On closability of classical
Dirichlet forms

Pugachev O. V.

Abstract. We construct a measure μ on \mathbb{R}^2 such that the classical Dirichlet form $\mathcal{E}(f, g) = \int (\nabla f, \nabla g) d\mu$ is closable, but the partial Dirichlet form $\mathcal{E}_x(f, g) = \int \partial_x f \partial_x g d\mu$ is not. This proves the well-known conjecture of M. Röckner.

1 Introduction

The problem of closability of Dirichlet forms arises in the theory of differential operators, the theory of Sobolev spaces, and stochastic analysis (see [1], [4], [5], [7], [8], [9]).

Let (X, \mathcal{B}, μ) be a measurable space with positive measure μ; $L^2(\mu) = L^2(X, \mathcal{B}, \mu)$. Recall the definition of closability of a Dirichlet form \mathcal{E} defined on the domain $\mathcal{D} \subset L^2(\mu)$ ([7, p. 28]).

Definition 1.1. The form \mathcal{E} is said to be closable on $L^2(\mu)$ if for any sequence of functions $f_n \in \mathcal{D}$ such that $\|f_n\|_{L^2(\mu)} \to 0$ and $\mathcal{E}(f_n - f_m, f_n - f_m) \to 0$, it follows that $\mathcal{E}(f_n, f_n) \to 0$.

In applications, the closability of gradient Dirichlet forms on finite- and infinite-dimensional linear spaces and manifolds is often verified by the aid of the following fact: if for some measure μ on \mathbb{R}^n the partial Dirichlet forms

$$\mathcal{E}_i(f, g) = \int \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_i} \mu(dx)$$

are closable on $L^2(\mu)$ for every $i = 1, \ldots n$, then the gradient Dirichlet form

$$\mathcal{E}(f, g) = \sum_{i=1}^n \mathcal{E}_i(f, g)$$

is closable on $L^2(\mu)$ as well; the same is true also in infinite dimensions (cf. [2, Theorem 3.2]). A necessary and sufficient condition of closability of (1.1) can be found in [2, Theorem 5.3]. In this relation, the following non-trivial question arose: is it true that if the form (1.2) is closable on $L^2(\mu)$ then the partial Dirichlet forms (1.1) are also closable.
on $L^2(\mu)$? About 10 years ago M. Röckner conjectured that it is not always true, but no counter-example was known.

The main aim of this paper is to show that even in the case of \mathbb{R}^2 the answer is negative (cf. Example 3.2 below). Moreover, the measure μ constructed as a counter-example is absolutely continuous with respect to Lebesgue measure on \mathbb{R}^2 and can even have full support (cf. Example 3.3). A positive result of this paper (employed in the justification of our counter-example) is a new sufficient condition for the closability of gradient Dirichlet forms for a special class of measures on \mathbb{R}^n (see Theorem 2.3 below).

2 Extensions of Sobolev functions

Let U be an open set in \mathbb{R}^n and let $p \geq 1$. The Sobolev class $W^{1,p}(U)$ is defined as the completion of the space $\{f |_{U}: f \in C_{0}^{\infty}(\mathbb{R}^n); \|f\|_{p,1} < \infty\}$ with respect to the Sobolev norm

$$\|f\|_{p,1} = \left(\int_{U} \left(|f| + |\nabla f| \right)^{p} \, d\lambda^{n} \right)^{1/p},$$

where λ^{n} is Lebesgue measure on \mathbb{R}^n.

Let us recall the following theorem about extension of Sobolev functions (see [10, Ch. VI, § 3, Theorem 5] and [6]).

Theorem 2.1. Let Q be an open set in \mathbb{R}^n such that there exist numbers $\varepsilon, M, N > 0$, and a finite or countable family of open sets $\{V_i\}$ with the following properties:

1) the ε-neighborhood of any point $x \in Q$ lies in some V_i;
2) $\sum_{i} 1_{V_i} \leq N$;
3) for any i there exists a set Q_i that is isometric to some open set of the form $\{x_n < \varphi_i(x_1, \ldots, x_{n-1})\}$, where φ_i is a Lipschitzian function with the Lipschitzian constant M, such that $V_i \cap Q = V_i \cap Q_i$.

