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Abstract

In this doctoral thesis, a new approach towards variational convergence of quasi-linear
monotone partial differential operators is elaborated. To this end, we analyze more ex-
plicitly the so-called Kuwae-Shioya-convergence of metric spaces in the case of Banach
spaces. For the first time, weak Banach space topologies are included. We achieve the
objective to be able to formulate reasonable (topological) statements about convergence
of vectors, functionals or operators such that each element of a convergent sequence lives
in/on another distinct Banach space. Banach space-convergence is considered a natural
generalization of Gromov-Hausdorff-convergence of compact metric spaces. The associ-
ated theory is developed here completely and justified by several examples. Among other
things, we are able to consider varying Lpn(Ωn,Fn, µn)-spaces such that the measurable
space (Ωn,Fn) as well as the measure µn as well as the degree of integrability pn varies
for positive integers n, and such that the limit n→∞ is given sense.

Inside the framework of varying spaces, we show that a number of classical results on
variational convergence still hold. Explicit applications are given for the equivalence of
so-called Mosco-convergence of convex functionals and the strong-graph-convergence of
the associated subdifferential operators. In the case of abstract Lp-spaces, we prove an
elaborate result yielding a general transfer-method that enables us to carry over classical
results (for one fixed space) to the case of varying spaces. More precisely, we construct
isometries that respect the asymptotic topology of the varying Banach spaces and allow
us to transform back to one fixed Banach space.

We are considering four types of quasi-linear partial differential operators mapping a
Banach space X to its dual space X∗. All of these operators are characterized completely
via variational methods by lower semi-continuous convex functionals on a Banach space
V embedded properly into X. As operators to be approximated, we present the weighted
(non-homogeneous) Φ-Laplacian in Rd, the weighted p-Laplacian in Rd, the 1-Laplacian
with vanishing trace in a bounded domain, and the generalized porous medium resp. fast
diffusion operator in an abstract measure space. When taking the Mosco-approximation
of their energies, we generally vary the weights (measures). In the second and third case,
p is also varied. When dealing with approximations of such kind, varying spaces occur
naturally. In the theory of homogenization, the special case of two-scale convergence has
already been being employed for some time.

Furthermore, we develop an alternative approach towards weighted p-Sobolev spaces of
first order, which enables us to consider weights in a class different from the Muckenhoupt
class. We prove a new result on density of smooth functions in weighted p-Sobolev spaces,
which is known and well-studied as “Markov uniqueness” for p = 2. This problem is
also known as “H = W”, that is, the coincidence of the strong and the weak Sobolev
space. With the help of this result, we are able to identify the Mosco-limit of weighted
p-Laplace operators.
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Zusammenfassung

In dieser Dissertation wird ein neuer Zugang zur Variationskonvergenz von quasi-linearen
monotonen partiellen Differenzialoperatoren erarbeitet. Zu diesem Zwecke wird die so
genannte Kuwae-Shioya-Konvergenz von metrischen Räumen genauer im Banach-Raum-
Fall untersucht. Erstmals werden schwache Banach-Raum-Topologien mit eingebunden.
Wir erfüllen das Ziel, sinnvolle (topologische) Aussagen über Konvergenz von Vektoren,
Funktionalen und Operatoren treffen zu können, so dass jedes Element einer konvergen-
ten Folge in oder auf einem ausgezeichneten, von den anderen verschiedenen Banach-
Raum definiert ist. Banach-Raum-Konvergenz wird als natürliche Verallgemeinerung
der Gromov-Hausdorff-Konvergenz von kompakten metrischen Räumen angesehen. Die
zugehörige Theorie wird von uns vollständig entwickelt und mit etlichen Beispielen ge-
rechtfertigt. Wir sind unter anderem in der Lage, variierende Lpn(Ωn,Fn, µn)-Räume
zu betrachten, so dass sowohl der messbare Raum (Ωn,Fn), als auch das Maß µn
sowie der Integrierbarkeitsgrad pn für natürliche Zahlen n variieren, und so dass der
Grenzübergang n→∞ sinnvoll ist.

Im Rahmen der variierenden Räume zeigen wir, dass einige klassische Resultate über
Variationskonvergenz weiterhin gelten. Genaue Anwendung für konkrete Operatoren fin-
det die Äquivalenz der so genannten Mosco-Konvergenz von konvexen Funktionalen und
der Konvergenz der zugehörigen Subdifferenzialoperatoren im starken Graphen Sinne.
Im Fall von abstrakten Lp-Räumen beweisen wir ein aufwändiges Resultat, in dem Isome-
trien konstruiert werden, welche die asymptotische Topologie der variierenden Banach-
Räume respektieren und es erlauben, eine Folge von Banach-Räumen auf einen festen
Banach-Raum zurückzutransformieren.

Wir betrachten vier verschiedene Typen von quasi-linearen partiellen Differentialope-
ratoren, welche einen Banach-RaumX in dessen DualraumX∗ abbilden. Sämtliche dieser
Operatoren werden vollständig durch variationelle Methoden mittels unterhalbstetiger
konvexer Funktionale auf einem in X echt eingebetteten Banach-Raum V beschrieben.
Als zu approximierende Operatoren präsentieren wir den gewichteten (nicht-homogenen)
Φ-Laplace Operator in Rd, den gewichteten p-Laplace Operator in Rd, den 1-Laplace
Operator mit verschwindender Spur in einer beschränkten Domäne und den verallgemei-
nerten poröse Medien- bzw. schnelle Diffusions-Operator in einem abstrakten Maßraum.
Bei der Mosco-Approximation derer Energien werden generell die Gewichte (Maße) und
im zweiten und dritten Fall p variiert. Bei Approximationen dieser Art treten variierende
Räume natürlicherweise auf. In der Theorie der Homogenisation findet dies bereits seit
einiger Zeit in dem Spezialfall der Zwei-Skalen-Konvergenz Anwendung.

Weiterhin entwickeln wir einen alternativen Zugang zu gewichteten p-Sobolev-Räumen
der ersten Ordnung, der uns eine Klasse von Gewichten einsetzen lässt, die sich von
der Muckenhoupt-Klasse unterscheidet. Wir zeigen ein neues Resultat über Dichtheit
glatter Funktionen in gewichteten p-Sobolev-Räumen, welches für p = 2 als ”Markoff-
Eindeutigkeit“ bekannt und wohlstudiert ist. Dieses Problem ist auch als ”H = W“
bekannt; das Zusammenfallen des starken und schwachen Sobolev-Raumes. Mit Hilfe
dieses Resultats sind wir in der Lage, den Mosco-Grenzwert von gewichteten p-Laplace
Operatoren zu identifizieren.
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Erratum

By the time of the defense of this doctoral thesis (February 5th, 2010), it was noticed
by the first referee, Prof. Dr. Michael Röckner, that some parts of Section 8.3 contain
wrong reasoning. It has also been asserted in the official report about this thesis. We
agree that our proof of Theorems 8.24 and 8.25 relies on wrong conclusions. It is an
open question whether the claimed result still holds true. We are currently working on
a new corrected proof.

Jonas M. Tölle

Bielefeld, February 2010

Update

This version of the book contains a completely rewritten Section 8.3. Also, the proof of
Lemma 3.19 and some typographical errors have been corrected.

Jonas M. Tölle

Bielefeld, August 2010
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1 Introduction

The contents of this doctoral thesis touch different fields of functional analysis, PDE
theory and topology. Our central interests are variational convergence (in the applica-
tions) and approximation (in the theoretical part). We also present a result on smooth
approximation in first order weighted p-Sobolev spaces, which is connected to variational
convergence.

