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0 Introduction

In this paper we study stochastic differential equations (SDE) in infinite dimensions, e.g. on
a Hilbert space H, with possibly very singular coefficients. For such equations, strong or mild
solutions (cf. [8]) do not exist in general, but it is only possible to construct weak solutions or even
only martingale solutions, i.e. a Markov process that solves the martingale problem for the (partial)
differential operator (“Kolmogorov operator”) associated with the SDE (cf. Proposition 1.4 below
and [18] for the general theory in finite dimensions). The latter notion of solution we shall briefly
call “martingale solutions”. The notions of weak and martingale solutions are only equivalent in
finite dimensions (cf. [18]), but not in infinite dimensions. Under additional hypotheses, however,
one can construct weak solutions from martingale solutions also in the infinite dimensional case.
We refer to [2] and [14] for a detailed discussion.

Given an SDE on a Hilbert space H (by heuristically applying Itô’s formula, see Section 5
below) one can always write down the corresponding Kolmogorov operator L0 on a space of nice
test functions. If one can prove that its closure L generates a C0-semigroup Pt = etL, t ≥ 0, on
Lp(H, µ) for some suitably chosen measure µ (see Section 5) and if this semigroup is sufficiently
regular, then one can prove that there exists a Markov process with transition probabilities given
by Pt, t ≥ 0. This process then automatically solves the martingale problem for L, and thus is a
martingale solution to the SDE.

The main results of this paper give general conditions, which are checkable in applications,
on a given Kolmogorov operator L, more precisely, on the generator of a C0-semigroup (or C0-
resolvent) on Lp(H, µ), p ≥ 1, so that an associated sufficiently regular Markov process (namely, a
µ-standard right process) exists giving the desired solution to the martingale problem determined
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by L (cf. Theorems 1.1 and 1.3 below). Those two general theorems are formulated for general
C0-resolvents on Lp(E, µ) for abstract (Lusin) topological spaces E with Borel σ-algebra B and
σ-finite measures µ on (E,B). In particular, Theorem 1.3 generalizes the corresponding results
in [13] and [16], [17] and is the first of its kind on Lp-measure spaces for arbitrary p ≥ 1 in the
theory of Markov processes giving conditions on the generator directly, which can be verified in
many models for stochastic dynamics.

The price we pay for including non-regular (in particular, non-continuous) coefficients, is,
that we can only solve the martingale problem for a restricted class of initial distributions (see
Proposition 1.4 below).

The main general results are given in Section 1. Sections 2, 3 and Appendix A contain prepa-
rations for their proofs, which, in turn, are contained in Section 4. In Appendix B, we recall all
notions from the theory of Markov processes used in this paper.

Another substantial part of the paper, namely Section 5, is devoted to applications to a class
of SDE on Hilbert space, where we implement the entire approach summarized above, including
the construction of the reference measure µ and the reasoning why the closure L of the underlying
Kolmogorov operator L0 does, in fact, generate a C0-semigroup on Lp(H, µ), p ≥ 1. Let us briefly
describe this here and also compare our results with others in the literature.

Consider the stochastic differential equation (SDE)

dX(t) =
[
AX(t) + F0

(
X(t)

)]
dt +

√
C dW (t) (1)

on a Hilbert space H. Here W (t), t ≥ 0, is a cylindrical Brownian motion on H, C is a positive
definite self-adjoint linear operator on H, A : D(A) ⊂ H → H the infinitesimal generator of
a C0-semigroup on H, and F0 : D(F0) ⊂ H → H a measurable map. For sufficiently regular
functions F0 (e.g. if F0 is Lipschitz) there is an elaborate theory to solve these equations (see e.g.
[8], and in case Tr C < ∞, A is self-adjoint, negative definite, D(F0) = D

(
(−A)1/2

)
and F0 is

m-dissipative and hemicontinuous see [12]). If dim H = ∞, for irregular F0 there are very few
results on existence of solutions to (1), at least if F0 is not the gradient of a function (see [2] for
the latter case).

If dim H < ∞, it is well-known that SDE (1) has a weak solution under very general conditions
on F0 (cf. e.g. [9], [13] and [16]) and even a strong solution if C is invertible and F0 ∈ Lp

loc(dx),
where dx denotes Lebesgue measure, and

p > dim H , (2)

and if an appropriate non-explosion (e.g. coercivity) condition holds (cf. [11]). If F0 is not the
gradient of a function or does not satisfy a certain smallness condition (more precisely, if the
Kolmogorov operator associated to (1) fails to satisfy the weak sector condition, cf. [13]), condition
(2) becomes crucial, because Sobolev embedding theorems are essential in the proofs for getting
regularity of the transition probabilities or for applying Girsanov’s theorem.

If dim H = ∞, so (2) is meaningless, there are no Sobolev embedding theorems (not even for
Gaussian measures on H) and there is, of course, no analogue of Lebesgue measure. Also, at least
if C is trace class, Girsanov’s theorem does not hold. So, it is a challenging problem to construct
solutions for SDE (1) in case F0 is merely measurable and unbounded.

Quite recently unique martingale solutions to (1), which are strongly Feller, have been con-
structed in [7], under the assumption that F0 is m-dissipative and C has an inverse in L(H) (:=
all bounded linear operators from H to H) and assuming that an infinitesimally invariant measure
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exists for the underlying Kolmogorov operator (see hypothesis (H2) in Section 5 below), serving as
a substitute for a Lebesgue measure on H. In Section 5 of this paper applying our general results
from Section 1 we partially extend those results, in particular by including also the case where
Tr C < ∞. We also give sufficient conditions on A, C, F0 for (H2) to hold (cf. Proposition 5.2 and
also Remark 5.3(iii) below). We get a martingale solution to (1), however, compared with [7] we
loose the strong Feller property as one usually does, if Tr C < ∞.

Finally, we would like to mention that the main motivation for this paper (apart from aiming
to extend the results in [13] and [16], [17]) came from [7]. The entire Section 5 of this paper is
devoted to extend the results therein to the present case drawing a lot of ideas from [7]. The last
named author had the pleasure to be a coauthor of Giuseppe Da Prato for this paper. So, let us
conclude this introduction with a

“Happy Birthday, Beppe!”

and the wish to him for many more years to come as productive and as filled with inspiring work
as in the past.

1 Main results

Let E be a Lusin topological space (i.e. the continuous one-to-one image of a Polish space). We
shall denote by T the topology, by B the Borel σ-algebra on E and let µ be a σ-finite measure
on (E,B). We use the following notation: C(E) and bC(E) denote the spaces of continuous and
bounded continuous real-valued functions respectively; pB and bB denote the spaces of positive
and bounded B-measurable real-valued functions, respectively. Let p ∈ [1,∞), (Vα)α>0 be a
strongly continuous sub-Markovian (i.e. if f ∈ Lp(E, µ), 0 ≤ f ≤ 1, then 0 ≤ α Vαf ≤ 1 for all
α > 0) resolvent of contractions on Lp(E, µ) and L the infinitesimal generator of (Vα)α>0, having
the domain D(L) = Vβ

(
Lp(E, µ)

)
, L(Vαf) = αVαf − f for all f ∈ Lp(E, µ).

An element u ∈ Lp
+(E, µ) is called β-excessive if αVβ+αu ≤ u for all α > 0 and we shall denote

by Eβ the set of all β-excessive elements. Notice that Eβ is min-stable and every decreasing family
F from Eβ has an infimum denoted by

∧
F . If f ∈ Lp(E, µ) is such that there exists u ∈ Eβ with

u ≥ f , we shall denote by Rβf the reduced of f in Eβ, Rβf :=
∧
{u ∈ Eβ | u ≥ f}.

An increasing sequence (Fk)k of T -closed sets in E is called µ-nest provided that in Lp(E, µ)

lim
k

R1(u1E\Fk
) = 0

for all u ∈ D(L) ∩ E1.
A function u on E is called µ-quasi continuous (resp. µ-quasi lower semicontinuous) in T

(with respect to (Vα)α>0) if there exists a µ-nest (Fn)n such that u|Fn is a T -continuous (resp.
T -lower semicontinuous) real function for all n.

We can state now the main results of this paper, which associate to (Vα)α>0 a µ-standard right
process. The proofs will be given in Section 4 below. For the reader not familiar with Markov
process theory, we present in Appendix B below a brief description of the related notions.

Theorem 1.1. Assume that the following two conditions hold.
(I) There exists a µ-nest of T -compact sets.
(II) There exists a countable Q-linear space A ⊂ bC(E)∩D(L) such that A is dense in D(L)

in the graph norm, A separates the points of E and u∧α belongs to the closure of A in the uniform
norm for all α > 0 and u ∈ A.
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Let T0 be the (metrizable Lusin) topology on E generated by A. Then the following assertions
hold.

(a) There exists a µ-standard right process with state space E (endowed with the topology T0)
whose resolvent regarded on Lp(E, µ) coincides with (Vα)α>0.

(b) The process is càdlàg in the topology T P µ-a.e.
(c) Every element from D(L) has a µ-quasi continuous version (with respect to the topology

T0).

