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Abstract. We study an evolution problem in the space of continuous loops in three-
dimensional Euclidean space modelled upon the dynamics of vortex lines in 3d incom-
pressible and inviscid fluids. We establish existence of a local solution starting from
Hölder regular loops with index greater than 1/3. When the Hölder regularity of the
initial condition X is smaller or equal 1/2 we require X to be a rough path in the sense of
Lyons [Lyo98, LQ02]. The solution will then live in an appropriate space of rough paths.
In particular we can construct (local) solution starting from almost every Brownian loop.

1. Introduction

The aim of this work is to study the well-posedness of the evolution problem for a
model of a random vortex filament in three dimensional incompressible fluid. If u is
the velocity field of the fluid, the vorticity ω : R

3 → R
3 is a solenoidal field defined as

ω = curl u. A vortex filament is a field of vorticity ω which is strongly concentrated around
a three-dimensional closed curve γ described parametrically as a continuous function
γ : [0, 1] → R

3 such that γ0 = γ1. Ideally, neglecting the transverse size of the filament,
we can describe the vorticity field ωγ generated by γ formally as the distribution

ωγ(x) = Γ

∫ 1

0

δ(x − γξ)dξγξ, x ∈ R
3 (1)

where Γ > 0 is the intensity of the filament. In R
3, the velocity field associated to ω can

be reconstructed with the aid of the Biot-Savart formula:

uγ(x) = −
1

4π

∫

R3

(x − y)

|x − y|3
∧ ωγ(y) dy. (2)

which is the solution of curl uγ = ωγ with enough decay at infinity.
Then

uγ(x) = −
Γ

4π

∫ 1

0

(x − γξ)

|x − γξ|3
∧ dξγξ. (3)

where a ∧ b is the vector product of the vectors a, b ∈ R
3. The evolution in time of the

infinitely thin vortex filament is obtained by imposing that the curve γ is transported by
the velocity field uγ:

d

dt
γ(t)ξ = uγ(t)(γ(t)ξ), ξ ∈ [0, 1] (4)

and this gives the initial value problem

d

dt
γ(t)ξ = −

Γ

4π

∫ 1

0

(γ(t)ξ − γ(t)η)

|γ(t)ξ − γ(t)η|3
∧ dηγ(t)η, ξ ∈ [0, 1] (5)

Date: July 2004.
Key words and phrases. Vortex filaments, Rough path theory, Path-wise stochastic integration
MSC Class. 60H05; 76B47.

1



2 HAKIMA BESSAIH, MASSIMILIANO GUBINELLI, AND FRANCESCO RUSSO

Even if the curve γ is smooth this expression is not well defined since the integral is
divergent if γ has non-zero curvature.

To overcome this divergence a natural approach is that of Rosenhead [Ros30], who
suggested the following approximate equation of motion based on a regularized kernel

d

dt
γ(t)ξ = −

Γ

4π

∫ 1

0

(γ(t)ξ − γ(t)η)

[|γ(t)ξ − γ(t)η|2 + µ2]3/2
∧ dηγ(t)η, ξ ∈ [0, 1] (6)

for some µ > 0. This model has clear advantages and been used in some numerical
calculation of aircraft trailing vortexes by Moore [Moo72].

We will consider a generalization of the Rosenhead model where the function γ is not
necessarily smooth. This is natural when we want to study models of random vortex
filaments. Indeed for simple models of random vortex lines the curve γ is rarely smooth
or even of bounded variation. Here we are thinking at taking as initial condition a typical
trajectory of a Browian loop (since the path must be closed) or other simple models as
Fractional Brownian Loops (to be described precisely in Sec. 5.1). As we will see later, a
major problem is then the interpretation of equation (6).

The study of the dynamics of random vortex lines is suggested by some work of
A. Chorin [Cho94] and G. Gallavotti [Gal02]. The main justification for the adoption
of a probabilistic point of view comes from two different directions. Chorin builds dis-
crete models of random vortex filaments to explain the phenomenology of turbulence by
the statistical mechanics of these coherent structures. Gallavotti instead suggested the
use of very irregular random functions to provide a natural regularization of eq. (5). Both
approaches are on a physical level of rigor.

On the mathematical side in the recent year there have been some interest in the
study of the statistical mechanics of continuous models for vortex filaments. P.L. Lions
and A.J. Majda [LM00] proposed a statistical model of quasi-3d random vortex lines
which are constrained to remain parallel to a given direction and thus cannot fold. Flan-
doli [Fla02] rigorously studied the problem of the definition of the energy for a random
vortex filament modeled over a Brownian motion and Flandoli and Gubinelli [FG02] in-
troduced a probability measure over Brownian paths to study the statistical mechanics of
vortex filaments. The study of the energy of filament configurations has been extended
to models based on fractional Brownian motion by Nualart, Rovira and Tindel [NRT03]
and Flandoli and Minnelli [FM01]. Moreover a model of Brownian vortex filaments capa-
ble of reproducing the multi-fractal character [Fri95] of turbulent velocity fields has been
introduced in [FG04].

The problem (6) define a natural flow on three dimensional closed curves. The study
of this kind of flows has been recently emphasized by Lyons and Li in [LL04] where they
study a class of flows of the form

dY

dt
= F (If(Y )), Y0 = X (7)

where Y takes values in a (Banach) space of functions, F is a smooth vector field and
If(Y ) is an Itô map, i.e. the map Y 7→ Z where Z is the solution of the differential
equation

dZσ = f(Zσ)dYσ
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driven by the path Y . They prove that, under suitable conditions, If is a smooth map
and then that eq. (7) has (local) solutions and thus as a by-product that F ◦ If can be
effectively considered a vector-field on a space of paths.

Our evolution equation does not match the structure of the flows considered by Lyons
and Li. A very important difference is that eq. (7), under suitable assumptions on the
initial condition X (e.g. X a semi-martingale path) , can be solved with standard tools of
stochastic analysis (essentially Itô stochastic calculus) while eq. (6) has a structure which
is not well adapted to a filtered probability space and prevents event to (easily) set-up the
problem in a space of semi-martingale paths. To our opinion this peculiarity makes the
problem interesting from the point of view of stochastic analysis and was one of our main
motivation to start its study. Using Lyons’ rough paths we will show that it is possible
to give a meaning to the evolution problem (6) starting form a (Fractional or Standard)
Browian Loop and that this problem has always a local solution (recall that the existence
of a global solution, to our knowledge, has not been proven even in the case of a smooth
curve).

The paper is organized as follows: in Sec. 2 we describe precisely the model we are going
to analyze and we make some preliminary observations on the structure of covariation
(in the sense of stochastic analysis) of the solution (assuming the initial condition has
finite covariations), moreover we introduce the functional spaces in which we will set-
up the problem of existence of solutions. In Sec. 3 we build a local solution for initial
conditions which are Hölder continuous with exponent greater that 1/2 and for which
the line integrals can be understood à la Young [You36]. In Sec. 4 we build a solution
in a class of rough paths (introduced in [Gub04]) for initial conditions which are rough
paths of Hölder regularity greater that 1/3 (which essentially are p-rough paths for p < 3,
in the terminology of [LQ02]). Finally, in Sec.5 we apply these deterministic results to
obtain the evolution of random initial conditions of Brownian Loop type or its Fractional
variant. Appendix A collect some estimates used in the proofs.

2. The Model

2.1. The evolution equation. Our aim is to start a study of the true tridimensional
evolution of random vortex filaments by the analysis of the well-posedness of the regu-
larized dynamical equations. Inspired by the Rosenhead model we will be interested in
studying the evolution described by

∂Y (t)ξ

∂t
= V Y (t)(Y (t)ξ), Y (0) = X (8)

with initial condition X belonging to the set C of closed and continuous curve in R
3

parametrized by ξ ∈ [0, 1]. For any Z ∈ C, V Z is the vector-field given by the line integral

V Z(x) =

∫

Z

A(x − y)dy =

∫ 1

0

A(x − Zξ)dZξ, x ∈ R
3 (9)

where A : R
3 → R

3 ⊗ R
3 is a matrix-valued field. In this setting the Rosenhead model is

obtained by taking A of the form

A(x)ij = −
Γ

4π
εijk

xj

[|x|2 + µ2]3/2
, i, j = 1, 2, 3
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where εijk is the completely antisymmetric tensor in R
3 normalized such that ε123 = 1

and µ > 0 is a fixed constant.

2.2. A first approach using covariations for random initial conditions. Even if
the kernel of the paper is fully pathwise, before studying existence and uniqueness (in
some sense to be precised) of the equation, we would like to insert a preamble concerning
the stability of the quadratic variation in space, of the solution.

