
Uniqueness of Diffusion Generators for Two
Types of Particle Systems with Singular

Interactions

Yu.G.Kondratiev∗, A.Yu.Konstantinov†, M.Röckner‡

Abstract

For two types of stochastic particle systems in Rd we show non-
explosion in finite time by proving that their respective generators
are L1(µ)-unique, where µ is their respective invariant (in these cases
even symmetrizing) measure. We also prove the much harder L2(µ)-
uniqueness in both models.

1 Introduction

The study of symmetric distorted Brownian motion (Xt)t≥0 on Rd with sin-
gular drift, i.e. (Xt)t≥0 is the (weak) solution to the stochastic equation

dXt =
√

2 dWt +
∇ρ

ρ
(Xt) dt , X0 = x (∈ Rd), (1.1)

with (Wt)t≥0 = Brownian motion on Rd and ρ = Lebesgue density of the
symmetrizing measure µ, started in the late of seventies (see, [2], [1]). In
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recent years, the interest in equations of type (1.1) has risen again, since gen-
eralizations of distorted Brownian motion to infinite dimensional manifolds,
so called “configuration spaces”, have been constructed (see e.g. [3, 4], [20]).
New results for the finite dimensional case have recently been obtained in [6]
where weak solutions for (1.1) starting for any given point in {ρ > 0} have
been constructed and strong Feller properties of their transition semigroups
have been proved under weak assumptions on ρ which still allow the drift
β := ∇ρ

ρ
in (1.1) to be very singular. We shall summarize these results in

Section 2 below. Uniqueness of weak solutions to (1.1) is related to the con-
servativity of the Dirichlet form corresponding to (1.1) (cf. Theorem 2.5 and
Remark 3.3 (ii) below) or equivalently to the so - called L1 - uniqueness of
the underlying diffusion generator, i.e. H = −∆ − β · ∇, on L1(Rd, ρ(x)dx)
(see [21] for the most general result on this equivalence). The main results
of this paper are on L1− and also L2− uniqueness of H (cf. Section 3 below
for the precise definitions).

We restrict ourselves to considerating two classes of models from mathe-
matical physics where singular drifts β appear naturally (see, [5, 6]).

The first model is connected with a particle performing a random motion
in Euclidean space Rd, d ≥ 2, interacting with randomly distributed impuri-
ties. This model can be formalized as follows. The impurities form a locally
finite subset (i.e. configuration) γ = {xk | k ∈ N} ⊂ Rd and the interaction
between the moving particle and particles from γ is given by a pair potential
V : Rd r {0} → R. (It is assumed that potential V is singular at zero.) The
configurations γ are distributed according to a given random point process on
Rd . In mathematical physics this random point process usually corresponds
to a Gibbs measure ν on the configuration space over Rd. The stochastic
dynamics of the considered particle is described by the following SDE:

dξ (t) = −
∞∑

k=1

∇V (ξ (t)− xk) dt +
√

2dw (t) , (1.2)

ξ (0) = x ∈ Rd \ γ,

where w is the standard Wiener process in Rd . This equation describes a
diffusion process with a random drift of a special type. For a review on the
stochastic dynamics in random velocity fields see, e.g., [19]. Essential diffi-
culties in the study of the solution to (1.2) originate from the singularity of
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the potential V induced into the drift term in (1.2) through the configuration
γ.

The second model is given by a system of N particles in Euclidean space
Rd, d ≥ 2, which have positions xk ∈ Rd, 1 ≤ k ≤ N, interacting via a
singular pair potential V . In this case the stochastic motion of the particles
is described by the following system of stochastic differential equations (SDE)

dxk (t) = −
N∑

j=1,j 6=k

∇V (xk (t)− xj (t)) dt +
√

2dwk (t) (1.3)

xk (0) = xk ∈ Rd, 1 ≤ k ≤ N,

where {xk, 1 ≤ k ≤ N} are different points in Rd and {wk , 1 ≤ k ≤ N}
are independent standard Wiener processes in Rd.