Then, for any $p \geq 1$, there exists a linear operator E_1 of extension from $W^{1,p}(Q)$ to $W^{1,p}({\mathbb{R}^n})$ such that

$$E_1 f\, |_{Q} = f, \quad \|E_1 f\|_{L^p(\mathbb{R}^n)} \leq c_p \cdot \|f\|_{L^p(Q)};$$

$$\|\nabla (E_1 f)\|_{L^p(\mathbb{R}^n, \mathbb{R}^n)} \leq c_p \cdot \|\nabla f\|_{L^p(Q, \mathbb{R}^n)}.$$

Lemma 2.2. Let G be a connected open set in \mathbb{R}^n and let G_0 be an open set such that $\overline{G_0} \subset G$ and the open set $Q = G \setminus \overline{G_0}$ satisfies the hypotheses of Theorem 2.1. Denote by T the transformation

$$T : \mathbb{R}^n \to \mathbb{R}^n, \quad T(x) = y + r \cdot J(x), \quad (2.3)$$

where $y \in \mathbb{R}^n$ is a fixed vector, $r > 0$, and J is an orthogonal linear operator on \mathbb{R}^n. Then, for any $p \geq 1$, there exists a linear operator E_T of extension from $W^{1,p}(T(G \setminus \overline{G_0}))$ to $W^{1,p}(T(G))$ such that

$$E_T f \, |_{T(G \setminus \overline{G_0})} = f;$$

2
\[\|E_T f\|_{L^p(T (G))} \leq c_p \cdot \|f\|_{L^p(T (G \setminus G_0))}, \]
(2.4)

\[\|\nabla (E_T f)\|_{L^p(T (G), \mathbb{R}^n)} \leq c_p \cdot \|\nabla f\|_{L^p(T (G \setminus G_0), \mathbb{R}^n)} , \]
(2.5)

where the constant \(c_p \) depends only on \(G \) and \(G_0 \) and does not depend on \(y, r, \) and \(J. \)

Proof. By Theorem 2.1 there exists an operator \(E_1 \) of extension from \(W^{1, p} (G \setminus G_0) \) to \(W^{1, p} (\mathbb{R}^n) \) with

\[\|E_1 f\|_{L^p(\mathbb{R}^n)} \leq c_p \cdot \|f\|_{L^p(G \setminus G_0)} \]
(2.6)

\[\|\nabla (E_1 f)\|_{L^p(\mathbb{R}^n, \mathbb{R}^n)} \leq c_p \cdot \|\nabla f\|_{L^p(G \setminus G_0, \mathbb{R}^n)} . \]
(2.7)

Set \(E f := E_1 f \mid_G. \) Then estimates (2.6) and (2.7) hold also for the corresponding norms of \(E f \) on \(G. \) Let us consider the operator

\[H : W^{1, p} (G) \rightarrow W^{1, p} (T (G)), \quad H f (T x) = f(x). \]

It is easy to see that \(|\nabla (H f) (T x)| = \frac{1}{r} |\nabla f (x)|, \) and since the Jacobian of the transformation \(T \) equals \(r^n, \) we have

\[\|H f\|_{L^p(T (G))} = r^{n/p} \cdot \|f\|_{L^p(G)}, \quad \|\nabla (H f)\|_{L^p(T (G), \mathbb{R}^n)} = r^{n/p-1} \cdot \|\nabla f\|_{L^p(\mathbb{R}^n)}. \]
(2.8)

The same equalities are true for the \(L^p \)-norms on \(T (G \setminus G_0) \) and \(G \setminus G_0, \) respectively. Now we define the operator of extension from \(W^{1, p} (T (G \setminus G_0)) \) to \(W^{1, p} (T (G)) \) by

\[E_T := H \circ E \circ H^{-1}. \]

Finally, from equalities (2.8) and estimates (2.6) and (2.7) we obtain the desired estimates (2.4) and (2.5). \(\square \)

From now on we shall assume that, if a Dirichlet form is defined on some subclass \(\mathcal{D} \) of \(L^2 (\mu), \) \(\mu \) being a measure on \(\mathbb{R}^d, \) then

\[\mathcal{D} = \{ \varphi \mid_{\text{supp} \mu} : \ \varphi \in C_b^{\infty} (\mathbb{R}^d) \}. \]

Theorem 2.3. Let \(Q \) be an open set in \(\mathbb{R}^n \) satisfying the hypotheses of Theorem 2.1. Let the connected open sets \(G \) and \(G_0 \subset G \) satisfy the hypotheses of Lemma 2.2. Consider a countable family of transformations \(\{ T_k \} \) of the form (2.3) such that \(T_k (G) \subset Q \) and \(T_k (G) \cap T_j (G) = \emptyset \) if \(k \neq j. \) Set

\[S := Q \setminus \bigcup_{k=1}^{\infty} T_k (G_0) . \]

Then

(i) the Dirichlet form
\[\mathcal{E}'(f, g) = \int_S (\nabla f, \nabla g) \, d\lambda^n \]

is well-defined and closable on \(L^2(\lambda^n | S) \),

(ii) the Sobolev classes \(W^{1,p}(S) \), \(p \geq 1 \), are well-defined.