Let (Ω,F , P ) be a probability space. In order to simplify a bit the proofs we have
chosen to use the notion of covariation introduced, for instance, by [RV95].

Given two processes X = (Xx)x∈[0,1] and Y = (Yx)x∈[0,1], the covariation [X, Y ] is defined
(if it exists) as the limit of

∫ x

0

(Xx+ε − Xx)(Yx+ε − Yx)
dx

ε

in the uniform convergence in probability sense (ucp). If X and Y are classical contin-
uous semi-martingales, it is well-known that previous [X, Y ] coincides with the classical
covariation.

A vector (X1, . . . , Xn) of stochastic processes is said to have all its mutual covariations
if [X i, Xj] exist for every i, j = 1, . . . , n. Generally here we will consider n = 3. Moreover,
given a matrix or vector v we denote v∗ its transpose.

It is sometimes practical to have a matrix notations. If Mx = {mij
x }i,j, Nx = {nij

x }i,j,
are matrices of stochastic processes such they are compatible for the matrix product, we
denote

[M, N ]x =

{
n∑

k=1

[mik, nkj]x

}

i,j

Remark 1. The following result can be easily deduced from [RV95]. Let Φ1, Φ2 be of
class C1(R3; R3), X = (X1, X2, X3)∗, Z = (Z1, Z2, Z3)∗ (intendend as row vectors in the
matrix calculus) such that (X, Z) has all its mutual covariations. Then (Φ1(X), Φ2(Z))
has all its mutual covariations and

[Φ1(X), Φ2(Z)]x =

∫ x

0

d[X, Z]y.(∇Φ1)(Zy)
∗(∇Φ2)(Xy).

Remark 2. In reality, we could have chosen the modified Föllmer [Föl81] approach ap-
pearing in [ERV02], based on discretization procedures for which the common reader would
be more accustomed.

In that case the same results stated in Remark 1 and Proposition 1 will be valid also in
this discretization framework. We recall briefly that context.

Consider a family of subdivisions 0 = xn
0 < . . . < xn

N = 1 of the interval [0, 1] or simply
0 = x0 < . . . < xN = 1 of the interval [0, 1], when the step n is implicit. We will say that
the mesh of the subdivision converges to zero if limn→∞ xn

i+1 − xn
i go to zero.

In this framework, the covariation [X, Y ] is defined (if it exists) as the limit of

N∑

i=1

(Xxi+1∧x − Xxi∧x)(Yxi+1∧x − Yxi∧x)

in the ucp (uniform convergence in probability) sense with respect to x and the limit does
not depend on the chosen family of subdivisions.
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We will consider the following framework.
Suppose there exists a sub Banach space B of C([0, 1]; R3) and let V : (γ, y) → V γ(y)

be a Borel map from B × R
3 to R

3 such that

V1) for fixed γ ∈ B, y → V γ(y) is C1
b(R

3; R3);
V2) the application γ → ‖∇V γ‖∞ is locally bounded from B to R.

The main motivation for this abstract framework comes from the setting described in
the following section. Indeed, as we will see, there exists natural Banach sub-spaces B of
C([0, 1], R3) such that the map V defined as

V γ(x) =

∫

R

A(x − γξ)d
∗γξ,

where d∗ denotes some kind of path integration defined for every γ ∈ B, satisfy the above
hypoteses V1) and V2).

Proposition 1. Suppose that a random field (Y (t)x) is a continuous solution of

Y (t)x = Xx +

∫ t

0

V Y (s)(Y (s)x)ds; (10)

and t → Y (t) from [0, T ] → B with initial condition X having all its mutual covariations.
Then at each time t the path Y (t) has all its mutual covariations. Moreover

[Y (t), Y ∗(t)]y =

∫ y

0

M(t)ξd[X, X∗]ξ(M(t)ξ)
∗ (11)

where

M(t)ξ := exp

[∫ t

0

(∇V Y (s))(Y (s)ξ)ds

]
. (12)

Remark 3. Note the following:

(1) Since we are in the multidimensional (3-dimensional) case, we recall that Eξ(t) =

exp
[∫ t

0
Qξ(s)ds

]
is defined as the matrix-valued function satisfying the differential

equation

dEξ(t)

dt
= Qξ(t)Eξ(t), Eξ(0) = Id.

(2) A typical case of initial condition of process having all its mutual covariation is a
3-dimensional Brownian loop (bridge). In this case, as we will see in Sec.4, the
function (t, ξ) 7→ M(t)ξ will be relevant in the construction of the solution in a
space of rough paths.

(3) It is possible to adapt this proof to the situation where the solution exists up to a
random time.

Proof. For simplicity, we prolongate the processes X parametrized by [0, 1] setting Xξ =
X1, ξ ≥ 1.

Let ε > 0. For t ∈ [0, T ], ξ ∈ [0, 1], we write

Zε(t)ξ = Y (t)ξ+ε − Y (t)ξ, Xε
ξ = Xξ+ε − Xξ,
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so that

Zε(t)ξ = Xε
ξ +

∫ t

0

[V Y (s)(Y (s)ξ+ε) − V Y (s)(Y (s)ξ)]ds

= Xε
ξ +

∫ t

0

(∇V Y (s))(Y (s)ξ)Z
ε(s)ξ ds

+

∫ t

0

Rε(s)ξZ(s)ξ ds

where

Rε(s)ξ =

∫ t

0

ds

∫ 1

0

da
[
(∇V Y (s))(Y (s)ξ + aZε(s)ξ) − (∇V Y (s))(Y (s)ξ)

]

so that
sup
s≤T

|Rε(s)ξ| → 0, a.s.

Therefore,

Zε(t)ξ = exp

[∫ t

0

ds(∇V Y (s))(Y (s)ξ) +

∫ t

0

dsRε(s)ξ

]
Xε

ξ = M(t)ε
ξX

ε
ξ .

Multipling both sides by their transposed, dividing by ε and integrating from 0 to y we
get ∫ y

0

Zε(t)ξ(Z
ε)∗(t)ξ

ε
dξ =

∫ y

0

M(t)ε
ξ

Xε
ξ (X

ε)∗ξ
ε

(M(t)ε
ξ)

∗dξ.

Then since, as ε → 0,

M(t)ε
ξ → exp

[∫ t

0

(∇V Y (s)(Y (s)ξ)ds

]
= M(t)ξ

uniformly in t and ξ almost surely, using Lebesgue dominated convergence theorem, and
similar arguments to Proposition 2.1 of [RV95], it is enough to show that

∫ y

0

exp

[∫ t

0

ds(∇V Y (s))(Y (s)ξ)

]
Xε

ξ (X
ε
ξ )

∗

ε
exp

[∫ t

0

ds(∇V Y (s))(Y (s)ξ)

]∗

dξ

converges ucp to the right member of (11).
This is obvious since ∫ y

0

Xε
ξ (X

ε
ξ )

∗

ε
dξ → [X, X∗](y)

ucp with respect to y and so, by means of subsequence extraction, we can make use of
the weak ?-topology. �

Remark 4. We make the same assumptions as the assumptions before (10) Suppose
that the initial condition has all its n− mutual covariations n ≥ 3, see for this [ER03].
Proceeding in a similar way as before, it is possible to show that Y (t, ·) has all its finite
mutual n - covariations.

The scalar analogous of Remark 3 2) would be the following. If the initial condition X
has strong n-finite variation then at each time t.

A typical example of process having a strong finite n-variation is fractional Brownian
motion with Hurst index H = 1/n.
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2.3. The functional space framework. The actual differential evolution problem when
X has finite-length has been previously studied in [BB02] where it is proved that under
some regularity conditions on A there exists a unique local solution living in the space
H1

c of closed curves with L1 derivative.
We would like to be able to solve the Cauchy problem (8) starting from a random curve

X like a 3d Brownian Loop (since it must be closed) or a Fractional Brownian Loop. In
these cases X is a.s. not in H1

c and, as a consequence, we need a sensible definitions to
the path-integral appearing in eq. (9).

Even if X is a Brownian Loop do not exists a simple strategy to give a well defined
meaning to the evolution problem (8) through the techniques of stochastic calculus. In-
deed we can think to define the integral in V Y as an Itô or Stratonovich integral which
requires Y to be a semi-martingale with respect to some filtration F (e.g. the filtration
generated by X). However we readily note that the problem has no relationship with any
natural filtration F since for example to compute the velocity field V Y (x) in some point
x we need information about the whole trajectory of Y .

A viable (and relatively straightforward) strategy to give a well defined meaning to the
problem is then that of using a path-wise approach . We then require that the initial data
has γ-Hölder regularity.