The uniqueness problem for singular diffusion generators was extensively
studied in recent years (see, e.g. [17, 10, 18, 11, 12, 21] and the references
therein). In this paper we particularly use results from [18] and [21] to prove
L1-uniqueness. To prove L2-uniqueness is more difficult in our situation.
Consider for example the first case above (i.e. diffusions in random media)
and the corresponding diffusion generator. In this case the density ρ has
zeroes in all points of the configuration γ and, moreover, the corresponding
logarithmic derivative β does not satisfy suitable global bounds. Therefore,
we can not directly apply the known results of [17, 10, 18, 12]. We recall that
V.Liskevich and Yu.Semenov [17] assumed that β satisfies a global integrabil-
ity condition (β ∈ L4(Rd, ρ(x)dx)). A.Eberle [11, 12] replaced the global by
a local integrability condition plus some growth condition which is not satis-
fied in our situation. V.I.Bogachev, N.Krylov, M.Röckner [10] do not impose
any global conditions on β but they assumed that ρ is locally bounded and
locally uniformly positive. V.Liskevich [18] imposed some additional local
assumptions on β in the form of a weighted Hardy-type inequality outside a
ball in Rd. Unfortunately, it is not quite clear how to check this condition
in the situation when ρ has zeroes. Note that it is still an open problem
whether L2-uniqueness (essential self-adjointness) holds under the assump-
tion β ∈ L4

loc(Rd, ρ(x)dx) only. In our special case we show L2-uniqueness
by applying the hyperbolic approximation criterium of Yu.M.Berezansky [8]
together with results of [18]. More precisely, we use only a local version of
[18] when β is a compactly supported function.

3



2 Existence of strong Feller (weak) solutions

In this section we recall the main results from [6]. We start with the main
conditions on the functions ρ : Rd → R+.

(H1)
√

ρ ∈ W 1,2
loc (Rd, dx), ρ > 0, dx - a.e.

(H2) |∇ρ|
ρ

= 2
|∇√ρ|√

ρ
∈ Ld+ε

loc (Rd, µ), ρ > 0, for some ε > 0.

Here dx denotes Lebesgue measure on Rd, W s,q
(loc)(R

d, dx), s > 0, q ≥ 1

the classical (local) Sobolev space of order s in Lq
(loc)(R

d, dx), and µ := ρ dx.

Lq
(loc)(µ) = Lq

(loc)(R
d, µ), q > 0, denote the corresponding real (local) Lp -

spaces. Corresponding norms are denoted by ‖ · ‖Lq(Rd,µ), ‖ · ‖W s,q(Rd,dx) etc.
We denote the set of bounded real Borel functions on Rd by Bb(Rd).

(H1) alone already implies that the symmetric positive definite bilinear
form

E(u, v) :=

∫

Rd

〈∇u,∇v〉 dµ, u, v ∈ C∞
0 (Rd) (2.1)

is closable in L2(Rd, µ) and that its closure (E , D(E)) is a regular local sym-
metric Dirichlet form (cf. [13, 14]). We note that (H2) implies that ρ is
continuous (or more precisely has a Hölder-continuous dx-version , cf. [6,
Corollary 2.2]). So, the set {ρ > 0}, which we shall identify as the set of al-
lowed starting points, is open. The main results of [6] are then the following:

Theorem 2.1. Suppose that (H1) and (H2) with p := d + ε hold. Then
there exists a diffusion process M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈{ρ>0}) (i.e.
a strong Markov process with continuous paths) with state space {ρ > 0} and
cemetery ∆ := Alexandrov point of Rd, whose transition semigroup (Pt)t>0

is Lr(µ)-strong Feller (i.e. PtL
r(µ) ⊂ C({ρ > 0})), r ∈ [p,∞), and which

solves (1.1) in the (weak) sense for all initial conditions x ∈ {ρ > 0}. If
(E , D(E)) is, in addition, conservative, then so is M. Furthermore, (Pt)t>0 is
strong Feller in this case (i.e. Pt(Bb(Rd)) ⊂ Cb({ρ > 0}) for all t > 0).

Remark 2.2. The notion of weak solution is equivalent to solution of the cor-
responding martingale problem. More precisely, for Hu := −∆u− 〈β, ∇u〉,
u ∈ C∞

0 (Rd), and for every x ∈ {ρ > 0}, Px from Theorem 2.1 solves the
martingale problem for (H, C∞

0 ({ρ > 0})) with initial condition x, i.e. under
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Px for all u ∈ C∞
0 ({ρ > 0})

u(Xt)− u(x) +

∫ t

0

Hu(Xs)ds, t ≥ 0, (2.2)

is an (Ft)t≥0-martingale starting at zero.

Also a uniqueness result was proved in [6]. For its formulation we need
the following

Definition 2.3. A diffusion processM′ = (Ω′,F ′, (F ′
t)t≥0, (X

′
t)t≥0, (P′x)x∈{ρ>0})

on {ρ > 0} with lifetime ζ ′, cemetry ∆, and semigroup (P ′
t)t>0 is said to sat-

isfy the L1({ρ > 0}, µ)-martingale problem for (H, C∞
0 ({ρ > 0})), if :

(i) For some M ′, ε′ ∈ (0,∞)

∫
| P ′

tf | dµ ≤ M ′
∫
| f | dµ, f ∈ Cb({ρ > 0}), t ∈ (0, ε′).

