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Abstract

A constructive description of generalized billiards is given, the billiards be-
ing inside an infinite strip with a periodic law of reflection off the strip’s bottom
and top boundaries. Each of the boundaries is equipped with the same periodic
lattice, where the number of lattice’s nodes between any two successive reflec-
tion points may be prescribed arbitrarily. For such billiards, a full description
of the structure of the set of billiard trajectories is provided, the existence of
spatial chaos is found, and the exact value of the spatial entropy in the class of
monotonic billiard trajectories is found.

1 Introduction

Trajectories of a billiard ball inside a two-dimensional (plane) bounded table (a re-
gion) with a complicated boundary have, as a rule, a fairly complex structure, despite
the simplicity of the ideal law of billiard reflection: the angle of reflection equals the
angle of incidence. Currently, the behavior of billiard trajectories inside the follow-
ing bounded plane regions are investigated in detail: Birkhoff’s billiards (the table’s
boundary is a smooth closed convex curve); Sinai’s billiards (bounded by a finite
number of piecewise smooth curves whose smooth components are strictly convex
inwards and intersect transversally); Bunimovich’s billiards (bounded by several arcs
of circles and straight line segments); polygonal billiards (the region is a connected
polygon); and many others (see the books [7], [8], and [9]).
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Currently, the behavior of a billiard ball within infinite media having non-trivial
periodic structures on their boundaries is being studied intensively. We just want to
draw attention to a recent model of the behavior of a billiard ball within an infinite
periodic horizontal channel, the bottom and the top boundaries of which are the
union of isosceles triangles whose vertices lie inside the channel (see [4]). The “table”
of this billiards is an infinite horizontal strip with “roughness” on its bottom and
top straight line boundaries; the “roughness” is, in this case, the union of congruent
triangles glued to the strip’s boundaries inwardly and repeated periodically along
the boundaries. This model is a variation of the famous standard model “Lorentz
channel”, in which both boundaries are the union of congruent semicircles situated
periodically along the parallel sides of the strip (see [5] and [4]). Again, here we deal
with the billiards inside a horizontal strip, where the small semicircles are glued to
the strip’s boundaries inwardly and periodically. Another recent paper [6] proposes a
model of an elastic “bouncing billiard ball”: the ball is subject to a constant vertical
force and bounces on a one-dimensional periodically corrugated floor. The boundary
of the “table”, the corrugated floor, consists of the union of periodically repeated
identical arcs of a semicircle. As before, we can also think of this situation as of
the “roughness” superposed onto the horizontal line. When the radius of each arc
goes to zero, the ideal billiard ball reflection from the “roughness” can be thought
of as a non-ideal reflection from the ideal straight line (i.e., the line without any
“roughness”) obeying a special law of reflection. We call billiards with such a law of
reflection “generalized billiards”.

The authors of the above mentioned papers made numerical computations for the
behavior of the billiard ball trajectories and presented numerical studies of the dy-
namics of ensembles of billiard balls within the billiard channels. Based on those stud-
ies, they made interesting observations concerning, among others, diffusive behavior,
the velocity autocorrelation function and its spectral analysis (without mathematical
proofs). Note that if the size of the “roughness” tends to zero, we get, in the limit, a
“non-ideal”, or “generalized”, billiards within the strip. Namely, two special periodic
functions are fixed on the strip’s sides, and each of the functions describes a non-ideal
law of reflection.

In the present paper, we suggest a model for the behavior of a billiard ball within
an infinite horizontal strip, in which the law of reflection from its straight line bound-
aries is described by two functions satisfying some natural conditions that generalize
the ideal law of reflection. The standard model of billiards (the “ideal reflection on the
boundary”) as well as the two previous models (channel of polygons, Lorentz channel,
and the “bouncing ball”) are just particular cases of our general model. In addition,
the investigation of our model shows that there are some new types of trajectories
which are impossible for the standard billiards, the so-called “branching” trajecto-
ries, “chaotic” trajectories, and bounded trajectories with infinitely many segments
(“links”).

Let us consider a billiards inside an infinite horizontal strip with two parallel
boundaries (sides), in which the ideal law of reflection is substituted by a more com-
plicated one; the law of reflection can be, generally speaking, different at different
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points of the strip’s boundary or even be random. In the present paper, we in-
vestigate the complex dynamics of the trajectories in such billiards. The discrete
dynamical system, arising from the generalized billiards inside the strip, determined
on the set of reflection points, can also be useful in various applications.

In this paper, we first investigate generalized billiards inside an infinite strip,
where the reflection off the bottom side of the boundary is spatially periodic with the
period `, and is ideal on its top side. This means that the spatially-periodic lattice on
the bottom side of the strip divides it into an infinite sequence of intervals of length
` (each of which is closed on the left side and open on the right side), and when the
billiard ball reflects off the bottom side of the boundary at some point of an interval,
then the angle of reflection is determined uniquely by the angle of incidence and the
position of the reflection point (or the local coordinate of the reflection point). A
billiard trajectory (or orbit, for brevity) in such generalized billiards is the union of
lateral sides of isosceles triangles, the bases of which are the segments between the
successive reflection points on the bottom side of the boundary, while their vertices
are the reflection points of ideal billiards. The reflection points on the bottom side
of the strip code the sequence of intervals of length ` at which the billiard ball is
reflected. Each interval on the bottom side at which the trajectory bounces off is said
to be a marked interval. We call the sequence of marked intervals, or equivalently,
the sequence of the numbers that enumerate those intervals, the full skeleton of the
billiard trajectory.

The appearance of the word “skeleton” in this context can be explained as fol-
lows. Let η be a broken line, the kinks of which (i.e., the ends of the segments, or
links, of the broken line) on the bottom boundary of the strip are the midpoints of
the marked intervals, while those on the top boundary are the vertices of the isosce-
les triangles whose bases are the segments between the successive midpoints of the
marked intervals. The broken line η, generally speaking, is not a billiard trajectory
inside the strip, since the law of reflection at the η’s vertices on the bottom boundary
of the strip does not hold. Nevertheless, η holds the global information about the
real billiard trajectory γ inside the same strip with the same reflection points at the
same marked intervals: firstly, η can be constructed uniquely by the midpoints of
the marked intervals, and secondly, η differs from γ by less than `/2 (e.g., all the
distances between the corresponding reflection points of η and γ are less than `/2).
Thus, the broken line η can be thought of as the skeleton of the billiard trajectory
γ. Forgetting the broken line η, we just keep the name “skeleton” for the marked
intervals and the numbers Mk that number the marked intervals.

We call the billiards with the `-periodic law of reflection from the bottom side of
the strip the billiards with the property of universality, if for an arbitrary sequence of
marked intervals there exists a unique billiard trajectory for which the sequence of
those marked intervals is its skeleton.

One of the main results of the present paper is the constructive description of
the set of `-periodic, along the bottom strip’s side, laws of reflection for which the
billiards has the property of universality. For such billiards, some properties of their
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trajectories are studied; in particular, the exact value of the spatial entropy is found
for the class of monotonic billiard trajectories.

