ON NONLINEAR TRANSFORMATIONS OF CONVEX
MEASURES

V.I. BOGACHEV, A.V. KOLESNIKOV

ABSTRACT. Given a uniformly convex measure y on R*® and a probability mea-
sure v < u, we show that there is a Borel transformation T' = (T})52; of R
such that v = po T ! and F(x) := T(x) — x € I?. Moreover, if v is equiva-
lent to its translation along (1,0,0,...), e.g., if v is a product-measure, then T'
can be chosen triangular in the sense that each component T} is a function of
Z1,...,Z5. In addition, if v has finite entropy Ent,(v) with respect to p, then
||F||2L2(u’12) < C(p)Ent,(v). Several inverse results are proved. In particular, our
results apply to the standard Gaussian product-measure. As an application we
obtain a new sufficient condition for the absolute continuity of a nonlinear image
of a convex measure and the membership of its Radon-Nikodym derivative in the
class Llog L.

Let X = R™ be the space of all real sequences z = (z,) equipped with its natural
product topology and the corresponding Borel o-algebra B(X) and let H = [* be

00 1/2
equipped with its usual Hilbert norm |h|, := (Z hi) . Given a Borel measure
n=1

i on X and a p-measurable mapping 7' on X, we denote by poT~! the image of
p under T, i.e., po T7Y(B) = u(T~Y(B)) for all B € B(X). Suppose that u is a
Borel probability measure on X that is the product of countably many copies of a
probability measure o on the real line. When o is the standard Gaussian measure,
we call p the standard Gaussian product-measure. It is well known that under broad
assumptions on o, the shifted measure u,(B) = (B — h) is equivalent to p if h € [?
and is mutually singular with p otherwise (see Shepp [20]). Moreover, in many cases
1 is equivalent to its images under nonlinear mappings of the form

Tx)=xz+F(z), F: X —H, (1)

under broad assumptions on F. The case where o is Gaussian has been studied
especially well. Although transformations of the above form are not the only ones
under which the image of y is absolutely continuous (e.g., there many automorphisms
of p not of that form), it is natural to ask which measures v can be obtained as
wo T~ with T of form (1). Measures v < p with such a property are called
representable in Definition 2.7.1 in Ustiinel, Zakai [24] (where the Gaussian case is
considered). Note that even in the Gaussian case, the condition F'(X) C H does not
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guarantee that u < v. We prove below that if x4 belongs to the class of uniformly
convex measures (which includes the standard Gaussian product-measure), every
probability measure v < p is the image of p under a triangular mapping 7' of
type (1), i.e., is representable in the sense of Ustiinel and Zakai. Moreover, under
some additional, not very restrictive assumptions, the mapping 7" can be found
with the property that |F|, € L?(u) and each component T} of T is increasing
in zx. Finally, we give a sufficient condition on a mapping 7 of type (1) which
guarantees that v = p o T~! is absolutely continuous with respect to p. This
condition is also necessary for increasing triangular mappings and measures v with
finite entropy Ent,(v). We recall that in the case where v < p and f := dv/dp
entropy Ent,(v) is defined by

Ent,(v) := Ent,(f) := /flogfd,u.

The main results are Theorems 2, 4 and 6. It should be noted that our results are
new also for Gaussian measures; they extend previously known results with much
shorter and elementary proofs.

A mapping T = (T})52,: X — X is said to be triangular if each T is a function

of x1,..., 2 Ti(x) = T(z1,...,21). Throughout we consider all R* as subspaces
in X. Such a mapping is called increasing if the function xy — Ty (z1,. .., Tg_1,Tk) 18
increasing for all fixed (z1,...,75_1) € RF"1. Triangular mappings provide a simple

and constructive way to transform one given measure into another. Such mappings
were studied, e.g., in Knote [13], Talagrand [21], Bobkov [2]. In particular, Talagrand
[21] proved that if p is the standard Gaussian measure on R” and v < p is such
that Ent,(v) is finite, there exists an increasing triangular mapping 7" such that
v=poT ! and

/ T (x) — z|* u(dz) < 2Ent,(v). (2)

Talagrand’s inequality (2) has been generalized by several authors, see Otto, Villani
[18], Cordero-Erausquin [8]. Very interesting links of this inequality to the mass
transportation problems (see, e.g., Rachev, Riischendorf [19]) are discussed in Fer-
nique [9], Feyel, Ustiinel [11], Feyel, Ustiinel [12], Ledoux [16]. In particular, by
using estimate (2), Feyel and Ustiinel [12] show that if j is the standard Gaussian
product measure and v < p has finite entropy, then one can find T of type (1)
such that v = po T !, estimate (2) holds, and F' = V4 for some function ¢
in the Sobolev class W2!(u). Fernique [9] shows that for any probability measure
v <L I, there is an automorphism U of y and a mapping F': X — H such that
v=po (U+ F)~'. However, U may not be of type (1). In Kolesnikov [14] and Bo-
gachev, Kolesnikov, Medvedev [5], a generalization of Talagrand’s result is obtained
in the form of equality (generalizing an identity established by Talagrand in the one
dimensional case) for a couple of mappings. We recall this result (in the case of a
single mapping), because it will be used in some of our proofs.

