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In these lecture notes we give an accessible introduction to the spectral
theory of random matrices. We consider Gaussian Orthogonal Ensemble
as the main subject to present and prove the semicircle (or Wigner) law.
This is the fundamental statement in the spectral theory of large random
matrices.

We deal in frameworks of the resolvent and moments approaches and
give two proofs of the semicircle law. Then we formulate the theorems that
can be regarded as generalizations and improvements of this statement. In
particular, we show the relevance of these two techniques in the studies
of local properties of the eigenvalue distribution inside and outside of the
limiting spectra.

We try not to overload these notes with technical details; our main task
is to make the reader familiar with key points of the reasonings. Therefore
we do not present the complete proofs of the improvements of the Wigner
semicircle law.





Lecture 0

Introduction.
Motivations and
Generalities

Random Matrices and their Use. Random matrices are in extensive use
in various fields of theoretical physics (in particular, in models of disordered
solid state and chaotic systems, statistical mechanics, quantum field theory).
The mathematical contents of random matrices is rich and provides struc-
tures of fairly general type (for example, see the book-length review [22]).
Graph theory, classical compact groups, orthogonal polynomials, integral
equations, non-commutative probability theory, combinatorics are enriched
due to the studies of random matrix properties. We refer the reader to re-
cent papers and reviews, for example [9, 20, 24, 29], to get acquainted with
references to recent results and various applications of random matrices.

What is important that under “random matrices” we mean here matrices
whose entries are of the same order of magnitude. One of the examples is
given by random matrices

(0.1) AN (x, y) = a(x, y), x, y = 1, . . . , N

with independent identically distributed random variables a(x, y).
The family of random matrices is vast and incorporates different ensem-

bles whose probability distribution is chosen according to the model to be
described.
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4 0. Introduction. Motivations and Generalities

To get some examples, one can can consider such representatives of (0.1)
as the set UN of all unitary matrices UN . The compact group UN supplied
with the Haar measure becomes the probability space.

Another example of extensively studied family of ensembles is given by
random Hermitian N ×N matrices MN whose probability distribution PN

is invariant under unitary transformations of CN . In particular, one can
consider PN with the density

(0.2) p(MN ) = Z−1
N exp{−N TrV (MN )},

where ZN is the normalization constant and V (t) is a function from a suitable
class.

In the last two examples the matrices UN and MN have entries that
are strongly correlated between themselves. Nevertheless, for these classes
there exist explicit form of the joint probability distribution of eigenvalues
of these matrices (see, e.g., [22]). This allows one to get into deep details in
their study.

Our goals. In present lectures we would like to present the tools that can be
used when the explicit form of the eigenvalue distribution of matrices (0.1)
is unknown. For example, this takes place when {a(x, y)} are independent
arbitrarily distributed random variables. This family of random matrices
was the first under consideration (see [30]) and the semicircle law was first
established for it in the limit N →∞. It concerns the limiting distribution of
eigenvalues that is given, broadly speaking, by a rather massive (comparing
with N) part of the whole collection of eigenvalues. This asymptotic regime
is known as the global one.

More detailed properties of the spectrum (in other words, those that are
determined by more local regimes than that given by the semicircle law)
have not been studied in this case of arbitrarily distributed {a(x, y)}.

Our aim is to present here several results on the distribution of eigen-
values of AN in the limit N → ∞. We describe two main techniques to
prove the semicircle law. They are based on the classical resolvent and
the moment approaches of the spectral theory of operators. In the global
asymptotic regime these two approaches are equivalent.

However, their use in local regimes is no more classical and require es-
sential modifications. We develop necessary modifications and show that
these two approach are complementary in the studies of the inner and outer
parts of the limiting spectra (i.e., the support of the semicircle distribution),
respectively.

Organization of these Lecture Notes. To give more clear account on
our ideas, we consider the ensemble of gaussian random matrices as our main
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subject. Namely, we consider the case of real symmetric random matrices
with independent entries that have joint Gaussian distribution; the ensemble
we are based on is known as the Gaussian Orthogonal Ensemble of random
matrices (GOE). Together with its Hermitian analogue abbreviated by GUE,
these two ensembles represent the principal subject of random matrix theory.
They are the most deeply studied and they are the easiest to verify one or
another conjecture about the random matrix properties.

We prove the semicircle law by using the moment and the resolvent ap-
proaches in lectures 1 and 2, respectively. Then we turn to improvements of
the semicircle law inside of the limiting spectrum and outside of it. Lectures
3 and 4 are devoted to these considerations.

We give a brief account on results that are similar to the semicircle law
but are derived for other ensembles of random matrices.

Although our main attention in this addition is devoted to random ma-
trices with independent entries, we formulate analogues of several statements
valid also in the case of Gaussian correlated random variables.

Acknowledgements. These lecture notes represent amended and enlarged
version of the notes prepared for the MSRI Program ”Random Matrix Mod-
els and Their Applications” (Spring-Summer 1999). The authors are grate-
ful to A. Its, P. Bleher, and H. Widom and other organizers for their kind
invitation to participate the workshops and for financial support.





Lecture 1

GOE and the
Semicircle Law

In this lecture we prove the semicircle law for random symmetric matrices
AN whose entries are jointly independent (excepting the symmetry) real
random variables. This statement concerns the eigenvalue distribution of
the ensemble {AN} in the limit N →∞.

We consider real symmetric matrices in order to simplify computations.
The same result is valid for Hermitian random matrices. Also for simplicity,
we start with the case when the entries of AN have joint Gaussian distribu-
tion.

Our aim is to describe two general approaches of the proof in the shortest
and simplest way that makes the ideas clear. That is why we are related
in this lecture only with the Gaussian ensemble {AN}. Generalizations of
{AN} and their properties will be considered further on.

Definition of GOE. Thus, we consider an N ×N matrix with entries

AN (x, y) = a(x, y), 1 ≤ x ≤ y ≤ N

that is real and symmetric

AN (x, y) = AN (y, x).

We assume that any collection {a(x, y)}1≤x≤y≤N is a family of random vari-
ables whose joint distribution is the one of Gaussian independent random
variables.

7



8 1. GOE and the Semicircle Law

We also assume a(x, y), x < y to be identically distributed. The same
concerns random variables a(x, x). More precisely, we write that

(1.1) E a(x, y) = 0, E a(x, y)2 =

{
v2, if x �= y;
2v2, if x = y,

where E denotes the mathematical expectation with respect to the measure
generated by the family {a(x, y), x ≤ y}Nx,y=1. In fact, one can determine
all random variables a(x, y), x, y ∈ N on the same probability space. In this
case E also denotes corresponding mathematical expectation.

One can rewrite the last condition of (1.1) in the form

(1.2) E a(x, y)a(s, t) = v2(δxsδyt + δxtδys),

where δ is the Kronecker δ-symbol:

δxy =

{
1, if x = y,

0, if x �= y.

Given (1.2), it is convenient to write the distribution of {AN} in a compact
form:

(1.3) P (AN ) =
1
ZN

exp
{
− 1

4v2
Tr A2

N

}
,

where ZN is the normalization constant:

ZN =
∫

exp
{
− 1

4v2
Tr A2

N

} ∏
1≤x≤y≤N

d a(x, y).

