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Abstract

Let A =
∑N

i,j=1 qijDij +
∑N

i,j=1 bijxjDi be a possibly degenerate Ornstein-

Uhlenbeck operator in R
N and assume that the associated Markov semi-

group has an invariant measure µ. We compute the spectrum of A in Lp
µ

for 1 ≤ p < ∞.
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1 Introduction

In this paper we study the spectrum of the Ornstein-Uhlenbeck operator

A =
N

∑

i,j=1

qijDij +
N

∑

i,j=1

bijxjDi = Tr(QD2) + 〈Bx, D〉, x ∈ RN , (1.1)

where Q = (qij) is a real, symmetric and nonnegative matrix and B = (bij)
is a non-zero real matrix. The associated Markov semigroup (T (t))t≥0 has the
following explicit representation, due to Kolmogorov

(T (t)f)(x) =
1

(4π)N/2(det Qt)1/2

∫

RN
e−<Q−1

t y,y>/4f(etBx − y) dy, (1.2)

where

Qt =
∫ t

0
esBQesB∗

ds
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and B∗ denotes the adjoint matrix of B, see for instance [6]. We assume that the
spectrum of B is contained in C− = {λ ∈ C : Re (λ) < 0}. Moreover we require
that det Qt > 0 for any t > 0 (that is, Qt is positive definite); this is clearly true,
in particular, if Q is invertible. We point out that the condition det Qt > 0, t > 0,
is equivalent to the hypoellipticity of A, see [12], and it can be also expressed by
saying that the kernel of Q does not contain any invariant subspaces of B∗ (see
[12], [13], [15], [18]).

Assuming that det(Qt) > 0, in [7, section 11.2.3] it is proved that σ(B) ⊂ C−

is equivalent to the existence of an invariant measure µ for Tt, i.e. a probability
measure on RN such that

∫

RN
(T (t)f)(x) dµ(x) =

∫

RN
f(x) dµ(x)

for every t ≥ 0 and f ∈ Cb(R
N), the space of all continuous and bounded

functions on RN . Moreover the invariant measure µ is unique and it is given by
dµ(x) = b(x) dx where

b(x) =
1

(4π)N/2(det Q∞)1/2
e−<Q−1

∞ x,x>/4 (1.3)

and
Q∞ =

∫ ∞

0
esBQesB∗

ds.

For more information on invariant measures we refer to [8] and [19]. It is well
known that (T (t))t≥0 extends to a strongly continuous semigroup of positive
contractions in Lp

µ = Lp(RN , dµ) for every 1 ≤ p < ∞. Remark that, since
Qt < Q∞ in the sense of quadratic forms, the integral in (1.2) converges for every
f ∈ Lp

µ and x ∈ RN , so that the extension of (T (t))t≥0 to Lp
µ is still given by

(1.2).
Let us denote by (Ap, Dp) the generator of (T (t))t≥0 in Lp

µ. The main aim
of this paper is the computation of the spectrum of (Ap, Dp) for 1 ≤ p < ∞. If
1 < p < ∞, it is known that the spectrum is discrete and consists of eigenvalues
of finite multiplicities, since the resolvent is compact, see [3]. We first prove
that all the eigenfunctions are polynomials and then we arrive at a complete
characterization of the spectrum, see Section 3. Our method shows that it is
possible to reduce the computation of the spectrum of A to that of its drift term
〈Bx, D〉, no matter what the diffusion term Tr(QD2) is, see in particular Lemma
3.3.

As a by-product of our proof, we also show that the spectrum is independent
of p ∈]1,∞[ (the p-independence of the spectrum is however a consequence of
the compactness of the resolvent, see e.g. [1]). For p = 1 we obtain that the
spectrum is completely different, see Section 4. The spectrum in L1

µ is the closed
left half-plane and moreover every complex number with negative real part is
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an eigenvalue. Let us stress that we allow Q to have rank strictly less than N ;
however our main result seems to be new even in the non-degenerate case, that
is when Q is positive definite.

