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ABSTRACT. New, commutative probability tools for studying the problem of the

Bose-Einstein condensate preservation under thermofield and standard gauge-invariant
perturbations are presented. In particular, a new result on the stability of a Bose-

Einstein condensate under the thermofield perturbations of a polynomial type is

presented.

I.INTRODUCTION: THE PROBLEM OF THE BOSE-EINSTEIN CONDENSATE.

The problem of the Bose-Einstein condensate preservation that do arises in the
free Bose Matter under switching on any realistic two-body interactions between
particles has still remained open despite of its long history and efforts of many the-
oretists. Even in the case of noninteracting Bose particles, the process of providing
a complete and rigorous (from the mathematical physics point of view) proof of
Einstein’s heuristic indications [1] took a very long time period during which Mark
Kac’s fundamental contribution [2] played a crucial role. It is due to the long-time
activity of Dublin’s group that Mark Kac’s ideas have been cleaned up and, at
present, a very clear, general understanding of the condensation phenomenon in
noninteracting Bose systems is available [3].

Let (A,) be a monotonous family of bounded regions in the Euclidean space
R?, d > 3, such that |JA, = R? and let (h,) be a family of one particle kinetic

n

energy operators that possess purely discrete spectra
o (hn) = {An(k)}x
with the lowest egenvalues A\, (1) > 0 for all n. We define also
on(k) = An(k) — An(1), for k=2,3,...
Then we will say that the family (A,, h,) is admissible iff:

. [ e
(ad) for all 8 > 0, hzn m kz;:exp —Bon (k) = ¢ (B)

exists and for some g € (0,00), #*°(8) # 0

(1)
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The following result (formulated informally) seems to be the most general one for
noninteracting systems [3]. Let us define the partition function

Zn(B, 1) = Tr p(z2(A,,dz)) €XP —B(dT (hy + p1) (2)
and the finite volume free energy density

1

where |A| stands for the volume of A and T'(L*(A,dz)) is the bosonic Fock space
on L?(A,dx).
Theorem ([3]). Let (An, hy) be an admissible family. Then
(1) the unique limit
Poo (B, 1) = lim pp (8, 1)

exists
(2) the equation
d
P B;m)=p
has the unique solution for any p € (0,00) and such that for any p > per(8),
where
b= [ (@ = 1taF) @
(0,00)

the corresponding p = 0.
The density of states dF in (4) is uniquelly determined by

6(8) = / e PMF(\) (5)
(0,00)

Now, let A, be a tori and let AP be the corresponding periodic b.c. Laplace oper-
ator. The standard, gauge-invariant, many body interactions with an interparticle
two-body potential V' [3, 4] can be decomposed as

HiM = HY*9 + §H,,

where, the so called diagonal part H%%9 of Hi" is given explicitely as

o V(0) 1 -
Hdias = (N2 —N) + V(k — k' ngng (6)
2|An| 2|Ay| ;klz#k

where N, ny are the corresponding number operators and ¥ stands for the Fourier
transform of V.

It is worthwhile to mention here that a variety of models, such as Huang-Yang-
Luttinger model [6], mean field like models [8] etc. that were analysed intensively in
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the past correspond to certain approximations of H3%9. Tt seems that the result of
[4] on the stability of the Bose-Einstein condensation under perturbation of the free
Bose gas hamiltonian by the diagonal part of H™ is one of main achievements of the
(mentioned above) Dublin group activity and in a sense it is a result which is closest
to realistic interactions. Passing throughout the proofs in [4,7] it becomes clear
that the opportunity to express the diagonal part of H* as a bilinear form of the
commuting random variables ny, is the basic feature which made the corresponding
analysis so succesfull.

It is the main objective of the present contribution to present a new commutative
tools for analysis of the perturbations of the free Bose matter by thermofield like
interactions (next paragraph) and also by the standard gauge invariant many body
interactions.

