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Introduction

This paper continues [18] which tried to give meaning and a basic stochastic

analysis framework to stochastic differential equations of the following type:

t t
X, = 20+ / o(X,) dW, + / b(X,) ds, (0.1)
0 0

where b, o are continuous functions such that ¢ > 0. In such a case the

formal operator associated with X is given by Lf = ”2—2 v s

Equation (0.1) was considered as a martingale problem and sometimes in

the sense of probability laws.

Diffusions in a generalized sense were studied by several authors. First, we
mention a classical book by N.I. Portenko ([37]) which, however, remains in

the framework of semimartingales.

More recently, H.J. Engelbert and J. Wolf ([16]) considered special cases
of processes solving stochastic differential equations with generalized drift;
those cases include examples coming from Bessel processes. Those solutions
are no longer semimartingales but Dirichlet processes. A special case of
equation (0.1) with ¢ = 1 and continuous b was treated by P. Seignourel
([45]) without defining the stochastic analysis framework in relation with
long time behaviour. This is the case of irregular medium; the case of b
being a Brownian path appears also in the literature with the denomination

?random medium”.

The counterpart of the paper [18] at the level of ”strong” solutions is a recent
preprint of R.F. Bass and Z-Q. Chen ([4]) which examines, one-dimensional
stochastic differential equations with Holder continuous diffusion and with
a drift being the derivative of a Holder function. For that equation they

establish strong existence and pathwise uniqueness.

The literature on Dirichlet processes in the framework of Dirichlet forms is
huge and it is impossible to list it completely. We only want to mention some

very useful monographies such as [22, 24]. The subject has shown a large



development in infinite dimension starting from [2]. A later monography is
[28]. Recently, the case of time-dependent Dirichlet forms has attracted a
lot of interest, see [34, 46].

Our point of view of Dirichlet processes is pathwise, following [19, 5]. A
(continuous) Dirichlet process is the sum of a local martingale M and a zero
quadratic variation process A. In [18], we have already examined how the
natural framework of the solutions to (0.1) is the class of Dirichlet processes
and its VV&;C2 transformations. In this paper, we first discuss the time reversal
structure of those processes. This leads to show that those processes are not
only Dirichlet, but also Lyons-Zheng (LZ) processes. Those processes were
defined in [44] after inspiration from [27, 26] and they extend the class of
reversible semimartingales. A (strong) LZ process essentially is a Dirichlet
process M + A whose zero quadratic variation part can be expressed as
A= %(MQ MY+ 0.2)
where M' = M, M? is a backward local martingale and V is a bounded

variation process.

Examples of such processes are first of all C'-functions of reversible semi-
martingales; furthermore, Bessel processes of arbitrary dimension belong to
this class, see [44]. In this paper, we will also see that, generally, solutions to

stochastic differential equations with distributional drift are LZ processes.

For a LZ process X, it is quite natural to define a stochastic integral (of
symmetric type) and an It formula for f(X), f € C*, see [27, 44]. An Ito
formula under weak assumptions is also the object of this paper. We recall
that two papers were simultaneously written by Féllmer, Protter, Shiryaev
[21] (resp. Russo, Vallois [42]) for f(B) (resp. f(S)), involving the covaria-
tion [f(B), B] (resp. [f(S),S]); in the first case f € Wllo’f and B is a classical
Brownian motion; in the second case f € C! and § is a reversible (multi-
dimensional) semimartingale. Subsequently, generalizations of the first case
were treated in [6], [32], where S is first an elliptic diffusion with smooth
coefficients and a non-degenerate martingale in the sense of Malliavin cal-
culus. Errami, Russo and Vallois ([17]) generalized the paper [42] to the
case of processes with jumps. The multidimensional situation for f € V[/'ﬁ)’c2

was treated in [20] for Brownian motion B and in [32] (resp. [33]) when X



is one-dimensional (resp. multidimensional) Brownian martingale which is

non-degenerate regarding Malliavin calculus.

The paper is organized as follows. In the whole paper, the basic assumption
is the existence, via a regularization procedure, of some function ¥ which
expresses formally ¥(z) := [ 20_—”2'. In Section 2, we recall the notion of the
basic operator L and consider the concept of a C'-generalized solution to
Lf = f, where [ € C% f € C'. We recall that Lf = [ admits a solution for
any [ € C°. Dy, is the subset of C'-functions f such that Lf = [ for some
[ € C°. Significant examples arise when b = ac?/2 + 3, where « € [0,1] and
B is a function of bounded variation. A particular situation appears when
L is close to divergence type which means that

b= +5 (0.3)
In Section 3, we recall the concept of martingale problem related to L. This
problem has a unique solution provided that a condition of non-explosion is
fulfilled. This condition is also necessary. If L is close to divergence type
then it is possible to show that the martingale problem is equivalent to a
stochastic differential equation in the weak sense (0.1); more precisely, the

solution X to the martingale problem associated with L will solve
t
Xt =z0+ / o(Xs)dWs + A(b), (0.4)
0
where A : C°(R) — C is the unique extension of the map

I /O.l'(Xs)ds

defined on C'(R); C denotes the metric space of continuous processes en-

dowed with the ucp topology. The existence of such an extension is explained
by the fact that the map £ : Dy, — C°, defined by

Lf(z)= /z Lf(y)dy

0

can be extended continuously to C(R).

In Section 3, we also recall the fact that solutions of martingale problems

have a law density at each time ¢ > 0 fulfilling local Aronson estimates.



Moreover, we prove sharper properties on the integrability of the density

when L is of divergence form.

In Section 4, we reveal that the solution to a martingale problem is in fact
a LZ process, at least under some weak technical assumption (TA) on the
coefficients. For this, we show that it is the C'-transformation of a time

reversible semimartingale.

Time reversal tools are essential for this task. Similar calculations have been
performed by several authors in other situations, see for instance [19, 31, 8,
9, 29].

The second significant result of Section 4 is an It6 formula under weak as-

sumptions. It applies to f € Y/Vllo’f and solutions X to the equation

t t
&zm+/d&ﬁ%+/ﬂ&ﬂ& (0.5)
0 0

00
loc*

where o > 0 is continuous and v € L
Section 5 characterizes the class of f € VVﬁ)’c2 such that f(X) is a semimartin-
gale. In particular, we obtain a condition on b and ¢ ensuring that X is a

semimartingale.

Semimartingale characterizations for functions of the Brownian motion were
first considered by [11] with extensions to the Markov case. There is a recent
result of Fukushima [23] characterizing functionals of semimartingales, in
the case of a symmetric Markov process. Our methods are direct and do
not make use of the Markov property. Extensions for time inhomogeneous

functions of the Brownian motion have been obtained by [10].

We conclude the paper in Section 6 by examining the case when L is of

divergence type .
Lf=30*f") (0.6)
A first interpretation of X was given in [46] and in [38] related to a LZ type

decomposition. In [38], however, no stochastic differential equation appears.

If o € C*! then it is immediate to show
t
X+ [ o(X)dW, (07)
0
where d*W denotes the backward integral.

4



If X solves a martingale problem associated with L then it follows from Sec-
tion 5 that X is a semimartingale if and only if ¢ has bounded variation. In
this case we show that X solves also (0.7). In the general case (o continuous)

this is no longer true.

1 Notations and recalls

If I is a real open interval then C'(I) will be the F-type space (according to
the notations of [13, Chapter 2]) of continuous functions on I endowed with
the topology of uniform convergence on compacts. For k > 0, C¥(I) will be
a similar space equipped with the topology of uniform convergence of the
first k£ derivatives. If I = R we will simply write C, C* instead of C(R),
Ck(R).

2

i denotes

Furthermore, we will work with the following F-type spaces. L
the space of all Borel functions which are square integrable when restricted
to compact subsets. Wli’cz is the space of all absolutely continuous functions
f admitting a density f' € L? . It is equipped with the distance which

loc*

sums |f(0)| and the distance of f' in LZ, . Similarly, we can consider L}

for p > 1. We denote the set of C* real functions with compact support by

Cf, k > 0. const will denote a generic positive constant.

T will be a fixed real number. We fix a probability space (Q2,.4,P). All
processes will be considered with index in R. The F-type space of continuous
processes equipped with the ucp topology is denoted by C. We recall that
a sequence of processes (Hy) in C converges ucp to H if, for every T > 0,
supse(o,7] |(Hn — H)(t)| converges to zero in probability. Note that H belongs

automatically to C.