When γ > 1/2 the line integral appearing in the definition (9) of the instantaneous
velocity field V Y (t) can be understood à la Young [You36]. The corresponding results will
be presented in Sec. 3.

When 1/2 ≥ γ > 1/3 an appropriate notion of line integral has been formulated by
Lyons in [Lyo98, LQ02]. In Sec. 4 we will show that given an initial γ-Hölder path X (and
an associated area process X

2) there exists a unique local solution of the problem (13)
in the class DX of paths weakly-controlled by X. The class DX has been introduced
in [Gub04] to provide an alternative formulation of Lyons’ theory of integration and
corresponds to paths Z ∈ C which locally behaves as X in the sense that

Zξ − Zη = Fη(Xξ − Xη) + o(|ξ − η|γ)

where F ∈ C([0, 1], R3 ⊗ R
3) is a path taking values in the bounded endomorphisms of

R
3.
In particular these results provide solutions of the problem when X is a Fractional

Brownian Loop of Hurst-index H > 1/3 (see Sec.5).

3. Evolution for γ-Hölder curves with γ > 1/2

3.1. Setting and notations. For any X ∈ C let

‖X‖γ := sup
ξ,η∈[0,1]

|Xξ − Xη|

|ξ − η|γ

and

‖X‖∞ := sup
ξ∈[0,1]

|Xξ|

moreover

‖X‖∗γ := ‖X‖∞ + ‖X‖γ

Denote Cγ the set of paths X ∈ C such that ‖X‖∗γ < ∞.
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All along this section we will assume that γ is a fixed number greater than 1/2. In
this case the following result states that there exists a unique extension to the Riemann-
Stieltjes integral

∫
fdg defined for smooth functions f, g to all f, g ∈ Cγ.

Proposition 2 (Young’s integral). Let X, Y ∈ Cγ, then
∫ ξ

η
XρdYρ is well defined, coincide

with the Riemann-Stieltjes integral when the latter exists and satisfy the following bound
∣∣∣∣
∫ ξ

η

(Xρ − Xη)dYρ

∣∣∣∣ ≤ Cγ‖X‖γ‖Y ‖γ|ξ − η|2γ

for all ξ, η ∈ [0, 1] where Cγ is a constant depending only on γ.

Proof. See e.g.[You36, Lyo98]. �

It will be convenient to introduce the integrated form of (8) as

Y (t)ξ = Xξ +

∫ t

0

V Y (s)(Y (s)ξ)ds (13)

Consider the Banach space XT := C([0, T ], Cγ) with norm

‖Y ‖XT
=: sup

t∈[0,T ]

‖Y (t)‖∗γ, Y ∈ XT .

Solution of (13) will then be found as fixed points of the non-linear map F : XT → XT

defined as

F (Y )(t)ξ = Xξ +

∫ t

0

V Y (s)(Y (s)ξ) ds, t ∈ [0, T ], ξ ∈ [0, 1]. (14)

where the application Z 7→ V Z is defined for any Z ∈ Cγ as in eq. (9) with the line integral
understood according to proposition 2 and with the matrix field A satisfying regularity
conditions which will be shortly specified.

On m-tensor field ϕ : R
3 → R

m and for any integer n ≥ 0 we define the following norm:

‖ϕ‖n :=

n∑

k=0

‖∇nϕ‖

where
‖ϕ‖ := sup

x∈R3

|ϕ(x)|.

Then we can state:

Theorem 1. Assume ‖∇A‖2 < ∞ and X ∈ Cγ. Then there exists a time T depending
only on ‖∇A‖2, X, γ such that the equation (13) has a unique solution bounded in Cγ.

Proof. Lemma 2 below together with lemma 3 prove that on a small enough time interval
F is a strict contraction on XT having a unique fixed point. �

Before giving the lemmas used in the proof we will state useful results which will allow
to control the velocity field V Y in terms of the regularity of Y and of A.

Lemma 1. Let Y, Ỹ ∈ Cγ. For any integer n the following estimates holds:

‖∇nV Y ‖∞ ≤ Cγ‖∇
n+1A‖∞‖Y ‖2

γ (15)

‖∇nV Y −∇nV
eY ‖∞ ≤ Cγ‖Y − Ỹ ‖∗γ‖∇

n+1A‖1(‖Y ‖γ + ‖Ỹ ‖γ + 3‖Ỹ ‖2
γ) (16)



THE EVOLUTION OF A RANDOM VORTEX FILAMENT 9

Proof. See Appendix, section A.1. �

3.2. Local existence and uniqueness. In the proof we will need often to use Taylor
expansions with integral remainders, so for convenience we introduce a special notation:
given X ∈ C let Xηξ := Xη − Xξ and Xr

ηξ := Jr(Xη, Xξ) where Jr(x, y) is the linear
interpolation

Jr(x, y) = (x − y)r + y

for r ∈ [0, 1].

Lemma 2. Assume ‖∇A‖1 < ∞. For any initial datum X ∈ Cγ there exists a time T0

such that for any time T < T0 the set

QT := {Y ∈ XT : ‖Y ‖XT
≤ BT}

where BT is a suitable constant, is invariant under F .

Proof. Let us compute

|F (Y )(t)ξ| ≤ |Xξ| +

∫ t

0

|V Y (s)(Y (s)ξ)|ds ≤ |Xξ| +

∫ t

0

‖V Y (s)‖∞ds

so

‖F (Y )(t)‖∞ ≤ ‖X‖∞ +

∫ t

0

‖V Y (s)‖∞‖Y (s)‖γ ds.

The γ-Hölder norm of the path F (Y )(t) can be estimated starting from the Taylor
expansion

V Y (s)(Y (s)ξ) − V Y (s)(Y (s)ρ) =

∫ 1

0

∇V Y (s)(Y (s)r
ξρ)dr Y (s)ξρ

so that

‖V Y (s)(Y (s)·)‖γ ≤ ‖∇V Y (s)‖∞‖Y (s)‖γ

then

‖F (Y )‖XT
≤ ‖X‖∗γ +

∫ T

0

‖V Y (s)‖1‖Y (s)‖∗γds

and, using lemma 1,

‖F (Y )‖XT
≤ ‖X‖∗γ + CγT‖∇A‖1(‖Y ‖2

XT
+ ‖Y ‖3

XT
)

Let BT be a solution of

BT ≤ ‖X‖∗γ + CγT‖∇A‖1(B
2
T + B3

T )

which exists for any T < T0 where T0 is a constant depending only on ‖X‖∗γ, ‖∇A‖1 and
γ. Then if ‖Y ‖XT

≤ BT we have ‖F (Y )‖XT
≤ BT and QT is invariant under F .

�

Lemma 3. Assume ‖∇A‖2 < ∞. There exists a time T < T0 such that the map F is a
strict contraction on QT .



10 HAKIMA BESSAIH, MASSIMILIANO GUBINELLI, AND FRANCESCO RUSSO

Proof. To prove that the map F is a strict contraction proceed as follows: for any T < T0

take Y, Ỹ ∈ QT Then

|V Y (s)(Y (s)ξ) − V
eY (s)(Ỹ (s)ξ)|

≤ |V Y (s)(Y (s)ξ) − V
eY (s)(Y (s)ξ)| + |V Y (s)(Y (s)ξ) − V Y (s)(Ỹ (s)ξ)|

≤ ‖V Y (s) − V
eY (s)‖∞ + ‖∇V Y (s)‖‖Y (s) − Ỹ (s)‖∞

where we used Lemma 1 to estimate the norms of V .
Next,

[V Y (s)(Y (s)ξ)−V
eY (s)(Ỹ (s)ξ)] − [V Y (s)(Y (s)ρ) − V

eY (s)(Ỹ (s)ρ)]

= V Y (s)(Y (s)ξ) − V
eY (s)(Ỹ (s)ξ) − Vs(Y (s)ρ) + V

eY (s)(Ỹ (s)ρ)

=

∫ 1

0

∇V Y (s)(Y r(s)ξρ)drY (s)ξρ −

∫ 1

0

∇V
eY (s)(Ỹ r(s)ξρ)drỸ (s)ξρ

=

∫ 1

0

∇V Y (s)(Y r(s)ξρ)dr(Y (s)ξρ − Ỹ (s)ξρ)

+

∫ 1

0

[
∇V Y (s)(Y r(s)ξρ) −∇V

eY (s)(Ỹ r(s)ξρ)
]
drỸ (s)ξρ

=

∫ 1

0

∇V Y (s)(Y r(s)ξρ)dr(Y (s)ξρ − Ỹ (s)ξρ)

+

∫ 1

0

[
∇V Y (s)(Y r(s)ξρ) −∇V Y (s)(Ỹ r(s)ξρ)

