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1 Introduction

Let (Ω,F , P ) be a probability space, and T : Ω → Ω its automorphism, i.e.,
a one-to-one mapping such that T and T−1 are measurable and preserve the
measure P . For each ω ∈ Ω, let D(ω) = D(ω, x) be a mapping of the set Rn

+

of non-negative n-dimensional vectors into itself, continuous and positively
homogeneous (of degree one) in x and F -measurable in ω. Define

C(t, ω) = D(T t−1ω)D(T t−2ω)...D(ω), t = 1, 2, ... , (1)

where the product means the composition of maps, and C(0, ω) = Id (the
identity map). Then we have

C(t, T sω)C(s, ω) = C(t + s, ω), t, s ≥ 0, (2)

i.e., the mapping C(t, ω) is a cocycle over the dynamical system (Ω,F , P, T )
(see, e.g., Arnold [1]). In what follows, it will be convenient to write C(t, ω)x
and D(ω)x for the result of application of the corresponding map to the point
x.

For two vectors x = (x1, ..., xn) and y = (y1, ..., yn), we write x ≤ y (resp.
x < y) if xi ≤ yi (resp. xi < yi) for all i. The notation x ≺ y means that
x ≤ y and x 6= y. We write |x| for |x1|+ ...+ |xn|. A mapping A : Rn

+ → Rn
+ is

called completely monotone if it preserves each of the relations x ≤ y, x ≺ y
and x < y between two vectors x, y ∈ Rn

+ (clearly, if A preserves the second
relation, it preserves the first). A mapping A is termed strictly monotone if
the relation x ≺ y implies A(x) < A(y).

We will assume that the mappings D(ω) : Rn
+ → Rn

+ (ω ∈ Ω) are com-
pletely monotone and the cocycle C(t, ω) satisfies the following condition.

(C) For almost all ω ∈ Ω, there is a natural number l (depending on ω)
such that the mapping C(l, ω) is strictly monotone.

The main result of this paper is as follows.
Theorem 1. (a) There exists a measurable vector function x(ω) > 0 and

a measurable scalar function α(ω) > 0 such that

α(ω)x(Tω) = D(ω)x(ω), |x(ω)| = 1 (a.s.). (3)

(b) The pair of functions (α(·), x(·)) ≥ 0 satisfying (3) is determined
uniquely up to the equivalence with respect to the measure P .
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(c) If t →∞, then

C(t, T−tω)a

|C(t, T−tω)a| → x(ω) (a.s.), (4)

where convergence is uniform in a Â 0.
(d) Let F0 and F1 be sub-σ-algebras of F such that the random maps

D(T−1ω)x,D(T−2ω)x, ... are F0-measurable and the random maps
D(ω)x,D(T−1ω)x, ... are F1-measurable (for each x). Then one can select
versions of x(·) and α(·) satisfying (3) and (4), which are F0- and F1-
measurable, respectively.

The above result may be regarded as a stochastic non-linear general-
ization of the Perron–Frobenius theorem: x(·) and α(·) play the roles of an
“eigenvector” and an “eigenvalue” of the random mapping D(ω) with respect
to the dynamical system T : Ω → Ω. For linear maps D(ω) (non-negative
random matrices), the first result of this kind was obtained by Evstigneev [6],
see also Arnold, Gundlach and Demetrius [2] and references therein. In the
papers cited, conditions somewhat stronger than (C) were imposed. Infinite-
dimensional analogues, especially pertaining to random linear operators in
spaces of functions and measures, were considered by many authors; a com-
prehensive treatment with various applications was provided by Kifer [10].
There exists a vast literature on non-linear (deterministic) versions of the
Perron-Frobenius theorem; for a review of it see e.g. Gaubert and Gunawar-
dena [9]. An important role in this literature has been played by the paper
by Kohlberg [11], the ideas of which we use in the present study.

Problems related to the stochastic Perron-Frobenius theory arise in var-
ious areas of applied mathematics—in particular, in models of evolutionary
biology (see Arnold, Gundlach and Demetrius [2]) and in mathematical fi-
nance (Dempster, Evstigneev and Schenk-Hoppé [4]). The results obtained
in this work are motivated primarily by applications in mathematical eco-
nomics. They make it possible to establish the existence of equilibrium in
some stochastic versions of the von Neumann-Gale model of economic dy-
namics (see e.g. Evstigneev and Taksar [8]). These applications, involving
concepts and techniques that are beyond the scope of this paper, will be
discussed in detail in a separate publication.