Remark 1.2. 1. The following condition implies that the above assumption (I) holds: There
exists a function u ∈ C(E) ∩ D(L) such that (L − β)u ≤ 0 for some β > 0 and the level sets
[u ≤ n] are T -compact. Indeed, we remark that since the function u given by (I) is such that
u = Vβg with g = (β − L)u, it follows that u ∈ Eβ and then we apply Remark 3.3 below.

2. Assumption (II) is implied by the following hypothesis: There exists a countable Q-algebra
A ⊂ bC(E)∩D(L) such that A is dense in D(L) in the graph norm and A separates the points of
E.

A set M is called µ-exceptional if M ⊂
⋂

n(E \ Fn) for some µ-nest (Fn)n. We say that a
property of points in E holds µ-quasi everywhere (abbreviated µ-q.e.) if it holds outside some
µ-exceptional set. Every µ-exceptional set is clearly µ-negligible.

Theorem 1.3. Assume that condition (I) from Theorem 1.1 is satisfied and that the following
condition holds.

(II ′) There exist a countable Q-linear space A ⊂ D(L) ∩ L∞(E, µ) and a µ-exceptional set M
such that:

– A is dense in D(L) in the graph norm;
– every element u of A possesses a µ-quasi continuous version ũ and the set {ũ| u ∈ A}

separates the points of E \M ;
– for all u ∈ A and α ∈ R+ the element u ∧ α belongs to the closure of A in L∞(E, µ).
Then there exists a Lusin topology T0 on E such that the conclusions (a), (b) and (c) from

Theorem 1.1 hold. Moreover there exists a µ-nest (Kn)n such that on each set Kn the topologies
T and T0 coincide.

Let X = (Ω,F ,Ft, Xt, θt, P
x) be the Markov process associated with (Vα)α>0 in assertion (a)

of Theorem 1.1, let g0 ∈ Lp′

+(E, µ) (where 1
p
+ 1

p′
= 1) be such that

∫
E

g0 dµ = 1 and put ν = g0 ·µ.

The next result shows that the process X solves the martingale problem for
(
L, D(L)

)
under

P ν =
∫

E
P xν(dx).

Proposition 1.4. For every f ∈ D(L),

f(Xt)−
∫ t

0

Lf(Xs) ds

is an (Ft)t≥0-martingale under P ν.

Remark 1.5. The main theorem in [10] gives a necessary and sufficient condition on a strongly
continuous contraction resolvent to be associated with a reasonably regular (more precisely, µ-
tight µ-special standard) Markov process. The condition is a modification of the quasi-regularity
property of a Dirichlet form (cf. [13]), formulated in terms of the resolvent only, without using
any associated Dirichlet form, but so that the main techniques from [13] still apply. However, the
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conditions on the resolvent in [10] are purely abstract and almost impossible to check directly in
most applications, since in most cases one knows almost nothing about the resolvent a-priori. In
contrast to that, the above Theorems 1.1 and 1.3 are taylored for application by being based on
a condition in terms of the generator directly and a condition that can be checked by a general
method (cf. Section 5 below), which is also only based on knowing the generator on a suitably
chosen space of test functions. The latter is always the case in applications, of which an instance
is presented in Section 5 below.

2 Preliminaries on the reduction operation and

quasi-continuity

Let p ∈ [1,∞) and (Vα)α>0 be a strongly continuous sub-Markovian resolvent of contractions on
Lp(E, µ), where µ is a σ-finite measure on (E,B).

If u ∈ D(L) then we consider the graph norm ‖u‖D(L) of u,

‖u‖D(L) = ‖u‖Lp + ‖Lu‖Lp .

Proposition 2.1. For every u ∈ D(L) we have R1u ∈ D(L) and

‖R1u‖D(L) ≤ 3‖u‖D(L) .

Proof. Let us prove firstly that if β > 0 then for all f ∈ Lp(E, µ) we have

β

2β + 1
· ‖Vβf‖D(L) ≤ ‖f‖Lp ≤ sup(β, 1) · ‖Vβf‖D(L) .

Indeed, we have L(Vβf) = βVβf − f and so

‖f‖Lp ≤ ‖f − βVβf‖Lp + ‖βVβf‖Lp ≤ sup(β, 1)
(
‖f − βVβf‖Lp + ‖Vβf‖Lp

)
= sup(β, 1)‖Vβf‖D(L) ,

‖Vβf‖Lp + ‖f − βVβf‖Lp ≤ 1

β
‖f‖Lp + ‖f‖Lp + ‖βVβf‖Lp ≤

(
2 +

1

β

)
‖f‖Lp .

Let now u ∈ D(L), u = V1f , with f ∈ Lp(E, µ). From V1f = V1(f
+)− V1(f

−) we get R1(V1f) 4
V1(f

+), where 4 denotes the specific order in E1. Therefore (cf. [6]) there exists f1 ∈ pB, f1 ≤ f+,
such that R1(V1f) = V1f1. Consequently R1(V1f) ∈ D(L) because f1 ∈ Lp(E, µ). By the first
part of the proof (for β = 1) we get

∥∥R1(V1f)
∥∥

D(L)
≤ 3‖f1‖Lp ≤ 3‖f‖Lp ≤ 3‖V1f‖D(L) .

Remark 2.2. (i) If f0 ∈ Lp(E, µ), f0 > 0, then an increaing sequence of T -closed sets (Fn)n is a
µ-nest if and only if limn Rβ(1E\FnVβf0) = 0 for one β > 0.
(ii) Let (Fn)n be a µ-nest and (F ′

n)n an increasing sequence of T -closed sets such that µ(Fn4F ′
n) =

0 for all n. Then (F ′
n)n is also a µ-nest. Particularly every µ-negligible T -open set is µ-exceptional.

Remark 2.3. (i) If u is a µ-quasi lower semicontinuous function on E and u ≤ 0 µ-a.e. then
u ≤ 0 µ-q.e.
(ii) Let (un)n be a sequence of µ-quasi continuous functions on E. Then there exists a µ-nest
(Fk)k such that un|Fk

is T -continuous for all n and k.
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A sequence (un)n of numerical functions on E converges µ-quasi uniformly (abbreviated µ-q.u.)
to a function u on E if there exists a µ-nest (Fk)k such that u|Fk

, un|Fk
are real valued functions

and
(
un|Fk

)
n

converges uniformly to u|Fk
for all k.

Notice that if (un)n converges µ-quasi uniformly to u and every function un is µ-quasi contin-
uous then the function u is also µ-quasi continuous.

Proposition 2.4. (W. Stannat [16]) Let (un)n ⊂ D(L) be such that every un possesses a µ-quasi
continuous version ũn. If (un)n converges to u ∈ D(L) in the graph norm, then u possesses a
µ-quasi continuous version ũ and a subsequence of (ũn)n converges µ-quasi uniformly to ũ.

Proof. Passing to a subsequence, we may assume that ‖u − un‖D(L) ≤ 1
4n for all n and let (Fn)n

be a µ-nest such that ũi|Fn is continuous for all i and n. We set

Γn =
⋃
i≥n

[
|ũi+1 − ũi| >

1

2i

]
and since Γn ∪ (E \ Fn) is open for all n, it follows that the sequence (F ′

n)n defined by F ′
n =

Fn ∩ (E \ Γn) is increasing and if f0 ∈ Lp(E, µ), 0 < f0 ≤ 1, then we have

R1(1ΓnV1f0) ≤
∑
i≥n

2i
(
R1(ui+1 − ui) + R1(ui − ui+1)

)
.

From

||
∑
i≥n

2i(R1(ui+1 − ui) + R1(ui − ui+1))||D(L) ≤ 3
∑
i≥n

2i+1||ui+1 − ui||D(L) ≤
∑
i≥n

2i+1 6

4i
=

3

2n−3

it follows that limn R1(1E\F ′
n
V1f0) = 0. Consequently (F ′

n)n is a µ-nest and on F ′
n we have

|ũi+1 − ũi| ≤ 1
2i if i > n. We conclude that the sequence (ũi|F ′

n
)i is uniformly convergent on

F ′
n to ũ|F ′

n
.

Proposition 2.5. Let (un)n be a sequence in L∞(E, µ), converging in L∞(E, µ) to u, such that
every un possesses a µ-quasi continuous version ũn. Then u possesses a µ-quasi continuous version
ũ and there exists a µ-nest (Fk)k such that ũn|Fk

, ũ|Fk
are finite continuous for all n and k, and

(ũn)n converges uniformly to ũ on
⋃

k Fk.

Proof. Let (Fk)k be a µ-nest such that ũn|Fk
is a finite continuous function for all n and k. Since

(un)n is converging in L∞(E, µ) to u,it follows that there exists a sequence (εn)n in R+ converging
to zero and such that for all k ≥ n we have µ-a.e.: |ũk−u| ≤ εn

2
and thus |ũn+p− ũn| ≤ εn for all p

and n. Consequently the set G =
⋃

n,p[|ũn+p− ũn| > εn] is µ-negligible, F −K \G is T -closed for
all k and therefore the sequence (Fk \G)k is also a µ-nest and |ũn+p− ũn| ≤ εn on

⋃
k(Fk \G). We

conclude that on this set the sequence (ũn)n converges uniformly and thus there exists a µ-quasi
continuous version ũ of u satisfying the required conditions.