]
drỸ (s)ξρ

+

∫ 1

0

[
∇V Y (s)(Ỹ r(s)ξρ) −∇V

eY (s)(Ỹ r(s)ξρ)
]
drỸ (s)ξρ

= I1 + I2 + I3

(17)

Let us first estimate I1:

|I1| ≤ ‖∇V Y (s)‖∞‖Y (s) − Ỹ (s)‖γ|ξ − η|γ

Next,

|I2| =

∣∣∣∣
∫ 1

0

dr

∫ 1

0

dw∇2V Y (s)(Jw(Y (s)r
ξρ, Ỹ (s)r

ξρ))(Y (s)r
ξρ − Ỹ (s)r

ξρ)Ỹ (s)ξρ

∣∣∣∣

≤ 3‖∇2V Y (s)‖∞‖Y (s) − Ỹ (s)‖∞‖Ỹ (s)‖γ|ξ − η|γ

Finally,

|I3| ≤ ‖∇V Y (s) −∇V
eY (s)‖∞‖Ỹ (s)‖γ|ξ − η|γ

Putting all together we end up with

‖V Y (s)(Y (s)·) − V
eY (s)(Ỹ (s)·)‖γ ≤ ‖∇V Y (s)‖∞‖Y (s) − Ỹ (s)‖γ

+ 3‖∇2V Y (s)‖∞‖Y (s) − Ỹ (s)‖∞‖Ỹ (s)‖γ

+ ‖∇V Y (s) −∇V
eY (s)‖∞‖Ỹ (s)‖γ
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Then

‖V Y (s)(Y (s)·) − V
eY (s)(Ỹ (s)·)‖

∗
γ ≤ ‖V Y (s) − V

eY (s)‖∞ + ‖∇V Y (s)‖‖Y (s) − Ỹ (s)‖∞

+ ‖∇V Y (s)‖∞‖Y (s) − Ỹ (s)‖γ

+ 3‖∇2V Y (s)‖∞‖Y (s) − Ỹ (s)‖∞‖Ỹ (s)‖γ

+ ‖∇V Y (s) −∇V
eY (s)‖∞‖Ỹ (s)‖γ

≤ Cγ‖∇A‖2BT (4 + 8BT + 3B2
T )‖Y (s) − Ỹ (s)‖∗γ

and

‖F (Y )(t) − F (Ỹ )(t)‖∗γ ≤

∫ t

0

‖V Y (s)(Y (s)·) − V
eY (s)(Ỹ (s)·)‖

∗
γds

This implies that

‖F (Y ) − F (Ỹ )‖XT
≤ CγT‖∇A‖2BT (4 + 8BT + 3B2

T )‖Y − Ỹ ‖XT

There exists T ≤ T0 such that

CγT‖∇A‖2BT (4 + 8BT + 3B2
T
) < 1

and F is a strict contraction on QT with a unique fixed-point.
�

Remark 5. Here and in the proofs for the case γ > 1/3 some conditions on A can be
slightly relaxed using better estimates. For example, in the proof of lemma 2 the condition
‖∇A‖1 < ∞ can be relaxed to require ∇A to be a Hölder continuous function of index
(1 − γ + ε)/γ for some ε > 0, etc. . . However these refinements are not able to improve
qualitatively the results.

3.3. Blow-up estimate. From the previous results it is clear that if the norm ‖Y (t)‖γ

of a solution Y is bounded by some number M in some interval [0, T ], then the solution
can be extended on a strictly larger interval [0, T + δM ] with δM depending only on M
(and on the data of the problem). This implies that the only case in which we cannot
find a global solution (for any positive time) is when there is some time t̂γ such that
limt→t̂γ− ‖Y (t)‖γ = +∞. This time is an epoch of irregularity for the evolution in the

class Cγ. Near this epoch we can establish a lower bound for the norm ‖Y (t)‖γ.

Proposition 3. Assume t̂γ > 0 is the smallest epoch of irregularity for a solution Y in
the class Cγ. Then we have

‖Y (t)‖γ ≥
Cγ

(t̂γ − t)1/2
(18)

for any t ∈ [0, t̂γ).

Proof.

‖Y (t)‖γ − ‖Y (s)‖γ ≤

∫ t

0

‖V Y (u)(Y (u)·)‖γdu

≤

∫ t

s

‖∇V Y (u)‖∞‖Y (u)‖γdu

(19)



12 HAKIMA BESSAIH, MASSIMILIANO GUBINELLI, AND FRANCESCO RUSSO

and using lemma 1 we have

‖Y (t)‖γ − ‖Y (s)‖γ ≤ C

∫ t

s

‖Y (u)‖3
γdu

for some constant C depending only on A and γ, so that

d

dt
‖Y (t)‖γ ≤ C‖Y (t)‖3

γ

letting y(t) = ‖Y (t)‖B,γ and integrating the differential inequality between times t > s
we obtain

1

y(s)2
−

1

y(t)2
≤ 2C(t − s)

now, assume that there exists a time t̂γ such that limt→t̂γ− y(t) = +∞, then for any s < t̂γ
we have the following lower bound for the explosion of the Cγ norm of Y :

‖Y (s)‖γ = y(s)1/2 ≥
1

(2C)1/2(t̂γ − s)1/2
.

�

The estimate (19) used in the previous proof implies also that we have

z(t) ≤ z(0) +

∫ t

0

‖∇V Y (s)‖∞z(s)ds (20)

where z(t) = sups∈[0,t] ‖Y (s)‖γ and by Gronwall lemma

z(t) ≤ z(0) exp

(∫ t

0

‖∇V Y (s)‖∞ds

)

This bound allows the continuation of any solution on the interval [0, t] if the integral∫ t

0
‖∇V Y (s)‖∞ds is finite. Then if t̂γ is the first irregularity epoch for the class Cγ we must

have that t̂γ = t̂ = sup1/2<γ≤1 t̂γ for any 1/2 < γ ≤ 1. Indeed is easy to see that for any

t < t̂ there exists a finite constant Mt such that sups∈[0,t] ‖V
Y (s)‖∞ ≤ Mt.

Corollary 1. Let X ∈ Cγ∗ with γ∗ > 1/2, then for any 1/2 < γ ≤ γ∗ there exists a unique
solution Y γ ∈ C([0, t̂γ), C

γ) with initial condition X. Moreover the first irregularity epoch
t̂γ for the solution in Cγ does not depend on γ.

4. Evolution for γ > 1/3

4.1. Rough path-integrals. When γ ≤ 1/2 there are difficulties in defining the path-
integral appearing in the expression (9) for the velocity field V . A successful approach
to such irregular integrals has been found by Lyons to consist in enriching the notion of
path (see e.g. [LQ02, Lyo98] and for some recent contributions [Fri04, Gub04, FDLP04]).

Here a γ-rough path (of degree two) is a couple (X, X2) where X ∈ Cγ with γ > 1/3
and X

2 ∈ C([0, 1]2, R3 ⊗ R
3) is a matrix-valued function (called the area process) on the

square [0, 1]2 verifying the following compatibility condition with X:

X
2,ij
ξρ − X

2,ij
ξη − X

2,ij
ηρ = (X i

ξ − X i
η)(X

j
η − Xj

ρ), ξ, η, ρ ∈ [0, 1]2 (21)
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(i, j = 1, 2, 3 are vector indexes) and such that

‖X
2‖2γ := sup

ξ,η∈[0,1]

|X2
ξη|

|ξ − η|2γ
< ∞. (22)

Remark 6. If γ > 1/2 then a natural choice for the area process X
2 is the geometric one

given by

(X2
geom

)ij
ξη =

∫ η

ξ

(Xρ − Xξ)
idXj

ρ

which naturally satisfy eq. (21) (as can be directly checked) and eq. (22) (using lemma 2).

As shown by Lyons [Lyo98], when γ > 1/3 any integral of the form
∫

ϕ(X)dX

can be defined to depend in a continuous way on the rough path (X, X2) for sufficiently
regular ϕ.

