Gradient bounds for solutions of elliptic and parabolic equations

Vladimir I. Bogacheva, Giuseppe Da Pratob, Michael Röcknerc, and Zeev Sobold

a: Department of Mechanics and Mathematics, Moscow State University, 119992 Moscow, Russia
b: Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I–56125 Pisa, Italy
c: Fakultät für Mathematik, Universität Bielefeld, D–33501 Bielefeld, Germany
d: Department of Mathematics, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK

Abstract

Let \(L \) be a second order elliptic operator on \(\mathbb{R}^d \) with a constant diffusion matrix and a dissipative (in a weak sense) drift \(b \in L^p_{\text{loc}} \) with some \(p > d \). We assume that \(L \) possesses a Lyapunov function, but no local boundedness of \(b \) is assumed. It is known that then there exists a unique probability measure \(\mu \) satisfying the equation \(L^* \mu = 0 \) and that the closure of \(L \) in \(L^1(\mu) \) generates a Markov semigroup \(\{T_t\}_{t \geq 0} \) with the resolvent \(\{G_\lambda\}_{\lambda > 0} \). We prove that, for any Lipschitzian function \(f \in L^1(\mu) \) and all \(t, \lambda > 0 \), the functions \(T_t f \) and \(G_\lambda f \) are Lipschitzian and

\[
|\nabla T_t f(x)| \leq T_t |\nabla f|(x) \quad \text{and} \quad |\nabla G_\lambda f(x)| \leq \frac{1}{\lambda} G_\lambda |\nabla f|(x).
\]

An analogous result is proved in the parabolic case.

Suppose that for every \(t \in [0, 1] \), we are given a a strictly positive definite symmetric matrix \(A(t) = (a^{ij}(t)) \) and a measurable vector field \(x \mapsto b(t, x) = (b^1(t, x), \ldots, b^n(t, x)) \).

Let \(L_t \) be the elliptic operator on \(\mathbb{R}^d \) given by

\[
L_t u(x) = \sum_{i,j \leq d} a^{ij}(t, x) \partial_{x_i} \partial_{x_j} u(x) + \sum_{i \leq d} b^i(t, x) \partial_{x_i} u(x). \tag{1}
\]

Suppose that \(A \) and \(b \) satisfy the following hypotheses:

(Ha) \(\sup_{t \in [0,1]} (\|A(t)\| + \|A(t)^{-1}\|) < \infty, \sup_{t \in [0,1]} \|b(t, \cdot)\|_{L^p(U)} < \infty \) for every ball \(U \) in \(\mathbb{R}^d \) with some \(p > d, p \geq 2 \).

(Hb) \(b \) is dissipative in the following sense: for every \(t \in [0, 1] \) and every \(h \in \mathbb{R}^d \), there exists a measure zero set \(N_{t,h} \subset \mathbb{R}^d \) such that

\[
(b(t, x + h) - b(t, x), h) \leq 0 \quad \text{for all} \quad x \in \mathbb{R}^d \setminus N_{t,h}.
\]

(Hc) for every \(t \in [0, 1] \), there exists a Lyapunov function \(V_t \) for \(L_t \), i.e., a nonnegative \(C^2 \)-function \(V_t \) such that \(V_t(x) \to +\infty \) and \(L_t V_t(x) \to -\infty \) as \(|x| \to \infty \).

We consider the parabolic equation

\[
\frac{\partial u}{\partial t} = L_t u, \quad u(0, x) = f(x), \tag{2}
\]
where \(f \) is a bounded Lipschitz function. A locally integrable function \(u \) on \([0, 1] \times \mathbb{R}^d\) is called a solution if, for every \(t \in (0, 1] \), one has \(u(t, \cdot) \in W^{1,2}_{loc}(\mathbb{R}^d) \), the functions \(\partial_x \partial_{x_j} u \) and \(b \partial_x u \) are integrable on the sets \([0, 1] \times K\) for every cube \(K \) in \(\mathbb{R}^d \), and for every \(\varphi \in C_0^\infty(\mathbb{R}^d) \) and all \(t \in [0, 1] \) one has

\[
\int_{\mathbb{R}^d} u(t, x) \varphi(x) \, dx = \int_{\mathbb{R}^d} f(x) \varphi(x) \, dx + \int_0^t \int_{\mathbb{R}^d} L_x \varphi(x) u(s, x) \, dx \, ds.
\]