(ii) For all u ∈ C∞
0 ({ρ > 0}) under P′µ =

∫
P′xµ(dx)

u(X ′
t) +

∫ t

0

Hu(X ′
s)ds, t ≥ 0,

is an (Ft)t≥0-martingale.

Proposition 2.4. The diffusion process M from Theorem 2.1 solves the
L1({ρ > 0}, µ)-martingale problem for (H,C∞

0 ({ρ > 0})).
Theorem 2.5. Assume (in addition to (H1),(H2)) that (E , D(E)) is con-
servative. Let M′ = (Ω′,F ′, (F ′

t)t≥0, (X
′
t)t≥0, (P′x)x∈{ρ>0}) on {ρ > 0} be a

diffusion process on {ρ > 0} with transition semigroup (P ′
t)t>0 such that M′

satisfies the L1({ρ > 0}, µ)-martingale problem for (H, C∞
0 ({ρ > 0})). Then

P′x = Px for µ-a.e. x ∈ {ρ > 0}, where Px, x ∈ {ρ > 0}, are the probability
measures of M in Theorem 2.1. If, in addition, P ′

t(C
∞
0 ({ρ > 0})) ⊂ C({ρ >

0}) for all t > 0, then P′x = Px for every x ∈ {ρ > 0}.
The above results apply to the two models described in the introduction

and analyzed in the subsequent sections (cf. also [6], Section 6). The essential
part is to show the conservatity of (E , D(E)) or equivalently the L1-uniqueness
of (H, C∞

0 (Rd)) on L1(µ). In Sections 3 and 4 below we shall prove both L1

and the much harder L2-uniqueness for both models.
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3 Diffusions in a random media

In this section we suppose that the density ρ : Rd → R has the form

ρ(x) := exp(−E(x)),

where E is the potential energy of the particle in the configuration γ ⊂ Rd

E(x) := Eγ(x) =
∑
y∈γ

V (x− y), x ∈ Rd.

We assume that the function V : Rd → R, called potential, satisfies the
following conditions:

V ∈ C1(Rd \ {0}), V ≥ −a, for some a > 0, (3.1)

and

exp(−1

2
V ) ∈ W 1,2

loc (Rd, dx). (3.2)

Note that then ∇V ∈ L2
loc(Rd, exp(−V ) dx) (but not vice versa in general).

We also assume a decay condition at infinity: there exist constants c, k0 > 0
and α > d such that

|V (x)|+ |∇V (x)| ≤ c(1 + |x|)−α if |x| ≥ k0. (3.3)

To be able to control the drift in (1.2) we will restrict the class of admissible
configurations. By B(x, r) := {y ∈ Rd | |y − x| < r} we denote the open
ball of radius r > 0 with center at point x. Define the set Γad of admissible
configurations in Rd as

Γad := {γ | ∀r > 0 ∃c(γ, r) > 0 : |γ ∩B(x, r)| ≤ c(γ, r) log(1 + |x|)}. (3.4)

Here |A| denotes the cardinality of a set A. Note that for many classes of
probability measures ν on configuration spaces we have ν (Γad) = 1, see [16].
In particular, this is true for the well-known Ruelle measures corresponding
to superstable pair potentials [15].

Below as before we set µ := ρdx, β := ∇ρ
ρ

. For A ⊂ Rd set Ac := Rd \ A.

6



Lemma 3.1. Assume that (3.1) holds and fix γ ∈ Γad. Consider the decom-
position E = E(1) + E(2), where for x ∈ Rd

E(1)(x) :=
∑

y∈γ∩B(x,k0)

V (x− y), E(2)(x) :=
∑

y∈γ∩B(x,k0)c

V (x− y).

Then:
(i) Assume V satisfies (3.3). Then E(2) ∈ C1(Rd) and there exist b1, b2 ∈

(0,∞) (only depending on γ, α and d) such that for all x ∈ B(0, r), r > 0,

E(x) ≥ −b1 − (b2 + ac(γ, k0)) log(1 + r).

(ii) Assume V satisfies (3.2) and (3.3). Then
√

ρ = exp(−1
2
E) ∈ W 1,2

loc (Rd, dx)
(in particular |β| ∈ L2

loc(Rd, µ)), so (H1) from Section 2 is satisfied. Further-
more, β = −∇E on Rd \ γ, in particular, |β| ∈ Lp

loc(Rd, µ), p ∈ [2,∞), if
∇V ∈ Lp

loc(Rd, exp(−V ) dx). So, in case p > d, (H2) from Section 2 holds.