Firstly, our aim was to study convergence of (nonlinear) second order quasi-linear
partial differential operators on Banach spaces. Secondly, we were aimed at developing
a general theory of variational convergence on varying Banach spaces, encompassing
earlier approaches, but with strong orientation to new applications. In our analysis of
partial differential operators, we restrict ourselves to the situation of maximal monotone
graphs. In variational calculus, such kinds of operators are usually attached canonically
to a Banach space, as e.g. the (Dirichlet) Laplacian −∆ is attached to the Sobolev space
H1,2

0 . It seems quite plausible, that a reasonable concept of convergence for partial
differential operators, which “encode” different types of partial differential equations,
should provide the convergence of solutions. Within variational calculus, a monotone
operator is usually representable by an energy functional or a variational kernel. In
turn, the solutions of the corresponding (abstract) Cauchy equation are represented
by the associated (nonlinear) semigroup (or flow) and the spectral properties can be
encoded into the associated (nonlinear) resolvent. Of course, for sequences of continuous
operators, pointwise (strong Banach space) convergence is sufficient for the convergence
of the solutions to the associated (abstract) operator equations. Failing to be continuous
or even to be single-valued, another concept of convergence is needed for monotone
graphs. For several reasons, strong graph convergence (also called G-convergence) is the
right choice. By definition, if an operator is represented by a graph Γ ⊂ X ×X∗ (and
so for a sequence of graphs {Γn}), where (X,X∗) is a dual pair of Banach spaces, then
Γn

G−−−→
n→∞

Γ in the strong graph sense if for each pair [x, y] ∈ Γ there is a sequence of

pairs {[xn, yn]} with [xn, yn] ∈ Γn such that

‖xn − x‖X → 0 and ‖yn − y‖X∗ → 0.

The latter is equivalent to the so-called Painlevé-Kuratowski convergence of graphs when-
ever the graphs are maximal monotone, see Definition 7.32 and Lemma 7.36. Its use
dates back to Tosio Kato’s “generalized convergence” [Kat66], and probably back further.
The celebrated Trotter-Neveu-Kato Theorem (in the linear case) and the Brézis-Attouch
Theorem (in the maximal monotone case) prove that strong graph convergence is exactly
the right notion, if one demands equivalent strong (pointwise) convergence of resolvents,
semigroups and Yosida approximations. See e.g. [Tro58, Kat66, Bré73, Rei82, Att84].
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1 Introduction

As the main feature, the solutions of the associated Cauchy equations converge if and
only if the partial differential operators converge in the strong graph sense. In this work,
we are able to generalize to the case that the pairs of Banach spaces “vary along”, i.e.,
(Xn, X

∗
n) → (X,X∗) in the sense specified below. In other words, the operator equa-

tion is solved in another Banach space for each element of a sequence (in the “natural”
Banach space to a particular equation), and still, the solutions converge in a varying-
Banach-space-sense, see Theorems 7.23 and 7.24.

As one of the main results of this work (see Chapter 8, Corollaries 8.8, 8.14, 8.26,
8.39), we are able to prove the following strong graph convergence (G-convergence) of
nonlinear monotone operators (where the representing formulae are heuristic):

1. Let wn, w be weights, let ϕ be a gauge function. Then

div [wnϕ(|∇u|) sign(∇u)]→ div [wϕ(|∇u|) sign(∇u)] ,

if wn → w weakly in L1
loc.

2. Let wn, w be weights, let {pn} ⊂ (1,∞), 1 < p <∞. Then

div
[
wn|∇u|pn−2∇u

]
→ div

[
w|∇u|p−2∇u

]
,

if pn → p in R and wn → w weakly in L1
loc.

3. Let {pn} ⊂ (1,∞). Then

div
[
|∇u|pn−2∇u

]
→ div

[
∇u
|∇u|

]
,

if pn → 1 in R.

4. Let µn, µ be σ-finite measures. Let Lµnn , Lµ be linear dissipative (second order partial
or pseudo differential) operators, which are self-adjoint in L2(µn), L2(µ) resp. Let F ∗n ,
F ∗ resp. be their abstract Green spaces. Denote by Lµnn : Fn → F ∗n , Lµ : F → F ∗

resp. the canonical extensions of the operators Lµnn , Lµ resp. Let ϕ be a gauge
function. Then

L
µn
n [ϕ(|u|) sign(u)]→ L

µ [ϕ(|u|) sign(u)] ,

if µn → µ weakly in the sense of measures and L
µn
n → L

µ strongly.

Other conditions, needed in order to ensure the above convergences, are also imposed,
see Theorems 8.4, 8.12 and 8.38. Operator no. 4 is a generalization of the well-known
porous medium and fast diffusion operators (indeed, to get the classical porous medium
equation, set Lµ = −∆ on a bounded domain Ω, µ = dx, ϕ(t) = |t|p−2t, p > 2).

As can be seen from the formulae of our four main applications above, each operator
in the approximating sequence is defined on another Banach space. This is one of the

2



new aspects of our work. In particular, we have to give sense to convergence “along”

LΦ(Rd;wn dx)→ LΦ(Rd;w dx),

Lpn(Rd;wn dx)→ Lp(Rd;w dx),

Lpn(Ω; dx)→ L1(Ω; dx),
F ∗n → F ∗,

respectively, where Φ(x) :=
∫ x

0 ϕ(t) dt and LΦ is an Orlicz space. Dual spaces have to be
treated, too. For this reason, we had to study (and develop) the theory of varying Banach
spaces. Note that we are not assuming any kind of monotonicity of the convergence.
This is one of the advantages of a varying-space-framework.

In order to illustrate the abstract results formulated below, suppose we are given a
nonlinear semigroup (Snt )t≥0, for each pn-Laplace operator An := div

[
wn|∇u|pn−2∇u

]
as above (assuming that it is dissipative or its domain is embedded into the Hilbert space
L2
w), i.e., for f ∈ D(An) the semigroup Snt f is a solution to the initial value problem

d
dt
u(t) +Anu(t) 3 0, 0 < t <∞,

u(0) = f.

Define (St)t≥0 correspondingly for the p-Laplace operator A := div
[
w|∇u|p−2∇u

]
. As-

sume we can prove, that An
G−−−→

n→∞
A in the strong graph sense in (or, so to say, along)

the varying space Lpnwn → Lpw, as we do, in fact, in Corollary 8.14. Then for all t ≥ 0 and
for all ϕ,ψ ∈ C0(Rd),

lim
n

∫
Rd

ψSnt ϕwn dx =
∫
Rd

ψStϕw dx,

and

lim
n

∫
Rd

|Snt ϕ|
pn wn dx =

∫
Rd

|Stϕ|p w dx.

As a matter of fact, this convergence also characterizes the varying-space-strong-graph-
convergence An

G−−−→
n→∞

A, see Chapters 5–7, in particular, Lemma 7.9 and Theorem
7.24.

In this work, we shall refer to the well-known abstract results on solutions to monotone
operator equations, and do not discuss explicit solutions. Anyhow, we do not assume co-
ercivity for our operators, since we are solely treating convergence problems. We assume
that the reader is familiar with the standard theory of maximal monotone operators in
Banach space, see e.g. [Sho97].