2 Special dynamical systems with reflections

In this section, we introduce main notions and definitions that are essential for de-
scribing the main results on generalized billiards in an infinite strip with the law of
reflection periodic on its boundaries. We start with important examples; the examples
motivate the notions introduced.

2.1 Gunnery with ricochet

Let a flash-spotting above the earth surface be done from a point x0 along the positive
x-axis (see Fig. 1). Let us assume also that the missile is just a material mass
point; we ignore the windage and suppose that the gravity orthogonal to the x-axis
is constant. Then the trajectory of the missile is a parabola. The range of the missile
depends on the initial missile’s energy and on the initial angle of the gunnery, ϕ0,
which satisfies x1 − x0 = d sin(2ϕ0). Here, d stands for the maximal flight range of
the missile corresponding to the angle ϕ0 = π/4, and x1 stands for the coordinate of
the missile’s landing.

Figure 1: Gunnery with ricochet

Suppose that at the landing points the elastic ricochet occurs, so that the total
kinetic energy of the missile is preserved. Then the missile will fly from point x1 to
point x2. The range of the missile depends on the angle ϕ1, under which the missile
will ricochet, according to the same law: x2 − x1 = d sin(2ϕ1). A new ricochet can
occur at point x2, then at point x3, and so on.
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In order to describe such repeated ricochet, it is important to know the law of
reflection from the earth (in our particular case, the law of ricochet of the missile at
each landing point). The law may be different at different landing points. It can be
expressed in the form of an equation that ties up the consecutive angles of ricochet,
ϕk−1 ϕk, with the coordinate xk of the landing point. Let us restrict ourselves with
the angles smaller than π/4. Since there is a one-to-one correspondence between
the missile departure angles, ϕk, launched from the points xk, and the distances
xk+1 − xk , the law of ricochet can be represented in the form

f(xk+1 − xk, xk − xk−1, xk) = 0 . (1)

Thus, the function f of three variables determines the general law of reflection.
If the first argument of the function f is determined uniquely via the other two
(i.e., it is a function of the remaining two arguments), then the law (1) determines
the whole missile trajectory uniquely. Such a situation could indeed happen: the
gunnery in the opposite direction could give the same trajectory. This will happen
if the law (1) remains the same after changing the positive direction of the x-axis
to the opposite one, i.e., if f(xk − xk−1, xk+1 − xk, − xk) = 0. For such kind of
laws, one can expand the initial trajectory in the opposite direction with the ricochet
points x−1, x−2, ... . As a result, a sequence {xk| k ∈ Z} of landing points infinite
in both directions arises. This sequence satisfies to the equation (1) and determines
a discrete dynamical system.

2.2 The standard billiards inside an infinite strip

Let us consider the standard billiards inside an infinite strip of the width h: the
bottom side of the strip coincides with the x-axis and the upper parallel side is
distance h apart (Fig. 2).

Figure 2: The ideal billiards with the marked board
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The law of reflection in the standard billiards is ideal: the angle of reflection
equals the angle of incidence. Cast aside the trivial case when the billiard trajectory
is perpendicular to the strip’s sides, we get that each remaining billiard trajectory is
periodic along the x-axis with some period L. In addition, for each L there exists
a billiard trajectory with period L which is determined uniquely up to an arbitrary
shift along the x=axis. We can say nothing more substantial about trajectories of
such billiards.

Interesting properties of trajectories of the ideal billiards arises when the boundary
of the strip is marked periodically. We give respecting definitions that will also play
an important role when studying the generalized billiards.

Definition 1. We say that a side of the strip is equipped with an `-periodic
marking, if the lattice of integers n` (n ∈ Z) is given, where n`’s are the midpoints

of the semi-open intervals In = [n`− `

2
, n` +

`

2
). We call all the semi-open intervals

In the marked intervals.

Definition 2. Let γ be a billiard trajectory inside the strip with the `-periodic
marking on the bottom side of the strip. We call the marked intervals containing
points of reflection of the trajectory γ the marked intervals. We call the set of the
marked intervals the full skeleton of the trajectory γ with respect to the strip’s side
equipped with the `-periodic marking. At the same time, if xk is the coordinate of
the reflection point on the interval IMk

, then

xk = Mk` + ξk, − `/2 ≤ ξk < `/2, Mk ∈ Z . (2)

We call ξk the local coordinate of the reflection point xk, and the set of integers Mk

its full skeleton: {Mk} = S(γ).

The notions introduced allow us to prove the following statements.

Proposition 1. Consider the ideal billiard in an infinite strip with the `-periodic
marking of the bottom strip’s side. The L-periodic trajectory in such a billiard (L > 0)
is determined uniquely by its full skeleton if and only if the ratio L/` is irrational.

Proof. Without loss of generality we can set ` = 1: this can be done by a dilation
of the plane that changes the scales on the x- and y-axes uniformly and does not
change the ideal billiard law of reflection.

Let us show first that the full skeleton S(γ) = {Mk} of an arbitrary trajectory γ
determines its period L uniquely. Indeed, after reflecting the billiard strip with respect
to its sides N times, we straighten (unfold) the billiard trajectory, i.e., convert it into
a straight line. The slope of the unfolded trajectory γ is defined by

tan α =
Nh

xk+N − xk

,

where h is the width of the strip.
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Plugging into this formula the expressions for xk and xk+N from the relation (2)
and going to the limit as N → ∞, we get

tan α = lim
N→∞

Nh

(Mk+N − Mk)`
.

On the other hand, the period of the trajectory, L, is related to the angle α between
the unfolded trajectory and the x-axis and the width h of the strip by the simple

relation tan α =
h

L/2
(see Fig. 2).

Consequently, the period of the billiard trajectory is indeed determined uniquely
via its full skeleton. Since billiard trajectories with the same period are the same up to
a parallel shift, we get the following important corollary: different billiard trajectories
with the same full skeleton can be obtained one from the other by a parallel shift along
the x-axis.

Let us denote by Q(γ) ∈ [−1/2, 1/2) the set of local coordinates ξk of the reflection
points of the billiard trajectory γ.

Suppose that the period of the trajectory γ is a rational number: L = p/q, where
p and q are relatively prime integers. We prove that in this case there are non-trivial
shifts of the trajectory γ that do not change the full skeleton. Indeed, in the case
in question, the set Q(γ) of local coordinates consists of q points. Let us shift the
initial trajectory γ to the right at the distance ε > 0, which is strictly less than the
distance from the set Q(γ) to the right end of the interval [−1/2, 1/2). Then the
shifted trajectory has the same full skeleton as the initial trajectory. Therefore, if L
is rational, the billiard trajectory is not determined uniquely by its full skeleton.