Several comments about the assumptions imposed are in order. Consider
a concave mapping A : Rn

+ → Rn
+, i.e. a mapping satisfying A(θx + (1 −

θ)y) ≥ θA(x) + (1 − θ)A(y) for all x, y ∈ Rn
+ and θ ∈ [0, 1]. Clearly, if A is
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homogeneous, then A is concave if and only if it is superadditive:

A(x + y) ≥ A(x) + A(y). (5)

A superadditive mapping A : Rn
+ → Rn

+ preserves the relation Â if and only
if

A(h) Â 0 for h Â 0; (6)

it preserves the relation > if and only if

A(h) > 0 for h > 0, (7)

and it is strictly monotone if and only if

A(h) > 0 for h Â 0. (8)

(These assertions are immediate from (5).) Thus, for a concave homoge-
neous mapping, its complete monotonicity is equivalent to the validity of
(6) and (7), and its strict monotonicity is equivalent to (8). If the mapping
under consideration is linear, i.e., defined by a non-negative matrix A, then
property (6) (resp. (7)) means that A does not have zero columns (resp.
zero rows). Consequently, completely monotone linear maps are defined by
non-negative matrices A without zero rows and columns. Such mappings are
strictly monotone when A > 0. (For matrices the symbol ”>” means that
all the matrix elements are strictly positive.)

2 A stochastic contraction principle

The proof of Theorem 1 is based on a stochastic generalization of the following
known result regarding contraction mappings (see, e.g., Eisenack and Fenske
[5]).

Let X be a compact space with a metric ρ and let f : X → X be a
mapping satisfying ρ(f(x), f(y)) < ρ(x, y) for all x 6= y. Then f has a
unique fixed point x̄, and fk(x) → x̄ for each x ∈ X.

This result was used by Kohlberg [11] in connection with a nonlinear
(deterministic) analogue of the Perron-Frobenius theorem.

We formulate a stochastic version of the above contraction principle. Let
(X,X ) be a measurable space and f(ω, x) a jointly measurable mapping
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of Ω × X into X. Let Y be a measurable subset of X equipped with a
metric ρ such that Y is separable with respect to this metric and the Borel
measurable structure on Y coincides with the measurable structure induced
from X. Define

fk(ω, x) := f(T k−1ω, x) (k = 0,±1,±2, ...), (9)

f (k)(ω, x) := f0(ω)f−1(ω)...f−k(ω)(x) (k = 0, 1, 2, ...).

Assume that the measurable space (X,X ) is standard and the mapping f
satisfies the following requirements.

(f.1) For each ω ∈ Ω, the map f(ω, x) transforms Y into itself and is
continuous on Y with respect to the metric ρ.

(f.2) There is a sequence of F -measurable sets Ω0 ⊆ Ω1 ⊆ ... ⊆ Ω such
that P (Ωm) → 1 and for each m = 0, 1, ..., and ω ∈ Ωm the following
conditions hold:

the set X(m)(ω) := f (m)(ω, X) is contained in Y and is compact with
respect to the metric ρ;

for all x, y ∈ Y with x 6= y, we have

ρ(f (m)(ω, x), f (m)(ω, y)) < ρ(x, y). (10)

Since the sequence of sets Ωm is increasing, there exists a measurable
function m(ω) with non-negative integer values such that for each ω ∈ Ω0 ∪
Ω1 ∪ ... (and hence for almost all ω), we have ω ∈ Ωk for all k ≥ m(ω).

The stochastic generalization of the above contraction principle is as fol-
lows.

