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1. Introduction

This paper is an extended version of my talk given at the symposium in
Tübingen. The main purpose is to give a concise pedagogical account on
the PDE (= partial differential equation) approach to invariant and Gibbs
measures, developed in a series of papers during the last few years by S. Al-
beverio, V.I. Bogachev, Y.G. Kondratiev, T. Pasurek, F.Y. Wang and the
author (cf. e.g. AKR97a, AKR97b, AKRT00, BRW01, BR01, AKPR04), and de-
scribe a recent new application to the classical problem whether any in-
variant measure is Gibbsian (cf. BRW02). The latter will be done in more
detail, but the main result will be only precisely formulated, without re-
calling the proof from BRW02. Instead, we shall present an application to
an intensively studied model from statistical mechanics (see e.g. BHK82).
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2. The PDE-approach to invariant and Gibbs measures

2.1. The finite dimensional case

Consider the d-dimensional Euclidean space Rd (or more general a d-
dimensional manifold Md) and a Borel measurable function E : Rd →
(−∞,+∞] such that e−E ∈ L1(Rd, dx) where dx denotes Lebesgue mea-
sure. For a better understanding of the following one should think of E(x)
as the “energy” of the “configuration” x = (xi)1≤i≤d ∈ Rd. Let us assume
for simplicity that E ∈ C1(Rd). For a probability measure µ on Rd consider
the following assertions:

(1) µ is a Gibbs measure (with energy E), i.e.

µ(dx) =
(∫

e−E(x) dx

)−1

e−E(x) dx.

(2) µ satisfies the following first order PDE:

∂iµ = −∂iE · µ ∀ 1 ≤ i ≤ d

(where ∂i := ∂
∂xi

and ∂iµ denotes the distributional derivative of µ).

(3) Setting Z := (Zi)1≤i≤d, Zi := ∂iE and LZ :=
d∑

i=1

(∂2
i − Zi∂i), then µ

symmetrizes LZ with domain C2
0 (Rd), i.e.∫

LZu v dµ =
∫

u LZv dµ ∀ u, v ∈ C2
0 (Rd).

(4) µ is LZ-infinitesimally invariant, i.e.∫
LZu dµ = 0 ∀ u ∈ C2

0 (Rd),

or shortly,

L∗Zµ = 0

(so µ satisfies a second order PDE).

Then (1) ⇔ (2) ⇔ (3) ⇒ (4).
Under our present smoothness assumptions, i.e. E ∈ C1(Rd), the im-

plications (1) ⇒ (2) ⇒ (3) are pretty much obvious. For (2) ⇒ (1) a
regularity result to ensure the existence of a sufficiently regular Radon–
Nikodym derivative with respect to dx for any µ satisfying (2) is necessary.
For details on the latter in a much more general case, namely where merely
e−

1
2 E ∈ H1,2

loc (Rd, dx) (= local Sobolev space of order 1 in L2
loc(Rd, dx))

and e−
1
2 E > 0 dx-a.e. is assumed, we refer e.g. to Proposition 1.5 and its
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proof in ARZ93 (see also Remark 2.1 below). For (3) ⇒ (2) we refer e.g. to
Lemma 1 in BR03.

The equivalence of (1) and (2) is of great importance since as we shall
see in the next section it generalizes to infinite dimensions, so gives the
possibility to study Gibbs measures by PDE–methods.

Concerning the relation between (3) and (4) by choosing vn ∈ C2
0 (Rd)

with vn ≡ 1 on a ball of radius n and letting n → ∞ we obviously deduce
(4). So, we have “Gibbsian ⇒ infinitesimally invariance”. The converse in
infinite dimension is a famous conjecture of Gibbs (originally formulated
for so–called Hamiltonian dynamics).

Under our present regularity assumption on E, i.e. E ∈ C1(Rd), in this
finite dimensional case the converse is also true. This follows from two
highly non–trivial general results from Corollary 2.3 (see in particular also
Remark 2.4.(i)) in Sta99 and Theorem 3.1 in BRS00 (see also Theorem 4.1
in BRS02) which imply that the PDE in (4) has a unique solution, which
since µ in (1) is a solution, is therefore Gibbsian.

If one relaxes the assumptions on E the situation becomes much more
complicated. We summarize this in the following remark.