Let us mention another result of the paper. Assuming that A is nondegenerate
in [10] it is shown that Tt is analytic in Lp

µ even in the infinite dimensional setting,
1 < p < ∞ (see also [6], [14] and [11]). Under our assumptions, in Section 2 we
show that the semigroup Tt is differentiable in Lp

µ, for 1 < p < ∞; obviously, it
is not so in L1

µ (see also Corollary 4.2).
We remark that in the particular case Q = I, B = −I, it is known that the

spectrum in L2
µ consists of the negative integers and that the Hermite polynomials

form a complete system of eigenfunctions. Moreover, the operator −A2 on L2
µ is

unitarily equivalent to a Schrödinger operator −∆+V on L2(RN , dx), where V is
a quadratic potential (see [17] and [2]). Finally we refer to [16] for the spectrum
of A in Lp(RN , dx) and in spaces of continuous functions.

Notation. If C is a linear operator, we denote by σ(C), Pσ(C) and ρ(C),
the spectrum, the point-spectrum and the resolvent set of C, respectively. The
spectral bound s(C) is defined by s(C) = sup{Reλ : λ ∈ σ(C)}. Cb(R

N) stands
for the Banach space of all real continuous and bounded functions on RN . C0(R

N)
is the closed subspace of Cb(R

N) of functions vanishing at infinity, C∞
0 (RN) is

the space of C∞-functions with compact support and S(RN ) is the Schwartz
class. Pn is the space of all polynomials of degree less than or equal to n. For
1 ≤ p < ∞ and k ∈ N, W k,p(RN) are the usual Sobolev spaces, and we define

W k,p
µ = {u ∈ W k,p

loc (RN) : Dαu ∈ Lp
µ for |α| ≤ k}. (1.4)

The norm in Lp
µ will be denoted by ‖ · ‖p. Sometimes we write Ap for (Ap, Dp).

Throughout this paper N indicates the set of nonnegative integers and C−, C+

the open left and right half-planes, respectively.

2 Properties of (T (t))t≥0

In this section we collect some properties of (T (t))t≥0 and of its generator (Ap, Dp)
needed in the sequel.

We observe that C∞
0 (RN) is dense in W k,p

µ , 1 ≤ p < ∞ . Indeed, a simple
truncation argument shows that the set of W k,p

µ -functions with compact support
is dense and, given u ∈ W k,p

µ with compact support, the usual approximating
functions φε ∗ u converge to u, as ε → 0, in W k,p(RN) and hence in W k,p

µ .
As regards the domains Dp, we remark that Dp ⊂ Dq if p ≥ q and Apu = Aqu

for u ∈ Dp. If Q is non-degenerate, the domain D2 is nothing but the weighted
Sobolev space W 2,2

µ and A2u = Au for u ∈ D2 (see [14]). A similar result seems
not to be known in the general case when p 6= 2. However, Dp = W 2,p

µ if (A2, D2)
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is self-adjoint; this fact turns out to be equivalent to the identity BQ = QB∗ and
implies Q positive definite (see [4] and [5]).

For our purposes, we only need the following simple lemma.

Lemma 2.1 Let 1 ≤ p < ∞. If u ∈ C∞(RN) is such that Diju ∈ Lp
µ for

i, j = 1, . . . , N and |x||Du| ∈ Lp
µ, then u ∈ Dp and Apu = Au. Moreover, the

Schwartz class S(RN ) is a core for (Ap, Dp).

Proof. Observe that Au ∈ Lp
µ. Let 0 ≤ φ ∈ C∞

0 (RN) be such that φ(x) = 1
if |x| ≤ 1 and define un(x) = φ(x/n)u(x). It is easily seen, using dominated
convergence, that un → u and Aun → Au in Lp

µ. Since un ∈ C∞
0 (RN), it is

elementary to check that (T (t)un − un)/t → Aun uniformly (hence in Lp
µ) as

t → 0. Therefore, un ∈ Dp and the equality Aun = Apun holds. Letting n → ∞
we obtain that u ∈ Dp and that Apu = Au, since (Ap, Dp) is closed. Finally, since
S(RN) is contained in Dp and is T (t)-invariant, it is a core for (Ap, Dp).