For convenience, we follow the framework of stochastic calculus introduced
in [40] and continued in [41, 42, 43], [49, 50, 51] and [44]. Let X = (Xy,t €

[0,7) be a continuous process and Y = (Y, € [0,7]) be a process with

1

ioc- We recall in the sequel the most useful rules of calculus.

paths in L

The forward, backward and symmetric integrals and the covariation pro-

cess are defined by the following limits in the ucp (uniform convergence in



probability) sense whenever they exist

t t _
Y,d-X, = lim [ v,25te =% g (1.1)
0 e—0+ 0 £
t t Xs - X s—&
/ Y,dt*X, = lim | Y,20 —G=N0 g (1.2)
t D A O
Y,dX, = lim [ Y,22t TG6OV0 4 (1.3)
0 e—0+4+ 0 2e
X,Y), = lim C.(X,Y), (14)
where Lo
Co(X,Y), == E/ (Xyre — Xs)(Yase — Ys) ds.
0

For [X, X] we shortly write [X].

All stochastic integrals and covariation processes will be of course elements
of C.

For a given process Z = (Z,t € [0,T]) we set Z; := Z(T —t), t € [0,T].

Remark 1.1 a)

t 1 t 1 t
/Y;dOXs=—/ Y;dXs+—/Y;d+Xs,
0 2 0 2 0

b) [X,Y]: = f(f Y,dt X, —fg Y, d~ X, provided that two of the three terms

in a) and b) ezist.

¢) XiYr = XoYo —{—fJYS d~ X, —|—f§ X d7 Y+ [X, Y]y with similar conven-

tions as in a) and b).
d) [X,Y);=[X,Y]r - [X,Y]r_+

e) If one of the two following members exists then
¢ T .
[Yoarx.—— [ %iax,
0 T—t

holds, where the integrals from a to b (a,b € R) are analogously defined
asin (1.1), ..., (1.4).



Remark 1.2 o) If [X, X] ezists then it is always an increasing process
and X is called a finite quadratic variation process. If [ X, X] = 0 then
X is said to be a zero quadratic variation process (or a zero energy

process).

b) If X, Y are continuous processes such that [X,Y], [ X, X], [Y,Y] exist
then [X,Y] has bounded (total) variation. If f,g € C' then

t
[ﬂﬂﬂwmzéfﬁﬂﬂﬂﬂKY}

¢) If A is a zero quadratic variation process and X is a finite quadratic

variation process then (X, A] = 0.
d) A bounded variation process is a zero quadratic variation process.

e) (Classical It6’s formula) If f € C? then [ f'(X)d X ezists and is

equal to

£O0) = £50) — 5 [ £(x) )

f) If f € C! and g € C? then the forward integral Jo F(X)dg(X) is well
defined.

In this paper all filtrations are supposed to fulfill the usual conditions. If
F = (Ft)iepo,r) is a filtration, X an F-semimartingale, Y is F-adapted with
the suitable square integrability conditions, then fo Y d~ X is the usual Ito’s
integral. If Y is an F-semimartingale then [, Y d°X is the classical Fisk-

Stratonovich integral and [X,Y] the usual covariation process (X,Y).

A semimartingale X such that X is again a semimartingale (with respect to

some filtrations) is said to be a time reversible semimartingale.

A F-Dirichlet process is the sum of an F-local continuous martingale M and

an [F-adapted zero quadratic variation process A, see [19], [5].

Remark 1.3 ([44]) If X = M + A is a Dirichlet process and f € C* then
f(X) = M' + Af is a Dirichlet process, where

Ml = / f(X,)dM,
0

and AT == f(X) — M7 has zero quadratic variation. O



A sequence (7V) of F- stopping times will be said to be ”suitable” if
Ut <13
N

has probability one. We will use the notation of stopped process as usually
X7,

Remark 1.4 Let X a F- adapted continuous process. X is a semimartingale
(resp. Dirichlet processes) if and only if the stopped processes X™ are also

semimartingales (resp. Dirichlet processes). O

At this stage, we recall the concept of a LZ process, see [44].

Let F = (F4)tejo,r), H = (Ht)eefo,r) be two filtrations. A process Y = (V3,1 €
[0,T7]) is said to be (F,H)-adapted if Y is F-adapted and Y is Hradapted.

A continuous (F, H)-adapted process (X;)icpo,r] is called a (strong) (F,H)-
Lyons-Zheng process (or simply LZ process) if there are M* = (M}, t €
[0,7]),i=1,2, V= (V4 t €0,T]), such that

1o, 1,0

and the following conditions are satisfied:

a) M! is a local F-martingale with M} = 0.
b) M? is a local H-martingale with M2 = 0.
c) V is a bounded variation process.

d) M! — M? is a zero quadratic variation process.

Remark 1.5 Let X = (Xy,t € [0,T]) be a (F,H)-LZ process.

a) [X,X] = 5([M*, M']+[M?, M?]). In particular, X is a finite quadratic

variation process.

b) If X is a (F,H)-LZ process then X is a (H,F)-LZ process.



¢) The decomposition (1.5) is unique.

d) A time reversible semimartingale is a LZ process with respect to the

natural filtrations.

e) If X is a LZ process with X = S(M'+M?)+V thenY = f(X), where

f € C, is again a LZ process with decomposition
. T
M; = /0 f(X)dM*, MF= —/ fI(X)dT M2
f) A LZ process which is also a semimartingale is a time reversible semi-
martingale.
h) A LZ process is a Dirichlet process.

i) Let X be a (F,H)-adapted process admitting a decomposition of type
(1.5) satisfying the conditions a), b), c¢). If X is a Dirichlet process
with M' as martingale part, then it is truely a LZ process; that means

that also condition d) is realized.

7) If X is a stationary symmetric Markov process associated with a Dirich-
let form (see f. ex. [22]) and u belongs to the domain of the form then
u(X) is a LZ process (see [26]). In this case we have V = 0.

We recall briefly the notion of LZ stochastic integration in a specific frame-
work. Let Y be a (F, H)-adapted process and X a (F, H)-Lyons Zheng process
with decomposition (1.5). The LZ-symmetric integral is then defined by

t 1 t 1 T . . t
/ YodX:—/ YdMl——/ YdM2+/ Y dV. (1.6)
0 2 /o 2 0
We recall that

t t
[yam = [ -viam!+ v
0 0

1 T
/Ycz+M2 = —/ (Y, — Yr)dM? + Yr M?.
0 T—t

Remark 1.6 If [Y, M?], i = 1,2, exist then

t t
1
/YdOX:/YodXJrZ[Y,Ml—M?]t.
0 0

9



In particular, if Y is a zero quadratic variation process then [Y, M'—M?] =0
/ Y d'X :/ Y o dX.
0 0

Remark 1.7 Let X be a (F,H)-LZ process, H, R be (F,H)-adapted pro-
cesses. We define Y; := fOtRo dX, 0<t<T. Then we have

t t
/HodY:/HRodX.
0 0

Remark 1.8 Let f € C'(R"), X = (X1,...,X,) be a vector of (F,H)-LZ

processes. The following Itd’s formula holds:

and so

t
0

F(X) = F(Xo) + / (fjaif(xs)) o dX
=1

(see [44, 4.4])-

2 The basic operator L

Let o, b € C°(R) such that o > 0. We consider formally a PDE operator of
the following type:

o2
Lg = 79" +bg. (2.1)

By a mollifier, we intend a function ® € S(R) with [ ®(z)dz = 1. We
denote

®,(z) :=n®(nz), o2:=0>*%d,, b,:=bxd,.

n

We then consider )
Lug = g" + b4 (2:2)

A priori, 02, b, and the operator L, depend on the mollifier ®.

Definition A function f € C!(R) is said to be a solution to

Lf=1, (2.3)

10



where [ € C, (in the C'-generalized sense) if, for any mollifier &, there are
sequences (fn) in C2, (I,) in C° such that

Lofon=1In, fo—finC' I,—1inC" (2.4)

In the whole paper, we will suppose the existence of the following function:

S(z) = lim 2 /0 " yay (2.5)

n—00 o'%

in C° independently from the mollifier.

Example 2.1 a) Ifb= a"2—2 for some a €]0,1] then
%(z) = log(a7*(2))

and
B(z) = 072 (x).

b) Suppose that b is of bounded variation. Then we get

wb;Z B wdbn(y) Z db
/o o_z(y)dy‘/o 2 Jo o

since db, — db weakly-x and % is continuous.

