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In this paper we study the semilinear stochastic wave equation
(2 — A)u= F(u)+W on R"*!, (1)
ul{t<0}=0

where F' is globally Lipschitz, and the stochastic excitation W is a white

noise on the half space T = R" x [0,00). The solution to the linear wave
equation

(2 —Aw=W on R*™, (2)

v|{t<0}=0

is known to be a generalized stochastic process in space dimensions n > 2,

that is, its sample paths are distributions on R™™. It is possible to construct

solutions to the nonlinear wave equation (1) as Colombeau-type generalized

stochastic processes [1, 18]. For various types of nonlinearities F', white noise

calculus is applicable as well [7, 9, 11, 15]. In this paper we are concerned
with the limiting behavior of regularized solutions

(82 — A)u, = F(u.) + W.
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(82 — A, = W.

obtained by smoothing white noise, as ¢ — 0. Our goal is to demonstrate
that the approximate solutions to the nonlinear equation (1) converge to the
solution of the linear equation (2) plus a deterministic term which essentially
depends only on the behavior of the Fourier transform of F' at zero. For
example, assume that F' is globally Lipschitz and has a limit L at infinity.
Then, in space dimensions n = 2, 3,

. t2 s ! n+1
ll_I)%uE—’U-i-iL in D'(R"™) (3)

in the L'-sense, that is,

. t2
lim B (sup (. — v = L)) =0

for every bounded subset B in the space of test functions D(R"*'). We
present here two methods of proof. The first one is based on a study of the
pathwise behavior of the regularized solutions v, to the linear wave equa-
tion as well as delta-wave estimates from nonlinear hyperbolic theory as in
[5, 13, 14, 17]. This first method gives a good explanation of the observed
effect: subsequences of the solutions v, (z,t) tend to infinity almost surely,
thus only the values of F' near infinity are activated. However, this method
gives the limiting behavior (3) only in probability.

The second method uses the Fourier transform of F. We single out a
large class of nonlinearities for which the result (3) holds: namely, the Fourier
transform of F' should have mass L at zero. This, together with Gaussian
properties of the free solution v.(x,t) and the fact that its variance tends to
infinity when n > 2, allows to demonstrate (3) in the L!-sense. A similar
argument actually gives convergence in the LP-sense for 1 < p < oco. This
generalizes the results of [1], where the case of nonlinearities F' which are
Fourier transforms of integrable measures, massless at 0, in space dimension
n = 2 has been treated.

The observed triviality effect arises with stochastic initial value problems
involving white noise as well. It occurs just the same in semilinear parabolic

equations (n > 2), semilinear Schrédinger equations (n > 1) and semilinear
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elliptic equations on domains in R",n > 4; these results will be published
elsewhere. For a study of limiting solutions to semilinear parabolic equa-
tions with Wick renormalization we refer to [2]. The wave equation with
white noise excitation has found quite some attention from the probabilistic
side (e.g. [19]). The results presented here can also be seen from the view-
point of delta-waves: in this spirit, stochastic analysis provides a range of
intertesting, highly singular distributions whose effects as inputs in nonlinear
equations can be studied.

We conclude this introduction by saying that in the last years, semilinear
stochastic wave equations have been intensively studied in the case of space
dimension n > 1. Among the most significant references, we quote [3, 4,
10, 12, 16]. The driving noise in those papers is Gaussian and homogeneous
but not necessarily with nuclear covariance. The equations there still allow
classical function valued solutions; the covariance of the noise is situated at
the boarder case not to get triviality effects.

1 White noise and the linear wave equation
Denote by S(T) = S(R™*!) | T the space of rapidly decreasing smooth func-
tions on 7 = R" x [0,00). Let Q@ = S'(T) with X the Borel o-algebra

generated by the weak topology. By the Bochner-Minlos theorem [6, §3.1],
there is a unique probability measure p on (€2, 3) such that

[ € ) = iz (4)
for ¢ € S(T). White noise with support in T is the process
Wi Qo DR (W), e) = (w0 | T),
a generalized Gaussian process with mean zero and variance
EW(9)*) = llg | TlIzr) (5)

for ¢ € D(R™).



