-Markovian bounded linear operator on L1(m) := L1(E,B, m) such that m is
S-invariant, that is∫

E

Sfdm =

∫
E

fdm for all f ∈ L1(m) ∩ L∞(m).

Suppose ρ1, ρ2 ∈ L1(m) (not necessarily nonnegative) such that ρ1 ·m and ρ2 ·m are
S-invariant. Then (ρ1∧ ρ2) ·m is S-invariant as well (where ρ1∧ ρ2 := min{ρ1, ρ2}.

Proof. Since S is sub-Markovian, by Jensen’s inequality S considered with
domain L1(m)∩L∞(m) extends to a linear contraction operator S2 on L2(m). Let S∗2
denote its adjoint. Then S∗2 is again sub-Markovian (cf. [16, Chapter II, Proposition
4.1]) and extends to a linear contraction operator S∗ on L1(m).

Let ρ ∈ L1(m) and ρn : = (ρ∧n)∨(−n), n ∈ N. Then for all f ∈ L1(m)∩L∞(m)∫
E

Sfρdm = lim
n→∞

∫
E

Sfρndm = lim
n→∞

∫
E

fS∗2ρndm =

∫
E

fS∗ρdm.

So, ρ ·m is S-invariant if and only if ρ belongs to the space of fix points of S∗, that
is to the space

V := {ρ ∈ L1(m)| S∗ρ = ρ}.
So, to prove the assertion we have to prove that V is a lattice. But if ρ ∈ V , then by
the positivity of S∗ we have S∗ρ+ ≥ S∗ρ = ρ and S∗ρ+ ≥ 0, so S∗ρ+ ≥ ρ+. Hence,
since S∗ is a contraction on L1(m),

0 ≤
∫

E

(S∗ρ+ − ρ+)dm ≤ 0.

So, ρ+ ∈ V . �

We need one more lemma.

Lemma 2.7. Let µ ∈ MA,b,ν
par (so µ(dtdx) = µt(dx)dt). Then, for every function

u ∈ C∞
0 ([0, T )× Rd), one has∫

(0,T )×Rd

Lu dµ = −
∫

Rd

u(0, x) ν(dx).
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Proof. Let u ∈ C∞
0 ([0, T ) × Rd). By a limiting argument we may assume that

u(t, x) = ϕ(t)ζ(x) for ϕ ∈ C∞
0 ([0, T )) and ζ ∈ C∞

0 (Rd). Since µ ∈ MA,b,ν
par we know

that for dt-a.e. ε, t ∈ [0, T ) with t > ε, one has∫
Rd

ζ(x) µt(dx) =

∫ t

ε

∫
Rd

Lζ(s, x) µs(dx)ds +

∫
Rd

ζ(x) µε(dx).

Hence

− lim
ε→0

∫ T

ε

d

dt
ϕ(t)

∫
Rd

ζ(x) µt(dx)dt

= ϕ(0)

∫
Rd

ζ(x) ν(dx) + lim
ε→0

∫ T

ε

ϕ(t)
d

dt

∫
Rd

ζ(x) µt(dx)dt

=

∫
Rd

u(0, x) ν(dx) + lim
ε→0

∫ T

ε

ϕ(t)

∫
Rd

Lζ(t, x) µt(dx)dt.

Note that by assumption each aij is continuous on [0, T ]×Rd and b ∈ L1((0, T )×B, µ)
for all balls B ⊂ Rd. So, ϕLζ = ϕLA,bζ ∈ L1((0, T ) × Rd, µ). Hence the assertion
follows. �

Proof of Theorem 2.3. Let µ ∈ MA,b,ν
par,cg and let µi ∈ MA,b,ν

par , αi ∈ (0, 1), i = 1, 2
be such that α1 + α2 = 1 and

µ = α1µ1 + α2µ2.

We have to show that µ1 = µ2 = µ. We first note that by the Radon–Nikodym
theorem we have

µi = σi · µ, i = 1, 2,

with some measurable functions σi : (0, T )× Rd → [0,∞) and

σi ≤
1

αi

.

Now we can complete the proof using Lemmas 2.6 and 2.7. Indeed, by assumption
there exists a sub-Markovian C0-semigroup (T µ

t )t≥0 generated by (L
µ
, D(L

µ
)) on

L1((0, T )× Rd, µ). By Lemma 2.7 we have∫
(0,T )×Rd

Lu dµ1 =

∫
(0,T )×Rd

Lu dµ2 for all u ∈ C∞
0 ([0, T )× Rd),

hence, since σ1, σ2 are bounded, we obtain∫
(0,T )×Rd

L
µ
u σ1 dµ =

∫
(0,T )×Rd

L
µ
u σ2 dµ for all u ∈ D(L

µ
).

Consequently, for all u ∈ C∞
0 ([0, T )× Rd) and t > 0 we have∫

(0,T )×Rd

L
µ
T µ

t u σ1 dµ =

∫
(0,T )×Rd

L
µ

T µ
t u σ2 dµ.