In [Gub04] it is pointed out that any rough path X define a natural class of paths
for which path-integrals are meaningful. Define the Banach space DX of paths weakly-
controlled by X as the set of paths Y that can be decomposed as

Yξ − Yη = Y ′
η(Xξ − Xη) + RY

ηξ (23)

with Y ′ ∈ Cγ([0, 1], R3 ⊗ R
3) and ‖RY ‖2γ < ∞. Define the norm for Y ∈ DX as

‖Y ‖D := ‖Y ′‖γ + ‖RY ‖2γ + ‖Y ′‖∞

Moreover let
‖Y ‖∗D := ‖Y ‖D + ‖Y ‖∞

Since we will need to consider only closed paths we will require for Y ∈ DX that
Y0 = Y1. Then it is easy to show that

‖Y ‖γ ≤ ‖Y ‖D(1 + ‖X‖γ)

and that DX ⊆ Cγ.
The next lemma states that DX behaves nicely under maps by regular functions:

Lemma 4. If ϕ is a C2 function and Y ∈ DX then

‖ϕ(Y )‖D ≤ ‖∇ϕ‖1‖Y ‖D. (24)

Proof. See [Gub04]. �

The main result about weakly-controlled paths is that they can be integrated one
against the other with a good control of the resulting object:

Lemma 5 (Integration of weakly-controlled paths). If Y, Z ∈ DX then the integral
∫ η

ξ

Y dZ := Yξ(Zη − Zξ) + Y ′
ξZ

′
ξX

2
ηξ + Qξη, η, ξ ∈ [0, 1]

is well defined with
‖Q‖3γ ≤ C ′

γCX‖Y ‖D‖Z‖D

where C ′
γ > 1 and

CX = (1 + ‖X‖γ + ‖X
2‖2γ).
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Moreover if Ỹ , Z̃ ∈ DX, then∫ η

ξ

Y dZ −

∫ η

ξ

Ỹ dZ̃ = Yξ(Zη − Zξ) − Ỹξ(Z̃η − Z̃ξ) + (Y ′
ξZ

′
ξ − Ỹ ′

ξ Z̃
′
ξ)X

2
ηξ + Qξη − Q̃ξη

and
‖Q − Q̃‖3γ ≤ CX(‖Y ‖DεY + ‖Z‖DεZ)

with
εY = ‖Y ′ − Ỹ ′‖∞ + ‖Y ′ − Ỹ ′‖γ + ‖RY − R

eY ‖2γ

εZ = ‖Z ′ − Z̃ ′‖∞ + ‖Z ′ − Z̃ ′‖γ + ‖RZ − R
eZ‖2γ

Proof. See [Gub04]. �

Remark 7. The rough integral so defined coincides with the corresponding Riemann-
Stieltjes integral when both exists. Moreover it can be shown that

∫ η

ξ
Y dZ is the limit of

the following “renormalized” finite sums

n−1∑

i=0

[
Yξi

(Zξi+1
− Zξi

) + Y ′
ξi
Z ′

ξi
X

2
ξi+1ξi

]

(where ξ0 = ξ < ξ1 < · · · ξn = η is a finite partition of [ξ, η]) as the size of the partition
goes to zero.

Provided V is defined through rough integrals we can obtain the following bounds on
its regularity:

Lemma 6. Let Y, Ỹ ∈ DX , for any integer n ≥ 0:

‖∇nV Y ‖∞ ≤ 4C ′
γ‖∇

n+1A‖1C
3
X‖Y ‖2

D(1 + ‖Y ‖D) (25)

and
‖∇nV Y −∇nV

eY ‖∞ ≤ 16C ′
γC

3
X‖∇

n+1A‖2‖Y − Ỹ ‖∗D(1 + ‖Y ‖D)2‖Y ‖D (26)

Proof. See Appendix, section A.2. �

4.2. Local existence and uniqueness. Given T > 0, consider the Banach space DX,T =
C([0, T ], DX) endowed with the norm

‖Y ‖DX,T
:= sup

t∈[0,T ]

‖Y (t)‖∗D

and, as above, the application F : DX,T → DX,T defined as

F (Y )(t)ξ := Xξ +

∫ t

0

V Y (s)(Y (s)ξ)ds

with

V Y (x) :=

∫ 1

0

A(x − Yη)dYη

understood as a rough integral. Actually, for F (Y ) to be a well-defined path in DX we
must specify its “derivative” F (Y )′. Then we set (with explicit vector notation)

[F (Y )(t)′]ijξ := δij +
3∑

k=1

∫ t

0

∇k[V
Y (s)(Y (s)ξ)]

i[Y (s)′ξ]
kj ds (27)
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where δij is the Kronecker symbol.
We will state now the main result of this section, namely the existence and uniqueness

of solutions to the vortex line equation in the space DX .

Theorem 2. Assume ‖∇A‖4 < ∞ and (X, X2) is a rough path in Cγ. Then there exists
a time T depending only on ‖∇A‖4, X, X2, γ such that the equation (13) has a unique
solution bounded in DX fot any T < T .

Proof. Lemma 7 and lemma 8 prove that on a small enough time interval [0, T ] the map
F is a strict contraction on some ball of DX,T having a unique fixed point. �

Lemma 7. Assume ‖∇A‖3 < ∞. For any initial rough path (X, X2) with γ > 1/3 there
exists a time T0 such that for any time T < T0 the set

QT := {Y ∈ DX,T : ‖Y ‖DX,T
≤ BT}

where BT is a suitable constant, is invariant under F .

Proof. Fix a time T > 0. First of all we have, for any t ∈ [0, T ]

|F (Y )(t)ξ| ≤ |Xξ| +

∫ t

0

‖V Y (s)‖∞ds

≤ ‖X‖∞ +

∫ t

0

ds4C ′
γ‖∇A‖1C

3
X‖Y (s)‖2

D(1 + ‖Y (s)‖D)

≤ ‖X‖∞ + 4C ′
γTC3

X‖∇A‖1‖Y ‖2
DX,T

(1 + ‖Y ‖DX,T
)

so that

sup
t∈[0,T ]

‖F (T )(t)‖ ≤ ‖X‖∞ + 4TC ′
γC

3
X‖∇A‖1‖Y ‖2

DX,T
(1 + ‖Y ‖DX,T

)

Next,

‖F (Y )(t)‖D ≤ ‖X‖D +

∫ t

0

‖V Y (s)(Y (s)·)‖Dds

≤ ‖X‖D +

∫ t

0

‖∇V Y (s)‖1‖Y (s)‖Dds

Given this we obtain

‖F (Y )‖DX,T
≤ ‖X‖∗D + T

(
sup

0≤s≤T
‖∇V Y (s)‖1‖Y ‖DX,T

+ sup
0≤s≤T

‖V Y (s)‖∞

)

≤ ‖X‖∗D + T sup
0≤s≤T

‖V Y (s)‖2(1 + ‖Y ‖DX,T
)

≤ ‖X‖∞ + 1 + 12C ′
γC

5
XT‖∇A‖3‖Y ‖3

DX,T
(1 + ‖Y ‖DX,T

)2

and for T small enough (T ≤ T0 with T0 depending only on ‖X‖∗D, CX and ‖∇A‖3) we have
that there exists a constant BT such that if ‖Y ‖DX,T

≤ BT then ‖F (Y )‖DX,T
≤ BT . �

Lemma 8. Assume ‖∇A‖4 < ∞. There exists a time T < T0 such that the map F is a
strict contraction on QT .
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Proof. Let Z(t) := F (Y )(t) and Z̃(t) := F (Ỹ )(t), with Y, Ỹ ∈ QT . Let H := Z − Z̃.We
start with the estimation of the sup norm of H(t):

H(t)ξ = Z(t)ξ − Z̃(t)ξ =

∫ t

0

ds
[
V Y (s)(Y (s)ξ) − V

eY (s)(Ỹ (s)ξ)
]

=

∫ t

0

ds
[
V Y (s)(Y (s)ξ) − V Y (s)(Ỹ (s)ξ) + V Y (s)(Ỹ (s)ξ) − V

eY (s)(Ỹ (s)ξ)
]

which gives

‖H(t)‖∞ ≤

∫ t

0

ds
[
‖∇V Y (s)‖∞‖Y (s) − Ỹ (s)‖∞ + ‖V Y (s) − V

eY (s)‖∞

]

≤ C ′
γT‖Y − Ỹ ‖DX,T

[
C3

X‖∇
2A‖1B

2
T (1 + BT ) + 16C3

X‖∇A‖2BT (1 + BT )2
]

≤ 20C ′
γTC3

X‖∇A‖2BT (1 + BT )2‖Y − Ỹ ‖DX,T
.

