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Introduction

The study of stochastic partial differential equations (abbreviated SPDE) in Hilbert
spaces with respect to Wiener type noise has been a very active topic of stochastic
analysis for many years (for an overview see [PR07], [DPZ92] or [LR15]). In recent
years there has been a growing interest in non-continuous noise (see [PZ07] or
[App05]), because of - among other things - its many applications in finance (see
[DNØP09] or [App05]).
In addition to the more common (pathwise) approaches to studying solutions of
SPDEs (e.g. the variational or the mild approach), it is also possible to study
solutions in terms of their laws by considering the corresponding Kolmogorov
equations, which are equations on functions or their corresponding Fokker–Planck
equations (abbreviated FPE), which are equations on measures.

Aim of this thesis and existing results

The purpose of this thesis is to prove - under certain conditions - existence of a
solution µt(dx)dt to the following Fokker-Planck equation

∫
H

ψ(t, x)µt(dx) =

∫
H

ψ(s, x)ξ(dx) +

t∫
s

∫
H

L0ψ(s′, x)µs′(dx)ds′ (FPE)

for dt-a.e. t ∈ [s, T ],

for all ψ ∈ D(L0) and an initial condition ξ, which is given by a probability measure
on a Hilbert state space H. The Kolmogorov operator L0 is given by

L0ψ(t, x) = (Dtψ)(t, x) + 〈(Dxψ)(t, x), F (t, x)〉+ Uψ(t, x) (1)

for all ψ in a suitable test function space WT,A. Furthermore, U is a non-local
Ornstein–Uhlenbeck operator to be specified later (see (2.7)) and F (t, x) : D(F ) ⊂
[0, T ]×H → H is measurable. Hence a solution is given by a path t 7→ µt in the
space of probability measures.

4



In [Wie11] a very similar case has been studied and parts of the presented frame-
work will be frequently used here. Existence and uniqueness have been shown
there for the case where F is Lipschitz continuous, but for merely measurable F
only uniqueness has been proven. Existence of a solution has been suggested as a
future field of study. Such studies have not been done yet. The aim of this thesis
is to realize this future study and prove existence.
The proof will follow the ideas of [BDPR10, Sect. 2], where existence and unique-
ness of the solution have been shown in the case of Wiener noise, so we also
compliment this work.

The Fokker–Planck equation is completely determined by (1). To explain the
origin of the Kolmogorov operator, let us first consider the following stochastic
differential equation on a separable Hilbert space H{

dX(t) = [AX(t) + F (t,X(t))]dt+ dY (t),

X(s) = x0 ∈ H, 0 ≤ s ≤ t ≤ T
(SPDE)

with F as above and A : D(A) ⊂ H → H being a self-adjoint generator of a C0-
semigroup etA, t ≥ 0, in H. The noise term is given by dY (t) =

√
CdW (t)+dJ(t),

where W (t), t ≥ 0, is a cylindrical Wiener process on H, C is a symmetric positive
bounded operator in L(H)(:= {bounded linear operators on H}) and J(t) is a
Lévy process with bounded jumps.
We will now summarize the results of [Wie11], which are relevant for this work.
Let us denote the case, when the nonlinear drift F in (SPDE) is replaced with
a Lipschitz continuous FL, by adding a subscript L, i.e. (SPDEL). By [MPR10,
Thm. 2.4] (SPDEL) admits a unique mild solution. Using this and Itô’s formula,
the Kolmogorov operator corresponding to (SPDEL) has been identified in[Wie11,
Chpt. 4] to be

LLψ(t, x) = (Dtψ)(t, x) + 〈(Dxψ)(t, x), FL(t, x)〉+ Uψ(t, x) for all ψ ∈ WT,A.

In this case he has shown uniqueness and existence of solutions for the FPE related
to LL. In [Wie11, Chpt. 5.2] it has further been proven that the FPE associated
to L0 (i.e. general measurable F ) has at most one solution. However, in this case
the relation of (SPDE) to L0 has not been shown.

Let us now give a short overview of the main ideas of the proof in [BDPR10, Sect.
2], where (SPDE) was considered with Wiener noise (from now on (SPDEW )) and
existence of a solution to the FPE corresponding to (SPDEW ) was shown.
The authors consider (SPDE) with a special bounded Fα instead of F , which
has nice approximation properties, and obtain a mild solution to this equation,
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which we call (SPDEα). Using this solution, they solve the FPE with Fα replacing
F and obtain solution measures µαt (dx)dt. The authors proceed to show uniform
tightness for these measures, allowing them to apply Prohorov’s Theorem to receive
a limiting measure. They carry on to show that this limit measure solves the FPE.

Structure and differences in the method of proof

Let us give an overview of the structure of this thesis and on the way explain our
approach and own contributions.
This thesis is divided in three chapters. The first chapter gives a short summary of
some essential results about semigroups and Lévy processes, including stochastic
integration theory with respect to martingale measures.
The second chapter contains our preparations for the main proof, our precise con-
ditions and an explanation for the choice of Kolmogorov operator. It concludes
with the formulation of the main theorem.
The last chapter is devoted to the proof of the main theorem, which is structured
in three steps.

The first chapter starts with the defintion of a C0-semigroup, followed by a state-
ment of some of their elementary properties. In particular we define infinitesimal
generators and their Yosida approximations. We then proceed to explain fractional
powers and exponentials of unbounded positive self-adjoint operators. The main
reference in this part is [Paz83].
We then address Lévy processes, beginning with general properties, followed by
stochastic integration with respect to martingale measures, which is suitable for
type of Lévy processes considered in this thesis. We have opted for the martingale
measure framework instead of integration via compensated Poisson measures in
the version of [Kno05, Sect. 2.3], because it is more similar to the Wiener case of
[PR07, Sect. 2.3.2] in terms of the used elementary functions, which is crucial in
Lemma 2.3. We could have used the integration framework with respect to general
Lévy processes following [PZ07, Sect. 8.2], but the established Itô-Isometry is not
as explicit as the one given in [Sto05, Prop. 3.1.3], whose form will be essential
for Lemma 2.3.
We then elaborate on our choice of noise, in particular reviewing general existence
conditions for the stochastic convolution and finally defining the notion of a mild
solution. Special notice should be taken of the reference [Sto05], which is our main
reference in the integration part, and [AR05], where the Lévy–Itô decomposition
was shown for Banach spaces.

The second chapter begins with stating our general conditions. Extra attention
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should be given to the condition that (−A)2δ−1 is of trace class for some δ ∈ [0, 1
2
],

since this condition differs from the original one given in [BDPR10]. The condition
there, that (−A)2δ should be of trace class, seems to be a misprint. We also add
special boundedness conditions for the Lévy measure corresponding to the Lévy
process (see Condition 2.2), which we will heavily use in Chapter 3, especially in
Claim 3.7 and the last approximation in Step 3 of the main proof.
One of the main results of the second chapter is the following bound for the
stochastic convolution YA from Lemma 2.3:

sup
t∈[0,T ]

E[
∣∣(−A)δYA(t)

∣∣2] <∞.

This inequality is vital for step 2 of the main proof and could not be directly
extended from the Wiener case to the Lévy case. This is the reason for the choice
of the afore mentioned special integration framework. By showing that (−A)δ can
indeed be taken under the stochastic convolution integral and using the special
Itô Isometry for martingale measures to explicitly compute the existence of the
resulting stochastic convolution, we were able to prove this bound for our Lévy
type noise.
We then explain our choice of the Kolmogorov operator L0, introduce the Fokker–
Planck equation and define the notion of a solution to the FPE.
For this approach it is necessary that Lα corresponds to (SPDEα) and that we
have a mild solution to (SPDEα). Therefore, we then present our main assumption
that (SPDEα) admits a mild solution and that the solution solves the martingale
problem for Lα, which gives us our desired correspondence of Lα to (SPDEα),
according to Lemma 2.14.
We then proceed to show the equivalence of (FPE) and

T∫
0

∫
H

L0ψ(r, x)µr(dx)dr = −
∫
H

ψ(0, x)ξ(dx) for all t ∈ [s, T ] and ψ ∈ WT,A

(see Lemma 2.12). This equivalence was not shown in [Wie11, Rem. 2.2.6]. We
finish the chapter with the statement of our main theorem.

The third chapter consists solely of the main proof. Let us now give a more de-
tailed outline of the three steps and the main differences to the proof presented in
[BDPR10].
Step 1 starts with the proof of finiteness of the following integral of our approxi-
mating solution measure µαt to (FPEα):∫

H

|x|2 µαt (dx) ≤ C <∞,
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thus proving tightness with respect to the weak topology for this family of mea-
sures. Here we use a different approximation (utilizing the eigenbasis of A), than
was suggested in [BDPR10], to deal with the unboundedness of A.
This allows us to apply Prohorov’s Theorem repeatedly to obtain the limit mea-
sure candidate µt. The most notable change in this step - besides extensions and
little adaptations - lies in Claim 3.7. In this claim - as in [BDPR10] - we show the
equicontinuity of

t 7→
∫
H

ψ(t, x)µαt (dx) (2)

for fixed ψ ∈ WT,A. However, due to the more general noise, we had to make use of
an additional boundedness condition (see Condition 2.2) to achieve equicontinuity
despite the more general noise.
In Step 2 we begin similarly by computing

T∫
s

∣∣(−A)δx
∣∣2 µαt (dx)dt ≤ C <∞ (3)

and using this, we deduce that the measures µαt (dx)dt are strongly tight, which
enables us to apply Prohorov’s Theorem again to conclude that µαnt dt → µtdt
weakly on [0, t] ×H for some (sub-)sequence αn → 0. This part does not require
major changes to accommodate the larger class of noise, except for the change of
the test function space.
The third step begins by two lengthy calculations to prove the continuity of

H 3 x 7→
∫
H

ψ(t, x+ y)− ψ(t, x)− H∗〈(Dxψ)(t, x), y〉H
1 + |y|2

M(dy), (4)

where M is the Lévy measure corresponding to Y , and to prove the continuity of

H 3 x 7→ 1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉νt(dξ), (5)

where νt(dξ) is a certain measure depending on the chosen test function. These
calculations are only necessary in the Lévy case and are needed to control the
"jump-parts" of L0.
We then proceed to prove that µt(dx)dt solves (FPE). To this end we use the
above mentioned equivalent formulation of the Fokker–Planck equation to rewrite
our approximating solution (FPEα) as

T∫
s

∫
H

Lαnψ(t, x)µαnt (dx)dt = −
∫
H

ψ(s, x)ξ(dξ).
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We then proceed to show weak convergence of the left hand side for each summand
of the Kolmogorov operator individually, using heavily our previously established
weak convergence of the approximation measures.
The convergence of the jump part of L0 follows by the continuity results (Equations
(4) and (5)) and the previous mentioned boundedness condition 2.2.
For the leftover uncontinuous part we had to adjust the approximation approach
taken in [BDPR10]. We could leave out an approximation in [BDPR10] dealing
with the part of the linear drift in L0, since our test functions only take non-zero
values on a finite subspace of H (see Remark 3.14).
Furthermore, we could omit an approximation by affine linear functions, which
was in [BDPR10] realized by one-dimensional Riemann sums. This is in our case
not necessary, since the test functions are in our case cylinder functions in space.

Future topics of research
A possible extension of the results presented here could be to allow a broader range
of noise, namely dropping the bounded jump condition on the noise part.
It also seems reasonable to hope that it is possible to drop Assumption 2.7 (ex-
istence of a mild solution to (SPDEα)), since it might already be consequence of
Assumption 2.15 (existence of a solution to the martingale problem for Lα).

I would like to thank Prof. Dr.Michael Röckner for his guidance and support. Fur-
ther, I would like to thank Dr. Shun-Xiang Ouyang for his help.
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Chapter 1

Prerequisites

1.1 Semigroups
In this section we are going to define C0-semigroups, which are important objects
in the study of partial differential equations. They can be thought of as an infinite
dimensional operator valued generalisation of exponential functions.
We are only going to cover some basic properties and theorems, which we will later
need for our proof, such as the Lévy-Itô-decomposition, Yosida approximations
and fractional powers. For a very thorough treatment of semigroups we refer to
[Paz83] and to [DPZ92] for an introduction to semigroups in the context of SPDE
on Hilbert spaces.
Let (B, | · |B) be a Banach space.

Definition 1.1 (C0-semigroup). We call a family S = {S(t), t ≥ 0} of bounded
linear operators on a Banach space (B, | · |B) a strongly continuous semigroup of
bounded linear operators (or short C0-semigroup) iff

i) S(0) is the identity operator I,

ii) S(t)S(s) = S(t+ s) for all t, s ≥ 0,

iii) we have for all x ∈ B that |S(t)x− x|B → 0 as t ↓ 0.

If only i) and ii) hold, we call the family simply semigroup.

Theorem 1.2. Let S be a C0-semigroup. Then there exist constants ω ≥ 0 and
M ≥ 1 such that

‖T (t)‖ ≤Meωt for 0 ≤ t <∞.

We call a C0-semigroup with ω = 0 uniformly bounded. If additionally M = 1 we
call it a C0-semigroup of contractions.
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Proof. See [Paz83, Thm. 2.2].

Infinitesimal generators

Definition 1.3 (Infinitesimal generator). For a semigroup S we call the linear
operator defined by

Ax = lim
t↓0

S(t)x− x
t

for all x ∈ D(A)

on

D(A) = {x ∈ X| lim
t↓0

S(t)x− x
t

exists }

the infinitesimal generator A of the semigroup S, where we write D(A) for the
domain of A.

Remark 1.4. An infinitesimal generator A of a C0-semigroup has a dense domain
on B and we have that A is closed (see [Paz83, Cor. 2.2]).

The following theorem shows how a semigroup interacts with its infinitesimal gen-
erator.

Theorem 1.5. Let S be a C0-semigroup on B and let A be its infinitesimal gen-
erator.

i) For x ∈ B we have

lim
h→0

1

h

t+h∫
t

T (s)xds = T (t)x.

ii) For x ∈ B we have

t∫
0

T (s)x ds ∈ D(A)

and

A

 t∫
0

T (s)xds

 = T (t)x− x.
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iii) For x ∈ D(A) we have T (t)x ∈ D(A) and

d

dt
T (t)x = A T(t)x = T (t)Ax.

iv) For x ∈ D(A) we have

T (t)x− T (s)x =

t∫
s

T (s′)Axds′ =

t∫
s

AT (s′)xds′.

Proof. See [Paz83, Thm. 2.4].

Yosida approximations

Since the infinitesimal generator A of a C0-semigroup S(t) is not necessarily
bounded but only closed, it is often necessary to use approximations An of A,
which are bounded. These approximations arise naturally out of the formulation
of the Hille-Yosida theorem, for which we are going to refer to [DPZ92, P. 371,
Thm. A.2].
Recall that the resolvent of a linear operator A is defined as

R(λ,A) := (λI − A)−1

for λ ∈ p(A), where we denote the resolvent set of A as p(A). For closed A this
operator is bounded (cf. [DPZ92, P. 371]).

Definition 1.6 (Yosida approximation). For a C0-semigroup S(t) with infinitesi-
mal generator A and ‖S(t)‖ ≤MeωT for all t ≥ 0 we call the operators

An := nAR(n,A) with n ≥ ω

the Yosida approximations of A.

Remark 1.7. We have that ]ω,∞[⊂ p(A) for the generator A of C0-semigroup.
[DPZ92, p. 372, A.2]

That the Yosida approximations An retain some relation to A can be seen in the
next two theorems.

Theorem 1.8. Let A be the infinitesimal generator of a C0-semigroup S(t) and
let An be its Yosida approximation. Then we have

lim
n→∞

Anx = Ax for x ∈ D(A).
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Proof. See [DPZ92, Prop. A.3].