We discuss now some smoothing properties of (T (t))t≥0, depending upon the
hypoellipticity condition det Qt > 0. To this purpose, it is useful to recall that
the above condition is also equivalent to the well-known Kalman rank condition

rank
[

Q1/2, BQ1/2, . . . , BN−1Q1/2
]

= N,

arising in control theory (see e.g. [21]). In the above formula, the N × N 2

matrix in the left-hand-side is obtained by writing consecutively the columns of
the matrices BiQ1/2. Moreover, if 0 ≤ m ≤ N − 1 is the smallest integer such
that rank

[

Q1/2, BQ1/2, . . . , BmQ1/2
]

= N , then

‖Q
−1/2
t etB‖ ≤

C

t1/2+m
, t ∈ (0, 1] (2.1)

(see [20]). Of course m = 0 if and only if Q is invertible.
The following lemma is a slight modification of a result proved, in the infinite-

dimensional setting, in [3, Lemma 3]. We give the proof for completeness. The
number m which appears in the statement is that defined above.

Lemma 2.2 Let 1 < p < ∞. For every t > 0, T (t) maps Lp
µ into C∞(RN)∩W k,p

µ

for every k ∈ N. Moreover, there exists C = C(k, p) > 0 such that for every
f ∈ Lp

µ the inequality

‖DαT (t)f‖p ≤
C

t|α|(1/2+m)
‖f‖p, t ∈ (0, 1)

holds for every multiindex α with |α| = k.
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Proof. Let us fix t > 0 and set

bt(x) =
1

(4π)N/2(det Qt)1/2
e−<Q−1

t x,x>/4.

Since Qt < Q∞, in the sense of quadratic forms, it is easily seen that there exist
K, ε > 0 (depending upon t) such that bt(x) ≤ Ke−ε|x|2b(x), where b (defined in
(1.3)) is the density of µ. It follows that one can differentiate under the integral
sign in (1.2) for every f ∈ Lp

µ thus obtaining

(DT (t)f)(x) = −
1

2

∫

RN
etB∗

Q−1
t yf(etBx − y)bt(y) dy

for every x ∈ RN and hence T (t)f ∈ C1(RN). By Hölder inequality and (2.1)

|(DiT (t))f(x)| ≤
1

2

(

∫

RN
|〈Q

−1/2
t etBei, Q

−1/2
t y〉|p

′

bt(y) dy
)1/p′(

(T (t)|f |p)(x)
)1/p

≤
1

2
|Q

−1/2
t etBei|

(

∫

RN
|Q

−1/2
t y|p

′

bt(y) dy
)1/p′(

(T (t)|f |p)(x)
)1/p

≤ Cpt
−1/2−m

(

(T (t)|f |p)(x)
)1/p

and the thesis follows for k = 1 raising to the power p and integrating the above
inequality with respect to µ. The proof for k ≥ 1 proceeds as in [14, Lemma 3.2]
using the equality DT (t)u = etB∗

T (t)Du, which holds for every u ∈ W 1,p
µ . This

identity is easily verified in C∞
0 (RN) and extends to W 1,p

µ by density.

The compactness of (T (t))t≥0 for p = 2 easily follows from the above lemma
and the compactness of the imbedding of W 1,2

µ into L2
µ, see [8]. If 1 < p < ∞,

the same holds by interpolation (see [3, Lemma 2]).
If Q is non degenerate, the analyticity of (T (t))t≥0 in L2

µ was proved in [10]
(see also [6], [14]). From the Stein interpolation theorem it follows that (T (t))t≥0

is analytic in Lp
µ for 1 < p < ∞. On the other hand, (T (t))t≥0 is not analytic in

L2
µ (hence in Lp

µ) if Q is degenerate, see [11]. We show that in any case (T (t))t≥0

is differentiable in Lp
µ, if 1 < p < ∞. To prove this we need the following lemma

which is probably known (it generalises [14, Lemma 2.1]). We include the proof
for the sake of completeness.