Proof. Fix \(p \in [1; +\infty) \). Note that the Sobolev gradient \(\nabla f \in L^p(S, \mathbb{R}^n) \) is well-defined for smooth functions, since if \(f \in C_c^\infty(\mathbb{R}^n) \) and \(f = 0 \) on \(S \), then \(\nabla f = 0 \) on \(S \) a.e.

Denote by \(E_{T_k} \) the operator of extension of functions from \(W^{1,p}(T_k(G \setminus G_0)) \) to \(W^{1,p}(T_k(G)) \) constructed in Lemma 2.2. Let \(f \in C_c^\infty(\mathbb{R}^n) \). Put

\[
E_0f = \begin{cases}
 f(x), & x \in S, \\
 \left(E_{T_k}(f |_{T_k(G \setminus G_0)}) \right)(x), & x \in T_k(G_0), \ k \in \mathbb{N};
\end{cases}
\]

\[
\psi_j = \begin{cases}
 f(x), & x \in Q \setminus \bigcup_{k=1}^j T_k(G_0), \\
 \left(E_{T_k}(f |_{T_k(G \setminus G_0)}) \right)(x), & x \in T_k(G_0), \ k = 1, \ldots, j.
\end{cases}
\]

The function \(\psi_j \) belongs to the Sobolev class \(W^{1,p}(Q) \). Indeed, it belongs to \(W^{1,p}(T_k(G_0)) \) for \(k = 1, \ldots, j \); let \(f_m^0, \ldots, f_m^j, m \in \mathbb{N} \), be \(C_c^\infty \)-functions approximating \(\psi_j \) in the \(\| \cdot \|_{1,p} \) norm on \(T_k(G) \), \(k = 1, \ldots, j \), and \(\chi_0, \ldots, \chi_j \in C^\infty_0 \) be such that \(0 \leq \chi_k \leq 1 \), \(\sum_{k=0}^j \chi_k = 1 \), and \(\chi_k = 1 \) on \(T_k(G_0), k = 1, \ldots, j \). It is easy to check that the functions \(f_m^j = \sum_{k=0}^j \chi_k f_m \)

coincide with \(\psi_j \) on \(Q \setminus \bigcup_{k=1}^j T_k(G_0) \) and approximate \(\psi_j \) in \(\| \cdot \|_{1,p} \) on \(Q \) as \(m \to \infty \).

We have

\[
\| E_0f \|_{L^p(Q)} \leq \| f \|_{L^p(S)} + \sum_{k} \| E_{T_k}f \|_{L^p(T_k(G))} \\
\leq \| f \|_{L^p(S)} + c_p \cdot \sum_{k} \| f \|_{L^p(T_k(G \setminus G_0))} \leq (1 + c_p) \cdot \| f \|_{L^p(S)},
\]

since the sets \(T_k(G) \) are disjoint; by analogy,

\[
\| \nabla \psi_j \|_{L^p(Q, \mathbb{R}^n)} \leq \| \nabla f \|_{L^p(S, \mathbb{R}^n)} + \sum_{k} \| \nabla (E_{T_k}f) \|_{L^p(T_k(G), \mathbb{R}^n)} \\
\leq \| \nabla f \|_{L^p(S, \mathbb{R}^n)} + c_p \cdot \sum_{k} \| \nabla f \|_{L^p(T_k(G \setminus G_0), \mathbb{R}^n)} \leq (1 + c_p) \cdot \| \nabla f \|_{L^p(S, \mathbb{R}^n)}.
\]

We also have

\[
|\psi_j(x)|^p \leq |E_0f(x)|^p + |f(x)|^p \quad \text{and} \quad \psi_j(x) \xrightarrow{j \to \infty} E_0f(x) \quad \text{for a.e.} \quad x \in Q.
\]