Let us introduce necessary notation. Given a positive C? function ¢) on R® and
two vectors v; and v, we define the operator

1
A[ip,vl,vg] = / sD? [— logiﬂ ((1 —s)v + 81}2) ds,
0
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where D? is the second derivative. If ¢(z) = exp(—|z[?/2), then A = I/2. The
Fredholm—Carleman determinant dety A of an operator A on R" is defined by

deto A = exp(trace(I — A)) det A.

Suppose that y is a probability measure on R with density exp(—®), where ® € C?
and T =1+ F: R* — R" is an invertible C'-mapping such that det7'(z) > 0.
Then v := poT ! has a density f with respect to p. Assume, in addition, that

traceDT, logdet DT, 8, ®-F;, (Alexp(=®),T,I]F,F) € L*(n),

and Ent,(v) is finite. Then, according to [5], one has
Ent,(v) = / (Afexp(~2), T(a), 2] F(2). F(2)) p(da)

—/nlogdethT(:L‘) p(dz). (3)

We shall need below the following modification of this result that is proved by the
same reasoning: the assumption that 7" is C! can be replaced by the inclusion
T € W2 (R* R") provided that f o Texp(—® o T)det DT = exp(—®) a.e. For

loc

example, it is enough (along with the above integrability conditions and det DT > 0
a.e.) that 7" be invertible and locally Lipschitzian (or ||DT|| € L _with some p > n).

loc
If p is the standard Gaussian measure on R", then (3) becomes

1
Ent,(v) = 5/ \F(z)|* u(dx) — / logdety (I + DF(z)) p(dz). (4)
R~ R
This can be also seen from the formula for the Radon—Nikodym density:
1 1
=————, Ap= I+ DF F - Z|F|?
flo) = 4 O deto(I + )exp(5 SIF ) (5)

where 0F is the divergence of F' with respect to p, i.e., F(z) = traceDF(z) —
(F(z),z). Indeed, by the change of variable formula

Ent,(f) = / log f (T(z)) p(dz) = / [— log dety(I + DF) — 6F + %uﬂ dy,

but the integral of JF vanishes. Let us observe that formula (5) holds true if 7" is
a continuous invertible mapping in the Sobolev class VVZIZC1 (R*,R") with some p > n
and det DT > 0 a.e.

Let P,: R*® — R” be the natural projection. Given a Borel measure y on R*,
let u, := po P, '. For concepts related to Gaussian measures (the Cameron—Martin
space, etc.), see Bogachev [3]; however, without loss of generality one can assume
that we deal with the standard Gaussian product-measure whose Cameron—Martin
space is H = [2.

A probability measure g on R* with density g, = exp(—®), where ® is a twice
continuously differentiable (or of the class W) convex function is said to be uni-
formly convex with constant C' > 0 if D?*®(z) > C - I, where I is the identity
operator.

We shall say that a Borel probability measure p on X is uniformly convex with
constant C' > 0 if every projection p, is uniformly convex with constant C', i.e., one
has y, = exp(—®,) dz and D?*®, > C - I on R".
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By using (3), it is proved in [5] that given a probability measure p that is uni-
formly convex with constant C' and a probability measure v <y with finite entropy
Ent,(v), there is a Borel increasing triangular mapping 7" such that v = o7 ! and

[ IF@F (ds) < SEnt, ) (6)

It should be emphasized that in all the results mentioned above the main point
is to obtain certain additional properties of 7" such as estimate (2). If one admits
arbitrary triangular mappings, then it is easy to show that any Borel probability
measure v on R", not necessarily absolutely continuous, is the image of y (or any
other probability measure absolutely continuous with respect to Lebesgue measure)
under an increasing triangular Borel mapping. The same is true for the space R* if
we take for y any countable product of nonatomic measures. In infinite dimensions,
also the requirement that T'(x) —x € H becomes very restrictive. Let us describe a
simple construction of such a mapping that we call the canonical triangular trans-
formation of y into v. Let pu and v be absolutely continuous probability measures
on R". The canonical increasing triangular Borel mapping 7, , transforming y into
v is defined inductively as follows. If n = 1, then we set F,(t) := u((—o0,t)) for
teR', Gu(u) :==inf{s: F,(s) > u} foru e (0,1) and T,, := G, o F,. The function
F,, takes p to Lebesgue measure A on (0,1), and G, takes A to v. This is true for
any Borel probability measures provided that p has no atoms. In the case n = 2 we
take the canonical mapping 77 that takes p; to 1. Let f and g be Borel measurable
densities of 1 and v respectively. For ui-a.e. x; we have the conditional probability
density

[ (x2) = f(901,902)(/Rf(x1,U) du>_1.

The measure with this density can be canonically transformed to the probability
measure with density ¢71(®1)(.), where

9“(952) = 9(951,332)(/]1&9(561,@ du) _1.