We shall make use of the following regularizations. Let ¢ € D(R""!) with
[[¥(x,t)dzdt = 1. We define 1, by

e Tzt
wE(xat) = 1¢(g’g)

For computational convenience, we shall assume in this paper that the sup-
port of ¢ is contained in the interior of 7" and, in addition, that ) is of the
tensor product form

bz, ) = x(2)xo(t)
with x € D(R"), xo € D(0,00). Regularized white noise is defined as

W.(w) = W(w) * ¢, .
It belongs to C*°(R™™) and has its support in 7.

The next wellknown proposition states existence and uniqueness of a
stochastic solution to the linear wave equation (2). The white noise prob-
ability space €2 is as described above and fixed. The proof is included for
completeness.

Proposition 1 There is a unique generalized stochastic process v :  —
D'(R™") such that
supp v(w) C T
(07 = A)v(w) = W (w)
in D'(R™™) for all w € Q.

Proof: Let S be the fundamental solution of the wave operator with support
in the forward light cone. Then the convolution

v(w) =8 * W(w)

exists, has its support in T, and satisfies (07 — A)v(w) = W (w) for all w € Q.
The measurability follows from the defining formula

(S*W(w),p) = (W(w),S+¢) = (w, 50| T)



where the hat denotes inflection. Uniqueness can be seen as follows. Assume
z(w) has its support in T and satisfies (0? — A)z(w) = 0. Taking a mollifier
1. as described above, we have

(0 — A)(z*1.) =0, supp (z*.) CT.

By classical C*°-theory, it follows that zxv, = 0. But then z = lim,_,q 2%, =
0 as well. O

2 Sample path estimates

In this section we shall obtain estimates on the regularized solution of the
linear problem

(02 — A)v, =W 1), (6)
ve | {t <0} =0

where 1, is a mollifier as described in the previous section, ¥ (x,t) = x(z)xo(?)
with supp xo C (0,00). We first show that the variance of v.(z,t) tends to
infinity as ¢ — 0, uniformly on strips R" x [tg, t1], 0 < to < t;.

Proposition 2 For every ty > 0 there is €9 > 0 and positive constants cgy, c1,
(depending only on the mollifier 1) such that

9t < Bz, 0)?) < 2t (n=3)
g g

(c1 log é)t < B(u.(z,)?) < (colog %)t (n=2)
for0<e<egg, x €R" t >t
Proof: The regularized free solution is given by
ve(x,t) = W s S s tpo (2, t) = (W,0(S xhe(z — ., —.)))

where 6 is some cut-off function identically equal to one on 7" and vanishing
as t — —oo. For fixed (z,t), the argument 6 (S * ¢.(x — .,t — .)) belongs to
D(R™"!). By the characterizing property (5) of white noise,

E(v.(z,1)? / / 1S x ). (x —y,t — s)|* dyds .
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Recalling that S is a smooth function of ¢ € [0, 00) with values in the space
of compactly supported distributions £'(R"), replacing z —y by y and ¢ — s
by s, and observing the support properties of S and 7). this is seen to equal

/ ||/ ,s—1) %P (1 )dr||%2(mn)ds

-[ L |/s s = DL, e, ryar dgas

by Parseval’s equality; the latter hat and star denote Fourier transform, re-
spectively convolution, effected in the z-variable only. Recalling that ¢, (&, 7) =
)2(55)%)(0(5) finally yields

Blowte, ) = [ [ 1 [ DL ayar e deds.

For the remainder of the proof, we work out the case n = 3 only, the case
n = 2 being similar.

After introducing polar coordinates on R*® and denoting by M the spher-
ical average of |¢|?, we have

LB 0?) =1 [T1 [ sin(Cp o) xolr)ar? M(p)ap
<2 [T woyn ([ heotryar)) <

9

Thus we have the upper bound

B(v:(z,1)) < 2t
g

To obtain the lower bound, we first observe that

t/e ot 1 itp ~ —itp
[ sinp = o) xolr)dr] = 1 Ro(p) — e 5 o(—p)

for sufficiently small ¢ (uniformly in ¢ > ¢, > 0) due to the fact that the
support of xo is a compact subset of [0, 00). This in turn equals

1 .