II. THE GAUSSIAN ANALYSIS: THERMOFIELD PERTURBATIONS.

Let 20 be the Weyl algebra on the Hilbert space L?(R?, dz), the generic element
of which we shall denote as Wy, f € L?(R?,dz). The following faithfull states:

B W) = exp—{lcoth Ty f)s, hy=—A+p (7)
and (for d > 3)
9 _ 2012 1 B
B (W7) = exp —cl F(O) exp —3(f] coth & o ), ®

¢ > 0, and f is the Fourier transforms of f, are invariant under the following
evolution '
ayf =e e f

and give rise by the GNS construction to Araki-Wood thermal modules [4]
m(CT) = (ﬁt(ucrﬁ Qz)cr) ’ mn(vcr)’ OL;’J, ﬂ)

defined as free, noncritical (resp. critical) modular structures of noninteracting Bose
matter. It was shown in [8, 9] that both 91 and M., are stochastically positive and
stochastically determined i.e. there exists processes &, (resp. £¢7) with values in the
space S'(R?) (= the space of tempered distributions) and such that for fi,..., f,
rea, 0< 7 <7 <--- <7, <8

]Eei(gﬂ 1) R ei(gt" ofn) = wg(c,_) (air1 Wf1 s Olr, an) (9)

and where on the right hand side there stand the corresponding Euclidean time
Green function of the thermal structure 9,). The process(es) §$CT) is (are) peri-
odic, reflection positive on the circle K of radius 3, shift invariant and Markovian
on Kg. The corresponding law(s) can be realized as a Gaussian measures d/‘l’Oﬁ,(cr)
on the space of continuous loops

LO(S'(RY)) ={p : Kg— S'(R")|¢ continuous}
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and with the covariance(s) given explicitely as:

/' (2o (f © 60)p(g © 6;)
£8(5' (R4 (10)

e—'rh,,‘ _}_e—(ﬁ—r)h#
= /dx/dyf(a:) 1 — e—Phu g(y)

and, respectively in the critical case:

[ e s ietg®s,)

L£2(S'(RY)) (11)

o e—7ho 4 g—(B=T)ho
= S (0)§(0) + {fl—F—=m 92

It is important to point out here that the canonical procedure of reconstructing the
whole noncommutative modular structure of the free Bose matter from the pro-
cess(es) & (£°7) is well known [8, 10, 11]. It is the non ergodicity of the process
" that reflects the presence of Bose-Einstein condensate, see i.e. [3, 5] in the N,
(the spontaneous breaking of U (1)-gauge invariance). In the papers [8,9,12] gentle
perturbations of the free thermal structure(s) 9%,y have been studied using the
idea that the central, affilated with 20“" operators acts as multiplication in the
Gaussian space L>(L2(S'(R?)),dus). In particular the preservation of the noner-
godicity (in the thermodynamic limit) of the perturbed critical modular structure
(thus confirming the stability of Bose-Einstein condensate under such perturba-
tions) was demonstrated there. Here we shall report on the recent stability result
for perturbations of polynomial types.
Let a, (resp. a}) denotes the corresponding annihilation (resp. creation) opera-
tors (in the Araki-Wood module(s) 9%,)). The Local Polynomial interaction term
is defined as

' .
H{" = —)\/de(a§ +af )
A

(LP)a : § A>0,ACR? bounded, P(z) polynomial bounded
+e

¢ are regularized properly bosonic

from below, af, a

| annihilation and creation operators

The nonLocal Polynomial interaction term is defined as:

Hint = —)\/da: dy P(a, + af )F(z — y)P (a5, + a) ©)
A

(nLP)A :
where A > 0, the kernel F € L'(R?)

and is positive definite
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The perturbed by local or nonlocal polynomial interactions as in (LP)s or (nLP)a
thermal measure(s) uﬁ is given by:

B8
o (@9) = e @) exp [ ar [ ds B )r,2) - dif o 0) (12)
0 A
where

B

D@ = [l @ew [ir [aHp@E) 03)

S"(K5xR4) 0

for the case of (LP)s and similarly in the case of (nLP)js. As the good controll
T - . .

on the limits h/an wy may be obtained by applying the high temperature cluster

expansion [12] the problem of constructing li[r\n ui (cr) 18 much more complicated

due to the long-range nature of the corresponding potential [13].
Let wp,(cr) stands for the state on 20" obtained as the unitary-like cocycle
perturbation of wg, . where the underlying cocycle I';(A) is given (informally) by