Indeed, one can easily observe that

P (AN ) =
1
ZN

∏
1≤x<y≤N

exp
{
− 1

2v2
a(x, y)2

} ∏
1≤x≤N

exp
{
− 1

4v2
a(x, x)2

}

=
1
ZN

exp
{
− 1

4v2

(
2

∑
1≤x<y≤N

a(x, y)2 +
∑

1≤x=y≤N

a(x, y)2
)}

(a(x, y) = a(y, x))

=
1
ZN

exp
{
− 1

4v2

N∑
x,y=1

a(x, y)2
}

=
1
ZN

exp
{
− 1

4v2
Tr A2

N

}
which is (1.3).

Definition (1.3) shows that the distribution P (AN ) is invariant under
the orthogonal transformations of RN . Therefore the ensemble described is
known as the Gaussian Orthogonal Ensemble (GOE) of random matrices.
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See the book [22] for the history and basic results on eigenvalue distribution
of this and other ensembles of random matrices. The introductory article
[31] is recommended for those who are interested in combinatorics of matrix
integrals.

Eigenvalue distribution function. The eigenvalue distribution of real
symmetric (or complex hermitian) N × N matrix HN is described by the
function

(1.4) σ(λ;HN ) =
1
N

#
{
λ

(N)
j ≤ λ

}
,

where

λ
(N)
1 ≤ · · · ≤ λ

(N)
N

are the eigenvalues of HN . This function is called the normalized eigenvalue
counting function (NCF) of the matrix HN . It is clearly a step-like function
increasing from 0 to 1.

In mathematical literature, one can meet also the term empirical eigen-
value distribution function. This term seems somewhat misleading (because
we consider σ determined for a matrix AN but not for the sum over N
samples). In our notes we keep the term NCF common for the spectral
theory.

Given a random matrix AN , the corresponding function σ(λ;AN ) is
random. The semicircle law first proved by Wigner [30] states that the
NCF of the matrix

AN (x, y) =
1√
N

AN (x, y)

weakly converges in average as N →∞ to a nonrandom distribution:

(1.5a) lim
N→∞

σ(λ;AN ) = σW(λ),

whose density is given by

(1.5b) σ′W(λ) ≡ ρW(λ) =

{√
4v2 − λ2, if |λ| ≤ 2v,

0, if |λ| > 2v.

Weak convergence in average means here that for any non-random function
φ(λ) ∈ C∞0 (R),

E lim
N→∞

∫
R

φ(λ) dσ(λ;AN ) =
∫
R

φ(λ) dσW(λ).

As it was mentioned above, we will prove this statement twice by two
different approaches.
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! Moment relations approach. We describe first the method used by
Wigner in the proof of the semicircle law (see [30] and [7, 26] for the source
and for improvements of the method, respectively). Here one is interested
in the asymptotic behavior of the moments

M
(N)
j = E

∫
R

λj dσN (λ)

of the measure
dσN (λ) ≡ dσ(λ;AN ).

Let us note that due to the definition (1.4) of the NCF, we simply have that

M
(N)
j = E

1
N

TrAj
N ≡ E

〈
Aj

N

〉
,

where we denote the normalized trace of a matrix AN by angle brackets:

〈AN 〉 ≡
1
N

TrAN .

Basing on computations that are somewhat different from the original
technique by Wigner, we will derive the relations

(1.6a) lim
N→∞

M
(N)
j = mj =

{
tkv

2k, if j = 2k,
0, if j = 2k + 1,

where tk, k ∈ N are given by the recurrence relations

t0 = 1

tk =
k−1∑
j=0

tk−1−jtj .
(1.6b)

Then we will show that (1.6) is equivalent to (1.5).

" Resolvent approach. Another method to study the limiting NCF is
related to the resolvent GN (z) = (AN − z)−1. It is not hard to see that its
normalized trace is simply the Stieltjes transform of σN (λ):

gN (z) ≡ 1
N

TrGN (z) =
∫
R

dσN (λ)
λ− z

.

In these terms, convergence (1.5) means that for all z ∈ C± = C \ R,

(1.7a) lim
N→∞

E gN (z) = fW(z),

where fW(z) is the Stieltjes transform of σW(λ);

(1.7b) fW(z) =
∫
R

dσW(λ)
λ− z

.
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We will derive shortly that fW(z) satisfies the equation

(1.8) fW(z) =
1

−z − v2fW(z)
.

(1.8) is equivalent to (1.6b). This can be easily derived from the definition
(1.7b) of fW(z) as Stieltjes transform that implies the relation

fW(z) =
1
−z

∞∑
k=0

tkv
2k

zk
.

The proposition to consider gN (z), that is the generating function of the mo-
ments M

(N)
j , instead of the moments by themselves is due to V.Marchenko

and L.Pastur who derived (1.8) as a by-product of their more general re-
sults [21]. The resolvent approach in random matrix theory was further
developed by A.Khorunzhy and L.Pastur (see for example [17] and [18]).

The crucial step here is to consider the moments

P
(N)
l = E[gN (z)]l, l ≥ 1

that are shown to satisfy an infinite system of relations resembling the system
of equations for correlation functions of statistical mechanics. The idea
to write such equations for random matrices dates back to F.Berezin [1].
Broadly speaking, Berezin showed that the moments P

(N)
l factorize to the

powers of fW(z). This fact leads to statements like (1.7).
Recently it was shown that for convergence (1.7) it is sufficient to con-

sider the two first relations from this infinite hierarchy. This leads to a
rather short proof of the semicircle law.

Derivation of the moment relations. We start with the moment ap-
proach to derive relations (1.6b). Gaussian random variables are rather
convenient to deal with. One of the reasons is that if one has a centered
Gaussian random variable γ, then

(1.9) E γφ(γ) = E γ2 Eφ′(γ)

for all non-random functions φ such that the integrals in (1.9) exist. In the
more general case of a vector #γ = (γ1, . . . , γm) of Gaussian random variables
with zero average one has

(1.10) E γjφ(#γ) =
m∑

l=1

E γjγl E
∂φ(#γ)
∂γl

.

As the simplest application, one can easily derive from (1.9) that

E γ2k = E γ × γ2k−1 = vk
2 (2k − 1)!!,

where v2 = E γ2.
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Let us now consider the moments

(1.11) M
(N)
2k = N−1

N∑
x,y=1

EA2k−1
N (x, y)AN (y, x).

Using (1.10), we can write that

EA2k−1
N (x, y)AN (y, x)

=
N∑

s,t=1

EAN (y, x)AN (s, t) E
∂A2k−1

N (x, y)
∂AN (s, t)

.(1.12)

It is obvious that

∂A2k−1
N (x, y)

∂AN (s, t)
=

2k−2∑
l=0

A2k−2−l
N (x, s)Al

N (t, y).

Using (1.2) and substituting these relations into the right-hand side of (1.12),
we obtain that

EA2k−1
N (x, y)AN (y, x)

=
v2

N

2k−2∑
l=0

E
[
A2k−2−l

N (x, x)Al
N (y, y) + A2k−2−l

N (x, y)Al
N (x, y)

]
.

Regarding the sum over y in (1.11) and taking into account the symmetry
condition AN (x, y) = AN (y, x), we can write that

N∑
y=1

2k−2∑
l=0

A2k−2−l
N (x, y)Al

N (x, y) = (2k − 1)A2k−2
N (x, x).