Theorem 1.9 (Exponential of Yosida approximations). For an infinitesimal gen-
erator A of a semigroup of contractions S(t) we have for its Yosida approximations
An that

S(t)x = lim
n→∞

etAnx.

Proof. [Paz83, p.11, Cor. 3.5]

Fractional Powers, exponentials of operators and the spectral
theorem

From now on we are going to restrict ourselves to the case of a Hilbert-space H
with inner product 〈 · , · 〉 and corresponding norm | · |. Let us explain how to
define the operator h(T ) for a Borel measurable map h : H → H and self-adjoint
operator T : H ⊃ D(T )→ H. We are going to translate the spectral theorem for
self-adjoint operators from [Wer07, Thm. VII.3.2.], since it includes the definition
of the functional calculus in the case of an unbounded A. We then proceed to
explain Tα and eT .

Theorem 1.10 (Spectral theorem for self-adjoint operators). Let T : H ⊃ D(T )→
H be self-adjoint. Then there exists a unique spectral measure E with

〈Tx, y〉 =

∫
R

λd〈Eλx, y〉 for all x ∈ dom(T ), y ∈ H.

For Borel measurable h : R→ R and

Dh =

x ∈ H|
∫
R

|h(λ)|2 d〈Eλx, y〉

 ,

we have a self-adjoint operator h(T ) : h ⊃ Dh → H given by

〈h(T )x, y〉 =

∫
R

h(λ)d〈Eλx, y〉.

Translated from and proof contained in [Wer07, Thm. VII.3.2.].
Thus if A is a positive self-adjoint operator on a Hilbert-space we can use h(λ) =
I]0,∞[λ

α for α ∈ R to define its fractional power using the spectral decomposition
as

Aα =

∫ ∞
0

h(λ)dEλ.
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where E(λ) denotes the corresponding spectral measure. It is defined on

D(Aα) :=

{
x ∈ H|

∫ ∞
0

h(λ)d〈Eλx, y〉 <∞
}
.

For details on this case see [Kla08, P. 42].

Let us now take a look at the exponential of operators in the context of oper-
ator semigroups. Let S(t) be C0-semigroup of bounded linear operators on H
and A its infinitesimal generator. If A is bounded (i.e. when S(t) is uniformly
continuous cf. [Paz83, Thm. 1.2]) we can write

T (t) = etA :=
∞∑
n=0

(tA)n

n!

since ‖etA‖ ≤
∑∞

n=0
tn‖A‖n
n!

= et‖A‖ and thus etA is a bounded operator. Here we
denote the standard operator norm by ‖ · ‖. We have T (t) = S(t) (see [Paz83,
Thm. 1.2 and 1.3]). For C0-Semigroups A is in general not bounded, but only
closed. Thus etA can not be defined as above, since it would not necessarily be
well defined. But there are some ways in which one can give meaning to etA.
For example, we can define T (t) = etA =: limλ→∞ e

tAλx as the limit of its Yosida
approximation as in Theorem 1.9. Another possible interpretation is given in the
following theorem.

Theorem 1.11. We have for a C0-semigroup S(t) with generator A and

A(h)x :=
S(h)x− x

h

for h ∈ R+, that for all x ∈ B

T (t)x = lim
h↓0

etA(h)x

uniformly in t on every bounded interval.

Proof. See [Paz83, Thm. 8.1].

This gives us a reasonable interpretation of etA in case of general unboundedness,
which is still formally incorrect.
For the special case that A is a self-adjoint operator (not necessarily bounded) we
can use the spectral theorem above and define etA by

〈etAx, y〉 =

∫
R

etλd〈Eλx, y〉

on D(etA) := {x ∈ H|
∫
R e

tλd〈E(λ)x, x〉 <∞}.
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1.2 Lévy processes
Let (Ω,F , (Ft)t≥0,P) be stochastic basis and H a separable real Hilbert space with
inner product 〈 · , · 〉.
Definition 1.12 (Lévy process). We call an H-valued (Ft)t≥0 adapted stochastic
process Y (t) a Lévy process iff:

i) the increments of Y are independent, i.e. Y (t2) − Y (t1) is stochastic inde-
pendent of Y (s2)− Y (s1) for all 0 ≤ s1 ≤ s2 ≤ t1 ≤ t2 ≤ ∞ ,

ii) the increments of Y are stationary, i.e. for every s ∈ R+ the distribution of
Y (t+ s)− Y (t) is independent of the choice of t ∈ R+,

iii) Y (0) = 0 holds P-almost surely,

iv) Y is stochastically continuous, i.e. for every ε > 0 and any t ≥ 0 we have
that

lim
h→0

P[|Y (t+ h)− Y (t)| ≥ ε] = 0 for all h ∈ R+.

See [PZ07, Def. 4.1] for a slightly more general definition on Banach spaces.

Properties

We will present some general results and theorems about Lévy-Processes in Hilbert
spaces in this chapter, without proof, for the convenience of the reader.
Lemma 1.13. Every Lévy-Process has a cádlág modification.
Proof. See [PZ07, Thm. 4.1]
Definition 1.14 (Lévy measure). We call a measure M ∈M(H) a Lévy measure
iff M({0}) = 0 and ∫

H

(|y|2 ∧ 1)M(dy) <∞

By the Lévy-Khinchin formula, it is possible to specify the type of Lévy process by
writing a triple [a,Q,M ] where we call a the drift part, corresponding to the linear
drift part of the Lévy noise. We refer to Q as the Wiener part, since it specifies the
covariance of the Wiener noise contained in a Lévy process. By the noise part we
mean M , since it describes the distribution of Jumps, i.e. the number of jumps up
to time 1 contained in Bx,ε ⊂ H (Ball around x with radius ε) is given byM(Bx,ε).
Since it is also possible to identify the parameter [a,Q,M ] of a Lévy-process using
the Lévy-Itô decomposition, we will omit stating the Lévy-Khinchine decomposi-
tion.
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Poisson Processes

In the following we give a short summary of the connection of Lévy processes to
Poisson processes and state the famous Lévy-Itô representation for Hilbert space
valued Lévy processes. We will follow the framework of [Sto05], which in turn
generalizes [App06] using some results from [AR05]. A different approach can be
found in [PZ07].
Let us now take a closer look at the discontinuities of Lévy processes. Such a
discontinuity at time t can be measured as ∆X(t) := X(t)−X(t−) whereX(t−) :=
limt′↑tX(t′). In [AR05] the following theorems have been shown for a Lévy-Process
(Xt)t≥0 on a Banach-space E with its corresponding Borel σ-algebra B(E). We
will only state these theorems for Hilbert spaces.

Theorem 1.15. Let A ∈ B(H) separated from 0, i.e. 0 ∈ Āc. Then we can define

N(t, A, ω) = N(t, A) :=
∑

0≤s≤t

IA(∆Xs) = #{0 < s ≤ t | ∆X(s) ∈ A}

and N(t, A) is for t ∈ [0, T ] an adapted counting process without explosion. Addi-
tionally it is a Poisson Process.

Proof. See [AR05, Thm. 2.7]

Theorem 1.16 (Poisson random measure). For fixed t ∈ [0, T ] and ω ∈ Ω the
function

N(t, · , ω) : B(H \ 0)→ R+ ∪ {+∞}

has for P-almost all ω an unique extension to a σ-finite measure νt on B(H)
with νt({0}) = 0. From now on we will write N(t, dx) instead of νt(dx) and call
N(t, dx) a Poisson random measure. Further, if we set for all A ∈ B(H \ {0}),
with A seperated from 0, then

ν̃ : B(H \ 0)→ R+ ∪ {+∞}
A 7→ E[N(1, A)].

The measure ν̃ can also be extended to a unique σ-finite measure ν on B(H) with
ν({0}) = 0. This measure is a Lévy measures and if the Lévy process X has the
characteristic triplet [a,Q,M ], it equals the measure M .

Proof. See [AR05, Thm. 2.17, Cor. 2.18, Thm. 2.21].
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Theorem 1.17 (Compensated Poisson random measure). Let M be the Lévy mea-
sure of the Lévy-Process (Xt)t≥0. Then we can define the compensated Poisson
random measure

Ñ(t, A) := N(t, A)− tM(A).

For A ∈ B(H \ {0}), with A separated from 0, we have that (Ñ(t, A)) is a (Ft)-
martingale and that E[Ñ(t, A)] = 0.

Proof. See [Sto05, Lem. 2.3.8].

Now we can define integration with respect to these measures.
For A ∈ B(H \ 0) separated from 0 and f : A→ H, B(A ∩H)/B(H) measurable,
we can define the integration as∫

A

f(x)N(t, dx) :=
∑

0<s≤t

f(∆X(s))IA(∆X(s)).

For M integrable f (i.e. f ∈ L1((A,B(A),M |A)→ H)) we can now define∫
A

f(x)Ñ(t, dx) =

∫
A

f(x)N(t, dx)− t
∫
A

f(x)M(dx)

where the last part is the usual Bochner integration. For a more exhaustive treat-
ment of integration with respect to Poisson random measures in space see [Sto05,
2.4].

Theorem 1.18. Let f ∈ L2
M := L2(H \ {0},M ;H) then we have for A ∈ B(H)

that

M(t) =

∫
A∩{|x|<1}

f(x)Ñ(t, dx)

is a cádlág (i.e. right-continuous with left limits) square integrable martingale with
M({0}) = 0.

Proof. See [Sto05, Prop. 2.4.6].

The next theorem will give very important insight into the structure of the jumps
of a Lévy processes.
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Theorem 1.19 (Lévy-Itô decomposition). Let (Yt)t≥0 be a Lévy-Process on a
Hilbert space H and M the corresponding Lévy measure.
Suppose Nt(ω, dx) is the associated Poisson random measure and Nt(ω, dx) −
tM(dx) the compensated Poisson random measure related to the Lévy process
(Yt)t≥0. Then for all K ≥ 0, there is αK ∈ H such that for all t ≥ 0

Yt = Bt +

∫
{|x|<K}

x(Nt(dx)− tν(dx)) + αKt+

∫
{|x|≥K}

xNt(dx)

where Bt is a H -valued centered Brownian motion. Further, we have that for all
A ∈ B(H \ 0), with A seperated from 0, that (Nt(A))t≥0 is independent of (Bt)t≥0.

Proof. [AR05, Thm. 4.1].

As we can see every Lévy process consists of a martingale part and a non martingale
part.

Lt = Bt +

∫
{|x|<K}

x(Nt(dx)− tν(dx))

︸ ︷︷ ︸
Martingale

+αKt+

∫
{|x|≥K}

xNt(dx)

︸ ︷︷ ︸
Non martingale

In most of this thesis it will be necessary to restrict ourselves to martingale
type Lévy noise, since it would be difficult to control the unbounded jump part∫
{|x|≥K} xNt(ω).

Martingale measures

The following notion is a simplified version of [Sto05] and [App06], who generalize
the concept of martingale measures from the finite dimensional version of [Wal86]
to Hilbert spaces. Throughout this part we will work on a Ball S ⊂ H with S =
{x ∈ H| |x| < K} and use the σ-Algebra A := {A,A ∪ {0}|A ∈ B(S) and 0 6∈ Ā}.
Corresponding to this let Sn := {x ∈ S| 1

n
≤ |x| ≤ K} for arbitrarily large K ∈ N.

These unusual spaces are needed to evade working on general Lusin spaces (see
[Sto05, p. 42]), which is unnecessary in our case.

Definition 1.20 (Martingale measures). We call a function

M : R+ ×A× Ω→ H

an (Ft)-martingale measure iff

i) we have M(0, A) = M(t, ∅) = 0 P-almost surely for all A ∈ A,
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ii) we have for all t > 0 M(t, A ∪ B) = M(t, A) + M(t, B) P-almost surely, for
every pair of disjoint A,B ∈ A,

iii) we have sup
A∈B(Sn)

E |M(t, A)|2 <∞ for all n ∈ N,

iv) (M(t, A), t ≥ 0) is strongly cádlág square integrable (Ft)-martingale for all
A ∈ A,

v) we have for all n ∈ N and (Aj) ∈ B(Sn) with Aj ↓ ∅ that lim
j→∞

E[|M(t, Aj)|2] =

0.

To connect this definition to our setting we will state the following lemma.

Lemma 1.21. The martingale part of the Lévy-Itô decomposition of a Lévy process

M(t, A) = BQ(t)δ0(A) +

∫
A\{0}

xÑ(t, dx) (1.1)

is a martingale measure for all t ≥ 0 and A ∈ A.

Proof. See [Sto05, Thm. 2.5.2] where also orthogonality and independence of
increments were proven.

We call M(t, A) in (1.1) a Lévy martingale measure.
We have to introduce a bit more theory for martingale measures, to start with
stochastic integration.

Definition 1.22 (Positive operator valued measure). We call a family of positive
operators T = {TA, A ∈ A} on H, which are bounded, non-negative and self
adjoint, a positive operator valued measure iff T∅ = 0 and TA∪B = TA + TB for all
disjoint A,B ∈ A.
We call T decomposable iff we can find σ-finite measure ν on (H,A) and a family
{Tx, x ∈ H} of bounded non negative self-adjoint operators on H with

TAy =

∫
A

Txyν(dx) with A ∈ A, y ∈ H,

for which we additionally need that x 7→ Txy is measurable.

This property is connected to martingale measures in the following way: We say
that a martingale measure M is nuclear with respect to a radon measure τ on R+
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and a nuclear positive operator valued measure TA (i.e. TA is a nuclear operator
for every A ∈ A) iff

E[〈M(]s, t], A), x〉 · 〈M(]s, t], A), y)〉] = 〈x, TAy〉 · τ(]s, t])

for 0 ≤ s < t <∞, A ∈ A, x, y ∈ H.
In the context of the Lévy martingale measure we get the following theorem about
decomposability.

Lemma 1.23 (Decomposition of Lévy martingale measure). Let M(t, A) be Lévy
martingale measure. Then M is nuclear with (T, λ), with λ being the Lebesgue
measure on R+ and

TAy = Qyδ0(A) +

∫
A\{0}

〈x, y〉xM(dx)

We further have that T is decomposable in ν = M + δ0 and

Tx =

{
Q for x = 0.

〈x, · 〉x else.

A version of this has been shown in [Sto05, p.46 Prop 2.5.4].

Stochastic integral for martingale measures

We are now giving a rough overview of the construction of stochastic integral with
respect to martingale measures following [Sto05, Chpt. 3]. As mentioned in the
introduction, we have chosen the stochastic integration using martingale measures
in this version over [PZ07], since it gives us a very convenient Itô-isometry, which
would not be the case otherwise. See [PZ07, 8.7] for a different version of integra-
tion with respect to compensated Poisson measures.
The aim of this chapter is to identify a large space of integrands which can be
stochastically integrated with respect to a nuclear martingale measure.

For a decomposable operator T corresponding to a nuclear martingale measure
M(t, A) and 0 ≤ t ≤ T̃ , N2(T, t) := N T

2 (ν, τ ; t) denotes the space of all operator
valued mappings

R : [0, t]× Ω× S → {(A : H → H)|A is linear },
such that (s, ω, x) 7→ R(s, ω, x)y is F × B(S) measurable for every y ∈ H and we
further have

‖R‖N2(T,t) := E

 t∫
0

∫
S

‖R(s, x)
√
Tx‖2

2ν(dx)τ(dt)


1
2

<∞.
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If we endow N T
2 (t) with the inner product

(R1, R2)N2(T ;t) := E

 t∫
0

∫
S

tr(R1(s, x)TxR2(s, x)∗)ν(dx)τ(dt)

 ,
N2(T ; t) is a Hilbert space (see [Sto05, Lem. 3.1.1]). Here ‖ · ‖2 = ‖ · ‖L2 denotes
the Hilbert–Schmidt norm for operators. From now on we will write N2(T ) for
N T

2 (ν, τ ; T̃ ).
We now define a set of simple functions which we will use to define the integral by
approximation. Let

N2(T ) ⊃ S2(T ) :=

{
N1∑
i=0

N2∑
j=0

RijI]ti,ti+1]IAj

}

where N1, N2 ∈ N, (ti)i≥0 is a partition of [0, T̃ ], A0, . . . , AN2+1 ∈ A and Rijh is
Fti-measurable.
We have that S2(T ) is dense in N2(T ) (cf. [Sto05, Lem. 3.1.2]).
We now define the stochastic integral of a function R ∈ S2(T ) as

Jt(R) :=

N1∑
i=0

N2∑
j=0

RijM(]T̃ ∧ ti, t ∧ ti+1], Aj)

for 0 ≤ t ≤ T̃ .