Varying Banach spaces

In recent years, variational convergence on varying spaces has been getting greater at-
tention. In the theory of homogenization of elliptic partial differential operators, around
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1 Introduction

1990, Gabriel Nguetseng [Ngu89] and Grégoire Allaire [All92] have started to develop a
theory for convergence in varying L2-spaces of periodic functions. Today, this approach
is well-known as “two-scale convergence”. As a matter of fact, it is covered by our
theory, see Paragraph 6.6. With a slightly different focus, Vasilĭı V. Zhikov considered
convergence of of elliptic operators with varying weights [Zhi98]. Recently, Zhikov and
Pastukhova have also studied so-called “variable spaces” [ZP07], and again, their def-
inition and ours coincide, see Paragraph 5.2.1. Our work on varying Banach spaces is
based on and inspired by the work of Kazuhiro Kuwae and Takashi Shioya [KS03, KS08].
In their first paper, they considered varying metric measure spaces and varying Hilbert
spaces. In their second paper they extended their study to varying metric spaces. Our
basic definitions and terminology are borrowed from them. Their framework is used e.g.
in the works [Kol05, Kol06, Töl06, GKR07, Kol08, Hin09].

Generally, when considering an asymptotic topology of Banach spaces {Ei} indexed
by a topological space I (e.g. the real line), one wants to know which sequences are
converging in the asymptotic space

E :=
.⋃
i∈I

Ei,

(the union being forced to be disjoint by labeling). Let {un} be a sequence in E, u a point
in E. By disjointness there are unique in ∈ I with un ∈ Ein and i∞ ∈ I with u ∈ Ei∞ .
For a reasonable notion of (strong) convergence un → u it is natural to demand

in → i∞ in I-topology,

and, furthermore, that the following axioms hold.

(1) For any u ∈ Ei∞ there exists a sequence {un} such that un ∈ Ein , n ∈ N and
un → u.

(2) For any sequence {un}, with un ∈ Ein , n ∈ N and any u ∈ Ei∞ the following
statement holds:
If un → u, then

lim
n
‖un‖Ein = ‖u‖Ei∞ .

(3) For any two sequences {un}, {vn} with un, vn ∈ Ein , n ∈ N and any u ∈ Ei∞ the
following statement holds:
If un → u and limn ‖un − vn‖Ein = 0, then vn → u.

(4) For any two sequences {un}, {vn} with un, vn ∈ Ein , n ∈ N and any two u, v ∈ Ei∞
and any α, β ∈ R the following statement holds:
If un → u and vn → v, then αun + βvn → αu+ βv.

Kuwae and Shioya [KS08] have suggested the name asymptotic relation for a topology
on E satisfying the above properties. Zhikov and Pastukhova [ZP07] call it a variable
space. We shall call it a strong linear asymptotic relation (distinguishing from the weak
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asymptotic relation defined in this work). In its metric space version, it is a generalization
of the famous Gromov-Hausdorff convergence of compact metric spaces as treated by
Mikhail L. Gromov in [Gro99].

In most of Chapter 5, the above general framework is simplified to a “sequential
asymptotics” along a fixed sequence of Banach spaces En → E∞. In particular, I =
N ∪ {∞} and in := n→∞ =: i∞, so that we are considering convergence in the space

E :=
.⋃

n∈N
En∪̇E∞,

where, for reasons of the specific topology of the space N ∪ {∞}, sequences {un} with
un ∈ En, n ∈ N, converging to points u ∈ E∞, remain the most interesting ones.

The starting point is always a sequence of linear maps {Φn}, which is an approximation
of the identity on E∞. More precisely, Φn : C ⊂ E∞ → En, where C is a dense linear
subspace of E∞, and

lim
n
‖Φn(ϕ)‖En = ‖ϕ‖E∞ ∀ϕ ∈ C.

No continuity of Φn is assumed. Such a sequence {Φn} is called linear metric approx-
imation. Many concrete examples of metric approximations are given in Chapter 6.
We implement the general functional analytic method suggested by Kuwae and Shioya
[KS03] which defines a convergence un → u of elements un ∈ En, n ∈ N, u ∈ E∞ as
follows. un → u in the strong sense if and only if there is an approximating sequence
{ϕm} in C with limm ‖ϕm − u‖E∞ = 0 for which it holds that

lim
m

lim
n
‖un − Φn(ϕm)‖En = 0.

Strong convergence defined in this way satisfies the convergence axioms of a linear strong
asymptotic relation.

Let E∗ :=
.⋃
nE
∗
n∪̇E∗∞ be the asymptotic space of Banach space duals. For the first

time, we are able to define a natural linear weak convergence on E. This was previously
done by Kuwae and Shioya for Hilbert spaces or CAT (0) spaces only. Weak∗ convergence
on E∗ can also be defined naturally. Weak convergence does not depend on the metric
approximations used to construct the strong asymptotic relations. Anyhow, when given
metric approximations {Φn : C → En} on E and {Φ∗n : C∗ → E∗n} on E∗, the definition
of weak convergence simplifies as follows. un ⇀ u in the weak sense if and only if
supn ‖un‖En <∞ and

lim
n E∗n

〈Φ∗n(ϕ∗), un〉En = E∗∞
〈ϕ∗, u〉E∞ ∀ϕ∗ ∈ C∗.

To make this possible, we demand the property of asymptotic duality, which is,

lim
n E∗n

〈Φ∗n(ϕ∗),Φn(ϕ)〉En = E∗∞
〈ϕ∗, ϕ〉E∞ ∀ϕ ∈ C, ∀ϕ∗ ∈ C∗.

It is always satisfied in Hilbert spaces but it needs to be verified in general Banach
spaces.
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1 Introduction

The basic example of a varying Banach space is
.⋃
n L

p(Ω;µn)∪̇Lp(Ω;µ), where Ω ⊂
R
d, {µn} is a sequence of positive Radon measures such that µn → µ in the vague sense,

where µ is a regular positive Radon measure. If p > 1, we can prove that a sequence
{un}, with un ∈ Lp(Ω;µn), converges strongly to u ∈ Lp(Ω;µ) if and only if

lim
n

∫
Ω
ϕun dµn =

∫
Ω
ϕudµ ∀ϕ ∈ C0(Ω),

and

lim
n

∫
Ω
|un|p dµn =

∫
Ω
|u|p dµ.

New results in the theory of varying spaces

In this work (see Chapters 5–7), we are able to extend the knowledge on varying spaces
in the following points.

• The theory is developed for general (real) Banach spaces with no restriction on the
geometry.

• We implement weak and weak∗ Banach space topologies and duality naturally; this
was done previously for Hilbert spaces and CAT (0) spaces only, see Chapter 5.

• We give a natural (and purely functional analytic) foundation for two-scale con-
vergence including topology and geometry (as e.g. the Kadeč-Klee property), see
Section 6.6.

• We prove the Kolesnikov-Isometric-Theorem [Kol05] for abstract separable atom-
less Lp-spaces, 1 < p < ∞, cf. Theorem 5.68 and Proposition 6.3. It was previ-
ously known only for separable Hilbert spaces. In Section 7.1, we present a general
transfer-method (with examples), which enables us to carry over classical results,
as e.g. the Trotter Theorem, automatically to the case of varying spaces.

• We topologically justify the use of sequences instead of nets. This was a pitfall of
the previous works by Kuwae and Shioya. See Theorems 5.32, 5.37, 5.76.

• We are able to consider varying Lp(Ω,F , µ)-spaces such that the measurable space
(Ω,F ) as well as the measure µ as well as p varies, see Section 6.2.

• We include a large class of Orlicz spaces with varying measures. This will be
especially interesting in the future, because we are developing a method for ho-
mogenization and two-scale convergence for nonlinear equations involving Orlicz
spaces, see Lemmas 6.17, 6.19.