Thus, we derive relation

M
(N)
2k = v2

2k−2∑
l=0

E〈A2k−2−l
N 〉 〈Al

N 〉+ v2 2k − 1
N

M
(N)
2k−2.

One can rewrite this equality in the form

(1.13) M
(N)
2k = v2

2k−2∑
l=0

M
(N)
2k−2−lM

(N)
l + v2B

(N)
2k−2 + v2 2k − 1

N
M

(N)
2k−2,

where

(1.14) B
(N)
2k−2 =

2k−2∑
l=0

[
E〈A2k−2−l

N 〉 〈Al
N 〉 − E〈A2k−2−l

N 〉E〈Al
N 〉

]
.

Now, if one assumes that

(1.15) B
(N)
2k−2 = o(M (N)

2k−2) as N →∞,
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and accept that

(1.16) M
(N)
2k+1 = 0,

then one can easily derive (1.6) from (1.13).
(1.16) follows immediately from the observation that for any particular

values of the variables {yi}
E a(x, y1) · · · a(y2k, x) = 0

as the average of the product of an odd number of gaussian random variables.
Relation (1.15) reflects the property of selfaverageness of the moments

M
(N)
j . In Lecture 4 we will show that the much more powerful estimate

(1.17) B
(N)
2k−2 ≤

(2k + 2)2α

N2
M

(N)
2k−2, α > 1

holds for all k � N2/3 as N → ∞. This will lead to estimates of the norm
of AN and other important consequences.





Lecture 2

Proof of the Semicircle
Law

Now let us turn to the proof of (1.7) for GOE. We follow the scheme devel-
oped in [17, 18] and modified in [11].

We will use twice the resolvent identity

G−G′ = −G(H −H ′)G′,(2.1)

G = (H − z)−1, G′ = (H ′ − z)−1,

that is true for hermitian matrices H and H ′ of the same dimension and
z ∈ C±.

Regarding (2.1) with H = AN and H ′ = 0, we obtain the relation

GN (x, x′) = ζδx,x′ − ζ
N∑

y=1

GN (x, y)AN (y, x′),

where GN = (AN − z)−1, ζ ≡ (−z)−1 and δx,y is the Kronecker δ-symbol.
We are interested in the average value of the normalized trace gN (z) =
N−1 TrGN . It is clear that

(2.2) E gN (z) = ζ − ζ
1
N

∑
x,y

EGN (x, y)AN (y, x).

Now we can apply (1.10) to the last average from (2.2) and obtain the
relation

EGN (x, y)AN (y, x) =
N∑

s,t=1

EAN (y, x)AN (s, t) E
∂GN (x, y)
∂AN (s, t)

.

15



16 2. Proof of the Semicircle Law

One can easily deduce from (2.1) that

(2.3)
∂GN (x, y)
∂AN (s, t)

= −GN (x, s)GN (t, y).

Indeed, it is sufficient to consider (2.1) with H ′ = AN and

H(x′, y′) = AN (x′, y′) + ∆δx′,sδy′,t

and to find the ratio (G−G′)/∆ in the limit ∆→ 0.
Remembering definition (1.2) and using (2.3), we obtain that

(2.4) E gN (z) = ζ + ζ
v2

N2

∑
x,y

E
[
GN (x, x)GN (y, y) + GN (x, y)GN (x, y)

]
.

One can rewrite this relation in the form

(2.5) E gN (z) = ζ + ζv2 E[gN (z)]2 +
v2

N
E Φ(1)

N (z),

where Φ(1)
N (z) = 〈G2

N (z)〉 ≡ N−1 TrG2
N (z). We see that the first moment

of gN (z) is expressed via the second moment of this variable added by the
terms vanishing in the limit N →∞.

Indeed, elementary estimates

(2.6) 〈G2
N (z)〉 ≤

∥∥G2
N (z)

∥∥ ≤ ‖GN (z)‖2 ≤ 1
|Im z|2

show that
∣∣∣Φ(1)

N (z)
∣∣∣ = O(1) as N →∞.

Having (2.5), we can proceed by two ways.
The first approach inspired by the work of Berezin [1] is to derive an

infinite system of recurrence relations for the moments L
(N)
k = E[gN (z)]k,

k ≥ 2. This method has been developed in [17, 18] and extensively used
for various ensembles of random matrices and random operators (see, for
example [14, 15]).

The second approach proposed in [11] represents a shortened version of
the method of infinite system of relations. Loosely speaking, it uses only
the two first relations and lead to a fairly short proof of the semicircle law.
This shortened version has been widely applied in the studies of random
matrix eigenvalue distribution [5, 16, 19, 25]. This approach seems to be
unavoidable in the studies of smoothed eigenvalue density and its fluctua-
tions [2]. However, certain passages can appear as somewhat tricky things
in this shortened version. Thus, we start with the discussion of the infinite
system method.
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Infinite System Approach [17, 18]. One can derive a system of relations
for the moments L

(N)
k = E[gN (z)]k subsequently applying to the last factor

in Lk relations (2.2), (1.10), and (2.3). Then one obtains for k ≥ 2

E[gN (z)]k = ζ E[gN (z)]k−1 + ζv2 E[gN (z)]k+1 +
v2

N
E Φ(k)

N (z) +
v2

N
E Φ̃(k)

N (z),

where

Φ(k)
N (z) = [gN (z)]k−1〈G2

N (z)〉,

Φ̃(k)
N (z) =

k

N
[gN (z)]k−2〈G3

N (z)〉.

Thus for the moments Lk we have the relations

(2.7) L
(N)
k = ζδk,1 + (1− δk,1)ζL

(N)
k−1 + ζv2L

(N)
k+1 + Ψ(k)

N (z),

where, according to estimates (2.6),

(2.8)
∣∣∣Ψ(k)

N (z)
∣∣∣ ≤ v2

ηkN

(
1 +

k

N

)
.

It is not hard to see that (2.7) can be rewritten in a vector form

(2.9) #L(N) = #l + Tz
#L(N) + #Ψ(N),

where #lk = δk,1ζ and

[Tz#e]k = (1− δk,1)ζek−1 + v2ζek+1.

Now it is not hard to show that

‖Tz‖ ≤ η +
v2

η
.

Therefore for η > 2v one has ‖TZ‖ < 1. Introducing the equation

(2.10) #L′ = #l + Tz
#L′

that obviously has one solution, one can easily deduce from (2.9) and (2.10)
that ∥∥∥#L(N) − #L′

∥∥∥ = O(N−1).

This proves convergence (1.7).

Short Proof of the Semicircle Law [10].

Proof. Denoting E gN (z) ≡ fN (z) and regarding that
∑

y GN (x, y)GN (x, y) =
G2

N (x, y), we derive our first main relation

(2.11) fN (z) = ζ + ζv2f2
N (z) + ΦN (z) + ΨN (z),

where

ΦN (z) =
v2

N
E〈G2

N (z)〉
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and
ΨN (z) = E gN (z)gN (z)− E gN (z) E gN (z).

We see that (2.11) has a form close to (1.8) and all that we need is to show
that ΦN (z) and ΨN (z) vanish as N →∞.

The first condition is fulfilled for z ∈ C± because

(2.12) 〈G2
N (z)〉 ≤

∥∥G2
N (z)

∥∥ ≤ ‖GN (z)‖2 ≤ 1
|Im z|2

.