Proposition 2.6. Let (sn)n be a decreasing sequence in Eβ such that
∧

n sn = 0 and each sn

possesses a µ-quasi lower semicontinuous version s̃n. Then a subsequence of (s̃n)n converges to
zero µ-quasi uniformly.
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Proof. Let f0 ∈ Lp(E, µ), f0 > 0 with V1f0 ≤ 1, ϕ ∈ L1(E, µ) and (Fn)n be a µ-nest such that
s̃i|Fn is T -lower semicontinuous for all i and n, and µ

(
ϕR1(1E\FnV1f0)

)
< 1

2n . There exists a
subsequence (sin)n of (sn)n such that µ(ϕsin) ≤ 1

4n for all n. We consider the set

Gn =

[
s̃in >

1

2n

]
∪ [E \ Fn]

and notice that Gn is open. Since V1f0 ≤ 2nsin+R1(1E\FnV1f0) on Gn, we deduce that R1(1GnV1f0) ≤
2nsin + R1(1E\FnV1f0) and so µ(ϕR1(1GnV1f0)) ≤ 1

2n−1 for all n. The set F ′
n =

⋂
k≥n+1(E \Gk) is

T -closed and

µ(ϕR1(1E\F ′
n
V1f0)) ≤

∑
k≥n+1

µ(ϕR1(1Gk
V1f0)) ≤

1

2n−1
.

Consequently (F ′
n)n is a µ-nest and s̃in+1|Fn ≤ 1

2n+1 for all n and we conclude that the sequence
(sin)n converges to zero µ-quasi uniformly.

In the sequel we assume that each u ∈ D(L) possesses a µ-quasi continuous version ũ.

Proposition 2.7. Every s ∈ Eβ possesses a µ-quasi lower semicontinuous version s̃ and if (sn)n ⊂
Eβ is a sequence decreasing to zero in Lp(E, µ), then a subsequence of (s̃n)n converges µ-quasi
uniformly to zero. Particularly, if (Fn)n is a µ-nest, then for every u ∈ D(L) a subsequence of( ˜Rβ(1E\FnVβf0)

)
n

converges to zero µ-quasi uniformly.

Proof. The assertion follows by Proposition 2.6 since for every s ∈ Eβ there exists an increasing
sequence (un)n ⊂ D(L) such that (un)n increases to s. We get s̃ = supn ũn.

Proposition 2.8. Let (un)n ⊂ D(L) converging to zero in the graph norm. Then
(
R̃β(|un|)

)
n

has

a subsequence converging to zero µ-q.e., where ˜Rβ

(
|un|

)
denotes a µ-quasi lower semicontinuous

version of the element Rβ

(
|un|

)
∈ Eβ.

Proof. First we note that if u ∈ D(L) by Proposition 2.1 we get Rβ(u) ∈ D(L) and therefore there

exists a µ-quasi continuous version R̃β(u) of Rβ(u). It follows that

Rβ

(
|un|

)
≤ Rβ(u+

n ) + Rβ(u−n ) = Rβ(un) + Rβ(−un) ,

and because the function R̃β

(
|un|

)
−R̃βun−R̃β(−un) is µ-quasi lower semicontinuous and negative

µ-a.e., we deduce by Remark 2.3 that R̃β

(
|un|

)
≤ R̃βun+R̃β(−un) µ-q.e. Again by Proposition 2.1

there exists a constant K such that ‖Rβ(u)‖D(L) ≤ K‖u‖D(L) for all u ∈ D(L) and therefore the
sequences (Rβ(un))n and

(
Rβ(−un)

)
n

are converging to zero in graph norm. From Proposition 2.4

we deduce that a subsequence of (R̃β(un))n (resp.
(
R̃β(−un)

)
n
) is converging to zero µ-quasi

uniformly.

3 The associated resolvent of kernels

Let U = (Uα)α>0 be a sub-Markovian resolvent of kernels on the Lusin measurable space (E,B)
(i.e. it is measurably isomorphic with a Borel subset of a metrizable compact space endowed with
the Borel σ-algebra). Recall that a function s ∈ pB is termed U -excessive if αUαs ≤ s for all
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α > 0 and supα>0 αUαs = s. If β > 0 then the family Uβ = (Uβ+α)α>0 is also a sub-Markovian
resolvent of kernels on (E,B), having Uβ as (bounded) initial kernel. We denote by E(Uβ) the set
of all B-measurable Uβ-excessive functions on E.

By Remark 2.3 in [4] there exists a sub-Markovian resolvent of kernels U = (Uα)α>0 on (E,B)
such that Uα = Vα as operators on Lp(E, µ) for all α > 0, and the following condition is satisfied
for one (and therefore for all) β > 0:

(A) E(Uβ) is min-stable, 1 ∈ E(Uβ) and σ
(
E(Uβ)

)
= B.

Such a resolvent of kernels U will be named associated with (Vα)α>0. In the sequel we assume
that U is associated with (Vα)α>0. Note that µ ◦ Uβ � µ for all β > 0.

Let U ′ = (U ′
α)α>0 be a second sub-Markovian resolvent of kernels on (E,B). We say that U

and U ′ are µ-equivalent provided that Uαf = U ′
αf µ-a.e. for all f ∈ pB and α > 0.

Trivial modification of U .
Let M ∈ B be such that Uα(1M) = 0 on E \M for one (and therefore for all) α > 0.

For all α > 0 we define the kernel

U ′
αf = 1E\MUαf +

1

1 + α
1Mf , f ∈ pB.

Then the family U ′ = (U ′
α)α>0 is also a sub-Markovian resolvent of kernels on (E,B) satisfying

condition (A), called the trivial modification of U on M . If µ(M) = 0 then U ′ and U are µ-
equivalent, particularly U ′ is also associated with (Vα)α>0.

The family U|E\M =
(
Uα|E\M

)
α>0

is a sub-Markovian resolvent of kernels on
(
E \M,B|E\M

)
which satisfies (A), called the restriction of U to E \M . A function s ∈ pB will be U ′

β-excessive
if and only if s|E\M is Uβ|E\M -excessive.

If s ∈ E(Uβ) and A ∈ B, we denote by RA
β s the reduced function of s on A, RA

β s = inf{t ∈
E(Uβ)

∣∣ t ≥ s on A} and note that RA
β s is universally B-measurable.

The topology T is named natural with respect to U provided that every T -open set is finely
open with respect to Uβ for some β > 0. The fine topology is the topology on E generated by
E(Uβ).

Remark 3.1. Let (sn)n ⊂ E(Uβ) and (fn)n ⊂ pB be such that sn = fn µ-a.e. Then there exists a
trivial modification U ′ of U such that U and U ′ are µ-equivalent and (fn)n ⊂ E(U ′

β). Indeed, let
M =

⋃
n[fn 6= sn]. Then µ(M) = 0 and since µ ◦ Uβ � µ, by Lemma 2.1 in [4] there exists a set

M0 ∈ B, M0 ⊃ M , such that Uα(1M0) = 0 on E \M0 for all α > 0. The trivial modification U ′ of
U on M0 satisfies the required condition.

We note that since U = (Uα)α>0 is a resolvent of kernels on (E,B) associated with (Vα)α>0,
then for every u ∈ Eβ there exists a µ-version of u which is a Uβ-excessive function. Also,
if f ∈ E(Uβ) ∩ Lp(E, µ) − E(Uβ) ∩ Lp(E, µ), then the reduced function of f in E(Uβ) is a µ-
version of Rβ[f ], where [f ] denotes the element of Lp(E, µ) having f as µ-version. Moreover, if
f ∈ pB∩Lp(E, µ) and G is finely open, then RG

β Uβf is a µ-version of the element Rβ(1GUβf) of Eβ.

Consequently, if G1, G2 are two finely open sets such that µ(G14G2) = 0 then RG1
β Uβf = RG2

β Uβf
µ-a.e.

Remark 3.2. Let (Fn)n be an increasing sequence of T -closed sets in E and assume that the
topology T is natural with respect to U . Then the following assertions are equivalent:
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(i) (Fn)n is a µ-nest.

(ii) infn R
E\Fn

β Uβg0 = 0 µ-a.e. for one β > 0 and a strictly positive function g0 such that
Uβg0 < ∞ µ-a.e.

Remark 3.3. Let s ∈ E(Uβ) be such that s < ∞ µ-a.e. and the level set Kn = [s ≤ n] is compact
for all n. Then (Kn)n is a µ-nest (of compact sets). Indeed, since 1 ≤ s

n
on E \Kn, we deduce

that infn R
E\Kn

β s0 = 0 on the set [s < ∞], hence µ-a.e. (here s0 = Uβf0 ≤ 1, with f0 > 0,
f0 ∈ Lp(E, µ)).

Recall that a Ray cone associated with Uβ is a convex coneR of bounded Uβ-excessive functions
such that: Uβ+α(R) ⊂ R for all α > 0, Uβ((R−R)+) ⊂ R, σ(R) = B, R is min-stable, separable
in the uniform norm and contains the positive constant functions; see e.g. [3]. The topology on
E generated by a Ray cone is called Ray topology. Clearly, every Ray topology is natural with
respect to U .