Ty (A) = exp it(H® + Hi") exp —itH° (14)
where H? is the free Bose gas hamiltonian. The main result of [12] is the following:

Theorem 2.1. If
sup/duﬁ w(@)e?P) < o
A ;

then for sufficintly small \ (depending on B, F,...) there exists an unique limit
li/r\n WA,er = w). (as a weak limit) and the limiting state is faithfull and is not pure

1"
state on 207,

The main ideas of the proof.
Step 1. From the Araki-Wood paper [14] (see also [5]) we know that

o = [ dalr 01 (15)
where d, (r, 0) is the spectral measure on [0, 00) x K2, and w7, are pure quasi-free
B-KMS states on Y. given by:

wg’rg (Wf) — eicl/2 cos 9-]/’\(0)67%S£=0(f®f,0) (16)

where 55:0 is given by (10) with u = 0. Restricting w7, to the abelian sector of

M« it follows that for f = f there exist a Gaussian probability measures d,uf’ g on
S'(Kz x R?) such that

)

Wiy (Wy) = / dpi? ()i (17)

S’ (Kﬁ XRd)
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and then
W (Wy) = / dro(r,6) / ai ()i (18)
S"(KjsxR9)

From (15) it follows easily that

(r0) oy itert) 277
wh,er(Wy) = [ dXo(r,0) [ duy,, (p)e"? T (19)
where 1 '
dpy” (p) = — e dpl (o) (20)

=—3
Zy

The Gaussian measure(s) dli'f,g(SO) have a fast decay of correlations, in contrast to

dug’cr and this enables us to prove the convergence of the corresponding expansions.

Proposition 2.2. There exists a value of Ao (depending on (,...) such that for
all X € (0, ) the corresponding high temperature cluster expansions for uﬁ(*” are
convergent uniformly in the parameters (r,0). The limiting measures u%?(\) are

ergodic with respect to the translations.

Step 2. From the hypothesis supwa,cr(Wy) < oo and the uniform convergence
A

uf\r’g) — ME’;’G’ (N) it follows that there exists a limit (in the sense of measures)
Z/(\’!‘,G)
li[{n dXo(r,0) TZ: = dApen(r,0)

Moreover the limiting measure li[{n dpp,er = dug‘r is given by

i = / Dryen(r,0) 1O () (21)

That the measure d\,.,(r, ) is not concentrated at one point follows by the inte-
gration by parts formula as in the case of gentle perturbations studied in [8,9].
Step 3. Using certain reduction formula derived in [13] (in the spirit similar to
those presented in [12]) it follows from Step 2 that for any f € L* N L2(R?), d > 3
there exists an unique thermodynamic limit

lim W (Wy) = of (Wy)

providing A is sufficiently small, and moreover the limiting state w§" can be decom-
posed into the pure sates as follows

Wi = /d)\ren(r, 0)w/(\r’0) (22)
where wg\r,a) are the corresponding extensions of the measures #g‘r,a) to the whole

Weyl algebra.
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III. THE POISSONIAN ANALYSIS: PERTURBATIONS
BY STANDARD GAUGE INVARIANT HAMILTONIANS.

In this section we will present a construction of the diagonalizing space for the
standard many body hamiltonians

Hipt = / ot (2)a* W)V (z — y)a(@)aly) dz dy (23)
A

where the two-particle potential V' obeys standard requirements (see bolow). Al-
though the underlying construction may be given in the pure Poissonian analysis
language [18, 19] we display it in terms of the corresponding Generalized Random
Fields (GRF). For this goal let us denote by OL(pg;A) the (closed) subspace of
D'(Ry x A) (= the space of real Schwartz distributions with support in Ry x A).
The subspace O, (pg; A) is defined as these ¢ € D'(Ry x A) such that

(i) the map Ry 3— ¢(t,-) € D'(A) is continuous, and

(ii) there exists j € N such that Ry 3 ¢ — ¢(t,---) € D'(A) is periodic with

period jf3.