Thus,

(2.13) |ΦN (z)| ≤ v2

Nη2
,

where we have denoted η := |Im z|.
The second condition reflects the selfaveraging property of gN (z). We

are going to prove below that

(2.14) E |gN − E gN (z)|2 ≤ 4v2

η4N2

provided η ≥ 4v2. Then (1.7) will be proved.
Let us introduce the centered random variable

g◦(z) = g(z)− E g(z)

(we omit subscript N when no confusion can arise). It is easy to see that

E g◦(z1)g◦(z2) = E g◦(z1)g(z2).

Slight modification of (2.2) reads as

E g◦(ẑ) g(z) = −ζ 1
N

∑
x,y

E g◦(ẑ)G(x, y)AN (x, y).

The first term of the right-hand side vanishes because E g◦ = 0.
Using once more (1.10), one can write that

E g◦(ẑ)G(x, y)AN (x, y) =
N∑

s,t=1

EAN (y, x)AN (s, t)

×
{

E g◦(ẑ)
∂GN (x, y)
∂AN (s, t)

+ EGN (x, y)
∂g◦(ẑ)

∂AN (s, t)

}
.

The first derivative in the curly brackets is already computed. The second
gives

∂g◦(ẑ)
∂AN (s, t)

=
∂g(ẑ)

∂AN (s, t)
= − 1

N

N∑
u=1

G(u, s)G(t, u) = − 1
N

Ĝ2(t, s),

where Ĝ ≡ GN (ẑ).
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After some simple manipulations, we derive our second main relation

E g◦(ẑ)g(z) = ζv2 E g◦(ẑ)g(z)g(z)(2.15)

+ ζ
v2

N
E g◦(ẑ)

〈
G2

〉
+ ζ

2v2

N2
E

〈
Ĝ2G

〉
.

All that we need now is the identity

E g◦(ẑ)g(z)g(z) = E g◦(ẑ)g(z)E g(z) + E g◦(ẑ)g◦(z)g(z)

and the fact that g(z̄) = g(z).
Regarding (2.15) with ẑ = z̄, we derive that

E |g◦(z)|2 ≡ E g◦(ẑ)g(z)

≤ |ζ| v2 E g◦(ẑ)g(z) |E g(z)|+ |ζ| v2 E g◦(ẑ)g◦(z) |g(z)|

+
|ζ| v2

N
E |g◦(ẑ)|

∣∣〈G2
〉∣∣ +

2 |ζ| v2

N2
E

∣∣∣〈Ĝ2G
〉∣∣∣ .(2.16)

Using estimates similar to (2.12), we obtain that

(2.17) E |g◦(z)|2 ≤ 2v2η−1 E |g◦(z)|2 +
v2

Nη3

[
E |g◦(z)|2

]1/2
+

2v2

N2η4
.

This implies (2.14). The semicircle law (1.7) is proved for GOE. �

Let us make several important remarks here.

Remark. The first observation is that the estimate (2.6) indicates fairly
fast decreasing of the variance of the random variable

(2.9) gN (z) =
1
N

N∑
x=1

GN (x, x; z)

as N → ∞. It follows from (2.6) and the Borel-Cantelli lemma that gN (z)
converges to a non-random limit (actually, fW(z)) with probability 1. Let
us stress that in the classical probability theory the variance of the sum of
independent random variables SN = (ξ1 + · · · + ξN )N−1 that is analogous
to (2.17) is of the order N−1. The difference is that in (2.17) we have a
sum of dependent random variables GN (x, x; z). Let us note that (2.13) is
a consequence of the more powerful statement that the centered random
variable

γN (z) = TrGN (z)− E TrGN (z)

converges in distribution to a gaussian random variable as N → ∞. We
discuss this property in more details in Lecture 4.

Remark. The next remark is related to the observation that estimates
(2.13) and (2.14) show that in (2.11) terms ΦN (z) and ΨN (z) vanish not
only for η > η0 but also for z with imaginary part vanishing at the same time



20 2. Proof of the Semicircle Law

as N increases. This implies serious consequences concerning the smoothed
eigenvalue density of large random matrices. In particular, one can trace out
the proof of a version of the famous universality conjecture for local prop-
erties of random matrix spectra. We address this topics also in Lecture 4.

Now let us discuss generalization of the semicircle law to the case of
random matrices with arbitrary distributed random entries a(x, y).

The first ensemble generalizing GOE is the Wigner ensemble of random
real symmetric matrices

WN (x, y) =
1√
N

w(x, y), x, y = 1, . . . , N

whose entries are jointly independent random variables satisfying conditions
(1.1). We do not assume the probability distribution functions

P(x,y)(ξ) = Prob{w(x, y) ≤ ξ}
are the same and have a special form. In fact, one can consider here
the more general case when the distributions P

(N)
(x,y) can be dependent on

N . In this case it should be pointed out that the set of random variables
{wN (x, y)}1≤x≤y≤N is determined on the same probability space.

To complete preparations, let us introduce notations for the moments of
wN (x, y)

V
(N)

j (x, y) =
∫ ∞
−∞

ξj dPN (x, y).

Theorem 2.1. Let us consider the ensemble

(2.18) HN = hN + WN ,

where hN is a sequence of non-random matrices such that there exists the
limit

µ(λ) = lim
N→∞

σ(λ;hN ).

Let P (N)
(x,y) satisfy the Lindeberg condition

(2.19) lim
N→∞

1
N2

N∑
x,y=1

∫
τ
√

N
ξ2 dP

(N)
(x,y)(ξ) = 0 ∀τ > 0.

Then the Stieltjes transform

g
(1)
N (z) =

∫ ∞
−∞

dσ(λ;HN )
λ− z

converges in probability as N → ∞ to a nonrandom function fh(z) that
satisfies the equation

(2.20) fh(z) =
∫ ∞
−∞

dµ(λ)
λ− z − v2fh(z)

.
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This statement is somewhat more general than the theorem proved by
Pastur [23]. He considered HN with a diagonal non-random part hN and
the conditions imposed on PN were a bit restrictive than (2.18) but also
close to the Lindeberg conditions.

Another generalization of GOE is given by the real symmetric matrices
ΓN

(2.21) ΓN (x, y) =
1√
N

γ(x, y),

where random variables γ(x, y), x ≤ y have joint Gaussian distribution with
zero average and covariance

E γ(x, y)γ(s, t) = V (x, s)V (y, t) + V (x, t)V (y, s),

where V is a symmetric and non-negatively defined matrix.

Theorem 2.2. [3] Let the matrices

VN (x, y) =

{
V (x, y), if x ≤ N and y ≤ N,

0, otherwise

be bounded

(2.22) ‖VN‖ ≤ v

and satisfy condition
lim

N→∞
σ(λ;VN ) = ν(λ).

Then the Stieltjes transform

g
(2)
N =

∫ ∞
−∞

dσ(λ; ΓN )λ− z

converges with probability 1 to a nonrandom function f2(z) given by

f2(z) =
∫ v

0

d ν(λ)
−z − λφ(z)

and φ(z) satisfies the equation

(2.23) φ(z) =
∫ v

0

λ d ν(λ)
−z − λφ(z)

.





Lecture 3

Smoothed Eigenvalue
Density

In the spectral theory of random matrices, the universality conjecture can
be regarded as the most challenging problem. It concerns the local spectral
characteristics of large random matrices.