• We prove the Trotter-Neveu-Kato and Brézis-Attouch Theorems mentioned above
in varying Banach spaces, see Theorems 7.10, 7.23, 7.24.
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• We prove that Mosco convergence (and slice convergence in the non-reflexive case)
of convex functionals are equivalent to strong graph convergence of the associated
subdifferential operators, see Theorems 7.43, 7.46.

• In Section 5.14, we sketch the more general, so-called asymptotic topology, which
allows us to consider continua of metric spaces and gives us the natural notions
of topology and convergence either of nets or of sequences. All previous parts of
Chapter 5 then embed naturally. This might be particularly interesting in two- or
more parameter convergences.

Variational methods

Variational methods emerge naturally in the study of partial differential equations. So-
lutions to many linear and nonlinear partial differential equations can be equivalently
characterized by minimizing certain functionals (of functions). We mention the Dirichlet
principle as a basic example with numerous generalizations both in PDE and operator
theory. From it, we seize the idea that some operators, each understood as a graph in
the product of two linear spaces, have a variational description by a bivariate functional
which fully represents the given operator. All examples of partial differential operators
in this work have such a representation. In fact, our examples reduce to a situation that
is symmetric in some sense, that is to say, subdifferential operators of convex (univariate)
functionals. One might ask how restrictive this class of operators is. At least it includes
all self-adjoint dissipative linear operators on Hilbert spaces and all maximal cyclically
monotone (multi-valued) operators from a Banach space into its dual.

Variational convergence is the counterpart to pointwise convergence in the analysis
of (univariate or bivariate) functionals. It has been considered both purely in terms
of sequential convergence or coming from (or inducing a) topology. The most famous
notion of a variational convergence is Ennio De Giorgi’s Γ-convergence [DG77]. Several
generalizations and refinements have been developed since then. We would like to refer to
two monographs on this subject. The first one by Gianni Dal Maso [DM93] spreads many
concrete examples throughout the text, touching classical applications as approximation
of elliptic PDEs and homogenization. From the second one by Hédy Attouch [Att84],
we have borrowed several methods and techniques. Some of our generalized results
are based on Attouch’s proofs. The mode of convergence which deserves our main
interest is Umberto Mosco’s version of Γ-convergence, called simply Mosco convergence
[Mos69, Mos94]. By definition, a convex functional f : X → R ∪ {+∞} on a Banach
space X is the Mosco limit of a sequence of convex functionals {fn : X → R∪{+∞}} if

∀x ∈ X ∀xn ∈ X, n ∈ N, xn ⇀ x weakly : lim
n
fn(xn) ≥ f(x), (M1)

∀y ∈ X ∃yn ∈ X, n ∈ N, yn → y strongly : lim
n
fn(yn) ≤ f(y). (M2)

In the setting of general, not necessarily reflexive Banach spaces, we shall advance to
its natural generalization, the so-called slice convergence [Bee92, AB93, CT98]. For the
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1 Introduction

sake of completeness, we also mention Wijsman convergence. The connection was drawn
in [BF89].

The main idea about variational convergence can be rephrased as follows. Given a
variational representation f : X → R∪+∞ of a graph ∂f ⊂ X ×X∗ in a Banach space
X with dual X∗, how can we establish strong graph convergence of a sequence of graphs

∂fn → ∂f

in some sense, using only information on the variational forms {fn}?
The benefit of Mosco’s celebrated theorem [Att84, Theorem 3.66], reformulated in

the language of partial differential operators, is that we can establish convergence of
second-order objects merely with the analysis of first-order objects. For varying spaces,
this generalized in Theorems 7.43 and 7.46. Following this philosophy, and for moti-
vation, we shall now present four nonlinear operators fully described by proper, lower
semi-continuous, convex functionals on Banach spaces, which are among our main ap-
plications; i.e. we can prove that they are Mosco and slice limits in varying spaces, see
below.

Four nonlinear operators

Each of the following operators is an operator of the type A : X → X∗, where X is a
Banach space and X∗ its dual. Only operator no. 3 is multi-valued, hence considered as
a graph A3 ⊂ X3 ×X∗3 . All four operators Ai, i = 1, . . . , 4 are subdifferential operators,
hence maximal cyclically monotone with an “energy functional” fi : Xi → [0,+∞], i =
1, . . . , 4, which is proved to be proper, lower semi-continuous and convex. In formulae,
Ai := ∂fi, i = 1, . . . , 4. We can specify even more, namely each fi is of the type

fi(x) =

{
gi(x), if x ∈ Vi,
+∞, if x ∈ Xi \ Vi,

where Xi, i = 1, . . . , 4 are separable Banach spaces, Vi, i = 1, . . . , 4 are separable Banach
spaces embedded linearly, continuously and densely into Xi and gi, i = 1, . . . , 4 are real-
valued, lower semi-continuous and convex functionals on Vi. We, however, note that our
variational theory can treat much more general situations.

1. The weighted Φ-Laplacian

Let Ω = R
d. Let Φ : [0,∞) → [0,∞) be a nice Young-function satisfying ∆2 and ∇2

growth conditions as explained in Appendix C. Let ϕ be its left-derivative. Let Ψ be
the Young conjugate of Φ. Let d ≥ 1, w ∈ L1

loc(R
d), 0 < w < +∞ almost everywhere,

satisfying the Φ-Hamza condition (S1) from Chapter 3. Let X1 := LΦ
w(Rd) be the Orlicz

space with measure w dx and dual LΨ
w(Rd) and let V1 := W 1,Φ

w (Rd) be the weighted
Orlicz-Sobolev space of first order, see [Vui87]. We consider

g1(u) :=
∫
Rd

Φ(|∇u|)w dx, u ∈W 1,Φ
w (Rd).
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On smooth functions, the associated operator A1 = ∂f1 is proved to have the represen-
tation

LΨ
w
〈A1u, v〉LΦ

w
= −

∫
Rd

div [wϕ(|∇u|) sign(∇u)] v dx, u ∈ C∞0 , v ∈ LΦ
w.

We call A1 a weighted Φ-Laplace operator. Because of being non-homogeneous in general,
the name “strongly nonlinear” has been suggested for operators of this type. Other
variants are known, and can be e.g. defined by altering the placing of weights in the
Sobolev space. Equations of Φ-Laplace-type have been studied by Jean-Pierre Gossez
et. al. [Gos82, Gos86, GM87] in the unweighted case. The works [GHMS96, GHLMS99,
GM02] study the eigenvalue problem. Generally, the lack of homogeneity in any Orlicz-
space setting extending Lp generates the need of a more precise analysis of the modular
functional

∫
Φ(·) dx and the so-called Orlicz and Luxemburg norms. We collect the facts

needed in Appendix C. Weighted Orlicz-Sobolev spaces are discussed in Chapter 3.
The following special case of a weighted Φ-Laplacian is known better:

2. The weighted p-Laplacian

Let Ω = R
d. Restrict the preceding example to the case of Φ(t) := 1

p |t|
p, for any

1 < p <∞. Let q := p/(p−1). Suppose that w has a derivative in the sense of Schwartz
distributions Dw which is locally integrable. Let ϕ := w1/p. Suppose that

ϕ ∈ H1,p
loc (Rd)

and set
β := p

∇ϕ
ϕ
.

Suppose that β ∈ Lqw(Rd → Rd), in fact, only ϕp−2∇ϕ ∈ Lqloc(R
d → Rd) is needed.

Let X2 := Lpw(Rd) and V2 := W 1,p
w (Rd). We consider

g2(u) :=
1
p

∫
Rd

|∇u|pw dx, u ∈W 1,p
w (Rd).