Proof. (i): Note that for k ∈ N, x ∈ Rd, and D(x, k) := B(x, k + 1) \B(x, k)

|γ ∩D(x, k)| ≤ cdk
d−1c(γ, 1) log(1 + |x|+ k)

for some constant cd only depending on the dimension d. Hence by (3.3) for
all x ∈ B(0, r), r > 0,

∞∑

k=k0

∑

y∈γ∩D(x,k)

(|V (x− y)|+ |∇V (x− y)|) ≤

ccdc(γ, 1)
∞∑

k=k0

kd−1 log(1 + |x|+ k)

(1 + k)α
< ∞.

We conclude that E(2) ∈ C1(Rd) and because log(1+ |x|+k) ≤ log(1+ |r|)+
log(1 + k) for x ∈ B(0, r), there exist b1, b2 ∈ (0,∞) (only depending on γ, α
and d) such that for all x ∈ B(0, r), r > 0,

|E(2)(x)| ≤ b1 + b2 log(1 + r)

Furthermore, by (3.1) for all x ∈ B(0, r), r > 0,

E(1)(x) =
∑

y∈γ,|y−x|<k0

V (x− y) ≥ −ac(γ, k0) log(1 + |x|) ≥ −ac(γ, k0) log(1 + r),

7



and (i) is proved.
(ii): Obviously,

√
ρ(x) = exp(−1

2
E(2)(x))

∏

y∈γ∩B(x,k0)

exp(−1

2
V (x− y)) (3.5)

with all factors (as functions of x) in W 1,2
loc (Rd, dx) ∩ L∞loc(Rd, dx). Now all

parts of the assertion are obvious.

If V and γ satisfies (3.1) - (3.4), then (H1) holds, so

Hu := −∆u− 〈β ,∇u〉, u ∈ C∞
0 (Rd), (3.6)

defines an operator (H,C∞
0 (Rd)) on Lp(µ), p ∈ [1, 2]. If, in addition, ∇V ∈

Lp
loc(Rd, exp(−V ) dx), also for p > 2, this is true for all p ∈ [1,∞).

We recall the following notion.

Definition 3.2. Let p ∈ [1,∞). (H, C∞
0 (Rd)) is called Lp(µ)-unique, if its

closure (H̃, D(H̃)) on Lp(µ) generates a C0-semigroup on Lp(µ).

Remark 3.3. (i) Due to a result of W.Arendt [7, A-II, Theorem 1.33] (H, C∞
0 (Rd))

is Lp(µ)-unique if and only if it has exactly one closed extension on Lp(µ)
generating a C0-semigroup.
(ii) By [21, Corollary 2.2 and Remark 2.4] (H, C∞

0 (Rd)) is L1(µ)-unique if
and only if (E , D(E)) (and hence the diffusion process in Theorem 2.1) is
conservative.

We start with L1(µ)-uniqueness.

Theorem 3.4. Let γ ∈ Γad and suppose that the potential V satisfies con-
ditions (3.1)–(3.3). Then (H,C∞

0 (Rd)) is L1(µ)-unique and both Theorems
2.1 and 2.5 apply, provided ∇V ∈ Ld+ε

loc (Rd, exp(−V ) dx) for some ε > 0.

Proof. Since we already know by Lemma 3.1 (ii) that |β| ∈ L2
loc(Rd, dµ), by

[18, Theorem 4 and Remark 2] we have to find constants A,B > 0 such that

µ(B(0, r) ≤ A exp(Br2) for all r > 0.

But by Lemma 3.1 (i) we know that up to constants depending only on γ, α
and d µ(B(0, r) is dominated by eb1(1 + r)b2+ac(γ,k0)+d. The last part of the
assertion follows by Lemma 3.1 (ii).
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Next we consider L2(µ)-uniqueness. In this case we need stronger as-
sumptions on V, namely, we suppose that (instead of (3.1)-(3.3)):

V ∈ C2(Rd \ {0}), V ≥ −a, for some a > 0, (3.7)

exp(−1

2
V ) ∈ W 2,2

loc (Rd, dx), ∇V ∈ L4
loc(Rd, exp(−V ) dx). (3.8)

and there exist constants c, k0 > 0 and α > d such that

|V (x)|+ |∇V (x)|+ |∆V (x)| ≤ c(1 + |x|)−α if |x| ≥ k0 > 0. (3.9)

We start with a simple technical result.