But if the period L of the trajectory γ is irrational, then the set Q(γ) of lo-
cal coordinates of the reflection points fills out the interval [−1/2, 1/2) everywhere
densely. The latter follows from the Jacobi theorem on the rotation of a circle with
the circumference 1 through an irrational angle [10]. Let us prove that in this case,
any non-trivial shift of the trajectory changes its full skeleton. Indeed, if γ is shifted
to the right at a distance ε > 0, then at least one reflection point xk will leave the
marked interval numbered Mk, in which this point has been situated from the be-
ginning. This will change the full skeleton. One can pick xk as the point with the
local coordinate ξk ∈ (1/2− ε, 1/2). Likewise, when shifting the trajectory to the left
at a distance ε > 0, one can choose the point with the local coordinate ξk from the
interval (−1/2, − 1/2 + ε) as xk. So, if L is irrational, the full skeleton determines
the billiard trajectory uniquely. �

Proposition 1 can be generalized for the ideal billiard with different marking on the
sides of the strip. As before, we eliminate from our considerations trivial trajectories
which are segments orthogonal to the boundary of the strip.

Proposition 2. Let `k-periodic markings are fixed on both of the parallel sides of
an infinite strip (k = 1, 2). If the ratio `1/`2 is irrational, then an arbitrary non-
trivial billiard trajectory inside the strip is determined uniquely by its full skeleton,
i.e. by the numbers of the marked intervals on both sides of the strip.
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Proof. Let us denote by L the period of a non-trivial billiard trajectory. Because
`1/`2 is an irrational number, at least one of the numbers L/`1 or L/`2 is irrational.
Applying the proposition 1 completes the proof. Q.E.D.

2.3 Generalized billiards inside an infinite strip

Consider billiards inside an infinite strip and suppose that the law of reflection on
the upper side of the strip is ideal (i.e., the angle of reflection is equal to the angle
of incidence on that side), and that the angle of reflection on the bottom side is
determined uniquely by the angle of incidence and the coordinate of the reflection
point. In this case, denoting by xk the coordinates of the consecutive reflection points
on the bottom side of the strip, we see that the trajectory γ is given by the union
of the lateral sides of the isosceles triangles with the bases (xk, xk+1) and the third
vertices on the upper side of the strip (Fig. 3).

Figure 3: A generalized billiards inside an infinite strip

The trajectory γ just obtained differs from the trajectory of the missile introduced
in the Subsection 2.1 in that the trajectory γ consists of isosceles triangles with the
bases (xk, xk+1), while the trajectory of the missile consists of the union of isosceles
parabolas with the same bases.

In the case of the generalized billiard inside the infinite strip, there is a one-to-one
correspondence between the angles of reflection and the coordinates of the consecutive
reflection points situated on the bottom side of the strip. That is why we can represent
the law of reflection on the bottom side of the strip in the form of equation (1).

Let us restrict ourselves to the case where the law of reflection (1) is given by a
function f periodic, with the period `, in the third coordinate : f(•, •, xk + `) =
f(•, •, xk). In this case, the law of reflection (1) takes the form
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f(xk+1 − xk, xk − xk−1, ξk) = 0 , (3)

where ξk is the local coordinate of the reflection point xk determined by (2).

2.4 Stationary solutions of non-linear diffusion chains

In the articles [1,2], in order to construct solutions of non-linear diffusion chains, a
dynamical system of the same type as it was introduced above in the Subsections
2.1 – 2.3, had been introduced. The only difference is that instead of the parabolas
from subsection 2.1, in [1,2] curves in the form of hyperbolic cosines between the
consecutive points xk and xk+1 are involved, i.e., curves given by:

y(x) = 1 − cosh(x − 1/2 · (xk+1 + xk))

cosh(1/2 · (xk+1 − xk))
. (4)

Exactly the same trajectories arise for the motion of the missile from the Subsec-
tion 2.1, if one considers the gravity field on the upper half plane to be decreasing
linearly with respect to the height.

In papers [1, 2], the law of reflection has the following form:

tanh(xk+1 − xk) − tanh(xk − xk−1) = C · ξk , (5)

where C is a constant not depending on the trajectory. Fig. 4 shows an example of
the graph of such a cosh-trajectory.

Figure 4: COSH-trajectory
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2.5 On zeros of bounded solutions of some non-linear differ-

ential equations

Let y(x) be a bounded solution of a differential equation. Let us reflect, for all y < 0,
the graph of y(x) with respect to the x-axis. We will get the graph of a new function,
g(x), which is positive everywhere except for its zeros (coinciding with the zeros of
y(x)). This graph can be considered as a trajectory of a dynamical system similar to
those introduced in the subsections 2.1–2.4, where the role of xk is played by the zeros
of the solution y(x), and the arcs of the graph of g(x) between every two consecutive
zeros are described by a differential equation which is either the same as the initial
one or can be expressed via the initial one if we keep in mind that g(x) = −y(x)
whenever y(x) < 0.

Figure 5: The three-zero-solution trajectory

As it was shown in the paper [3], the distance between the zeros of every bounded
solution of the equation −γy(4) +y′′−y+signy = 0 can be characterized by integers,
i.e., by the skeleton of this solution, as well as it can be done for the trajectories
of the generalized billiards. More precisely, if y(x, {xk}) is a bounded solution of
this equation that has a finite number of zeros x0 < x1 < ... < xm, and the
distances ak = xk − xk−1 between the successive zeros satisfy ak ≥ π/β, where

β =
( 1

2
√

γ
− 1

4γ

)1/2

, then the solution y(x) is determined uniquely, up to the sign

and a shift along the x-axis, through its skeleton s(y) = {nk}m
k=1. Here nk are positive

integers, that are determined uniquely via the distances ak between the successive
zeros from the condition

βak = −π

2
+ δ + nkπ + εk, |εk| <

1

4
δ = arctan(4γ − 1)−1/2.

Moreover, any finite sequence {nk}m
k=1 of integers satisfying nk ≥ 2 is a skeleton of

some bounded solution.
The graph of the trajectory corresponding to the solution y with three zeroes

and the skeleton s(y) = {2, 1} is given in Fig.5.
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3 Billiards inside an infinite strip with the law of

periodic reflection along one of the strip’s sides

Let us consider first a billiards in an infinite strip with the law of reflection which
is periodic along one of the sides of the strip, say, along the bottom side, and is
ideal from its top side. As it was said in the Section 2.3., each trajectory γ in such
a billiards can be represented by the union of the lateral sides of isosceles triangles
with the bases (xk, xk+1) and vertices on the bottom side of the strip. The reflection
points xk are described by the discrete dynamical system (3) with the values of ξk

satisfying condition (2). We remark that the numbering of the reflection points (i.e.,
the indices k) characterize the reflections from the bottom side seen consecutively
in time. If a billiard trajectory does not have cuspidal points, then one always has
xk+1 > xk for all k’s; in this case, the billiard trajectory is said to be monotonic.

The main questions about the generalized billiards are the following:

1. Do there exist trajectories in the generalized billiards without cuspidal points,
i.e., trajectories such that the reflection points {xk} satisfy the conditions xk <
xk+1, xk → ±∞ as k → ±∞?

