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Abstract

The qualitative and experimental investigation of dynamical system
representing a discretization of rotation was carried out. For different
values of angle and different initial data we found the first periodic
point, period, maximum and minimum values of coordinates of trajec-
tory points. The main experimental result is the discovery of such a
value of angle for which all trajectories with the different initial points
go very far from their initial points. In this case the first periodic point
occurs after appearing more than 1500000 non-periodic points of the
trajectory and the maximum value of coordinates is not less than 1023
for all initial points being close to the origin. The value of period which
is 2049 and the maximum and minimum values of coordinates of the
trajectory points do not depend on the initial points. The angle for
which such a phenomena takes place differs from the value π/2 in only
14− th digit in the computer representation of the number π/2.

1 Setting of Problem

The investigation of a dynamical system representing a discretization of
classical rotation on two-dimensional plane is carried out in this paper. Let
R2 be a plane with rectangular coordinates x, y and Z2 ⊂ R2 be the two-
dimensional lattice, such that any point (n, m) ∈ Z2 of the lattice has
integer coordinates n and m. For any real number a we shall denote here
by [a] the integer part of a, i. e. the greatest integer number which does not
exceed the number a. We introduce a map A = A(ϕ) : (n, m) → (n′,m′)
of the lattice Z2 into itself depending on a real number ϕ, which sends a
point (n, m) to a point (n′, m′) such that n′ = [x′], m′ = [y′] where
x′ = n cos ϕ−m sin ϕ, y′ = n sinϕ + m cos ϕ. Since a map (n, m) → (x′, y′)
is a rotation of a vector (n, m) by the angle ϕ, we call the map A(ϕ)
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a discrete rotation of the angle ϕ. Our task is to study the behaviour of
trajectories (nk, mk) = Ak(n, m) (k = 1, 2, . . . ) of a point (n, m) and their
dependence on the angle ϕ and the initial point (n, m). In more general
cases where the angle ϕ is not a constant but a function ϕ = ϕ(r) of a
distance r =

√
n2 + m2 between a point (x, y) and the origin (0, 0) the map

A = Ar = Ar(ϕ) is defined in the following way: Ar = Ar(ϕ) : (n, m) →
(n(r), m(r)) where n(r) = [x(r)], m(r) = [y(r)], r =

√
n2 + m2, x(r) =

n cos ϕ(r) −m sinϕ(r), y(r) = n sinϕ(r) + m cos ϕ(r). This case with the
function satisfying some general condition was qualitatively studied in [1]
and [2] and it was shown that any trajectory (n(r)

k , m
(r)
k ) = Ak

r (n, m) (k =
1, 2, . . . ) becomes periodic, i. e. there exist natural numbers k0 and t such
that the equalities

n
(r)
k = n

(r)
k+t, m

(r)
k = m

(r)
k+t (1)

hold for all integer k ≥ k0. We call the first point (n(r)
k0

, m
(r)
k0

) the beginning
of period and the smallest t for which the equalities (1) are valid is called
a period. As a corollary of periodicity, we obtained that the trajectory can
not go to infinity. The statement of periodicity was proved in [1] and [2] for
any function ϕ(r) being infinitely differentiable and such that the inequality∣∣∣∣dϕ

dr
(r)

∣∣∣∣ >
c∗

r
(2)

holds for some constant c∗ > 0. In the case ϕ = ϕ(r) = const the in-
equality (2) is clearly not valid. Nevertheless, qualitative but not rigorous
arguments show that the periodicity property holds for a constant ϕ too.
These arguments are presented in Section 1. However, in view of the fact
that the periodicity occurs, the following problem can be set up: whether
the trajectory goes very far from the initial point (n, m) and what are the
beginning of period and the period itself in such a case. It is not possible
to solve these problems by using only rigorous mathematical methods. In
view of that, an experimental work was carried out in which on the base
of numerical analysis for different values of the angle ϕ and initial points
(n, m) the following parameters were found:

• maximum and minimum of coordinates of trajectory points;

• the beginning of period;

• period.
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The main result following from the experiments is the discovery of such
a value of the angle ϕ for which the trajectory of initial point (n, m) with
10 ≤ m,n ≤ 50 goes very far from the origin (the distance is greater than
210 − 1) even though the initial point is close enough to the origin. In this
case the period is 2049, the beginning of the period is greater than 1500000
and in cases we have considered maximal and minimal values of coordinates
and periods of the trajectory points do not depend on the initial point
(n, m). It is an unexpected result, because for any other values of the angle
ϕ the maximal and minimal deviation of trajectory points is almost equal
to the initial distance r =

√
n2 + m2 and this is natural because the discrete

rotation is close to usual rotation by the angle ϕ, (see section 2) for which
the distance between any trajectory point and the origin is a constant.