Remark 3.4. If M ∈ B is a set such that Uα(1M) = 0 on E \M then the following assertions
hold.
(i) Let R be a Ray cone associated with Uβ and U ′ be the trivial modification of U on M . Then
there exists a Ray cone R′ with respect to U ′

β such that R ⊂ R′.
(ii) If R◦ is a Ray cone associated with Uβ|E\M then there exists a Ray cone R with respect to Uβ

such that R|E\M = R◦.

We now collect some results on the saturated set E1 of E with respect to Uβ; cf. [3] and [4].
(∗1) E is a finely dense subset of E1 and therefore if G ⊂ E1, G ∈ B1, is finely open, then

RG∩E
β s = RG

β s for all s ∈ E(U1
β), where U1

β is the extension of the resolvent Uβ to E1.
(∗2) If ξ is a Uβ-excessive measure (i.e. ξ is a σ-finite measure such that αUβ+αξ ≤ ξ for all

α > 0), then E is ξ-semisaturated with respect to Uβ (i.e. every Uβ-excessive measure dominated
by a potential is also a potential; recall that a potential is a Uβ-excessive measure of the form
ν ◦ Uβ, where ν is a positive measure on (E,B)) if and only if the set E1 \ E is ξ-polar (i.e.

R
E1\E
β 1 = 0 ξ-a.e.).

(∗3) If ξ is a Uβ-excessive measure and E is ξ-semisaturated, then there exists a second sub-
Markovian resolvent U ′ = (U ′

α)α>0 on (E,B) which is ξ-equivalent with U , U ′ is a trivial modifi-
cation of U and E is semisaturated with respect to U ′. Particularly, U ′ is the resolvent of a right
process with state space E, endowed with any Ray topology with respect to U (see Remark 3.4
(i)).

Let µ′ = ϕ · µ, where ϕ > 0, ϕ ∈ L1(E, µ), and consider the Uβ-excessive measure ξ = µ′ ◦ Uβ.

Lemma 3.5. Assume that E is endowed with a Ray topology and suppose that there exists an
increasing sequence (Kn)n of Ray compact sets in E which is a ξ-nest. Then E is ξ-semisaturated
with respect to Uβ.

Proof. The set E1 \Kn is Ray open in E1, and by the above assertion (∗1) we have R
E\Kn

β U1
βf0 =

R
E1\Kn

β U1
βf0. It follows that R

E1\E
β U1

βf0 = infn R
E\Kn

β U1
βf0 = 0 ξ-a.e. Therefore the set E1 \ E is

ξ-polar and by (∗2) we conclude that E is ξ-semisaturated.
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4 Proof of the main results

Proof of Theorem 1.1.
Notice firstly that σ(A) = B and therefore (E,B) is a Lusin measurable space. We show that
assertion (c) holds. Clearly, we have D(L) ⊂ Eβ − Eβ. Let U = (Uα)α>0 be a sub-Markovian
resolvent of kernels on (E,B) associated with (Vα)α>0. By Remark 3.1 there exists a trivial
modification U ′ of U such that U ′ is µ-equivalent with U ,

{
u∧ n

∣∣ n ∈ N
}
⊂ bE(U ′

β) for all u ∈ A,
and A ⊂ bE(U ′

β) − bE(U ′
β). Consequently, T0 = T (A) is a natural topology with respect to U ′,

and therefore by Proposition 2.4 and assumption (II) it follows that every element v ∈ D(L)
possesses a µ-quasi continuous version ṽ (with respect to T0). Notice also that by hypothesis (I)
there exists a µ-nest of T -compact (and therefore T0-compact) sets.

We shall prove now assertion (a) in four steps.

Step I. We prove that if f ∈ bpB and α > 0, then U ′
αf has a µ-quasi continuous version. In-

deed, we may suppose that α = β and let fn ∈ bLp
+(E, m) be such that U ′

βf =
∑

n U ′
βfn. Since

U ′
βfn ∈ D(L), there exists a µ-quasi continuous version Ũ ′

βfn of U ′
βfn. Let sn =

∑
k≥n Ũ ′

βfk, then
(sn)n ⊂ E(U ′

β), it is decreasing to zero µ-a.e. and each sn is µ-quasi lower semicontinuous. By
Proposition 2.6 it results that a subsequence of (sn)n converges µ-quasi uniformly to zero and

consequently
∑

n Ũ ′
βfn is a µ-quasi continuous version of U ′

βf .

Step II. We show now that there exists a resolvent of kernels Ũ = (Ũα)α>0 on (E,B) such that

Ũ is µ-equivalent with U and Ũαf is µ-quasi continuous for all α > 0 and f ∈ bpB.
We denote by qC(E) the linear space of all µ-quasi continuous real valued functions. For every

α > 0 and f ∈ bB, we denote by Tαf an element of bqC(E) which is a µ-version of U ′
αf . The map

Tα : bB → bqC(E) is quasi linear positive in the sense of [1], with respect to the outer capacity cα
µ

defined by

cα
µ(G) =

∫
ϕRG

α (U ′
αf0) dµ , G ∈ T ,

where ϕ ∈ L1(E, µ) ∩ Lp′(E, µ), ϕ > 0, f0 ∈ bpB ∩ Lp(E, µ), f0 > 0, with U ′
αf0 ≤ 1. By

Remark 3.2 we have: an increasing sequence (Fk)k of T -closed sets in E is a µ-nest if and only
if infk cα

µ(E \ Fk) = 0. We check that if fn ↘ 0 then (Tαfn)n converges to zero in capacity,

i.e. limn cα
µ

([
|Tαfn| > ε

])
= 0 for all ε > 0. Indeed, let (Fk)k be a µ-nest such that Tαfn|Fk

is
continuous and cα

µ(E \ Fk) ≤ 1
2k for all n and k. We get

cα
µ

([
|Tαfn| > ε

])
≤ 1

ε

∫
ϕU ′

αfn dµ +
∑
k≥n

cα
µ(E \ Fk) ≤

1

ε
‖ϕ‖Lp′ · ‖U ′

αfn‖Lp +
1

2n−1
.

By Theorem 4.4 in [1] there exists a kernel T̃α on (E,B) such that T̃αf = Tαf µ-q.e. for all f ∈ bpB.

By Lemma A.1 (in Appendix A) we conclude that there exists a resolvent of kernels Ũ = (Ũα)α>0

as claimed.

Step III. We show that there exists a resolvent U ′′ = (U ′′
α)α>0 on (E,B) which is associated with

(Vα)α>0, U ′′
αf ∈ bqC(E) for all f ∈ bpB and α > 0, and A ⊂ bE(U ′′

β )− bE(U ′′
β ).

Lemma 4.1. If M is a µ-exceptional set, then there exists a µ-exceptional set F ⊃ M such that
Ũα(1F ) = 0 on E \ F . Particularly, the trivial modification Ũ ′ = (Ũ ′

α)α>0 of Ũ on F is a sub-

Markovian resolvent on (E,B) which is µ-equivalent with U and Ũ ′
αf ∈ bqC(E) for all f ∈ bpB.
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Proof. We have Ũα(1M) = 0 µ-a.e., because µ(M) = 0. By Lemma 2.1 in [4] there exists a set

F ∈ B such that Ũα(1F ) = 0 on E \ F for all α > 0, more precisely we have F =
⋃

Fn where

Fn+1 = Fn ∪
[
Ũα(1Fn) > 0

]
for all n ≥ 0, with F0 = M . Since the function Ũα(1Fn) is µ-quasi

continuous and Ũα(1Fn) = 0 µ-a.e., it follows that the set
[
Ũα(1Fn) > 0

]
is µ-exceptional for all

n, hence F is also µ-exceptional. We conclude that the trivial modification Ũ ′ of Ũ on F has
the property: Ũαf = Ũ ′

αf µ-q.e. and therefore Ũ ′
αf is also a µ-quasi continuous function, for all

f ∈ bpB and α > 0.

Let us denote by Ā the closure of A in the uniform norm. By hypothesis (II) it follows that if
u ∈ A and α ≥ 0 then u ∧ α ∈ Ā and therefore |u| ∈ Ā. Consequently, Ā is a vector lattice with
respect to the pointwise infimum and u ∧ α ∈ Ā for all u ∈ Ā and α > 0.

For a function w ∈ pB ∩ Eβ, we shall denote by ŵ its µ-quasi lower semicontinuous regulariza-
tion,

ŵ := sup
n

nŨβ+nw .

Lemma 4.2. The following assertions hold.
(i) If t ∈ Ā then a subsequence of (αnŨβ+αnt)n converges µ-quasi uniformly to t, where αn ↗

+∞.
(ii) Let v ∈ D(L) and u ∈ Ā+. Then there exists a sequence (αk)k ⊂ R+, αk ↗∞, such that(

αkŨβ+αk
(ṽ ∧ u)

)
k

converges µ-q.e. to ṽ ∧ u.
(iii) Let u ∈ qC(E) ∩ Eβ such that there exists a sequence (un)n ⊂ A converging to u µ-q.u.

Then u = û µ-q.e.