Remark 2.1. For E : Rd → (−∞,∞] let us only assume the already
mentioned condition

e−
1
2 E ∈ H1,2

loc (Rd, dx) and e−
1
2 E > 0 dx-a.e. (2.1)

Setting ρ := e−E (∈ H1,1
loc (Rd, dx)) we can reformulate (2) as follows:

(2̄) µ satisfies the following first order PDE

∂iµ =
(

∂iρ
ρ

)∼ · µ and
(

∂iρ
ρ

)∼ ∈ L2
loc(Rd, µ) ∀ 1 ≤ i ≤ d,

for some (Borel) dx-version
(

∂iρ
ρ

)∼ of ∂iρ
ρ .

Here we set as usual ∂iρ
ρ := 0 on {ρ = 0}. In this case as mentioned above

always µ � dx, so the superfix “∼” can be dropped a posteriori. Note
that in general ∂iρ

ρ /∈ L1
loc(Rd, dx), so even if E ∈ L1

loc(Rd, dx), in general
∂iρ
ρ 6= ∂iE, since the right hand side is always a Schwartz distribution.

Then we still have

(1) ⇒ (2̄) ⇔ (3̄) ⇒ (4̄).

Here we take Zi :=
(

∂iρ
ρ

)∼ and (3̄), (4̄) are just conditions (3), (4) respec-
tively, augmented by the condition

(
∂iρ
ρ

)∼ ∈ L2
loc(Rd, µ), 1 ≤ i ≤ d. Since
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by Theorem 1 in BKR97 any solution of L∗µ = 0 is absolutely continuous
with respect to dx, we can again drop “∼” a posteriori.

Under condition (2.1) the PDE in (2̄) can have infinitely many solutions
(cf. Example 6.1 in BR95 and also Remark 3.6(ii) in AKR97b) even for d = 1.
So, (2̄) ; (1). If, however, in addition, to (2.1) also |∇ρ|

ρ ∈ L1
loc(Rd, dx),

then µ from (1) is the unique solution of the PDE in (2̄) (cf. Theorem 6.2
in BR95 and Theorem 1.8(ii) in ABR99). In addition, ∂iρ

ρ = ∂iE, 1 ≤ i ≤ d,

(cf. Lemma 6.4 in BR95). On the other hand, even if |∇ρ|
ρ ∈ L1

loc(Rd, dx),
it appears to be unknown whether (4̄) ⇒ (3̄). But also no counterexam-
ple seems to be known. For conditions so that (4̄) ⇒ (3̄) in the present
situaton we refer to Theorem 1.8(i) in ABR99 for the most general result
we are aware of that does not require higher integrability of |∇ρ|

ρ . If one

assumes that |∇ρ|
ρ ∈ Ld+ε

loc (Rd, dx), ε > 0, then by the same results from
Sta99, BRS00, BRS02 mentioned above the PDE in (4̄) has a unique solution
(among probability measures), so (4̄) ⇒ (1), hence (1) ⇔ (2̄) ⇔ (3̄) ⇔ (4̄)
in this case.

If we replace Rd by a suitable manifold, then there are easy examples even
for smooth Z where (4) ; (3).

Example 2.1. (cf. Remark 2.5(ii) BRW02) Let M be a connected complete
Riemannian manifold with infinite volume measure λM , such that there
exists a positive harmonic function h, integrable with respect to the volume
measure λM (cf. Chu83, LS84 for existence). Choose the vector field Z to be
identically equal to zero, so LZ = ∆ (= Laplacian on M). Define

µ :=
(∫

h dλM

)−1

h · λM .

Then for u ∈ C2
0 (M)

∫
LZu dµ =

∫
∆u h dλM =

∫
u ∆h dλM = 0
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since ∆h = 0. But for u, v ∈ C2
0 (M)∫

LZu v dµ

=
∫

u ∆v h dλM +
∫

u v ∆h dλM + 2
∫

u 〈∇v,∇h〉 dλM

=
∫

u LZv dµ + 2
∫

u 〈∇v,∇h〉 dλM

6=
∫

u LZv dµ,

since h cannot be constant because λM (M) = ∞. Therefore, µ is infinites-
imally invariant for LZ , but not symmetrizing, hence not Gibbsian.