Lemma 2.3 If 1 < p < ∞, for every h = 1, . . . , N the map u 7→ xhu is bounded
from W 1,p

µ to Lp
µ.

Proof. It suffices to show that there is a constant Kp such that for every u ∈
C∞

0 (RN)

∫

RN
|xhu(x)|p dµ(x) ≤ Kp

∫

RN
(|u(x)|p + |Du(x)|p) dµ(x). (2.2)
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By a linear change of variables we may assume that Q∞ is diagonal with eigen-
values µ1, . . . , µN and hence that

b(x) =
1

(4π)N/2(µ1 · · ·µN)1/2
exp

{

−
N

∑

i=1

x2
i /(4µi)

}

.

First case, assume p ≥ 2. If u ∈ C∞
0 (RN), then one has with C = 2 max{µ1, . . . , µN}

∫

RN
|xhu(x)|p dµ(x) ≤ −C

∫

RN
|u(x)|p|xh|

p−2xh · Dhb(x) dx

= C
∫

RN
(pxhu(x)|xhu(x)|p−2Dhu(x) + (p − 1)|xh|

p−2|u(x)|p) dµ(x)

≤ C1

∫

RN
|xh|

p−2|u(x)|p dµ(x) + C2

(

∫

RN
|xhu(x)|p dµ(x)

)
p−1

p
(

∫

RN
|Dhu(x)|p dµ(x)

) 1

p

≤ ε
∫

RN
|xhu(x)|p dµ(x) + Cε

∫

RN
(|u(x)|p + |Dhu(x)|p) dµ(x),

for every ε > 0, with a suitable Cε (in the last line we have used Young’s inequality
and the estimate |xh|

p−2 ≤ Cε + ε|xh|
p). Choosing ε < 1 we deduce (2.2).

Let us deal with the case 1 < p < 2. We proceed as before but we have to
estimate in a different way the term

∫

RN
|xh|

p−2|u(x)|p dµ(x).

To simplify the notation, take h = N and write x′ = (x1, . . . , xN−1), b(x) =

b′(x′) e
−x2

N
/4µN

(4πµN )1/2
, and dµ′ = b′(x′)dx′, dµ′′ = (4πµN)−1/2 exp{−x2

N/4µN}dxN , so

that
∫

RN
|xN |

p−2|u(x)|p dµ(x) =
∫

RN−1

dµ′(x′)
∫

R

|xN |
p−2|u(x′, xN)|p dµ′′(xN)

=
∫

RN−1

dµ′(x′)
∫

|xN |≥1
|xN |

p−2|u(x′, xN)|p dµ′′(xN)

+
∫

RN−1

dµ′(x′)
∫ 1

−1
|xN |

p−2|u(x′, xN)|p dµ′′(xN)

:= J1 + J2

Clearly, J1 ≤
∫

RN |u(x)|p dµ(x). Let us estimate J2. For every x′ ∈ RN−1 we
have, by the Sobolev embedding W 1,p(−1, 1) ↪→ L∞(−1, 1),

∫ 1

−1
|xN |

p−2|u(x′, xN)|p dµ′′(xN) ≤ C
(

sup
|xN |≤1

|u(x′, xN)
)p

∫ 1

−1
|xN |

p−2 dxN

≤ C1

∫ 1

−1
(|u(x′, xN)|p + |DNu(x′, xN)|p) dxN

≤ C2

∫

R

(|u(x′, xN )|p + |DNu(x′, xN )|p) dµ′′(xN )
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whence, integrating on RN−1,

J2 ≤ C2

∫

RN
(|u(x)|p + |Du(x)|p) dµ(x),

and this completes the proof.