In the case where \(A \) and \(b \) are independent of \(t \), so that we have a single operator \(L \), Hypotheses (Ha) and (Hc) imply (see [6] and [8]) that there exists a unique probability measure \(\mu \) on \(\mathbb{R}^d \) such that \(\mu \) has a strictly positive continuous weakly differentiable density \(\varrho \), \(\nabla \varrho \in L^p_{loc}(\mathbb{R}^d) \), and \(L^* \mu = 0 \) in the following weak sense:

\[
\int L u \, d\mu = 0 \quad \text{for all} \quad u \in C_0^\infty(\mathbb{R}^d).
\]

The closure \(\overline{L} \) of \(L \) with domain \(C_0^\infty(\mathbb{R}^d) \) in \(L^1(\mu) \) generates a Markov semigroup \(\{T_t\}_{t \geq 0} \) for which \(\mu \) is invariant. Let \(D(\overline{L}) \) denote the domain of \(\overline{L} \) in \(L^1(\mu) \) and let \(\{G_\lambda\}_{\lambda > 0} \) denote the corresponding resolvent, i.e., \(G_\lambda = (\lambda - \overline{L})^{-1} \).

The restrictions of \(T_t \) and \(G_\lambda \) to \(L^2(\mu) \) are contractions on \(L^2(\mu) \). In particular, if \(v \in D(\overline{L}) \) is such that \(\lambda v - \overline{L} v = g \in L^2(\mu) \), then \(v \in L^2(\mu) \). Moreover, it follows by [8, Theorem 2.8] that one has \(v \in H^2_{loc}(\mathbb{R}^d) \) and \(\overline{L} v = L v \) a.e., so that one has a.e.

\[
\lambda v - L v = g. \tag{3}
\]

In fact, due to our assumptions on the coefficients of \(L \) one has even \(v \in W^{p,2}_{loc}(\mathbb{R}^d) \) (see [10]). It has been shown in [3] that for every function \(f \in L^1(\mu) \) that is Lipschitzian with constant \(C \) and all \(t, \lambda > 0 \), the continuous version of the function \(T_t f \) is Lipschitzian with constant \(C \), and the continuous version of \(G_\lambda f \) is Lipschitzian with constant \(\lambda^{-1} C \). Here we establish pointwise estimates in both cases and prove their parabolic analogue. The main results of this work are the following two theorems.

Theorem 1. Suppose that \(A \) and \(b \) are independent of \(t \) and satisfy (Ha), (Hb) and (Hc). Then, for any Lipschitzian function \(f \in L^1(\mu) \) and all \(t, \lambda > 0 \), \(T_t f \) and \(G_\lambda f \) have Lipschitzian versions such that

\[
|\nabla T_t f(x)| \leq T_t |\nabla f|(x) \quad \text{and} \quad |\nabla G_\lambda f(x)| \leq \frac{1}{\lambda} G_\lambda |\nabla f|(x) \tag{4}
\]

for the corresponding continuous versions. In particular,

\[
\sup_{x,t} |\nabla T_t f(x)| \leq \sup_x |\nabla f(x)|, \quad \sup_x |\nabla G_\lambda f(x)| \leq \frac{1}{\lambda} \sup_x |\nabla f(x)|. \tag{5}
\]

Theorem 2. Suppose that \(A \) and \(b \) satisfy (Ha), (Hb) and (Hc). Then, for any bounded Lipschitzian function \(f \) there is a solution \(u \) of equation (2) such that for all \(t \) one has

\[
\sup_x |\nabla u(t, x)| \leq \sup_x |\nabla f(x)|. \tag{6}
\]
In the case where $A = I$ and $b = 0$, estimate (6) has been established in [12], [13] for solutions of boundary value problems in bounded domains. It should be noted that gradient estimates of the type
\[\sup_x |\nabla u(x,t)| \leq C(t) \sup_x |f(x)| \]
for solutions of parabolic equations have been obtained by many authors, see, e.g., [1], [2], [11], [15], and the references therein. Such estimates do not require (Hb) and one has $C(t) \to +\infty$ as $t \to 0$ or $t \to +\infty$. In contrast to this type of estimates, our theorems mean a contraction property on Lipschitz functions rather than a smoothing property. It is likely that some results of the cited works, established for sufficiently regular b, can be extended to more general drifts satisfying just (Ha), but not (Hb).