Theorem 1.24 (Extension of the integral). The mapping Jt : S2(T )→ L2((Ω,F , P )→
H) can be extended to an isometry

Jt : N2(T )→ L2((Ω,F , P )→ H).

For R ∈ N2(T ) we call Jt(R) =:
∫ t

0

∫
S
R(s, x)M(ds, dx) the stochastic integral of

R with respect to the nuclear martingale measure M.

Proof. See again [Sto05, Prop. 3.1.3].

Properties

Let us state some properties for the just defined Integral.

Theorem 1.25 (Itô-Isometry). For R ∈ N2(T ) the process t∫
0

∫
S

R(s, x)M(ds, dx)


t≥0
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is square integrable martingale with values in H.
Further we have this form of the Itô-isometry:

E

 T∫
0

∫
S

‖I[0,t]R(s, x)
√
Tx‖2

2ν(dx)τ(dx)

 = E


∣∣∣∣∣∣
T∫

0

∫
S

R(s, x)M(ds, dx)

∣∣∣∣∣∣
2


Proof. See [Sto05, Thm. 3.1.5].

Similar to the case of stochastic integration with respect to cylindrical Wiener
processes we can pull bounded linear operators under the integral.

Theorem 1.26. For C ∈ L(H) and R ∈ N2(T ). Then CR ∈ N2(T ) and we have
for all t ∈ [0, T ]

C

t∫
0

∫
S

R(s, x)M(ds, dx) =

t∫
0

∫
S

CR(s, x)M(ds, dx) P -almost surely

Proof. See [Sto05, 3.3.1].

We will later need a more general version of this for closed operators. The following
theorem is similar to [DPZ92, 4.15] in the case of Wiener noise. The limit condition
might be superfluous.

Lemma 1.27. Let A be a closed operator, S2(T ) 3 Rn → R ∈ N2(T ) in N2(T ).
Assume

t∫
0

∫
S

ARn(s, x)M(ds, dx)→
t∫

0

∫
S

AR(s, x)M(ds, dx) in L2((Ω,F ,P)→ H)

holds and the integrals are well defined (i.e. AR,ARn ∈ N2(T ) and Rn, R ∈ D(A)).
Then we have for 0 ≤ t ≤ T

A

t∫
0

∫
S

R(s, x)M(ds, dx) =

t∫
0

∫
S

AR(s, x)M(ds, dx) P-a.s.

Proof. We need

t∫
0

∫
S

Rn(s, x)M(ds, dx)→
t∫

0

∫
S

R(s, x)M(ds, dx)
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as n→∞, which we have by construction and
t∫

0

∫
S

ARn(s, x)M(ds, dx)→
t∫

0

∫
S

AR(s, x)M(ds, dx),

which we have by assumption. Further we have

A

t∫
0

∫
S

Rn(s, x)M(ds, dx) = A

N1∑
i=0

N2∑
j=0

RijM(]t ∧ ti, t ∧ ti+1], Aj)

=

t∫
0

∫
S

ARn(s, x)M(ds, dx).

Therefore we have

A

t∫
0

∫
S

Rn(s, x)M(ds, dx)

=

t∫
0

∫
S

ARn(s, x)M(ds, dx)
n→∞→

t∫
0

∫
S

AR(s, x)M(ds, dx)

= A

t∫
0

∫
S

R(s, x)M(ds, dx)

where the last step holds by the closedness of A.

Lévy martingale processes with cylindrical Wiener noise

As we have seen in Theorem 1.19 a Lévy process Y on a Hilbert-space H can be
written as

Y (t) = Bt +

∫
{|x|<K}

x(Nt(dx)− tν(dx)) + αKt+

∫
{|x|≥K}

xNt(dx)

where Bt is a Q-Wiener process.
In our case we want to consider cylindrical Wiener processes as the Brownian part,
i.e. the case where Q is no longer of trace class. To achieve this we can look at
processes of the form

Y (t) = W (t) +

∫
{|x|<K}

x(Nt(dx)− tν(dx)) + αKt+

∫
{|x|≥K}

xNt(ω) (1.2)
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where W (t) is cylindrical wiener process as in [PR07, Sect. 2.5].
Of course this process can no longer be uniquely identified by its characteristic
triplet [α,Q,M ]. If we define J to be Lévy-process with triple [α, 0,M ] and W as
above we can write X(t) = J(t) + W (t). For simplicity we are going to refer to
this process as a cylindrical Lévy process.
In our case we are going to restrict the class of noise further, by assuming that the
jumps of our Lévy process are bounded by K, i.e. |∆Y | < K and thus reducing
our process to

Y (t) = W (t) +

∫
{|x|<K}

x(Nt(dx)− tν(dx)). (1.3)

Integration with respect cylindrical Lévy process

We are only going to define integration with respect to cylindrical Lévy process in
the case where the Lévy part is a martingale, i.e. we have the case (1.3) and our
jump part is

J(t) =

∫
{|x|<K}

x(Nt(dx)− tν(dx)).

Now let X(t) = J(t) +W (t). We want to define∫ t

s

φ(t, x)dX(t) =

∫ t

s

φ(t, x)dW (t) +

∫ t

s

φ(t, x)dJ(t),

for a reasonable class of integrands φ.
A large class of integrands for the first part on the right hand side has been
identified in [PR07, 2.5] as

NW :=

{
Φ : [0, T ]× Ω→ L0

2|Φ predictable and P
(∫ T

0

‖Φ(s) ◦
√
Q‖2

L2
ds <∞

)
= 1

}
.

For the second part the space of potential integrands is N2(T ) in our framework.
Thus the integral makes sense as the sum of two H valued square integrable mar-
tingales for all φ ∈ NW ∩N2(T ).

Existence of the stochastic convolution

We will now define an object which is essential in the study of mild solutions.
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Definition 1.28 (Stochastic convolution). We call the following integral the stochas-
tic convolution corresponding to an H-valued Lévy process Y and a semigroup S

YS,C(t) :=

t∫
0

S(t− s)CdY (s),

for some linear operator C.

On notation: In cases where A is the infinitesimal generator of S and the choice
of C is obvious we write YA := YA,C := YS,C .
Let us now give conditions for existence of the stochastic convolution.

Theorem 1.29 (Existence of stochastic convolution). For a Lévy-process Y , C ∈
L(H), and S a C0-semigroup with infinitesimal generator A the stochastic convo-
lution YA,C : [0, T ]→ L2(H) given by

YA,C(t) =

t∫
0

S(t− s)CdX(s) for every t ≥ 0

exists.

Proof. See [Sto05, Thm. 4.1.7].

Existence of the stochastic convolution for “cylindrical lévy noise”

In the case of Y being a cylindrical Wiener process in the sense of (1.3) the
stochastic convolution splits into two integrals

YA,C =

t∫
0

S(t− s)CdW (s) +

t∫
0

S(t− s)CxÑ(ds, dx).

Let us look at the parts individually. For the Wiener part we have to check

P

(∫ t

0

‖S(t− s)C
√
Q‖2

2ds <∞
)

= 1.

For the jump part we rewrite using Lemma 1.21 (where we have no brownian part)

t∫
0

∫
S

S(t− s)CxÑ(ds, dx) =

t∫
0

∫
S

S(t− s)CM(ds, dx).
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Thus we have to see if S(t− s)C ∈ N T
2 . Utilizing the Itô isometry we compute:

t∫
s

∫
S

‖S(t− s)C
√
Tx‖2

2M(dx)ds ≤
t∫

s

∫
S

‖S(t− s)C‖2‖
√
Tx‖2

2M(dx)ds

≤
t∫

s

‖S(t− s)C‖2ds

∫
S

‖
√
Tx‖2

2M(dx)

≤
t∫

s

‖S(t− s)C‖2ds

∫
S

|x|2M(dx).

This give us reasonable conditions to check, for the existence of the stochastic
convolution.

Mild solution to SPDE with Lévy noise

We are now considering the SPDE on H

dX(t) = (AX(t) + F (t,X(t)))dt+ dY (t), (SPDE)
X(t0, t0, x) = X0,

for t0 ≤ t ≤ T . With A : H ⊃ D(A) → H being a linear operator and F :
R+ × H ⊃ D(F ) → H Borel measurable and Y a Lévy martingale in the sense
of 1.3. Further let X0 be square integrable Ft0-measurable random variable with
values in H. As usual we denote X(t) := X(t, t0, x0).

Definition 1.30. We call a predictable process X : [t0,∞) × Ω → H a mild
solution to (SPDE) with initial condition X(t0) = X0 if

sup
t∈[t0,T ]

E[|X(t)|2H ] <∞ for all T ∈ (t0,∞)

and if we have for all t ≥ t0

X(t) = S(t− t0)X0 +

∫ t

t0

S(t− r)F (r,X(r, s, x))dr +

∫ t

t0

S(t− r)dY (r) P-a.s. .

Furthermore all integrals involved should be well defined.
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Transition evolution operator

If we have a mild solution to a SPDE, we are often interested in the law of this
solution. One way of studying the law is via transition evolution operators.

Definition 1.31 (Transition evolution operator). If we have a solution X(t, s, x)
to (SPDE) in the sense of Definition 1.30 we will call the family of linear operators
Ps,t on Bb(H) (i.e. on bounded measurable function on H) given as

Ps,tφ(x) := E[φ(X(t, s, x))] for all φ ∈ Bb(H) (1.4)

the family of transition evolution operators corresponding to the mild solution X.

In the context of the Fokker-Planck equation we will be frequently considering the
following transformation for ξ ∈M1(H), i.e. a Borel measure of mass 1 on H,∫

H

(Ps,tφ)(x)ξ(dx) =

∫
H

E[φ(X(t, s, x))]ξ(dx)

=

∫
H

∫
H

φ(y) P ◦X−1(t, s, x)(dy)ξ(dx)

=

∫
H

∫
H

φ(y) pt(x, dy)ξ(dx)

=

∫
H

φ(y) µt(dy)

where we set pt(x, dy) := P ◦X−1(t, s, x)(dy) and µt(dx) := pt(x, dy)ξ(dx). Some-
times we will write for this transformation µt(dx) := P ∗s,tξ(dx).
For the case, where the initial condition measure ξ is a dirac measure, these mea-
sures give us the evolution in time of the distribution of the solution to the SPDE.
We have that ∫

H

φ(y)µt(dy) =

∫
H

Ps,tφ(y)ξ(dy) for all φ ∈ B(H). (1.5)

27



Chapter 2

Conditions, preparations and
formulation of the main theorem

We start this chapter by introducing our basic conditions on (SPDE), then using
these conditions we show an essential bound for the main proof in Lemma 2.3.
This leads us to the statement of our approximation conditions, which gives rise
to a family of SPDEs called (SPDEα). We will see in the main proof that this
family approximates (SPDE) in a certain sense, for which we need to assume that
each (SPDEα) admits a mild solution. We then define the space of test function
on which we then illustrate our specific Fokker-Planck equation and its solution.
Following this we go into detail about the choice of the Kolmogorov operator. We
then establish an equivalent formulation to (FPE) and discuss the relationship
between the solution of a martingale problem and a solution the Fokker-Planck
equation.

Let H be a seperable real Hilbert space with 〈 · , · 〉 as the inner product and let
| · | be the corresponding norm. Let (Ω,F , (Ft)t≥0,P) be a stochastic basis. From
now on we are considering the following stochastic partial differential equation

dX(t) = [AX(t) + F (t,X(t))] dt+ dY (t), (SPDE)
X(s) = x ∈ H with t ≥ s.

Condition 2.1 (General conditions). We have the following conditions on A :
D(A) ⊂ H → H :

a) A is self adjoint.

b) We have an orthonormal basis (ξi)i∈N of H with ξi being eigenvectors of A.

c) We have that 〈Ax, x〉 < 0 for every x ∈ D(A).
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d) A is the infinitesimal generator of a C0-semigroup etA in H for t ≥ 0.

e) We have for a δ ∈]0, 1
2
[ that (−A)2δ−1 is a trace class operator.

We assume that F : D(F ) ⊂ [0, T ]×H → H is a Borel measurable map.

By dY (t) =
√
CdW (t) + dJ(t) we denote a cylindrical Lévy process in the sense

of (1.2) with W being a cylindrical Wiener process and C : H → H a bounded
symmetric positive operator.

Condition 2.2 (Conditions on the jump part). J(t) is a Lévy process on H
with characteristic triplet [0, 0,M ], where M is Lévy measure with the following
properties:

a) J(t) can for some 0 < K <∞ be written as

J(t) =

∫
{|x|<K}

x(Nt(dx)− tM(dx))

where Nt is the Poisson measure and M the Lévy measure related to Y , i.e.
Ñ(t, dx) := Nt(dx)− tM(dx) is a compensated Poisson measure.

b) We have

sup
{x∈H}

∫
H

(fm(Pm(x+ y))− fm(Pmx))− H∗〈(Dxfm ◦ Pm)(x), y〉H
1 + |y|2

M(dy) <∞

for all fm ∈ S(Rm,R) and Pm : x 7→ (〈x, ξk1〉, . . . , 〈x, ξkm〉)T , where (ki)1≤i≤m
is a sequence in N without duplicates.

c) We have finite second moments of M , i.e.∫
H

|x|2M(dx) <∞.

Under this conditions we have for the stochastic convolution the following lemma,
which will be central in the proof of the main theorem (see Step 2, Claim 3.8)

Lemma 2.3. Under the above conditions we have

sup
t∈[0,T ]

E[
∣∣(−A)δYA(t)

∣∣2] ≤ cδ <∞.
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We will proof this lemma by splitting the stochastic convolution in a Wiener part
and a pure jump part. We will show for each convolution, that (−A)δ can be
taken into the integral. This will be more involved for the jump part, since we
have to deal with a double integral and we have no reference theorem that allows
us to take (−A)δ in the convolution integral. Once we have taken (−A)δ in the
convolution intgeral we compute finiteness explicitly for each part.

Proof. Recall that we can write dY (t) as

dY (t) =
√
CdW (t) +

∫
{|x|<K}

xÑ(dt, dx),

where we set Ñ(t, dx) = Nt(dx)− t ·M(dx).
Thus our stochastic convolution becomes

YA(t) =

t∫
s

S(t− s)
√
CdW (s)

︸ ︷︷ ︸
:=WA(t)

+

t∫
s

∫
{|x|<K}

S(t− s)xÑ(ds, dx)

︸ ︷︷ ︸
:=JA(t)

.