It follows, in particular, that the map Lu = 〈Bx, Du〉 is bounded from W 2,p
µ

into Lp
µ for 1 < p < ∞.

Proposition 2.4 For 1 < p < ∞ the semigroup (T (t))t≥0 is differentiable in Lp
µ.

Proof. If f ∈ S(RN ) then T (t)f ∈ S(RN ) ⊂ Dp. From Lemmas 2.3, 2.2 it
follows as in [14, Proposition 3.3] that

‖ApT (t)f‖p = ‖AT (t)f‖p ≤
C

t2m+1
‖f‖p, 0 < t ≤ 1,

hence ApT (t) extends to a bounded operator in Lp
µ and the thesis follows.

We shall see that the above result is false for p = 1, see Section 4.

3 Spectrum in Lp
µ for 1 < p < ∞

In this section we assume that 1 < p < ∞. The following estimate is the main
step to show that the eigenfunctions of Ap are polynomials.

Lemma 3.1 Let k ∈ N and ε > 0 be given, with s(B)+ ε < 0. Then there exists
C = C(k, ε) such that for every u ∈ W k,p

µ

∑

|α|=k

‖DαT (t)u‖p ≤ Cetk(s(B)+ε)
∑

|α|=k

‖Dαu‖p, t ≥ 0. (3.1)

Proof. Let C1 = C1(ε) be such that ‖etB∗

‖ ≤ C1e
t(s(B)+ε) and recall that

DT (t)u = etB∗

T (t)Du for every u ∈ W 1,p
µ . Since (T (t))t≥0 is contractive in Lp

µ

the statement is proved for k = 1 with C = C1. Suppose that the statement is
true for k with a suitable constant Ck and consider u ∈ W k+1,p

µ . Then, if |α| = k,

‖DDαT (t)u‖p = ‖DαDT (t)u‖p = ‖DαetB∗

T (t)Du‖p

≤ C1e
t(s(B)+ε)‖DαT (t)Du‖p

≤ C1Cke
t(k+1)(s(B)+ε)‖DDαu‖p.

7



Observe that σ(Ap) ⊂ {λ ∈ C : Reλ ≤ 0}, since (T (t))t≥0 is a semigroup of
contractions in Lp

µ and that 0 ∈ σ(A). Moreover, every eigenfunction correspond-
ing to the eigenvalue 0 is constant (this holds also for p = 1). In fact, if u ∈ Dp

and Apu = 0, then T (t)u = u. On the other hand (see [8, Theorem 4.2.1])

T (t)u →
∫

RN
u dµ

as t → ∞ and therefore u is constant. We now show that all the eigenfunctions
are polynomials.

Proposition 3.2 Suppose that u ∈ Dp satisfies Apu = λu. Then u is a polyno-
mial.

Proof. Since T (t)u = eλtu, from Lemma 2.2 we deduce that u ∈ W k,p
µ ∩C∞(RN),

for every k. Clearly DαT (t)u = eλtDαu for every multiindex α. Given ε ∈
(0, |s(B)|), from Lemma 3.1 it follows that

et Reλ
∑

|α|=k

‖Dαu‖p ≤ C(k, ε)etk(s(B)+ε)
∑

|α|=k

‖Dαu‖p

and hence Dαu = 0 if |α||s(B)| ≥ |Reλ|. It follows that u is a polynomial of

degree less than or equal to Re(λ)
s(B)

. This concludes the proof.

Let us denote by
Lu = 〈Bx, Du〉

the drift term in (1.1). We reduce the computation of the spectrum of Ap to that
of L.

Lemma 3.3 The following statements are equivalent.

(i) λ ∈ σ(Ap).

(ii) There exists a homogeneous polynomial u 6= 0 such that Lu = λu.

Proof. First we observe that Apu = Au if u is a polynomial (see Lemma 2.1)
and that both A and L map Pn into itself. Moreover A = L on P1 and hence we
may consider only polynomials of degree greater than or equal to 2.