In infinite dimensions much less is known about when or not (4) im-
plies (3). We have included the quite detailed discussion in Remark 2.1
since it displays a typical characteristics in comparing finite and infinite
dimensional analysis. Difficulties in the analysis of PDE or differential op-
erators in infinite dimensions are reflected in part in finite dimensions if the
coefficients become singular.

The last remark of this subsection concerns the relation between “in-
finitesimal invariance” and “invariance”. We refer to Subsect. 2.5 in BRS00

and Sections 3 and 4 in BRS02 for more details.

Remark 2.2. Assume again that (2.1) holds and that µ is as in (4̄) (cf.
Remark 2.1). Set L := LZ . Suppose there exists a closed extension
(L̂µ, D(L̂µ)) of the operator (L,C2

0 (Rd)) on L1(Rd, µ) which generates a
C0-semigroup (Tµ

t )t≥0 = (etL̂µ

)t≥0 on L1(Rd, µ). If µ is the special mea-
sure in (1), then it follows by Corollary 2.3 and Remark 2.4.(ii) in Sta99

that (L̂µ, D(L̂µ)) must be the closure of (L,C2
0 (Rd)) and this closure really

generates a C0-semigroup on L1(Rd, µ). In this case a simple consideration
implies that∫

Tµ
t f dµ =

∫
f dµ for all t > 0, f ∈ L1(Rd, µ), (2.2)

i.e. µ is (Tµ
t )t≥0-invariant. For a general µ satisfying (4̄), however, the

mere existence of (Tµ
t )t≥0 = (eL̂µ

)t≥0 for a suitable closed extension L̂µ of
L is unknown and, if it exists, it might not be the closure of L. So, it is
unclear whether µ will be its invariant measure in the sense of (2.2). On
the other hand, if (Tµ

t )t>0 exists and satisfies (2.2), by differentiating at
t = 0, we deduce from (2.2) that µ satisfies L∗µ = 0. So, even in finite
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dimensions “infinitesimally invariance” seems to be a more general notion
than “invariance”.

2.2. The infinite dimensional case

Consider now the d-dimensional lattice RZm

, m ∈ N, instead of Rd. (Again
we could also consider a product

∏
i∈Zd

Mi of finite dimensional Rieman-

nian manifolds, cf. BRW02 for details). We are going to restrict the class
of “energy”–functionals E : RZm → (−∞,∞] a bit, with applications to
statistical mechanics in mind. So, let

E(x) :=
∑

Λ⊂Zm

|Λ|<∞

UΛ(xΛ), x = (xi)i∈RZm , (2.3)

where |Λ| denotes the cardinality of Λ, xΛ := (xi)i∈Λ, and UΛ : RΛ →
(−∞,∞] is Borel-measurable. Of course, (2.3) is purely informal, because
this sum almost never converges. UΛ(x) is called the “potential of the con-
figuration x in Λ” and as before E(x) is the “energy of the configuration
x = (xi)i∈RZm ”. Similarly as in finite dimensions one then defines cor-
responding Gibbs measures µ on RZm

(equipped with the product of the
Borel σ–algebras on R) as

(1)’ µ is a Gibbs measure (with energy E), i.e.

µ(dx) =
“
(∫

e−E(x)
∏

i∈Zm

dxi

)−1

e−E(x)
∏

i∈Zm

dxi
”
, x = (xi)i∈Zm ,

with dxi := Lebesgue measure on R1.

Of course, also (1)’ is purely informal, since an infinite product of Lebesgue
measures does not exist in a suitable sense and, as said before, E(x) is not
well–defined. But it turns out (and has been well–known for many years)
that the expression in the right hand side of the equality in (1)’ can be
given sense. In general, however, the correspondingly defined measure is
not unique. One reason is e.g. that if one defines the right hand side as
a limit along a “localizing sequence” Λn ↗ Zm, n → ∞, with Λn finite,
the limit might depend on the sequence. Furthermore, “localizing” implies
that one has to fix “boundary conditions” outside every Λn, and different
choices of these might also lead to different limits. A precise definition of
a Gibbs measure taking all these issues into account requires the notion
of a “local specification” and then a Gibbs measure can be defined by
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determining its conditional probabilities on RΛ for each finite Λ ⊂ Zm by
this specification fixing the configuration outside Λ, i.e. the measure satisfies
the DLR (= Dobrushin–Lanford–Ruelle) equations. We refer e.g. to the
exposition in Geo88 for details, since we do not need this below, since this
rigorous version of (1)’ is as in finite dimensions equivalent to the following,
infinite dimensional analogue (2)’ of (2) which is rigorous. This equivalence
has been proved in AKR97a,AKR97b,AKRT00 in various frameworks:

(2)’ µ satisfies the following first order PDE (in infinitely many variables):

∂iµ =
(
−

∑
Λ:i∈Λ

Λ⊂Zm, |Λ|<∞

∂iUΛ

)
· µ ∀ i ∈ Zm. (2.4)

Precise assumptions for “DLR–version of (1)’ ⇔ (2)’ ” to hold are e.g.

UΛ ∈ L∞loc

(
RΛ,

∏
i∈Λ

dxi

)
∩H1,2

loc

(
RΛ,

∏
i∈Λ

dxi

)
(2.5)

for all finite Λ ⊂ Zm and for some R > 0 and

UΛ ≡ 0 if diam Λ > R

(“finite range interaction”).

To define the distributional derivative ∂iµ in (2)’ we need a test function
space. As usual in infinite dimensions we take for ` ∈ N ∪ {∞}

FC`
b :=

{
u : RZm

→ R
∣∣ ∃ finite Λ ⊂ Zm and g ∈ C`

b(RΛ) (2.6)

such that u(x) = g(xΛ) for all x ∈ RZm}
.

Then a probability measure µ on RZm

satisfies the PDE in (2)’ if∫
∂iu dµ =

∫
u Zi dµ ∀ u ∈ FC1

b , i ∈ Zm, (2.7)

where

Zi :=
∑

Λ:i∈Λ
Λ⊂Zm, Λ finite

∂iUΛ, i ∈ Zm. (2.8)

Note that by the finite range condition the sum in (2.8) has only finitely
many non–zero summands, so Zi is well–definied. As in the preceding sub-
section we now consider two further assertions about a probability measure
µ on RZm

:
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(3)’ Setting Z := (Zi)i∈Zm , Zi as in (2.8), and LZ :=
∑∞

i=1(∂
2
i − Zi∂i),

then µ symmetrizes LZ with domain FC2
b , i.e.∫

LZu v dµ =
∫

u LZv dµ ∀ u, v ∈ FC2
b .

(4)’ µ is LZ–infinitesimally invariant, i.e.∫
LZu dµ = 0 ∀ u ∈ FC2

b ,

or shortly,

L∗Zµ = 0

(so µ satisfies a second order PDE in infinitely many variables).

We emphasize that since u (and v) are in FC2
b the sum in the definition

of LZu has again only finitely many non–zero summands. So, all is well–
defined. In AKR97a, AKR97b, AKRT00 also the equivalence (2)’ ⇔ (3)’ has
been proved, and obviously (3)’ ⇒ (4)’ by taking v ≡ 0. So, altogether as
in finite dimensions we have:

DLR–version of (1)’ ⇔ (2)’ ⇔ (3)’ ⇒ (4)’.

However, as mentioned in the previous subsection the implication “(4)’ ⇒
(3)’ ” even under stronger smoothness assumptions on the UΛ is a major
problem in this infinite dimensional case. In the next section we shall
present a result giving a sufficient condition for this to hold.

Remark 2.3.

(i) Let µ satisfy (2)’ (⇔ (3)’ ⇔ DLR–version of (1)’). In this infinite
dimensional case ( as in finite dimensions, cf. Remark 2.2) again
even the mere existence of (Tµ

t )t≥0 = (etL̂µ

)t≥0 as a C0-semigroup
on L1(RZm

, µ) for a suitable closed extension L̂µ of L is not clear in
general and only known under quite stringent assumptions. However,
if (Tµ

t )t≥0 = (etL̂µ

)t≥0 exists and the analogue of (2.2) holds for µ,
then as in finite dimensions always L∗µ = 0 by taking d

dt �t=0. So,
“invariance” implies “infinitesimally invariance”, but the converse is
unlike in finite dimensions in fact known to be wrong in general (cf.
Chap. 5b in Ebe99 for counter examples). Concerning the question
whether (4)’ ⇒ (3)’, our result in the next section is therefore more
general than just stating it for invariant measures, since we prove it
for a larger class. In particular, it generalizes the classical well–known
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results in e.g. HS81, Fri82 since it holds also for infinite products of
manifolds (cf. BRW02).