Proof. (i) Assume firstly that t ∈ A. Then αnŨβ+αnt converges to t in Lp(E, µ) and since t ∈ D(L),
it follows that the above convergence holds in the graph norm. By Proposition 2.4 we deduce that
a subsequence converges µ-quasi uniformly to t̃ = t. If t ∈ Ā then we consider a sequence
(tk)k ⊂ A converging to t uniformly. By the first part of the proof, we may assume (passing to a

subsequence) that αnŨβ+αntk
n→∞−−−→ tk µ-quasi uniformly for all k and let (Fi)i be a µ-nest such

that αnUβ+αntk|Fi

n→∞−−−→ tk|Fi
uniformly for all k and i. From

|t− αnŨβ+αnt| ≤ |t− tk|+ |tk − αnŨβ+αntk|+
∣∣αnŨβ+αn(tk − t)

∣∣ ≤ 2‖t− tk‖∞ + |tk − αnŨβ+αntk|

we deduce that (αnŨβ+αnt)n converges uniformly to t on each Fi.
(ii) Let (vn)n ⊂ A be such that (vn)n converges to v in the graph norm and put wn =

Rβ

(
|v − vn|

)
. By Proposition 2.8, passing to a subsequence, there exists a µ-exceptional set M1

such that limn ŵn = 0 and limn vn = ṽ on E \ M1. Since (vn ∧ u)n ⊂ Ā, from (i) it follows
that there exist a sequence (αk)k ⊂ R+, αk ↗ ∞, and a µ-exceptional set M2 ⊃ M1, such that

limk αkŨβ+αk
(vn ∧ u+) = vn ∧ u+ on E \M2, for all n. On the other hand, since we have µ-q.e.∣∣αŨβ+α(ṽ ∧ u− vn ∧ u)

∣∣ ≤ αŨβ+α

(
|ṽ − vn|

)
≤ ŵn ,

there exists a µ-exceptional set M ⊃ M2 such that
∣∣αkŨβ+αk

(ṽ ∧ u− vn ∧ u)
∣∣ ≤ ŵn on E \M for

all k and n. Consequently, the claimed convergence holds on E \M .
(iii) We may assume that there exists v ∈ qC(E) ∩ Eβ ∩ D(L) with u ≤ v. Since the map

α 7→ αŨβ+αu is increasing (the inequalities being µ-q.e.), it suffices to show that for a sequence

(αn)n ↗ ∞ we have that (αnŨβ+αnu)n converges to u µ-q.e. Let s0 = Ũβf0, f0 ∈ Lp
+(E, µ),
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f0 > 0, and (Fk)k be a µ-nest such that s0|Fk
is continuous, s0 ≥ 1

k
on Fk, and

(
un|Fk

)
n

converges

uniformly on Fk to u|Fk
for all k. Clearly

(
v ∧ u+

n |Fk

)
n

converges uniformly on Fk to u|Fk
. Passing

to a subsequence, we may assume that for all n we have |v ∧ u+
n − u| ≤ 1

n
s0 on Fn. We put

vn = 1
n
s0 + Rβ(v1E\Fn). By Proposition 2.7 there exists a µ-exceptional set M ′ ⊃

⋂
k E \ Fk such

that the sequence
( ̂Rβ(v1E\Fn)

)
n

converges pointwise to zero on E \M ′. We have µ-q.e.∣∣αŨβ+α(v ∧ u+
n − u)

∣∣ ≤ αŨβ+α

(
|v ∧ u+

n − u|
)
≤ v̂n

and therefore there exists a µ-exceptional set M ′′ ⊃ M ′ such that
∣∣αŨβ+α(v ∧ u+

n − u)
∣∣ ≤ v̂n on

E \ M ′′ for all n and α > 0. By assertion (ii) there exist a µ-exceptional set M ⊃ M ′′ and a

sequence (αn)n, αn ↗∞, such that limn αnŨβ+αn(v ∧ u+
n ) = v ∧ u+

n on E \M . We conclude that

(αnŨβ+αnu)n converges to u on E \M .

Proposition 4.3. After a trivial modification of Ũ on a µ-exceptional set, we may assume that
A ⊂ bE(Ũβ)− bE(Ũβ). Particularly, the set E(Ũβ) separates the points of E and Ũβ1 > 0 on E.

Proof. Since A ⊂ D(L), for every u ∈ A there exists a u1, u2 ∈ bE(Uβ) ∩ Lp(U, µ), u1 = Ũβf1,

u2 = Ũβf2, with f1, f2 ∈ bpB, such that the set Mu = [u 6= u1 − u2] is µ-negligible. Because

Ũβf1, Ũβf2 ∈ bqC(E), we deduce that the set M =
⋃

u∈A Mu is µ-exceptional and therefore the

trivial modification of Ũ on M satisfies the required properties; notice that by Lemma 4.1 it follows
that the property of Ũ that Ũα(bpB) ⊂ qC(E) is preserved.

Let DeUβ
denote the set of all non-branch points of Ũβ:

DeUβ
=

⋂
u,v∈E(Uβ)

[
û ∧ v = u ∧ v

]
∩ [1̂ = 1] .

It is known that there exists a countable set F0 ⊂ bpB ∩ Lp(E, µ) such that

DeUβ
=

⋂
f,g∈F0

[ ̂
Ũβf ∧ Ũβg = Ũβf ∧ Ũβg

]
∩ [1̂ = 1]

(see e.g. [3]).

Corollary 4.4. The set E \DeUβ
is µ-exceptional.

Proof. If u = Ũβf , v = Ũβg with f, g ∈ F0, then the function u ∧ v satisfies the hypothesis of

Lemma 4.2 (iii) and therefore û ∧ v = u∧v µ-q.e. The set [1̂ 6= 1] is also µ-exceptional. Indeed, we

may apply again Lemma 4.2 (iii) to the function 1∧(nŨβf), where f > 0, since by Proposition 4.3

we get Ũβf > 0 and we have µ-q.e.

1̂ =
̂

sup
n

1 ∧ (nŨβf) = sup
n

f ∧ (nŨβf) = 1 .

We can now complete the proof of Step III. It suffices to apply Lemma 4.1 for the set
M = E \DeUβ

, which is µ-exceptional by Corollary 4.4.
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Step IV. Let R be a Ray cone associated with U ′′
β , such that A ⊂ R−R. We claim that every

r ∈ R is µ-quasi continuous. It suffices to prove this property for every r ∈ R∞, since R is the
closure in the uniform norm of R∞. Recall that (see e.g. [3]) R∞ =

⋃
n≥0Rn, where Rn ⊂ bE(U ′

β)
is defined inductively as follows:

Rn+1 = Q+ ∪Q+ · Rn ∪
(∑

f

Rn

)
∪

(∧
f

Rn

)
∪

( ⋃
α∈R+

Ũ ′
β+α(Rn)

)
∪ Ũ ′

β

(
p(Rn −Rn)

)
with R0 −R0 ⊃ A. Since U ′′

α(bpB) ⊂ bqC(E) for all α > 0, we get Rn ⊂ qC(E) for all n.
Furthermore, let TR be the Ray topology generated by R. We consider a µ-nest (Kn)n of

T0-compact sets such that r|Kn is T0-continuous for all r ∈ R∞. Because TR = T (R∞) we deduce
that on each Kn the traces of the Ray topology, T0 and T coincide, hence (Kn)n is a µ-nest of Ray
compact sets. By Lemma 3.5 we conclude that E is ξ-semisaturated with respect to U ′′

β . Assertion
(a) follows now by (∗3) and since there exists a µ-nest of T0-compact sets (see e.g. [3]).

Because (Kn)n is a µ-nest, it follows that supn TE\Kn(ω) ≥ ζ(ω) for all ω ∈ Ω0, with P µ(Ω \
Ω0) = 0. Hence if ω ∈ Ω0 and t0 < ζ(ω) then there exists n ≥ 1 such that t0 < TE\Kn(ω), i.e.
Xt(ω) ∈ Kn for all t ∈ [0, t0). But T0|Kn = T |Kn and thus the trajectory t 7→ Xt(ω) is càdlàg also
in the topology T , for all ω ∈ Ω0, hence the process is càdlàg in the topology T , P µ-a.e. This
completes the proof of Theorem 1.1. �

Proof of Theorem 1.3.
Let (Fn)n be a µ-nest of T -compact sets such that for every u ∈ A the function ũ|Fn is real valued

and continuous, the set of functions Ã = {ũ | u ∈ A} separates the points of
⋃

n Fn and Ã|S
n Fn

is a Q-linear space. We may assume that all the functions from Ã are bounded. Let A∞ be the
closure of A in L∞(E, µ). By Proposition 2.5 it follows that every u ∈ A∞ possesses a bounded
µ-quasi continuous version ũ and there exists a µ-nest (Kn)n, Kn ⊂ Fn for all n, such that if

E◦ =
⋃

n Kn then ũ ∧ α|E◦ belongs to the closure of of Ã|E◦ in the uniform norm for all u ∈ A.

Let T◦ be the topology on E◦ generated by Ã|E◦ . We remark that (E◦, T◦) is a Lusin topological
space, T◦|Kn = T |Kn for all n and the topologies T◦ and T on E◦ generate the same Borel σ-
algebra. Since the set E \ E◦ is µ-negligible, we may consider (Vα)α>0 as a strongly continuous

sub-Markovian resolvent of contractions on Lp(E◦, µ) and we can apply Theorem 1.1 with Ã|E◦

as the given countable Q-linear space satisfying condition (II) on E◦.
Let U◦ = (U◦

α)α>0 be the resolvent of kernels on (E◦,B|E◦) such that E◦ is semisaturated with
respect to U◦ and let R◦ ⊂ E(U◦

β) be a Ray cone associated with U◦
β such that the traces of T (R◦)

and T◦ coincide on each Fn for some µ-nest (Fn)n of T◦-compact subsets of E◦. Let U = (Uα)α>0

be the “trivial” extension of U◦ = (U◦
α)α>0 from E◦ to E,

Uαf = 1E◦U
◦
α(f |E◦) +

1

α + 1
1E\E◦f, f ∈ pB.