Suppose that (i) holds and let u be a polynomial of degree n ≥ 2 such that
Apu = λu, that is λu−

∑

i,j qijDiju−Lu = 0. If λ−L is bijective on Pn−2 we can
find v ∈ Pn−2 such that λv−Lv =

∑

i,j qijDiju and hence z = u−v ∈ Pn, satisfies
λz − Lz = 0 and z 6= 0. If λ − L is not bijective on Pn−2 we consider a function
z in its kernel. In any case we find 0 6= z ∈ Pn such that λz − Lz = 0. To find
a (nonzero) homogeneous polynomial u such that λu − Lu = 0 it is sufficient to
observe that L maps homogeneous polynomials into homogeneous polynomials
so that all homogeneous addends u of z satisfy λu − Lu = 0.

Assume now that (ii) holds with u homogeneous polynomial of degree n ≥ 2. If
λ−Ap is not injective on Pn−2 clearly (i) is true. Otherwise we find v ∈ Pn−2 such
that λv−Av =

∑

i,j qijDiju and then 0 6= w = u+v ∈ Pn satisfies λw−Apw = 0.
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We study now the equation γu − Lu = 0 with u polynomial, γ ∈ C. If
B = −I this is the well-known Euler equation satisfied by all regular functions
homogeneous of degree (−γ). If we require that u is a polynomial, we obtain
(−γ) ∈ N, hence all negative integers are eigenvalues of L and, for every n ∈ N,
all homogeneous polynomials of degree n are eigenfunctions.

The equation with a general B is much more complicated and we shall not
characterise all polynomial solutions but only the values of γ for which such a
solution exists. Observe that a differentiable function u satisfies γu − Lu = 0 if
and only if

u(etBx) = etγu(x) t ≥ 0, x ∈ RN . (3.2)

Let u be a (nonzero) homogeneous polynomial of degree n satisfying (3.2):
in this case the same equality holds for every complex point x ∈ CN . Let now
M be a non-singular complex N × N matrix, such that MBM−1 = C, where
C is the canonical Jordan form of B. Introduce a new homogeneous polynomial
v(z) = u(M−1z), z ∈ CN , so that u(x) = v(Mx). Since v(MetBM−1z) = etγ v(z),
we obtain that

v(etCz) = etγ v(z), z ∈ CN ,

and we find the values of γ for which a solution exists working with the Jordan
matrix C. Before proving the main result of this section, we present in a particular
case the argument we use in the proof. Let us suppose that C consists of a unique
Jordan block of size N relative to an eigenvalue λ, that is

C =















λ 1 · · · 0

0 λ · · ·
...

...
...

. . . 1
0 · · · 0 λ















and write C = λI + R with R nilpotent. Hence etR has polynomial entries and
we obtain

etγv(z) = v(etBz) = v(etλetRz) = enλtv(etRz) = enλtq(t, z) (3.3)

where q(t, z) =
∑

|α|=n cα(t)zα and the cα(t) are polynomials. Now fix ẑ 6= 0 in
(3.3) such that v(ẑ) 6= 0 and look at the variable t. It follows that γ = nλ, i.e.,
the eigenvalues of L are multiples of the (unique) eigenvalue of B. In the general
case, we have the following result.

Theorem 3.4 Let λ1, . . . , λr be the (distinct) eigenvalues of B. Then

σ(Ap) =
{

λ =
r

∑

j=1

njλj : nj ∈ N
}

.
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Proof. We keep the above notation (recall that M is a non-singular complex
N×N matrix, such that MBM−1 = C and C is the canonical Jordan form of B).
Let Cj, for j = 1, . . . r, be the Jordan block of C associated with λj and denote
by kj (1 ≤ kj ≤ N ,