¢) If o has bounded variation then we have
r 1

S(x) = —2/ bd(=5) + =
0 g

In particular, this example contains the cas where o =1 for any b.

Remark 2.2 a) The ezistence of ¥ is equivalent to the existence of a so-
lution h € C' to Lh = 0 such that b'(z) # 0. In particular h: R — R
with b' = e™> is a solution to Lh = 0. Transformation h has been
introduced by Zvonkin, see [52]

b) If v € C°, f € C? is a classical solution to Lf = i, then f is immediately

seen to be a C'-generalized solution.

11



c) If Lf = Iy and Lf = Iy in the C'-generalized sense, then Iy = ly.
d) Iff € C° zg,z1 € R then there is a unique solution to

Lf =1, f(0) =0, [f'(0)=u (2:6)
The solution is given by

fQ0) = =zo .
fll@) = @ (2f0$ J_Qez(y)dy+xl>

e) The definition above can be easily adapted to the case that the coefficients

are in an open interval I =]a,b[, —oo0 <a <b< 0.

We will denote by Dy, (resp. Dr(I)) the set of all f € CH(R) (resp. C'(I))

such that there exists some [ € C° with Lf = [ in the C'-generalized sense.

In general, f(z) = z does not belong to Dy. In fact in that case X would

be a semimartingale; Corollary 5.11 will show that this rarely occurs.

Remark 2.3 Dy, is dense in C' and in w2

loc *

Two transformations play a significant role in this paper: A € C'(R) and
z

h' = e~ and k € C'(R) such that k(0) =0, &' = §—2

h eliminates the drift and k£ transforms the operator L into a divergence

form. We set

I = Im h=]a,b|
K = Imk=¢d|

Let L° be the classical PDE operator
0 0(2) n
L¢ = 745 ; (2.7)

where
(k) (h~'(y) : yel
0 T

12



L? is a classical PDE map; however we can also consider it in the C'-

generalized sense and introduce Dreo.

On the other hand, we define the following operator in divergence form

2 2 2
o o o

1 1II: 1 .n IRYN;

Lg—(—2g) ——29 ‘|‘(_2)9

where

or(2) = { (k) (k~'(2)) : z€K
0 . 2¢ K
Lemma 2.4 a) h? € D, Lh? = h'%0?,
b) Dro(I) = C*(I),
¢) ¢ € Dyo(I) holds if and only if ¢ o h € Dr,. Moreover, we have
L(¢oh) = (L) oh (2.8)
for every ¢ € C%(I).
d) g € D) if and only if gok € D,

e) for every g € Dpi k) we have L'g=L(gok)ok '

Definitions We say that the non-explosion condition (NE) is fulfilled if the
solution u of
Lu=1, u(0)=4'(0)=0

in the C'-generalized sense is such that
u(—00) = u(+00) = +o0.
We denote by L : D;, — C° the map
f— [
We say that L is close to divergence type if
o2
1= (GrY+8f

where 3 is a continuous function of bounded variation.

13



Remark 2.5 If L is close to divergence type L admits a continuous exten-

2

sion from Dy, to Wlif, denoted by L with values in Li, ..

3 The martingale problem

Definition A process X is said to solve the martingale problem related to

L with initial condition Xy = xg, x¢ € R, if

t
£~ fao) — [ LF(X)ds
0
is a local martingale for f € D and Xy = .

More generally, for s > 0, z € R, we say that (X, > 0) solves the

martingale problem related to L with initial value z at time s if
(i) X" =,
(ii) for every f € Dy,
5067 @)~ [ LIy vz
s
is a local martingale.

We remark that X*% solves the martingale problem at time s if and only if

X; := X;”* solves the martingale problem at time 0.

Remark 3.1 Let F = (F;) be the natural forward filtration of X. X is an

F-Dirichlet process with local martingale part
t
MX = / o(X,)dWs.
0
In particular, X is a finite quadratic variation porcess with
t
XX = (M 3%, = [ 0*(X)ds,
0
We recall the operators
A:Dp —C, given by A(f) =/ Lf(X,)ds
0

14



A:Ct —¢, mmbyAm:/H&m.
0

Taking in account Corollary 5.3 of Part I and its proof, we have the following.

Remark 3.2 (i) A can be continuously extended to Wli’f with values in C.

Moreover A(f) is a zero quadratic variation process for any f € Wl{]’cz

(ii) For every f € W2

loc ?

t
FX) = flao) + [ () (X)W, + A(f) (31)
(i3i) If L is close to divergence type, i.e.
2
Lg= %g"-l—b'g'

with b’ being a Radon measure then, A can be extended to leoc' In this

case, we have

Proposition 3.3 a) X solves the martingale problem related to L if and
only if Y = h(X) is a local martingale with values in I = h(R), which

solves the stochastic differential equation

t
Yi=Yo+ [ o(Y)aw,
0
in the sense of probability distributions.

b) There is a unique solution to the martingale problem related to L with
prescribed initial condition xy € R if and only if the (NE) condition is

verified. Moreover, X is an F-Dirichlet process with martingale part
¢
M:/UMMM.
0

d) X solves the martingale problem related to L if and only if Z = k(X)

solves the martingale problem related to L'.

15



Remark 3.4 Let T > 0 and (Z;);>0 be a process. We denote by F = Fy
the natural forward filtration of Z, given by Fy = o(Zs : s < t), and by

H = Hy the backward filtration, given by Hy = o(Zs : s < t). Clearly, we
have fy = .7:)( = fz and Hy = HX = Hz.

Remark 3.5 a) When L is close to divergence type, Part I shows that
the martingale problem related to L is equivalent to the true stochastic

differential equation
t
Xy = Xo + / o(Xs)dWs + A(b).
0

b) We recall from Part I that, in this case, X fulfills what we called the
Bouleau- Yor property, inspired to us by [7]. This means that:

o A admits a continuous extension to C°, always denoted by the

same letter,

o [59(X)d™A(l) ezists for every g € C%,1 € C°.

¢) In Lemma 3.10 of Part I, we stated the following for a process X having
the Bouleau-Yor property:
| 9t0d40) = Ag(o.1) (3.2

where

#(9,1)(z) = (g1) () = (g1)(0) — /0 “1g (y)dy. (3.3)

On the other hand, a solution to the martingale problem related to L has a
density at each time which fulfills locally the Aronson estimates, at least if

we formulate a technical assumption, see (TA) below.

A family (pi(z,-),t > 0,z € R) of probability densities is said to fulfill the

local Aronson estimates if, for every continuous function y with compact

support, there is some M > 0 such that
_lz—yPM

L () oy

< pilz,y)x(z —v)
M lz -y
< Dew (— - )x(w—y)- (3.4)

16



Let X be the solution to the martingale problem related to L with initial

condition zy.

At this level, we need to recall a technical assumption (TA). It will suppose

there are positive constants ¢, C, such that

%

(TA) c<—<C.

¢
o
Remark 3.6 If (TA) is verified then is easy to see that the coefficients oy

and o1 related to L® and L' are also bounded above and below by a positive

constant.

From Section 5 of Part I (Theorem 5.7 and Proposition 5.10), we recall the

following result.

Proposition 3.7 Suppose that (TA) is verified.

(i) For every t > 0, the law of X; has a density p = p(zo,-)-

(ii) For every t > 0, p satisfies the local Aronson estimates and (t,z,y) —

pi(z,y) is continuous from 0, 00[xR? to R.

(#ii) The law of the wvector (X, Xr), for 0 < s < T, has the following
density

(x1,22) = ps(x0, 21)pr—s(®1, T2)

Suppose for a moment that L is of divergence form, i.e.

and there are positive constants ¢, C' such that 0 < ¢ < 0? < C.

According to [47] and Part I, see [18], there is a family of probability measures
Vt(dxa y)at Z 0) enjoying

W) = Duy), ) =4y (3.5)

and Vt(da:ay) = pt(x’y)a vt > 0.

We will refer to it as the fundamental solution of Oyu = Lu. It fulfills the

global Aronson estimates.
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Remark 3.8 a) (3.5) is to be understood in the following distributional

way:
[ mtaz,s / as [ 127 (@) 2 (o 9)) (@), (3.6

b) The maps (t,y) — pi(z,y) are in L2([0,T] x R?) again because of the

Aronson estimates.

Lemma 3.9 If L is of divergence form then %(-,y) ezists in the distribu-

tional sense and satisfies:

1
® Supy foT (fR |%pt($,y)|2dx) 2dt < oco.
¢ Supy f[O,T]xK |3%pt($, y)|dzdt < oo

for every compact interval K.