2. Is the trajectory in the generalized billiards uniquely determined by its full
skeleton? (See definition 2.)

3. What infinite sequences of integers can serve as full skeletons of trajectories in
the generalized billiards?

4. How to find the billiard trajectory effectively by its full skeleton?

3.1 Generalized billiards with the property of universality

Definition 3. We say that the generalized billiards with the `-periodic marking of
the non-ideal side of the strip has the property of universality, if every double-sided
sequence of integers {Mk, k ∈ Z} is the full skeleton of a uniquely determined billiard
trajectory.

The positive answers to the questions posed above are implicitly contained in Defini-
tion 3. The main question arises:

Do there exist generalized billiards with the property of universality?

The answer to this question is given by the following

Theorem 1. If |C| > max(4, 4/`), then the generalized billiards with the `-
periodic law of reflection (5) on the bottom side of the strip and the ideal law of
reflection on the top side has the property of universality.

Proof. Each billiard trajectory γ with the reflection points xk and with the
corresponding local coordinates ξk satisfying (5), also satisfies the equation
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ξk =
1

C

[
tanh

(
(Mk+1−Mk)`+(ξk+1−ξk)

)
−tanh

(
(Mk−Mk−1)`+(ξk−ξk−1)

)]
. (6)

Conversely, all the solutions of the equation (6) with the given integers Mk and
satisfying the condition −`/2 ≤ ξk < `/2 generate the dynamical system {xk} by
formula (2), and therefore, they also generate the trajectory γ that satisfies the law
of reflection (5).

Thus, in order to prove the theorem, one needs to prove that for any sequence of
integers {Mk} there is a unique solution of equations (6) satisfying |ξk| ≤ `/2.

We will consider the equation (6) in the space `∞(Z) of infinite sequences with the
norm ‖ {ξ} ‖= sup

k
{|ξk|}, where ξ = {ξk| k ∈ Z}. Let us express (6) in the operator

form:

ξ = A(ξ) . (7)

From the explicit form for the operator A, following from the equation (6) and
the inequality | tanh α − tanh β| ≤ |α − β| , we obtain

‖A(ξ) −A(η)‖`∞ ≤ 4

|C|‖ξ − η‖`∞ .

Since |C| > 4 by the hypothesis of the theorem, the operator A is a contraction in the
space `∞(Z). Consequently, there exists a unique solution ξ ∈ `∞(Z) of the equation
(7).

It remains to show that the solution ξ does not exceed `/2 in the norm of `∞(Z).
Indeed, by virtue of (6) and by the hypothesis in the theorem that |C| > 4/`, we
have ‖ξ‖`∞ ≤ 2/|C| < `/2.

Constructively, the solution ξ can be obtained by the method of consecutive ap-
proximations, starting with ξ = 0. This method is very effective: the approximations
converge to the solution with the rate of geometric progression. �

Applying the method used in the proof of theorem 1, one can obtain sufficient
conditions for general `-periodic laws of reflection (3) that provide the property of
universality for the generalized billiards.

Theorem 2. Let the law of reflection (3) be presented in the form

ξk = g(xk+1 − xk, xk − xk−1), (8)

where the absolute value of the function g(x, y) is less than `/2 and g(x, y) is a Lips-
chitz function with a constant q < 1/4, i.e. the following inequality holds:

|g(x2, y2) − g(x1, y1)| ≤ q(|x2 − x1| + |y2 − y1|), q < 1/4 . (9)

Then the generalized billiards with the law of reflection (8) on the bottom side of the
strip has the property of universality.
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Proof. It is enough to prove that for any positive integers {mk}, where mk =
Mk+1 − Mk, there exists a unique solution of the equations

ξk = g
(
mk` + (ξk+1 − ξk), mk−1` + (ξk − ξk−1)

)
(10)

in the space `∞(Z), and ‖ξ‖ < `/2. This equation has the form (7) with a contracting
operator A. Hence, the solution of (10) exists and unique, and, moreover, because of
|g(x, y)| < `/2,the absolute values of all the ξk’s are strictly less than `/2. �

The conditions for the law of reflection (8) mentioned in the formulation of the
Theorem 2 are sufficient for the billiards to have the property of universality. Those
conditions can be weakened in a number of cases.

Let us consider as an example the law of reflection (8) in the following special
form:

ξk =
1

2
· ` · (xk+1 − xk)

2h + |xk+1 − xk|
, (11)

where ` is the length of the marked interval, and h is the width of the strip. Note
that in the law (11), the angle of incidence does not participate at all, while the angle
of reflection is determined by the local coordinate of the reflection point.

For the law (11), the function g taken from the equation (8) is Lipschitz with the
constant q = `/4h. So, in order that the hypotheses of the Theorem 2 hold, one needs
in principle to restrict the value `/h. Fortunately, for the law (11) it turns out that
the billiard has the property of universality without any restrictions.

Theorem 3. A billiards with the `-periodic law of reflection (11) on the bottom
side of the strip and the ideal law of reflection on the top side has the property of
universality.

Proof. The law (11) has a simple geometric interpretation. Let γ be a billiard
trajectory that reflects at a point xk of the interval IMk

= [Mk` − `/2, Mk` + `/2)
on its bottom side, and let the local coordinate ξk of this point be known. In order
to construct the link of the trajectory γ with the end at the point A = (xk, 0), let
us consider an auxiliary point Y on the plane having the coordinates Y = (Mk`, −
(`/2− |ξk|)). The point Y is located on the vertical line beneath the midpoint of the
interval IMk

at a distance from this midpoint equal to the distance from the point
ξk to the closest end of the interval IMk

. Let us draw a ray that connects the point
Y with the reflection point A = (xk, 0) = (Mk` + ξk, 0) of the trajectory γ from the
bottom side of the strip and find the point B at which this ray meets the top side of
the strip. Then, as one can easily check, the segment AB will be the sought link of the
billiard trajectory γ, emanated from point A and obeying the law of reflection (11).
The ideal reflection of the link AB off the top strip’s side will determine uniquely the
next point of reflection, xk+1, of the trajectory γ.

Let x
(1)
k+1 and x

(2)
k+1 be two constructed in that way bottom reflection points for the

trajectory γ that correspond to the two initial points x
(1)
k and x

(2)
k . Simple geometric

considerations show that if the points x
(1)
k+1 x

(2)
k+1 are located at a distance d from
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each other, then the distance between their pre-images, the points x
(1)
k x

(2)
k , does not

exceed
`d

4h + `
.

We show now that an arbitrary sequence of integers Mk, k ∈ Z, is a full skeleton
for a billiard trajectory uniquely determined by this skeleton.

Indeed, construct on each of the marked intervals IMk
, k ∈ Z, a system of nested

intervals I i
Mk

, i = 0, 1, 2, ..., the lengths of which tend to zero. We set I0
Mk

= IMk
.