Then U is resolvent of kernels on E associated with (Vα)α>0 and U◦ = U|E◦ . By Remark 3.4 (ii)
there exists a Ray cone R associated with Uβ, such that R|E◦ = R◦. Then (Fn)n is a µ-nest of
Ray compact sets in E and U is the resolvent of a right process with state space E, satisfying the
claimed properties (a), (b) and (c). �

Now we are going to give a proof of Proposition 1.4 which apart from integrability issues is
standard, we include it for the reader’s convenience.
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Proof of Proposition 1.4.
Let us first observe that the function

Mt := f(Xt)−
∫ t

0

Lf(Xs) ds

is well-defined P ν-a.e. More precisely, we prove that if g ∈ pB equals zero µ-a.e. then
∫ t

0
g(Xs) ds

vanishes P µ-a.e. Indeed, we have

Ex

∫ t

0

g(Xs) ds =

∫ t

0

psg(x) ds

and since Uβg = 0 µ-a.e. for all β > 0, we get

Eν

(∫ t

0

g(Xs) ds

)
=

∫
E

ν(dx)

∫ t

0

psg(x) ds = sup
β

∫
E

ν(dx)

∫ t

0

e−βs psg(x) ds

≤ sup
β

∫
E

Uβg(x) ν(dx) = 0 .

We shall denote by (Pt)t≥0 the family of linear operators on Lp(E, µ) induced by the transition
function (pt)t≥0 of the process X. Consequently, (Pt)t≥0 is a strongly continuous sub-Markovian
semigroup of contractions on Lp(E, µ), having

(
L, D(L)

)
as infinitesimal generator. Therefore,

for every f ∈ D(L) and t > 0 we have Ptf ∈ D(L), LPtf = PtLf and
∫ t

0
PsLf ds = Ptf − f .

We now show that for all t, Mt is P ν-integrable. We have

Eν
(
|Mt|

)
≤ Eν

(
|f(Xt)|

)
+ Eν

(∣∣∣∫ t

0

Lf(Xs) ds
∣∣∣)

≤
∫

E

g0 Pt

(
|f |

)
dµ +

∫ t

0

(∫
E

g0 Ps

(
|Lf |

)
dµ

)
ds

≤ ‖g0‖Lp′
(
‖f‖Lp + t ‖Lf‖Lp

)
< ∞ .

We check finally the martingale property of Mt under P ν . If s, t ≥ 0, s < t, and G ∈ bpFs,
then using the Markov property of X we obtain:

Eν
(
G · f(Xt)

)
= Eν

(
G · pt−sf(Xs)

)
and

Eν

(
G ·

∫ t

s

Lf(Xu) du

)
= Eν

(
G ·

∫ t−s

0

Lf(Xv) ◦ θs dv

)
= Eν

(
G ·

∫ t−s

0

EXs
(
Lf(Xv)

)
dv

)
= Eν

(
G ·

∫ t−s

0

PvLf(Xs) dv

)
= Eν

(
G ·

(
Pt−sf(Xs)− f(Xs)

))
,

and so

Eν(G ·Mt) = Eν

(
G ·

(
f(Xt)−

∫ t

s

Lf(Xu) du
))

− Eν

(
G ·

∫ s

0

Lf(Xu) du

)
= Eν(G ·Ms) .

�
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5 Applications

In this section we want to apply the above results to construct martingale solutions to stochastic
differential equations on a Hilbert space H (with inner product 〈 , 〉 and norm | · |) of type

dX(t) =
[
AX(t) + F0

(
X(t)

)]
dt +

√
C dW (t) . (3)

Here W (t), t ≥ 0, is a cylindrical Brownian motion on H, C is a positive definite self-adjoint
linear operator on H and A : D(A) ⊂ H → H the infinitesimal generator of a C0-semigroup on
H. Furthermore,

F0(x) := y0 , x ∈ D(F ), (4)

where y0 ∈ F (x) such that |y0| = min
y∈F (x)

|y|, and F : D(F ) ⊂ H → 2H is an m-dissipative map.

This means that D(F ) is a Borel set in H and

〈u− v, x− y〉 ≤ 0 ∀ x, y ∈ D(F ), u ∈ F (x), v ∈ F (y), (5)

and
Range(I − F ) :=

⋃
x∈D(F )

(
x− F (x)

)
= H .

Since for any x ∈ D(F ) the set F (x) is closed, non-empty and convex, F0 is well-defined by
(4). Such equations have been studied in [7], the main novelty being that F0 has no continuity
properties. In [7], however, a martingale solution to (3) was only constructed under the assumption
that the inverse C−1 of C exists and is bounded and that A = A∗ where

(
A∗, D(A∗)

)
denotes

the adjoint of
(
A, D(A)

)
. Hence, in particular, the case, where C is trace class, was not covered

in the final result. Those results, however, which concern the underlying operator (“Kolmogorov
operator”) from [7], were proved without the assumption that C−1 ∈ L(H) and we will use them
below (among other things) in an essential way to verify the assumptions of our general results
formulated in Section 1.

Let us first write the underlying Kolmogorov operator L0 and then formulate precise conditions
on the coefficients on A, F0 and C in (3) which will ensure the existence of a measure µ as in
Theorem 1.1 and imply that all its conditions are satisfied for the resolvent generated by the
closure of L of L0. We recall that by Proposition 1.4 the process in Theorem 1.1 satisfies the
martingale problem determined by L, hence is a martingale solution for (3).

A heuristic application of Itô’s formula to a solution of (3) implies that the Kolmogorov
operator on test functions

ϕ ∈ EA(H) := lin. span
{
sin〈h, x〉, cos〈h, x〉

∣∣ h ∈ D(A∗)
}

(6)

has the following form:

L0ϕ(x) =
1

2
· Tr

[
CD2ϕ(x)

]
+

〈
x, A∗Dϕ(x)

〉
+

〈
F0(x), Dϕ(x)

〉
, x ∈ H, (7)

where Dϕ(x), D2ϕ(x) denote the first and second Fréchet derivatives of ϕ at x ∈ H considered
as an element in H and as an operator on H, respectively. We note that by the chain rule
Dϕ(x) ∈ D(A∗) for all ϕ ∈ EA(H), x ∈ H. Clearly, L0 is well-defined for all ϕ of the form

ϕ(x) = f
(
〈h1, x〉, . . . , 〈hM , x〉

)
, x ∈ H,

with f ∈ C2(RM), M ∈ N, h1, . . . , hM ∈ D(A∗). We shall use this below frequently. As in [7],
from now on we make the following assumptions:
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(H1) (i) A is the infinitesimal generator of a strongly continuous semigroup etA, t ≥ 0, on H,
and there exists a constant ω > 0 such that

〈Ax, x〉 ≤ −ω |x|2 ∀ x ∈ H .

(ii) C is self-adjoint, nonnegative definite and such that Tr Q < ∞, where

Qx :=

∫ ∞

0

etA C etA∗
x dt , x ∈ H.

(H2) There exists a probability measure µ on the Borel σ-algebra B(H) of H such that

(i)

∫
D(F )

(
|x|4 + |F0(x)|2 + |x|4 · |F0(x)|2

)
µ(dx) < ∞ .

(ii) For all ϕ ∈ EA(H) we have L0ϕ ∈ L2(H, µ) and∫
L0ϕ dµ = 0 (“infinitesimal invariance”).

(iii) µ
(
D(F )

)
= 1.

Remark 5.1. (i) In this section, for simplicity, we shall apply Theorem 1.1 only in the case
p = 2. To handle p ≥ 1, we would need in (H2)(i) that∫

D(F )

(
|x|2p + |F0(x)|p + |x|2p · |F0(x)|p

)
µ(dx) < ∞ ,

and in (H2)(ii) that L0ϕ ∈ Lp(H, µ) for all ϕ ∈ EA(H).

(ii) If 0 ∈ D(F ), by an elementary calculation one derives from (H1)(i) and (5) that for all
η ∈ (0, ω) there exists a constant Cη such that〈

Ax + F0(x), x
〉
≤ −η |x|2 + Cη ∀ x ∈ D(A) ∩D(F ) .

Now we want to give a sufficient condition on the coefficients A and F0, so that (H2) holds.

Proposition 5.2. Assume that

(i) D(F ) = H and F0 is hemicontinuous, i.e. for all x, y, z ∈ H

R 3 λ 7→
〈
F0(x + λy), z

〉
is continuous.

(ii) H 3 x 7→ −〈x, A∗x〉 is nonnegative and has compact level sets in H, where we set −〈x, A∗x〉 :=
+∞ if x ∈ H \D(A∗).