Now we consider our equation and apply the elementary inequality (a + b)2 ≤
2(a2 + b2) for a, b ∈ R:

sup
t∈[0,T ]

E
[∣∣(−A)δYA(t)

∣∣2] ≤ 2( sup
t∈[0,T ]

E
[∣∣(−A)δWA(t)

∣∣2]+ sup
t∈[0,T ]

E
[∣∣(−A)δJA(t)

∣∣2]).
We can thus consider the parts separately. We start with WA(t):

sup
t∈[0,T ]

E
[∣∣(−A)δWA(t)

∣∣2] = sup
t∈[0,T ]

E

∣∣∣∣∣∣
t∫

0

(−A)δS(t− s)
√
CdW (s)

∣∣∣∣∣∣
2

= E

 T∫
0

‖(−A)δS(T − s)
√
C ◦

√
Q‖2ds

 <∞,
where we first used [DPZ92, 4.15] to take (−A)δ into the integral and then Itô-
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isometry(compare [PR07, Prop. 2.3.5]). To apply [DPZ92, 4.15] we have computed

T∫
0

‖(−A)δS(T − s)
√
C ◦

√
Q‖2

L2ds ≤
T∫

0

‖(−A)δS(T − s)‖2
L2

:=η︷ ︸︸ ︷
‖
√
C ◦

√
Q‖2 ds

= η

T∫
0

∞∑
i=1

∣∣(−A)δS(T − s)ξi
∣∣2 ds

= η

T∫
0

∞∑
i=1

∣∣(−A)δe(T−s)Aξi
∣∣2 ds

= η

T∫
0

∞∑
i=1

∣∣(−λi)δe(T−s)λiξi
∣∣2 ds

= η

T∫
0

∞∑
i=1

∣∣(−λi)2δe2(T−s)λi
∣∣
R |ξi|

2 ds

= η
∞∑
i=1

|λi|2δR

T∫
0

∣∣e2(T−s)λi
∣∣
R ds

= η
∞∑
i=1

|λi|2δR
(

1

−2λi
e2(T−s)λi

)∣∣∣∣T
0

= η
∞∑
i=1

|λi|2δR

∣∣∣∣ 1

2λi

∣∣∣∣ ∣∣(1− e2Tλi)
∣∣

= η
1

2

∞∑
i=1

|λi|2δ−1
R

(
1− (e2Tλi)

)
≤ η

1

2
sup
i∈N

(1− e2Tλi)
∞∑
i=1

∣∣λ2δ−1
i

∣∣
R <∞,

(2.1)
where we call λi the eigenvalues of A corresponding to ξi, which are negative,
since −A is positive. Here we have used the inequality ‖ · ‖2 ≤ ‖ · ‖ · ‖ · ‖2 and
the spectral theorem.

Remark 2.4. In the second to last step we can see, that we at this point actually
need a slightly weaker condition than that (−A)2δ−1 should be trace-class.
At this point we precisely need

∑∞
i=1 |λi|

2δ−1
R

(
1− e2Tλi

)
<∞.
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Now we proceed with the jump part:

sup
t∈[0,T ]

E
[∣∣(−A)δJA(t)

∣∣2]) = sup
t∈[0,T ]

E


∣∣∣∣∣∣∣(−A)δ

t∫
s

∫
{|x|<K}

S(t− s)xÑ(ds, dx)

∣∣∣∣∣∣∣
2).

We want to apply Lemma 1.27 to take (−A)δ under the integral sign. Therefore
we need to check, if

T∫
0

∫
{|x|<K}

(−A)δRn(s, x)Ñ(ds, dx)
n→∞→

T∫
0

∫
{|x|<K}

(−A)δS(T − s)Ñ(ds, dx) (2.2)

in L2((Ω,F ,P)→ H) for a sequence Rn of our choice with Rn ∈ S2 and Rn(s)→
S(T − s) in N2(T ).
The existence of the right hand side and the limit property will be proven later.
Let us first check the existence of the left hand side by using the Itô isometry. We
choose

Rn(s)x :=
∑

ti,ti+1∈τn

n∑
j=0

e(T−ti+1)λj〈ξj, x〉I]ti,ti+1](s)ξj

for some partition τn with fineness approaching 0 as n→∞. Thus we calculate:

E

 T∫
0

∫
{|x|<K}

(−A)δRn(s)xÑ(ds, dx)

 = E

 T∫
0

∫
{|x|<K}

‖(−A)δRn(s)
√
Tx‖2

2M(dx)ds


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and for the right hand side

T∫
0

∫
{|x|<K}

∥∥∥(−A)δRn(s)
√
Tx

∥∥∥2

2
M(dx)ds ≤

T∫
0

∥∥(−A)δRn(s)
∥∥2

2
ds

:=M̃︷ ︸︸ ︷∫
{|x|<K}

∥∥∥√Tx

∥∥∥2

2
M(dx)

≤
T∫

0

∥∥∥∥∥∥(−A)δ(
∑

ti,ti+1∈τn

n∑
j=0

e(T−ti+1)λj

· 〈ξj, x〉I]ti,ti+1](s)ξj)

∥∥∥∥∥∥
2

2

ds · M̃

≤
T∫

0

n∑
k=1

∣∣∣∣∣(−λk)δ(∑
ti∈τn

e(T−ti+1)λkI]ti,ti+1](s))

∣∣∣∣∣
2

ds · M̃

≤
T∫

0

∞∑
k=1

∣∣(−λk)δe(T−s)λk
∣∣2 ds · M̃,

where we proceed as in (2.1). The finiteness of M̃ is shown later in the proof (see
(2.3) below).
Next we need to show the existence of

E


∣∣∣∣∣∣
T∫
s

∫
S

(−A)δS(T − s)xÑ(ds, dx)

∣∣∣∣∣∣
2


=E

 T∫
0

∫
S

I]0,t](s)‖(−A)δS(T − s)
√

(Tx)‖2
2M(dx)ds

 ,
where we again used the Itô isometry. Recall that Tx = (x, · )x. We can compute

E[

T∫
0

∫
S

I]0,t](s)‖(−A)δS(T − s)
√

(Tx)‖2
2M(dx)dt] ≤

∫
S

‖
√

(Tx)‖2
2M(dx)

·
T∫

0

I]0,t](s)‖(−A)δS(T − s)‖2
2ds.
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We relax this to∫
S

‖
√

(Tx)‖2
2M(dx) ·

T∫
0

I]0,t](s)‖(−A)δS(T − s)‖2
2ds (2.3)

≤
∫
S

|x|2M(dx) ·
T∫

0

I]0,t](s)‖(−A)δS(T − s)‖2
2ds <∞, (2.4)

since
√
Tx is self adjoint and we have

‖
√
Tx‖2

2 = Tr(
√
Tx
√
Tx
∗
) = Tr(Tx) =

∞∑
i=1

〈〈x, ek〉x, ek〉 = |x|2 .

For the second multiplicand we use again (2.1). Now we show that the integrals
converge. Using Itô isometry and linearity we have to consider:

T∫
0

∫
S

‖(−A)δ(Rn(s)− S(T − s))
√
Tx‖2

2M(dx)ds

≤
T∫

0

‖(−A)δ(Rn(s)− S(T − s))‖2
2ds

∫
S

‖
√
Tx‖2

2M(dx)

≤
T∫

0

‖(−A)δ(
∑

ti,ti+1∈τl

n∑
j=0

e(T−ti+1)λj〈ξj, · 〉I]ti,ti+1](s)ξj − S(T − s))‖2
2ds · M̃

≤
T∫

0

∞∑
k=1

∣∣∣∣∣∣(−λk)δ(
∑

ti,ti+1∈τl

n∑
j=0

e(T−ti+1)λj〈ξj, ξk〉 I]ti,ti+1](s)− e(T−s)λk)

∣∣∣∣∣∣
2

ds · M̃

≤
n∑
k=1

T∫
0

∣∣∣∣∣∣(−λk)δ(
∑

ti,ti+1∈τl

e(T−ti+1)λkI]ti,ti+1](s)− e(T−s)λk)ds

∣∣∣∣∣∣
2

· M̃

+
∞∑
k>n

T∫
0

∣∣(−λk)δe(T−s)λk
∣∣2 ds · M̃,

where we have that

n∑
k=1

T∫
0

∣∣∣∣∣∣(−λk)δ(
∑

ti,ti+1∈τl

e(T−ti+1)λkI]ti,ti+1](s)− e(T−s)λk)ds

∣∣∣∣∣∣
2

n→∞→ 0,
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since the Riemann sum of a uniformly continuous function converges uniformly to
the function. And

∞∑
k>n

T∫
0

∣∣(−λk)δe(T−s)λk
∣∣2 ds

n→∞→ 0,

because it is by (2.1) a convergent sum and thus the tail sum converges to 0. So
by letting first l→∞ and then n→∞ we get our desired convergence.

Thus in this case we have:

sup
t≤T

E[
∣∣(−A)δYA(t)

∣∣2] ≤ 2(sup
t≤T

E[
∣∣(−A)δWA(t)

∣∣2 + sup
t≤T

∣∣(−Aδ)JA(t)
∣∣2]) <∞.

Further we will need the following conditions for our result, which are mainly
necessary for the approximation.

Approximation conditions

For our proof it is essential that we have a mild solution to a version of our SPDE,
which satisfies stronger conditions on the non-linear drift part F . We will now
consider SPDE with Fα instead of F , which is not only measurable, but bounded
and has further properties useful for approximation. We will refer to this SPDE
as (SPDEα). The precise conditions on F and Fα are:

Condition 2.5. There exist bounded measurable maps Fα : [0, T ]×H → H,α ∈
(0, 1] such that for all (t, x) ∈ D(F ) and all h ∈ D(A) the following conditions are
fulfilled:

a) limα→0〈h, Fα(t, x)〉 = 〈h, F (t, x)〉.

b) |Fα(t, x)| ≤ |F (t, x)|.

c) |〈h, F (t, x)− Fα(t, x)〉| ≤ αc(h) |F (t, x)|2 for some c(h) > 0.

Condition 2.6. There exists a K ≥ 0 and a lower semi-continuous function
V : [s, t]×H → [1,∞] such that |F | ≤ V on [s, T ]×H, where we set |F | =∞ on
([s, T ]×H) \D(F ) and we have

Pα
s,tV

2(t, · )(x) ≤ KV 2(t, x) <∞ for all (t, x) ∈ D(F ), t ∈ [s, T ], α ∈]0, 1]

For this Fα we assume the following existence result.

Assumption 2.7. (SPDEα) admits a cádlág mild solution.
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Space of test functions

As in [Wie11], we use a time dependent version of test function space W0 from
[LR02]. We refer to [Wie11] for a more explaination of the properties of the test
function space.
Let S(Rm,R) be the space ofm-dimensional real Schwartz functions and let (ξi)i∈N
be a orthonormal basis of H consisting of eigenvectors of A (as in Condition 2.1).
We define WT,A as the linear span of all functions ψ : [0, T ] ×H → R, for which
we can find an m ∈ R such that

ψ(t, x) = φ(t) · fm(〈ξ1, x〉, . . . , 〈ξm, x〉) for all (t, x) ∈ [0, T ]×H,

where φ ∈ C2([0, T ]), i.e. a twice differentiable R-valued function on [0, T ], with
φ(T ) = 0 and fm ∈ S(Rm,R) . Further we will useWA which is given by the linear
span of functions which can be written as

ψ(x) = fm(〈ξ1, x〉, . . . , 〈ξm, x〉) for all x ∈ H.

From now on let Pm : H → H be the to fm corresponding projection Pmx :=
〈ξ1, x〉ξ1 + . . . + 〈ξm, x〉ξm. We identify PmH with Rm by P̃m : H → Rm where
P̃m := (〈ξ1, x〉, . . . , 〈ξm, x〉)T . Sometimes we will write x̃ := P̃mx.
The inverse Fourier transform of ψ, which is denoted by gm : Rm → C, is uniquely
determined by

fm(y) =

∫
Rm

ei〈r,y〉Rmgm(r)dr

and we have gm ∈ S(Rm,C).
Now set νm(dr) := gm(r)dr and define

νt := φ(t)νm ·Π−1
m

where Πm := Rm 3 r 7→
∑m

j=1 rjξj ∈ H for some subset ξ1, . . . , ξm of (ξi)i∈N.

Remark 2.8. Note, that for each ψ ∈ WT,A we can identify a finite dimensional
subspace Hm of H, where ψ exclusively takes non zero values. As essentially finite
dimensional functions, these functions are weakly continuous (i.e. continuous with
respect to the weak topology).

2.1 Fokker-Planck equation
As we have seen it is possible to consider laws of (mild) solutions to (SPDE). This
gives rise to the question if it is possible to find an (integral-) equation, which
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varies on measures, to study these laws of solutions corresponding to (SPDE).
Essential for this approach is finding a concrete version of the infinitesimal genera-
tor corresponding to the transition evolution operator of our SPDE. This concrete
operator is usually defined on a much smaller test function space, which coincides
with the abstract operator on this smaller test function space. Let us assume that
this smaller test-function space is the earlier introduced WT,A and let us call the
infinitesimal generator in its abstract form L and the concrete one L0. It is also
possible to consider the Fokker-Planck equation without direct connection to a
SPDE, which is what we do in our case.

Choice of Kolmogorov operator and formulation of FPE

In this section we give a short overview of the results, which led to the choice of
the Kolmogorov operator in this setting.
In [LR04] the equation

dXt = (AXt + b(Xt))dt+ dYt (2.5)

with (Yt)t≥0 being a Lévy process on a Hilbert space H, A generating a C0-
semigroup on H and b being an uncontinuous drift has been considered (for precise
conditions see [LR04]).
In this case a concrete version of the infinitesimal generator corresponding to the
(2.5) was identified (see [LR04, Prop. 3.5]) as

L0u(x) = 〈A∗(u′(x)), x〉+ 〈u′(x), α〉+
1

2
−
∫
H′

〈ξ, Rξ〉ei〈ξ,x〉ν(dξ)

+

∫
H

(
u(x+ y)− u(x)− 〈u

′(x), y〉
1 + |y|2

)
M(dy)

for all x ∈ H and u ∈ WA, the time independent version of our test function space
WT,A. Here the authors set for simplicity 〈 · , · 〉 := H∗〈 · , · 〉H .
More similar to our case, in [Wie11, Rem. 3.2.2] the Kolmogorov operator for
(SPDE) has been given for the case that FL is Lipschitz in t. The concrete operator
LL takes for all ψ ∈ WT,A the form of

(LLψ)(t, x) = V0ψ(t, x) + 〈Dxψ(t, x), FL〉
= Dtψ(t, x) + Uψ(t, x) + 〈Dxψ(t, x), F 〉,

(2.6)
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where Dx is the Fréchet derivative, Dt the partial derivative in t and with the
Ornstein-Uhlenbeck part being

Uψ(t, · )(x) = 〈ADxψ(t, x), x〉+ 〈Dxψ(t, x), b〉 − 1

2

∫
H

〈ξQ, ξ〉ei〈ξ,x〉νt

+

∫
H

ψ(t, x+ y)− ψ(t, x)− 〈Dxψ(t, x), y〉
1 + |y|2

M(dy).
(2.7)

Since in our case we have a very similar situation, we are going to consider the
Kolmogorov operator LL for merely measurable F , i.e.

L0 := V0ψ(t, x) + 〈Dψ(t, x), F 〉.

This was also done in [Wie11, 5.2], but without showing the relation to (SPDE).
Further it has there been shown that the Fokker-Planck equation corresponding
to L0 has at most one solution for a reasonable initial condition.
Thus the Fokker-Planck equation of interests is∫

H

ψ(t, x)µt(dx) =

∫
H

ψ(s, x)ξ(dx) (FPE)

+

t∫
s

∫
H

L0ψ(r, x)µr(dx)dr for almost all t ∈ [s, T ]

Remark 2.9. Let us stress again that we do not claim, that L0 is directly related
to (SPDE), for example in the sense that it is the generator of a semigroup of
transition operators corresponding to a mild solution of (SPDE).

Definition 2.10 (Solution to Fokker-Planck equation). We call a probability ker-
nel µt(dx)dt with t ∈ [s, T ] solution to the Fokker-Planck equation with initial
condition ξ ∈M1(H) iff for all ψ ∈ WT,A

∫
H

ψ(t, x)µt(dx) =

∫
H

ψ(s, x)ξ(dx) +

t∫
s

∫
H

L0ψ(r, x)µr(dx)dr for almost all t ∈ [s, T ]

(FPE)

and all integrals above exist.