(28)

Next we need to estimate the DX norm of H(t). To be able to do that we need an
expression for the decomposition 23 of H(t):

H(t)ξ − H(t)η = [Z(t)ξ − Z̃(t)ξ] − [Z(t)η − Z̃(t)η]

=

∫ t

0

ds
[
V Y (s)(Y (s)ξ) − V Y (s)(Y (s)η) − V

eY (s)(Ỹ (s)ξ) + V
eY (s)(Ỹ (s)η)

]

=

∫ t

0

ds

∫ 1

0

dr
[
∇V Y (s)(Y (s)r

ξη)Y (s)ξη −∇V
eY (s)(Ỹ (s)r

ξη)Ỹ (s)ξη

]
.

from which we obtain

H(t)ξ − H(t)η = (Z ′(t)η − Z̃ ′(t)η)Xξη + RZ
ξη − R

eZ
ξη

= H(t)′ηXξη + RH(t)ξη

with

H(t)′η = Z(t)′η − Z̃(t)′η

=

∫ t

0

ds
[
∇V Y (s)(Y (s)η)Y

′(s)η −∇V
eY (s)(Ỹ (s)η)Ỹ

′(s)η

]

=

∫ t

0

ds
[
∇V Y (s)(Y (s)η)(Y

′(s)η − Ỹ ′(s)η)

+(∇V Y (s)(Y (s)η) −∇V
eY (s)(Ỹ (s)η))Ỹ

′(s)η

]

=

∫ t

0

ds
{
∇V Y (s)(Y (s)η)(Y

′(s)η − Ỹ ′(s)η)

+[∇V Y (s)(Y (s)η) −∇V
eY (s)(Y (s)η)]Ỹ

′(s)η

+[∇V
eY (s)(Y (s)η) −∇V

eY (s)(Ỹ (s)η)]Ỹ
′(s)η

}
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and

RH(t)ξη = RZ(t)ξη − R
eZ(t)ξη

=

∫ t

0

ds

[
∇V Y (s)(Y (s)η)R

Y (s)ξη +

∫ 1

0

dr

∫ r

0

dw∇2V Y (s)(Y (s)w
ξη)Y (s)ξηY (s)ξη

−∇V
eY (s)(Ỹ (s)η)R

eY (s)ξη +

∫ 1

0

dr

∫ r

0

dw∇2V
eY (s)(Ỹ (s)w

ξη)Ỹ (s)ξηỸ (s)ξη

]
.

Using Lemma 6 repeatedly we can bound

‖H(t)′‖∞ ≤

∫ t

0

ds
[
‖∇V Y (s)‖∞‖Y ′(s) − Ỹ ′(s)‖∞ + ‖∇V Y (s) −∇V

eY (s)‖∞‖Ỹ ′(s)‖∞

+‖∇2V
eY (s)‖∞‖Y (s) − Ỹ (s)‖∞‖Ỹ ′(s)‖∞

]

≤ C ′
γT‖Y − Ỹ ‖DX,T

[
4‖∇2A‖1C

3
XB2

T (1 + BT ) + 16C3
X‖∇

2A‖2B
2
T (1 + BT )

+4‖∇3A‖1C
3
XB3

T (1 + BT )
]

≤ 20C ′
γT‖∇2A‖2C

3
XB2

T (1 + BT )2‖Y − Ỹ ‖DX,T

(29)

and in the same way

‖H(t)′‖γ ≤

∫ t

0

ds
[
‖∇V Y (s)‖∞‖Y ′(s) − Ỹ ′(s)‖γ + ‖V Y (s)(Y (s)·) − V

eY (s)(Y (s)·)‖γ‖Ỹ (s)′‖∞

+‖V Y (s)(Y (s)·) − V
eY (s)(Y (s)·)‖∞‖Ỹ (s)′‖γ

+‖V
eY (s)(Y (s)·) − V

eY (s)(Ỹ (s)·)‖γ‖Ỹ (s)′‖∞

+‖V
eY (s)(Y (s)·) − V

eY (s)(Ỹ (s)·)‖∞‖Ỹ (s)′‖γ

]

≤ TC ′
γ‖Y − Ỹ ‖DX,T

[
4‖∇2A‖1C

4
XB2

T (1 + BT ) + 16C4
X‖∇

2A‖2(1 + BT )2B3
T

+16C3
X‖∇A‖2B

2
T (1 + BT )2 + 12C4

XB3
T (1 + BT )2

+4‖∇2A‖1C
3
XB3

T (1 + BT )
]

≤ 48TC ′
γ‖∇A‖3C

4
XB3

T (1 + BT )3‖Y − Ỹ ‖DX,T

(30)

where we used the following four inequalities:

‖V Y (s)(Y (s)·) − V
eY (s)(Y (s)·)‖γ ≤ ‖∇V Y (s) −∇V

eY (s)‖∞‖Y (s)‖γ

≤ 16C ′
γC

4
X‖∇

2A‖2(1 + BT )2B2
T‖Y − Ỹ ‖DX,T

;

‖V Y (s)(Y (s)·) − V
eY (s)(Y (s)·)‖∞ ≤ ‖V Y (s) − V

eY (s)‖∞

≤ 16C ′
γC

3
X‖∇A‖2BT (1 + BT )2‖Y − Ỹ ‖DX,T

;

‖V
eY (s)(Y (s)·) − V

eY (s)(Ỹ (s)·)‖∞ ≤ ‖∇V
eY (s)‖∞‖Y (s) − Ỹ (s)‖∞

≤ 4C ′
γ‖∇

2A‖1C
3
X‖Y (s)‖2

D(1 + ‖Y (s)‖D)‖Y (s) − Ỹ (s)‖∗D

≤ 4C ′
γ‖∇

2A‖1C
3
XB2

T (1 + BT )‖Y − Ỹ ‖DX,T
;
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and

‖V
eY (s)(Y (s)·) − V

eY (s)(Ỹ (s)·)‖γ

≤ ‖∇V
eY (s)‖∞‖Y (s) − Ỹ (s)‖γ + 3‖∇2V

eY (s)‖∞‖Ỹ (s)‖γ‖Y (s) − Ỹ (s)‖∞

≤ ‖Y (s) − Ỹ (s)‖∗D[4C ′
γ‖∇

2A‖1C
4
X‖Ỹ (s)‖2

D(1 + ‖Ỹ (s)‖D)

+ 12C ′
γ‖∇

3A‖1C
4
X‖Ỹ (s)‖3

D(1 + ‖Ỹ (s)‖D)]

≤ 12C ′
γC

4
X‖Ỹ (s)‖2

D(1 + ‖Ỹ (s)‖D)2‖Y (s) − Ỹ (s)‖∗D

≤ 12C ′
γC

4
XB2

T (1 + BT )2‖Y − Ỹ ‖DX,T

This last bound is the result of considering the expansion

φ(Yη) − φ(Yξ) − (φ(Ỹη) − φ(Ỹξ)) =

∫ 1

0

dr
[
∇φ(Y r

ηξ)Yηξ −∇φ(Ỹ r
ηξ)Ỹηξ

]

=

∫ 1

0

dr
[
∇φ(Y r

ηξ)(Yηξ − Ỹηξ) + (∇φ(Y r
ηξ) −∇φ(Ỹ r

ηξ))Ỹηξ

]

=

∫ 1

0

dr

[
∇φ(Y r

ηξ)(Yηξ − Ỹηξ) +

∫ 1

0

dw∇2φ(Jw(Y r
ηξ, Ỹ

r
ηξ))(Y

r
ηξ − Ỹ r

ηξ)Ỹηξ

]

where φ(y) = A(x − y).
At last,

‖RH(t)‖2γ ≤

∫ t

0

ds
[
‖∇2V Y (s) −∇2V

eY (s)‖∞‖Y (s) − Ỹ (s)‖∞‖RY (s)‖2γ

+‖∇V
eY (s)‖∞‖RY (s) − R

eY (s)‖2γ

+‖Y (s)‖2
γ(‖∇

3V Y (s)‖∞‖Y (s) − Ỹ (s)‖∞ + ‖∇2V Y (s) −∇2V
eY (s)‖∞)

+2‖∇2V Y (s)‖∞‖Y (s)‖γ‖Y (s) − Ỹ (s)‖γ

]

where, as above,

‖RH(t)‖2γ ≤ C ′
γT‖Y − Ỹ ‖DX,T

[
16C3

X‖∇
3A‖2B

2
T (1 + BT )2

+4C3
X‖∇

2A‖1B
2
T (1 + BT ) + 4C5

X‖∇
4A‖1B

4
T (1 + BT )

+16C5
X‖∇

3A‖2B
3
T (1 + BT )2 + 8C5

X‖∇
3A‖1B

3
T (1 + BT )

]

≤ C ′
γT‖Y − Ỹ ‖DX,T

C5
X‖∇

2A‖3[32B2
T (1 + BT )3 + 4B4

T (1 + BT )]

≤ 36C ′
γTC5

X‖∇
2A‖3B

2
T (1 + BT )3‖Y − Ỹ ‖DX,T

(31)

Finally, collecting together the bounds (28), (29) (30) and (31) we obtain

‖Z − Z̃‖DX,T
= ‖H‖DX,T

≤ 48C ′
γTC5

X‖∇A‖4BT (1 + BT )5‖Y − Ỹ ‖DX,T

Proving that for T < T0 small enough so that

48C ′
γTC5

X‖∇A‖4BT (1 + BT )5 < 1

F is a contraction in the ball QT ⊂ DX,T . �
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Remark 8. By imposing enough regularity on A and requiring that X can be completed
to a geometric rough path with bounded p-variation (in the sense of Lyons) it is likely that
the above proof of existence and uniqueness can be extended to cover the case of rougher
initial conditions (e.g. paths living in some Cγ with γ < 1/3).