If the intervals I i
Mk

are already defined for all Mk’s and a fixed i, then the interval

I i+1
Mk

can be obtained as the pre-image of the interval I i
Mk+1

under the action of the
billiard mapping (11). As we noted above, the lengths of the intervals-preimages are
the lengths of the initial intervals divided by the factor (4h + `)/` > 1 . Hence,
the lengths of the nested intervals I i

Mk
tend to zero as i → ∞. Therefore, on each

interval IMk
the unique limiting point xk ∈ IMk

is defined; is can be found as the
intersection of the nested intervals I i

Mk
, i = 0, 1, 2, ... . Considering now xk as

successive reflection points on the bottom side of the strip, we get a unique billiard
trajectory for which the set of the numbers Mk, k ∈ Z is the full skeleton. Thereby,
the property of universality is proven. �

It is seen from the proof of Theorem 3 that the fixed reflection point xn determined
by the law (11) is actually determined by just a part of the full skeleton {Mk}∞k=n.

Therefore two distinct skeletons, {Mk, k ∈ Z} and {M̃k, k ∈ Z}, coinciding from

some place: Mk = M̃k for all k ≥ n, will determine two distinct billiard trajectories,
that coincide with each other only starting from the reflection points xk, k ≥ n. In
other words, for billiards with the law of reflection (11), trajectories can stick to each
other.

If we reverse “time” in the law (11), i.e., consider the law of reflection

ξk = − 1

2
· ` · (xk − xk−1)

2h + |xk − xk−1|
,

in which only the angle of incidence appears (whereas the angle of reflection does
not appear), then we obtain a billiards which can have trajectories that branch apart
after each common point of reflection. At the same time, the property of universality
holds.

3.2 Monotonic billiard trajectories and symbolic dynamics

Let the sequence of the reflection points xk of the trajectory γ on the bottom side
be monotonic: xk+1 > xk, k ∈ Z. If the numbers Mk of the intervals Ik, from
which a billiard trajectory reflects in that order, form a strictly monotonic sequence,
then we say that this trajectory is strictly monotonic. In this case, each marked
interval Ik can contain no more than one reflection point. We code the successive
intervals Ik by the numbers 1, respectively 0, depending on whether the marked
interval does, respectively does not, contain a reflected point. The obtained, infinite
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in both directions, sequence of zeros and ones will be called the code of the billiard
trajectory γ and will be denoted by C(γ): C(γ) = {..., 0, 1, 1, 0, 0, 0, 1, ...}.

If a billiards has the property of universality, then the code C(γ) of a strictly
monotonic trajectory γ determines the trajectory γ uniquely. Moreover, each sequence
of zeros and ones can be the code of some monotonic billiard trajectory.

Therefore, the codes can be considered as a natural characteristic of strictly mono-
tonic trajectories. At the same time, the shift of a billiard trajectory γ by the lattice
period ` is equivalent to the Bernoulli shift of its code C(γ).

Together with the code C(γ) of a monotonic trajectory γ and the γ’s full skeleton
S(γ) = {Mk, k ∈ Z} we will consider the sequence of integers mk = Mk+1−Mk, which
we call the skeleton of the trajectory γ: s(γ) = {mk, k ∈ Z}. While the trajectory
γ of a billiards with the property of universality can be determined uniquely by its
full skeleton S(γ), the same trajectory γ can be determined by its skeleton s(γ) only
up to a shift on an integer multiple the period ` of the lattice on the bottom side of
the strip.

3.3 Generalized billiard trajectories with restrictions

If we set C = 0 in the law (5), then the law of reflection becomes ideal. On the
other hand, it is supposed in the Theorem 1, that the constant C is big enough. It is
interesting to study the billiard law of reflection with a fairly small constant C, for
which the law of reflection is close to the ideal one. In this case, some restrictions for
the skeleton of the trajectory appears.

For particular laws of reflection, like (6) or (8), the conditions for the smallness of
the Lipschitz constant can hold not for all skeletons, but only for those with specific
conditions. The following definition reflects such a peculiarity.

Definition 4. We say that the billiards from the Subsection 2.3 has an (a, b)-
restriction, if each sequence of integers {mk} satisfying a ≤ mk ≤ b is the skeleton of
some billiard trajectory, where this trajectory is determined uniquely (up to shifts by
multiples of the lattice period) via its skeleton.

The following two theorems on reflection laws with the (a, b)-restriction take place.

Theorem 4. The reflection law (5) with the lattice period ` = 1 is a law with an

(a, +∞)-restriction, where a = 1 + ln 4− 1

2
ln |C| ≥ 1. In other words, an arbitrary

sequence of integers {mk} mk ≥ a is a skeleton of a unique (up to a shift) billiard
trajectory.

Proof. In the proof of Theorem 1, let us use the inequality
∣∣∣ tanh α − tanh β

∣∣∣ ≤
|α − β|
cosh2(d)

where simultaneously α, β ≥ d > 0. Then, if mk = Mk+1 − Mk ≥ a,

‖ Aξ − Aη ‖`∞≤ 4

|C| ·
‖ ξ − η ‖`∞

cosh2(a − 1)
.
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The inequality q =
4

|C| ·
1

cosh2(a − 1)
<

16

|C|e2(a−1)
= 1 yields that A is a contraction

operator.

Inequality |ξ| < 1/2 also holds. Indeed, we have mk ≥ a ≥ 1, so the arguments
of the functions tanh in the equality (6) are not less than a − 1. Hence, (6) implies:

|ξk| ≤
1

|C|
(
1 − tanh(a − 1)

)
<

2

|C| · e
−2(a−1) =

1

8
<

1

2
. �

Remark. If the condition ` = 1 in the formulation of Theorem 4 is not stipulated,
then one needs to set a as follows:

a = max
(
1 +

1

2`
· ln 16

|C| , 1 +
1

2`
· ln 4

`|C|
)

.

The value 1 +
1

2`
· ln

16

|C| in the written formula for a guarantees the contraction

property for of the operator A, and the value 1+
1

2`
·ln 4

`|C| guarantees that inequality

|ξk| < `/2 holds.

Theorem 5. Suppose that the Lipschitz condition (9) in the law (8) (see the
formulation of Theorem 2) holds only when (a − 1)` ≤ x, y ≤ (b + 1)`. Then (8) is
the law with an (a, b)-restriction.

Proof. It suffices practically to repeat the proof of Theorem 2, applied only to
sequences of integers mk that satisfy a ≤ mk ≤ b. �

3.4 Generalized billiards with periodic law of reflection on

both sides of the strip

Until now, we studied generalized billiards within an infinite strip with a periodic law
of reflection on bottom side of the strip of width h and the ideal law on the upper side.
Here we consider billiards with periodic laws of reflection on both sides of the strip.
In the simplest case the laws of reflection are the same. It turns out that in this case,
the problem can be reduced to a billiards with one ideal side. Indeed, reflecting the
upper half of the strip together with the billiard trajectory with respect to the line of
the symmetry of the strip (i.e., the middle line of the strip parallel to its boundary),
yields a billiards inside a strip of the width h/2, in which the middle line plays the
role of the ideal side.