Remark 2.11. Intuitively the Fokker-Planck equation might seem reminiscent of
Theorem 1.5.iv), which can be thought of as the case where the transition evolution
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operators form C0-semigroup.

Ps,tx = Ps,sx+

t∫
s

Ps,s′Axds′

∫
H

Ps,txdξ =

∫
H

Ps,sxdξ +

∫
H

t∫
s

Ps,s′Axds′dξ

∫
H

x(Ps,t)
∗dξ =

∫
H

Idxdξ +

t∫
s

∫
H

Ax(Ps,s′)
∗dξds′

∫
H

xµt(dx) =

∫
H

xdξ +

t∫
s

∫
H

Axµs′(dx)ds′

Equivalent formulations of the Fokker-Planck equation

There are several different formulations for Fokker-Planck equations in different
settings (for an overview in the finite-dimensional case see [BKRS15]). We want
to present one formulation which is equivalent to (FPE), which will be essential
for the main proof. The essence of this formulation is, that it is possible to write
the FPE with a single integration of the solution measure.

Lemma 2.12. If we consider (FPE) which holds for almost all t ∈ [s, T ] on WT,A

(where ψ ∈ WT,A implies ψ(T, · ) = 0), then (FPE) is equivalent to

T∫
s

∫
H

L0ψ(s′, y)µs′(dy)ds′ = −
∫
H

ψ(s, y)ξ(dy) (FPE2)

for all ψ ∈ WT,A.

Proof. (FPE)⇒ (FPE2):
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As we know ψ ∈ WT,A implies ψ(T, · ) = 0 and therefore if (FPE) holds for T

∫
H

ψ(T, x)µT (dx) =

∫
H

ψ(s, x)ξ(dx) +

T∫
s

∫
H

L0ψ(r, x)µr(dx)dr

⇒ 0 =

∫
H

ψ(s, x)ξ(dx) +

T∫
s

∫
H

L0ψ(r, x)µr(dx)dr

⇒ −
∫
H

ψ(s, x)ξ(dx) =

T∫
s

∫
H

L0ψ(r, x)µr(dx)dr.

If (FPE) does not hold for T we can find a sequence tn → T , for which (FPE)
holds for every tn and we have

lim
n→∞

∫
H

ψ(tn, x)µtn(dx) = 0.

Now we can proceed as above.

(FPE2)⇒ (FPE):
Let L0 = ∂

∂t
+ L′0, χ ∈ C∞0 (s, T ), then (χ ·ψ) ∈ WT,A and we have

=0︷ ︸︸ ︷
−
∫
H

χ(s)ψ(s, x)ξ(dx) =

T∫
s

∫
H

L0(χ ·ψ)(r, x)µr(dx)dr

⇒ 0 =

T∫
s

∫
H

∂

∂r
(χ(r)ψ(r, x))µr(dx)dr +

T∫
s

χ(r)

∫
H

(L′0ψ)(r, x)µr(dx)dr

⇒ 0 =

T∫
s

∫
H

(
∂

∂r
χ)(r)ψ(r, x) + χ(r)(

∂

∂r
ψ)(r, x)µr(dx)dr +

T∫
s

χ(r)

∫
H

L′0ψ(r, x)µr(dx)dr

⇒ 0 =

T∫
s

∂

∂r
χ(r)

∫
H

ψ(r, x)µr(dx)dr +

T∫
s

χ(r)

∫
H

L0ψ(r, x)µr(dx)dr
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⇒ 0 = [χ(r)

∫
H

ψ(r, x)µr(dx)]
∣∣T
s︸ ︷︷ ︸

=0

−
T∫
s

χ(r)
∂

∂r

∫
H

ψ(r, x)µr(dx)dr

+

T∫
s

χ(r)

∫
H

L0ψ(r, x)µr(dx)dr,

where we used the product rule, integration by parts and the definition of L0.
Letting χ(r)→ I[s,t](r), using that

∫
H
ψ(r, x)µr(dx) is weak differentiable (see the

second to last step) and that the integral is absolutely continuous in r, as a one
dimensional weak differentiable function([Alt12, U1.6, P. 71]), we can apply the
fundamental theorem of calculus for almost all s′, t ∈ [s, T ]

⇒ 0 = −
t∫

s′

∂

∂r

∫
H

ψ(r, x)µr(dx)dr +

t∫
s′

∫
H

L0ψ(r, x)µr(dx)dr

⇒ 0 = −
∫
H

ψ(t, x)µt(dx) +

∫
H

ψ(s, x)µs′(dx) +

t∫
s′

∫
H

L0ψ(r, x)µr(dx)dr

where the last equation holds for almost all t.

Solution to the martingale problem

Recall that for the main proof we consider L0 with Fα instead of F . We are going
to refer to these Kolmogorov operators as

Lα := V0ψ(t, x) + 〈Dψ(t, x), Fα〉

or longer

Lαψ(t, x) = Dtψ(t, x) + 〈Dψ(t, x), Fα(t, x)〉+ Uψ(t, x) for all ψ ∈ WT,A

and set Xt := Xα(t, s, x).

Definition 2.13 (Solution to martingale problem). We call a cádlág, progressively
measurable stochastic process (Xt)0≤t≤T on (Ω,F ,P) taking values in H, a solution
to the martingale problem for Lα iff

ψ(Xt)− ψ(Xs)−
t∫

s

(Lαψ)(s′, Xs′)ds
′ is an Ft-martingale, for all ψ ∈ WA.
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Martingale problems are closely related to martingale solutions and Fokker-Planck
equations. For the latter we proof a short lemma.

Lemma 2.14. If Xα is a solution to the martingale problem for Lα then the
measures given by µαt := (Pα

s,t)
∗ξ(dx) solve the Fokker-Planck equation:

∫
H

ψ(x)µαt (dx) =

∫
H

ψ(x)ξ(dx) +

t∫
s

ds′
∫
H

Lαψ(x)µαs′(dx) for all t ∈ [s, T ]

with initial condition ξ ∈M1(H) and ψ ∈ WA.

For a finite dimensional version of this statement see [BRS11, Ex. 1.6].

Proof. Set Xα(t) := Xα(t, s, x) and recall Pα
s,t(ψ)(x) = E[ψ(Xα(t, s, x))] . By

assumption we have that for all ψ ∈ WA and for all t ∈ [s, T ]

ψ(Xα(t))− ψ(Xα(s))−
t∫

s

(Lαψ)(Xα(s′))ds′

is a martingale. We compute

E

ψ(Xα(t))− ψ(Xα(0))−
t∫

s

(Lαψ)(Xα(s′))ds′

 = 0

⇒ E[ψ(Xα(t))] = ψ(x) + E

 t∫
s

(L0ψ)(s′, Xα(s′))ds′


⇒ Pα

s,t(ψ)(x) = ψ(x) +

t∫
s

E [(L0ψ)(Xα(s′))] ds′

⇒ Pα
s,t(ψ)(x) = ψ(x) +

t∫
s

Pα
s,s′(L0ψ)(x)ds′

⇒
∫
H

Pα
s,t(ψ)(x)dξ =

∫
H

ψ(x)dξ +

t∫
s

∫
H

Pα
s,s′(L0ψ)(x)ξ(dx)ds′

⇒
∫
H

ψ(x)µαt (dx) =

∫
H

ψ(x)dξ +

t∫
s

∫
H

(L0ψ)(x)µαs′(dx)ds′.
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This Lemma, by itself, shows only that a solution to the martingale problem for
Lα provides us with a solution to a version of (FPE) for functions in the time
independent test function space WA. This already implies that the solution also
solves (FPE) for functions in the time dependent test function space WT,A, which
is proven for finite-dimensions in [BKRS15, Prop. 6.1.2] and can be shown with a
similar proof on Hilbert spaces.
Let us now introduce our last assumption.

Assumption 2.15 (Kolmogorov operator of approximation). The unique cádlág
mild solution to (SPDE) is a solution of martingale problem for Lα.

By Lemma 2.14 these assumptions give us measures µαt := (Pα
s,t)
∗ξ which solve∫

H

ψ(t, x)µαt (dx) =

∫
H

ψ(s, x)ξ(dx) (FPEα)

+

t∫
s

∫
H

Lαψ(r, x)µαr (dx)dr for almost all t ∈ [s, T ].

Thus we see that Lα is directly related to [SPDEα].

Main theorem

Since we have formulated all our conditions and assumptions we can state the
main theorem.

Theorem 2.16. (Main Theorem) Assuming Conditions 2.1, 2.2, 2.5, 2.6 hold and
we further have Assumption 2.7 and 2.15. If we have continuity of

(t, x)→ 〈h, Fα(t, x)〉 ∀h ∈ D(A), α ∈ (0, 1) (2.8)

on [s, T ]×H and an initial condition ξ ∈M1(H) satisfying∫ T

s

∫
H

(V 2(s′, x) + |x|2)ξ(dx)ds′ <∞, (2.9)

then there exists a solution µt(dx)dt to (FPE). It satisfies the following properties:

i) supt∈[s,T ]

∫
H
|x|2 µt(dx) <∞,

ii) t→
∫
H
ψ(t, x)µt(dx) is continuous on [s, T ] for all ψ ∈ WT,A,
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iii) We have for a C > 0∫ T

s

∫
H

[
V 2(s′, x) +

∣∣(−A)δx
∣∣2 + |x|2

]
µs′(dx)ds′

≤ C

∫ T

s

∫
H

(V 2(s′, x) + |x|2)ξ(dx)ds′,

(2.10)

iv) (FPE) holds for all t ∈ [s, T ].
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Chapter 3

Proof of the main theorem

First let us give a short overview of the proof of the main theorem, i.e. Theo-
rem 2.16. The proof has three steps. The results in each step are structured in
claims.
The main idea of the proof is to first show tightness for the solution measures
of the approximating (SPDE). Then we use the better convergence properties of
measures via Prohorov’s theorem to identify a candidate for a solution to (FPE)
(Step 1 and Step 2).
Finally we will show that this candidate indeed solves (FPE) (Step 3).

Step 1: Identifying limit measures

Let us recall our definition of the stochastic convolution in the case of Levy-noise:

YA(t, s) :=

∫ t

s

S(t− r)dY (r).

Remark 3.1. In the following we will use weak convergence with respect to the
standard | · |-topology which we will refer to as simply weak convergence. Addi-
tionally we will need to use weak convergence with respect to the weak topology
for better compactness properties, which we will denote as τω-weak convergence.

Claim 3.2. (Tightness) The solution measures µαt to our approximating (FPE)
are τω-tight (i.e. tight with respect to the weak topology).

Proof. For α ∈ (0, 1], t ≥ 0 let Xα(t) := Xα(t, s, x0) be the mild solution to
(SPDEα) (see Assumption 2.7) and let

X̃α(t) = Xα(t)− YA(t, s). (3.1)
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Let us set for fixed ω ∈ Ω

F̃α(t, x) := Fα(t, x+ YA(t)(ω)) for x ∈ H

Thus we have

X̃α(t) = S(t− s)x0 +

t∫
s

S(t− r)F̃α(r, X̃α(r, s, x))dr,

where X̃α(t) is continuous by [LR15, Lem. 6.2.9].
We define for this process an approximating process using Pn : x 7→

∑n
i=1〈x, ξi〉ξi,

with (ξi)i∈N being the eigenbasis of A, by

X̃n
α(t) := PnX̃α = e(t−s)A Pnx0︸︷︷︸

=:xn

+

t∫
s

e(t−r)A PnFα︸ ︷︷ ︸
=:Fn

(r, X̃α(r, s, x))dr.

For s ≤ t ≤ T we have using the definition of X̃n
α

dtX̃n
α(t) =

d

d t

e(t−s)Axn +

t∫
s

e(t−r)AF n(r, X̃α(r, s, x))dr


= Ae(t−s)Axn +

d

d t

t∫
s

e(t−r)AF n(r, X̃α(r, s, x0))dr

= Ae(t−s)Axn + A

t∫
s

e(t−r)AF n(r, X̃α(r))dr + F n(t, X̃α(t))

= AX̃n
α(t) + F n(t, X̃α(t)).
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The third step holds because of the Leibniz integral rule, which gives us

d

d t

t∫
s

e(t−r)AF n(r, X̃α(r, s, x0))dr =

t∫
s

d

d t
(e(t−r)AF n(r, X̃α(r, s, x0)))dr

+ e(t−t)AF n(t, X̃α(t, s, x0)) · 1

− e(t−s)AF n(t, X̃α(s, s, x0)) · 0

=

t∫
s

Ae(t−r)AF n(r, X̃α(r, s, x0))dr

+ e(t−t)AF n(t, X̃α(t, s, x0))

= A

t∫
s

e(t−r)AF n(r, X̃α(r, s, x0))dr

+ F n(t, X̃α(t, s, x0)).

The derivation above is valid, since we work on the finite dimensional subspace
PnH ⊂ H and thus the unboundedness of A and the domain D(A) ⊂ H of A pose
no problem.
Taking 〈 · , X̃n

α(t)〉 on both sides, using product rule for inner products ( d
d t
〈α(t), α(t)〉 =

2〈α(t), α′(t)〉) and using that (−A)
1
2 is again self-adjoint, we compute:

d

d t
X̃n
α(t) = AX̃n

α(t) + F n(t, X̃α(t))

⇒ 〈 d

d t
X̃n
α(t), X̃n

α(t)〉 = 〈AX̃n
α(t), X̃n

α(t)〉+ 〈F n(t, X̃α(t)), X̃n
α(t)〉

⇒ 1

2

d

d t

∣∣∣X̃n
α(t)

∣∣∣2 +
∣∣∣(−A)

1
2 X̃n

α(t)
∣∣∣2 = 〈F n(t,Xα(t)), X̃n

α(t)〉.
(3.2)

Integrating over (t, s) we get to

1

2
(
∣∣∣X̃n

α(t)
∣∣∣2 − |x0|2) +

t∫
s

∣∣∣(−A)
1
2 X̃n

α(s′)
∣∣∣2 ds′ =

t∫
s

〈F n(t, X̃α(t)), X̃n
α(t)〉dt,

So we have∣∣∣X̃n
α(t)

∣∣∣2 + 2

t∫
s

∣∣∣(−A)
1
2 X̃n

α(s′)
∣∣∣2 ds′ ≤ |x0|2 +

t∫
s

∣∣∣(X̃n
α(s′)

∣∣∣2 +
∣∣∣Fα(s′, X̃α(s′))

∣∣∣2)ds′.

(3.3)
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Also starting from (3.2), we get using integration by parts

e−t
∣∣∣X̃n

α(t)
∣∣∣− es ∣∣∣X̃n

α(s)
∣∣∣ = −

t∫
s

e−s
′
∣∣∣X̃n

α(s′)
∣∣∣2 ds′

+

t∫
s

2e−s
′
(
〈F n(s′, X̃α(s′)), X̃n

α(s′)〉 −
∣∣∣(−A)

1
2 X̃n

α(s′)
∣∣∣2) ds′.

Applying Young’s inequality yields

e−t
∣∣∣X̃n

α(t)
∣∣∣+ 2

t∫
s

e−s
′
∣∣∣(−A)

1
2 X̃n

α(s′)
∣∣∣2 ds′ = e−sxn + 2

t∫
s

e−s
′〈F n(s′, X̃α(s′), X̃n

α(s′)〉ds′

−
t∫

s

e−s
′
∣∣∣X̃n

α(s′)
∣∣∣2 ds′

≤ e−sxn +

t∫
s

e−s
′
∣∣∣F n(s′, X̃α(s′))

∣∣∣2 ds′.