Integrating over (0, t) yields the equality∫
(0,T )×Rd

T µ
t u σ1 dµ−

∫
(0,T )×Rd

u σ1 dµ =

∫
(0,T )×Rd

T µ
t u σ2 dµ−

∫
(0,T )×Rd

u σ2 dµ,
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which by a density argument then holds for all bounded measurable functions
u : (0, T ) × Rd → R. Applying Lemma 2.6 with %1 : = σ1 − σ2, %2 = 0, and
%2 : = σ2 − σ1, %1 = 0, we obtain that for

ν1 := (σ1 − σ2)
+µ

and
ν2 := (σ1 − σ2)

−µ

we have for i = 1, 2∫
(0,T )×Rd

T µ
t u dνi =

∫
(0,T )×Rd

u dνi for all u ∈ C∞
0 ([0, T )× Rd).

Differentiating at t = 0 yields∫
(0,T )×Rd

Lu dνi = 0 for all u ∈ C∞
0 ([0, T )× Rd),

i.e., both measures ν1 and ν2 satisfy the first identity in (1.5). Hence by Theorem 2.5,
since these two measures cannot be equivalent, either (σ1−σ2)

+ = 0 or (σ1−σ2)
− = 0

holds µ-a.e. Since both σ1(t, ·) and σ2(t, ·) are probability densities for each t, in
either case it follows that σ1 = σ2, hence µ1 = µ2. �

Remark 2.8. Let us replace in all of the above [0, T )×Rd by R×Rd and require no
boundary condition at −∞. Let us define MA,b

par correspondingly as in (1.6). Then
all arguments go through, so the corresponding versions (that is, with C∞

0 (R×Rd)
in replace of C∞

0 ([0, T ) × Rd)) of our main Theorems 2.3 and 1.2 also hold in this
case. Since Lemma 2.7 is not necessary in this case we can even drop the condition
on b in the definition of MA,b

par. Furthermore, we have to replace (H1)(b) by the

assumption that

∫ T

−T

∫
B

|b(t, x)|pdxdt < +∞ for all T > 0.

In this case, i.e. with R × Rd in place of [0, T ) × Rd, there are easy examples
where MA,b,ν

par contains more than one element.
Consider e.g. the case aij = 1

2
δij and bi(t, x) = xi, t ∈ R, x ∈ Rd. Then

obviously the standard normal distribution µ0 belongs to MA,b
par. Define for all z ∈

Rd, t ∈ R, the map τe−tz : Rd → Rd by

τe−tz(y) : = y + e−tz, y ∈ Rd,

and the measure
µz

t := µ0 ◦ (τe−tz)
−1.

Set
µz(dt dx) := µz

t (dx)dt.

Then we easily check that µz ∈ MA,b
par for all z ∈ Rd. Moreover, in this case we have

ext MA,b
par = {µz| z ∈ Rd}.

We refer to [18] (see also [14]) for a detailed proof, even in the case Rd is replaced
by a Hilbert space.

So, e.g. if

µ(dt dx) :=
1

2
µz(dt dx) +

1

2
dt µ0(dx), z ∈ Rd, z 6= 0,

then by Theorem 2.3, µ /∈ MA,b
par,cg, so (Lµ, D(Lµ)) generates no C0-semigroup on

L1(R× Rd, µ).

7



3 Applications

The first two results in this section are easy consequences of [20].
Assume (H1) and (H2) hold and let µ ∈MA,b,ν

par . Then by Theorem 2.5 we have

µ(dt dx) = %(t, x)dtdx,

% is locally Hölder continuous on (0, T )×Rd and ∂j% ∈ Lp
loc((0, T )×Rd), 1 ≤ j ≤ d.

Define the logarithmic derivative βµ = (β1
µ, · · · , βd

µ) of µ with respect to the metric
given by A as follows:

βi
µ :=

d∑
j=1

(∂ja
ij + aij%−1∂j%), i = 1, · · · , d. (3.8)

Proposition 3.1. Assume (H1) and (H2) and define K to be the set of all measures
µ ∈MA,b,ν

par satisfying the following three conditions for all 1 ≤ i, j ≤ d:
(i) ∂ja

ij ∈ L1((0, T )×B, µ) for all open balls B ⊂ Rd.
(ii) aij ∈ L1((0, T )× Rd, µ).
(iii) bi − βi

µ ∈ L1((0, T )× Rd, µ).
Then #K ≤ 1.

Proof. By [20, Corollary 1.14 (a)] we have that each µ ∈ K satisfies (1.7). By
Theorem 1.1, it remains to show that K is convex. Let µ1, µ2 ∈ K and λ ∈ (0, 1).
Then obviously

µ := λµ1 + (1− λ)µ2

satisfies (i) and (ii). To see that it also satisfies (iii) we first recall that

µi(dt dx) = %i(t, x)dtdx, i = 1, 2,

with %i as in Theorem 2.5. Then an easy calculation shows that for all 1 ≤ i ≤ d
we have

bi − βi
µ = (λ%1 + (1− λ)%2)

−1[λ%1(b
i − βi

µ1
) + (1− λ)%2(b

i − βi
µ2

)], (3.9)

which is obviously in L1((0, T )× Rd, µ), since

µ(dt dx) = (λ%1(t, x) + (1− λ)%2(t, x))dt dx.