Consider the general case in which an `1-periodic marking is given on the bottom
side, while an `2-periodic marking is given on the upper side of the strip. We denote
by x

(1)
k and x

(2)
k the consecutive coordinates of the reflection points on the bottom and

on the top side, respectively. A billiard trajectory consists of infinitely many straight
line segments (the links of the trajectory) successively connecting points

...; (x
(1)
k−1, 0); (x

(2)
k , h); (x

(1)
k , 0); (x

(2)
k+1, h); (x

(1)
k+1, 0); ... .
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Denote by ξ
(1)
k , ξ

(2)
k the local coordinates, and by M

(1)
k , M

(2)
k the numbers of the

marked intervals where the reflections occurs. Then, analogously to formula (2),
{

x
(1)
k = M

(1)
k `1 + ξ

(1)
k , −`1/2 ≤ ξ

(1)
k < `1/2,

x
(2)
k = σ + M

(2)
k `2 + ξ

(2)
k , −`2/2 ≤ ξ

(2)
k < `2/2,

(12)

where M
(1)
k M

(2)
k are integers that constitute the full skeleton of the trajectory,

S(γ) = {M (j)
k ; k ∈ Z, j = 1, 2}, and the number σ describes the shift of the `2-

periodic marking on the top side of the strip.

The property of universality for billiards with periodic marking on both sides of the
strip is introduced in the same manner as it was done for the billiards with marking
on the non-ideal side only. Namely, each sequence of integers {M (j)

k ; k ∈ Z, j = 1, 2}
serves as a full skeleton of a uniquely determined billiard trajectory.

We suppose that, as in the formulation of the Theorem 2 (see formula (8)), the
laws of reflection on both sides of the strip are periodic with the periods `1 and `2,
respectively, and are given as follows:





ξ
(1)
k = g1

(
x

(2)
k+1 − x

(1)
k , x

(1)
k − x

(2)
k

)
,

ξ
(2)
k = g2

(
x

(1)
k − x

(2)
k , x

(2)
k − x

(1)
k−1

)
,

(13)

with g1, g2 some continuous functions.

Theorem 6. Suppose that the laws of reflection on both sides of the strip are
periodic with the periods `1 and `2 and are given in the form (13). Suppose also that
the functions gj (j = 1, 2), are Lipschitz with the constant q < 1/4, i.e., the following
inequality holds:

|gj(x2, y2) − gj(x1, y1)| ≤ q(|x2 − x1| + |y2 − y1|), q < 1/4. (14)

Suppose, in addition, that |gj(x, y)| < `j/2 for all values of the arguments. Then the
generalized billiards with the law of reflection (13) has the property of universality.

This means that each billiard trajectory is defined by its full skeleton {M (j)
k ; k ∈

Z, j = 1, 2}, and any two sequences of integers {M (j)
k }, j = 1, 2, are a full skeleton

for a particular billiard trajectory.

Proof.

Consider, for the billiard in question, an arbitrary trajectory γ, where S(γ) =

{M (j)
k ; k ∈ Z, j = 1, 2} is its full skeleton. Plugging expressions (12) into the formulae

(13) yields for the skeleton and for the local coordinates of the reflection points ξ
(1)
k ,

ξ
(1)
k , of the trajectory γ the following equalities:





ξ
(1)
k = g1

(
σ + M

(2)
k+1`2 − M

(1)
k `1 + ξ

(2)
k+1 − ξ

(1)
k , − σ − M

(2)
k `2 + M

(1)
k `1 + ξ

(1)
k − ξ

(2)
k

)
,

ξ
(2)
k = g2

(
− σ − M

(2)
k `2 + M

(1)
k `1 + ξ

(1)
k − ξ

(2)
k , σ + M

(2)
k `2 − M

(1)
k−1`1 + ξ

(2)
k − ξ

(1)
k−1

)
.

(15)
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Conversely, if some sequence of integers {M (j)
k ; k ∈ Z, j = 1, 2} and a sequence of

real numbers ξ
(1)
k , ξ

(2)
k satisfying |ξ(1)

k | < `1/2, |ξ(2)
k | < `2/2 satisfies also the equalities

(15), then these sequences are, respectively, the full skeleton and the local coordinates
of the reflection points of some billiard trajectory.

Therefore, in order to prove the theorem, it is enough to prove that for any
sequence of integers {M (j)

k ; k ∈ Z, j = 1, 2} the system of equations (15) with respect

to the variables ξ
(1)
k , ξ

(2)
k has a unique solution satisfying the inequalities |ξ(1)

k | < `1/2,

|ξ(2)
k | < `2/2.

Let us consider the system (15) as an operator equation of the form (7) in the

space `2
∞ = `∞ × `∞ with the norm ‖ ξ ‖`2

∞

= max
(

‖ ξ(1) ‖`∞ , ‖ ξ(2) ‖`∞

)
,

where ξ = (ξ(1), ξ(2)) ∈ `2
∞, ξ(j) = {ξ(j)

k | k ∈ Z} ∈ `∞, j = 1, 2. From the explicit
form of the operator A, defined by the right hand sides of the system (15) and the
hypotheses of the theorem it follows that the operator A is a contraction in the space
`2
∞. Consequently, for each sequence of integers {M (j)

k ; k ∈ Z, j = 1, 2} there exists a

unique solution of the equation (15). The estimates |ξ(1)
k | < `1/2, |ξ(2)

k | < `2/2 follow
directly from the following hypothesis of the theorem: |gj(x, y)| < `j/2. �

3.5 Numerical methods for constructing the trajectory from

its skeleton

Each billiard trajectory inside a strip is the union of successive segments (links) with
the ends on the bottom and the top sides of the strip; the ends of the links are
the reflection points of the billiard trajectory. So, in order to construct the billiard
trajectory, it is sufficient to know the coordinates of successive reflection points on
the strip’s boundary. In turn, the abscises of the reflection points inside a strip
with a periodic marking of the strip’s boundary unambiguously tie up with the local
coordinates of the reflection points and the full skeleton of the trajectory, – the
numbers of the marked intervals to which they belong to. (See the formulae (2) for
the billiards with the ideal law of reflection on the top side, and the formulae (11) in
the general case.)

Thus, in order to construct the billiard trajectory γ from its full skeleton S(γ),
one needs to find first the local coordinates of the reflection points. The coordinates
satisfy equations (6), (8), or (15) depending on the form of the reflection law on the
strip’s boundary. Since these equations are determined by the skeleton S(γ) and the
laws of reflection on the boundary, then, under the conditions shown in the Theorems
1, 2, 3, 4, and 6, the method of successive approximations converges as a geometric
progression with a common ratio q < 1. This is the reason for this method to be so
effective for constructing the billiard trajectory from its skeleton.