Proof. Consider the following (classical) variational framework. All the
definitions and properties recalled below without specific comments can be
found in [25], [36], [48]. Let H and V be the Hilbert spaces

H=IL*[R), V=W"(R).
Let H' and V' be their dual spaces. Identifying H with H', we have the
continuous dense injections
VcHcCV'

and the dual pairing (u,v) y, between V' and V' coincides with the scalar

product in H, (u,v)y, whenu € H,v e V.

Consider the bilinear form a (.,.) : V X V' — R defined by
2
a(u,v) :/ OT(x)u' (z)v' (z)dz, wu,veEV.
R

It is symmetric, continuous and coercive. By Lax-Milgram Theorem, there

exists an isomorphism L : V' — V' such that a (u,v) = — (Lu,v)y. ;, for all

oz \'
Lu = (7u'> , €YV,

u,v € V. It is given by

18



where we have "721/ € H (by the assumptions on o) and the subsequent

derivative is taken in the distributional sense.

Let
D(L)={ueV;Luc Hy =L ' (H).

The linear (unbounded) operator L : D (L) C H — H, restriction of the
previously defined operator L : V' — V', is selfadjoint (it is a consequence of
the symmetry of a (.,.)) and generates an analytic semigroup €', ¢ > 0, in H
(all selfadjoint negative definite operators in Hilbert spaces are infinitesimal
generators of analytic semigroups). Among the regularity properties of e’l,
let us recall that et* (H) ¢ D(L) for all ¢+ > 0, hence in particular e'* (H) C
V for all ¢t > 0.

The operator L~! is an isomorphism between H and the Hilbert space D(L)
endowed with the graph norm. The space D(L) is dense in V and H.

It is possible to define the fractional powers (—L)%, a > 0, as linear selfad-
joint strictly positive operators in H with domains D ((—L)®*) C H. They
are isomorphisms when the domains are endowed with the graph norm. We
have V = D ((—L)%). Hence D ((—L)%) = W2 (R). By interpolation,
D((-L)*) = W?*2(R) for all @ € (0,3). We remark that the fractional
powers of —L commute between themselves and with e*! (with proper do-

mains of the compositions).

By duality we have the continuous dense inclusions
VcD(-L)*)cHcCD(-L)®* cV’

for all @ € (0,3). Since (—L)* is selfadjoint, it can be extended to an
isomorphism (—L)* : H — D ((—L)*)". We shall use its inverse (—L)™® :
D ((-L)*)' — H. Notice that D ((—L)*)" = W22 (R), for all « € (0, 1).

The semigroup e!”, ¢ > 0, can be restricted to an analytic semigroup in
every Hilbert space D ((—L)“), in particular in V. By duality, and taking
into account that it is selfadjoint, it can be extended to an analytic semigroup
in V'. We continue to denote these restrictions and extensions by e'”, ¢ > 0.
Dualizing the regularity property et (H) C V for all t > 0, we get et” (V') C

tL L tL

H for all ¢ > 0, and therefore, by composition (since e*” = e2les ), we have

et (V') c V for all t > 0.
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Since V C C° (R) with continuous dense embedding, by Sobolev embedding
Theorem, for every y € R the Dirac distribution ¢, at y belongs to V.

Therefore we can compute e‘"d

y, t > 0, that a priori is a continuous function
of t with values in V’. By the previous regularity fact, we have e'" 0y €V
for all t > 0. By the properties of e'”, the function (¢,z) — (e'“8,) (z)
is the unique solution of the parabolic PDE v = Lv with initial condition

v(0) = dy, hence it coincides with p; (z,y).

More precisely, we have W?2®2 (R) c C° (R) with continuous dense embed-
ding, for & > %. Therefore §, € W 2*%(R). It follows that, for any given
a>tandy € R, (—L)"*§, € H. Moreover, using Fourier transform and

the definition of d,, one can check that sup, ||d, ||W,2a,2(R) < C, and therefore
sup [[(=L)"* &y < C-

Finally, recall the basic inequality for analytic semigroups

C
_T\B tL B8,T
|7 etal| < =L nll

for every t € (0,7], 8 >0, h € H.

Take some « € (%, %) We have
T T
|l de= [ -0y oy ets, | de
0 0
T
- /0 (=) et (~L)~* 5, |, dt
T 1
§const/ |-0)f -oyre (-nyes,| a
0 H

T
= const/ H(—L)%’La el (-1L)™ JyH dt
0 H

<econst [ < [[(=D)" |, at
< cons ) 7ire ull g
< const ||(=L) ™% &, ||, < C,

for all y € R Using this bound, we finally have

T
dzdt < Cr sup/ (/
yeR JO R
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T
< C'T’K sup/ ||etL5y||th < CﬁK.
yeR JO

Both claims are finally proved. O

4 Lyons-Zheng processes and Ité’s formula under

weak assumptions

In this section we will use the same notations and make the same conventions

as in Section 2.

Let X be the solution to the martingale problem related to L with initial
condition zy. From Proposition 3.3 b), we already know that X is an F-
Dirichlet process. On the other hand, if f € Wﬁ)’f we know from Remark 3.2
that f(X) is an F-Dirichlet process with local martingale part.

M = /0 F(X)o(X)dW (4.1)

iFrom Part I, we also know that Remark 1.2 b) can be extended to the case

.9 € Wli’f In particular
[F(X), g(X)]; = /0 F(X)g (X)d[X]. (4.9)

In this section, we are interested in the time reversal structure of X. This

knowledge will provide two results.

e The fact that X is an LZ-process.

e An It6 formula under weak assumptions when X is a semimartingale

diffusion.

We set again Y = h(X),Z = k(X),yo = h(zg),20 = k(zg). We will also
write Z = j(Y), where j = ko h™!.

We recall that Y (resp. Z) solves the martingale problem related to L° (resp.

L') with initial condition yo (resp. zp).
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iFrom Section 3, we remind that for ¢ > 0, the law of X; has a density
denoted by pi(xg,-). We denote by 7(29,-) the law density of Z;,t > 0.

Section 4 of Part I gives the useful relation
pe(wo, 7) = re(k(z0), k(2))K () (4.3)
Similarly, writing g;(yo,-) the law density of Y;, we have

qt(y0,y) = (3 (¥0): 3 (¥))5' (y) (4.4)
We easily obtain that j'(y) = 0—12
0

Applying Lemma 3.9 and Proposition 3.7 to L' and Z we obtain the following

estimates

su /T(/|2r(z )|2dz);dt < o0 (4.5)
yp 0 R 92 i\ Y .

0
sup/ | =—ri(z,y)|dzdt < o0 (4.6)
y J[0,T]xK 0z

for every compact real interval K.

The first theorem of this section concerns the Lyons-Zheng characterization
of X.

Theorem 4.1 Suppose that (TA) is verified for L. Then X is an LZ-

process.

Proof. In view of applying Remark 1.5 d) and e), we prove that Y is a time

reversible semimartingale. (4.4) gives

qt(yo,y) — Tt(](yO)’.)j(y)) (47)

ag(y
Usual calculations on time reversal given for instance in [35, 31, 44] say that

the time reversed process (Y},t € [0,T]) solves the stochastic differential

equation

t t
Y, =Y0+/ oo(V2) dB, +/ BT — 5,V,) ds,
0 0
where B is a classical ]—},— Brownian motion and

b(s,y) = — (a%(ag(y)qs(yo,y)))/qs(yo,y) (4.8)
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provided that (4.8) makes sense and

T
/0 B(s,Y;) ds < 00 as. (4.9)

For this it is enough to show that

T
E (A ds |b(35 Ys)‘l{supte[o,T] |Y’t|<M}> < 00

holds for some M > (0. Previous expression is bounded by
T M o 9
| s [ du]gehwato| (4.10)
0 -M Y
(4.7) implies that

5 (W) = 3 i), i)
(4.11)

(4.10) gives
T M
[as [ av|imt.im|i

T or
- [asf dz (—) (i(wo), 2)
/o [—5(M),i(M)] ‘ 0z ‘

which is finite because of (4.6).