In paper [11] we developed an approach to study the asymptotic regime
that can be called semi-local, or mesoscopic. The subject under considera-
tion is the eigenvalue distribution function smoothed over the intervals ∆N

of the length 1� |∆N | � N , N →∞. In papers [2, 4] we proved limiting
theorems that reflect the universality property of the smoothed eigenvalue
density of large random matrices.

In this lecture we present theorems of papers [11] and [2] and describe
briefly the scheme of their proofs.

It is not hard to see that the Stieltjes transform fN (z) with Im z = ε > 0
effects the control of the eigenvalues that are situated in the vicinity of the
interval (λ − ε, λ + ε). It becomes clear if one consider Im fN (λ + i ε) as a
smoothing of the measure dσN (λ):

Im fN (λ + i ε) =
∫

ε

(λ− µ)2 + ε2
dσN (µ) ≡

∫
ϕε,λ(µ) dσN (µ).

In these terms, the limiting transition N → ∞ for random variable
fN (λ + i ε) with given positive ε can be regarded as the global spectral
characteristics, i.e. as the variable related with O(N) eigenvalues of AN .

23
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Indeed, the variable

σ(λ + ε;AN )− σ(λ− ε;AN ),

|λ| < 2v

is also global because it involves O(N) eigenvalues of AN .
If one is interested in more detailed description of the limiting eigenvalue

distribution of AN , it is natural to study the limit of fN (λ + i εN ), where
εN → 0 at the same time as N infinitely increases. We call the variable

ξN (λ) := Im fN (λ + i εN )

the smoothed or regularized eigenvalue density.
In these studies, one can separate two regimes that are fairly different.

The asymptotic regime that correspond to the case of εN = O(N−1) is
known as the local one. The regime intermediate between the global and
local ones can be described as εN = N−α with 0 < α < 1. According to the
theoretical physics terminology, it can be called the mesoscopic regime.

In this lecture we are going to discuss the proof and several consequences
of the following statements.

Theorem 3.1 ([11]). Consider the GOE AN and the resolvent GN (z) =
(AN − z)−1. Then convergence in average

(3.1) lim
N→∞

E
1
N

TrGN (λ + iN−α) = − λ

2v2
+ i
√

4v2 − λ2

2v2

holds provided 0 < α < 1 and |λ| < 2v.

Let us look once more at the scheme presented in Lecture 2. It is clear
that it does not work directly because one does not have any more estimates
of the type (2.5). Then the relation (2.8) cannot be reduced to inequality
(2.9) that gives the estimate of the variance E |g◦|2 by itself multiplied by
E |g| is out of use. As a consequence, one cannot derive (2.7) from (2.9).
Therefore the proof of Theorem 3.1 requires essential modifications of the
approach.

To do this, we have to pass back from the short scheme described in
Lecture 2 to the infinite system of relations inspired by the idea of Berezin.
Let us explain now how it has to be modified.

The estimate (2.6) and its consequence (2.8) allows one to consider only
first k ≤ k0 relations from the infinite system (2.7). The matter is that the
infinite system of relations (2.7) and its finite counterpart are related via the
term Lk0 . If one consider a new system of k0 relations of the form (2.7) but
with the term Lk0+1 removed in the relation number k0, this will change a
little the first components of the solution of this equation with respect to
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the first several moments L
(N)
k . This is due to a priori estimate |Lk| ≤ η−k.

The truncated system of k0 relations is closed and can be solved uniquely.
This procedure is in fact equivalent to that one described in Lecture 2 in
the long scheme.

Scheme of the proof of Theorem 3.1. The first principal modification
of the scheme of Lecture 2 is that we consider the part of (2.7) with k ≥
k0 > 1 and rewrite it in the form

(3.2) v2L
(N)
k+1 = Lk−1 − zLk −Ψ(k)

N .

To simplify the description of the proof, let us assume that Re z = 0. Then
under conditions of Theorem 3.1 relation (3.2) will have the form

(3.3) L
(N)
k+1 =

1
v2

Lk−1 −
i

v2Nα
Lk −Ψ(k)

N .

Since Im z = N−α, we cannot use the absolute estimates as it is done in
Lecture 2 (see estimate (2.8)). One should use the estimates with respect
to Lk.

Loosely speaking, the term Ψ(k)
N can be estimated by N−γL

(N)
k with some

γ > 0 (to make possible this estimate, we will need our second principal
modification).

Using the fact that Lk enters into relation (3.3) with factor N−γ , one
can reduce it by subsequent substitutions to the form

(3.4) L
(N)
k+1 =

1
v2

Lk−1 +
k∑

l=1

(
i

v2Nγ

)l

Lk−l+1 + Ψ̂(k)
N (z).

Inequality (2.6) shows that L1 ≤ Nα, but it enters (3.4) with the factor
N−kγ . This allows us to neglect the terms that increase provided k > k0,
where k0 is sufficiently large.

The term Ψ(k)
N involves the factors E gk

N (N) and cannot be directly esti-
mated in terms of L(N)

k . To do this, we pass from complex variables gN (z) to
the real variables ξ = λgN (λ + iN−α) ≥ 0 and µ = Re gN (λ + iN−α). This
is the second modification of the general scheme. It seems to be a trivial
one, but this is not completely right.

The matter is that consideration of the moments E gk
N leads to the ne-

cessity of consideration of the family of moments E ξpµq. Those with large
number of q are difficult to estimate. Fortunately, we will need the family
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of three types of moments

W
(N)
k = E ξk

N ,

V
(N)

k = EµNξk
N ,

U
(N)
k = Eµ2

Nξk
N .

This family is closed and satisfies our conditions.

Proof of Theorem 3.1. Let us introduce the matrices

Bλ = Nα(AN − λI), B = NαAN ,

and

P =
1

1 + B2
λ

, Qλ =
Bλ

1 + B2
λ

.

Then
ξN (λ) = Pλ

α
, µ = Qλ

α
,

where for we denoted for N -dimensional matrix HN

HN
α = Nα−1 TrHN .

It is not hard to derive that
∂P (x, y)
∂B(s, t)

= −P (x, s)Q(t, y)−P (x, t)Q(s, y)−Q(x, s)P (t, y)−Q(x, t)P (s, y)

and
∂Q(x, y)
∂B(s, t)

= P (x, s)P (t, y) + P (x, t)P (s, y)−Q(x, s)Q(t, y)−Q(x, t)Q(s, y)

These relations represent (2.3) rewritten for real and imaginary parts sepa-
rately.