(iii) There exist constants γ, κ∗ > 0, such that∣∣F0(x)
∣∣ ≤ γ e

1
2
κ∗|x|2 (

1− 〈x, A∗x〉
)1/2

.
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(iv) Tr C < ∞.

Then there exists a probability measure µ on
(
H,B(H)

)
satisfying (H2) and, in addition, we have

that the function Θκ defined in (11) below, is in L1(H, µ) for all κ ∈ (0,∞).

Proof. Fix κ ∈ (0,∞) and define

Ṽκ(x) := eκ|x|2 , x ∈ H. (8)

Let ej ∈ D(A∗), j ∈ N, such that lin. span{ej | j ∈ N} is dense in D(A∗) with respect to the norm.
| · |A∗ := |A∗ · |+ | · |, i.e. the graph norm of

(
A∗, D(A∗)

)
, and {ej | j ∈ N} is an orthonormal basis

of H. For N ∈ N define EN := lin. span{ej | j ≤ N} and

Bj(x) := 〈x, A∗ej〉+
〈
F0(x), ej

〉
, x ∈ H, j ∈ N. (9)

Then for PN := orthogonal projection onto EN in H we have

L0Ṽκ(x) = κ eκ|x|2 [
2κ〈Cx, x〉+ Tr(PNC) + 〈x, A∗x〉+ 〈F0(x), x〉

]
. (10)

Define Θκ : H → [0,∞] by

Θκ(x) :=

{
eκ|x|2 (

1− 〈x, A∗x〉
)

if x ∈ D(A∗),

+∞ if x ∈ H \D(A∗).
(11)

Then by (5)

L0 Ṽκ(x) ≤ κ eκ|x|2 [
2κ ‖C‖ · |x|2 + Tr C + 1 + |F0(0)| · |x|

]
− κ Θκ .

Hence, by assumption (ii) we can find constants c, m > 0 such that

L0 Ṽκ(x) ≤ c−m Θκ(x) for all x ∈ EN , N ∈ N. (12)

Furthermore, since F0 is dissipative and hemicontinuous, it follows by [19, Proposition 26.4] that
Bj is continuous on H for all j ∈ N. Finally, the rextriction of Ṽκ to EN has compact level sets
for all N ∈ N and for all j ∈ EN and κ ∈ [κ∗,∞)∣∣Bj(x)

∣∣ ≤ |A∗ej| · |x|+ γ Θ
1/2
κ∗ (x) , x ∈ H. (13)

Now in the same way as to prove Theorem 5.1 in [5] or Theorem 2.4 in [14], it follows that there
exists a probability measure µ on

(
H,B(H)

)
, such that for all ϕ : H → R of the form

ϕ(x) = f
(
〈e1, x〉, . . . , 〈eM , x〉

)
, x ∈ H,

f ∈ C∞
b (RM), M ∈ N, we have L0ϕ ∈ L2(H, µ) and∫

L0ϕ dµ = 0 (14)

as well as ∫
Θκ dµ < ∞ . (15)

Since our orthonormal basis {ej | j ∈ N} is dense in D(A∗) with respect to | · |A∗ , it follows by
(15) and a simple approximation argument that L0ϕ ∈ L2(H, µ) and (14) holds for all ϕ ∈ EA(H).
Clearly, assumption (iii) and (15) also imply (H2)(i) and thus all assertions are proved.
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Remark 5.3. (i) A typical example for the above situation is the following: A = Dirichlet
Laplacian on an open, bounded set in Rd and H = L2(Rd, dx), where dx denotes Lebesgue
measure.

(ii) Instead of (13) it would have been enough for the above proof that for all j ∈ N∣∣Bj(x)
∣∣ ≤ |A∗ej| · |x|+ δj

(
Θκ(x)

)
Θκ(x) , x ∈ H,

for some bounded Borel function δj : [0,∞) → [0,∞) such that lim
r→∞

δj(r) = 0. We refer to

[5, Theorem 5] for details.

(iii) The assumption Tr C < ∞ in Proposition 5.2 is not essential. Taking Ṽκ in its proof to be a
properly “weighted norm”, we can compensate for Tr C = ∞. We refer to [5, Proposition 7.2]
for an example.

By assumption (H2)(ii) it is easy to prove that
(
L0, EA(H)

)
is dissipative on L2(H, µ) (cf.

[7, Proposition 2.1]), hence closable. Let
(
L, D(L)

)
denote its closure. The first main result in

[7], however, is that (H1) and (H2) imply that
(
L, D(L)

)
is m-dissipative (cf. [7, Theorem 2.3]),

hence generates a C0-semigroup Pt := etL, t ≥ 0, on L2(H, µ). By [7, Corollary 2.5], (Pt)t≥0 is
Markovian, i.e. positivity preserving and Pt1 = 1 for all t ≥ 0. Clearly, µ is invariant for (Pt)t≥0,
i.e. ∫

Ptf dµ =

∫
f dµ ∀ t ≥ 0, f ∈ L2(H, µ).

Define for f ∈ L2(H, µ)

Vαf :=

∫ ∞

0

e−αt Ptf dt , α > 0. (16)

Then (Vα)α>0 is a strongly continuous Markovian contraction resolvent as in Sections 1–4 above.
By Proposition 1.4, a right process associated with (Vα)α>0 is a martingale solution of (3). So, it
remains to prove that such a right process exists, i.e. we have to check that conditions (I) and (II)
in Theorem 1.1 hold. We shall do that in the next proposition, which is the main result of this
section. For the underlying topology T on H we take

T := weak topology on H. (17)

We need, however, the following additional condition:

(H3) (i) There exists an orthonormal basis {ej | j ∈ N} of H so that
⋃

N∈N EN with EN :=
lin. span{ej | 1 ≤ j ≤ N} is dense in D(A∗) with respect to | · |A∗ and such that for the
orthogonal projection PN onto EN in H we have that the function

H 3 x 7→ 〈PNx, A∗ PNx〉

converges in L1(H, µ) to
H 3 x 7→ 〈x, A∗x〉

(defined to be +∞ if x ∈ H \D(A∗)).

(ii) There exist two increasing Borel functions %1, %2 : [1,∞) → (0,∞) such that∣∣F0(x)
∣∣2 ≤ %1

(
|x|

)
+ %2

(
|x|

) ∣∣〈x, A∗x〉
∣∣ ∀ x ∈ H ,

and the function on the right hand side is in L1(H, µ).
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Remark 5.4. Consider the situation of Proposition 5.2 and, in addition, assume that there exists
an orthonormal basis {ej | j ∈ N} consisting of eigenvectors of

(
A∗, D(A∗)

)
with eigenvalues λj,

j ∈ N, such that
N∑

j=1

λj 〈x, ej〉 ej → A∗x in H as N →∞.

Then (H3) is obviously fulfilled.

Proposition 5.5. Assume (H1)–(H3) and let (Vα)α>0 be as defined above. Then conditions (I)
and (II) in Theorem 1.1 hold.

Proof. Since D(L) is separable with respect to the graph norm ‖ · ‖L :=
(
‖L · ‖2

L2(H,µ)+‖ · ‖2
L2(H,µ)

)1/2

we can construct a countable Q-algebra in EA(H) dense with respect to ‖ · ‖L in EA(H), hence
dense with respect to ‖ · ‖L in D(L). So, condition (II) holds by Remark 1.2.2.

To show condition (I) define V (x) := |x|2, x ∈ H, and let {ej | j ∈ N}, EN , PN , N ∈ N, be as
in (H3). Then for all x ∈ EN

(1− L0) V (x) = V (x)− Tr PN C − 2〈x, A∗x〉 − 2
〈
F0(x), x

〉
≤ g0(x) ,

(18)

where for x ∈ H
g0(x) := 2 |x|2 +

(
2 + %2(|x|)

) ∣∣〈x, A∗x〉
∣∣ + %1

(
|x|

)
.

By (H2)(i) and (H3)(ii) we have g0 ∈ L1(H, µ).
We recall that by [7, Theorem 2.3] the set (1 − L0) EA(H) is dense in L2(H, µ), hence also in

L1(H, µ). Hence the closure
(
L1, D(L1)

)
of

(
L0, EA(H)

)
(which exists since

(
L0, EA(H)

)
is also

dissipative on L1(H, µ)) also generates a C0-semigroup P
(1)
t := etL1 , t ≥ 0, on L1(H, µ). Let V

(1)
α ,

α > 0, denote the corresponding resolvent. For α > 0 by definition Vα = V
(1)
α on (λ−L0)

(
EA(H)

)
,

hence
Vαf = V (1)

α f for all f ∈ L2(H, µ) (19)

by continuity. Since g0 ∈ L1(H, µ), an easy approximation argument shows that V ◦ PN ∈ D(L1)
for all N ∈ N, so (18) can be written as

(1− L1) (V ◦ PN) ≤ g0 ◦ PN .

Applying V
(1)
1 we obtain that

V ◦ PN ≤ V
(1)
1 (g0 ◦ PN) for all N ∈ N.