On the space D(R,. x A) we define the following characteristic functional T's:

o i ‘ ' B '
() =ep Y= / d / AW () (exp i / frw()dr—1)  (24)
=t 7 A 0

where dijﬁc 7 stands for the o-conditioned Brownian bridge measure of lenght j8
and the conditioning is given by the classical b.c. one i.e. o € C(0A) and o > 0
pointwise on OA (see e.g. [5] for this). By Minlos theorem there exists a measured Py

on the space D'(Ry x A) (called free functional Poisson measure) such that

dPf (p)e" D) =Ts(f)
D/ (R4 xA)
Actually it can be shown that the set O,(pg; A) is the carrier set for the measure
dPy. Other elementary properties of dPy can be found in [G1].

The two-particle potential V in (15) is assumed to obey the following (standard
[20]) assumptions:

co) V is central and V € C(R? \ {0}),
c1) V is stable,

oo
c3) there exists ro > 0 such that [ V(r)dr < co.

To

Proposition 3.1. Let V fulfills c¢ — c3. Then the following equality is valid:
ZA(2,8) = Trr(z>(a,de)) exp —BldT(—AZ + pl) + H{M

aPg (o) exp / / drdy: @)V (@ —y)e): (2
A

OL.(pa;A)
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where (informally)

cp(@)V(z —y)ey) : = p@)V(z —y)ply) — V(0O)#{p}

and #{p} is the "loop number” functional defined (for dP{ a.e. ¢) in [15,16].
Proof. See [17,18]

Thus in a certain sense the space L?(dPg) plays the role of diagonalizing space
for Hi{". A Gibbsian type perturbations dG§ of dP{ is defined by:

165(0) = Za(20) L exp = [[dody @V - vot) sarg (20
A

Theorem 3.2. Let V obeys co—ca. Then, for sufficiently small z (depending on
B,V,...), the unique thermodynamic limits

tim, [ 4650 T (6. 10 = [ a6 [T 59 (27)

exists for any n € N, f; € D(Ry. x A) and the limits on Lh.s of (27) determine
uniquelly a measure dG(yp) entering on r.h.s. of (27). Moreover the limiting mea-
sure dG does not depends on the particular choise of o.

The main ideas of the proof.
Step 1. The following formula for integration by parts is valid:

/dPX( Vi<, f > Flp Z /da:/dAWm’ (w?) /de(TwJ( )

[ aP5(): o) e Gl + 80— w7(7)

(28)
for any cylindrical and L!(dP,) functionals F and G and where : :p means the
Poissonian normal ordering (see e.g. [17, 18]).

Step 2. Applying Step 1 it follows that:

n z]1+ +in or
Jacs@) : Mesw= ¥ 1] [ave [awifr@)
i=1 Jiseeeygn 21 a:lA

i (29)
/ fr,win () dr oy (@™, ... win)

oh(wit, . o) = emEv W) / dPg () exp —EL (W, ,win)|p)  (30)
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B =1 G-t

Eg(wjl,... ,win) = Z /dr Z Z V(W (1 + apB); w0 (T + oy B))  (31)

1<k<I<n ar=0 a;=0
) n
ge(w“,... win|p) = ZE (w50 (32)
k=1
and Ee(wjk;go) is defined (dP{ a.e.) as in [15,16]. Now, let P,’?(jl, ...y Jn) be the
space consisting of n-tuples of paths (,... ") where

17+ € C([0, 18] = A)

The extensions of the functionals 5€(|cp) to the spaces ’Pf (J1,--- ,Jn) and the
corresponding extensions of the functionals o§ given by (30) will be denoted by the
same symbols.

Step 3. Let o} be the extensions of the functionals (22). Then the standard,
o-conditioned (see e.g. [5]) reduced density matrices (the kernels of) p§ are given
by:

PAZL, - Talyr, - ) =

S I o EA I MEDRNY P EETANON

TESy j1=1 Jn=1
z]1+"'+.7n i i
L4 n
'fUA((U‘h,...,UJJ )
J1 Jn

Therefore the (extended to deal with the case of arbitrary classical b.c.) classical
analysis of Ginibre [21, 22] can be applied to controll the limits li/r\n o} (-) rigorously.

Step 4. Comparison of the corresponding Kirkwood-Salsburg resolvent expansions
leads to the statement on the o-independence of the limiting Gibbs measures dG.
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