Using these relations and the formula (1.10) and regarding the identity

Pλ = I − PλB
2
λ

= I + λNαQλ −QλB,

one can derive the system of relations

Wk+1 =
1
v2

Wk−1 +
1
v2

Vk−1 + Uk−1 + Γ(N)
1 (k),(3.5a)

Vk+1 = − λ

2v2
Wk+1 +

1
2v2Nα

Vk + Γ(N)
2 (k),(3.5b)

and

Uk+1 = − λ

2v2
Vk+1 +

1
2v2Nα

Uk + Γ(N)
3 (k),(3.5c)



3. Smoothed Eigenvalue Density 27

where

Γ(N)
1 (k) =

v2

N1−α
E ξk−1(P 2

λ

α
+ Q2

λ

α
)
4v2(k − 1)
N2−2α

E ξk−2PλQ
2
λ

α
,(3.5)

Γ(N)
2 (k) = − 2v2

N1−α
E ξkPλQλ

α − 4v2k

N2−2α
E ξk−1P 2

λQλ
α
,(3.6)

Γ(N)
3 (k) = − 2v2

N1−α
EµξkPλQλ

α − 2v2

N1−α
E ξk(P 3

λ

α − P 2
λQλ

α
).(3.7)

It is easy to see that∣∣∣Γ(N)
1 (k)

∣∣∣ ≤ 8(k − 1)
N2−2α

Wk−1 +
2

N1−α
Wk +

1
Nα

Wk,

and Γ(N)
2 (k) and Γ(N)

3 (k) can be estimated similarly. This estimate looks
appropriate excepting the fact that we have in the right-hand side the term
Wk−1. To ensure that Wk−1 can be estimated via Wk, we prove the following
simple statement.

Lemma 3.2. Under conditions of Theorem 3.1

E ξ2 ≥ 1
2

4v2 − λ2

4v4
≡ πρ(λ)

2
for large enough N .

Proof. Let consider (3.5a) with k = 1;

E ξ2 = v−2 + λv−2 Eµ + Eµ2 + Γ(N)
1 (1),

where ∣∣∣Γ(N)
1 (1)

∣∣∣ ≤ 3N−χ E ξ with χ = min{α; 1− α}.

Since |Eµ| ≤
√

Eµ2, then we can write that

E ξ2 ≥
(√

Eµ2 − λ

2v2

)2

+
4v2 − λ2

4v4
−

∣∣∣Γ(N)
1 (1)

∣∣∣
≥ (πρ)2 − 3N−χ

√
E ξ2. �

An important consequence of Lemma 3.1 is that

wk := (Wk)1/k ≥ πρ

2
and Wk ≤Wk+m

(
2
πρ

)m

.

Now we can derive from (3.5b) the relation

Vk = − λ

2v2
Wk−1 + Γ̃(N)

2 (k),
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where∣∣∣Γ̃(N)
2 (k)

∣∣∣ ≤ (
1 +

λ

2v2

) k−1∑
p=1

(
1

2v2Nα

)p

Wk−1−p +
1

(2v2Nα)k−1
U0

≤ 1
πρv2Nα(1− [πρv2Nα]−1)

Wk−1 +
Nα

(2v2Nα)k−1
.

Thus,

Vk = − λ

2v2
Wk−1(1 + o(1)).

Similar computations lead to the relation

Uk = − λ

2v2
Vk−1(1 + o(1)).

Substituting these two last equalities into (3.5a) and treating it in the same
way, one can obtain easily that

Wk+1 = (πρ)2Wk−1 + 4N−χWk + Γ̃(N)
1 (k).

Then, an elementary procedure leads to the proof of convergences

E ξ → πρ,

Eµ → − λ

2v2
,

Eµ2 → λ2

4v4
.

Theorem 3.1 is proved. �

In this statement, the most important is the convergence of the smoothed
density of eigenvalues

E ξN (λ) ≡ E Im gN (λ + iN−α)→ πρ(λ),(3.6)

N →∞.

This relation plays a crucial role in the proof of the selfaveraging (or strong
selfaveraging) property of the random variable ξN (λ) and in the proof of the
universal behaviour of the correlation function E ξN (λ1)ξN (λ2) as well. Let
us formulate the corresponding results.

Theorem 3.3. Under hypotheses of Theorem 3.1,

(3.7) E
∣∣g◦(λ + iN−α)

∣∣2 = O(N2−2α).

Proof. To explain the proof of this statement, let us consider relation (2.15)
and assume once more that λ = 0. Using identity

E g◦gg = 2E g◦g E g + E g◦g◦g◦,
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we can rewrite (2.15) in the form

2v2 E g◦g E g ≤ 1
Nα

E g◦g +
1

N1−α
E |g◦|+ O

(
1

N2−2α

)
.

If we have (3.6), it is not hard to derive from this inequality the estimate
(3.7). �

Finally, let us formulate the theorem about the fluctuations of the smoo-
thed eigenvalue density of GOE. This is an analog of the central limit theo-
rem.

Theorem 3.4. [2] Under hypotheses of Theorem 3.1, the random variable

γN (λ) = N1−α[ξN (λ)− E ξN (λ)]

converges in distribution as N →∞ to a centered Gaussian random variable
with variance 1/4. If one consider two points λ1 �= λ2 such that λ1, λ2 →
λ ∈ (−2v, 2v), then

(3.8) E ξo
N (λ1)ξo

N (λ2) = − 1
N2(λ1 − λ2)2

(1 + o(1))

in the limit N →∞ provided

(3.9)
1
Nα
� |λ1 − λ2| � 1.

Generalizations of Theorems 3.1-3.3 and
universality conjecture

Wigner random matrices. It should be noted that Theorems 3.1-3.3 con-
sidered for 0 < α < α0 are valid for the Wigner ensemble of random matrices
(2.8) with jointly independent arbitrary distributed random variables w(x, y)
having several first moments finite

E[wN (x, y)]2k = Vk <∞.

In particular, Theorem 3.3 holds for k = 4 and α0 = 1/8 (see [2]-II). These
results show that the universality conjecture holds for large random matri-
ces with independent entries. They are far from being optimal, and it is
interesting to check out the optimal bound for α0 and its dependence on Vk.

Wishart-type random matrices. Let us consider the ensemble of random
matrices

(3.10) Hm,N (x, y) =
1
N

m∑
µ=1

θµ(x)θµ(y), x, y = 1, . . . , N,
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where the random variables {θµ(x)}, x, µ ∈ N have joint Gaussian distribu-
tion with zero mathematical expectation and covariance

E{θµ(x)θν(y)} = u2δxyδµν .

Here δxy denotes the Kronecker delta-symbol.
This ensemble introduced in mathematical statistics is known for m = N

as the Wishart ensemble.
The eigenvalue distribution of (3.10) in the limit N,m → ∞ was con-

sidered first [21], where more general random matrix ensembles were also
considered.

Random matrices of the form (3.10) are at present of extensive use in the
statistical mechanics of disordered spin systems and in the models of memory
in the theory of neural networks. The difference between the Wigner random
matrices (2.8) and (3.10) is that in the second case the entries Hm,N (x, y)
are statistically dependent random variables.

Theorem 3.5. Let Gm,N (z) = (Hm,N − z)−1. Then, for N,m → ∞,
m/N → c > 0, the random variable

R
(α)
m,N (λ) := Im TrGm,N (λ + iN−α)N−1

converges with probability 1 as N →∞ to the nonrandom limit

(3.11) πAc(λ) =
1

2λu2

√
4cu4 − [λ− (1 + cu2)]2

provided 0 < α < 1 and λ ∈ Λc,u =
(
u2(1−√c)2, u2(1 +

√
c)2

)
.

Remark. The limiting expression (3.11) for the eigenvalue distribution was
derived in the global regime in [21].

Theorem 3.6. Consider k random variables, i = 1, . . . , k,

γ
(α)
m,N (i) ≡ N1−α

[
R

(α)
m,N (λi)− ER

(α)
m,N (λi)

]
,

where λi = λ + τiN
−α with given τi. Then under hypotheses of Theorem

3.5 the joint distribution of the vector (γN (1), . . . , γN (k)) converges to the
centered Gaussian k-dimensional distribution with covariance

(3.12) C(τi, τj) =
4− (τi − τj)2

[4 + (τi − τj)2]2
.