In addition, \(\nabla \psi_j(x) \) converge a.e. on \(Q \) as \(j \to \infty \). Therefore, \(E_0f \in W^{1,p}(Q) \).
Next we apply the operator E_1 of extension from $W^{1,p}(Q)$ to $W^{1,p}(\mathbb{R}^n)$ (which increases $W^{1,p}$-norms not more than in C_p times). We obtain
\[
\|E_1 \circ E_0 f\|_{L^p(\mathbb{R}^n)} \leq C_p \cdot (1 + c_p)\|f\|_{L^p(S)};
\]
\[
\|
abla (E_1 \circ E_0 f)\|_{L^p(\mathbb{R}^n, \mathbb{R}^n)} \leq C_p \cdot (1 + c_p)\|
abla f\|_{L^p(S, \mathbb{R}^n)}.
\]
Suppose we have a mapping $V \in L^p(S, \mathbb{R}^n)$ and a sequence of smooth functions $f_k \in C_0^\infty(\mathbb{R}^n)$ with
\[
\|f_k\|_{L^p(S)} \to 0, \quad \|
abla f_k - V\|_{L^p(S, \mathbb{R}^n)} \to 0 \quad \text{as } k \to \infty.
\]
In order to prove that the Sobolev class $W^{1,p}(S)$ is well-defined, we have to show that $V = 0$ a.e. on S. Let $g_k := E_1 \circ E_0 f_k \in W^{1,p}(\mathbb{R}^n)$; let $h_k \in C_0^\infty(\mathbb{R}^n)$, $\|h_k - g_k\|_{W^{1,p}(\mathbb{R}^n)} < \frac{1}{k}$. Then we have
\[
\|h_k\|_{L^p(\mathbb{R}^n)} < C_p(1 + c_p)\|f_k\|_{L^p(S)} + \frac{1}{k} \quad \overset{k \to \infty}{\longrightarrow} \quad 0;
\]
\[
\|
abla (h_k - h_m)\|_{L^p(\mathbb{R}^n, \mathbb{R}^n)} < C_p(1 + c_p)\|
abla (f_k - f_m)\|_{L^p(S, \mathbb{R}^n)} + \frac{1}{m} + \frac{1}{k} \quad \overset{m,k \to \infty}{\longrightarrow} \quad 0.
\]
By the closability of Sobolev gradients in \mathbb{R}^n this implies that $\|
abla h_k\|_{L^p(\mathbb{R}^n, \mathbb{R}^n)} \to 0$. Since $f_k = g_k$ on S, we have
\[
\|
abla f_k\|_{L^p(S, \mathbb{R}^n)} \leq \|
abla g_k\|_{L^p(\mathbb{R}^n, \mathbb{R}^n)} < \|
abla h_k\|_{L^p(\mathbb{R}^n, \mathbb{R}^n)} + \frac{1}{k} \quad \overset{k \to \infty}{\longrightarrow} \quad 0,
\]
which implies $V = 0$ a.e. on S. Therefore, the first order Sobolev gradient is well-defined for functions from $W^{1,p}(S)$, $p \geq 1$. In particular, if we take $p = 2$, this implies the closability of the Dirichlet form (2.9). \hfill \square

3 Construction of a counter-example

In this section we apply Theorem 2.3 to the plane \mathbb{R}^2 and the open squares
\[
G = (-3;3) \times (-3;3), \quad G_0 = (-2;2) \times (-2;2).
\]

Lemma 3.1. Given a rectangle $\Pi = [a;b] \times (0;1)$, $0 < b - a \leq 1$, there exists a set of squares
\[
\mathcal{M}_{a,b} = \left\{ (x_k - 2\varepsilon; x_k + 2\varepsilon) \times (y_k - 2\varepsilon; y_k + 2\varepsilon) \right\}_{k=0}^m
\]
belonging to Π such that
1) $(x_k - 3\varepsilon; x_k + 3\varepsilon) \times (y_k - 3\varepsilon; y_k + 3\varepsilon) \subset \Pi$;
2) $(x_k - 3\varepsilon; x_k + 3\varepsilon) \times (y_k - 3\varepsilon; y_k + 3\varepsilon)$, $k = 0, 1, \ldots, m$, are disjoint;
3) for any $h \in [1/4; 3/4]$, the line $\{y = h\}$ intersects some square from $\mathcal{M}_{a,b}$;
4) let $S := ([a;b] \times [\frac{1}{3}; \frac{4}{3}]) \setminus \bigcup_{k=0}^m ((x_k - 2\varepsilon; x_k + 2\varepsilon) \times (y_k - 2\varepsilon; y_k + 2\varepsilon))$. Then there exists a function $g_{a,b} \in C_0^\infty(\mathbb{R}^2)$ with values in $[0;1]$ such that
\begin{align*}
a) \quad & g_{a,b}(a, y) = 1, \quad g_{a,b}(b, y) = 0, \quad \text{for any } y; \\
b) \quad & \frac{\partial}{\partial y} g_{a,b} = 0 \quad \text{on } S; \\
c) \quad & \left| \frac{\partial}{\partial x} g_{a,b} \right| \leq \frac{9}{b-a}.
\end{align*}

Proof. Choose a natural number \(m \in \left[\frac{2}{b-a}; \frac{3}{b-a} \right] \) and set

\[\varepsilon := \frac{1}{6m}; \quad x_k := \frac{a + b}{2} + (-1)^k \cdot \frac{b - a}{4}, \quad y_k := \frac{1}{4} + \frac{k}{2m} = \frac{1}{4} + k \cdot 3\varepsilon; \quad k = 0, 1, \ldots, m. \]