On smooth functions, the associated operator A2 = ∂f2 is proved to have the represen-
tation

Lqw
〈A2u, v〉Lpw = −

∫
Rd

div
[
w|∇u|p−2∇u

]
v dx, u ∈ C∞0 , v ∈ Lpw.

But also for u ∈ C∞0 (Rd)

−A2u = div
[
|∇u|p−2∇u

]
+
〈
|∇u|p−2∇u, β

〉
in Lqw.

This indicates that the operator A2 can be regarded as a first-order perturbation of
the (non-weighted) p-Laplace operator. Therefore, we are suggesting the alternative
name “generalized nonlinear p-Schrödinger operator”. The p-Laplace operator has nu-
merous applications in physics, e.g. nonlinear diffusions, non-Newtonian fluids, flows
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1 Introduction

in porous media and plasma physics, compare with [Dı́a85]. In the case p = 2 (with
weight), including also infinite dimensional domains, the generalized Schrödinger op-
erator (weighted Laplacian) has been studied extensively by Sergio Albeverio, Michael
Röckner et. al. in e.g. [AR89, AR90a, AR90b, AKR90, MR92], including the associated
probability theory.

3. The 1-Laplacian

Let Ω ⊂ R
d be a bounded domain. Let X3 := L1(Ω,dx), X∗3 = L∞(Ω,dx). Let

V3 := BV0(Ω), that is, the functions of bounded variation with vanishing trace on Ω.
For u ∈ BV0(Ω), we consider

g3(u) := ‖Du‖ (Ω) := sup
{∣∣∣∣∫

Ω
udiv η dx

∣∣∣∣ ∣∣∣∣ η ∈ C∞0 (Ω→ Rd), ‖η‖∞ ≤ 1
}
,

the total variation. When u ∈ H1,1
0 (Ω) ⊂ BV0(Ω), then ‖Du‖ (Ω) =

∫
Ω|∇u| dx.

When u ∈ H1,1
0 (Ω) and

A3u := −div [sign(∇u)] = −div
[
∇u
|∇u|

]
∈ L∞(Ω),

then u ∈ D(∂f3) = {u ∈ BV0(Ω) | ∂f3(u) 6= ∅} and A3u ∈ ∂f3u. As mentioned
above, it is multi-valued since a requirement for maximal monotonicity of the sole sign-
function is that sign(0) = {x ∈ Rd | |x| ≤ 1}, 0 ∈ Rd. The space BV and the form
f3 have been well-studied e.g. in [Giu77, Giu84, Zie89, JLJ98]. The operator A3 has
been studied e.g. by Vladislav Fridman, Bernd Kawohl, Friedemann Schuricht and
Enea Parini [Fri03, Sch06, KS07, Par09]. See [BDPR09] for the stochastic case. The
1-Laplace operator has applications in material science and in image processing, see
[AFP00, AK06].

4. Generalized porous medium and fast diffusion operators

We follow a setting by Jiagang Ren, Michael Röckner and Feng-Yu Wang [RRW07,
RW08]. Let (L,D(L)) be a linear partial (or pseudo) differential operator with order
≤ 2, which is associated to a transient (symmetric) Dirichlet form (E ,F ) on some L2(µ)-
space. Let Fe be the extended Dirichlet space and F ∗e its dual. If e.g. in the classical
case, L = −∆ on a bounded domain Ω ⊂ Rd with Dirichlet boundary conditions, then
F = Fe = H1,2

0 and F ∗e = H−1.
Let Φ be a nice Young function with ∆2 and ∇2 growth conditions. Let ϕ be its left-

derivative. Set X4 := F ∗e and X∗4 = Fe. X4 is a Hilbert space and the Riesz-isometry
−L : X∗4 → X4 is an extension of −L. Let V4 := LΦ(µ) ∩Fe (Lp(Ω, dx) ∩H−1 in the
classical case, 1 < p <∞). We consider

g4(u) :=
∫

Ω
Φ(|u|) dµ.
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Since the Riesz map of Fe is the operator L that we are using to define the subgradient
operator, we have to distinguish between the dualization and the inner product of F ∗e .
We write Fe

〈·, ·〉F∗e for the dualization and (·, ·)F∗e for the inner product. The associated
operator A4 = ∂f4 is proved to have the representation

Fe
〈A4u, v〉F∗e =

∫
ϕ(|u|) sign(u)v dµ, u ∈ D(A4) ⊂ V4, v ∈ V4.

Applying the Riesz isometry, we get

(A4u, v)F∗e = −
∫
L [ϕ(|u|) sign(u)] v dµ, u ∈ D(A4) ⊂ V4, v ∈ V4,

which is a subgradient operator on a Hilbert space. Reducing to the classical case, it
takes the shape

A4u = ∆
[
|u|p−2u

]
in H−1

which is the porous medium operator for p > 2 and the fast diffusion operator for p < 2.
A famous lecture by Donald G. Aronson [Aro86] forms a highly readable introduction to
the porous medium equation. Juan Luis Vázquez’s book [Váz07] provides a systematic
and comprehensive reference. In [Váz06], both porous medium and fast diffusion type
equations are studied extensively. A number of physical applications for these equations
are known, such as to describe processes involving a flow of fluid through a porous
medium. As other applications, we mention nonlinear diffusion and heat transfer, plasma
physics, lubrication, material science.

In all four cases, the approximants are of similar type, except in case no. 3. Now what
is new about these Mosco-approximations, and why can they be treated only in the
framework of varying Banach spaces? In case no. 1, we vary the weight, yielding spaces
LΦ
wn → LΦ

w, see Section 8.1. In case no. 2, we vary both p and the weight at the same
time, resulting in an approximation along Lpnwn → Lpw, see Section 8.2. In case no. 3, we
approximate the critical functional defined above (in the sense of slice-convergence) by
functionals of the type

1
p

∫
Ω
|∇u|p dx, u ∈ H1,p

0 (Ω),

yielding an approximation along Lp → L1, see Section 8.3. Our proof involves also
the Legendre transforms of the functionals because in the non-reflexive L1-case a dual
statement for convergence is needed and cannot be derived theoretically from reflexivity
alone. In case no. 4 we vary the operators L and presume that the associated Dirichlet
forms converge pointwise on a core of L (which is weaker than Mosco convergence). The
measures involved are also varied, see Section 8.4.

For linear monotone operators, Mosco convergence methods have been used for ap-
proximation for quite some time now. We mention the works [Kol05, Kol06, Kol08]
by Alexander V. Kolesnikov, which have inspired us lastingly. An interesting approach
using square field operators was created by Kazuhiro Kuwae and Toshihiro Uemura
[KU96, KU97]. Other advances in convergence of linear operators, that have influenced
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our work, are given by [AKS86, Mer94, RZ97, Hin98, Mat99]. An interesting applica-
tion of G-convergence of nonlinear operators to stochastic partial differential equations
is given in Ioana Ciotir’s works [Cio09, Cio10].