In conclusion, Y is a time reversible semimartingale and so X = h=1(Y) a

LZ process. |

At this level we would like to relax the technical assumption, but it is not

completely possible. It will however be possible for the study of 1t6’s formula.
For M > 0 and a real function f, we set
f@) i |al <M

Ma)y=¢ fM) if z>M
F(-M) if z<-M



We can show that
ey
nroo Jo (oM)?

is well-defined in C° (independently of the mollifier) and it equals XM It is
obvious that for the PDE map L(M), defined formally by

(y) dy

_(UM)2 " M1 1
L(M)g = ——¢"+(7")'q,

and it fulfills assumption (TA).
We consider the event
Qpr = {w : Xiy(w) € [-M, M],Vt € [0,T]}

and the stopping time

™ = inf{t € [0,T]|X; ¢ [-M, M]} A (T + 1)
(M) is a "suitable” sequence of stopping times.
Remark 4.2 Let M > 0 such that zyg € | — M,M[. On Qyy, the pro-
cess X coincides with the stopped processes X™. On the same event, this

one coincides with the stopped process X(M)TM for the solution X (M) to a
martingale problem related to L(M).

Indeed, for this, Proposition 3.3 a) allows us to consider the stochastic dif-

ferential equation

t
Y=Yo+ [ oY) dw,
0

which is solved by Y := h(X). The time changed process
Bt = YT“

where Ty = A; ' is the inverse of A; := fg 03(Ys) ds, is easily checked to be

a Brownian motion. Furthermore, by [14, Proposition 5.2], we know

t1
0o 9y
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Now we define

oo(y) if |yl < h(M)
o) =4 oo(M) i y>h(M)
oo(—M) if y<h(-M)

t
(M) _ / 1
T, = (Bs) ds
R C R

(M) _ ()1 " —
and A, =T, . By [14, Proposition 5.2], the process Y (M); := B ,m)
t

then solves the stochastic differential equation

and consider

vy = Yo+ [ o0y (an),) it

for some Brownian motion W. From B, = Y7, we deduce Tt(M) = T} on

{t < A,,,}, hence
Ay = A,(:M) on {t <y}

Thus, we conclude Yirr, = Y(M)ir, . For a more detailed discussion on

construction of solutions to SDEs without drift we refer to [14].

Remark 4.3 If f € W'l%)’cz then f(X) is a F-Dirichlet process with martingale
part M1 defined at (4.1). If moreover, (TA) is verified then f(X) obviously
admits a LZ decomposition given at Remark 1.5 e) with M} = M. Remark
1.5 i) entails that it is a true LZ process.

As we said, the second result of this section is It6’s formula under weak
assumptions. We recall that similar formulas were first considered indepen-
dently first by [21] and [42]; further extensions have been performed in [20]
and [6], [32, 33].

Here, the innovation is that we deal with non-degenerate diffusion processes

with non-smooth coefficients. For that purpose, the technical assumption

(TA) is not required.

Theorem 4.4 Let o € CO(R) with o > 0, v be a locally bounded function

and X a diffusion process of the type

t t
X, =m0 + / o(X,) dW, + / Y (X,) ds. (4.12)
0 0
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Then the following It formula holds for every f € Wh2:

loc *
(X)) = f(x0) / F/(X0) dX, + S7(X), X, (4.13)

Proof. According to the notations of Sections 2 and 3, X solves the martin-

gale problem related to L, where

0.2

— _fll_l_blfl

Lf 5

and b(z) = [ v(y) dy. In this case, we have
Cy
2@ =2 [ Ly

In particular, ¥ belongs to Wllocoo
For a first step we assume again (TA). By Theorem 4.1, X is a LZ process.
Since X is a semimartingale, the reversed process X is also a semimartingale

by Remark 1.5 f).

Remark 4.5 Using [42], under (TA), we have already shown (4.13) for
every f € CL.

In order to prove (4.13) for f € Wllo’f, we need to work out explicitly the
equation solved by X. We set Z := k(Y’), where k € C'(R) is defined before
Lemma 2.4, which yields together with (4.3)

pi(wo, ) = re(k(zo), k(2))o ™ (z) exp(E (). (4.14)
As for (4.8), we have
X, = Xo+ /ta(f(s) dB, + /t?(T — s, X,)ds, (4.15)
0 0
where

— 5 (0% (2)pi(20, 7))
pt(ﬁcOa 'T)

v(z) +A(t z) =
provided that
T
/ 17(s, Xs)| ds < o0 (4.16)
0
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holds a.s. Since fo s)ds exists, (4.16) holds, if for every M > 0, we have

T
E(/o |y +;ﬂ(XS)1{|Xs|§M}dS) < 0.

This happens if

/ ds/ d:c‘a 2)ps (20, T ))‘<oo. (4.17)

(4.17) will be proved later. For the moment, we observe

(@ @plane) = (S @)rk), K)))

= exp(2(@) (' @)rilh(zo) k@) (419
+ o ru(k(eo), Ha)K ().

In order to conclude by the Banach-Steinhaus argument of [42] we have to
check that

/tg(X) d=X (4.19)
0

exists for every g € L? . The forward integral is known to coincide with the

loc*

Ito’s integral
t
/ s) dX / s) AW —I—/ 9(Xs)v(Xs) ds. (4.20)
0
By Remark 1.1 e), the backward integral equals

—/ %&m&:—/'w@@aﬁ—/ g(K)HT — 5, X,)ds (4.21)

T—t T—t T—t

provided that the right members of (4.20) and (4.21) exist. For this, we have

to verify

T

/ 9*(X5)0*(Xs)ds < oo, (4.22)
0
T

| ol < o (4.23)
T

[ laxore Xolds < o (424)
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a.s. Since o and vy are locally bounded, by Cauchy-Schwarz, (4.22) and (4.23)
hold if

T
/ 9P (X,)ds < 00 aus. (4.25)
0
(4.24) will be verified if, for every M > 0,
T M o
/ ds/ dz |g(w)|‘a—(02(w)ps(x0,$)) < o0 (4.26)
0 -M Tz

holds. Therefore proving (4.26) will justify (4.17) and (4.25), simultaneously.

In view of (4.18), expression (4.26) is bounded by

const(/OT ds /_A; das |g() | ( (o), k()

+/0Td3 /[—k(M),k(M)] @ g(k_l(Z)) (%> (0,2) )

The first integral above is finite because g € L? = and (s,z) — r4(k(zo), k(z))

loc

is square integrable by Remark 3.8 b).

The second integral is bounded again through Cauchy-Schwarz. It gives

(/ dng(k_l(z))) / ds (/ dz ( S) (zo,z)>
[—k(M),k(M)] 0 k(M) k(M) \ 07

(4.27)

2

i»c and Lemma 3.9.

This quantity is bounded because of g € L
This shows the result when (TA) is fulfilled.

Suppose, however, that (TA) is not necessarily fulfilled. Then, we know that
on the event Qj defined just before Remark 4.2, X = X(M).

Taking in account the definition of forward and backward integrals, (4.19)

will exist if

t
| sexanasxon
exist. This is obvious because X (M) solves the martingale problem related
to L(M) and this fulfills assumption (TA). 0
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5 The semimartingale characterization

Let L be a PDE operator, ¥ and h as in Section 2, we recall that A’ = e™> .

The basic question of this section is the following. Which are the functions
fe Wl%cl such that f(X) is a semimartingale? In particular, this includes a
necessary and sufficient condition for X to be a semimartingale. We believe
that with respect to other semimartingale characterizations existing in the
literature, see for instance [23], this uses direct stochastic analysis tools and

the result is easily readable.

First of all we make some recalls about measure theory.

We denote by BV the space of continuous functions which have locally
bounded variation. We equip BV with the metrizable topology that is as-
sociated with the following convergence. A sequence v, in BV converges to
v if and only if v,(0) — v(0) and dv,, — dv holds with respect to the weak
x-topology.

Remark 5.1 a) The sequence (dvy,) converges to dv if and only if, for

every a € CO(R),
t t
/ adv, = n—seo / adv
0 0

holds at every point of continuity t of v.

b) If (vy) is a sequence converging in BV then the Banach-Steinhaus
Theorem implies that the total variations are uniformly bounded on

every compact set K, i.e.,
sup/ d|vp| < 0. (5.1)
n JK
¢) We have v, — v in BV if and only if v,(xz) — v(z) at every point of
continuity z of v and (5.1) holds.

d) Let (v,) be a sequence in BV such that (5.1) holds. Let v, v, be

increasing functions such that

v =0 —v, and |v,| =v +v,.
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f)

Then there is a subsequence (ng) such that (v, ) and (v, ) converge
in BV. In particular, the subsequence (|v,,|) of the total variations

converges in BV.
In fact, (5.1) implies
sup/ dvE < oo (5.2)
n JK

for each compact interval K. By the Helly extraction argument, there

is a subsequence (ny) such that (v ) and (v, ) converge respectively
1

to some v', v? at each continuity point.
C! is dense in BV.