Theorem 2. (i) There exists a measurable mapping ξ : Ω → Y for which
equation

ξ(Tω) = f(ω, ξ(ω)) (a.s.) (11)

holds and

lim
m(ω)≤k→∞

sup
x∈X

ρ(ξ(ω), f0(ω)...f−k(ω)(x)) = 0 (12)

with probability one.
(ii) If η : Ω → X is any (not necessarily measurable) solution to (11),

then η = ξ (a.s.).
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(iii) Let G0 ⊆ F be a σ-algebra such that the mappings f−k(ω, x), k =
0, 1, ..., of the space Ω × X into X are G0 × X -measurable and Ωm ∈ G0

for all m ≥ 0. Then there exists an G0-measurable mapping ξ possessing the
properties described in (i) and (ii).

According to (12), the random sequence f0...f−k(x) converges to ξ(ω) uni-
formly in x with probability one. Note that the distance ρ between f0...f−k(x)
and ξ(ω) involved in (12) is defined only if f0...f−k(x) ∈ Y . By virtue of (f.2),
this inclusion holds for almost all ω and all k ≥ m(ω), therefore the limit in
(12) is taken over k ≥ m(ω).

For a proof of Theorem 2 see Evstigneev and Pirogov [7].

3 Proof of the main result

We begin with a lemma. For each t = 0,±1, ..., denote by Gt the smallest
σ-algebra with respect to which the mappings ω 7→ D(T jω)x, j ≤ t− 1, are
measurable for every x ∈ Rn

+.
Lemma 1. There exists a sequence of G0-measurable sets Γ1 ⊆ Γ2 ⊆

... ⊆ Ω such that P (Γm) → 1 and, for each m = 0, 1, 2, ..., and ω ∈ Γm, the
mapping C(m, T−mω) is strictly monotone.

Proof. For each t ≥ 1, consider the set ∆m of those ω for which the
mapping C(m,ω)x = C(m,ω, x) is strictly monotone in x. Let us show
that ∆m is Gm-measurable. Denote by BN the set of points x ∈ Rn

+ with
rational coordinates satisfying |x| ≤ N and by ei the vector in Rn

+ whose ith
coordinate is 1 and the others are 0. We have ∆m ∈ Gm because ω ∈ ∆m if
and only if

inf
x∈BN

[Cj(m,ω, x +
1

i
ek)− Cj(m,ω, x)] > 0

for all N, i = 1, 2, .... and k, j = 1, 2, ...n, where Cj(·) stands for the jth
coordinate of C(·).

Observe that ∆m ⊆ ∆m+1. This is a consequence of the relation C(m +
1, ω) = D(Tmω)C(m, ω) and the following assertion (the proof of which is
straightforward):

(∗) If a there are two mappings A,B : Rn
+ → Rn

+ one of which is strictly
monotone and the other is completely monotone, the product AB is strictly
monotone.
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By virtue of assumption (C), we have P (∆1 ∪ ∆2 ∪ ...) = 1. Therefore
the inclusion ∆m ⊆ ∆m+1 (m = 1, 2, ...), which we have established, implies
P (∆m) → 1.

Define Γm = Tm∆m. Then C(m,T−mω) is strictly monotone if and only
if ω ∈ Γm, the set Γm belongs to G0, and P (Γm) = P (∆m) → 1. Furthermore,
we have

C(m + 1, T−m−1ω) = C(m,T−mω)D(T−m−1ω)

(see (2)), and so if ω ∈ Γm, then ω ∈ Γm+1 by virtue of (∗). Consequently,
Γ1 ⊆ Γ2 ⊆ ..., which completes the proof. ¤

Proof of Theorem 1. We will apply Theorem 2 to the mapping

f(ω, x) =
D(ω, x)

|D(ω, x)| , x ∈ X, (13)

where X = {x ∈ Rn
+ : |x| = 1}. The mapping f is well-defined because

D(ω, x) 6= 0 for x 6= 0. Denote by X the Borel σ-algebra on X. Then
the measurable space (X,X ) is standard and the function f(ω, x) is F ×X -
measurable because it is F -measurable in ω and continuous in x ∈ X.

We wish to verify the assumptions of Theorem 2 for f . To this end
we define Y = {x ∈ X : x > 0} and consider the Hilbert-Birkhoff metric
ρ(x, y) on Y (see the Appendix). Condition (f.1) follows from the fact that
D(ω, x) > 0 for x > 0 and from the continuity of f(ω, ·) in the Euclidean
metric and hence in the metric ρ on Y .