Weighted Sobolev spaces

Another main result of this thesis concerns weighted first order Sobolev spaces and their
uniqueness. For the operators A1 and A2 above, such spaces are needed. The theory of
unweighted Sobolev spaces is folklore [Ada75, GT77, Maz85, Zie89, EG92], less so, in
the weighted case, where a number of different approaches exist. Usually, when one uses
Schwartz distributions for the definition, as in the fundamental works of Alois Kufner
and Bohumı́r Opic [Kuf80, KO84], one needs additional regularity on the weights and
the boundary of the domain in order to verify basic properties. In this context, the
so-called Muckenhoupt class is widely known. A weight w ∈ L1

loc(R
d) is said to belong

to Ap (the p-Muckenhoupt class; here 1 < p <∞) if there is a constant K > 0 such that(
1

volB

∫
B
w dx

)
·
(

1
volB

∫
B
w−1/(p−1) dx

)p−1

≤ K,

for all balls B ⊂ Rd. We refer to the lecture notes by Bengt Ove Turesson [Tur00] for
a detailed discussion of this class. Weighted Sobolev spaces with Muckenhoupt weights
have many nice properties. A standard construction for weighted first order Sobolev
spaces H1,p

w can be found in the book by Juha Heinonen, Tero Kilpeläinen and Olli
Martio [HKM93]. In contrary to it, we shall follow the approach of Sergio Albeverio,
Michael Röckner and Shigeo Kusuoka [AR90a, AKR90]. We shall only need Hamza’s
condition

w = 0 dx-a.e. on Rd \R(w),

where R(w) is the p-regular set of w defined as

R(w) :=

{
x ∈ Rd

∣∣∣∣ ∫
|x−y|<ε

w−1/(p−1) dy <∞ for some ε > 0

}
.

The stronger condition R(w) = Rd is known better, since it is equivalent to

w−1/(p−1) ∈ L1
loc(R

d).

Although we treat only the case that the domain is all of Rd, our weaker condition
includes cases where w is zero on a set of positive measure and where w has possible
singularities at the boundary of R(w). It is strong enough in order to verify that the
weighted Sobolev space H1,p

w is a space of functions included in Lpw, and that it is a lattice
and functions therein possess locally absolutely continuous versions on the “conditional
regular sets” on the lines parallel to the coordinate axes. These properties are proved
in Chapter 3 (including Orlicz-Sobolev spaces). Another advantage of this approach is
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that one can consider possibly infinite dimensional spaces replacing Rd. We shall also
need another characterization for f ∈W 1,p

w , based on the integration by parts formula∫
∂ifη w dx = −

∫
f∂iη w dx−

∫
fηβiw dx ∀η ∈ C∞0 ,

where βi = ∂i log(w) = ∂iw/w is the so-called logarithmic derivative of w. Obviously,
some local weak differentiability has to be assumed for the weight.

Another interesting topic to study is the uniqueness question for Sobolev spaces. It is
classically called “strong equals weak” or “H = W” and credited to Norman G. Meyers
and James Serrin [MS64]. In case with weights, everything becomes more complicated,
see e.g. [Kil97, Zhi98]. If p = 2, it has been well studied under the name “Markov
uniqueness”, see e.g. [RZ92, ARZ93a, ARZ93b, RZ94, Ebe99, Sta99a]. Another sug-
gestive name would be “problem of smooth approximation”, because it is known that
density of C∞0 in W 1,p

w is equivalent to the problem. When studying solutions to degen-
erate elliptic equations, it is related to the so-called Lavrent’ev phenomenon, which was
first observed in [Lav26].

Generally, it is known that the Muckenhoupt condition mentioned above is sufficient
for H1,p

w = W 1,p
w . Anyhow, it seems quite restrictive and hard to verify. Luckily, inspired

by a proof of Patrick Cattiaux and Myriam Fradon [CF96], we are able to impose a new
sufficient condition for H1,p

w = W 1,p
w (for the domain Ω = Rd) as follows

w1/p ∈ H1,p
loc ,

∂iw

w1/p
∈ Lqloc ∀1 ≤ i ≤ d,

see Theorem 4.4 and Section 4.2. We note that for p = 2, the condition above reduces
to the well-known one √

w ∈ H1,2
loc ,

which was first proved to be sufficient for H1,2
w = W 1,2

w in [RZ94].
The proof of Theorem 4.4 uses the integration by parts formula presented above. In

connection with the approach using Schwartz distributions, we are able to transfer the
result to the classical definition of the weak Sobolev space W 1,p

w , see Section 4.3.
As was noticed by Alexander V. Kolesnikov [Kol05] and by V. V. Zhikov [Zhi98] in

a different context, the problem H = W is indeed related to condition (M2) for Mosco
convergence. Intuitively, the idea behind is clear, since (M2) is a condition demanding
that “a limit is attained”, and, on the other hand, H = W is a condition for smooth
approximation. Thus our result on uniqueness has a direct application for the Mosco
convergence of functional no. 2 above.

Overview

This work consists of an introduction, 7 subsequent chapters and 3 appendices. We
shortly present the topics of the chapters as follows:

Chapter 1 contains the introduction, the guide for the reader below and the acknowl-
edgements.
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1 Introduction

Chapter 2 collects well-known facts from the theory of (linear and nonlinear) opera-
tors, bilinear forms and convex functionals, with an emphasis on the calculus of
variations. Chapters 7 and 8 heavily depend on these facts.

Chapter 3 introduces weighted first order Sobolev spaces on Rd that belong to an
Orlicz-space integrability class. We distinguish between the strong weighted Φ-
Sobolev space H1,Φ

w and the weak weighted Φ-Sobolev space W 1,Φ
w . Fundamental

properties are proved.

Chapter 4 is devoted to the study of H = W . A new condition for equality of the
strong and weak weighted Sobolev spaces in the Lp-integrability class, 1 < p <∞,
is given.

Chapter 5 contains the abstract functional analytic and topological theory of varying
Banach spaces. The theory is fully developed. Many useful topological and ge-
ometric properties of both strong and weak topologies are proved. In particular,
we explain what we mean by (strong and weak) asymptotic relations and metric
approximations and how these two concepts depend on each other, as sketched in
the figures of Section 5.13.

Chapter 6 gives many concrete examples for metric approximations, and, as a conse-
quence, for asymptotic relations and varying spaces. Among them, we present
varying Lp-spaces, varying Orlicz-spaces, varying finite dimensional approxima-
tions and two-scale convergence.

Chapter 7 provides the (abstract) theory of variational convergence of operators, forms,
convex functionals and “spectral objects”, as semigroups and resolvents, everything
done in the varying-space-framework. Γ, Mosco, slice and graph convergence are
introduced.

Chapter 8 gives four applications for variational convergence of quasi-linear partial dif-
ferential operators. In all four cases, the underlying Banach spaces are varied. We
prove Mosco and slice convergence, and, as a result, strong graph convergence.

Appendix A recalls some facts from general topology, needed mainly in Chapter 5.

Appendix B collects facts from the general (geometric) theory of Banach spaces, needed
in Chapters 5 and 6.

Appendix C gives a short introduction to Young functions and Orlicz spaces with gen-
eral measures. Orlicz spaces are used particularly in Chapters 3, 6 and 8.

For a more detailed summary (with further comments on the novelty of the respective
results), we refer to the following “guide for the reader”.
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A guide for the reader

In Chapter 2, we collect all preliminary results and notions that are needed thereafter
(except for those collected in the appendix). In Section 2.1, we introduce the symbols
and notations we are using in this work. Section 2.2 briefly summarizes the framework
of linear monotone operators (resolvents, semigroups) and bilinear forms on Hilbert
spaces. It is needed for our results on linear operators in Sections 7.2 and 7.3. Section
2.3 gives a short introduction to nonlinear multi-valued monotone operators on Banach
spaces and their resolvents, Yosida approximations and semigroups. We need these
notions in the results of Section 7.4. Section 2.4 explains the basics of the variational
theory of convex functionals on normed spaces, including subgradients, differentiability,
the Legendre transform, infimal convolution and Moreau-Yosida approximation. These
concepts are needed for our results on variational convergence in Sections 7.5 and 7.6.
All examples of concrete operators in Chapter 8 are subdifferentials of convex functionals
on Banach spaces. In particular, for Chapter 8, we need a variational setting based on
an embedding V ↪→ X of Banach spaces. It is developed in Section 2.5. The interplay
of the two spaces V and X with subgradients is revealed in Proposition 2.50. Corollary
2.51 and Lemma 2.52 are highly useful in order to establish single-valuedness and lower
semi-continuity of subdifferentials in Chapter 8.