We have BV C leoc, because a locally bounded variation function is

locally bounded.

Moreover, using point d), it is not difficult to prove that the BV con-

vergence implies the one in Ll200'

In fact, let v, be a sequence of BV functions. We then have v, =

v — v, where v, v, vt v are increasing functions vanishing at

2
loc

zero. We suppose that v, converge to v=v" —v~ in BV. Since L

is a metric space, it is enough to show that some subsequence (vp,)

2

i 6From point d), we learn the ezistence of a

converges to v in L

subsequence (ny) such that ’U,:.i:k (z) = vE(z), for each continuity point

x therefore a.e. with respect to Lebesgue measure. (5.2) implies that

(v,jfk) are uniformly bounded on each compact interval K. Now, the
. . :t :t . 2

theorem of dominated convergence yields v, — v> in Ly,

We denote by BV'! the set of all absolutely continuous functions whose

derivative f' satisfies f'/h' = f'¢* € BV. In particular, BV! C W,"? holds.

BV!
metrizable topology. A sequence (f,,) is defined to converge in BV if f,, — f

loc

becomes a Polish space of F-type when equipped with the following

in C% and (f!/h') — (f'/K) in BV.

We recall the map £ : D, — C° defined in Section 2 by

Lf(z)= /0 ’ Lf(y)dy
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On Dy, the operator L takes values in BV. When we will consider this

operator as BV valued map, we will use the notation £BV.

2

Lemma 5.2 (i) The convergence in BV implies the one in L2, ..

(ii) D, C BV!
(iii) Dy, is dense in BV!.

(iv) The mapping f — LBV f admits a continuous extension from Dy to
BVL. It will be denoted by LBV .

Proof.

2
loc

(i) Tt is a consequence of the embedding BV C L
f).

given by Remark 5.1

(ii) If f € Dy, we set [ = Lf. Remark 2.2 d) implies that

fl x l ,
This shows f € BV'!.

(iii) Let f € BV! and (¢,) a sequence in C? such that ¢! — {L—: in BV
when n goes to co. Clearly we can define f, € C* such that f, = ¢! h'.

Obviously f, € Dr, and Lf, = M
(iv) Let (f5) be a sequence in Dy, converging to zero in BV!. We have to
show that [, := Lf, converges to zero in BV.

By assumption, we have (f}/h') — 0 in BV. Again Remark 2.2 d)
says that

falw) = () (2 | i+ f;<0)) ,

where ' (z) = exp(—%(z)) and I,, = Lf,. This implies that
In
—apr W) dy
2h12

converges in the weak-*-topology to zero. Since o is a continuous

function, [,, converges to zero in BV. O
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. . 1.2 . .
LBV is closable in Wlo’c with values in

Proposition 5.3 (i) The operator
BV.

(ii) The domain of the smallest closure is BV'!.
Proof. The Proposition will be a consequence of the following Lemma.

Lemma 5.4 Let (f,) be a sequence in Dy, such that I, = Lf, converge to
some | in BV and f, — f holds in Wllo’f Then we have f € BV' and
LBVF=1.

Proof. Of course, we have l,, € C', Lf, = in, ln being the derivative of [,,.
Independently of the convergence of (f,), we have
2, 2dl

o2h2 dy o2 P2 (5.3)
in the weak-*-topology because 1/(c%h'?) is a continuous function. The con-
vergence of (f}) in L?,
(fn/h')(0). Consequently, (f//h') converges in BV and so, (f) converges
in BV!. Since the convergences in BV! and Wli’f must agree, we have

f =lim, o0 fn in BV so that ﬁBVf = holds by Lemma, 5.2. O

and (5.3) force the convergence of the real sequence

Before stating the characterization Theorem, we provide a preliminary result
which specifies a class of integrands of A(f), f € Wi)’f

Lemma 5.5 Let X be a solution to a martingale problem with respect to L
satisfying (TA). Then

/ g(X)dA(f)

0
exists for every g, f € Wllo’f In particular, the mapping f — fo g(X)d~ A(f)

. . 1,2
is continuous from W, >~ to C.

Proof. We know



Because [,(f'0)(X;)dW; is a local martingale, the forward integral above
exists if [; g(X)d~ f(X) exists for every f,g € Wllof Since (4.2) ensures the
existence of [f(X), g(X)], the latter forward integral exists if and only if

/ 9(X)dF(X)

0

exists, see Remark 1.1 a), b). But since g(X) is a finite quadratic variation
process, Remark 1.6 tells us that the symmetric integral above equals the

LZ type integral

/ (X) 0 df (X),

0
Now, the LZ integral is well-defined because f(X) is a (F, H)-LZ process see

Remark 1.5 €) and ¢(X) is (F, H)- adapted and square integrable. O.

Theorem 5.6 f(X) is a semimartingale if and only if f € BV

Proof. We introduce again the notations introduced before Lemma 2.4.

k is a C! real function such that

>(x) 2.\
rey € 1, _ (919 _ ' -1
k(x)_O'Q(iL')’ Lg—(2>, o1 (O'k)ok' .

We also set -
dla) = [ dspu(on.), (54
0
where (p¢(zo,-)) is the density of the law of X3, ¢ > 0.

We recall that Z; = k(X;) and the density of (Z;) is a fundamental solution
of Oyu = L'u, see Definition before Remark 3.8. Let r(x1,-), 21 = k(x), be
such a density. We recall that by (4.14), we have

pi(z0, ) = (21, k(2)) k' (). (5.5)

We set .
(%) :/ dsrs(z1,2).
0

We have of course

q(z) = r(k(z)) ¥' (). (5.6)

33



Proposition 3.7 ii) says that (¢;(z,v)) and (r¢(x, %)) are continuous on ]0, co[ x R?;
therefore ¢ and r are continuous, hence locally bounded. Moreover they are

strictly positive because of the Aronson estimates and (4.6) yields r € WI})’CI

Let us consider the "suitable” sequence of stopping times (7) and processes

X (M) solving a martingale problem related to L(M) as before Remark 4.2.

Now, f(X) is a semimartingale if and only if f(X(M)) is a semimartingale
for every M. Therefore, we can suppose that X fulfills (TA).

We proceed now with the proof of necessity.

i) Let us suppose that f(X) is a semimartingale for some f € W'léf Then
by (3.1), A(f) must be a semimartingale. Since it is a zero quadratic

variation process, it is forced to be of bounded variation.

ii) We set f = fok. Clearly f € W52 so Lt f is a well-defined distribution.

loc?
We first prove that L' f is a Radon measure.

By Remark 2.3, there is a sequence (fy,) in Dy, so that f, — f in W&)’f
We define f,, = f,, o k which belong to Dj1.

Let ¢ € C°(R) with compact support such that

¢= Pk oo (5.7)

rok '

We observe that ¢ € Wllo’c2 Since £! is continuous from Wllo’c2 to Ll20c

0.2

(L, 4) = - [ ST ()i
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Using (5.6), we obtain
Jim [y i) L 1) atw)
= Jim [ ds [ dypan.y) S0

n—oo

- el [ U ds I fo(X,) x|

am e [N a0} 6:9)

Lemma, 5.5 and the fact that X is a LZ process imply that

/ XV Afn) — / BX)dA(f) = / BX)AA(S)
0 0 0

holds in ucp. The equality above is explained by the fact that A(f) is

This equals

a bounded variation process. Therefore (5.8) converges to

5( [ ' aA(ID))

provided that the sequence

T N T B
/ Lin(X,)$(X,) = / L fn(20) 61 (Z5),
0 0

where ¢, = % = ¢ o k™! is uniformly integrable. This can be estab-
lished by verifying that the sequence of the expectations of squares is
bounded.

In fact, using Proposition 3.7 iii)

=( ' L (200 ()

T T
= 2/ d81/ d32/dy1/dy2L1fn(y1)¢1(yl)Llfn(y2)¢l(y2)
7'51 wanl Tso—s1 ylayQ

— / dsl/ d82/dyl— (y1 a—(¢1(y1)rsl(9€0ayl))

2

/ dy2— o fn(y2) (1) 31, 2))
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Using Cauchy-Schwarz, this quantity is bounded by

const(¢p / dsy {/ dyr f12( / [(37;11 (zo,91))% + (’I‘sl(.’L‘O’yl))Q] dy1}
/OT—S1 dss {/_M dyQ.ﬁ?(yQ)/_A; [(%L;;(yl’yQ))Q n (7“52(y1,y2))2] dyg}%

for some M > 0 such that [—M, M] contains the support of ¢;.