2 Qualitative Justification of Periodicity

We express the map A(ϕ) in polar coordinates α, r, where
α = arctan m

n mod 2π is the angle, r =
√

n2 + m2 is the radius. Then
supposing α′ = arctan m′

n′ mod 2π, r′ =
√

(n′)2 + (m′)2 we obtain the map
Bϕ : (α, r) → (α′, r′), where

α′ = α + ϕ + f(α, r) mod 2π, r′ = r + g(α, r). (3)

From the definition of the map A(ϕ) it follows that the functions f(α, r)
and g(α, r) satisfy the inequalities

|f(α, r)| < c

r
, |g(α, r)| < c , (4)

where c is a constant independent of α, r and ϕ. Now we introduce the new
variable ρ = 1

r . The map Bϕ goes over as a result of this change of variable
into the transformation Dϕ(α, ρ) → (α′, ρ′), where ρ′ = 1

r′ ,

α′ = α + ϕ + f1(α, ρ) mod 2π, ρ′ = ρ + g1(α, ρ) , (5)

f1(α, ρ) = f(α,
1
ρ
) , g1(α, ρ) = −

ρ2g(α, 1
ρ)

1 + ρg(α, 1
ρ)

, (6)

and on account of (3)-(6) the inequalities

|f1(α, ρ)| < cρ , |g1(α, ρ)| < 2cρ2 , (7)

hold in the region |ρ| ≤ ε for some ε > 0. Further we introduce a new
variables ∆ = ρ

ε , ∆′ = ρ′

ε and express the transformation Dϕ in terms of
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the variables ∆ and ∆′. As a result we obtain the transformation
Uϕ : (α, ∆) → (α′,∆′) , where

α′ = α + ϕ + f2(α, ∆) mod 2π , ∆′ = ∆ + g2(α, ∆) (8)

and by virtue of (5)-(7) we have:

f2(α, ∆) = f1(α, ∆ε) = f(α,
1

ε∆
) , g2(α, ∆) =

1
ε
g1(α, ε∆) ,

|f2(α, ∆)| < cε∆ , |g2(α, ∆)| < 2cε∆2 . (9)

It follows from (8) and (9) that if the positive numbers ∆0 and ε are
sufficiently small then in the region |∆| ≤ ∆0 the transformation Uϕ is close
to the rotation

U∗
ϕ : (α, ∆) → (α∗,∆∗) = (α + ϕ mod 2π,∆).

Therefore it is natural to apply the Moser theorem [3] to the map Uϕ, ac-
cording to which for any sufficiently small ε > 0 the transformation (8)
satisfying (9) has a simple closed curve in the region |∆| ≤ ∆0 surrounding
the point ∆ = 0 which is invariant under the transformation Uϕ. The state-
ment of periodicity follows from Moser’s theorem, because the region inside
this invariant curve is invariant under the transformation Uϕ and passing
back from the variable ∆ to the variable r = 1

∆ε we obtain that any trajec-
tory of the transformation A(ϕ) never leaves a certain disk with center at
the point r = 0. Since in any disk there are only a finite number of points
of the lattice Z2, then any trajectory of the map A(ϕ) becomes periodic.
To apply Moser’s theorem to the transformation Uϕ one needs to justify the
following conditions:

1. Uϕ is a sufficiently smooth map (for example, infinite differentiable);

2. The following intersection property holds: every closed curve sur-
rounding the point ∆ = 0 intersects its image under the transformation
Uϕ;

3. The angle of the rotation ϕ = ϕ(r) is not a constant but a function
satisfying the inequality (2) with some constant c∗.

In our case, by virtue of the definition of the map Aϕ, the transformation Uϕ

is discontinuous. To reduce the problem to Moser’s theorem in [1] and [2] the
smooth approximations of the map A(ϕ) were proposed. They approximate
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Aϕ from above and from below and the estimate (9) and the intersection
property 2 are valid. But the condition (2) was assumed to be true. Here we
assume that the angle is a constant and therefore the inequality (2) is not
satisfied, and we fail to prove rigorously the periodicity of the trajectories.
However many numerical experiments show that periodicity property takes
place in the case of a constant ϕ and moreover the deviations of trajectories
of the discrete rotation are small for almost all ϕ and all initial points (n, m).