(ii) To be precise we mention that in (2)’, (3)’, (4)’ above one has to
assume, in addition, each time that Zi ∈ L2(RZm

, µ) ∀ i ∈ Zm, in
order to have that (LZ ,FC2

b ) is an operator on L2(RZm

, µ) and that
the Gibbs measure in (1)’ defined through the DLR–equations is tem-
pered in a suitable sense. We suppressed this point above since in
applications, the square integrability of Zi is automatic (cf. Section 4
below on applications).

3. Infinitesimally invariance implies Gibbsian

Consider the situation described in Subsection 2.2, so UΛ, Z = (Zi)i∈Zm ,
LZ are as defined there.
Assumptions on the potentials UΛ: Let UΛ, Λ ⊂ Zm, |Λ| < ∞, satisfy
assumption (2.5) for some (fixed) R > 0, and in addition:

For Ek :=
∑

Λ:Λ⊂Λk

UΛ, k ∈ N,

e−Ek ∈ L1
(
RΛk ,

∏
i∈Λk

dxi

)
,

where

Λk :=
{
s ∈ Zm

∣∣ max
1≤i≤m

|si| ≤ kR
}
.

(3.1)

Remark 3.1. We note that obviously for k ∈ N

Ek(x) = Ek(xΛk
), x ∈ RZm

,

and for i ∈ Zm

Zi(x) = Zi(xi+Λ1), x ∈ RZm

,

so, if i ∈ Λk,

Zi(x) = Zi(xΛk+1), x ∈ RZm

.

Now we can formulate one of the main results from BRW02.

Theorem 3.1. Let µ be a probability measure on RZm

such that
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(i) Zi ∈ L2(RZm

, µ) ∀ i ∈ Zm,
(ii) L∗Zµ = 0, i.e. µ is LZ-infinitesimally invariant,
(iii) ∂iEk ∈ L2(RZm

, µ) ∀ i ∈ Λk, k ∈ N.

Set for k ∈ N

Dµ
k :=

∑
i∈Λk\Λk−1

∫ ∣∣∣Eµ
[
Zi

∣∣ σ(Λk)
]
− ∂iEk

∣∣∣2 dµ, (3.2)

where Eµ[ · |σ(Λk)] denotes conditional expectation of µ with respect to the
σ–algebra σ(Λk) generated by the map x 7→ xΛk

, x ∈ RZm

. If there exist
ck ∈ [Dµ

k ,∞) ∩ (0,∞) such that
∞∑

k=1

1
ck + ck+1

= ∞, (3.3)

then µ is LZ–symmetrizing, i.e. Gibbsian.

Instead of giving an account of the proof of Theorem 3.1 we refer to BRW02

and shall rather discuss an application in the next section. We only mention
here that the crucial quantities Dµ

k , k ∈ N, in (3.2) exactly capture how
strongly the PDE’s in (3)’ and (4)’ are coupled with respect to the one
dimensional coordinates of x = (xi)i∈Zm or “how much” µ differs from
a product measure on RZm

. This will become, particularly, clear in the
applications below. (3.3) just says that Dµ

k should not grow too fast with
k.

4. Application

In this section we shall apply the above, in particular, Theorem 3.1, to
a well–studied model from statistical mechanics (cf. e.g. BHK82 and the
references therein). This is a lattice system over Zm with a two–body
interaction of finite range R > 0, i.e. in the frame from the previous section
we have for finite Λ ⊂ Zm:

UΛ ≡ 0, unless diam Λ ≤ R and |Λ| ≤ 2. (4.1)

If Λ = {i} we set

Vi := U{i},

and if Λ = {i, j}, i 6= j, we set

Wi,j := U{i,j}.
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So, in particular, Wi,j = Wj,i.
Assumptions on Vi, Wi,j:

Vi ∈ C1(R), Wi,j ∈ C1(R2). (4.2)

There exist K, K0 ∈ (0,∞), p ∈ (m,∞) such that K > 12K0(1+R)2+p,

and C ∈ (0,∞), α ∈ [2,∞), such that for all i, j ∈ Zm and all s, t ∈ R∣∣Wi,j(s, t)
∣∣ ≤ K0

(
1 + |s|α + |t|α

)
,∣∣∂1Wi,j(s, t)

∣∣ ≤ K0

(
1 + |s|α−1 + |t|α−1

)
,

sV ′
i (s) ≥ K|s|α − C.