— e (Ro(p) — Ro(—p)) |-

PN
[sin(2p) Xo(p) + 5



Using the fact that x(0) = 1, x0(0) = 1, we can find o > 0 so that

for |p| < o. Then 4 E(v.(z,t)?) is estimated from below by

1 a { R R 1 —ity /A .
2% /0 [sin(Zp) +sin(Zp) (Xo(p) — 1) + 5z €  (Ro(p) — Xo(—p))*dp
1 re afe o o 1
> 2——>d— / (1—cos2tp)dp— — > — — —
—25/0 (‘Sm Al m5) A= cos2tp) dp = = > 50~ g
for t > t3. Thus, finally
1 c
E(v. ,t2><i——) Ly
W@ D)) 2 50 ~ 56 ) 12 2
for ¢t > ty and sufficiently small €. a

Remark 1 In the case n = 1, the variance of v.(z, t) remains bounded.
This reflects the fact that for n = 1, the solution v to the linear wave equation
with white noise excitation is a regular stochastic process, namely a rotated
two-dimensional Wiener process [19].

The divergence of the variance as ¢ — 0 implies divergence almost surely
for suitable subsequences, as is seen from the following lemma of Borel-
Cantelli type.

Lemma 1 Let (Q,%, p), (Z,%', \) be probability spaces, Ve, & w) be a family
of random variables on = x Q0 such that for each & € =, V (€,&,.) is Gaussian
with mean zero and variance o(g,£)* = [V (g, & w)*dp(w). Assume that
infeez 0(e,&) — 00 as € — 0. Then there is a subsequence €, — 0 such that

Mxu{(Ew) €Ex 0 fim Vi€ w) =00} =1
— 00
In addition, every subsequence has a subsequence with this property.

Proof: Let U(e, &, w) =V (e, & ,w)/o(e,€). Forfixedé € Eande > 0,U(g,&,.)
is a Gaussian random variable on {2 with mean zero and variance one. By
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Fubini’s theorem, the random variable U (e, .,.) on the product space = x €2
has the same Gaussian distribution. Choose € — 0 so that o(g,£) > 22% for
all k € N and all £ € =. Fix a > 0 and consider the event

Ap={(&w) : [Uler, & w)| > a2} .
Using the Gaussian property of U(g, .,.) we have
(A x ) (Ag) > 1 — a2m) /22 kH

and so
A X (ﬁ Ak) > 1 —2a(2m)71/2.
Thus .
Mo (€.) ¢ Jim |V (e, €,0)| = o0}
=3 xu{(€w) : Jim (U &w)o(e,€)] = oo}
> A X ,u{(f,w)  |U(eg, & w)| > a2k for all k € N}
=AXp (ﬁ Ak) > 1 —2a(2m)71/2.

The assertion follows by lettirl:g: loz — 0. O

Consider now the regularized solutions v, of the linear equation (6). For
each fixed (x,t), they are mean zero Gaussian random variables on white
noise probability space (2,3, ). Taking any compact set = C R" x (0, c0)
and letting A be normalized Lebesgue measure on =, we can apply Lemma
1 together with Proposition 2 to get a subsequence diverging almost surely
on = x €. Exhausting R" x (0,00) by compact sets, a diagonal sequence
argument gives the following result:

Corollary 1 Let v, be the solution to (6) in space dimensionn = 2 orn = 3.
Then there 1s a subsequence € — 0 such that p-almost surely

Jim [ve, (2, 1)] = o0
for almost all x € R",t > 0. In addition, every subsequence has a subsequence
with this property. O

The corollary states, in particular, that p-almost surely |v,,| — oo Lebesgue-
almost everywhere on 7.



3 Limits in the nonlinear equation

In this section we apply the previous results to the regularized nonlinear
equation
(02 — A)u, = F(u.) + W x 1, (7)
ue | {t <0} =0

where F'is assumed to be globally Lipschitz, and the mollifiers . are as in
Section 1. In space dimension n = 1,2, 3, equation (7) is easily seen to have
a unique solution u,, a stochastic process with smooth paths. Indeed, fix
p >0 and let

K, ={(z,t) eR"™ : 0<t <7, [z] < p—t}

be the conical region cut off at height 7 with base the ball of radius p. The
solution to the linear equation

(0 —Aw=h, w|{t<0}=0

with smooth right hand side A is given by Kirchhoff’s formula

w(x, t) = % /Ot ds /|y:c|—ts h(y, s) do(y)

t—s

for n = 3 and similarly by Poisson’s and D’Alembert’s formulas for n = 2, 1.
In these dimensions, the estimate

[wllzrx,) < T/O 12| o (i) dt 8)

holds both for p = 1 and p = co. Rewriting (7) as an integral equation and
employing the estimate (8) with p = oo in a fixed point argument yields the
existence of a unique solution u,(z, t,w), smooth with respect to (z,t) € R"*!
and measurable with respect to w € ().