Note that [ g(T1 (x1), u) du > 0 for j-a.e. z; due to the equality v, = p 075! The
constructed canonical mapping is denoted by zy — Ty(x1, z2). We set Ty(z1,29) =
o for all zy such that [ g(z1,u)du = 0. It is readily verified that T := (1}, T5) is
an increasing triangular Borel mapping and poT~! = v. We continue by induction
on n by using the one dimensional conditional densities on the last coordinate line.
Uniqueness in the class of p-equivalent increasing triangular mappings is shown also
by induction. Estimate (6) is proved in [5] for the canonical mapping. The mapping
T,,, may be discontinuous even if both ;1 and v have smooth densities. For example,
if v vanishes on some interval, then it cannot be a continuous image of the standard
Gaussian measure. It is seen from the construction that if u is equivalent to Lebesgue
measure and v is absolutely continuous, then there is a version of T}, , such that its
k-th component is strictly increasing in zj, for all fixed (zi,...,z, 1). Hence this
version is injective. Canonical mappings for general measures have been investigated
recently by D. Alexandrova. It is proved in Bogachev, Kolesnikov, Medvedev [5] that
if 41 is equivalent to Lebesgue measure on R® and probability measures v; converge
to v in variation, then Lyw; — 1) In measure p.
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Let us consider a simple example how (3) works.

Example 1. Let p be a Borel probability measure on X such that p, = exp(—®,) dx
for each n, where ®, is a C*-function on R™.

(i) Suppose that D?*®,(x) < M - I on R* for all n, where M > 0 is a constant.
Then for every h € H, the measure py, that is the image of p under the translation
T(x) =z — h, is equivalent to u and has finite entropy.

(ii) If for all n we have D*®,,(x) < M expq(x) - I on R", where

(S aa2) >0, i =0 d !
q(z) = (z_:l anxn) , 0n 20, lima, =0, andexpge L'(p),
then pp ~ u for every h € H and py has finite entropy.
(i) Under the assumptions in (ii) let Tp,(x) = T+ Fn(21, ..., Tn_1). Assume that
F]?2 expq € L*(u), where F = (F,). Then poT ' < u and
H

But,(uo7 ) < 5 [ [F@)L ulda)

Proof. Clearly, in all these cases 71" is an increasing triangular transformation. Set
v = poT ! Letting S, := P,T on R*, we have logdet,DS, = 0. Note that
Un = Pn 0 Sy ', Un = fu - ln, and the sequence {f,} is a martingale on (X, ) with
respect to the filtration {F,} generated by the projections P,. In case (i) according
to (3) one has Ent,, (v,) < M|h[? /2. Hence the martingale {f,} is uniformly
integrable and converges to a function f € L!(u), whence we obtain v = f - u. By

Fatou’s theorem Ent,(v) < M|h|? /2. In case (ii) we have ¢(h) < oo, hence
D*®,(z — (1 - s)Puh) < M explg(Puz) + q(Puh)] - I < Mexp q(h) exp q(Po) -
on R" whenever 0 < s < 1. This yields

M|P,h|? h
/(A[exp(—@n), x — Pyh, 2)Poh, Poh) pin(dz) < | |H26Xp a(h) /exp go P,du

M|h|? h
< | IH;qu( )/equdu'

Therefore, we have a uniform bound on Ent,, (v,). A similar reasoning proves
assertation (iii). O

It is worth noting that if in (ii) we have also a lower bound C - I < D?®,,(z),
where C' > 0, and ¢(r) < oo a.e., then exp(kq) € L!(u) for all x > 0.

Theorem 2. Suppose that a Borel probability measure p on X is uniformly convex
with constant C' > 0. Let v < u be a probability measure.

(i) If v has finite entropy Ent,(v), then the canonical triangular mapping T,,, has
the property that

[ 1Tu(o) = 2l utde) < ZEnt, ), @

(ii) If p is of the form p@u', where y' is a measure on the product of the remaining
lines, then there ezists a Borel triangular mapping T such that T'(z) —x € H and
v=poT 1

(iii) If u is equivalent to p.,, where e; = (1,0,0,...), then there exists a Borel
mapping T of type (1) such that v = poT™!.
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Proof. (i) We observe that v,, < p, and f,, := dv,/du, is the conditional expectation
of f := dv/du with respect to the o-field F,, generated by P,. By Jensen’s inequality,
Ent,, (v,) < Ent,(v). As explained above, letting T := T, ,, , we have

/ 7™ (2) — 22 gy (dz) < %Entun(yn) < EEntu(V)'