N

The latter quantity is bounded by

cons(9) /]:\44 2 /OT o {/]Zf [(?91;11 (xo,y1)>2 + (T51($0ay1))2] dyl}%
o [ () ]

The fact that f, — f'in L?

loc?

Aronson estimates and Lemma 3.9 imply

that the quantity above is finite.

We have now established the identity

(L], ) = (/ dA(f ) (5.9)

Now, the right member can be extended by continuity to ¢ € C? ; in
fact functions ¢ fulfilling (5.7) are dense in C°. This shows that L!f

is a Radon measure.

iii) L' f being a Radon measure, £'f is of bounded variation; this means
2 71
that 012f

has bounded variation. This equals
(O'kl)2 o k*l(f o k*l)l _ (0'2k’fl) o k*l’

which implies that
02 k" f, — 62 f/

must be of bounded variation. This shows the necessity.

We now proceed to the converse implication. Let f € BV'. By Lemma 5.2,
there is a sequence (f,) in D, such that f, — f in BV! and so Lf,dr — du

weakly- * for some Radon measure p.
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Remark 5.1 d) guarantees the existence of a subsequence (nj) such that

Lfﬂl'kdx — vt and Lf, —v"

+

weakly, where v* are two Radon measures on R.

We want to prove that A(f) has bounded variation. By (3.1), f — A(f) is
continuous from C* to C. Again by Lemma, 5.2, the sequence (f,,) converges
to f in W2 so that A(f,) — A(f) holds in ucp. Now, we have

loc

V= [ (L)X ds = [ (L)X ds — | (Lf) (X.)ds.
At = [y ds = @) ) as— [ (@) (x)ds
We define £, f~ in C! such that fF(0) = 0 and

ey =ww) (2 [ )

hold. Since (Lfn,)*(y)dy converges weakly-* to v, Remark 5.1 a) says
that FESV] z +
B, [
0 y)
holds in BV. We consider f* € BV which are given by f£(0) = 0 and

PV, — 9z T dv*t
(@ =) [ s

Again according to (3.1) and the definition of A, we have
: t
| By ds = g5 - £ - [ (o) W (510

Since ffzt — f in W'llo’f and A is continuous, the sequence of increasing

processes fo L f,jfk (Xs)ds in (5.10) converges to the increasing process
~ ~ t ~ ~
FE) = F%0) = [ (P (%) aws = AGF).

So A(f) is the difference of the increasing processes A(f1) and A(f~). O

Remark 5.7 If f € BV then, in particular, we have LBY f € BV.
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Remark 5.8 For a Markov process X, [11] states necessary and sufficient
conditions on f such that f(X) is a semimartingale. Here, we specify in
particular this result in a very simple way without using directly the Markov
property. We observe that, for a standard Brownian motion X, we have
h =id and BV' = {f e W2 : f' € BV}. BV is in this case constituted

loc

by functions which are a difference of convex functions.

Corollary 5.9 Let us suppose that L is close to divergence type. Then f(X)

is a semimartingale if and only if Lf has bounded variation.

Remark 5.10 Remark 2.5 allows to extend continuously L to le’f so that

the statement makes sense.

Proof of the Corollary.

Let f € BV!. By Remark 2.3 and Proposition 5.3, there is a sequence (f,)
in Dy, converging to f in W'lif such that (Lf,) converges in BV to some

g € BV. By continuity of L in Wﬁ;g, we have
Lf = lim Lf, in L},.
n—oQ

Since the convergence in L?OC and BV must agree, we have Lf=geBV.

Conversely, if £f = g is BV, by a usual regularization procedure, we find

gn € C! satisfying g, — g in BV. Let f, € Dy, such that

T
2
0)=0, fl(z)=H / ——d .
Remark 2.2 d) says that Lf,, = g,. Taking the limit in the expression above
and using the continuity of the extension of £ (Remark 2.5) we obtain that
{T;'L converge to i—: in BV. Thus, we have f € BV O
Corollary 5.11 Let X be a solution to the martingale problem related to L.

Then X is a semimartingale if and only if 3 has bounded variation.

Proof. By Theorem 5.6, X is a semimartingale if and only if id € BV'. This
means (h') ! = exp(X) € BV or, equivalently 3 € BV. O
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Remark 5.12 (i) If o =1 then ¥ = b and we discover the result of [45].

(ii) Let L be close to divergence type, see before Remark 2.5, and

1 rd
E(a:)zln—2+2/ —g
0

g g

Then % is of bounded variation if and only if so is o.

6 The backward and symmetric equations

In this section we suppose that L is of divergence form, i.e.
2

9= (%) (6.1)

Let X be the solution to the martingale problem related to L with initial

condition xj.

We know by Remark 3.5 that X solves the generalized stochastic differential

equation
2

X, = 20 + /Ota(xs) AW, + A(%). (6.2)

If o € C! then X is a semimartingale and

2 2 t

A(%) :/Ot (%),(Xs)ds:/o (00')(X,) ds = [o(X), X]s.

Therefore, X solves the backward stochastic differential equation
t
X =xp —i—/ o(X,)dtW, (6.3)
0

because of Remark 1.1. Immediately, the following question arises. If o is
not smooth is X still a solution to (6.3)? The answer will be yes if X is a
semimartingale. In the general case, it does not seem to be true but we do

not give a rigorous argument for this.

Let us suppose again our technical assumption (TA), which corresponds here
to0<c<o?<C < .

First of all, we would like to understand some features of the time reversal

of the FX_-Brownian motion W.
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Let us recall that the time reversed process Y of Y with respect to some
horizon T' > 0 is a solution to the stochastic differential equation given
before (4.8)

t t B R
¥ = ¥ + / o0(Vy) dBs + / BT — s,7,) ds, (6.4)
0 0

where B is a FY-Brownian motion and b is given by (4.8), (4.7), and (4.12):

b(s9) = — (- Togps) (0, K™ (1)

(pt(z,y)) is the fundamental solution associated with L. We remark that in
this case p coincides with 7 since L is already in divergence form. As in the
proof of Proposition 3.3 of Part I, if f € D, then we can apply 1t6’s formula
to (f o h~1)(Y) which equals in fact f(X). We get
t . t A
(&) = 1)+ [y dB+ [ (@ ds
(6.5)

~

t o .
_/0 %(long—s)('TOaXs)fl(Xs)dS'

Remark 6.1 In a sense to be precised X solves the martingale problem

related to 5
Lf=Lf- %(IOSPT—S)(IOJ)JH-

Lemma 3.9 and Aronson estimates tell us that the additional term due to
time reversal belongs to L}, ([0,T] x R) in (t,z).

Even in this time reversed concept it is possible to define A as the unique
extension of the map f — [; Lf(X)ds to C'. The map A : C° — C will
be the unique extension of [ — [ I'(X,)ds. Tt is clear that (6.5) can be
extended to C' (and even to W,?) by

loc

F) = s+ | (Fo)(R2) By + A(f):
(6.6)

A~

t bl .
_ /0 = (log pr—s) (0, X,)f'(X,) ds.
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Remark 6.2 For f € C', 1 € C°, we have

(i) A(f)e = A(f)r — A(f)T—1s
(ii) AQl); = A()r — A(D)7—s-

(iii) For f =id, (6.6) yields

2

t
~ ~ ~ ~(O
X = X + o(X dB — Al —
t 0 /0 ( s) s (2 )t

+A( / 5 108 PT- s)(z0, X,) ds.

By time reversal, we get

2

7)
2 /¢

T
X; :;&—/‘d&ﬁﬁ&—A<
t

% r
A, [ gatosr- e X

Thus, we have

t 2
_ _ + g
X, = Ad&MBﬁAQL

t
0
— /0 %(long_s)(xo,Xs) ds.

We consider now fo € C! such that fo(0) = f{(0
regularization, it is not difficult to see that £fy =
3.2 ii) and iii) and obtain

)
%

W= JolX0) ~ folan) ~ 5A(0):
Using (6.6) with f = fo, we get

B, = fo(Xy) — fo(Xo) — SA(o),

N =

t 8 (long s) (o, XS)
—I—/O O'(Xs) ds.
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=0 and f} = 1/o. By
We now apply Remark



Proposition 6.3 W, — Wr is a H semimartingale if and only if o is of

bounded variation.