The proof is complete. �

Proposition 3.2. Assume (H1) and (H2). Let V ∈ C1,2([0, T ] × Rd) be such that
lim|x|→∞ V (t, x) = +∞ uniformly in t ∈ [0, T ]. Let K be the set of all µ ∈ MA,b,ν

par

satisfying condition (i) in Proposition 3.1 and such that for some α0 = α0(µ) ∈
(0,∞) one has

LA,2βµ−bV − ∂tV ≤ α0V.

Then #K = 1.

Proof. By [20, Corollary 1.14 (b)] we have that each µ ∈ K satisfies (1.7). By
Theorem 1.1 it remains to show that K is convex. Let µ1, µ2 ∈ K and λ ∈ (0, 1).
Letting

µ := λµ1 + (1− λ)µ2,
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we obtain from (3.9) that

LA,2βµ−bV − ∂tV

= (λ%1 + (1− λ)%2)
−1[λ%1(LA,2βµ1−bV − ∂tV ) + (1− λ)%2(LA,2βµ2−bV − ∂tV )]

≤ α0V.

Hence K is convex. �

Now we are going to give concrete global conditions on A, b and ν so that problem
(1.5) has a unique solution. The proof of the corresponding theorem relies on a
combination of recent results of [4], [10] and Proposition 3.1 above.

Theorem 3.3. Assume (H1) and (H2). Suppose that the following global assump-
tions on A and b hold:

(iv) the measure ν has finite entropy, i.e., ν(dx) = %0(x)dx for some %0 ∈ L1(Rd)
and ∫

Rd

%0(x) log %0(x) dx < +∞.

(v) There exists ε ∈ (0,∞) such that

εId ≤ A(t, x) ≤ ε−1Id

for all (t, x) ∈ [0, T ]× Rd.
(vi) There exists Λ ∈ (0,∞) such that for all x, y ∈ Rd one has

sup{|aij(t, x)− aij(t, y)| : t ∈ [0, T ], 1 ≤ i ≤ j ≤ d} ≤ Λ|x− y|.

(vii) There exists c ∈ (0,∞) such that for all (t, x) ∈ [0, T ]× Rd one has

〈b(t, x), x〉 ≤ c(1 + |x|2),

where 〈·, ·〉 denotes the Euclidean inner product on Rd, and for some k ∈ N one has

|b(t, x)| ≤ c(1 + |x|2k) as well as

∫
Rd

|x|2kν(dx) < ∞,

or there exist numbers α, γ, δ, c, k ∈ (0,∞) such that for all (t, x) ∈ [0, T ]× Rd

〈b(t, x), x〉 ≤ γ − (2ε−1ck + δ)|x|2k,

with ε as in (v), and

|b(t, x)| ≤ α exp
( c

2
|x|2k

)
as well as

∫
Rd

exp
( c

2
|x|2k

)
ν(dx) < ∞.

Then there exists a unique family {µt, t ∈ (0, T ]} of probability measures on Rd

solving (1.5).

Proof. By [4, Theorem 3.1 and Examples 2.5 (i) and (iii)] the existence of the
desired family µt, t ∈ (0, T ], follows and we have that

|b| ∈ L2((0, T )× Rd, µ). (3.10)
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By our assumptions (v) and (vi) condition (i) and (ii) in Proposition 3.1 hold.
Because of (v), (3.8) and (3.10) it suffices to show that

∇%

%
∈ L1((0, T )× Rd, µ)

in order to verify condition (iii). But by [10, Theorem 2.1] we even have that

∇%

%
∈ L2((0, T )× Rd, µ).

Hence the above family µt, t ∈ (0, T ], is unique. �

Remark 3.4. (i) We would like to emphasize that in the above theorem no dissi-
pativity type conditions are assumed on the operator LA,b. Nevertheless, one can
prove uniqueness for problem (1.5).

(ii) An application where we have uniqueness for problem (1.5) under dissipativ-
ity conditions is presented in [5].
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[18] M. Röckner, On the parabolic Martin boundary of the Ornstein–Uhlenbeck pro-
cess on Wiener space. Ann. Prob, 20, 1063-1085. 1992.

[19] W. Stannat, (Nonsymmetric) Dirichlet operators on L1: existence, uniqueness
and associated Markov processes, Annali Scuola Normale Super. di Pisa Cl. Sci.
(4) 28, no. 1, 99–140, 1999.

[20] W. Stannat, Time-dependent diffusion operators on L1, J. Evol. Equat., 4,
463–495, 2004.

11