∑r
j=1 kj = N) the size of Cj. We may write Cj = λjI + Rj

where Rj is a nilpotent matrix. Let us decompose CN into the direct sum of the
invariant subspaces corresponding to the Jordan blocks of C and write z ∈ CN

in the form z = (z1, . . . , zr), with zj ∈ Ckj .
Assume that γ ∈ σ(Ap). Then, according to Lemma 3.3, there exists a nonzero

homogeneous polynomial u such that Lu = γu or, in an equivalent way, u(etBx) =
eγtu(x). Introducing the homogeneous polynomial v(z) = u(M−1z), we know that
v(etCz) = etγv(z) for every z ∈ CN . Let us write v in the following way:

v(z) =
∑

|α1|+...+|αr |=n

cα1,...,αr

r
∏

j=1

z
αj

j ,

and prove that γ =
∑

j λj|αj|, for suitable (αj). We have

etγv(z) = v(etCz) = v(etC1z1, . . . , e
tCrzr)

=
∑

|α1|+...+|αr|=n

cα1,...,αr

r
∏

j=1

(etCjzj)
αj

=
∑

|α1|+...+|αr|=n

cα1,...,αr et(λ1 |α1|+...+λr |αr|)
r

∏

j=1

(etRj zj)
αj .

Now fix ẑ 6= 0 such that v(ẑ) 6= 0 and look at the variable t. Since
∏r

j=1(e
tRj ẑj)

αj is
a polynomial in t for any (α1, . . . , αr), it follows that there exists some (α1, . . . , αr)
such that γ = λ1|α1| + . . . + λr|αr|. This means that

γ =
r

∑

j=1

njλj, nj ∈ N. (3.4)

Conversely, let γ =
∑r

j=1 njλj, with arbitrary nj ∈ N. Let us write z ∈ CN in
the form

z = (z1, . . . , zr) = (z1, . . . , zk1
, zk1+1, . . . , zk1+k2

, . . . , zk1+...+kr).

Consider the polynomial

v(z) = zn1

k1
· zn2

k1+k2
· · · znr

k1+...kr
,

depending only upon the r complex variables zk1
, zk1+k2

, . . . , zk1+...kr (the last vari-
able in each block). It is easy to verify that v(etCz) = etγv(etR1z1, . . . , e

tRrzr) =
etγv(z), z ∈ CN . The polynomial u(z) = v(Mz), z ∈ CN , satisfies u(etBx) =
etγu(x), x ∈ RN . It follows that Lu = γu and hence γ ∈ σp(A), by Lemma 3.3.
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4 Spectrum in L1
µ

We show that the spectrum of A1 is the left half-plane. In particular (T (t))t≥0 is
not norm-continuous in L1

µ, hence not analytic, nor differentiable, nor compact
(see [9, Ch. II, Sec. 4]).

Theorem 4.1 The spectrum of (A1, D1) is the left half-plane {λ ∈ C : Re λ ≤
0}. Each complex number λ with Re λ < 0 is an eigenvalue.

Proof. Let b be the density of µ with respect to the Lebesgue measure, given by
(1.3), and set h = 1/b. Let Φ : L1 = L1(RN , dx) → L1

µ be the isometry defined
by

(Φu)(x) = u(x)h(x), u ∈ L1, x ∈ RN .

We define an operator (G, DG) on L1 by DG = Φ−1(D1) and G = Φ−1A1Φ. If
u ∈ C∞

0 (RN), then u ∈ DG and

Gu(x) = b(x)(A(uh))(x) = Au(x) + 2b(x)
N

∑

i,j=1

qijDih(x)Dju(x) + b(x)u(x)Ah(x).

A direct computation shows that

2b(x)
N

∑

i,j=1

qijDih(x)Dju(x) = 〈QQ−1
∞ x, Du(x)〉

and

b(x)Ah(x) =
[1

2
Tr(QQ−1

∞ ) +
1

4
〈QQ−1

∞ x, Q−1
∞ x〉 +

1

2
〈B∗Q−1

∞ x, x〉
]

=
[1

2
Tr(QQ−1

∞ ) +
1

4
〈QQ−1

∞ x, Q−1
∞ x〉 +

1

2
〈BQ∞Q−1

∞ x, Q−1
∞ x〉

]

.