It follows by the uniqueness property for the natural triangular mapping that one
has P, oT™*1) = T(™ on R*. Therefore, letting Tk(") be the k-th component of 7™
we see that Tk(n) = T,gm) = Tk(k) whenever n,m > k. So we get at once the desired
infinite dimensional mapping 7": its k-th component is just Tk(k). In order to see
that o T ! = v, it suffices to verify the equality v(B) = u(T!(B)) on all Borel
cylindrical sets of the form B = By x R x R x --- with By € B(R"). This equality
is obvious from the equality p, o (T™)~! = v, and our definition of 7. Finally, (7)
follows by Fatou’s theorem.
(ii) Let us consider the case where p = pu;®@u’ with some Borel probability measure
i/ on the space Y that corresponds to the product with respect to the coordinates
x, with k& > 2, i.e., we write X = R! x Y. Let us partition R® into disjoint sets
E,, of positive measure such that f is bounded on each E,. For example, it suffices
to pick all positive measure sets among {k < f < k + 1}. Next we partition the
real line into intervals D,, with u,(D,) = v(E,). The measure Ip, - u; can be
transformed into v(E,)u; by an increasing mapping W,, on the interior of D,,. Then
the mapping = — (U, (1), x2, 3, ...) takes the measure (Ip, - p1) @ u' to v(E,)p.
By the above, there exists a triangular mapping A,, with A, (z) — z € H such that
v(Ep)po At = Ig, -v. Hence we obtain the triangular mapping 7" that takes the

measure f = Z(IDn p1) @ ' to the measure Z Ig,-v=v. On D, xR xR x
=1

the mapping T is the composition of ¥, and A Since W, has the indicated form,
we obtain z — T'(z) € H.

(iii) In the general case, where p may not be represented as a product measure,
it suffices to find an auxiliary measure pg of the form py = pu; ® i/, where p' is a
measure on Y, such that u can be transformed into p¢ by a mapping 7y and py can
be transformed into v by a mapping 7" such that 7, and 7" are Borel mappings of
type (1). Let u’' be the projection of  on Y. Then it is readily verified that p' is
uniformly convex with constant C. Indeed, it suffices to show that if y = exp(—®) dz
is uniformly convex on R™ with constant C, then its projection p,_; to R*! is of
the same type. Let € > 0 and @, (y, z,) = ®(y,z,) — C(1 —&)|y[*/2, y e R*1. We
observe that ®. is convex and integrable. Then

/Cb(y,xn) dz, = exp (—%C(l — 5)\y\2> /Cbs(y, Tp) ATy

By Prékopa’s theorem (see, e.g., Corollary 1.8.3 in Bogachev [3]), the integral on
the right has the form exp[—W (y)] with some convex function W. Hence p,_1 =
exp(—®,_1), where D?®,,_; > (C —¢) - I. Letting € — 0, we prove our claim. If we
show that the conditional measures p¥ on the straight lines L, := y + Rle;, where
e; = (1,0,0,...), have densities p, with respect to the natural Lebesgue measure
on L,, then we can transform p into po by a Borel mapping Ty = (7o) such that
Tox(z) = z for all £ > 2. To this end, it suffices to transform the measure with
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density p, into p; by an increasing function 6, and set Ty;(xz) = 6,(z1), where
z = (x1,y). Clearly, Tj is not triangular, but has form (1). Finally, densities g,
exist indeed, because according to Borell [6] the conditional measures p¥ on L, are
convex, hence ¥ is either absolutely continuous or Dirac’s measure at some point a,,.
It follows from our assumption that p¥ cannot be Dirac’s measure for all y from a
set of positive y/-measure. U

We observe that according to Example 1 we have p., ~ p under the additional
assumption that D?®,(z) < M - I on R" for some common constant M.

Part (ii) applies to the case considered in Bogachev, Kolesnikov, Medvedev [5]
where 1 is the product of countably many copies of a probability measure ¢ on the
real line that is uniformly convex with constant C' > 0. In this case, for any Borel
probability measure v absolutely continuous with respect to u, there exists a Borel
triangular mapping T such that v = p o T~!. For example, u may be the standard
Gaussian product-measure.

A mapping that is increasing in the above sense may not be monotone in the
sense of Feyel, Ustiinel [10] and Feyel, Ustiinel [12]. Also, a triangular mapping
is typically not a gradient-type mapping. So mappings considered here are quite
different from those employed in Brenier [7], Cordero-Erausquin [8], Feyel, Ustiinel
[12], McCann [17] and many other works on optimal transport. Note that in the
Gaussian case, the last part of the above proof can be repeated for the gradient-type
mappings constructed in Feyel, Ustiinel [12], which will produce a resulting mapping
of type (1), although not necessarily of gradient-type. However, it remains unclear
whether one can find a monotone transformation without extra assumptions on v.
We also do not know whether 7" in (iii) can be always chosen increasing triangular
or at least triangular if we insist on (1). Also in (ii) it is not clear whether one can
find an increasing mapping (again with (1)). As noted above, there are no problems
if we drop (1). We shall now see, however, that (1) is necessary if T is increasing
triangular and poT ! has finite entropy. Finally, we shall show that if in the infinite
dimensional case the analog of the right hand side of (3) is finite, then the measure
pwo T~ is absolutely continuous with respect to u and has finite entropy such that
(3) holds true. The next assertion is seen directly from the proof of Theorem 2.