We obtain for all 0 ≤ s ≤ t ≤ T

∣∣∣X̃n
α(t)

∣∣∣+ 2

t∫
s

∣∣∣(−A)
1
2 X̃n

α(s′)
∣∣∣2 ds′ ≤ e−s

e−t

xn +

t∫
s

∣∣∣F n(s′, X̃α(s′))
∣∣∣2 ds′


Now we can let n→∞ and using Fatou’s lemma we see

∣∣∣X̃α(t)
∣∣∣+ 2

t∫
s

∣∣∣(−A)
1
2 X̃α(s′)

∣∣∣2 ds′ ≤ lim
n→∞

∣∣∣X̃n
α(t)

∣∣∣+ 2 lim inf
n→∞

t∫
s

∣∣∣(−A)
1
2 X̃n

α(s′)
∣∣∣2 ds′

≤ eT

x0 +

t∫
s

∣∣∣F̃α(s′, X̃α(s′))
∣∣∣2 ds′

 <∞,

where we used that Fα is bounded. Resubstituting F̃α we can now conclude our
approximation and see

∣∣∣X̃α(t)
∣∣∣2 + 2

t∫
s

∣∣∣(−A)
1
2 X̃α(s′)

∣∣∣2 ds′ ≤ |x0|2 +

t∫
s

∣∣∣(X̃α(s′)
∣∣∣2 +

∣∣∣Fα(s′, X̃α(s′))
∣∣∣2)ds′.

(3.4)

48



Leaving out the second term on the left hand side and applying Gronwall’s lemma

(Theorem 3.16, setting f(t) =
∣∣∣X̃α(t)

∣∣∣2 and ε = |x0|2 +
∫ t
s
|Fα(s′, Xα(s′))|2 ds′) we

get to

∣∣∣X̃α(t)
∣∣∣2 ≤ et−s |x0|2 + et−s

t∫
s

|Fα(s′, Xα(s′))|2 ds′. (3.5)

For the last summand on the right hand side we can calculate

E

et−s t∫
s

|Fα(s′, Xα(s′))|2 ds′

 = et−s
t∫

s

E
[
|Fα(s′, Xα(s′))|2

]
ds′

= et−s
t∫

s

Pα
s,s′ |Fα(s′, x0)|2 ds′

≤ et−s
t∫

s

Pα
s,s′V

2(s′, x0)ds′

≤ et−sK

t∫
s

V 2(s′, x0)ds′.

Here we used the definition of the transition evolution operator (see (1.4)) as well
as Condition 2.5b) and Condition 2.6.
Thus by taking expectation of (3.5) we get:

E
[∣∣∣X̃(t)

∣∣∣2] ≤ et−s |x0|2 + et−sK

t∫
s

V 2(s′, x0)ds′. (3.6)

Resubstituting X̃ and using the elementary inequality a2 − 2b2 ≤ 2 |a− b|2 (see
Lemma (3.20)) we get:

E
[
|Xα(t, s, x0)|2

]
− 2E

[
|YA(t)|2

]
≤ 2E

[
|Xα(t)− YA(t)|2

]
.

Applying this to (3.6) we arrive at

E
[
|Xα(t, s, x0)|2

]
≤ 2e(T−s) |x0|2 + 2KeT−s

T∫
s

V 2(s′, x0)ds′ + 2κ
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for s ≤ t ≤ T and κ := supt∈[s,T ] E
[
|YA(t)|2

]
.

Integrating with the initial condition ξ over H and using (1.5) we get∫
H

|x|2 µαt (dx) =

∫
H

E
[
|Xα(t, s, x)|2

]
ξ(dx)

≤ 2κ+

∫
H

2eT−s |x|2 dξ +

∫
H

2κeT−s
T∫
s

V 2(s′, x)ds′ξ(dx)

≤ C1 +

T∫
s

∫
H

C2 |x|2 + C3V
2(s′, x)ξ(dx)ds′

≤ max(C1, C2, C3)(1 +

T∫
s

∫
H

|x|2 + V 2(s′, x)ξ(dx)ds′)

≤ C <∞.

(3.7)

Here we used the integrability condition on the initial condition (see (2.10)).
Now we have shown τω-tightness for the measures µαt , since for every ε > 0 we may
choose δ = C

ε
and have

C ≥
∫

{|x|2>δ}

|x|2 µαt (dx) ≥
∫

{|x|2>δ}

δµαt (dx) = δ ·µαt ({|x|2 > δ}).

which implies µαt ({|x|2 ≤ δ}) ≤ 1 − C
δ
. This shows τω-tightness since balls in H

are τω-compact (see [Meg98, 2.6.19]).

Claim 3.3. (Prohorov I) For any given sequence in (0, 1] convergent to zero there
exists a subsequence αn → 0 and measures µt for all t ∈ [0, T ], such that the
measures µαnt converge τω-weakly to µt for all t ∈ [0, T ].

Let us first give a short overview over the approach taken in this claim. We
first use Prohorov’s theorem to get a subsequence for every t ∈ [s, T ], for which
the measures converge to a limit measure. By repeatedly applying Prohorov’s
theorem (see 3.15) and using diagonalisation we can find a subsequence such that
our sequence of measures converges to µ̃t for every t ∈ Q ∩ [s, T ]. By a further
application of Prohorov’s theorem, but this time in t, we can assign a limit measure
µt for every t ∈ [s, T ] \Q.
A last application of Prohorov’ theorem will give us that the initial sequence of
measures converges for a sequence αn ↓ 0 towards µt independently of t. Below
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we have a diagram showing the relationship between the families of measures and
the associated sequences.

n ⊇ ∀t ∃ntk
Diagonalization

t∈Q∩[s,T ]
// ñk ∃

∈Q∩[s,T ]

rn(t) → t ∈ [s, T ] \Q

µαnt
Prohorov // µ

α
nt
k

t

τω-w.

��

µ
αñk
t

τω-w.

��
µ̃t µ̃t

Prohorov // µ̃rn(t)

τω-w.

��
µt

Proof. Using that closed balls are also metrizable (see [Meg98, 2.6.20]), we may
apply the second part of Prohorov’s theorem.
By applying Prohorov’s theorem to µαt with parameter α, we get that for any
sequence (αn)→ 0 we have for every t a subsequence (αntk) such that µ

α
nt
k

t → µ̃t ∈
M1(H) τω-weakly.
Now we use a diagonalisation argument to get an surjective enumeration q : N→ Q
ofQ and apply Prohorov’s theorem, so that (α

q(n+1)
nk ) is a subsequence of (α

q(n)
nk ) and

call the result αñk . Thus we have that µ
αñk
t → µ̃t τω-weakly for every t ∈ Q∩ [s, T ]

with each µ̃t ∈M1(H).
We apply Prohorov to the family of limits (µ̃t)t∈Q∩[s,T ], which is tight by Claim 3.4,
with parameter t to get for each t ∈ [s, T ]\Q a family of sequences rn(t) ∈ [s, T ]∩Q
each converging to t, satisfying µ̃rn(t) → µt τω-weakly.
Now we have a limit candidate family and the sequence αk := αñk

µt :=

{
µt for t ∈ [s, T ] \Q
µ̃t else

and we can claim one of the central results of Step 1:

µαnt → µt τω-weakly ∀t ∈ [s, T ] \Q.

Suppose the claim is wrong and fix t. We apply Prohorov to µαnt using αn as the
parameter and get that there is a subsequence (αnk) such that µαnkt → ν τω-weakly
for some ν ∈ M1(H) \ {µt}. Thus for some ψ ∈ WT,A, since it is by definition
measure separating, we have µt(ψ) 6= ν(ψ), where we define

µt(ψ) :=

∫
H

ψ(t, x)µt(dx).

51



But we also have:

|ν(ψ)− µt(ψ)| ≤
∣∣ν(ψ)− µαnkt

∣∣+
∣∣∣µαnlt (ψ)− µαnlrn(t)(ψ)

∣∣∣
+
∣∣∣µαnkrn(t)(ψ)− µ̃rn(t)(ψ)

∣∣∣+
∣∣µ̃rn(t)(ψ)− µt(ψ)

∣∣
If we first let k → ∞ and then n → ∞ the first, third and forth terms converge
by τω- weak convergence and the second by equicontinuity, which we show in
Claim 3.7, to zero. Thus we have µt(ψ) = ν(ψ), which is a contradiction to the
assumption and proves the above given central result of Step 1. So, now we can
conclude that we have µαnt → µt τω-weakly for all t ∈ [s, T ].

Claim 3.4. We have supt∈[s,T ]

∫
H
|x|2 µt(dx) <∞

Proof. By equation (3.7) we have the inequality for µαt , but since | · |
2 is a double

limit of bounded weakly continuous functions, we get the equation for µt.

Claim 3.5. For all u ∈ D(L0) the map t 7→
∫
H
u(t, x)µt(dx) is continuous

Proof. The continuity follows directly from 3.7, since ψ ∈ WT,A is weakly contin-
uous. Thus we get for every ψ ∈ WT,A and sufficiently small ε > 0(∫

H

ψ(t, x)µt(dx)−
∫
H

ψ(t, x)µt+ε(dx)

)
= lim

n→∞

(∫
H

ψ(t, x)µαnt (dx)−
∫
H

ψ(t, x)µαnt+ε(dx)

)
< δ

Lemma 3.6. The measure µt(dx) are probability kernels from ([s, T ],B([s, T ])) to
(H,B(H))

Proof. We need to show that t 7→ µt(A) is measurable on [s, T ] for all A ∈ B(H).
We will proof this by using a monotone class argument according to Theorem 3.19
to extent the continuity of t 7→

∫
H
u(t, x)µt(dx) to a larger space of functions

including indicator functions, such that we will see, that even t→ µt(A) is contin-
uous for all A ∈ B(A).
Define

H := {u : [s, T ]×H 7→ R bd. | t 7→
∫
H

u(t, x)µt(dx) continuous and well defined}

We want to show that H is a monotone vector space according to Definition 3.17.
We see that we have 1H = 1 ∈ H since it can be approximated by ψ(t, x) =
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φ(t)fnm(Pmx) = 1 · fnm(Pmx), with fnm ↑ 1 for which the continuity holds, and thus
we have the statement by Lebesgue’s dominated convergence theorem.
If we take (hi) ∈ H with hi ↑ h <∞. We can apply Lebesgue and see that h ∈ H.
Now we have to check if WT,A forms an algebra. So let us take ψ1, ψ2 ∈ WT,A

ψ1 ·ψ2 = (φ1(t) ·φ2(t))(f 1
m(Pmx) · f 2

n(Pnx)) ∈ WT,A

If we knew σ(WT,A) ⊇ B([s, T ] × H) (clear, since we can approximate all con-
tinuous functions by Schwartz functions pointwise), we would have that t 7→∫
H
u(t, x)µt(dx) is continuous for all bounded σ(WT,A)-measurable functions and

especially the needed measurability, since we have the continuity for indicator
functions.

To conclude step 1, we have to prove the equicontinuity used in Claim 3.2.

Claim 3.7 (Equicontinuity). For µαt (ψ) :=
∫
H
ψ(t, x)µαt (dx), t ∈ [s.T ], α ∈ [0, 1], ψ ∈

WT,A we have that
t 7→ µαt (ψ)

is equicontinuous on [s, T ].

Proof. To see this fix ψ ∈ WT,A and consider:

∣∣µαt2(ψ)− µαt1(ψ)
∣∣ =

∣∣∣∣∣∣
t1∫
s

∫
H

Lαψ(s′, x)µαs′(dx)ds′ −
t2∫
s

∫
H

Lαψ(s′, x)µαs′(dx)ds′

∣∣∣∣∣∣
=

t2∫
t1

∫
H

Dtψ(s′, x) + 〈ADxψ(s′, x), x〉+ 〈Dxψ(s′, x), Fα〉

+

∫
H

[
ψ(s′, x+ y)− ψ(s′, x)− 〈Dxψ(s′, x), y〉

1 + |y|2

]
M(dy)

−1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉νs′(dξ)

µαs′(dx)ds′.

Here we used that µαt solves (FPE) and the definition of L0. We are now going to
look at the individual parts separately. For the first summand we get∫ t2

t1

∫
H

Dtψ(s′, x)µαs′(dx)ds′ ≤ |t2 − t1| ‖Dtψ‖∞,
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where we denote ‖ · ‖∞ := sup[s,T ]×H | · |. For the linear drift part we compute:

t2∫
t1

∫
H

〈ADψ(t, x), x〉µαs′ds′ ≤

 t2∫
t1

∫
H

|x| |A∗Dxψ|µαs′(dx)ds′


≤

 t2∫
t1

∫
H

|x|2 µαs′(dx)ds′


1
2

·

 t2∫
t1

∫
H

|A∗Dx(s
′, x)ψ|2 µαs′(dx)ds′


1
2

≤

 t2∫
t1

∫
H

|x|2 µαs′(dx)ds′


1
2

·
(
|t2 − t1| ‖A∗Dxψ‖2

∞
) 1

2

≤

 t2∫
t1

∫
H

|x|2 µαs′(dx)ds′


1
2

︸ ︷︷ ︸
<∞, by Claim 3.7

|t2 − t1|
1
2 ‖A∗Dxψ‖∞,

where we first use the Cauchy-Schwartz’ inequality, then Hölder’s inequality (in
L(([0, T ], ds)× (H,µαs′); (H, | · |))).
We have ‖A∗Dxψ‖∞ <∞ since Dxψ only takes non zero values in a finite subspace
of H. Now we look at the non-linear drift part:

t2∫
t1

∫
H

〈Dxψ(t, x), Fα〉µαs′(dx)ds′ ≤
t2∫
t1

∫
H

|Dxψ(t, x)| |Fα(s′, x)|µαs′(dx)ds′

≤

 t2∫
t1

∫
H

|Fα(s′, x)|2 µαs′(dx)ds′


1
2
 t2∫
t1

∫
H

|Dxψ(s′, x)|2 µαs′(dx)ds′


1
2

≤

 t2∫
t1

∫
H

Pα
s,s′V

2(s′, x)ξ(dx)ds′


1
2
 t2∫
t1

∫
H

|Dxψ(s′, x)|2 dµαs′(dx)ds′


1
2

≤

 t2∫
t1

∫
H

KV 2(s′, x)ξ(dx)ds′


1
2
 t2∫
t1

∫
H

|Dxψ(s′, x)|2 µαs′(dx)ds′


1
2

≤

 t2∫
t1

∫
H

V 2(s′, x)ξ(dx)ds′


1
2

︸ ︷︷ ︸
<∞, by assumption for initial condition

K ‖Dxψ‖∞ |t2 − t1|
1
2 ,
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where we again first used Cauchy-Schwartz’ inequality, then Hölder’s inequality in
L(([0, T ], ds)× (H,µαs′); (H, | · |)) and later Condition 2.6. For the first jump-part
we can compute:

t2∫
t1

∫
H

∫
H

ψ(s′, x+ y)− ψ(s′, x)− 〈ψ(s′, x), y〉
1 + |y|2

M(dy)µαs′(dx)ds′

=

t2∫
t1

∫
H

φ(s′)

∫
H

(fm(x̃+ ỹ)− fm(x̃))− 〈Dxfm(x̃), y〉
1 + |y|2

M(dy)dµαs′(dx)ds′

≤( sup
[t1,t2]

φ(s′) · sup
{x∈H}

∫
H

(fm(x̃+ ỹ)− fm(x̃))− 〈Dxfm(x̃), y〉
1 + |y|2

M(dy))

∫ t2

t1

∫
H

dµαs′(dx)ds′

≤( sup
[t1,t2]

φ(s′) · sup
{x∈H}

∫
H

(fm(x̃+ ỹ)− fm(x̃))− 〈Dxfm(x̃), y〉
1 + |y|2

M(dy)) |t2 − t1| ,

(3.8)
since we assumed for fixed fm ∈ S(Rm,R)

sup
{x∈H}

∫
H

(fm(x̃+ ỹ)− fm(x̃))− 〈Dxfm(x̃), y〉
1 + |y|2

M(dy) := Λ <∞. (3.9)

And the second yields, using νt = φ(t) · νm ◦ Π−1
m and νm(dr) = gm(r)dr with

gm ∈ S(R,C),

∣∣∣∣∣∣−
t2∫
t1

1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉νs′(dξ)dµαs′(dx)ds′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t2∫
t1

∫
H

−1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉φ(s′)νm ◦ Π−1
m (dξ)dµαs′(dx)ds′

∣∣∣∣∣∣
≤ |

t2∫
t1

∫
H

−1

2
sup
t∈[s,T ]

φ(t)︸ ︷︷ ︸
:=C1

sup
x,ξ∈H

ei〈ξ,x〉
∫
Rm

|〈Πmr,QΠmr〉gm(r)| dr

︸ ︷︷ ︸
:=C2

dµαs′(dx)ds′|

≤
∣∣∣∣|t2 − t1| (−1

2
)C11C2

∣∣∣∣
(3.10)
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Putting all the parts together we arrive at:

∣∣µαt2(ψ)− µαt1(ψ)
∣∣ ≤ |t2 − t1| ‖Dtψ‖∞

+

 t2∫
t1

∫
H

|x|2 dµαs′(dx)ds′


1
2

|t2 − t1|
1
2 ‖A∗DXψ‖∞

+

 t2∫
t1

∫
H

V 2(s′, x)dξds′


1
2

K ‖Dxψ‖∞ |t2 − t1|
1
2

+ sup
[t1,t2]

φ(s′) · sup
{x∈H}

∫
H

(fm(x+ y)− fm(x))− 〈Dxfm(x), y〉
1 + |y|2

M(dy) |t2 − t1|

+

∣∣∣∣|t2 − t1| (−1

2
)C11C2

∣∣∣∣ ≤ Π |t1 − t2|
1
2 ,

for some Π > 0, since |t2 − t1| ≤ k |t2 − t1|
1
2 on [s, T ] for some constant k > 0.