3 Method and Results of Numerical Experiments

Input data of the numerical experiments are a real number ϕ (radian mea-
sured in) and two integer numbers n, m, and the trajectory (nk, mk) =
Ak(n, m) (k = 1, 2, . . . ;A = A(ϕ)) is found with the help of the algorithm
described in section 1. In addition given some natural number R we define a
collection ΩR of integer vectors (n, m) in the following way: for any integer
n in the interval −R ≤ n ≤ R we found the unique number m = [

√
R2 − n2].

We apply the algorithm above to every such a vector(n, m) ∈ ΩR and cal-
culate the trajectory (nk, mk). The sense of such approach is that for fixed
R all integer vectors (n, m) ∈ ΩR are lying near of the circle SR of radius
R centered at the point (0, 0) and this circumstance allows us to study a
statistics of parameters of a trajectory both for fixed and different values of
R.

Output data representing results of experiments are following: the be-
ginning of period, period, min x and max x, which are respectively minimal
and maximal values of the coordinate x of points of trajectory, min y and
max y, which are respectively minimal and maximal values of the coordinate
y of trajectory points. We display here three examples of our experiments.

In the first one R = 50, ϕ = 1, 0471975521965979 is very close to
π/3,−50 ≤ n ≤ 50,m = [

√
2500− n2]. The analysis of the results shows

that there are only three values of periods 6, 12 and 18 in 101 variants and
there are 19 different values, of the beginning of period. The minimal and
maximal values for coordinates of trajectory points satisfy the following in-
equalities:

−51 ≤ minx ≤ −43, 43 ≤ max x ≤ 52, (10)

−54 ≤ min y ≤ −44, 43 ≤ max y ≤ 53. (11)

According to inequalities (10) and (11) minimal and maximal deviations
of coordinates of all trajectories points of the transformation A differ from
minimal values −50 and maximal values 50 very little.
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In the second example R = 20, the angle ϕ = 1, 5707963267948966 is
close to π/2, −50 ≤ n ≤ 50,m = [

√
400− n2]. As the result of simulations

we have got that there are two values of period 4 and 61 and 30 different
values of the beginning of period. The minimal and maximal values of
coordinates of trajectories points satisfy the inequalities

−20 ≤ minx ≤ −14, 14 ≤ max x ≤ 20, (12)

−20 ≤ min y ≤ −14, 14 ≤ max y ≤ 20. (13)

In the third example R = 30 and the value of ϕ is the same as in the
second one. Here we obtain two values of period 4 and 246 and there are
40 different values of the beginning of period. The minimal and maximal
values of coordinates x and y of trajectories points satisfy the inequalities:

−32 ≤ minx ≤ −21, 21 ≤ max x ≤ 32, (14)

−32 ≤ min y ≤ −21, 21 ≤ max y ≤ 32. (15)

According to inequalities (12)-(15) the minimal and maximal deviations
of coordinates of all trajectories points are very close to values −R and R
respectively. From results of examples 2 and 3 we see that besides the main
value 4 of period there are some other periods which depend on R for the
same ϕ.

4 Large Deviation of Trajectories

Here we describe the main result of simulations in which one discovers a
value of the angle π/2 such that trajectories of the map A = A(ϕ) have large
deviations from initial points. It is worth noting that in such situations the
period of trajectories is always equal to 2049, minimal values of coordinates
x and y are −1024, maximal value of x is equal to 1024, maximal value
of y is equal to 1023, and the beginning of period is greater than 1500000.
The angle for which these results are valid is close to π/2 and equals to
1, 5707963267948. These results are obtained for R = 10, 20, 30, 40, 50.

5 Conclusion

The value of the angle for which large deviations take place differs from
the angle, for which there are no large deviations only in 14-th digit in
computer representation of number π/2. This very small perturbation of
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rotation angle leads to enormous change of behavior of the trajectories with
universal characteristics. In the case of large deviations the value of period
and minimal and maximal values of coordinates of trajectory points are the
same for different initial points.

The program for these numerical experiments was done by R.L.Pustylnikov.
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