Consider the sets Γ1 ⊆ Γ2 ⊆ ... constructed in Lemma 1. Let us show
that condition (f.2) holds for the sets Ωm := Γm+1 ∈ F (m = 0, 1, ...). Define
fm(ω) by (9) and observe that

f (m)(ω, x) = f0(ω)f−1(ω)...f−m(ω)(x) =
C(m + 1, T−m−1ω)x

|C(m + 1, T−m−1ω)x| (14)

(m = 0, 1, 2, ...) by virtue of homogeneity of the mappings at hand. Let m
be any non-negative integer and let ω ∈ Ωm = Γm+1. Then, according to
Lemma 1, the mapping C(m+1, T−m−1ω) is strictly monotone. Consequently
(see (14)), f (m)(ω, x) > 0 for all x ∈ X, and so f (m)(ω,X) is a subset in Y
compact with respect to the Euclidean metric, and hence with respect to
the metric ρ, as a continuous image of the compactum X. The contraction
property (10) follows from Proposition A.1 in the Appendix. Thus all the
conditions sufficient for the validity of Theorem 2 are verified.
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Consider the mapping ξ described in assertion (i) of Theorem 2 and put

x(ω) = ξ(ω), α(ω) = |D(ω)x(ω)|. (15)

Then (11) implies (3), which proves assertion (a) of Theorem 1. To prove
(b), take any (α′(·), x′(·)) ≥ 0 satisfying (3), fix any x0 ∈ X and define
η(ω) = x′(ω) if |x′(ω)| = 1 and η(ω) = x0 otherwise. Then η(ω) = x′(ω)
(a.s.), η(Tω) = f(ω, η(ω)) (a.s.) and |η(ω)| = 1 for all ω. Consequently,
x′ = η = ξ (a.s.) by virtue of part (ii) of Theorem 2. Furthermore, α′(ω) =
|D(ω)x′(ω)| = |D(ω)x(ω)| = α(ω) (a.s.). Assertion (c) of Theorem 1 follows
from (12), (18) and formula (14) applied to x := a/|a|.

To verify (d), assume that the maps D(T−1ω)x, D(T−2ω)x are F0-measu-
rable and the maps D(ω)x, D(T−1ω)x, D(T−2ω)x, ... are F1-measurable for
each x ∈ X. For every m ≥ 0, the mapping D(T−m−1ω, x) is continuous
in x and G0-measurable in ω, consequently, f−m(ω, x) is G0 ×X -measurable.
The sets Γm constructed in Lemma 1 belong to G0, and so Ωm = Γm+1 ∈ G0

(m = 0, 1, ...). By virtue of assertion (iii) of Theorem 2, there exist an G0-
measurable mapping ξ : Ω → Y satisfying (11). It remains to define x(ω)
and α(ω) by (15). Then x(ω) is F0-measurable and α(ω) is F1-measurable
(because G0 ⊆ F0, G1 ⊆ F1), and so x(·) and α(·) satisfy all the conditions
in (d). ¤

4 A counterexample

It should be noted that the main content of Theorem 1 lies in the construction
of a measurable solution to equations (3). The existence of solutions to (3)
in the class of all, not necessarily measurable, functions immediately follows
from the Schauder-Tichonoff fixed point principle in the linear space L of all
functions z : Ω → Rn with the topology of pointwise convergence. Indeed,
the mapping defined by

z(·) 7−→ D(T−1ω, z(T−1ω))

|D(T−1ω, z(T−1ω))|
is continuous and transforms the convex compact set {z(·) : z(ω) ∈ Rn

+,
|z(ω)| = 1 for all ω} into itself; hence it has a fixed point, which yields a
solution to (3).
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It turns out that condition (C) is essential for the existence of measurable
solutions to (3)—even in the case of linear mappings D(ω, ·), i.e. non-negative
random matrices. Suppose that

D(ω) =

(
0 γ(ω)
1 0

)
,

where γ(ω) ≥ 1 is a measurable function. Further, assume that the square
Θ := T 2 of the given automorphism T : Ω → Ω is ergodic and there is no mea-
surable function β(ω) > 0 such that γ(ω) = β(Tω)β(ω) (a.s.). (For example,
let T be the Bernoulli shift associated with a sequence ω = (..., s−1, s0, s1, ...)
of independent random variables taking values 1 and 2 with probability 1/2,
and γ(ω) = s0.) Under these assumptions, equations (3) do not have solu-
tions in the class of measurable functions x(·) ≥ 0 and α(·) ≥ 0.