Remark 6.4 Proposition 6.3 means that W, — Wy is a H semimartingale

if and only if X is a semimartingale.

Proof of Proposition 6.3. jFrom (6.8) and Remark 6.2 we get
R N 1 1
Wt = f()(Xt) - f()(.’L'()) — EA(O')T + §A(O')t
Subtracting (6.9) from (6.8), we obtain

Bo-Wi = folzo) ~ folXr) + Alo): — 5A(o)r

(6.10)
Lo |
+ [ = —s)(wo, Xs) —5— ds.
| grtopr-sen X ds
Since fo(X7) = fo(xo) + Wr + %A(O’)T, we get
By — Wi+ W A()+/t‘91 (20, Xy)—— d (6.11)
— = o — 10 —s €T , s = S. .
t t T t , Oz gpT 0 o(X.)

We recall that (W; — Wr) and B are both H-adapted. Since B is a H-
Brownian motion and A(o), hence A(o), a zero quadratic variation process,
(6.11) shows that (W; — Wr) is a H-Dirichlet process.

Now, (W; — Wr) is a H-semimartingale if and only if A(c) has bounded
variation. By Section 5, this happens if and only if ¢ is of bounded variation.
O

We go on with the study of the backward equation. Let X be a solution to
the martingale problem related to L. Let us suppose that

¢
/ g(X,) d* W, exists for all g € C°. (6.12)
0

Then, using (6.11), we see

t T
/g(Xs)d+W5 _ —/ g(R.) d-W,
0 T—t
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= - /T 9(Xs)dBs — | g(Xs)d"A(o)s (6.13)
/ long s(mo,X )g
T— t

(Xs)
In particular, fgf . g(X,)d~A(0), exists. Therefore we realize the following
Remark 6.5 fo X) dtWs emists if and only if fo d+A( )s exists.

We recall that, by Lemma 5.5, this is always true if g € W % because X is
a LZ process.

Proposition 6.6 Under the assumption (6.12) X is a solution to
t
X, =29+ / o(X,) dT W, (6.14)
0
Corollary 6.7 If X is a semimartingale then (6.12) is always verified.

Proof of Corollary 6.7. If X is a semimartingale then X is a H-semimartingale
because X is also a LZ process. In this case (Wt Wr)is a ]HI semimartingale

by Remark 6.4. At this point, fo s)dTW, = fT L 9( X,) dW, is a clas-

sical Ito’s integral. O

Proof of Proposition 6.6. Relation (6.11) implies
. T 9
B, — W+ Wp=A(o) + / p log pr—s(zo, Xs) ds
t
so that

log pr—¢(z0, X})
o(Xy)

dtB; = d*W; + dT A(o)s + b dt (6.15)

holds. By (6.15), we evaluate
t
/ o(X)dTW, = / dt B, — / ) dA(o),
0

t
0
—/0 %log(pT,s)(xo,Xs) ds.

(6.16)
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Comparing (6.7) and (6.16) yields

t t
— ag = — 0'2 g J)g. .
X, /0 (X3 dY W, = —A(0?/2); + /0 (X,)d A(o)s.  (6.17)

a

Remark 6.8 X fulfills (6.17) without assumption (6.12), provided that fo s) dT Wy

exists.
If (6.12) is realized then

A/ = [ o)t A, (6.18)

holds. Assumption (6.12), Remark 6.5 and Banach-Steinhaus Theorem im-

ply that
g r—>/ s)dtA(o

is continuous from C° to C. Therefore
t t
/0 P(X) "A@)= lim [ ou(X)d"A(),

holds for the usual regularizations of 2.

Since 0, (X) is a finite quadratic variation process and A(o) a zero quadratic

variation process, we get
t t
/ on(Xs) d A(o)s = / on(Xs) d A(0)s.
0 0

Using the fact that o, € C?, Remark 3.5 c¢) says that previous integral equals
A(®(on,0))s, where ®(g,1)(z) = (g)(z) — gl(0) — [ ¢'l(y) dy. So, we have

t
/0 0n(X,) d* A(0)s = A(®(0n, o).

The problem here is that (®(o,,0)) does not necessarily tend to o2. Using
the additivity of A, we get

A@(one) = Alono) =4 ( [(Z)) )



Clearly A(02) — A(0?) ucp so that A(®(on,0)) converge to A(";) if and
only if
t
/ o (o — o) (X,)ds — 0 (6.19)
0

holds in probability for any ¢.
Proposition 6.9 If X is a semimartingale then (6.19) holds.
Remark 6.10 In the general case there is no reason for (6.19) to be fulfilled.

Proof of the Proposition. Using localization techniques, we may assume o,

oy to have compact support. By Proposition 3.7 iii), we obtain

E (/Ot o (o — om)(Xs) ds>2

t t
_ / ds; / ds2 E (01(0 — o) (Xsy )0 (0 — o) (X))
0 0
t S1
_ 9 /0 ds1 /0 dss / dy1 dys o', (1) (42) (0 — o) (1) (0 — ) (32)

Dss (%0, Y2)Ps1 —s5 (Y2, Y1)

This equals

t S1
2 /0 ds; /0 dss / dorm (11 )dom(y2) (o — o)1) (@ — 0n) (42)
Dss (xO’yZ)pSI—«W (y27y1)
.y / dorn (1) / don(12)(0 — on) (1) (0 — o) (1)

t S1
/ dsy / dsaops, (wOaQZ)pm—SQ (UQ,yl)-
0 0

By Corollary 5.11 and Remark 5.12 ii), o is of bounded variation, so oy, — ¢
in BV since 02 — o2 in BV. The fact that do,, — weak-* and that o,, — o

in C°, implies that the expression above converges to zero. O

We finish the paper with some remarks on the symmetric case; this corre-

sponds to the case @ = 1 in Example 2.1 a).

We consider ) o
o o

L — " I.
1=%f s
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Let X be a solution to the martingale problem related to L.

Proposition 6.11 X is the unique solution to the stochastic differential

equation

t
X, = Xo+ / (Xs) 0 dW,. (6.20)
0

Proof. We first prove that (6.20) has a unique solution given by F (W, X),

where F' is the deterministic flow given by

%_f('ra 'TO) = U(F(ra 'TO))’ F(O"TO) = To- (6'21)

We recall that F € C*(Ry x R).

Let H : Ry x R be the inverse flow. Let X be a (F,H)-adapted process
solving (6.20). Then the It6 formula of Remark 1.8 yields
" oH " oH
H(Wy, Xy) = Xo + — (W5, X) o dW, + — (W, X;) 0 dX5.
0 or 0 oz
Remark 1.7, (6.20) and the fact that %(r, z) = —a(m)g—’;(r,m) show that
H(W;, X;) = Xy. Therefore, the solution X must be equal to F(W;, X)

and hence unique.

The fact that F(W;, Xy) solves (6.20) is a direct consequence of the one-

dimensional LZ It6 formula of Remark 1.7.

Remark 6.12 The proof of Proposition 6.11 yields something more. If W s
a (F,H) reversible semimartingale then there exists a unique (F,H) adapted
solution to (6.20).

In order to conclude the proof of Proposition 6.11 we have to show that
F(W;, Xo) solves the martingale problem.

First of all, we observe that in this case, setting h(0) = z¢, A'(r) = o~ 1(r),
we get h='(r) = F(r,z). This means that the process Y of Section 3 is in
fact the Brownian motion W. We recall that L°f = f”/2. Lemma 2.4 b)

says that
D ={feC':foh e C?.
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Moreover, Lf = %(f o h~1)" holds. For f € Dy, the Ito formula yields

f(Xy) = (foh H(W)

t t
flao)+ [((ron YWy aw.+ g [(7on o as

= f(zo) —i—MH_%/t LOf o hY(W,) ds
0
t

— f(x0)+Mt+/0 (Lf)oh_l(Ws)ds.

Therefore, X solves the martingale problem related to L. O

Remark 6.13 X solves also the symmetric equation
¢
X, = z0 + / o(X,) d'W, (6.22)
0

because of Remark 1.6.
Conversely, let X be a (I, H)-adapted process and W a Brownian motion

(or a more general (F,H) semimartingale). If X solves (6.22) then it also

solves (6.20). However, other solutions to (6.22) may exist.
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