Fig. 1 shows the location of our squares in the case \(m = 3 \). Condition 1) is fulfilled because for any point \((x, y) \in (x_k - 3\varepsilon; x_k + 3\varepsilon) \times (y_k - 3\varepsilon; y_k + 3\varepsilon)\) one has

\[\left| x - \frac{a + b}{2} \right| < \frac{b - a}{4} + 3\varepsilon = \frac{b - a}{4} + \frac{1}{2m} \leq \frac{b - a}{2}, \]

\[0 \leq \frac{1}{4} - \frac{1}{2m} = \frac{1}{4} - 3\varepsilon < y < \frac{1}{4} + \frac{m}{2m} + 3\varepsilon = \frac{3}{4} + \frac{1}{2m} \leq 1. \]

In order to check 2), we note that the squares \((x_k - 3\varepsilon; x_k + 3\varepsilon) \times (y_k - 3\varepsilon; y_k + 3\varepsilon)\) with even \(k \) lie in the region \(\{x > (a + b)/2\} \) and those with odd \(k \) lie in the region \(\{x < (a + b)/2\} \). If we take \(j \) and \(k \) such that \(|k - j| \geq 2\), then \(|y_k - y_j| \geq 1/m = 6\varepsilon\); due to this estimate the two squares are disjoint. Condition 3) follows from the containment

\[\left[\frac{1}{4}; \frac{3}{4} \right] \subset \bigcup_{k=0}^{m} (y_k - 2\varepsilon; y_k + 2\varepsilon). \quad (3.10) \]

4) It follows from (3.10) that there exists a set of nonnegative functions

\[\chi_0, \chi_1, \ldots, \chi_m \in C_0^\infty(\mathbb{R}) \]
with \(\text{supp} \chi_k = (-\infty; y_0 + 2 \varepsilon] \) if \(k = 0 \), \([y_k - 2 \varepsilon; y_k + 2 \varepsilon]\) if \(0 < k < m \), and \([y_m - 2 \varepsilon; +\infty) \) if \(k = m \), such that

\[
\sum_{k=0}^{m} \chi_k(y) = 1 \quad \forall y \in \mathbb{R}.
\]

Let \(\zeta^\beta_\alpha \) denote a function from the class \(C_0^\infty(\mathbb{R}) \) such that

\[
\text{supp} \zeta^\beta_\alpha = [\alpha; \beta], \quad 0 \leq \zeta^\beta_\alpha \leq \frac{2}{\beta - \alpha}, \quad \int_\mathbb{R} \zeta^\beta_\alpha(x)dx = 1.
\]

Put

\[
\varphi(x, y) := \sum_{k=0}^{m} \zeta^{x_k+2\varepsilon}_{x_k-2\varepsilon}(x) \cdot \chi_k(y).
\]

Then \(\varphi \in C_b^\infty(\mathbb{R}^2) \), \(\varphi = 0 \) on the set \(S \), and

\[
\int_a^b \varphi(x, y)dx = \sum_{k=0}^{m} \chi_k(y) \int_a^b \zeta^{x_k+2\varepsilon}_{x_k-2\varepsilon}(x) = 1, \quad \forall y \in \mathbb{R}
\]

Note that

\[
\sup_{x, y} |\varphi(x, y)| \leq \sup_{x} \left| \zeta^{x_k+2\varepsilon}_{x_k-2\varepsilon}(x) \right| \leq \frac{1}{2\varepsilon}.
\]

Finally, let

\[
g_{a, b}(x, y) := \int_x^b \varphi(t, y)dt.
\]

This function belongs to \(C_b^\infty(\mathbb{R}^2) \) and satisfies a), b), and c), since \(\frac{1}{2\varepsilon} = 3m \leq \frac{9}{5-\alpha} \).

Now let us recall the construction of a "thick Cantor set".

Step 1. Begin with \(I := [0; 1] \). In the center of \(I \) take the interval \((a; b) \) of the length \(4^{-1} \), i.e., \(a = 3/8 \), \(b = 5/8 \). Then \(I \setminus (a; b) \) splits into two closed intervals \(I_0 = [0; 3/8] \) and \(I_1 = [5/8; 1] \).

Step 2. In the center of \(I_0 \) take the interval \((a_0; b_0) \) of the length \(4^{-2} \), then \(I_0 \setminus (a_0; b_0) \) splits into \(I_{00} \) and \(I_{01} \). In the center of \(I_1 \) take the interval \((a_1; b_1) \) of the length \(4^{-2} \), then \(I_1 \setminus (a_1; b_1) \) splits into \(I_{10} \) and \(I_{11} \).