Using the identity BQ∞ + Q∞B∗ = −Q, which implies 2〈BQ∞x, x〉 = −〈Qx, x〉,
it follows that 1

4
〈QQ−1

∞ x, Q−1
∞ x〉 + 1

2
〈BQ∞Q−1

∞ x, Q−1
∞ x〉 = 0 and hence, setting

k = 1
2
Tr(QQ−1

∞ ),

Gu(x) = Au(x) + 〈QQ−1
∞ x, Du(x)〉 + ku(x)

= Tr(QD2u(x)) + 〈(B + QQ−1
∞ )x, Du(x)〉 + ku(x)

= Tr(QD2u(x)) − 〈(Q∞B∗Q−1
∞ )x, Du(x)〉 + ku(x).

The operator G0 = Tr(QD2)−〈(Q∞B∗Q−1
∞ )x, D〉, with a suitable domain DG0

, is
the generator of an Ornstein-Uhlenbeck semigroup in L1. Even though an explicit
description of DG0

is not known, we point out that C∞
0 (RN) is a core of (G0, DG0

)
(see [16, Proposition 3.2]). The above computation shows that G = G0 + kI on
C∞

0 (RN) and therefore DG0
⊂ DG and G = G0 + kI on DG0

, since (G, DG) is

11



closed. On the other hand, if λ is sufficiently large, λ−G is invertible on DG and
also on DG0

, because it coincides therein with G0 + kI. Therefore DG = DG0
.

Observe now that the identity B + Q∞B∗Q−1
∞ = −QQ−1

∞ yields Tr(B) +
Tr(Q∞B∗Q−1

∞ ) = −Tr(QQ−1
∞ ) and hence Tr(Q∞B∗Q−1

∞ ) = Tr(B) = −k. More-
over G0 satisfies the hypoellipticity condition. Indeed, if E is an invariant sub-
space of Q−1

∞ BQ∞, contained in Ker(Q), the equation BQ∞+Q∞B∗ = −Q easily
implies that B∗(E) ⊂ E. It follows that E = {0}, since A is hypoelliptic.

Since σ(−Q∞B∗Q−1
∞ ) = −σ(B) ⊂ C+, from [16, Theorem 4.7] it follows that

the spectrum of (G0, DG0
) is the half-plane

{λ ∈ C : Re λ ≤ Tr(Q∞B∗Q−1
∞ ) = −k}

and that every complex number λ with Re λ < −k is an eigenvalue. Since
G = G0 + kI and the spectra of (A1, D1) and (G, DG) coincide, the proof is
complete.

Observe that the eigenvalues associated to polynomial eigenfunctions are the
same for all p ≥ 1. In fact, assuming that the eigenfunctions are polynomials,
the arguments in Section 3 can be used also for p = 1 in order to determine
the eigenvalues. However in L1

µ there are nonpolynomial eigenfunctions and the
spectrum is much larger. Moreover we have

Corollary 4.2 The semigroup (T (t))t≥0 does not map L1
µ into W 1,1

µ , for any
t > 0.

Proof. Assume by contradiction that T (t0)(L
1
µ) is contained in W 1,1

µ for some
t0 > 0. This implies that T (t)(L1

µ) ⊂ W 1,1
µ for every t ≥ t0. Proceeding as in

Lemma 2.2, we find that T (t)(L1
µ) ⊂ Ck(RN) ∩ W k,1

µ for every k ∈ N, t ≥ kt0.
Remark that Lemma 3.1 holds also if p = 1. Arguing as in Proposition 3.2,
we infer that all the eigenfunctions of A1 are polynomials. Thus, by Lemma
3.3, we deduce that the point spectrum of A1 is discrete. This is the desired
contradiction.
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