A short proof of the following result can be found in [3].

Lemma 1. Suppose that b is infinitely differentiable, Lipschitzian, and strongly dissipative, so for some $\alpha > 0$, one has
\[(b(x+h) - b(x), h) \leq -\alpha(h,h) \quad \text{for all } x, h \in \mathbb{R}^d. \]
Then, for any $\lambda > 0$ and any smooth bounded Lipschitzian function f, one has pointwise
\[|\nabla G_\lambda f| \leq G_\lambda |\nabla f|. \]
In particular, $\sup_x |\nabla G_\lambda f(x)| \leq \lambda^{-1} \sup_x |\nabla f(x)|$.

Proof of Theorem 1. The estimate with the suprema has been proven in [3], and the stronger pointwise estimate can be derived from that proof. For the reader’s convenience, instead of recursions to the steps of the proof in [3] we reproduce the whole proof and explain why it yields a stronger conclusion. We recall that if a sequence of functions on \mathbb{R}^d is uniformly Lipschitzian with constant L and bounded at a point, then it contains a subsequence that converges uniformly on every ball to a function that is Lipschitzian with the same constant. Therefore, approximating f in $L^1(\mu)$ by a sequence of bounded smooth functions f_j with
\[\sup_x |\nabla f_j(x)| \leq \sup_x |\nabla f(x)|, \]
it suffices to prove (5) for smooth bounded f. Moreover, due to Euler’s formula
\[T_t f = \lim_n \left(\frac{t}{n} G_{\frac{t}{n}} \right)^n f, \]
it suffices to establish the resolvent estimate. First we construct a suitable sequence of smooth strongly dissipative Lipschitzian vector fields b_k such that $b_k \to b$ in $L^p(U, \mathbb{R}^d)$ for every ball U as $k \to \infty$. Let $\sigma_j(x) = j^{-d} \sigma(x/j)$, where σ is a smooth compactly supported probability density. Let $\beta_j := b * \sigma_j$. Then β_j is smooth and dissipative and $\beta_j \to b$, $j \to \infty$, in $L^p(U, \mathbb{R}^d)$ for every ball U. For every $\alpha > 0$, the mapping $I - \alpha \beta_j$ is a homeomorphism of \mathbb{R}^d and the inverse mapping $(I - \alpha \beta_j)^{-1}$ is Lipschitzian with constant α^{-1} (see [9]). Let us consider the Yosida approximations
\[F_\alpha(\beta_j) := \alpha^{-1} ((I - \alpha \beta_j)^{-1} - I) = \beta_j \circ (I - \alpha \beta_j)^{-1}. \]
It is known (see [9, Ch. II]) that \(|F_{\alpha}(\beta_j)(x)| \leq |\beta_j(x)| \), the mappings \(F_{\alpha}(\beta_j) \) converge locally uniformly to \(\beta_j \) as \(\alpha \to 0 \), and one has
\[
(F_{\alpha}(\beta_j)(x) - F_{\alpha}(\beta_j)(y), x - y) \leq 0.
\]
Thus, the sequence \(b_k := F_{\frac{1}{k}}(b * \sigma_k) - \frac{1}{k}I \), \(k \in \mathbb{N} \), is the desired one. For every \(k \in \mathbb{N} \), let \(L_k \) be the elliptic operator defined by (1) with the same constant matrix \(A \) and drift \(b_k \) in place of \(b \). Let \(\mu_k = \varrho_k dx \) be the corresponding invariant probability measure and let \(G^k(\lambda) \) denote the associated resolvent family on \(L^1(\mu_k) \). Since \(b_k \) is smooth, Lipschitzian and strongly dissipative, we obtain that \(v_k := G^k(\lambda) f \) is smooth, bounded, Lipschitzian and
\[
\sup_x |v_k(x)| \leq \frac{1}{\lambda} \sup_x |f(x)| \quad \text{and} \quad \sup_x |\nabla v_k(x)| \leq \frac{1}{\lambda} \sup_x |\nabla f(x)|
\]
by the lemma. Moreover, for every ball \(U \subset \mathbb{R}^d \), the functions \(v_k \) are uniformly bounded in the Sobolev space \(W^{2,2}(U) \), since the mappings \(|b_k| \) are bounded in \(L^p(U) \) uniformly in \(k \) and \(f \) is bounded. This follows from the fact that for any solution \(w \in W^{2,2}(U) \) of the equation
\[
\sum_{i,j \leq d} a_{ij} \partial_{x_i} \partial_{x_j} w + \sum_{i \leq d} b_i \partial_{x_i} w - \lambda w = g
\]
one has \(\|w\|_{W^{2,2}(U)} \leq C \|w\|_{L^2(U)} \), where \(C \) is a constant that depends on \(U, A \), and the quantity \(\kappa := \|g\|_{L^2(U)} + \|b\|_{L^p(U)} \) in such a way that as a function of \(\kappa \) it is locally bounded. Thus, the sequence \(\{v_k\} \) contains a subsequence, again denoted by \(\{v_k\} \), that converges locally uniformly to a bounded Lipschitzian function \(v \in W^{2,2}(U) \) such that
\[
\sup_x |v(x)| \leq \lambda^{-1} \sup_x |f(x)| \quad \text{and} \quad \sup_x |\nabla v(x)| \leq \lambda^{-1} \sup_x |\nabla f(x)|,
\]
and, in addition, the restrictions of \(v_k \) to any ball \(U \) converge to \(v|_U \) weakly in \(W^{2,2}(U) \).