Step 3. In the centers of \(I_{00}, I_{01}, I_{10}, I_{11} \), take the intervals \((a_{00}; b_{00}), (a_{01}; b_{01}), (a_{10}; b_{10}), (a_{11}; b_{11}) \), respectively, each one having the length \(4^{-3} \), thus we obtain 8 closed intervals \(I_{000}, I_{001}, I_{010}, I_{011}, I_{100}, I_{101}, I_{110}, I_{111} \).

Then we proceed inductively. The closed intervals of the \(n \)-th generation are shorter than \(2^{-n} \), but the limiting compact set

\[
K = I \setminus (a; b) \setminus (a_0; b_0) \setminus (a_1; b_1) \setminus (a_{00}; b_{00}) \setminus (a_{01}; b_{01}) \setminus (a_{10}; b_{10}) \setminus (a_{11}; b_{11}) \setminus \ldots
\]
has Lebesgue measure $1/2$.

Now we shall give an example of a measure μ such that the Dirichlet form $\mathcal{E}(f, g) = \int (\nabla f, \nabla g) d\mu$ is closable on $L^2(\mu)$, but the partial Dirichlet form $\mathcal{E}_x(f, g) = \int \partial_x f \partial_x g d\mu$ is not. This measure is the restriction of Lebesgue measure to a certain set F.

Example 3.2. Let $Q = (0; 1) \times (0; 1)$. By using Lemma 3.1 we construct the countable set of squares

$$\mathcal{M} = \mathcal{M}_{a,b} \cup \bigcup_{n=1}^{\infty} \left(\bigcup_{i_1=0}^{1} \cdots \bigcup_{i_n=0}^{1} \mathcal{M}_{a_1 \ldots a_n, b_1 \ldots b_n} \right).$$

Set

$$F := Q \setminus \bigcup_{K \in \mathcal{M}} K.$$

By construction of the intervals (a_s, b_s) and the squares from $\mathcal{M}_{a, b}$, it is obvious that the squares from \mathcal{M} satisfy the hypotheses of Theorem 2.3. It follows from the theorem that the Dirichlet form

$$\mathcal{E}(f, g) = \int_F (\nabla f, \nabla g) d\lambda^2$$

is closable on $L^2(\lambda^2 | F)$. Next we shall prove that the Dirichlet form

$$\mathcal{E}_x(f, g) = \int_F \frac{\partial f}{\partial x} \cdot \frac{\partial g}{\partial x} d\lambda^2$$

fails to be closable on $L^2(\lambda^2 | F)$. To this end, we construct a sequence of functions $f_n \in C^\infty_b(\mathbb{R}^2)$ such that $\{f_n\}$ converges to zero in $L^2(F) := L^2(\lambda^2 | F)$, but $\partial f_n / \partial x$ converge in $L^2(F)$ to a function that differs from zero on a set of positive Lebesgue measure.

Denote by $\xi_{(s,t)}^{\epsilon}$ a function from $C^\infty_b(\mathbb{R})$ with the following properties:

- $\xi_{(s,t)}^{\epsilon}(x) = 0$ if $x \leq s$;
- $(\xi_{(s,t)}^{\epsilon})'(x) = 0$ if $x \geq t$;
- $(\xi_{(s,t)}^{\epsilon})'(x) = 1$ if $s + \epsilon(t - s) \leq x \leq t - \epsilon(t - s)$;
- $0 \leq (\xi_{(s,t)}^{\epsilon})'(x) \leq 1$ for any x.

Fix a function $\theta \in C^\infty_b(\mathbb{R})$ with the support $[1/4; 3/4]$ such that $1 \geq \theta(y) > 0$ if $1/4 < y < 3/4$. After these preparations, we begin to construct the functions f_n. We set

$$f_1(x, y) := \begin{cases}
\theta(y)\xi_{l_0}^{I_{a,b}}(x) & \text{if } x \in I_{0}, \\
\theta(y)\xi_{l_0}^{I_{a,b}}(a)g_{a,b}(x, y) & \text{if } x \in (a; b), \\
\theta(y)\xi_{l_1}^{I_{a,b}}(x) & \text{if } x \in I_{1};
\end{cases}$$
Then we proceed inductively. In the process of construction of \(f_n \) we use the functions \(\xi_f^{t^-n} \) corresponding to the closed intervals of the \(n \)-th generation and the functions \(g_{a,b} \) corresponding to the intervals that we have taken in the first \(n \) steps (see the construction of the "thick Cantor set"). It is easy to check the following properties of the functions \(f_n \):

\[
0 \leq f_n(x, y) < 2^{-n}, \tag{3.11}
\]

\[
0 \leq \frac{\partial f_n(x, y)}{\partial x} \leq 1 \quad \text{on} \quad F, \tag{3.12}
\]

on the squares from \(\mathcal{M}_{a_1\ldots i_k, b_1\ldots i_k} \) one has

\[
\left| \frac{\partial f_n(x, y)}{\partial x} \right| < \frac{9}{4^{(k+1)}}, \quad k = 0, 1, 2, \ldots, \tag{3.13}
\]