Remark 9. The solution (Y, Y ′) in DX,T , satisfy (compare with eq. (27))

Y (t)′η = Id +

∫ t

0

∇V Y (s)(Y (s)η)Y
′(s)η ds (32)

and, as can be easily verified,

[RY (t)]iξη =

∫ t

0

ds
[
∇kV Y (s) i(Y (s)η)R

Y k(s)ξη+

+

∫ 1

0

dr

∫ r

0

dw∇k∇lV Y (s) i(Y (s)w
ξη)Y (s)k

ξηY (s)l
ξη

]
.

(33)

4.3. Dynamics of the covariations. Recall the framework described in Sec. 2.2 on the
covariation structure of the solution. If we assume that the initial condition (X, X2) is a
random variable a.s. with values in the space of γ-rough paths (with γ > 1/3) and that
X is a process with all its mutual covariations, then the solution Y (t) at any instant of
time t less that a random time T (depending on the initial condition) it is still a process
with all its mutual covariations (due to Prop.1).

The covatiations of Y satisfy the equation

[Y (t)i, Y (t)j]η =

∫ η

0

(Y (t)′)ik
ρ (Y (t)′)jl

ρ dρ[X
k, X l]ρ (34)

Indeed, comparing eq. (32) with eq. (12) we can identify the function M(t)ξ in Prop. 1
with Y (t)′ξ.

Remark 10. The same result can be obtained noting that, for our solution,
∑

i

|Y (t)ξi+1ξi
|2 =

∑

i

Y (t)′ξi
Xξi+1ξi

Y ′(t)ξi
Xξi+1ξi

+ O(|ξi+1 − ξi|
3γ).

Eq. (34) has a differential counterpart in the following equation

d

dt
W (t)ξ =

∫ ξ

0

(H(t)ρdρW (t)ρ + dρW (t)ρH(t)∗ρ) (35)

where we let W (t)ξ := [Y (t), Y (t)∗]ξ as a matrix valued process, and H(t)ξ := ∇V Y (t)(Y (t)ξ).
To understand better this evolution equation let us split the matrix H(t)ξ into its sym-
metric S and anti-symmetric T components:

H(t)ξ = S(t)ξ + T (t)ξ, S(t)ξ = S(t)∗ξ , T (t)ξ = −T (t)∗ξ .

Moreover define Q(t)ξ as the solution of the Cauchy problem

d

dt
Q(t)ξ = −Q(t)ξT (t)ξ, Q(0)ξ = Id

i.e.

Q(t)ξ = exp

[
−

∫ t

0

T (s)ξds

]
.
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Since T is antisymmetric, the matrix Q is orthogonal, i.e. Q(t)−1
ξ = Q(t)∗ξ . This matrix

describe the rotation of the local frame of reference at the point Y (t)ξ induced by the
motion of the curve.

Then define

W̃ (t)ξ :=

∫ ξ

0

Q(t)ρdρW (t)ρQ(t)−1
ρ

and analogously T̃ (t)ξ := Q(t)ξT (t)ξQ(t)−1
ξ and S̃(t)ξ = Q(t)ξS(t)ξQ(t)−1

ξ , and compute
the following time-derivative:

d

dt
dξW̃ (t)ξ =

dQ(t)ξ

dt
Q(t)−1

ξ dξW̃ (t)ξ + dξW̃ (t)ξQ(t)ξ

dQ(t)−1
ξ

dt
+ Q(t)ξ

(
d

dt
dξW (t)ξ

)
Q(t)−1

ξ

= −T̃ (t)ξdξW̃ (t)ξ + dξW̃ (t)ξT̃ (t)ξ + Q(t)ξ[H(t)ξdξW (t)ξ + dξW (t)ξH(t)∗ξ]Q(t)−1
ξ

= S̃(t)ξdξW̃ (t)ξ + dξW̃ (t)ξS̃(t)ξ

This result implies that dξW (t)ξ can be decomposed as

dξW (t)ξ = Q(t)−1
ξ exp

[∫ t

0

S̃(s)ξds

]
dξW (0)ξ exp

[∫ t

0

S̃(s)ξds

]∗

Q(t)ξ (36)

The relevance of this decomposition is the following. Modulo rotations, the matrix S̃(t)ξ,
corresponds to the symmetric part of the tensor field ∇V Y (t)(x) in the point x = Y (t)ξ.
This symmetric component descride the stretching of the volume element around x due
to the flow generated by the (time-dependent) vector field V Y (t). The magnitude of the
covariation then varies with time, due to this stretching contribution, according to eq. (36).

5. Random vortex filaments

5.1. Fractional Brownian Loops with H > 1/2. Consider the following probabilistic

model of Gaussian vortex filament. Let (X̃ξ)ξ∈[0,1] a 3d Fractional Brownian Motion
(FBM) of Hurst index H , i.e. a centered Gaussian process on R

3 defined on the probability
space (Ω, P,F) such that

E X̃ i
ξX̃

j
η =

δij

2
(|ξ|2H + |η|2H − |ξ − η|2H)

with H > 1/2 and X0 = 0. Consider the Gaussian process (Xξ)ξ∈[0,1] defined as

Xξ = X̃ξ −
C(ξ, 1)

C(1, 1)
X̃1

where C(ξ, η) = (|ξ|2H + |η|2H − |ξ − η|2H). Then X0 = X1 = 0 a.s. moreover the process

(Xξ)ξ is independent of the r.v. X̃1. We call X a Fractional Brownian Loop (FBL). Using
the standard Kolmogorov criterion it is easy to show that X in a.s. Hölder continuous
for any index γ < H . Since H > 1/2 then we can choose γ > 1/2 and apply the results
of Sec. 3 to obtain the evolution of a random vortex filament modeled on a FBL.
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5.2. Evolution of Brownian loops. As an example of application of Theorem 2 we can
consider the evolution of an initial random curve whose law is that of a Brownian Bridge
on [0, 1] starting at an arbitrary point x0. A standard three-dimensional Brownian Bridge
{Bξ}ξ∈[0,1] such that B0 = B1 = x0 ∈ R

3 is a stochastic process defined on a complete
probability space (Ω,F , P) whose law is the law of a Brownian motion starting at x0 and
conditioned to reach x0 at “time” 1. As in the previous section, it can be obtained starting
from a standard Brownian motion {B̃}ξ∈[0,1] as

Bξ = B̃ξ − ξB̃1, ξ ∈ [0, 1].

The Brownian Bridge is a semi-martingale with respect to its own filtration {FB
ξ : 0 ≤

ξ ≤ 1} with decomposition

dBξ =
Bξ − x0

1 − ξ
dξ + dβξ

where {βξ}ξ∈[0,1] is a standard 3d Brownian motion. Using the results in [Gub04], it is
easy to see that B is a γ-Hölder rough path if we consider it together with the area process
defined as

B
2,ij
ξη =

∫ η

ξ

(Bi
ρ − Bi

η) ◦ dBj
ρ (37)

where the integral is understood in Stratonovich sense. Indeed there exists a version of
the process (ξ, η) 7→ B

2
ξη which is continuous in both parameters and such that ‖B‖2γ is

almost surely finite (also all moments are finite). Then outside an event of P-measure
zero the couple (B, B) is a γ-Hölder rough path and by theorem 2 there exists a solution
of the problem (8) starting at B. Of course, in this case, the solution depends a priori
on the choice (37) we made for the area process. Indeed if in eq. (37) we consider, for
example, the Itô integral (for which the regularity result on B still holds) we would have
obtained a different solution, even if the path B is unchanged.

Consider the discussion in Sec. 4.3 and noting that, for our Brownian loop B the
covariation is [B, B]ξ = Id · ξ we can say that the covariation of the solution Y starting
at B will be

dξ[Y (t), Y (t)∗]ξ = Q(t)−1
ξ exp

[∫ t

0

S̃(s)ξds

]
exp

[∫ t

0

S̃(s)ξds

]∗

Q(t)ξ

(the notations are the same as in Sec. 4.3).