Proposition 3. Let a Borel probability measure ju on X be uniformly convex with
constant C > 0 and let T be a u-measurable increasing triangular mapping such that
v:=poT~ is absolutely continuous with respect to u and has finite entropy. Then
T(x) —x € H for p-a.e. x and one has inequality (2).

If T is an increasing triangular mapping on X such that its components 7;, are

absolutely continuous in z,, (i.e., the functions z, — T, (z1,...,x,) are absolutely
continuous on every compact interval if (zy,...,z, 1) is fixed), then detoDT'(z) is
defined by

deto DT (x) := ﬁ O, Tn(z) exp(1 — 8, Tn ().

Observe that it is not assumed that DT makes sense separately. In particular, with
such a definition, one has deto DT(x) = 1 if T,,(z) = z,, + Fy (21, . . ., ©,—1) Whatever
is F,.
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Theorem 4. Let a Borel probability measure y on X be uniformly conver with
constant C > 0 and let T be a pu-measurable increasing triangular mapping such that
every T, is absolutely continuous in x, and the quantities on the right-hand side of
(3) for pn and P, o T are uniformly bounded in n. Then v := poT 1 is absolutely
continuous with respect to p and has finite entropy and Ent,(v) = nh—>120 Ent,, (v,).

Proof. Let us keep the notation of the proof of Theorem 2. If we show that
sup Ent, (v,) < oo, then the sequence f, = dv,/du,, which is a martingale, is
n

uniformly integrable. Hence v < p. The equality Ent,(v) = lim Ent,, (v,) follows
n—oQ

from the fact that Ent,(v) < liminfEnt, (v,) by Fatou’s theorem and lower bound-
edness of f, log f,, combined with the fact that Ent,, (v,) = Ent,(f,) < Ent,(f) by
the properties of conditional expectations. Now it suffices to consider the case of
R" and show that if the right-hand side of (3) is finite, then Ent,(v) is finite as well
(then (3) holds). This is not completely obvious. So we deal with T = (T1,...,T,)
and omit indices at u and v. One can find a sequence of smooth increasing triangu-
lar mappings S; = (S;j1,...,S;j,) on R" with the following properties: the function
S;x — zx are compactly supported on R¥, S;(z) — T(z) a.e., and

sgp/[(/\(eq’,Sj(x),x)F}-(a:),Fj(m)) — logdety DSj(z) | p(dr) < oo,

where F; := S; — I. Observe that one cannot expect to find S; such that S; — I
would be of compact support on R”, because the k-th component depends only on
z1,--., Tk, hence can be of compact support only if it is identically zero. It follows
that o S; ! has a positive density f; with respect to u such that f; =1 outside of
some cube K. It is clear that p o Sj_l has finite entropy 7; satisfying equality (3).
Therefore, 7 := sup7; < co. Since the measures f10.5; ! converge weakly to o771,

j
we obtain that g o 77! < p and Ent,(rv) < 1. Indeed, by the Kémlos theorem
(see, e.g., §4.7 in Bogachev [3]), there is a subsequence { f,; } such that the functions
ok := (fu; + -+ fu,)/k converge a.e. to some function f € L'(u). By convexity
one has Ent,(gx) < n. Hence g, — f in L*(p). By Fatou’s theorem Ent,(f) < .
Since g - p — po T~ weakly, one has poT 1= f - pu. O

Example 5. Let a Borel probability measure o on X be uniformly convex with con-
stant C and let T be a p-measurable increasing triangular mapping such that every T,
is absolutely continuous in x,. Assume, in addition, that for the densities exp(—®y,)
of the projections u, we have D?*®,(x) < M -1 on R*. Then the integrability of
IT(z) — z|>, and logdety DT (x) with respect to p implies that po Tt < p and
Ent,(poT ') < co. In particular, this applies to the standard Gaussian product-
measure.

Let us give an interesting application to the problem of absolute continuity of
induced measures in the case of not necessarily triangular mappings. Let v be a
centered Radon Gaussian measure on a locally convex space E and let H := H(v) be
its Cameron—Martin space. Suppose that {e,} is an orthonormal basis in H, é, the
measurable linear functional associated with e,, and let E*» denote the conditional
expectation with respect to the o-field F, generated by ¢&;, i < n. One can assume
without loss of generality that we deal with the standard Gaussian product-measure
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and the standard basis in [? (then €, is the n-th coordinate function). The Hilbert—
Schmidt norm of an operator A on H is denoted by || Al and ||A||(z) is its operator
norm. The space of all Hilbert—Schmidt operators on H is denoted by H. We use
the standard notation for the Sobolev class W%1(v, H) of mappings F: E — H
from L?(v, H) such that the derivative D, F of F along H belongs to L*(y, H).