(4.3)

It can be easily shown that (4.2), (4.3) imply conditions (2.5) and (3.1).
Let us first calculate the corresponding Zi and ∂iEk. We have for i ∈

Zm, k ∈ N, in this situation

Zi(x) = −V ′
i (xi)−

∑
j∈Zm

|i−j|≤R

∂1Wi,j(xi, xj) (4.4)

∂iEk(x) = −V ′
i (xi)−

∑
j∈Λk

|i−j|≤R

∂1Wi,j(xi, xj), if i ∈ Λk. (4.5)

By Examples 6.12 and 4.6 BR01 there exist probability measures µ on RZm

such that the following properties hold:

(A) L∗Zµ = 0.
(B) (“temperedness of µ”)

µ

({
x = (xi)i∈Zm ∈ RZm

∣∣∣ ∑
i∈Zm

1
max(|i|p,1) |xi|α < 1

})
= 1. (4.6)

Furthermore, for all such µ and every r ∈ (0,∞) there exists Mr ∈ (0,∞)
such that ∫

RZm
|xi|r µ(dx) ≤ Mr ∀ i ∈ Zm, (4.7)

in particular (by (4.2), (4.3))

Zi, ∂iEk ∈ L2(RZm

, µ)

for i ∈ Zm and k ∈ N is such that i ∈ Λk.
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Now let us calculate the crucial quantities Dµ
k , k ∈ N, from the condi-

tions of Theorem 3.1. Fix k ∈ N and i ∈ Λk, then since ∂iEk is σ(Λk)–
measurable we can use Jensen’s inequality to obtain∫ ∣∣∣Eµ

[
Zi

∣∣ σ(Λk)
]
− ∂iEk

∣∣∣2 dµ

≤
∫
|Zi − ∂iEk|2 dµ

=
∫ ∣∣∣ ∑

j∈Zm\Λk

|i−j|≤R

∂1Wi,j(xi, xj)
∣∣∣2 µ(dx),

where we used (4.4), (4.5) in the last step. By (4.3) and Hölder’s inequality
the latter is bounded by

3(2R + 1)mK2
0

∑
j∈Zm\Λk

|i−j|≤R

∫ (
1 + |xi|2α−2 + |xj |2α−2

)
µ(dx)

≤ 3(2R + 1)2mK2
0 (1 + 2M2α−2) =: C(R,m, K0, α)

where we used (4.7) in the second step. So, for any such µ as above and
k ∈ N

Dµ
k ≤ C(R,m, K0, α) |Λk \ Λk−1| =: ck.

Note that the latter is of order km−1, so
∞∑

k=1

1
ck + ck+1

≈
∞∑

k=1

1
km−1 + (k + 1)m−1

where “≈” means “equal up to a constant”. So, Theorem 3.1 applies if and
only if m ≤ 2. Hence we have

Corollary 4.1. For the one– and two–dimensional lattices Z1 and Z2 for
the above model we have:

infinitesimal invariance implies Gibbsian.

Concluding Remark 4.2.

(i) Let M denote the set of all probability measures on RZm

satisfying
conditions (A), (B) above. By similar techniques one can prove (cf.
BRW02): if one µ ∈ M satisfies the logarithmic Sobolev inequality,
then #M = 1, i.e. we have uniqueness in this case. This extends
results known for compact spin spaces (i.e. lattices of type

∏
i∈Zm

Mi,
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with Mi compact manifolds, cf. SZ92a, SZ92c, SZ92b, SZ95, Zeg92, Zeg96)
to the non–compact case (see also Y os01 for a particular case with
Mi = R as above).

(ii) There are examples on RZm

where “infinitesimal invariance ⇒ Gibb-
sian” for all lattice dimensions m. We refer to BRW02 for details.
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