Let \(\widehat{L} \) be the elliptic operator with the same second order part as \(L \), but with drift is \(\mathbf{b} = 2A \nabla \varrho / \varrho - b \). Then by the integration by parts formula
\[
\int \psi L \varphi \, d\mu = \int \varphi \widehat{L} \psi \, d\mu \quad \text{for all} \ \psi, \varphi \in C_0^\infty(\mathbb{R}^d).
\]
In addition, for any \(\lambda > 0 \), the ranges of \(\lambda - L \) and \(\lambda - \widehat{L} \) on \(C_0^\infty(\mathbb{R}^d) \) are dense in \(L^1(\mu) \). The operator \(\widehat{L} \) also generates a Markov semigroup on \(L^1(\mu) \) with respect to which \(\mu \) is invariant. The corresponding resolvent is denoted by \(\widehat{G}_\lambda \). For the proofs we refer to [7, Proposition 2.9] or [14, Proposition 1.10(b)] (see also [8, Theorem 3.1]).

Now we show that \(v = G_\lambda f \). Note that \(\varrho_k \to \varrho \) uniformly on balls according to [6], [5]. Hence, given \(\varphi \in C_0^\infty(\mathbb{R}^d) \) with support in a ball \(U \), we have
\[
\int [\lambda v - Lv - f] \varphi \varrho \, dx = \lim_{k \to \infty} \int [\lambda v_k - L_k v_k - f] \varphi \varrho_k \, dx = 0
\]
by weak convergence of v_k to v in $W^{2,2}(U)$ combined with convergence of b_k to b in $L^p(U, \mathbb{R}^d)$. Therefore, by the integration by parts formula
\[\int v(\lambda \varphi - \hat{L}\varphi) \, d\mu = \int f \varphi \, d\mu \]
for all $\varphi \in C_0^\infty(\mathbb{R}^d)$. The function $G_{\lambda} f$ is bounded and satisfies the same relation, so it remains to recall that if a bounded function u satisfies the equality
\[\int u(\lambda \varphi - \hat{L}\varphi) \, d\mu = 0 \]
for all $\varphi \in C_0^\infty(\mathbb{R}^d)$, then $u = 0$ a.e., since $(\lambda - \hat{L})(C_0^\infty(\mathbb{R}^d))$ is dense in $L^1(\mu)$.