Lemma 3.5. Let γ ∈ Γad and suppose that the potential V satisfies con-
ditions (3.7)–(3.9). Then ρ1/2 = exp(−1

2
E) ∈ W 2,2

loc (Rd, dx) (in particular
div β ∈ L2

loc(Rd, µ)) and |β| ∈ L4
loc(Rd, µ).

Proof. The same arguments as in the proof of Lemma 3.1 (i) show that
E(2) ∈ C2(Rd). Furthermore, by (3.5) ρ1/2 is a (finite) product of functions
from W 2,2

loc (Rd, dx)∩L∞loc(Rd, dx). The fact that |β| ∈ L4
loc(Rd, µ) follows from

Lemma 3.1 (ii).

Remark 3.6. It directly follows from the proof that for compactly supported
V the assertion of Lemma 3.5 is true for configurations γ which are locally
finite, i.e. |γ ∩Br| < ∞ for any r > 0.

Theorem 3.7. Let γ ∈ Γad and suppose that the potential V satisfies condi-
tions (3.7)–(3.9). Then (H, C∞

0 (Rd)) is L2(µ)-unique (i.e. H is essentially
self-adjoint on C∞

0 (Rd) in the space L2(µ) ).

Proof. Define the “renormalized” potential

V̂ (x) :=
1

4
|∇E(x)|2 − 1

2
∆E(x) ≡ 1

4
|β(x)|2 +

1

2
div β(x). (3.10)

By Lemma 3.5 V̂ ∈ L2
loc(Rd, dµ) and the “renormalized” Hamiltonian

Ĥ := −∆ + V̂ (3.11)
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defined in L2(Rd, dx) on the domain D := ρ1/2C∞
0 (Rd). The operators

(H,C∞
0 (Rd)) and (Ĥ,D) are unitary equivalent under the linear map

H 3 u → ρ1/2u ∈ L2(Rd, dx). (3.12)

Below by Ĥ we denote the closure of the operator (Ĥ,D). Clearly, Ĥ is a
non-negative definite symmetric operator in L2(Rd, dx). We shall show that

the operator Ĥ is self-adjoint in L2(Rd, dx) and therefore H is self-adjoint in
L2(µ). We use the hyperbolic approximation criterium developed by Yu.M.
Berezansky (see, e.g. [8, 9]). As the configuration γ is a locally finite set we
can choose sequences rn, dn > 0, rn ↑ ∞ such that

B(0, rn + dn) \B(0, rn) ∩ γ = ∅. (3.13)

Here Ā denotes the closure of a set A. Let χn be a cut-off function such
that χn ∈ C∞

0 (Rd)), χn(x) = 1 if |x| ≤ rn and χn(x) = 0 if |x| ≥ rn + dn.
Define the cut-off energy En(x) = E(x)χn(x) and the cut-off density ρn(x) :=
exp(−En(x)). Set µn := ρn dx, βn := ∇ρn

ρn
. Let Hn be the operator associated

with the cut-off Dirichlet form

(Hnu, v) :=

∫

Rd

〈∇u,∇v〉 dµn. (3.14)

in Hn = L2(Rd, µn) . By (3.13), (3.9) (see also the proof of Lemma 3.1)
E∇χn ∈ C2

0(Rd) and βn = −(χn∇E + E∇χn) ∈ L4(Rd, µn). By [18] Hn is
essentially self-adjoint on C∞

0 (Rd) . Therefore, its unitary image (under the

linear map Hn 3 u → ρ
1/2
n u ∈ L2(Rd, dx))

Ĥn := −∆ + V̂n (3.15)

is an essentially self-adjoint non-negative operator in L2(Rd, dx) on the do-

main Dn := ρ
1/2
n C∞

0 (Rd). Here

V̂n :=
1

4
|βn|2 +

1

2
div βn ∈ L2(Rd, µn). (3.16)

(Note that div βn = −(χn∆E + 2〈∇χn,∇E〉 + E∆χn) ∈ L2(Rd, µn).) Con-
sider the Cauchy problem

d2un

dt2
(t) + (Ĥnun)(t) = 0, un(0) = ϕ0, u′n(0) = ϕ1. (3.17)
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Note that the operator Ĥn can be approximated in the strong resolvent sense
by Schrödinger operators Hnk := −∆+Vnk with smooth potentials Vnk (e.g.,