Theorem 6. Let T = I + F with F € W*'(~y, H) be such that
((1 + D, F(z))h, h) > n(x)|h% for all h € H,
H

where 1 is an a.e. positive bounded measurable function. Suppose that there is a
measurable function 6 such that (Ef"n)*1 <0 a.e. foralln and 6*||D,F|3 € L*(v).
Then v :=~yoT™' < v, Ent,(r) < oo, and

1
Eut,(v) < 5 [ 1P + 20D, FIf + 01D, FIR] o ®

Ifn(z) = a > 0 is constant and ||D, F|| L) € ﬂpZI LP(), e.g., if |Dy Flom <
q < 1, where q is a constant, then there exist a Borel mapping S on X and a set )
of full v-measure such that S(T(x)) = x for y-a.e. z, T(S(y)) =y for v-a.e. y and
on the set ) one has

dv 1 1,5
@ = m, AF = det2(1+DHF)eXp((5F—§|F|H), (9)
and dv/dy = 0 on the complement of Q0. In addition, one has
1
Bnt, (v) = 5 / FP dy — / logdets(I + D, F) dv. (10)

Proof. For any operators A and B on R" one has (see, e.g., [3] or [24])
dety (I + A) det o(I + B) = dety((I + A)(I + B)) exp trace(AB).

If I + A is invertible, then letting B = —A(I + A) ' we have I + B = (I + A) .
By Carleman’s inequality deto(I + B) < exp(||B||%,/2), we obtain

1
deto(T + A)|! < exp(§||A(I + A)7YZ, + trace(A2(T + A)‘1)> .
Since [|AC||% < ||C|lLim || Allx and trace(A?C) < ||C||rca||Allx, one has

_ 1
—log [deto(Z + A)| < (I +4) 3 + 5 ) 1411

This estimate remains true for any Hilbert—Schmidt operators A and B whenever
I + A is invertible. If T is an invertible C'-mapping on R” such that

|(Z+DF @)™ ) < 0(@),

we obtain (8). In order to justify (8) in the finite dimensional case under our
more general assumptions, we consider the mapping 7, = [ + (1 — ¢)F, ¢ > 0.

Note that (DT.(z)h, h)H > (e +n(z))|h%, hence || DT.(z) M < (e +n(z)) g
It suffices to show (8) for 7. (with the objects corresponding to T, of course),
because letting ¢ — 0, we arrive at (8) for 7. Let us consider the smooth mapping
T, = Py;T,, where {P,} is the Ornstein-Uhlenbeck semigroup. One has the

estimate (DT x(z)h, h)H > ¢|h|? . Hence T, is invertible and || DT, ()| <
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(5 + Pl/kn(x))_l. Therefore, we obtain (8) in the case of T, ;. Letting k¥ — oo we
arrive at (8) for T.. The general case reduces to the case of the standard Gaussian
product measure, because if H(v) is infinite dimensional, then there is a measure
preserving linear isomorphism J between (E, ) and (X, u), where p is the standard
Gaussian product-measure, such that J is an isometry between H(vy) and H (see
Chapter 6 in Bogachev [3]). Let F,, := E/»P,F. Then D, F, = E?»P,D,F. For
any h € P,(H) with |h|, =1 we have

((I+ D, Fah,h) =E"((I+P.D,F)h,h) =E"((I+D,F)hh) >E™".

It follows that ||(I + D, F,) ™ o) < (Ejtnn)_1 < 0 a.e. Therefore,

1 1 )
Ents, () < 5 [ IFall vt [ 1D, Fallal + (E%0) ) o,

1 1 -2
=5 [ IBE a5 [ID,Bldy+ [ (D,F.D,F)u(En) " dr,

1 2 1 2 2 p4 1/2 2 1/2
<5 [ 1FEdy+5 [IDFI+ ([ 1D, FIZ0tdy) ([ 1D, FI dv)

1 1
<5 [P+ [ID,FiRar+ [1D,FIR6* v

This yields that v < v and (8) holds.
Let us verify (9) in the case where n(z) = a > 0 and || D, F||5x) belongs to all
LP(7y). Suppose first that F' takes values in R" and that

((I+DF,)h,h) > alhl; forallheR" (11)

The claim reduces to the mappings T}, := z + Fy(2), Fy(z) := F(z,y), on R if we
write © = (z,y), z € R*. It is known (see, e.g., Chapter 5 in Bogachev [3]) that
F, belongs to the class W*!(y,, R") for y-a.e. y, where we write 7 as the product
of the standard Gaussian measure v, on R" and the standard Gaussian-product
measure 7y, on the product of the remaining lines. In addition, one has (11) and
| D Fyllemy € Mys1 LP(1n) for yo-a.e. y. We can deal with a version of F' such that
F, possesses these properties for all y. Now it suffices to consider the case of a single
mapping F on R" that belongs to W2!(v,, R") with the operator norm of DF in
all LP(y,) and satisfies (11) and apply this to the mappings F,. By the Sobolev
embedding theorem F' has a continuous modification denoted also by F'. Since one
has (T(z + h) — T(z),h) > alh|?, we conclude by Minty’s theorem that T is a
homeomorphism of R*. Moreover, S := T ! is Lipschitzian with constant o !. This
ensures formula (5) for the Radon-Nikodym density. Thus we obtain a mapping
G with values in R™ such that for any y, the mapping S,: z — 2z + G(z,y) is
Lipschitzian with constant o' and S,(T,(z)) = T,(S,(z)) = z on R". Note that in
this case y o T™" ~ 7, since y, 0 T, ' ~ 7,