In Chapter 3, we present weighted first order Orlicz-Sobolev spaces on Rd in a nut-
shell. The chapter starts with four conditions (S1)–(S4) on the weights, needed for a
reasonable construction of weighted Sobolev spaces, see Definitions 3.1 and 3.2. Only
condition (S2) is well-known in the literature as w1/(1−p) ∈ L1

loc, which ensures that
H1,p
w is a space of functions. In fact, we only need the weaker condition (S1) (involving

the so-called regular set R(w)), which is implied by (S2). (S2) turns out to be par-
ticularly useful, when comparing weak derivatives with distributional derivatives, see
Remark 3.9. Section 3.1 develops the construction of the strong weighted Orlicz-Sobolev
space H1,Φ

w . Note that our (closability) condition (3.3) is directly implied by (S1). The
construction is quite standard, namely, taking the completion of C∞-functions with fi-
nite Orlicz-Sobolev-norm. In Lemma 3.10, we use a partition of unity in order to prove
that smooth compactly supported functions are dense in H1,Φ

w . Section 3.2 presents the
Albeverio-Kusuoka-Röckner-Zhang approach towards the weak weighted Orlicz-Sobolev
space W 1,Φ

w . Note that it was previously only known for W 1,2
w . Integration by parts

formula (3.4) is used as a definition. It is both intuitive and significant, as central prop-
erties can be derived from it directly, see Lemmas 3.13 and 3.14 and also Lemma 4.5. In
addition to (S1), we are demanding (S3) and (S4), related to the so-called logarithmic
derivative β of w. Unfortunately, in order to prove that W 1,Φ

w is a lattice, we need an-
other characterization of functions in W 1,Φ

w , known as absolute continuity on lines. We
prove in Proposition 3.15 that this property is both necessary and sufficient. Using this
representation, we are able to explain the relationship with distributional derivatives
in Corollary 3.16, prove the Leibniz rule in Corollary 3.17 and prove a chain rule with
Lipschitz functions in Lemma 3.18. Finally, in Lemma 3.19, we prove that bounded and
compactly supported functions are dense in W 1,Φ

w . Note that in both cases, the (closed)
gradient depends on the weight w.
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1 Introduction

Chapter 4 is devoted to the problem H = W . We impose the condition (HW) on the
weight w (being closely related to (S3) and (S4)), in order to derive uniqueness H = W
from it. In Section 4.1, we shortly discuss the famous Muckenhoupt class, which is a
rather strong condition for H = W to hold. Our main result in Section 4.2 is Theorem
4.4, which states that H1,p

w (Rd) = W 1,p
w (Rd) whenever (HW) is assumed. The central

steps in the proof, which is based on an approximation by smoothing mollifiers, depend
heavily on the integration by parts-Lemma 4.5, on the inequalities (4.12) and (4.13)
involving the Hardy-Littlewood maximal function and on the classical Lemma 4.6 about
difference quotients for Sobolev functions. We shall first prove Lemma 4.5 with the help
of another regularization of the weight w. Using several approximations and localization,
we are able to prove that C∞0 is dense in W 1,p

w . Note that the results of Chapter 3, in
particular Lemma 3.19, are crucial. In Section 4.3, we recover the classical definition of
W 1,p
w as in equation (4.17), which uses distributional derivatives as a definition (instead

of the integration by parts formula (3.4)). Luckily, under conditions (S2) and (HW),
both definitions coincide, which is a result of Lemma 4.7 and Proposition 4.10.

In Chapter 5, we develop the general theory of varying Banach spaces. We suggest
for readers interested in the general (but convenient) approach to read Appendix A
completely before starting with Chapter 5. Section 5.1 contains a motivating summary
on classical results about convergence of compact metric spaces. In Section 5.2, we
define axiomatically what we mean by a varying Banach space and call it a linear strong
asymptotic relation. For the strong topology, there are four related definitions, namely
5.6, 5.8, 5.10 and 5.12. In our applications, we shall need only Definition 5.12. The
others differ in topological details. That the definitions make sense, is proved later in
Section 5.7. Lemma 5.9 embeds the framework of Section 5.1 into the larger picture.
In Subsection 5.2.3, we shall discuss three important topological properties of strong
asymptotic relations, namely, the Hausdorff property, the existence of a countable base,
and the regularity, which combined together (under separability assumptions on the
Banach spaces involved) yield the metrization property. Section 5.3 discusses weak and
weak∗ topologies of varying Banach spaces, also axiomatically, see Definition 5.18. In
Subsection 5.3.1, we prove a Banach-Alaoglu-type compactness theorem (Theorem 5.22)
for weak∗ topologies of varying Banach space duals. The proof is far more complicated
than the classical one, since we are not working in a linear space anymore. Nevertheless,
the result is quite useful, when no reflexivity of the spaces is assumed. Section 5.4
introduces metric approximations, see Definition 5.24. Note that concrete examples of
metric approximations are given in Chapter 6. As mentioned above, they are always
the starting point, when constructing strong and weak (linear) asymptotic relations. In
Section 5.5, we define strong convergence (coming from a metric approximation), see
Definition 5.28. We prove that it generates a sequential topology, see Theorem 5.32.
A more abstract, but in some sense more natural way of dealing with the topology
can be found in the proof of Theorem 5.76. Anyhow, we note that, to the best of
our knowledge, this proof is new and necessary when talking about topologies coming
from a convergence. This has not been addressed in previous works on asymptotic
relations since nets were used instead of sequences. Now we justify the use of sequences
in the asymptotic relation topologies. We highly recommend the reader to take notice of
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Lemma 5.27, which shall be applied many times in this work. It provides an extremely
elegant way to deal with diagonal sequences, due to Attouch and Wets. In Section
5.6, weak and weak∗ convergence are defined, see Definition 5.33. Two highly useful
properties of weak convergence are proved in Lemmas 5.35 and 5.36. We shall use
them many times. Finally, in Theorem 5.37 we prove that weak and weak∗ convergence
generate a sequential topology. In Section 5.7, we prove that the topologies defined
in Sections 5.5 and 5.6 are indeed strong and weak asymptotic relation topologies, see
Theorem 5.38 and 5.45. Uniqueness is also proved, given the compatibility condition
(C). More on condition (C) related to metric approximations can be found in Subsection
5.7.1. In Subsection 5.7.2, we discuss a property called asymptotic duality (Definitions
5.42 and 5.43), which enables us to talk about weak topology and dual pairs of varying
Banach spaces. It turns out to be very natural, see Proposition 5.44. It can be verified
easily in applications, see Chapter 6. In Lemmas 5.46 and 5.47, we prove an asymptotic
lower semi-continuity of the norms w.r.t. the weak and weak∗ topologies. In Lemma
5.48, we verify convergence of normalized duality maps, using the compactness result in
Theorem 5.22. Lemma 5.49 recovers the usual definition of weak convergence in varying
spaces found in the literature. Section 5.8 briefly discusses the so-called asymptotic
continuity of metric approximations, which is generic in some sense, see Lemma 5.51.
In Section 5.9, we prove the sequential relative compactness of bounded sets for the
weak topology, see Lemma 5.53. It works for reflexive and separable varying Banach
spaces. In Section 5.10, we introduce the Kadeč-Klee property (which is known to hold
in varying Hilbert spaces), and prove that it is implied by the so-called asymptotic
uniform convexity, see Definition 5.56 and Theorem 5.57. Recall that the Kadeč-Klee
property states that un → u strongly if and only if un ⇀ u weakly and ‖un‖ → ‖u‖, see
Definition 5.54. We shall need it in Chapter 8. Proposition 5.58 gives conditions when
the normalized duality maps are strongly converging. Lemma 5.59 and 5.60 together give
a new characterization of strong convergence using weak convergence, supposing that the
Kadeč-Klee property holds. In Section 5.11, we introduce so-called asymptotic (strong
and weak) embeddings and discuss their basic properties. Lemma 5.66 will prove to be
useful in applications, for it gives a method for verifying strong asymptotic embeddings.
Note that asymptotic embeddings naturally occur in our variational framework based
on Banach space embeddings V ↪→ X. In Section 5.12, we present a major result of this
work, namely an abstract isometric theorem, which is Theorem 5.68, stating that an
asymptotic relation is metrically isometrically isomorphic (both strongly and weakly) to
E × (N ∪ {∞}) and that there exist compatible isometric metric approximations. The
proof of the result involves linear algebra, matrix manipulations, geometry of Banach
spaces (as e.g. Schauder bases and orthogonality), Banach limits and, most importantly,
the abstract condition (I), as defined in 5.67. (I) is easily verified for Hilbert spaces. In
Chapter 6, we shall verify it for abstract atomless separable Lp-spaces. Lemmas 5.69,
5.70 are crucial for the proof of Theorem 5.68. Lemma 5.71 might be of its own interest
in the isometric theory of Banach spaces. To the best of our knowledge, it is new.
Corollary 5.72 is needed in Section 7.1. Proposition 5.73 yields the isometric metric on
E×(N∪{∞}), implying that, under some conditions, linear strong asymptotic relations
are Polish. As a feature, we give an overview on the relations of strong linear asymptotic
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1 Introduction