Vnk must be chosen such that (Vnk− V̂n)ϕ → 0 as k →∞ for any ϕ ∈ Dn). It
follows that the strong solution of (3.17) has a finite rate of propagation, i.e.
supp un(t) ⊂ B(0, r + t), under the condition supp ϕi ⊂ B(0, r), i = 0, 1 (by
the support of a function from L2(Rd, dx) we understand the support of the

corresponding distribution). To prove the essential self-adjointness of (Ĥ,D)
it is sufficient to show (see [8, 9]) that for ϕi ∈ D (i = 0, 1) and any T > 0
the strong solutions of (3.17) satisfy the relations

un(t) ∈ D(Ĥ), t ∈ [0, T ], n > n0 = n0(T, ϕ0, ϕ1) (3.18)

and

T∫

0

(u(t), (Ĥ − Ĥn)un(t))L2(Rd,dx)dt → 0, as n →∞, (3.19)

for any strong solution u of the Cauchy problem

d2u

dt2
(t) + (Ĥ∗u)(t) = 0, u(T ) = 0, u′(T ) = 0. (3.20)

Here Ĥ∗ is the adjoint of the operator Ĥ. Suppose that supp ϕi ⊂ B(0, r) for
some r > 0. Then supp un(t) ⊂ B(0, r+T) for t ∈ [0, T ]. Choose n0 in such a

way that rn0 > r+T . Note (see (3.10)) that V̂n(x) = V̂ (x) for |x| ≤ rn. Then

by Lemma 3.8 below (3.18) is valid and (Ĥnun)(t) = (Ĥun)(t). In particular
the relation (3.19) is fulfilled. Therefore to finish the proof of Theorem 3.7
we only need to prove the following lemma.

Lemma 3.8. Suppose that f ∈ D(Ĥn) and supp f ⊂ B(0, r) for some r ∈
(0, rn). Then f ∈ D(Ĥ) and Ĥf = Ĥnf.

Proof. Let {fm} be a sequence in Dn converging to f in the graph norm of

the operator Ĥn. As γ is a locally finite set we can choose r′, r′′ such that
r < r′ < r′′ < rn and

B(0, r′′) \B(0, r′) ∩ γ = ∅.
Let α be a cut-off function such that α ∈ C∞

0 (Rd)), α(x) = 1 if |x| ≤ r′ and
α(x) = 0 if |x| ≥ r′′. Set gm := αfm. As ρn(x) = ρ(x) for x ∈ B(0, rn), we

11



have that gm ∈ D ∩ Dn and Ĥgm = Ĥngm. Clearly, gm → f in L2(Rd, dx)

and we only need to prove that {Ĥngm} converges in L2(Rd, dx). We have

Ĥngm = (−∆ + V̂n)gm = αĤnfm + (−∆α)fm − 2〈∇α,∇fm〉. (3.21)

The first two terms of (3.21) converge in L2(Rd, dx). Consider the last term.

By the definition of Dn we have that fm = ρ
1/2
n φm with φm ∈ C∞

0 (Rd)).
Furthermore,

〈∇α,∇fm〉 = ρ1/2
n 〈∇α,∇φm〉+

1

2
〈β,∇α〉fm. (3.22)

(Clearly, 〈β,∇α〉 = 〈βn,∇α〉 with βn := ∇ρn

ρn
.) By the construction supp∇α∩

γ = ∅. It follows that β is bounded on supp∇α and 〈β,∇α〉fm converges

in L2(Rd, dx). Since the operators Hn and Ĥn are unitary equivalent, we
see that φm converges in the graph norm of the operator Hn. In particular
∇φm converges in the Hilbert space Hn = L2(µn). It follows that 〈∇α,∇φm〉
converges in L2(µn) and by (3.22) 〈∇α,∇fm〉 converges in L2(Rd, dx). This
completes the proofs of Lemma 3.8 and Theorem 3.7.

Note that Lemma 3.8 shows that the domains of the operators Ĥ and
Ĥn locally coincide. If, instead of assumption (3.3) we suppose that V is
compactly supported, we can prove that the assertion of Theorem 3.7 is
valid for all locally finite configurations γ.

Theorem 3.9. Suppose that the potential V is compactly supported and sat-
isfies conditions (3.7)–(3.8). Then the operator (H, C∞

0 (Rd)) is essentially
self-adjoint on L2(Rd, dµ) for all locally finite configurations γ.

Proof. The proof is done by the same arguments as used for proving Theorem
3.7. We only need to take into account Remark 3.6.

4 N-particle systems with gradient dynamics

In this section we consider a model of N interacting particles in the Euclidean
space Rd (see (1.3)). We introduce the potential energy of the system

E(x) :=
∑

1≤k<j≤N

V (xk − xj), x = (x1, ...xN) ∈ RNd

12



and the density

ρ(x1, ...xN) := exp(−E(x1, ...xN)).