Now we turn to the pointwise estimate $|\nabla G_{\lambda} f(x)| \leq \lambda^{-1} G_{\lambda} |\nabla f|(x)$. Suppose first that $f \in C_0^\infty(\mathbb{R}^d)$. The desired estimate holds for every $G_{\lambda}^{(k)}$ in place of G_{λ}. It has been shown above that $v = G_{\lambda} f$ is a weak limit of $v_k = G_{\lambda}^{(k)} f$ in $W^{2,2}(U)$ for every ball U. In addition, the functions $G_{\lambda}^{(k)} |\nabla f|$ converge weakly in $W^{2,2}(U)$ to the function $G_{\lambda} |\nabla f|$, which is also clear by the above reasoning. Since the embedding of $W^{2,2}(U)$ into $W^{2,1}(U)$ is compact, we may assume, passing to a subsequence, that $\nabla G_{\lambda}^{(k)} f(x) \to \nabla G_{\lambda} f(x)$ and $G_{\lambda}^{(k)} |\nabla f|(x) \to G_{\lambda} |\nabla f|(x)$ almost everywhere on U. Hence we arrive at the desired estimate. If f is Lipschitzian and has bounded support, we can find uniformly Lipschitzian functions $f_n \in C_0^\infty(\mathbb{R}^d)$ vanishing outside some ball such that $f_n \to f$ uniformly and $\nabla f_n \to \nabla f$ a.e. Then, by the same reasons as above, one has $G_{\lambda} |\nabla f_n| \to G_{\lambda} |\nabla f|$ and $G_{\lambda} \nabla f_n \to G_{\lambda} \nabla f$ in $L^2(U)$. Passing to an almost everywhere convergent subsequence we obtain a pointwise inequality. Finally, in the case of a general Lipschitzian function $f \in L^1(\mu)$, we can find uniformly Lipschitzian functions ζ_n such that $0 \leq \zeta_n \leq 1$ and $\zeta_n(x) = 1$ if $|x| \leq n$. Let $f_n = f \zeta_n$. By the previous step we have
\[|\nabla G_{\lambda} f_n(x)| \leq \lambda^{-1} G_{\lambda} |\nabla f_n|(x). \]
The functions f_n are uniformly Lipschitzian. Hence, for every ball U, the sequence of functions $G_{\lambda} f_n|_U$ is bounded in the norm of $W^{2,2}(U)$. In addition, the functions $G_{\lambda} |\nabla f_n|$ on U converge to $G_{\lambda} |\nabla f|$ in $L^2(U)$, since $|\nabla f_n| \to |\nabla f|$ in $L^2(\mu)$ by the Lebesgue dominated convergence theorem. Therefore, the same reasoning as above completes the proof.

Proof of Theorem 2. Suppose first that A is piece-wise constant, i.e., there exist finitely many intervals $[0, t_1)$, $[t_1, t_2)$, \ldots, $[t_n, 1]$ such that $A(t) = A_k$ whenever $t_{k-1} \leq t < t_k$, where each A_k is a strictly positive symmetric matrix. In addition, let us assume that there exist vector fields b_k such that $b(t, x) = b_k(x)$ whenever $t_{k-1} \leq t < t_k$. Then we obtain a solution u by successively applying the semigroups $T_t^{(k)}$ generated by the elliptic operators with the diffusion matrices A_k and drifts b_k, i.e.,
\[u(t, x) = T_{t-t_{k-1}} T_{t_{k-1}} \cdots T_{t_1} f(x) \quad \text{whenever} \ t \in [t_{k-1}, t_k). \]
The conclusion of Theorem 2 in this case follows by Theorem 1. Our next step is to approximate \(A \) and \(b \) by mappings of the above form in such a way that the corresponding sequence of solutions would converge to a solution of our equation. Let us observe that, for an arbitrary sequence of such solutions \(u_k \) corresponding to piece-wise constant in time coefficients, for every compactly supported function \(\varphi \) on \(\mathbb{R}^d \), the functions

\[
t(t) \mapsto \int_{\mathbb{R}^d} \varphi(x) u_k(t, x) \, dx
\]

are uniformly Lipschitzian provided that the operator norms of the matrix functions \(A_k \) are uniformly bounded and that the \(L^p(K) \)-norms of the vector fields \(b_k(t, \cdot) \) are uniformly bounded for every fixed cube \(K \) in \(\mathbb{R}^d \). This is clear, because (2) can be written as

\[
\int_{\mathbb{R}^d} \varphi(x) u(t, x) \, dx = \int_0^t \int_{\mathbb{R}^d} [L_s \varphi(x) u(s, x) + \varphi(x) b'(s, x) \partial_x u(s, x)] \, dx \, ds,
\]

where in the case \(u = u_k \) we have

\[
|u(s, x)| \leq \sup |f(x)| \quad \text{and} \quad \nabla_x u(s, x) \leq \sup |\nabla f(x)|.
\]