The next step is to take finite dimensional approximations F,, := P,F. The
mapping F;, takes values in R” and belongs to the class W2!(y,R"). In addition,
(11) is fulfilled. Hence we obtain (9) for each F,,. Set T,, :== I + F,, S, = I +
G, =+ F,)"' Wehave v = f-v, v, := yoT,' = f,-7. The sequence
{fn} is a uniformly integrable martingale with respect to . Hence it converges
to f in L'(y). We observe that |Gy o Ty — Gro Tp,|, < (1 + a7 Y)|Fy — F,l,,
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since the mapping I + G}, is Lipschitzian along R* with constant o~'. Let us
show that [min(1,|G, — Gg|,)dv — 0 as n,k — oo. It suffices to show that
J min(1, |G, — Ggl,) dvy, — 0 as n, k — oo, since ||v — v,|| — 0. Let & > n. Then

/min(l, G — Gyl,,) dvy = /min(l, G o T, — Gy oThl,) dy.

Since
|GnOTn_GkOTn|H < ‘GnoTn_GkoTk|H+|GkoTk_GkoTn‘H
< ‘Fn_Fk|H+(1+a_1)|Fn_Fk

e

our claim follows by pointwise convergence of |F,, — Fg|, to 0. Hence there exists
an H-valued mapping G such that |G, — G|, — 0 in v-measure. Passing to a
subsequence we may assume that |G, — G|, — 0 v-a.e. Clearly, we can take a Borel
version of G. Set S := I+ G. We have S, - S v ae. and F,(S,(y)) = —Gn(y).
This yields that F'(S(y)) = —G(y) v-a.e. Indeed, since F,, — F pointwise, it suffices
to show that the sequence of measures v o S, ' is uniformly countably additive. If
this is done, then, given ¢ > 0 there is a compact set K and a number N, such that
F|g is continuous, sup |F,(z) — F(z)|, <eforallm > N, and vo S7H(K) > 1—¢,
€K

voS Y(K)>1-—c¢, which is possible due to the uniform countable additivity. We
recall that taking any measure v/ with respect to which all v o S;! are absolutely
continuous, one can find § > 0 such that v o S;1(B) < € whenever V/(B) < 4. In
fact, one can take v/ =+, because v < v and y0S,; ! < 7. One can extend F|x to a
continuous H-valued mapping F; on all of X. Then, by convergence F.(S,) — F.(S)
v-a.e., we obtain N > N such that v(|F.(S) — F.(S,)|, >¢) <eforalln > N.
This yields v(|F(S) — F(S,)|, > ¢) < 3¢ for all n > N. Combining this estimate
with v(|F(S,) — Fo(Sa)| > ¢) < vo S;Y(X\K) < €, we obtain convergence in
measure. Let us establish the uniform countable additivity of the measures v oS, *.
It suffices to show that given a sequence of Borel sets By, | () and ¢ > 0, there is
ki such that v(S;*(By,)) < € for all n. We pick N such that ||y, — v|| < &/2 for
all n > N. Next we pick k; such that y(By,) < &/2 and v(S, *(By,)) < € for each
n < N. If n> N, we obtain

v(S, " (Bry)) < va(S," (Br)) + llv = vall = ¥(Br,) + [lv — vall < e.

Thus we have T'(S(y)) = y for v-a.e. y. In a similar manner one verifies that
S(T(z)) = = for v-a.e. z. Namely, |G, oT — GoT|, — 0 v-a.e. by the above
construction. Since ||yoT, ' —vyoT || — 0, this yields that |G, 0T, —GoT,|, — 0
in measure with respect y. As above we have also |GoT,, —GoT|, — 0 in measure
with respect to 7. Hence |G, 0T, — G oT|, — 0 in y-measure, whence by the
identity G, oT,, = —F,, we obtain —F = G oT ~-a.e. By norm convergence of F}, to
F in W?'(v, H) we have convergence in measure of the functions deto(I + D, F},),
0F, and |F,|, to the corresponding expressions for F, i.e., Ay, — Ap in measure
with respect to . Passing to a subsequence we may assume that all these sequences
converge y-a.e. Since f, = 1/Ag, 0S, — f a.e. and the functions Ag, 0.5, converge
to Ap 0 S in v-measure by the above argument, we arrive at the desired expression
for the Radon—Nikodym density of v that holds on some set of full v-measure (it is
not clear whether v is equivalent to ). Finally, (10) follows from (9) as explained
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above in the derivation of (4), but can be also deduced from the finite dimensional
case along the same lines. O

Note that the condition || D, F||rz) < ¢ is equivalent to the existence of a version
of F such that |F(x + h) — F(z)|, < q|h|, for all z € E and h € H (see Section
5.8 in Bogachev [3]). It also suffices to have the estimate || D, F(z)|| x) < q(z) <1
provided that ||D, F||3,(1 — ¢)* is integrable.