We shall suppose that conditions (3.1) and (3.2) are satisfied. Then ρ1/2 =
exp(−1

2
E) ∈ W 1,2

loc (RNd, dx) and E can have singularities only on the set

S =
⋃

1≤k<j≤N

Skj, Skj = {x = (x1, ...xN) ∈ RNd | xk = xj}.

As before we set µ := ρdx. We start with the problem of L1-uniqueness for
the operator H given by (3.6) with Rd replaced by RNd and

β(x) :=
∇ρ

ρ
(x) = (−

∑

j 6=k

∇V (xk − xj))
N
k=1 ∈ RNd, x /∈ S.

Theorem 4.1. Suppose that the potential V satisfies conditions (3.1) and
(3.2). Then (H, C∞

0 (RNd)) is L1(µ)- unique.

Proof. The proof directly follows from Liskevich’s result [18]. We already
mentioned that (3.2) implies that ρ1/2 = exp(−1

2
E) ∈ W 1,2

loc (RNd, dx) (in par-
ticular β ∈ L2

loc(RNd, µ)). Moreover, in this case ρ is bounded and therefore
µ(B(0, r) ≤ CrNd for some C > 0.

Next we turn to the L2(µ)-uniqueness of the operator (H, C∞
0 (RNd)). For

simplicity we restrict ourselves to the case of radially-symmetric potentials
V . More precisely, we assume that

V (x) = v(|x|), v ∈ C2(0,∞), x ∈ RNd, (4.1)

and that there exist constants c2, ε > 0 such that

v(2)(r) ∼ c2/r
2+ε, r → 0, (4.2)

where a(r) ∼ b(r), r → 0 means that a(r)/b(r) → 1, r → 0. It is easy to see
that (4.2) implies that

v(i)(r) ∼ (−1)ici/r
i+ε, ci, ε > 0, i = 0, 1, r → 0. (4.3)

Note that these assumptions yield (3.8) and hence ρ1/2 = exp(−1
2
E) ∈

W 2,2
loc (RNd, dx) and β ∈ L4

loc(RNd, µ).

13



Theorem 4.2. Suppose that a real-valued bounded from below potential V
satisfies conditions (4.1)-(4.2). Then the operator H is essentially self-
adjoint on C∞

0 (RNd) in L2(RNd, µ).

Proof. We will follow the line of the proof of Theorem 3.7. However, the
asymptotic condition (4.2) will simplify our arguments. Define the renor-

malized potential V̂ and the renormalized Hamiltonian Ĥ by (3.10), (3.11).

It is easy to see that conditions (4.2), (4.3) imply that V̂ ∈ L2
loc(RNd, ρ(x)dx)

and, moreover, V̂ is locally semibounded from below on RNd (the singu-

larities of V̂ appear only on S where one can apply the asumptotics (4.2),

(4.3)). In the following we again denote by Ĥ the closure of the operator

(Ĥ,D) where D := ρ1/2C∞
0 (RNd). Analogously to the proof of Theorem 3.7

we take a cut-off function χn ∈ C∞
0 (RNd) such that χn(x) = 1 if |x| ≤ n and

χn(x) = 0 if |x| ≥ n+1. Set En(x) := E(x)χn(x), ρn(x) := exp(−En(x)) and
µn = ρn(x)dx. Let Hn be the operator associated with the cut-off Dirichlet
form

(Hnu, v) :=

∫

RNd

〈∇u,∇v〉 dµn (4.4)

on Hn := L2(RNd, µn) . Clearly, βn = −(χn∇E + E∇χn) ∈ L4(RNd, µn)
and by [18] Hn is essentially self-adjoint on C∞

0 (RNd). Therefore, its unitary

image (under the linear map Hn 3 u → ρ
1/2
n u ∈ L2(RNd, dx))

Ĥn := −∆ + V̂n (4.5)

is an essentially self-adjoint non-negative definite operator in L2(RNd, dx) on

the domain Dn := ρ
1/2
n C∞

0 (RNd) (the potential V̂n ∈ L2(RNd, µn) is defined

by (3.16)). Clearly, V̂n ∈ C2(RNd \ S) and supp V̂n ⊂ B(0, n + 1). We will

show that for any x0 ∈ S V̂n(x) → ∞ and therefore the potential V̂n is
semibounded from below. First suppose that x0 ∈ Sjk and x0 /∈ Slm for
|j − l|+ |k −m| > 0. Then by (4.2), (4.3)

V̂n(x) =
1

4
|∇(V (xj − xk)χn(x))|2 − 1

2
∆(V (xj − xk)χn(x)) + O(|x− x0|)

∼ c2
1χ

2
n(x0)

4
r−2−2ε
jk − c2χn(x0)

2
r−2−ε
jk → +∞, x → x0.