One can choose a subsequence in \(\{u_k\} \) that converges to some function \(u \) on \([0, 1] \times \mathbb{R}^d\) in the following sense: for every cube \(K \) in \(\mathbb{R}^d \), the functions the restrictions of the functions \(u_k \) to \([0, 1] \times K\) converge weakly to \(u \) in the space \(L^2([0, 1], W^{2,2}(K)) \), where each \(u_k \) is regarded as a mapping \(t \mapsto u_k(t, \cdot) \) from \([0, 1]\) to \(W^{2,2}(K) \). Passing to another subsequence we obtain

\[
\lim_{n \to \infty} \int_{\mathbb{R}^d} \varphi(x) u_k(t, x) \, dx = \int_{\mathbb{R}^d} \varphi(x) u(t, x) \, dx
\]

for all \(t \in [0, 1] \) and all smooth compactly supported \(\varphi \). Indeed, for a given function \(\varphi \) this is possible due to the uniform Lipschitzness of the functions (7). Then our claim is true for a countable family of functions \(\varphi \), which, on account of the uniform boundedness of \(u_k \), yields the claim for all \(\varphi \). Therefore, it remains to find approximations \(A_k \) and \(b_k \) such that, for every function \(\psi \in C_{\infty}(\mathbb{R}^d) \), the integrals

\[
\int_0^1 \psi(s) \int_{\mathbb{R}^d} [L_s^{(k)} \varphi(x) u_k(s, x) + \varphi(x) b'_k(s, x) \partial_x u_k(s, x)] \, dx \, ds
\]

would converge to the corresponding integral with \(A, b \), and \(u \). Clearly, it suffices to obtain the desired convergence for suitable countable families of functions \(\varphi_i \) and \(\psi_j \). Let us fix two sequences \(\{\psi_j\} \subset C_{\infty}(\mathbb{R}^d) \) and \(\{\varphi_i\} \subset C_{\infty}(\mathbb{R}^d) \) with the following property: every compactly supported square-integrable function \(v \) on \([0, 1] \times \mathbb{R}^d \) can be approximated in \(L^2 \) by a sequence of finite linear combinations of products \(\psi_j \varphi_i \). Let us consider the functions

\[
\alpha_{i,j,k}(t) := a^{(i)}(t) \psi_k(t), \quad \beta_{i,j,k}(t) := \psi_k(t) \int_{\mathbb{R}^d} b'(s, x) \varphi_j(x) \, dx,
\]
\[\theta_{k,i}(t) = \int_{[-k,k]^d} b_i(t, x)^2 \, dx. \]

Let \(\mathcal{F} \) denote the obtained countable family of functions extended periodically from \([0, 1]\) to \(\mathbb{R}\) with period 1. It is well known that, for almost every \(s \in [0, 1) \), the Riemannian sums \(R_n(\theta)(s) = 2^{-n} \sum_{k=1}^{2^n} \theta(s + k2^{-n}) \) converge to the integral of \(\theta \) over \([0, 1]\) for each \(\theta \in \mathcal{F} \). It follows that one can find points \(t_{n,l} \), \(l = 1, \ldots, N_n, n \in \mathbb{N} \), such that

\[0 = t_{n,0} < t_{n,1} < t_{n,2} < \cdots < t_{n,N_n} = 1 \]

and, for every \(\theta \in \mathcal{F} \), letting \(\theta_n(t) := \theta(t_{n,l}) \) whenever \(t_{n,l-1} \leq t < t_{n,l} \), one has

\[\int_0^1 \theta_n(t) \, dt \to \int_0^1 \theta(t) \, dt. \]

To this end, we pick a common point \(s_0 \) of convergence of the Riemann sums \(R_n(\theta)(s_0) \) to the respective integrals and let \(t_{n,l} = s_0 + l2^{-n} \, (\text{mod} 1) \). By using the points \(t_{n,l} \), one obtains the desired piece-wise constant approximations of \(A \) and \(b \). Namely, let \(A_n(t) = A(t_{n,l}) \) and \(b_n(t, x) = b(t_{n,l}, x) \) whenever \(t_{n,l-1} \leq t < t_{n,l} \). As explained above, passing to a subsequence, we may assume that the corresponding solutions \(u_n \) converge to a function \(u \) such that, for every cube \(K = [-m, m]^d \) in \(\mathbb{R}^d \) and every \(t \in (0, 1] \), one has