The numerically constructed trajectories with the ideal law of reflection on the
upper side of the strip and the law (6) on the bottom side are represented on the
Figures 6 – 14. We set, for the sake of simplicity, ` = 1.
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In Fig. 6, the billiard trajectory has the skeleton s6 = (..., 1, 1, 1, 4, 4, 4, ...),
when the period jumps from 1 to 4. The trajectory in Fig. 7 is represented by its full
skeleton S7 = (..., 2, 3, 4, 4, 4, 5, 6, ...), or its skeleton s7 = (..., 1, 1, 0, 0, 0, 1, 1, ...).
This trajectory reflects three times from the same marked interval.

Figure 6: A billiard trajectory with a change of its spatial period

Figure 7: A spatial periodic trajectory with local repetitions

In Fig. 8 we can see a trajectory with local returns and with the skeleton s8 =
(..., 2, − 1, 2, − 1, 2, − 1, 2, ...). The skeleton of the trajectory in Fig. 9 is
s9 = (..., 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, ...); the period of
this trajectory changes “smoothly”.

Fig. 10 represents a cyclic billiard trajectory with the full skeleton S10 = (0, 5, 10, 0),
while Fig. 11 represents a cyclic trajectory with local returns and the skeleton
s11 = (4, − 1, 4, − 2, 4, − 1, 4, − 2, 4, − 1, 4, − 17).
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Figure 8: A spatial periodic trajectory with local returns

Figure 9: A billiard trajectory with local change of its period

The billiard trajectories of Figures 12, 13, 14 have, respectively, the skeletons
s12 = (..., 1, 1, 1, 10, 1, 1, 1, ...), s13 = (..., 4, 1, 4, 1, 4, 1, 4, ...), and
s14 = (..., 1, 1, 0, 1, 1, 0, 1, 1, 0, ...) .

4 Spatial chaos and spatial entropy for the gener-

alized billiards with the property of universality

4.1 The structure of billiard trajectories

Consider inside an infinite strip of width h a broken line, the union of the links, that
are straight line segments with the ends situated on the sides of the strip. All the
ends of the links will be called vertices of the broken line. A chain will be understood
as a broken line consisting of a finite ordered set of links, where every two consecutive
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Figure 10: A cyclic billiard trajectory

Figure 11: A cyclic billiard trajectory with local returns

links have a common vertex. A broken line with finite or infinite number of links, will
be said to be connected, if any two of its links are the beginning and the end of some
chain. A connected broken line inside a strip with no more than a countable set of
links will be called accessible broken line.

We call an accessible broken line homeomorphic to a straight line an infinite
trajectory. We call a homeomorphic line along with a chosen direction on the line
time, where the homeomorphism assigns the motion of a point along this trajectory.
Thereby, we have a way to say that a motion of a point along the trajectory is forward,
respectively backward. Another class of accessible broken lines is the set of cycles,
which are broken lines homeomorphic to a circle.

We will say that a broken line has an ordered numbering of its vertices with
numbers Z if the vertices with consecutive numbers are the ends of the same link,
and the movement along this numeration in the positive and negative directions cover
each link at least once. As a matter of fact, the same vertex can be numbered several
(might be countably many) times. There is a natural ordered numeration of the
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Figure 12: A spatial periodic billiard trajectory with one perturbation

Figure 13: A spatial periodic billiard trajectory with local repetitions

vertices for infinite trajectories and cycles: in the first case, the order is given by
time, and for a cycle, by the direction of the movement along the cycle. A little bit
less evident is an ordered numeration of the vertices for a broken line consisting of a
countable set of links, emanated from the same point, A, on the bottom side of the
strip, to the integer even points on the top side: we number all the vertices of the
broken line on the top boundary with even integers (the abscises of these points),
and prescribe all the odd numbers to the vertex A. An ordered movement along this
broken line leads to a double covering each of the links.

Lemma. Each accessible broken line access an ordered numbering of its vertices.

Proof. Let the links of the broken line be numbered by numbers in Z (which
perhaps form a proper subset of Z). Such a numeration is always possible because,
by definition, an accessible broken line contains no more than a countable set of links.
Without loss of generality, one can find a link numbered with a zero (“the zero link”).

Consider a link with the smallest positive number, n1. Since the accessible broken
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Figure 14: A strictly monotonic spatial periodic billiard trajectory

line is connected, there is a chain whose beginning link is the zero link and the ending
link is that with number n1; we denote this chain by C(0, n1). Number all the vertices
of the chain with the consecutive integers from 0 to n1 +1. Further, consider the link
with the smallest positive number, n2, which is not involved into the chain C(0, n1).
Consider the chain C(n1, n2) with the initial link n1 and the final link n2. Continue
numbering the vertices of the chain C(0, n1) for the naturally ordered set of vertices
of the chain C(n1, n2). This process is either infinite or finite. In the first case, we
get the numeration of the vertices by all positive integers. In the second case, there
is a final link numbered by some number nm. The further numbering of the vertices
with positive integers is as follows: we number in succession the ends of the link nm.
In both cases we will get a numbering of the vertices by all positive numbers.

In the same way, we number the vertices of an accessible broken line by all negative
integers. It is clear that the described numeration by numbers in Z is an ordered
numeration. �

Definition 5. Let γ1 and γ2 be two accessible broken lines. We say that these
broken lines are spaced from each other by less than ε in the Hausdorff metric, if in
the ε-neighborhood of every point of each of the lines there is at least one point of
some other line. In other words, each broken line lies inside the ε-neighborhood of
the other line. We write this fact in the form ρ(γ1, γ2) < ε, where

ρ(γ1, γ2) := max{sup
x∈γ1

inf
y∈γ2

d(x, y), sup
y∈γ2

inf
x∈γ1

d(x, y)}

is the Hausdorff distance between the broken lines γ1 and γ2, and d(x, y) is the
standard Euclidean distance between points x and y.

The appearance of the word “universality” in the name of a generalized billiards
with the property of universality can be explained by the following result.

Theorem 7. For each ε > 0, each billiards Bε with the property of universality
and with a ε-periodic law of reflection on both sides of the strip has the following prop-
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erty. If γ is an arbitrary accessible broken line, then there exists a billiard trajectory
γε in the billiard Bε such that

ρ(γ, γε) < ε . (16)

In other words, an arbitrary accessible broken line can be approximated with an arbi-
trary precision in the Hausdorff metric by a billiard trajectory of the billiards Bε.

Proof. Given ε > 0, let us consider a billiards Bε with an ε-periodic law of
reflection on both sides of the strip that has the property of universality, i.e., each set
of integers {M (j)

k } (j = 1, 2) is a full skeleton of a unique billiard trajectory in this
billiards Bε.