14



Here rjk := |xj − xk|. Consider the more difficult case x0 ∈ Sjk ∩ Slm and
x0 /∈ Sj′k′ for the other indices j′, k′. For simplicity suppose that j = 1, k =
l = 2, m = 3. Then

V̂n(x) =
1

4
|∇((V (x1 − x2) + V (x2 − x3) + V (x3 − x1))χn(x))|2

−1

2
∆((V (x1 − x2) + V (x2 − x3) + V (x3 − x1))χn(x)) + O(|x− x0|). (4.6)

Set

A(x) := |∇((V (x1 − x2) + V (x2 − x3) + V (x3 − x1))χn(x))|2,
B(x) := ∆((V (x1 − x2) + V (x2 − x3) + V (x3 − x1))χn(x)).

Clearly,

B(x) ∼ c2χn(x0)
∑

1≤k<j≤3

r−2−ε
kj , x → x0.

Set ωij :=
xi−xj

rij
, i 6= j. By (4.3)

A(x) ∼ c2
1χ

2
n(x0)(|v′(r12)ω12 + v′(r13)ω13|2 + |v′(r21)ω21 + v′(r23)ω23|2 +

|v′(r32)ω32 + v′(r31)ω31|2), x → x0.

Consider the following cases:
I. One of the rij (e.g., r12) tends to zero faster than the other two, i.e.
lim inf r23

r12
> 1 and lim inf r31

r12
> 1 Then

A(x) ∼ 2c2
1χ

2
n(x0)r−2−2ε

12 , x → x0.

2. One of the rij (e.g., r12) tends to zero slowlier than the other two, and,
moreover, r23 and r31 tend to zero with the same rate, i.e. lim sup r23

r12
< 1

and lim sup r31

r12
< 1 and lim r23

r31
= 1. In this case

A(x) ≥ c2
1χ

2
n(x0)(r−2−2ε

23 + r−2−2ε
31 ), x → x0.

3. All rij tend to zero with the same rate. Then

A(x) ∼ c2
1χ

2
n(x0)r−2−2ε

ij (|ω12 + ω13|2 + |ω21 + ω23|2 + |ω32 + ω31|2), x → x0.

15



Note that

|ω12 + ω13|2 + |ω21 + ω23|2 + |ω32 + ω31|2 =

2(3 + 〈ω12, ω13〉+ 〈ω21, ω23〉+ 〈ω32, ω31〉) ≥ 3.

Here we have used the following well-known estimate: for any triangle with
angles α1, α2, α3

| cos(α1) + cos(α2) + cos(α3)| ≤ 3/2.

It follows that for some c > 0 A(x) ≥ cr−2−2ε
ij , x → x0.

Therefore A(x) tends to infinity faster then B(x) in all three cases and

(see (4.6)) V̂n(x) →∞ as x → x0. A similar analysis shows that this is true

for all x0 ∈ S. It follows that V̂n is semibounded from below. Now one repeats
the arguments from the proof of Theorem 3.7. It should only be noted that
due to the semiboundedness of V̂n the proof of the analogue of Lemma 3.8 is
even simpler. We give the proof for the convenience of the reader.

Lemma 4.3. Suppose that the potential V satisfies the conditions of Theo-
rem 4.2. Let f ∈ D(Ĥn) such that supp f ⊂ B(0, r) for some r ∈ (0, n). Then

f ∈ D(Ĥ) and Ĥf = Ĥnf.

Proof. Let {fm} be a sequence in Dn converging to f in the graph norm of the

operator Ĥn. Choose a cut-off function α such that α ∈ C∞
0 (RNd), α(x) = 1

if x ∈ B(0, r) and supp α ⊂ B(0, n). Set gm = αfm. As ρn(x) = ρ(x)

for x ∈ B(0, n), we have that gm ∈ D ∩ Dn and Ĥgm = Ĥngm. Clearly,

gm → f in L2(RNd, dx) and we only need to prove that {Ĥngm} converges in
L2(RNd, dx). We have

Ĥngm = (−∆ + V̂n)gm = αĤnfm + (−∆α)fm − 2〈∇α,∇fm〉. (4.7)

The first two terms of (4.7) clearly converge in L2(RNd, dx). Consider the

last term. We have already mentioned that the potential V̂n is semibounded
from below. Therefore, for some α > 0

(Ĥnfm, fm)L2(RNd) + α(fm, fm)L2(RNd) ≥
∫

RNd

〈∇fm,∇fm〉 dx.

It follows that ∇fm converges in L2(RNd, dx).
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