Remark 11. In [CQ02] the authors give, in particular, a construction of the area process
X

2 in the case where X is a FBM of Hurst index H > 1/4. By suitably adapting this
construction would be possible to build a closed γ-rough path (X, X2) where X is a FBL
with H > 1/3 for any γ < H.
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[Föl81] H. Föllmer. Calcul d’Itô sans probabilités. In Seminar on Probability, XV (Univ. Strasbourg,

Strasbourg, 1979/1980) (French), volume 850 of Lecture Notes in Math., pages 143–150.
Springer, Berlin, 1981.

[Fri95] Uriel Frisch. Turbulence. Cambridge University Press, Cambridge, 1995. The legacy of A. N.
Kolmogorov.
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Appendix A. Proofs of some lemmas

A.1. Proof of lemma 1.

Proof. It is enough to consider n = 0, the proof for general n being similar. The Taylor
expansion

A(Yξ) − A(Yη) = Yξη

∫ 1

0

dr∇A(Jr(Yξ, Yη))
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and the related inequality

|A(Yξ) − A(Yη)| ≤ ‖∇A‖∞|Yξη|.

gives

‖∇nA(Y·)‖γ ≤ ‖Y ‖γ‖∇
n+1A‖∞. (38)

Next, if we consider the decomposition

[A(Yξ)−A(Ỹξ)] − [A(Yη) − A(Ỹη)] = Yξη

∫ 1

0

∇A(Y r
ξη)dr − Ỹξη

∫ 1

0

∇A(Ỹ r
ξη)dr

= (Yξη − Ỹξη)

∫ 1

0

∇A(Y r
ξη)dr + Ỹξη

[∫ 1

0

∇A(Y r
ξη)dr −

∫ 1

0

∇A(Ỹ r
ξη)dr

]

= (Yξη − Ỹξη)

∫ 1

0

∇A(Y r
ξη)dr − Ỹξη

∫ 1

0

dr(Ỹ r
ξη − Y r

ξη)

∫ 1

0

dw∇2A(Jw(Ỹ r
ξη, Y

r
ξη))

where Y r
ξη := Jr(Yξ, Yη), we obtain

‖A(Y·) − A(Ỹ·)‖γ ≤ ‖Y − Ỹ ‖γ‖∇A‖∞ + 3‖Ỹ ‖γ‖Y − Ỹ ‖∞‖∇2A‖∞

which implies

‖∇nA(Y·) −∇nA(Ỹ·)‖γ ≤ ‖Y − Ỹ ‖γ‖∇
n+1A‖1(1 + 3‖Ỹ ‖γ). (39)

Using the lemma 2 and the bounds (38) and (39) the estimates (15) and (16) on the
velocity vector-field follow as:

|V Y (s)(x)| =

∣∣∣∣
∫ 1

0

A(x − Y (s)η)dY (s)η

∣∣∣∣ ≤ Cγ‖A(x − Y (s)·)‖γ‖Y (s)‖γ

≤ Cγ‖∇A‖∞‖Y (s)‖2
γ.

Moreover for the difference V Y − V
eY we have the decomposition

V Y (x) − V
eY (x) =

∫ 1

0

[
A(x − Yη)dYη − A(x − Ỹη)dỸη

]

=

∫ 1

0

A(x − Yη)d(Y − Ỹ )η +

∫ 1

0

[
A(x − Yη) − A(x − Ỹη)

]
dỸη

which in turn can be estimated as

|V Y (x) − V
eY (x)| ≤ Cγ‖A(x − Y·)‖γ‖Y − Ỹ ‖γ

+ Cγ‖A(x−·) − A(x − Ỹ·)‖γ‖Ỹ ‖γ

≤ Cγ‖∇A‖∞‖Y ‖γ‖Y − Ỹ ‖γ

+ Cγ‖Ỹ ‖γ(‖∇A‖∞‖Y − Ỹ ‖γ + 3‖Ỹ ‖γ‖Y − Ỹ ‖∞‖∇2A‖∞)

≤ Cγ‖Y − Ỹ ‖∗γ‖∇A‖1(‖Y ‖γ + ‖Ỹ ‖γ + 3‖Ỹ ‖2
γ)

�
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A.2. Proof of lemma 6.

Proof. Consider the case n = 0, the general case being similar. The path Zξ = A(x− Yξ)
belongs to DX and has the following decomposition

Zξη = ∇A(x − Yη)Yξη + YξηYξη

∫ 1

0

dr

∫ r

0

dw∇2A(x − Y w
ξη)

= ∇A(x − Yη)Y
′
ηXξη + ∇A(x − Yη)R

Y
ξη + YξηYξη

∫ 1

0

dr

∫ r

0

dw∇2A(x − Y w
ξη)

= Z ′
ηXξη + RZ

ξη

with
Z ′

η = ∇A(x − Yη)Y
′
η

and

RZ
ξη = ∇A(x − Yη)R

Y
ξη + YξηYξη

∫ 1

0

dr

∫ r

0

dw∇2A(x − Y w
ξη)

Then

‖Z‖D = ‖Z ′‖∞ + ‖Z ′‖γ + ‖RZ‖2γ

≤ ‖∇A‖∞‖Y ′‖∞ + ‖∇2A‖∞‖Y ‖γ + ‖∇A‖∞‖Y ′‖γ

+ ‖∇A‖∞‖RY ‖2γ + ‖Y ‖2
γ‖∇

2A‖∞

≤ ‖∇A‖1(‖Y ‖D + ‖Y ‖γ + ‖Y ‖2
γ)

≤ ‖∇A‖1[(1 + CX)‖Y ‖D + C2
X‖Y ‖2

D]

≤ C2
X‖∇A‖1[2‖Y ‖D + ‖Y ‖2

D]

(40)

where we used the fact that

‖Y ‖γ ≤ ‖Y ′‖∞‖X‖γ + ‖RY ‖γ

≤ ‖Y ′‖∞‖X‖γ + ‖RY ‖2γ

≤ (1 + ‖X‖γ)‖Y ‖D ≤ CX‖Y ‖D

(41)

V Y (x) =

∫ 1

0

A(x − Yη)dYη =

∫ 1

0

ZηdYηZ0(Y1 − Y0) + Z ′
0Y

′
0X

2
01 + Q01

with
‖Q‖3γ ≤ C ′

γCX‖Z‖D‖Y ‖D

Then

|V Y (x)| ≤ ‖Z ′‖∞‖Y ′‖∞‖X
2‖2γ + ‖Q‖3γ

≤ 2C ′
γCX‖Z‖D‖Y ‖D

≤ 4C ′
γ‖∇A‖1C

3
X‖Y ‖2

D(1 + ‖Y ‖D)

where we used the fact that C ′
γ ≥ 1.

To bound V Y (x)−V
eY (x) we need the DX norm of the difference A(x−Y·)−A(x− Ỹ·).

Let φ(y) = A(x − y) and consider the expansion

φ(Yη) − φ(Yξ) − (φ(Ỹη) − φ(Ỹξ))

=
[
∇φ(Yξ)Yηξ −∇φ(Ỹξ)Ỹηξ

]
+

∫ 1

0

dr

∫ r

0

dw
[
∇2φ(Y w

ηξ)YηξYηξ −∇2φ(Ỹ w
ηξ)ỸηξỸηξ

]
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which by arguments similar to those leading to eq. (40) gives a related estimate:

‖φ(Y·) − φ(Ỹ·)‖D ≤‖∇φ‖∞‖Y − Ỹ ‖D + ‖∇2φ‖∞‖Y − Ỹ ‖∞‖Y ‖D

+ 3‖∇3φ‖‖Y − Ỹ ‖∞‖Y ‖2
γ + 2‖∇2φ‖∞‖Y − Ỹ ‖γ‖Y ‖γ

≤ 6‖∇φ‖2C
2
X(1 + ‖Y ‖D)2‖Y − Ỹ ‖∗D

so that
‖A(x − Y·) − A(x − Ỹ·)‖D ≤ 6‖∇A‖2C

2
X(1 + ‖Y ‖D)2‖Y − Ỹ ‖∗D

Now,

V Y (x) − V
eY (x) =

∫ 1

0

A(x − Yη)dYη −

∫ 1

0

A(x − Ỹη)dỸη

=

∫ 1

0

[A(x − Yη) − A(x − Ỹη)]dYη +

∫ 1

0

A(x − Ỹη)d(Y − Ỹ )η

So

|V Y (x) − V
eY (x)| ≤ 2C ′

γCX(‖A(x − Y·) − A(x − Ỹ·)‖D‖Y ‖D

+ ‖A(x − Y·)‖D‖Y − Ỹ ‖D)

≤ 16C ′
γC

3
X‖∇A‖2‖Y − Ỹ ‖∗D(1 + ‖Y ‖D)2‖Y ‖D
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