To prove the above assertion, assume the contrary: such solutions, x(ω) =
(u(ω), v(ω)) and α(ω), exist. Then we have

α(ω)u(Tω) = γ(ω)v(ω), α(ω)v(Tω) = u(ω), u(ω) + v(ω) = 1 (a.s.), (16)

and so α(ω) = γ(ω)v(ω)+u(ω) ≥ 1 and u(T 2ω) = α−1(Tω)α−1(ω)γ(Tω)u(ω).
Define Γ = {ω : u(ω) > 0}. Clearly P (Γ) > 0, and the last equation implies
Γ ⊆ Θ−1(Γ). Consequently, Γ is an invariant measurable set for Θ, and so
Γ = Ω (mod0), which yields u(ω) > 0 (a.s.) and v(ω) > 0 (a.s.). From the
first two equations in (16), we get

u(Tω)v(Tω)−1 = γ(ω)u(ω)−1v(ω) (a.s.),

and so γ(ω) = β(Tω)β(ω), where β(ω) = u(ω)v(ω)−1. A contradiction.

Appendix

We present for the reader’s convenience some general facts about the
Hilbert-Birkhoff metric. Let Y denote the set of y = (y1, ..., yn) > 0 with∑

yi = 1. For x, y ∈ Y put

ρ(x, y) = ln[max
i

xi

yi

·max
j

yj

xj

]. (17)

It is known that formula (17) defines a complete metric on Y (the Hilbert-
Birkhoff metric), and the topology induced by ρ on Y coincides with the
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Euclidean topology on Y —see Birkhoff [3] and Seneta [12]. A key role in this
work is played by the following fact. Let F be a mapping Rn

+ → Rn
+ such

that F (x) 6= 0 for x ∈ Y . Define f(x) = F (x)/|F (x)|, x ∈ Y .
Proposition A.1. If F (x) is homogeneous and strictly monotone, then

f(x) is contracting on Y in the metric ρ, i.e. ρ(f(x), f(y)) < ρ(x, y) for
x, y ∈ Y with x 6= y.

Proof (cf. Kohlberg [11, Lemma 1]). Consider some x, y ∈ Y with
x 6= y and define λ = maxi(xi/yi) and µ = maxj(yj/xj). Then we have
ρ(x, y) = ln(λµ), λy ≥ x and µx ≥ y. Furthermore, λy 6= x and µx 6= y
because otherwise x = y (recall that |x| = |y| = 1). Consequently,

λF (y) = F (λy) > F (x), µF (x) = F (µx) > F (y)

by virtue of strict monotonicity and homogeneity. Therefore

max
i

F i(x)

F i(y)
< λ, max

j

F j(y)

F j(x)
< µ,

and so

max
i

f i(x)

f i(y)
max

j

f j(y)

f j(x)
= max

i

F i(x)/|F (x)|
F i(y)/|F (y)| max

j

F j(y)/|F (y)|
F j(x)/|F (x)| < λµ,

which yields ρ(f(x), f(y)) < ρ(x, y). ¤
Proposition A.2. We have

|x− y| ≤ n(eρ(x,y) − 1), x, y ∈ Y. (18)

Proof. Inequality (18) is a consequence of the following one:

1 + |xk − yk| ≤ max
i

xi

yi

·max
j

yj

xj

(k = 1, ..., n). (19)

To prove (19) we may assume without loss of generality that k = 1 and
y1 > x1. Then we have

max
i

xi

yi

= max{x1

y1

, max
i>1

xi

yi

} ≥ max{x1

y1

,
1− x1

1− y1

} =
1− x1

1− y1

because
∑

i>1 xi = 1−x1,
∑

i>1 yi = 1−y1 and y1 > x1. Analogously, we get

max
j

yj

xj

≥ y1

x1

,

which implies (19) for k = 1 and y1 > x1. ¤
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