Step 2: Weak convergence of the measures

Claim 3.8. By choosing a further subsequence denoted again by αn the measures
µαnt (dx)dt converge weakly to µt(dx)dt on [0, t]×H with µt(dx) as before.

Proof. By (3.4) we have

∣∣∣X̃(t)
∣∣∣2 + 2

T∫
s

∣∣∣(−A)
1
2 X̃(s′)

∣∣∣2 ds′ ≤ |x0|2 +

T∫
s

∣∣∣X̃(s′)
∣∣∣2 + |Fα(s′, Xα(s′))|2 ds′.
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Leaving out
∣∣∣X̃(t)

∣∣∣2 on the left hand side and using (3.5) we get to

T∫
s

∣∣∣(−A)
1
2 X̃(s′)

∣∣∣2 ds′ ≤ |x0|2 +

T∫
s

(es
′−s |x|2 + es

′−s

s′∫
s

|Fα(s′′, Xα(s′′))|2 ds′′

+ |Fα(s′, Xα(s′))|2)ds′

≤ |x0|2 (1 +

T∫
s

es
′−sds′) + (T − s)eT−s

T∫
s

|Fα(s′′, Xα(s′′))|2 ds′′

+

T∫
s

|Fα(s′, Xα(s′))|2 ds

≤ C1 |x0|2 + C2

T∫
s

|Fα(s′, Xα(s′))|2 ds′.

And by multiplying with ‖(−A)−
1
2

+δ‖2, which exists since −1
2
+δ < 0 and (−A)2δ−1

is of trace class, we arrive at

‖(−A)−
1
2

+δ‖2C(|x|2 +

T∫
s

|Fα(s′, Xα(s′))|2 ds′) ≥
T∫
s

∣∣∣‖(−A)−
1
2

+δ‖(−A)
1
2 X̃(s′)

∣∣∣2 ds

≥
T∫
s

∣∣∣(−A)−
1
2

+δ(−A)
1
2 X̃(s′)

∣∣∣2 ds′

≥
T∫
s

∣∣∣(−A)δX̃(s′)
∣∣∣2 ds′.

Taking expectation, then using Fubini’s theorem for positive functions, resubsti-
tuting according to (3.1) and using the elementary inequality 2 |a− b|2 ≥ |a|2 −
2 |b|2(Lemma 3.20) we see that

T∫
s

E
∣∣(−A)δXα(s′)

∣∣2 ds′ − 2

T∫
s

<cδ, by Lemma 2.3︷ ︸︸ ︷
E
[∣∣(−A)δYA(s′, s)

∣∣2] ds′ ≤ 2E
T∫
s

∣∣∣(−A)δX̃(s′)
∣∣∣2 ds′

≤ 2C‖(−A)−
1
2

+δ‖2E

|x|2 +

T∫
s

|Fα(s′, Xα(x, s′))|2 ds′

 .
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This leads us, using (1.4), to

T∫
s

E
∣∣(−A)δXα(t)

∣∣2 dt ≤ 2C‖(−A)−
1
2

+δ‖2

|x|2 +

T∫
s

Pα
s,s′ |Fα(s′, x)|2 ds′

+ 2cδT.

Further integrating with ξ over H yields

∫
H

T∫
s

E
∣∣(−A)δXα(t, s, x)

∣∣2 dtξ(dx) =

T∫
s

∫
H

∣∣(−A)δx
∣∣2 µαt (dx)dt

≤
∫
H

2C‖(−A)−
1
2

+δ‖

|x|2 +

T∫
s

Pα
s,s′ |Fα(s′, x)|2 ds′

 ξ(dx) + 2cδT

≤ 2C‖(−A)−
1
2

+δ‖(
∫
H

|x|2 ξ(dx)

+

T∫
s

∫
H

Pα
s,s′ |F (s′, x)|2 ds′ξ(dx)) + 2cδT

≤ 2C‖(−A)−
1
2

+δ‖(
∫
H

|x|2 ξ(dx)

+ C

∫
H

T∫
s

KV 2(s′, x)ds′ξ(dx)) + 2cδT

≤ ‖(−A)−
1
2

+δ‖C2K(

∫
H

|x|2 ξ(dx)

+

∫
H

T∫
s

V 2(s′, x)ds′ξ(dx)) + 2cδT := κ,

(3.11)
where we used assumption 2.6 and Fubini’s theorem.
Now we can check, if we can apply Prohorov’s Theorem one last time. We set
Kε =

{∣∣(−A)δx
∣∣ ≤ c

}
. Since (−A)−2δ is of trace class, it follows that (−A)−δ is

compact (since the eigenvalues converge to 0). We compute

(−A)−δ{x ∈ H|x ≤ c} = (−A)−δ(−A)δ{x ∈ H|
∣∣(−A)δx

∣∣ ≤ c} = Kε.

Thus Kε is compact as the image of a bounded set under a compact operator, and
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we see

T∫
s

∫
Kc
ε

cµαt (dx)dt ≤ κ.

Thus µαt (dx)dt is tight. Note that we indeed have shown tightness and not τω-
tightness.

An application of Prohorov’s Theorem yields a new convergent subsequence of
µαnt dt, which we again simply denote by µαnkt dt. We call the limit of this sequence
µ(dt, dx).
Now we want to see if µ(dt, dx) = µt(dx)dt. For this purpose fix f ∈ Cb([0, T ];R)
and ψ ∈ WT,A and look at

T∫
s

∫
H

f(t)ψ(t, x)µt(dx)dt =

T∫
s

f(t) lim
n→∞

∫
H

ψ(t, x)µαnt (dx)dt

= lim
n→∞

T∫
s

∫
H

f(t)ψ(t, x)µαnt (dx)dt

=

T∫
s

∫
H

ψ(t, x)φ(x)µt(dx, dt)

The first equality follows by Claim 1 (the weak continuity of µαnt ) combined with
the weak continuity of ψ, the second by Lebesgue’s dominated convergence theorem
and the third by the above usage of Prohorov’s theorem.

Claim 3.9. We have the bound from Equation (2.10).

Proof. Using Condition 2.6 we see

t2∫
t1

∫
H

V 2(s′, x)µαs′(dx)ds′ ≤ K

t2∫
t1

∫
H

V 2(s′, x)ξ(dx)ds′.
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Combining this with (3.7) and (3.11) we get

T∫
s

∫
H

V 2(s′, x)µαs′(dx)ds′ +

T∫
s

∫
H

|x|2 µαs′(dx)ds′ +

T∫
s

∫
H

∣∣(−A)δx
∣∣2 µαt (dx)dt

≤ max(C1, C2, C3)

1 +

T∫
s

∫
H

|x|2 + V 2(s′, x)dξds′


+K

T∫
s

∫
H

V 2(s′, x)ξ(dx)ds′ +

∫
H

T∫
s

V 2(s′, x)ds′dξ(x) + 2cδT

≤ C̃

 T∫
s

∫
H

V 2(s′, x) + |x|2 ξ(dx)ds′ + 1

 .

Note that this implies that µt(D(F (t, · )) = 1 for almost all t ∈ [s, T ].

Step 3: The measure solves the FPE
Recall that for fixed ψ ∈ WT,A we can write

ψ(t, x) = φ(t) · fm(〈ξ1, x〉, . . . , 〈ξm, x〉) = φ(t) · fm(P̃mx).

Claim 3.10. Fix ψ ∈ WT,A. The function

J(t, x) :=

∫
H

[
(ψ(t, x+ y)− ψ(t, x))− 〈Dxψ(t, x), y〉

1 + |y|2

]
M(dy)

is continuous in x.

The main idea of the proof is, to split the integral in two parts and then control
each part separately. The first one is an integral over a small ball around 0,
where we need to control possible huge mass of M , by showing that our integrand
decreases quadratically as zero is approached. We then use the existence of the
second moments of M .
The second part is an integral over the rest of the space, where we have to use
the structure of the test functions to control the integral, especially the uniform
continuity in x.

Proof. Recall that we write ξ1, . . . , ξm for the basis of the finite subspace on
which fm is defined and the corresponding projection Pmx =:

∑m
i=1〈x, ξi〉ξi. Fur-

ther we will write ξ̃1, . . . , ξ̃m for the projection of the basis to Rm and P̃mx =
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(〈x, ξ1〉, . . . , 〈x, ξm〉)T = x̃ . Because of the structure of our test-functions we can
reduce much of the computations to a finite dimensional subspace.

∫
H

[
(ψ(t, x+ y)− ψ(t, x))− 〈Dxψ(t, x), y〉

1 + |y|2

]
M(dy)

= φ(t)

∫
H

[
(fm(x̃+ ỹ)− fm(x̃))− 〈Dxfm(x̃), y〉

1 + |y|2

]
M(dy)

We will now split the integral in two parts({|y| < ε}(J<) and {|y| ≥ ε}(J≥)), to
control the possibly huge mass of M around 0.
First we consider the set around 0 . We will now use a second order Taylor
expansion of fm(x̃+ ỹ) with remainder, to rewrite the integral in terms of second
order dependency of y ∈ H. We have

fm(x̃+ ỹ) = fm(x̃) +
m∑
i=1

(Dξifm)(x̃)〈ξi, y〉+
∑
i,j≤m

(DξiDξjfm)(x̃)〈ξi, y〉〈ξj, y〉+Rx
f (y),

where we denote the partial derivative in direction ξ as Dξ and the second order
remainder term as Rx

f , for which we have
Rxf (y)

|y|2 →
y→0

0.

Recall that in our case the inner product 〈(Dxψ)(t, x), y〉, is in fact the dualization
bracket H∗〈(Dxψ)(t, x), y〉H . Thus in this case we have

H∗〈(Dxfm)(x̃),
m∑
i=1

〈y, ξi〉ξi〉H =
m∑
i=1

(Dξifm)(x̃)〈y, ξi〉.
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Now our initial equation simplifies to

∫
{|y|<ε}

[
(ψ(t, x+ y)− ψ(t, x))− 〈(Dxψ)(t, x), y〉

1 + |y|2

]
M(dy)

=φ(t)

∫
{|y|<ε}

[(
m∑
i=1

(Dξifm)(x̃)〈ξi, y〉+
∑
i,j≤m

(DξiDξjfm)(x̃)〈ξi, y〉〈ξj, y〉+Rx
f (y)

)

− H∗〈(Dxfm(x̃))), y〉H
1 + |y|2

]
M(dy)

=φ(t)

∫
{|y|<ε}

[(
1− 1

1 + |y|2

)
·

m∑
i=1

(Dξifm)(x̃)〈ξi, y〉

+
∑
i,j≤m

(DξiDξjfm)(x̃)〈ξi, y〉〈ξj, y〉+Rx
f (y)

]
M(dy)

≤φ(t)

∫
{|y|<ε}

[(
1− 1

1 + |y|2

)
k0 +

∑
i,j≤m

(DξiDξjfm)(x̃)〈ξi, y〉〈ξj, y〉+Rx
f (y)

]
M(dy)

≤φ(t)

∫
{0<|y|<ε}

[(
1− 1

1 + |y|2

)
k0 + k1〈ξi, y〉〈ξj, y〉+

Rx
f (y)

|y|2
|y|2
]
M(dy)

=φ(t)

∫
{0<|y|<ε}

[(
1− 1

1 + |y|2

)
k0 + k1〈ξi, y〉〈ξj, y〉+ k2|y|2

]
M(dy)

≤φ(t)(k1 + k2 + k0)

∫
{0<|y|<ε}

[(
1− 1

1 + |y|2

)
+ 〈ξi, y〉〈ξj, y〉+ |y|2

]
M(dy).

Here we have existence of the integral since we have for small y

((
1− 1

1 + |y|2

)
+ 〈ξi, y〉〈ξj, y〉+ |y|2

)
1

|y|2
≤ c, (3.12)

for some c > 0 and thus∫
{0<|y|<ε}

(
1− 1

1 + |y|2

)
+ 〈ξi, y〉〈ξj, y〉+ |y|2M(dy) ≤ c

∫
{0<|y|<ε}

|y|2M(dy) <∞.
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Let us now write the differences for x and x′

J<(t, x)− J<(t, x′) = φ(t)

∫
{0<|y|<ε}

[
(1− 1

1 + |y|2
) ·

m∑
i=1

((Dξifm)(x̃)− (Dξifm)(x̃′))〈ξi, y〉

+
∑
i,j≤m

(
(DξiDξjfm)(x̃)− (DξiDξjfm)(x̃′)

)
〈ξi, y〉〈ξj, y〉

+
(Rx

f (y)−Rx′

f (y))

|y|2
|y|2
]
M(dy)

≤ φ(t)

∫
{0<|y|<ε}

[
C6(1− 1

1 + |y|2
) + C4〈ξi, y〉〈ξj, y〉+ C5|y|2

]
M(dy)

where we choose ε such that

(Rx
f (y)−Rx′

f (y))

|y|2
< C5 =

δ

6φ(t)k1

,

which holds since the Taylor remainder Rx
f has the property limy→0

Rxf (y)

y2
= 0 for

both x and x′. Further we can choose x′ and x close enough to have

(∑
i,j≤m

(DξiDξjfm)(x̃)− (DξiDξjfm)(x̃′)

)
< C4 =

δ

6φ(t)k1

,

since all the partial derivatives of fm are continuous. We set

k1 :=

∫
{0<|y|<ε}

〈ξi, y〉〈ξj, y〉+ |y|2M(dy).