\(f_n \) with all its derivatives vanishes on the lines \(\{x = 0\} \) and \(\{y = 0\} \), and, finally,

\[
\text{for a.e. } (x, y) \in Q \quad \lim_{n \to \infty} \frac{\partial f_n(x, y)}{\partial x} = V(x, y) = \begin{cases}
\theta(y) & \text{if } x \in K, \\
0 & \text{if } x \notin K.
\end{cases} \tag{3.14}
\]

Therefore,

\[
f_n \to 0 \quad \text{and} \quad \frac{\partial f_n}{\partial x} \to V \quad \text{in } L^2(F).
\]

But \(V(x, y) > 0 \) on the set \(K \times (1/4; 3/4) \) that has measure 1/4. This completes our example.

The measure constructed in Example 3.2 is supported by a set with "holes". However, it is possible to refine this measure so that its support will coincide with the square \(Q \).

Example 3.3. Set \(\mu := \rho \cdot \lambda^2 \), where

\[
\rho(x, y) = \begin{cases}
1 & \text{if } (x, y) \in F; \\
16^{-1} & \text{if } (x, y) \in K \in \mathcal{M}_{a,b}; \\
16^{-(m+1)} & \text{if } (x, y) \in K \in \mathcal{M}_{a_1\ldots i_m, b_1\ldots i_m}, \ m \in \mathbb{N}.
\end{cases}
\]
The Dirichlet form

\[\mathcal{E}'(f, g) = \int (\nabla f, \nabla g) \, d\mu \]

is closable on \(L^2(\mu) \) because it is the sum of the form \(\mathcal{E} \) from Example 3.2 and the classical Dirichlet forms on the squares \(K \in \mathcal{M} \). In order to prove non-closability of the form

\[\mathcal{E}'_x(f, g) = \int \frac{\partial f}{\partial x} \cdot \frac{\partial g}{\partial x} \, d\mu \]

on \(L^2(\mu) \), consider the same sequence of functions \(f_n \in C^\infty_c(\mathbb{R}^2) \) as in Example 3.2. It follows from (3.11) that \(\|f_n\|_{L^2(\mu)} \xrightarrow{n \to \infty} 0 \). From the estimates (3.12) and (3.13) we see that the functions \(|\partial f_n/\partial x| \) are majorized by the function

\[M(x, y) = \begin{cases} 1 & \text{if } (x, y) \in F, \\ 9/4^{-(m+1)} & \text{if } (x, y) \in K \in \mathcal{M}_{a_1 \ldots a_m, b_1 \ldots b_m}, \ m = 0, 1, 2, \ldots \end{cases} \]

but

\[\|M\|_{L^2(\mu)}^2 \leq 1 + \sum_{m=0}^{\infty} 16^{-(m+1)} \sum_{i_1=0}^{1} \cdots \sum_{i_m=0}^{1} \left(\frac{9}{4^{-(m+1)}} \right)^2 \sum_{K \in \mathcal{M}_{a_1 \ldots a_m, b_1 \ldots b_m}} \lambda^2(K) \]

\[\leq 1 + \sum_{m=0}^{\infty} 16^{-(m+1)} \cdot 2^m \cdot \left(\frac{9}{4^{-(m+1)}} \right)^2 \cdot 4^{-(m+1)} = 1 + \frac{81}{4} \sum_{m=0}^{\infty} 2^{-m} < 42. \]

Since

\[\frac{\partial f_n(x, y)}{\partial x} \xrightarrow{n \to \infty} V(x, y) \text{ for } \lambda^2\text{-a.e. } (x, y) \in Q, \]

by the Lebesgue dominated convergence theorem we have

\[V \in L^2(\mu), \quad \left\| \frac{\partial f_n}{\partial x} - V \right\|_{L^2(\mu)} \xrightarrow{n \to \infty} 0, \]

therefore, since \(\mu \{(x, y) : V(x, y) > 0\} > 0 \), the form \(\mathcal{E}'_x \) is not closable on \(L^2(\mu) \).

Now we shall extend the result of this paper to the \(d \)-dimensional case.