By (H3) we can take N →∞ to obtain

V ≤ V
(1)
1 g0 =: g ∈ L1(H, µ) . (20)

But then for all α > 0

α V
(1)
α+1g

1/2 ≤ α

α + 1

(
(α + 1) V

(1)
α+1g

)1/2
=

α1/2

(α + 1)1/2
(α V

(1)
α+1g)1/2 ≤ g1/2 .
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Hence by (19), g1/2 is a 1-excessive function in L2(H, µ), which by (20) dominates the function
| · | which has T -compace level sets. Therefore, for k ∈ N,

R1

(
1{| · |>k}

)
≤ 1

k
g1/2 ,

hence by Remark 2.2 (applied to f0 ≡ 1, so V11 = 1) we obtain that Fk :=
{
| · | ≤ k

}
, k ∈ N, is a

µ-nest of T -compact sets, and condition (I) is proved.

By Theorem 1.1(b) we know that our process (Xt)t≥0 is càdlàg in the weak topology Pµ-a.e.
Since our Kolmogorov operator is a differential operator, the paths are moreover weakly continuous
Pµ-a.e.

Proposition 5.6. Consider the situation of Proposition 5.5. Then (Xt)t≥0 is a weakly continuous
process Pµ-a.e.

Proof. By (the proof of) [7, Theorem 6.3] for all ϕ ∈ EA(H) we have that there exists a constant
c(ϕ) > 0 such that for all t, s > 0∫ ∣∣ϕ(Xt)− ϕ(Xs)

∣∣4 dPµ ≤ c(ϕ) |t− s|3/2.

(We emphasize that the condition that L−1 ∈ L(H) is not necessary for this part of the proof of
[7, Theorem 6.3]). By the Kolmogorov-Chentsov theorem it follows that there exists Ω0 ∈ F with
Pµ(Ω0) = 1 and t 7→ ϕ

(
Xt(ω)

)
is Hölder continuous on the dyadics for all ϕ ∈M, where

M :=
{

cos
(
k〈hn, · 〉

)
, sin

(
k〈hn, · 〉

) ∣∣∣ k, n ∈ N
}

with hn ∈ D(A∗), n ∈ N, forming a dense subset of H. Since we already know that (Xt)t≥0 is
cadlag Pµ-a.s., it follows that Xt = Xt− for all t > 0 Pµ-a.e.

To keep the size of this paper within reasonable limits, we do not include explicit examples for
the coefficients A, F,C here so that all the above applies, but rather refer to [7, Section 9].

A Appendix

The following result is a version of Proposition 1.4.13 from [3].

Lemma A.1. Let (Wα)α>0 be a family of kernels on (E,B) such that Wα(bpB) ⊂ qC(E) for all
α > 0. Assume that for β > 0 and f, g ∈ bpB the following properties hold µ-q.e.

• Wαf = Wαg provided that f = g µ-a.e.

• Wαf = Wβf + (β − α)WαWβf , if α < β, and WαWβf = WβWαf .

• αWα1 ≤ 1.

Then there exists a sub-Markovian resolvent of kernels (W̄α)α>0 on (E,B) such that Wαf = W̄αf
µ-q.e. for all f ∈ pB and α > 0.
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Proof. We consider a countable subset H of bpB such that H−H is a Q vector space and a lattice
with respect to the pointwise order, 1 ∈ H, σ(H) = B and Wα(H) ⊂ H for all α ∈ Q∗

+. By
hypothesis there exist a µ-exceptional set M0 ∈ B such that for all α, β ∈ Q∗

+ and h ∈ H we have
on E \M0:

Wαh = Wβh + (β − α)WαWβh ,

if α < β, WαWβh = WβWαh, αWα1 ≤ 1.
Let now M =

⋃
n≥0 Mn, where Mn is defined inductively by

Mn+1 = Mn ∪
⋃

α∈Q∗
+

[
Wα(1An) > 0

]
.

We deduce that for all n the set Mn (and therfore M) is ξ-exceptional and M0∪
[
Wα(1M) > 0

]
⊂ M

for all α > 0.
By construction it follows that Wαf = Wα(f1E\M) on E \M for each f ∈ pB and α ∈ Q∗

+ and
consequently for all α, β ∈ Q∗

+, α < β and h ∈ H we have on E \M :

WαWβh = Wα

(
1E\MWβ(h1E\M)

)
= Wβ

(
1E\MWα(h1E\M)

)
,

Wα(h1E\M) = Wβ(h1E\M) + (β − α)Wα

(
1E\MWβ(h1E\M)

)
.

If α ∈ Q∗
+, then we define the kernel W̄α on (E,B) by

W̄αf = 1E\MWα(f1E\M) , f ∈ bpB.

We have αW̄α1 ≤ 1 and W̄αW̄β = W̄βW̄α, W̄α = W̄β + (β − α)W̄αW̄β. If α ∈ R∗
+ then we set

W̄α = supQ3β>α W̄β. In this way the family (W̄α)α>0 is a sub-Markovian resolvent of kernels on
(E,B) such that W̄αf = Wαf on E \M (hence µ-q.e.) for all f ∈ pB and α > 0.

B Appendix

Let E be a metrizable Lusin topological space and B the Borel σ-algebra on E.
A transition function on E is a family (pt)t≥0 of kernels on (E,B) which are sub-Markovian

(i.e. pt1 ≤ 1 for all t ≥ 0), such that p0f = f and ps(ptf) = ps+tf for all s, t ≥ 0 and f ∈ pB. We
assume that for all f ∈ pB the function (t, x) 7→ ptf(x) is B

(
[0,∞)

)
⊗ B-measurable. We denote

by U = (Uα)α>0 the family of kernels on (E,B) given by

Uαf =

∫ ∞

0

e−αt ptf dt .

Consequently, U = (Uα)α>0 is a sub-Markovian resolvent of kernels on (E,B) and it is called
associated with (pt)t≥0.

A right process with state space E (associated with the transition function (pt)t≥0) is a collection
X = (Ω,G,Gt, Xt, θt, P

x) where: (Ω,G) is a measurable space, (Gt)t≥0 is a family of sub σ-algebras
of G such that Gs ⊆ Gt if s < t; for all t ≥ 0, Xt : Ω → E∆ is a Gt/B∆-measurable map such that
Xt(ω) = ∆ for all t > t0 if Xt0(ω) = ∆, where ∆ is a cemetery state adjoined to E as an isolated
point of E∆ := E ∪{∆} and B∆ is the Borel σ-algebra on E∆; we set ζ(ω) := inf

{
t
∣∣ Xt(ω) = ∆

}
;

for each t ≥ 0, the map θt : Ω → Ω is such that Xs ◦ θt = Xs+t for all s > 0; for all x ∈ E∆, P x is
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a probability measure on (Ω,G) such that x 7→ P x(F ) is universally B-measurable for all F ∈ G;
Ex(f ◦X0) = f(x) and the following Markov property holds:

Ex(f ◦Xs+t ·G) = Ex(p∆
t f ◦Xs ·G)

for all x ∈ E∆, s, t ≥ 0, f ∈ pB∆ and G ∈ pGs, where p∆
t is the Markovian kernel on (E∆,B∆)

such that p∆
t 1 = 1 and p∆

t |E = pt; for all ω ∈ Ω the function t 7→ Xt(ω) is right continuous
on [0,∞); the filtration (Gt)t≥0 is right continuous (i.e. Gt = Gt+ :=

⋂
s>t

Gs) and augmented (i.e.

Gt = G̃t :=
⋂

µ G
µ
t , where for every probability measure µ on (E,B), Gµ is the completion of G

with respect to the probability measure P µ :=
∫

P x µ(dx) on (Ω,G) and Gµ
t is the completion of

Gt in Gµ with respect to P µ); we assume that for all α > 0, every function u which is α-excessive
with respect to the resolvent associated with (pt)t≥0 and each probability measure µ on (E,B),
the function t 7→ u ◦Xt is right continuous on [0,∞) P µ-a.s.

We consider the natural filtration associated with X: F := F̃0, Ft := F̃0
t , where F0 := σ(Xs |

s < ∞), F0
t := σ(Xs | s ≤ t). It is known that always a right process may be considered with

respect to its natural filtration:

X = (Ω,F ,Ft, Xt, θt, P
x) .

The sub-Markovian resolvent U = (Uα)α>0 associated with (pt)t≥0 is called the resolvent of the
process X and for all f ∈ pB, α > 0 and x ∈ E we have

Uαf(x) = Ex

∫ ζ

0

e−αt f ◦Xt dt ,

with the convention f(∆) = 0.
A stopping time is a map T : Ω → R̄+ such that the set [T ≤ t] belongs to Ft for all t ≥ 0.
Let µ be a σ-finite measure on (E,B). The right process X is called µ-standard, if it possesses

left limits in E P µ-a.e. on (0, ζ) and for every increasing sequence (Tn)n of stopping times, Tn ↗ T ,
the sequence (XTn)n converges to XT P µ-a.e. on [T < ζ].

Let T be a topology on E. The right process X is named càdlàg in the topology T P µ-a.e.
provided that P µ-a.e. t 7→ Xt is right continuous and has left limits in E on (0, ζ).

For more details on right processes see e.g. [15] and [13].
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[11] N.V. Krylov, M. Röckner: Strong solutions for stochastic equations with singular time depen-
dent drift, Prob. Th. Rel. Fields 131 (2005), no. 2, 154–196.

[12] N.V. Krylov, B. Rozovskii: Stochastic evolution equations, Current Problems in Mathematics,
Vol. 14, 1979.
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