Again by continuity of the derivatives of fm we choose x′ and x close enough to
have

m∑
i=1

((Dξifm)(x̃)− (Dξifm)(x̃′))〈ξi, y〉 ≤ C6 = C4.
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Now let us look at the other part

J≥(t, x)− J≥(t, x′) = φ(t)

∫
{ε≤|y|}

[
fm(x̃+ ỹ)− fm(x̃′ + ỹ)− (fm(x̃)− fm(x̃′))

− 〈(Dxfm)(x̃)− (Dxfm)(x̃′), y〉
1 + |y|2

]
M(dy)

≤ φ(t)

∫
{ε≤|y|}

(C3 + C2 + C1)P−1
M ◦M(dy)

where we can choose |x− x′| small enough, such that for all y ∈ H

|fm(x̃+ ỹ)− fm(x̃′ + ỹ)| < C3 =
δ

φ(t)k26
,

|(fm(x̃)− fm(x̃′))| < C4 = C3,

〈(Dxfm)(x̃)− (Dxfm)(x̃′), y〉
1 + |y|2

< C1 = C3,

since fm and its partial derivatives are uniformly continuous. We set k2 := M({ε <
|x|}).
Finally we get to

|J(t, x)− J(t, x′)| = |J<(t, x)− J<(t, x′) + J≥(t, x)− J≥(t, x′)|

≤

∣∣∣∣∣∣∣φ(t)

∫
{0<|y|<ε}

(
C6(1− 1

1 + |y|2
) + C4〈ξi, y〉〈ξj, y〉+ C5|y|2

)
M(dy)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣φ(t)

∫
{ε<|x|}

(C3 + C2 + C1)M(dy)

∣∣∣∣∣∣∣
≤ |φ(t)|((C4 + C5 + C6)

∫
{0<|y|<ε}

(
|〈ξi, y〉〈ξj, y〉|+ |y|2

)
M(dy)

+ (C3 + C2 + C1)M({ε < |x|}))
≤ φ(t)((C4 + C5 + C6)K + (C3 + C2 + C1)M({ε < |x|})) < δ.

Claim 3.11. The function

J2 : x→ 1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉νt(dξ)

is continuous.
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Proof. Let us first simplify our equation by using the structure of our test functions
to reduce the problem to a finite subspace:

1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉νt(dξ) = φ(t)
1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉νm(dξ)

= φ(t)
1

2

∫
Rm

〈Πmξ,QΠmξ〉ei〈Πmξ,x〉gm(ξ)dξ.

Now we can write

|J2(x)− J2(x′)| =

∣∣∣∣∣∣∣φ(t)
1

2

∫
{|ξ|>k}

〈Πmξ,QΠmξ〉(ei〈Πmξ,x〉 − ei〈Πmξ,x
′〉)gm(ξ)dξ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣φ(t)
1

2

∫
{|ξ|≤k}

〈Πmξ,QΠmξ〉(ei〈Πmξ,x〉 − ei〈Πmξ,x
′〉)gm(ξ)dξ

∣∣∣∣∣∣∣
≤ δ

2
+
δ

2
,

where the first part of the inequality is true for a sufficiently large k, since gm
is a Schwartz function. For the second part we are restricted to a compact set
and ei〈 · ,x〉 is continuous, therefore we have uniform continuity, which allows us to
choose |x̃− x̃′| ≤ ε such that for all ξ ∈ {|ξ| ≤ k}∣∣∣ei〈ξ,x̃〉 − ei〈ξ,x̃′〉∣∣∣ ≤ δ

2 · πkm sup{|ξ|≤k}〈Πmξ,QΠmξ〉 sup{r≤k} gm(r) supt∈[s,T ] φ(t)
.

Claim 3.12. The measure µt(dx)dt solves (FPE).

Proof. We can use the equivalent formulation (FPE2) of the Fokker-Planck equa-
tion to restate (FPEα) using the sequence αn from Step 2

T∫
s

∫
H

Lαnψ(t, x)µαnt (dx)dt = −
∫
H

ψ(s, x)ξ(dx) for all n ∈ N.

Thus if we could show that

lim
n→∞

T∫
s

∫
H

Lαnψ(t, x)µαnt (dx)dt =

T∫
s

∫
H

L0ψ(t, x)µt(dx)dt
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for all ψ ∈ WT,A, we would have shown that µt(dx)dt solves our initial (FPE).
Therefore our focus lies on proving:

T∫
s

∫
H

L0ψ(t, x)µt(dx)dt
!

= lim
n→∞

T∫
s

∫
H

Dtψ(t, x) +−1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉νt(dξ)

+

∫
H

(
ψ(t, x+ y)− ψ(t, x)− 〈Dxψ(t, x), y〉

1 + |y|2

)
M(dy)

+ 〈x,A∗Dxψ(t, x)〉+ 〈Fα(t, x), Dxψ(t, x)〉

µαnt (dx)dt.

We now show the convergence part by part. We begin with:

lim
n→∞

T∫
s

∫
H

Dtψ(t, x)µαnt (dx)dt =

T∫
s

∫
H

Dtψ(t, x)µt(dx)dt.

This convergence holds, sinceDtψ(t, x) is a bounded continuous function on (s, T )×
H and thus the weak convergence of µαnt dt yields this equality.
For the "jump parts" of the Kolmogorov operator we have already shown con-
tinuity(see Claim 3.10, Claim 3.11) in space and continuity in time follows by
linearity of the integrals and by continuity of ψ( · , x) = φ( · )fm(x̃) on [s, T ], with
φ ∈ C2([s, T ]). In Step 2 we have shown boundednes for both parts (see (3.10) and
(3.8)). So we have by weak convergence:

lim
n→∞

T∫
s

∫
H

−1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉νt(dξ)µαnt (dx)dt =

T∫
s

∫
H

−1

2

∫
H

〈ξ,Qξ〉ei〈ξ,x〉νt(dξ)µt(dx)dt

and

lim
n→∞

T∫
s

∫
H

∫
H

[
ψ(t, x+ y)− ψ(t, x)− 〈Dψ(t, x), y〉

1 + |y|2

]
M(dy)µαnt (dx)dt

=

T∫
s

∫
H

∫
H

[
ψ(t, x+ y)− ψ(t, x)− 〈Dψ(t, x), y〉

1 + |y|2

]
M(dy)µt(dx)dt

Finally we come to the drift part, which will be more complicated.
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Remark 3.13. This part will follow the approach of [BDPR10] with a changed test
function space and changed approximation steps. The changes in the test function
space make it necessary to change the approximation approach of the test func-
tions. In [BDPR10] it was necessary to approximate the spatial parts of the test
functions by affine linear functions. This approximation is not necessary in our
case, since the spatial depence is restricted to a finite dimensional subspace of H
and not as in [BDPR10] depending on the whole of H.

We have to show the following equality

lim
n→∞

T∫
s

∫
H

[〈x,A∗Dxψ(t, x)〉+ 〈Fα(t, x), Dxψ(t, x)〉]µαnt (dx)dt

!
=

T∫
s

∫
H

[〈x,A∗Dxψ(t, x)〉+ 〈F (t, x), Dxψ(t, x)〉]µt(dx)dt

Let us first elaborate on the role of the test functions. Fix ψ ∈ WT,A and recall
that the bracket 〈F (t, x), Dxψ(t, x)〉 from L0 is not an inner product, but in this
case the duality bracket

〈F (t, x), Dxψ(t, x)〉 := H〈F (t, x), Dxψ(t, x)〉H∗ .

Let us take a closer look at Dxψ. We first compute

(Dxψ)(t, x) = φ(t)(Dx(fm ◦ P̃m))(x) · = φ(t)(D fm)(P̃m(x)) ◦ P̃m( · ),

where (D fm)(P̃m(x)) is the total derivative of fm : Rm → R at P̃m(x). As we can
see Dxψ(t, x) ∈ H∗ for each x ∈ H.
We rewrite the duality bracket

H〈F (t, x), Dxψ(t, x)〉H∗ = Dxψ(t, x)(F (t, x)) = Dxψ(t, x)(
∞∑
i=1

〈F (t, x), ξi〉ξi)

=
m∑
i=1

〈F (t, x), ξi〉H∗〈Dxψ(t, x), ξi〉H︸ ︷︷ ︸
=(Dξψ)(t,x)

.

(3.13)
We can see that H〈Fα(t, x)Dxψ(t, x)〉H∗ is continuous and bounded, sine we have
that 〈Fα(t, x), ξi〉 is continuous and bounded by condition 2.5(c) and that (Dξψ)(t, x)
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is continuous due to ψ being a Schwartz function. Similarly we get that

H〈x,ADxψ(t, x)〉H∗ = H〈
∞∑
i=1

〈x, ξi〉ξi, ADxψ(t, x)〉H∗

=
m∑
i=1

〈x, ξi〉H〈Aξi, Dxψ(t, x)〉H∗

=
m∑
i=1

〈x, ξi〉λiDξiψ(t, x)

is continuous, where λi are the eigenvalues of A corresponding to ξi. We can
see that we have no problem with the discontinuity of A, since we only need to
evaluate it on a small subspace. Thus H〈Ax,Dxψ(t, x)〉H∗ is also continuous and
bounded, which we have since Dξiψ(t, x) is a Schwartz function and therefore
rapidly decreases as x approaches infinity.
We can now prove our equation by showing for all g ∈ Cb([s, T ]×H)

lim
n→∞

T∫
s

∫
H

H〈x,ADxψ(t, x)〉H∗g(t, x) + H〈Fαn(t, x), Dxψ(t, x)〉H∗g(t, x)µαnt (dx)dt

=

∫ T

s

∫
H
H〈x,ADxψ(t, x)〉H∗g(t, x) + H〈F (t, x), Dxψ(t, x)〉H∗g(t, x)µt(dx)dt,

since this would establish weak convergence for these integrals.
Now we set for better readability

Fψ
α (t, x) := H〈Fα(t, x), Dxψ(t, x)〉H∗ + H〈x,ADxψ(t, x)〉H∗
Fψ(t, x) := H〈F (t, x), Dxψ(t, x)〉H∗ + H〈x,ADxψ(t, x)〉H∗

Remark 3.14. In [BDPR10] Fψ
α (t, x) was defined quite different to manage the

unboundedness of A, which is not necessary in our case since each test-function
ψ takes only values on a finite subspace of H and thus the unboundedness of A
poses no problem while showing continuity of Fψ

α (t, x)

We rewrite the above equation to

lim
n→∞

∫ T

s

∫
H

Fψ
αn(t, x)g(t, x)µαnt (dx)dt

=

T∫
s

∫
H

Fψ(t, x)g(t, x)µt(dx)dt
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We proceed to compute

T∫
s

∫
H

∣∣∣Fψ
β (t, x)− Fψ(t, x)

∣∣∣µαt (dx)dt

≤
T∫
s

∫
H

|〈Dxψ(t, x), Fβ(t, x)− F (t, x)〉|

+ |〈ADxψ(t, x), x〉 − 〈ADxψ(t, x), x〉|µαt (dx)dt

≤
T∫
s

∫
H

|〈Dxψ(t, x), Fβ(t, x)− F (t, x)〉|µαt (dx)dt

≤
T∫
s

∫
H

∣∣∣∣∣φ(t)
m∑
i=1

〈Fβ(t, x)− F (t, x), ξi〉 · H〈ξi, Dfm ◦ Pm(x)〉H∗

∣∣∣∣∣µαt (dx)dt

≤ βγ(ψ)

T∫
s

∫
H

|F (t, x)|2 µαt (dx)dt ≤ βγ(ψ)

T∫
s

∫
H

V 2(t, x)ξ(dx)dt,

(3.14)
where we used Condition 2.6 and that by Condition 2.5(c) we have that

∣∣∣∣∣φ(t)
m∑
i=1

〈Fβ(t, x)− F (t, x), ξi〉 · H〈ξi, Dfm ◦ Pm(x)〉H∗

∣∣∣∣∣
≤ sup

[s,T ]

φ(t) ·m · max
1≤i≤m

sup
x∈H

Dξifm(x̃) ·m · max
1≤i≤m

c(ξi)︸ ︷︷ ︸
:=γ(ψ)

β |F (t, x)|2 <∞.

Where supx∈H Dξifm(x̃) < ∞ by virtue of fm being a Schwartz function. We see
that the right-hand side of (3.14) tends to 0 independently of α as β → 0.
By Lemma 3.9 we can infer from (3.14) that we also have

T∫
s

∫
H

∣∣∣Fψ
β (t, x)− Fψ(t, x)

∣∣∣µt(dx)dt

≤ βγ(ψ)

T∫
s

∫
H

V 2(t, x)ξ(dx)dt

(3.15)
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Thus we now conclude that∣∣∣∣∣∣
T∫
s

∫
H

Fψ
αn(t, x)g(t, x)µαnt (dx)dt−

T∫
s

∫
H

Fψ(t, x)g(t, x)µt(dx)dt

∣∣∣∣∣∣
≤ ‖g‖∞

T∫
s

∫
H

∣∣Fψ
αn(t, x)− Fψ(t, x)

∣∣µαnt (dx)dt→ 0 by (3.14) as n→∞

+ ‖g‖∞

T∫
s

∫
H

∣∣∣Fψ(t, x)− Fψ
δ (t, x)

∣∣∣µαnt (dx)dt→ 0 by (3.14) as δ → 0

+ ‖g‖∞

T∫
s

∫
H

∣∣∣Fψ(t, x)− Fψ
δ (t, x)

∣∣∣µt(dx)dt→ 0 by (3.15) as δ → 0

+

∣∣∣∣∣∣
T∫
s

∫
H

Fψ
δ (t, x)g(t, x)µαnt (dx)dt−

T∫
s

∫
H

Fψ
δ (t, x)g(t, x)µt(dx)dt

∣∣∣∣∣∣︸ ︷︷ ︸
→0 by weak convergence and the boundedness and continuity of Fψδ

,

which is precisely what we wanted to show.
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Appendix

Special Theorems
Theorem 3.15 (Prohorov’s theorem). Let K ⊂Mr(X) be a uniformly bounded in
the variation norm and uniformly tight family of measures on a completely regular
space X. Then X has a compact closure in the weak topology.
If, in addition, for every ε ≥ 0, there exists a metrizable compact set Kε such that
|µ| (X \ Kε) ≤ ε for all µ ∈ K(which is the case if all compact subsets of X are
metrizable), the every sequence in K contains a weakly convergent subsequence.

Taken from and proof contained in [Bogachev, 8.6.7].

Theorem 3.16 (Gronwall’s inequality). Let µ be a Borel measure on [0,∞[, let
ε ≥ 0, and let f be a Borel measurable function that is bounded on bounded intervals
and satisfies

0 ≤ f(t) ≤ ε+

∫
[0,t[

f(s)µ(ds), for t ≥ 0

Then

f(t) ≤ εeµ([0,t[), t ≥ 0

Taken from and proof contained in [EK86, App. 5.1].

Definition 3.17 (Monotone vector space). A monotone vector space H on space
Ω is defined to be a collection of bounded, real-valued functions f on Ω satisfying
the three conditions:

(i) H is a vector space over R;

(ii) 1 ∈ H (i.e., constant functions are in H); and

(iii) it (fn)n≥1 ⊂ H, and 0 ≤ f1 ≤ f2 ≤ . . . ≤ fn ≤ . . ., and limn→∞ fn = f and f
is bounded, then f ∈ H.
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Taken from [Pro05, P. 7].

Theorem 3.18 (Monotone class theoerem (funtional version)). Let H be class of
bounded functions from a set S into R satisfying the following conditions:

(i) H is a vector space over H;

(ii) the constant function 1 is an element of H;

(iii) if (fn) is a sequence of non-negative functions in H such that fn ↑ f where
f is bounded function on S, then f ∈ H.

Then if H contains the indicator function of every set in some π-system I, then
H contains every bounded σ(I)-measurable function on S.

Taken from and proof contained in [Wil94, Thm. 3.14].

Theorem 3.19 (Monotone class theorem (functional-algebra version)). LetM be
a multiplicative class of bounded real-valued functions defined on a space Ω and let
A = σ{M}. If H is a monotone vector space containingM, then H contains all
bounded A measurable functions.

Taken from and proof contained in [Pro05, Thm. 8].

Elementary inequalities
Lemma 3.20. For a, b ∈ R we have

a2 − 2b2 ≤ 2 |a− b|2

Proof. Easily seen by (a+ b)2 ≤ 2a2 + 2b2(equiv. to Hölder) applied to |a− b+ b|.
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