\[u(t, \cdot) |_{K} \in W^{2,2}(K), \quad \int_0^1 \| u(t, \cdot) \|_{W^{2,2}(K)}^2 \, dt < \infty, \]

and for any function \(\zeta \in L^2([0, 1] \times K) \) there holds the equalities

\[
\begin{align*}
&\lim_{n \to \infty} \int_0^1 \int_K \zeta(t, x) u_n(t, x) \, dx \, dt = \int_0^1 \int_K \zeta(t, x) u(t, x) \, dx \, dt, \\
&\lim_{n \to \infty} \int_0^1 \int_K \zeta(t, x) \partial_x \partial_x u_n(t, x) \, dx \, dt = \int_0^1 \int_K \zeta(t, x) \partial_x \partial_x u(t, x) \, dx \, dt, \\
&\lim_{n \to \infty} \int_0^1 \int_K \zeta(t, x) \partial_x u_n(t, x) \, dx \, dt = \int_0^1 \int_K \zeta(t, x) \partial_x u(t, x) \, dx \, dt, \\
&\lim_{n \to \infty} \int_0^1 \int_K b_n^\circ(t, x)^2 \, dx \, dt = \int_0^1 \int_K b(t, x)^2 \, dx \, dt.
\end{align*}
\]

Note that for any cube \(K \subset \mathbb{R}^d \), the restrictions of the functions \(b_n^\circ \) to \([0, 1] \times K\) converge to the restriction of \(b^\circ \) in the norm of \(L^2([0, 1] \times K) \). This is clear from the last displayed equality, which gives convergence of \(L^2 \)-norms, along with convergence of the Riemann sums \(R_n(\beta_{i,j,k})(s_0) \) to the integral of \(\beta_{i,j,k} \) over \([0, 1]\), which yields weak convergence (we recall that if a sequence of vectors \(h_n \) in a Hilbert space \(H \) converges weakly to a vector \(h \) and the norms of \(h_n \) converge to the norm of \(h \), then there is norm convergence). It follows that for
any $\psi \in C[0, 1]$ and any $\varphi \in C_0^\infty(\mathbb{R}^d)$ with support in $[-m, m]^d$, we have

$$
\lim_{n \to \infty} \int_0^1 \psi(t) a_n^{ij}(t) \int_{\mathbb{R}^d} \partial_x \varphi(x) u_n(t, x) \, dx \, dt = \int_0^1 \psi(t) a^{ij}(t) \int_{\mathbb{R}^d} \partial_x \varphi(x) u(t, x) \, dx \, dt.
$$

In addition,

$$
\lim_{n \to \infty} \int_0^1 \psi(t) \int_{\mathbb{R}^d} \varphi(x) \partial_x u_n(t, x) b_n^i(t, x) \, dx \, dt = \int_0^1 \psi(t) \int_{\mathbb{R}^d} \varphi(x) \partial_x u(t, x) b^i(t, x) \, dx \, dt.
$$

This follows by norm convergence of b_n^i to b^i and weak convergence of $\varphi \partial_x u_n$ to $\varphi \partial_x u$ in $L^2([0, 1] \times [-m, m]^d)$. Therefore, for every $\varphi \in C_0^\infty(\mathbb{R}^d)$, one has

$$
\int_{\mathbb{R}^d} \varphi(x) u(t, x) \, dx \, dt = \int_{\mathbb{R}^d} \varphi(x) f(x) \, dx + \int_0^t \int_{\mathbb{R}^d} \varphi(x) L_t u(t, x) \, dx \, dt
$$

for almost all $t \in [0, 1]$, since the integrals of both sides multiplied by any function $\psi \in C_0^\infty(0, 1)$ coincide. Taking into account the continuity of both sides (the left-hand side is Lipschitzian as explained above), we conclude that the equality holds for all $t \in [0, 1]$. \qed

Acknowledgements. This work has been supported in part by the RFBR project 04-01-00748, the DFG Grant 436 RUS 113/343/0(R), the INTAS project 03-51-5018, the Scientific Schools Grant 1758.2003.1, the DFG–Forscherguppe “Spectral Analysis, Asymptotic Distributions, and Stochastic Dynamics”, the BiBoS–research centre, and the research programme “Analisi e controllo di equazioni di evoluzione deterministici e stocastici” from the Italian “Ministero della Ricerca Scientifica e Tecnologica”.

References