Let γ be an accessible broken line. According to the above lemma in this section,
the broken line γ has an ordered numbering of its vertices. This numbering orders
automatically the numbers of the marked intervals on the strip’s sides on which the
vertices of γ are situated. This gives a set of integers {M (j)

k }, j = 1, 2. Consider this
set as a full skeleton of the billiard trajectory γε in the billiards Bε. Each vertex of
the broken line γ and the corresponding (i.e., with the same number) vertex of the
billiard trajectory γε lies, by construction, on the same marked interval of length ε.
The correspondence between the vertices of the broken line and the vertices of the
billiard trajectory generates a natural correspondence between their links. Both ends
of the corresponding links belong to the same marked intervals of length ε on both
sides of the strip. Therefore, the distance between such links is going to be less than
ε. This yields (16). �

Next theorem shows that the generalized billiards with the property of universality
possesses the total spatial chaos.

Theorem 8. A generalized billiards with the property of universality has billiard
trajectories that are everywhere dense inside the strip.

Proof. Consider a billiards inside the strip of width h with the `1, `2-periodic
marking of its boundary. The case of the billiards with an ideal top side and with a
periodic marking of the bottom non-ideal side is covered by this more general case
(see the beginning of the Subsection 3.4).

Let us introduce auxiliary values that are going to be used for the rest part of the
proof. Let ϕk, k ∈ Z, be acute angles satisfying sin ϕk = εk/2`, where ` = max(`1, `2),

ε0 =
`h

2
√

`2 + h2
, and εk = ε0/2

|k|. We remark that ε0 < h/2.

Draw auxiliary straight lines that make acute angles ϕk with the positive x-axis.
These lines pass either through points Xk, if these points are at a distance less than εk

from the strip’s boundary, or through points X̃k close to Xk, where each X̃k is obtained
from Xk by the vertical shift at a distance εk/2 towards the middle (horizontal) axis of
the strip. Each of the lines drawn meets the bottom (j = 1) and the top (j = 2) sides

of the strip on the marked intervals numbered by M
(j)
k , j = 1, 2. Then the segment of

a billiard trajectory with the reflection points situated on the intervals M
(j)
k , j = 1, 2,
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intersects the circle Uεk
(Xk) centered at the point Xk and having radius εk. Indeed,

the circle Bεk/2 centered at one of the points through which we drew the auxiliary
straight lines lies both entirely inside the circle Uεk

(Xk) and inside the billiard strip,
because εk < h/2. It is seen from the construction of the auxiliary straight lines that
the segment of the billiard trajectory meets the circle Bεk/2, and, consequently, the
circle Uεk

(Xk).

Let us consider the thus constructed sequence of integers {M (j)
k , k ∈ Z, j = 1, 2}

as the full skeleton of a billiard trajectory γ. The trajectory γ exists and is determined
uniquely by this full skeleton because, by the hypothesis of the theorem, the given
billiards has the property of universality.

We show now that the billiard trajectory γ is everywhere dense in the entire
billiard strip. Indeed, let us consider an arbitrary point X inside the strip together
with its ε-neighborhood, Uε(X), and show that γ meets Uε(X). Let us choose a point
Xn from the countable everywhere dense set of points {Xk} which is located at a
distance less than ε/2 from the point X, where, at the same time, the inequality
εn < ε/2 should hold. Then the point Xn together with its εn-neighborhood Uεn

(Xn)
lies entirely inside the neighborhood Uε(X). Since γ intersects Uεn

(Xn), γ meets
Uε(X), too. �

Figure 15: Spatial chaotic billiard trajectory

4.2 Spatial chaos

Since the skeletons of billiard trajectories in billiards with the property of universality
and the `-periodic law of reflection can be arbitrary sequences of integers mk, in par-
ticular they can be randomly chosen, this leads to the existence of spatially “chaotic”
trajectories in such billiards. In Fig. 15, a billiard trajectory γ inside a strip with the
ideal law of reflection on the top side and with the 1-periodic law (5) on the bottom
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side is presented. A random sequence of integers n ≥ 1 has been chosen with the
probability pn = 2−n as the full skeleton:

s(γ) = [1, 5, 4, 1, 1, 4, 2, 2, 1, 3, 5, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 5, 2, 1, 1, 2, 2, 3, 5, 2, 1] ,

This sequence leads to a spatial-chaotic billiard trajectory.

Following the papers [2] [3], we introduce the notion of spatial chaos in billiards
inside a strip.

Definition 6. We say that a generalized billiards possesses spatial chaos, if for
each ε > 0 there is a d(ε) > 0 such that for each monotonic sequence of points
Xk = (xk, yk) from the billiard strip satisfying 0 ≤ yk ≤ h and xk+1 − xk > d(ε),
there is a strictly monotonic billiard trajectory γ such that the distances from the
points Xk to the trajectory γ is strictly less than ε:

d(Xk, γ) := inf
Y ∈γ

d(Xk, Y ) < ε .

Theorem 9. A generalized billiards inside a strip with the property of universality
possesses spatial chaos.

Proof. Consider a billiards inside the strip with the `1, `2-periodic marking of

its boundary. Let ε be an arbitrary small positive number, ε <
`h

2
√

`2 + h2
. Set

d(ε) = 2`
(h

ε
+1

)
, where h is the width of the billiard strip, and ` = max(`1, `2). Let

an arbitrary sequence of points Xk = (xk, yk) in the strip satisfy xk+1 − xk > d(ε).
Let us draw through every neighborhood Uε(Xk) of the point Xk, as we did in the
proof of Theorem 8, the line making an angle ϕ with the positive x-axis such that
sin ϕ = ε/2`. The intersection points of these lines with the marked intervals situated

on the boundary of the strip determine the full skeleton S(γ) = {M (j)
k , k ∈ Z, j =

1, 2} of the sought trajectory γ, where the trajectory is strictly monotonic and passes
through the ε-neighborhoods of all the points Xk = (xk, yk). The strict monotonicity
of the trajectory γ follows from the fact that the projections to the bottom side of the
strip of all the γ skeleton’s intervals, located on the top side of the strip, alternate,
with no intersection, with the marked γ skeleton’s intervals on the bottom side. �

4.3 Spatial entropy

Consider all strictly monotonic billiard trajectories (see definition in the Subsection
3.2) that are periodic along the x-axis with the period T . Let us call them T -periodic
trajectories and denote by S(T ) the number of all the T -periodic trajectories.

Definition 7. The spatial entropy of a billiards with respect to strictly monotonic
periodic trajectories is by definition the number

η = limT→∞
1

T
ln S(T ) . (17)
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Theorem 10. The spatial entropy of a billiards with the property of universality
inside a strip with the `-periodic law of reflection along the bottom side of the strip
and the ideal law of reflection on the top side is equal to

η =
1

`
ln 2 . (18)

Proof. Consider periods T that are multiple of `, i.e., set T = N`, where N
is an integer. There is a one-to-one correspondence between the strictly monotonic
sequences and their codes. Therefore, S(N`) equals the number of non-trivial N -
periodic codes. The number of such codes equals 2N − 1. Hence

η = lim
N→∞

1

N`
ln(2N − 1) =

1

`
ln 2 .

�
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