Remark. It is easy to see that if |τ1 − τ2| → ∞, then

(3.13) C(τ1, τ2) = −(τ1 − τ2)−2(1 + o(1)).

This coincides with the average value of the Dyson’s 2-point correlation
function for real symmetric matrices considered at large distances |t1 − t2| �
1.
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Let us note that the limiting distribution of the random variables γN and
γm,N coincide and do not depend on particular values of λ and α. This shows
that the fluctuations of the smoothed eigenvalue density ξ are universal in
the mesoscopic regime. Thus, our results can be regarded as a support of the
universality conjecture for local spectral statistics of large random matrices.





Lecture 4

Eigenvalues outside of
the limiting spectrum

Our main goal in this section is to describe the proof of estimate (1.17) and
discuss its consequence with respect to the norm of random matrices.

Moments and extreme eigenvalues. First of all, let us note that having
proved (1.17) for all k ≤ Nβ with β > 0, we easily derive from (1.13) that
inequality

M
(N)
2k ≤ (1 + ε)2v2

k−1∑
j=0

M
(N)
2k−2−2jM

(N)
2j

with positive ε also holds for all k ≤ Nβ and N > N0(ε).
Regarding the numbers m∗2k ≡ m∗2k(ε) determined by the following re-

currence relations

m∗2k = (1 + ε)2v2
k−1∑
j=0

m∗2k−2−2jm
∗
2j , m∗0 = 1,

we then derive that inequality

M
(N)
2k ≤ m∗2k

holds for k ≤ Nβ.
Now let us follow the reasoning that is usual in the norm estimates for

random matrices (see, for example [7, 8]). Taking into account that the
family m∗2k(ε), k ∈ N represents the moments of the semicircle distribution
(1.5) with v2 replaced by [(1 + ε)v]2, we obtain the estimate

m∗2k(ε) ≤ [(1 + ε)v]2k.

33
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Thus, we have that

(4.1) M
(N)
2k ≤ [(1 + ε)v]2k ∀k ≤ Nβ.

This implies the estimate with probability 1

(4.2) lim sup
N→∞

‖AN‖ ≤ 2v(1 + 2ε),

where the spectral norm ‖AN‖ is defined as the largest absolute value of an
eigenvalue of AN .

Inequality (4.2) can be derived from (4.1) using elementary computa-
tions. Indeed, if one denotes by nN (s) the number of eigenvalues lying
outside of the interval (−s, s)

nN (s) ≡ #{j |
∣∣∣λ(N)

j

∣∣∣ ≥ s},

then one can write the sequence of inequalities

M
(N)
2k ≥ E

∫
R\(−s,s)

≥ s2k EnN (s) ≥ s2k

N
Prob{‖AN‖ ≥ s}.

Then for PN (ε) ≡ Prob{‖AN‖ ≥ 2v(1 + 2ε)} we have the estimate

PN (ε) ≤ N inf
k

M
(N)
2k

[2v(1 + ε)]2k
= N exp{−Nβ log(1 + ε/2)}

that implies (4.2).
Let us discuss two aspects of the results presented. Inequality (4.2) is

valid for all positive ε. This means that (4.2) holds for ε = 0 and this implies
that the maximal eigenvalue of AN is bounded by 2v in the limit N → ∞.
¿From the other hand, the semicircle law states that with probability 1
there exist eigenvalues of AN falling into vicinity of 2v in this limit. Thus,
the maximal eigenvalue (and also the minimal one, due to symmetry of the
probability distribution of AN (1.3)) converges to 2v (−2v).

This fact is also valid for the Wigner ensemble of random matrices WN

(2.17) with arbitrary distributed entries w(x, y)N−1/2 provided that several
first moments Ew(x, y)2p are finite (see for example [7, 13] and [26]).

The second remark concerns the maximal power β0 in (4.1). This (criti-
cal) exponent reflects the behaviour of the differences ∆l between the eigen-
values from the vicinity of the extremal eigenvalue λ

(N)
max. Indeed, one can

write that

M
(N)
2k =

1
N

(
[λ(N)

1 ]2k + [λ(N)
2 ]2k + . . . [λ(N)

N ]2k
)

= [λ(N)
max]

2k
(
1 + [1 + ∆(N)

2 ]2k + . . .
)
N−1.
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If 2k grows faster with N than the difference ∆(N)
2 vanishes, then one gets

an asymptotic behaviour of M (N)
2k different from (4.1).

Our scheme shows that (4.1) is valid for k � N2/3 when the GOE is
considered. Therefore one can conclude that β0 ≥ 2/3. The early studies of
GOE with the help of the orthogonal polynomials approach [6] show that
β0 = 2/3. This conclusion is confirmed and improved by Tracy and Widom
in a series of papers (see for example [28]). The same conclusion follows
from the works by Sinai and Soshnikov [26] and by Soshnikov [27], where
the Wigner ensemble is considered (see also [13] for certain generalizations
of [27]). Equality β0 = 2/3 means that the average distance between eigen-
values at the border of the is of the order N−2/3.

Scheme of the proof of (1.17). We follow the technique developed in [3]
for random matrices with Gaussian correlated entries. For simplicity, we
consider in details only the case of independent random variables.

We rewrite definition (1.14) for B2k in the form

B
(2)
2k (N) =

∑
p1,p2≥1

p1+p2=2k

E〈Ap1

N 〉◦〈A
p2

N 〉◦,

where ξ◦ = ξ − E ξ. The general idea is to use recurrent relations for B
(2)
2k

that can be derived again with the help of (1.9). These relations are similar
those we have got for M

(N)
2k (1.13) and therefore one can expect to obtain

estimates of B2k in terms of M2k.
Let us apply identity

E ξ◦1ξ
◦
2 = E ξ◦1ξ2,

to B
(2)
2k and rewrite it in the following form

B
(2)
2k (N) =

∑
p1,p2≥1

p1+p2=2k

1
N

N∑
x,y=1

E〈Ap1

N 〉◦A
p2−1
N (x, y)AN (y, x).

Now we can apply to the last average (1.9) with γ = AN (y, x). After simple
computations similar to the formula (1.12), we obtain equality

B
(2)
2k (N) = 2v2

k−1∑
j=0

B
(2)
2k−2−2j(N)M (N)

2j + v2B
(3)
2k−2(N)

+ v2
∑

p1,p2≥1
p1+p2=2k−2

p2

N
E〈Ap1

N 〉◦ 〈A
p2

N 〉+
v2(2k − 2)2

2N2
M

(N)
2k−2.(4.3)
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Here and below we assume that

(4.4) B
(m)
2k (N) =

∑
p1,...,pm≥1

p1+···+pm=2k

EL◦p1
L◦p2
· · ·L◦pm ,

where we denote Lp = 〈Ap
N 〉.

Now let us remark that if regarding (4.3), we could forget about the term
B

(3)
2k−2, then (1.17) would follow as a simple consequence of the ordinary

principle of mathematical induction. Namely, assuming that the estimate

(4.5)
∣∣∣B(m)

2j (N)
∣∣∣ ≤ (2j)mτ

Nm
M

(N)
2j

taken with m = 2 holds for all j ≤ k − 1 and substituting these inequal-
ities into (4.3) with B

(3)
2k ejected, one can derive after certain amount of

computations that (4.5) holds also for j = k.