The pathwise estimates obtained in Section 2 allow to describe the be-
havior of the regularized solutions u. to the nonlinear equation when F' has
a limit at infinity, say

lim F(y)=1L.

ly|—o0

In this case, define the function a by a(z,t) = %L,t > 0;a(x,t) =0,t < 0.
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Theorem 1 Letn = 2 or n = 3. Assume that F is globally Lipschitz and
limyy 00 F(y) = L. Let u. be the smooth stochastic process solving problem
(7) and let v. be the solution of the free equation (6). Then every subsequence
of e = 0 has a subsequence e, — 0 such that for all compact sets K C R**!

,}g{}o ||Us;c Vg, — CL||L1(K) =0

u-almost surely.

Proof: Write
(6752 - A)(us — Ve — a)

:/OIF'(aug—i-(l—a)(vg-i-a))da (ue —v: —a) + F(v.+a)—L

so that on any conical compact region K, the estimate (8) gives
[ue = ve = all ) 9)

< 7| F || o) /0 e = ve — all iy dt + T2 F (v +a) = Ll i,y -

By Corollary 1, for every subsequence there is a subsequence ¢, — 0 such
that |v., (z,t,w)| — oo almost surely (w € Q) almost everywhere ((z,t) € T).
For such members w € 2, the bounded sequence F(v,, + a) — L converges
to zero almost everywhere. Hence by Lebesgue’s theorem and Gronwall’s
lemma the assertion follows. a

Corollary 2 Under the assumptions of Theorem 1, let v be the solution to
the free wave equation in Propostion 1. Then u, converges to v + a with
respect to the strong topology of D'(R™), in probability as & — 0.

Proof: Let q be one of the defining seminorms of the strong topology of
D'(R™™). By Theorem 1, every subsequence of ¢ — 0 has a subsequence
er, — 0 such that ¢(u., — ve, —a) — 0 almost surely. This is equivalent to
convergence in probability. O

In case limyy_,o F'(y) = 0, the function a vanishes and so the solutions u,

to the nonlinear equation exhibit triviality in their behavior: they converge
to the solution of the linear equation.
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This pathwise study admits a rather intuitive interpretation of the triv-
iality result: pathwise, at least for subsequences, the free solution tends to
infinity, and hence the nonlinearity F'is activated only near its limiting val-
ues at infinity. Thus the behavior of F' on finite values has no influence on
the solution. On the other hand, these arguments lead only to convergence in
probability. We now present two further arguments of increasing generality
that demonstrate first the triviality effect in the stronger sense of convergence
in L'(2) and, second, for a larger class of nonlinearities F.

Taking the expectation in (9) we get
E (JJue — v — all1(x,))

< T||Ff||L(,o(,R)/0 E (JJue = v. = allpiy) dt + 7 (|F(ve + a) = Ll -

The assertion
li_r)r(l)E (||u5 — Ve — a||L1(KT)) =0

is obtained, provided the last term on the right hand side tends to zero. But

E (|F(ve +a) = Ll

—// (1F(v.(z,t) — a(z, 1)) — L|) dadt

~ [ [P ato0) ~ 2l exp(- L)y

where 0, = F(v.(z,t)?) denotes the variance of the free solution. Substituting
oy for y in the integral shows that this goes to zero provided lim,| o F'(2) =
L. However, this Gaussian argument can be modified so that a larger class
of nonlinear functions F' can be treated, which we now define.

Definition 1 A distribution H € §'(R) is said to have mass L at zero if
iy (., (/) = L, (10

for the function n(y) = exp(—y?/2). If L = 0, H is said to be massless at
zero.
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Remark 2 For our applications, we shall be mainly concerned with functions
whose Fourier transform has mass L at zero. For F' € §'(R) the Fourier
transform H = FF has mass L at zero, i. e. satisfies (10), if and only if

=L, (11)

lim (F

o=(E )
e—=0 ’ 27{77 €
noting that 7 is identical with its Fourier transform up to the multiplicative

factor /2.