Corollary 3.4. Let \(d \in \mathbb{N} \). There exists a measure \(\nu \) on \(\mathbb{R}^d \) such that the Dirichlet form

\[\mathcal{E}'_{h_1, \ldots, h_d}(f, g) = \sum_{k=1}^{d} h_k \int \frac{\partial f(x)}{\partial x_k} \cdot \frac{\partial g(x)}{\partial x_k} \nu(dx), \quad h_1, \ldots, h_d \geq 0, \quad (3.15) \]

is closable on \(L^2(\nu) \) if and only if \(h_1 \cdot \ldots \cdot h_d > 0 \).
Proof. Let F be the set constructed in Example 3.2. Set

$$F_{ij} := \{ x = (x_1, \ldots, x_d) \in (0; 1)^d : (x_i, x_j) \in F \}, \quad i, j = 1, \ldots, d, \quad i \neq j.$$

Denote by ν_{ij} the restriction of the d-dimensional Lebesgue measure to the set F_{ij}. Then the Dirichlet form $\mathcal{E}_{h_1, \ldots, h_d}^{\nu_{ij}}$ is closable on $L^2(\nu_{ij})$ if $h_1 \cdot \ldots \cdot h_d > 0$. Indeed, it is sufficient to consider the gradient Dirichlet form

$$\mathcal{E}_{1, \ldots, 1}^{\nu_{ij}}(f, g) = \int (\nabla f(x), \nabla g(x))\nu_{ij}(dx)$$

(3.16)

because one has the following estimate with some $A > a > 0$:

$$a \cdot \mathcal{E}_{1, \ldots, 1}^{\nu_{ij}}(f, f) \leq \mathcal{E}_{h_1, \ldots, h_d}^{\nu_{ij}}(f, f) \leq A \cdot \mathcal{E}_{1, \ldots, 1}^{\nu_{ij}}(f, f).$$

But $\nu_{ij} = \mu_{ij} \times m_{ij}$, where

$$m_{ij} = \bigotimes_{k=1 \atop k \neq i, j}^d dx_k \quad \text{and} \quad \mu_{ij} = \mu(dx_i, dx_j),$$

where μ is the restriction of the two-dimensional Lebesgue measure to F. For both measures m_{ij} (on \mathbb{R}^{n-2}) and μ_{ij} (on \mathbb{R}^2) the gradient Dirichlet forms are closable, therefore, so is (3.16).

Take the measure

$$\nu := \sum_{i=1}^d \sum_{j=1 \atop j \neq i}^d \tilde{\nu}_{ij},$$

where $\tilde{\nu}_{ij}$ is the image of ν_{ij} under the parallel shift along the vector $2e_i + 4e_j$. For any $h_1, \ldots, h_d, h_1 \cdot \ldots \cdot h_d > 0$, the Dirichlet form (3.15) is closable on $L^2(\nu)$ as the sum of forms closable over measures whose sum is ν. If $h_j = 0$ and $h_i > 0$, we can take the sequence of functions

$$\tilde{f}_n(x) := \begin{cases} f_n(x_i - 2, x_j - 4) & \text{if } x_i > 2, \ x_j > 4, \\ 0 & \text{if } x_i \leq 2 \text{ or } x_j \leq 4, \end{cases}$$

where f_n is the function from Example 3.2. Then $\tilde{f}_n \in C^\infty_b(\mathbb{R}^d)$; $\|\tilde{f}_n\|_{L^2(\nu)} \to 0$; for $k \neq i, k \neq j$, we have $\frac{\partial f_n}{\partial x_k} \equiv 0$; but

$$\frac{\partial \tilde{f}_n(x)}{\partial x_i} \xrightarrow{n \to \infty} u(x) = \begin{cases} V(x_i - 2, x_j - 4) & \text{if } x_i > 2, \ x_j > 4, \\ 0 & \text{if } x_i \leq 2 \text{ or } x_j \leq 4, \end{cases}$$

where V is the function defined in (3.14) in Example 3.2. We have

$$\mathcal{E}_{h_1, \ldots, h_d}(\tilde{f}_n - \tilde{f}_m, \tilde{f}_n - \tilde{f}_m) = h_i \int \left| \frac{\partial (\tilde{f}_n(x) - \tilde{f}_m(x))}{\partial x_i} \right|^2 \nu(dx)$$

11
\[
= h_i \int_F \left| \frac{\partial (f_n(x_i, x_j) - f_m(x_i, x_j))}{\partial x_i} \right|^2 d{x_i} d{x_j} \xrightarrow{m,n \to \infty} 0.
\]

But \(\nu\{u > 0\} = \mu\{V > 0\} = \frac{1}{4} \), hence

\[
\mathcal{E}_{h_1, \ldots, h_d}^\nu(\tilde{f}_n, \tilde{f}_n) \xrightarrow{n \to \infty} h_i \int_F V^2(x_i, x_j) d{x_i} d{x_j} > 0.
\]

Therefore, the Dirichlet form (3.15) is not closable on \(L^2(\nu) \). \(\square \)

The author is grateful to V. I. Bogachev for useful discussions. This work was supported by the RFBR projects 00–15–99267, 01–01–00858 and the DFG Grant 436 RUS 113/343/0(R).

References