Presence of the term B
(3)
2k−2 makes the scheme of the proof more compli-

cated, but not too much. The observation is that B(2)
2k is depends on B

(3)
2k−2,

where variable m has increased from 2 to 3, but 2k has decreased to 2k− 2.
Thus, one has just to modify the reasoning based on the mathematical in-
duction principle.

Thus, our aim is to prove (4.5). We proceed from (4.3) by deriving a
recurrent relation for B

(m)
2k (N). It has a similar form, where B

(m)
2k (N) is

expressed in terms of B(m)
2j (N), B(m−1)

2j (N), B(m+1)
2j (N) with j ≤ k − 1.

Let us note that due to definition of B
(m)
2k , one has always m ≤ 2k.

The case of equality m = 2k corresponds to one term in (4.4) where p1 =
p2 = · · · = pm = 1. In this case estimate (4.5) can be verified by direct
computations, as well as in the case of m = 2k − 1.

Now, the scheme of the ordinary mathematical induction (the “linear”
one) of the proof of (4.5) can be replaced by a two-dimensional scheme,
where one moves along the points (k,m) such that m + 2k = L. On the
lines m = 2k and m = 2k − 1 relation (4.5) is easy to be verified. Next,
assuming that (4.5) holds for all (k,m) such that m + 2k ≤ L, one moves
along the line m+ 2k = L+ 1 from the point closest to m = 2k to the point
with m = 2. The structure of relations (4.3) is such that this procedure
leads to the estimate (4.5) for B

(m)
2k (N) on the line m + 2k = L + 1. �

Now let us carry out several key-point computations of this proof. Re-
garding

B
(m)
2k =

∑
pi

E[L◦p1
L◦p2
· · ·L◦pm−1

]◦Lpm
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and applying to the last factor our usual scheme, we derive relation

B
(m)
2k = v2

∑
pi

E[L◦p1
L◦p2
· · ·L◦pm−1

]◦
{ ∑

q1+q2=pm−2

LqmLqm+1 +
pm − 1

N
Lpm−2

}

+
v2

N

∑
pi

EL◦p1
· · ·L◦pj−1

(
2pj

N
Lpm+pj−2

)
L◦pj+1

· · ·L◦pm−1
.

Using identity

EX◦Y Z = EXY ◦Z + EXY Z◦ + EXY ◦Z◦ − EX EY ◦Z◦,

and denoting
D

(m)
2k =

∑
p1,...,pm≥1

p1+···+pm=2k

E|L◦p1
L◦p2
· · ·L◦pm |,

we derive inequality

D
(m)
2k ≤ 2v2

k−1∑
j=0

D
(m)
2k−2−2jM2j + v2D

(m+1)
2k−2

+ v2
k−1∑
j=0

D
(m−1)
2k−2−jD

(2)
j +

v2(2k − 1)
N

D
(m)
2k−2

+
v2(2k − 1)2

N2

k−1∑
j=0

D
(m−2)
2k−2−2jM2j +

2v2(2k − 1)
N2

D
(m)
2k−2.

This implies the following inequality∣∣∣D(m)
2k

∣∣∣ ≤ 2v2
k−1∑
j=0

∣∣∣D(m)
2k−2−2j

∣∣∣ M2j

+ v2
k−1∑
j=0

2j − 1
N2

∣∣∣D(m−2)
2k−2−2j

∣∣∣ M2j + Ψk(N),(4.6)

where Ψk(N) contains unimportant terms. Among these terms there is the
term

∣∣∣D(m+1)
2k−2

∣∣∣ that is also of order smaller than
∣∣∣D(m)

2k

∣∣∣. This means that
we can actually return back to the ordinary mathematical induction of the
proof of (4.5).

Assuming that (4.5) holds, we derive from (4.6) inequality∣∣∣D(m)
2k

∣∣∣ ≤ 2v2
k−1∑
j=0

(2k − 2− 2j)mτ

Nm
M2k−2−2jM2j

+ v2
k−1∑
j=0

(2k − 2− 2j)(m−2)τ

Nm
(2j − 1)M2k−2−2jM2j + |Ψk(N)| .(4.7)
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The first problem is related with number 2 in front of the first terms in the
right-hand side of (4.7). However, one can easily avoid it assuming that
τ > 1/2. Then for all m ≥ 2 the function (2k − 2t)mτ is convex and we
deduce that∣∣∣D(m)

2k

∣∣∣ ≤ {
(2k − 2)mτ + (2k − 1)(m−2)τ+1

}
X2k−2(N),

where

X2k−2(N) ≡ v2
k−1∑
j=0

(2j − 1)M2k−2−2j M2j .

It follows from (1.13) that

|X2k−2(N)| =
∣∣∣M2k − v2 2k − 1

N
M2k−2 − v2D

(2)
2k−2

∣∣∣
≤M2k +

2k − 1
N

X2k−2(N) +
(2k − 2)2τ

N2
X2k−2(N).

Combining these estimates, we see that to prove (4.5), one has to determine
parameter τ and the relation between k and N in such a way that
(4.8)(

(2k − 2)mτ + (2k − 1)(m−2)τ+1
) (

1− 2k − 1
N

− (2k − 2)2τ

N2

)
≤ (2k)mτ

for all m ≥ 2 and all possible k.
We divide both sides by (2k)mτ , take m = 2 and observe that the in-

equality (
1− 1

k

)2τ
+

4k − 2
(2k)2τ

< 1

is valid for large enough values of k only when τ is greater than 1.
In fact, taking m = 2, we provide the maximal value for the first factor

from (4.8). Regarding its product with the second factor, we obtain that
inequality (4.8) holds only when

2k
N

+
(2k − 2)2τ

N2
<

3
2k

.

This inequality is true under condition that

k2τ+1 < N2.

This means that (4.5) holds in the limit N → ∞ under condition that
k � N2/3.
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Norm estimates. Let us complete this lecture with estimates for the norm
of random matrices ΓN (2.21) with correlated entries.

Theorem 4.1 ([3]). Under hypotheses of Theorem 2.2,

lim sup ‖ΓN‖ ≤ 2
√
vν1.

If the matrix V is such that

(4.9)
1
N

TrV r
N ≤

∫ ∞
0

λr d ν(λ), r ∈ N,

then the upper bound of the support Λ of the distribution

σV (λ) = lim
N→∞

σ(λ; ΓN )

coincides with the estimate from above for the norm. This means that there
are no eigenvalues of ΓN in the limit N →∞ outside of Λ.

Condition (4.9) holds for V (x, y) = u(x− y) with u(x) ≥ 0. However, in
general one cannot guarantee that all eigenvalues of ΓN are inside of Λ for
N =∞.

To show this, it is sufficient to consider V (x, y) = w(x) with

w(x) =

{
v′, if x = 1,
v, if x �= 1

with v′ > 4v. Then
Λ = (−2v, 2v)

but
‖ΓNe1‖ →

√
vv′ > 2v.

Theorem 4.2 gives sufficient conditions to avoid the situation when there
could be eigenvalues outside of the support of the limiting eigenvalue distri-
bution. This is important in a series of applications of random matrices, in
particular in the statistical mechanics of disordered spin systems.
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