Example 1 Let F be a continuous function such that the limit lim,|,,, = L
exists. It follows easily from formula (11) that the Fourier transform FF has
mass L at zero.

Example 2 Let G be a continuous function such that the limits lim,_, , =
L and lim, ,,,, = L, exist. It follows from the symmetry of n that the
limit as ¢ — 0 in (11) equals (L_ + Ly)/2. Thus FG is massless at zero iff
L_ = —L,. In particular, this holds when G vanishes at infinity.

Example 3 Let G be a periodic, sufficiently regular function with period
mo. Expanding G in its Fourier series, we see that the limit in (11) equals
0° G(y)dy so that FG is massless at zero iff G has mean zero along its pe-
riod.

Example 4 If G € LP(R) for some p € [1,2] or if z79G(z) € L'(R) then FG
is massless at zero (direct computation). If G is a tempered distribution such
that FG = p, an integrable measure with x({0}) = 0, then FG is massless
at zero.

The significance of this notion is exhibited by the following proposition.

Proposition 3 Let (Vi(e), Va(e)) be a mean-zero Gaussian vector, nonde-
generate for all small € > 0, and such that o2(¢) = VarVa(e) — oo as
€ = 0. Let G : R — R be a bounded function such that FG is massless at
zero. Then

E(G(Vi((e)) G(Vale))) = 0 ase = 0.

Proof: The covariance matrix X(¢) and its inverse are given by

o2 o _ a’ a
S(e) = ( o ) N = ( oo ) |
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Observing the relation

an easy algebraic computation gives that

2nE (G(11)G(V2))
= [ dz, G(z1) [ doa G(29) det 712 exp (—%[a%x% + 20197175 + a%:rg])

—x2 a12
= [ dxy U% (z2) exp (%2%) a; [ dzy G(zy) exp (—%[alxl + ;x2]2) )

The second integral is bounded by the L*-norm of G, while the first converges
to zero by assumption and (11). O

Remark 3 Let Vi(¢) = v.(21,11), Va(e) = ve (22, t2), where v, is the solution
to the free wave equation (6). Then (Vi(e),V2(g)) is nondegenerate when
|zg — 1| # |ta — t1|. For example, in dimension n = 3, this follows from
the fact that the covariance remains bounded, while the variances tend to
infinity by Proposition 2. This in turn is seen by computing

E (Us(xl’tl)vs(x%tQ))
= fgll\tz Jes Sxe(z1 — 2,81 —1)S * (T2 — 2,ty — 1) dzdr
— fo(tl/\t2)/5 IRB w(z,r)w((EZ;l‘l +Z, tg;tl +T) dZdT‘

where w(z,r) is the classical solution of the wave equation with right hand
side ¢ and zero initial data. Combining the support- and decay properties of
the solution w in evaluating the latter integral shows that it remains bounded
as € — 0 when |xy — x| # |ta — t1].

These considerations allow to prove a stronger version of the result in
Theorem 1:

Theorem 2 Let n = 2 or n = 3. Assume that F 1is globally Lipschitz,
bounded, and its Fourier transform FF has mass L at zero. Let u. be the
smooth stochastic process solving problem (7) and let v. be the solution of the
free equation (6). Then for all compact sets K C R™*!,

mE (“ug — Vg — CL“LI(K)) =0.

li
e—0
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Proof: Without restriction of generality we may assume that L = 0,a = 0.
On every conical compact region K, we have that

E(IPC ) < (£ (IP0))

<(f[. [[. B(F(rrt) Fvu(aa 1)) dosdts dasdts) .

We apply Proposition 3 to the Gaussian vector (v.(x1,t1),ve(x2,12)), using
Remark 3. Then Proposition 2 shows that the integral above tends to zero
as ¢ — 0. The discussion before Definition 1 entails the desired result. O

Corollary 3 Under the assumptions of Theorem 2, let v be the solution to
the free wave equation in Propostion 1. Then u. converges to v + a with
respect to the strong topology of D'(R™), in L'(Q) as ¢ — 0. a

It is clear that convergence in LP(§2) for 1 < p < oo can be proven by the
same methods.
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