This theorem extends the results of Ustiinel, Zakai [23], Ustiinel, Zakai [24] on
the membership of the Radon—Nikodym density of the induced measure in the class

Llog L proved under the additional assumption that exp (c|DHF |3{> € L'(v) for

some ¢ > (2 + «)/(2«). It is worth noting that our estimates enable one to give a
shorter justification of the equivalence of v and v (i.e., to show that Q is a set of
full y-measure) under this additional assumption, which was established in Ustiinel,
Zakai [23] (see also Ustiinel, Zakai [24]).

A closer look at the proof of the previous theorem shows that it applies also to
some other measures. For example, we have the following result, where the Sobolev
class W%!(u, H) is defined exactly as in the Gaussian case.

Theorem 7. Let y be the product of countably many copies of a probability measure
o on the real line with a density exp(—®) such that 0 < C < ®"(t) < M. Let
F € WY (u, H) satisfy the same conditions as in the previous theorem. Then one
has poT™! < p and Ent,(po T™1) is finite.

Remark 8. It is worth noting that in the case where p is the product of countably
many copies of a strictly convex measure o on R! (e.g., of a nondegenerate Gaussian
measure) and v is a probability measure absolutely continuous with respect to y, the
existence of a triangular mapping 7 of type (1) with v = o7 ! can be established
by using the inductive argument of Talagrand [21]. For the reader’s convenience,
we provide the details. The first step is to obtain (2) in R” by induction on n
as explained in Talagrand [21] in the Gaussian case. In fact, the only nontrivial
thing is to justify the case n = 1. It is enough to consider measures with smooth
densities, which along with the condition n = 1 makes the proof quite easy (see
Bogachev, Kolesnikov, Medvedev [5]). Next, assume that (2) is true for some n > 1
and consider the product u of n + 1 copies of o. Points in R**!' will be written as
x = (Pyx,zpy1). Let v=f-pu. Fory e R" set

9(y) == le(y,t)a(dt), fy(@) = fy,t)/9(y),

where f,(t) = 0 for all ¢ whenever g(y) = 0. Then

flog fdu= / 9(y) log g(y) un(dy)

n

. / X / 1y(0)1og £, (1) o(d)) () in ().

Rnr+1



ON NONLINEAR TRANSFORMATIONS OF CONVEX MEASURES 13

Let T :=T,, = (T1,...,Ty41). Then T}, ,, = P,T on R*. For every y € R" the
function ¢ + T}, (y, ) is increasing and takes o to the measure fp, () -o. We have

/Rn (/R fy(t) log f, (1) a(dt))g(y) 11 (dy)
= /Rn (/R TP () 108 fp,1() (1) a(dt)) 1 (dy).

For every fixed y, by the case n = 1 we have

/R Pt ()10 Frri (£) o (dt) = / log fr,20)(t) & 0 Toen () (d)

C
> 5/‘Tn+1(y:t) _t|20(dt)-
R

By the inductive assumption we obtain

c
/ flog f dp > 5/ |PT(y) — y|* pa(dy)
Rn+1 Rn

+ % /Rn /R|Tn+1(y,t) — t|2o'(dt) pn(dy) = %/]Rn+1|T(Z) B Z‘Zu(dz).

For the standard Gaussian measure one has C' = 1. As above, this immediately
yields the claim in the case of R* provided that v has finite entropy. The last step
is the same as in Theorem 2(ii).

Remark 9. We do not know which measures v on X can be obtained as the images
of the standard Gaussian product-measure p under mappings 7 of type (1). It is
easy to see that any such measure must vanish on all finite dimensional subspaces.
Moreover, v(L) = 0 for any Borel linear space L such that u(L + H) = 0, in
particular, v(H) = 0.

Finally, we observe that most of the above results can be formulated and proved
along the same lines in a more abstract setting where X is a general locally convex
space equipped with a measure u, H C X is a continuously embedded separable
Hilbert space (an analog of the Cameron—Martin space for Gaussian measures), and
the coordinate functions are replaced by suitable u-measurable linear functionals.
For example, a natural concept of a uniformly convex measure in this setting was
studied in Albeverio, Kondratiev, Réckner [1] and Kulik [15]. To be more spe-
cific, assume that H is dense in X. Then one has the embedding j,: X* — H,
(jH(l),h)H =1(h),l € X*, h € H. Let {l,} C X* be such that {e, := j,(l,)} is an
orthonormal basis in H. Suppose that p is a Radon probability measure on X such
that the functionals /,, separate the points in a linear subspace E of full y-measure.
Then, taking E, {l,} and H in place of R*® with the coordinate functions and /2,
one has the analogs of the above results in this more general setting.

This work has been completed during a visit to the university of Bielefeld. We
thank M. Rockner for useful discussions.
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