relations and different types of linear metric approximations in five figures in Section
5.13. Section 5.14, an addendum, is devoted to the so-called asymptotic topology, an
observation by us, providing a convenient way to introduce varying (and continua of)
metric spaces. We have already used it in the presentation above. In Lemma 5.75, it
can be seen that topological properties of asymptotic relations occur quite naturally.
Theorem 5.76 is a generalization of Theorems 5.32 and 5.38 with a shorter proof due to
the more general situation. In Subsection 5.14.1, an example of a continuum of Hilbert
spaces is given. It is kept in the spirit of the examples in Chapter 6.

Chapter 6 consists of examples of metric approximations of varying Banach spaces.
Some of them are used in Chapter 8 for our applications to operator convergence. In
Section 6.1, the Hilbert space case is treated, which is, however, already well-known. In
particular, separable infinite dimensional Hilbert spaces always satisfy condition (I) as a
result of Lemma 6.2. In Section 6.2, we prove an elaborate result stating that separable
atomless Lp-spaces, with 1 < p <∞ fixed, always satisfy condition (I). We quote many
results from the isometric theory of Banach spaces and from the classification theory,
basis theory and geometry for Lp-spaces. To the best of our knowledge, only Lemma
6.12 is new, and might be of its own interest; it is explaining the rôle of duality for
isometries between Lp-spaces on different measure spaces. All preliminary results are
needed to verify condition (I). Finally, concrete metric approximations are given, starting
from Subsection 6.2.1. We treat the cases

.⋃
n L

p(µn)∪̇Lp(µ), i.e. varying measure.
Subsection 6.2.2 treats the case

.⋃
n L

p(Ωn;µn)∪̇Lp(Ω;µ) of varying domain and measure
(where the domain can be infinite dimensional). In Subsection 6.2.3, we consider varying
p (and varying measure), excluding the critical (non-reflexive) cases p = 1 and p = ∞,
that is,

.⋃
n L

pn(µn)∪̇Lp(µ). In Subsection 6.2.4, we present metric approximations for
.⋃
n L

pn(Ω)∪̇L1(Ω) and for
.⋃
n L

qn(Ω)∪̇L∞(Ω), Ω ⊂ Rd bounded. In Section 6.3, we give
a metric approximation for Orlicz spaces with varying measure. The main difficulty
is the non-homogeneity of the Young function Φ involved. Nevertheless, we are able
to prove the convergence of norms, see Lemmas 6.17 and 6.19. This is a major step
towards two-scale convergence of Orlicz spaces and homogenization of non-homogeneous
degenrate elliptic equations. In Section 6.4, we relate so-called scales of Banach spaces
to asymptotic relations. In Section 6.5, we prove that finite dimensional approximations
in Banach spaces are always linear asymptotic relations. As an important feature of
our work, in Section 6.6, we are able to prove that two-scale convergence, as used in
the theory of homogenization, can always be embedded into our framework. This has
topological and analytical implications.

Chapter 7 provides the (abstract) functional analytic foundation of variational con-
vergence of operators and forms in varying spaces. In Section 7.1, a general method,
suggested by a referee in 2007, is presented, which enables us to transfer abstract results
on a fixed space to varying spaces. It is applied in the proofs of Theorems 7.10, 7.15 and
7.24. It is explained in Proposition 7.2 and Corollary 7.3. It works in separable Hilbert
spaces and separable non-atomic Lp-spaces, 1 < p < ∞, as a consequence of Theorem
5.68, Lemma 6.2 and Proposition 6.3. Section 7.2 discusses modes of convergence for
sequences of bounded linear operators on varying Banach spaces. In Sections 7.2.1 and
7.3, we prove results of variational convergence in Theorems 7.10, 7.12, 7.15, Proposi-
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tion 7.18 within the linear case. Note that for varying spaces, only Theorem 7.12 (the
symmetric case) was known before. Theorem 7.10 is the celebrated Trotter-Neveu-Kato
Theorem, Theorem 7.12 is the Mosco theorem for symmetric forms. Section 7.3 uses the
framework of generalized bilinear forms as introduced in Section 2.2. We go over to the
non-symmetric situation in Section 7.4. We explicitly prove (without the methods from
Section 7.1) the nonlinear Trotter-type Theorem 7.23 due to Attouch. The nonlinear-
semigroup-convergence-Theorem 7.24 is due to Brézis, where we shall use the methods
from Section 7.1. In Section 7.5, we finally introduce Γ, Mosco and slice convergence
(for varying spaces) in Definitions 7.25, 7.26 and 7.27. Some asymptotic properties of
Γ-limits are discussed in Proposition 7.29. Curiously, the classical compactness of the
Γ-topology extends to our case, as proved in Theorem 7.31. For the proof of Theorem
7.38, we need the notion of epilimits, as introduced in Definition 7.32. Some properties
are discussed thereafter. In Subsection 7.5.2, we reprove a famous result by Attouch
(Theorem 7.38), stating that the Mosco topology is exactly the one making the Leg-
endre transform bicontinuous. This result is rather technical, but needed in the proofs
of Theorems 7.43 and 7.46. Finally, in Section 7.6, we prove that in reflexive (varying)
spaces, Mosco convergence of convex functionals is equivalent to G-convergence of their
subgradients, see Theorem 7.43. Moreover, in non-reflexive spaces, we lift a result by
Combari and Thibault to the case varying spaces, Theorem 7.46. It states that slice con-
vergence of convex functionals is equivalent to the G-convergence of their subgradients.
In fact, Theorem 7.43 is included therein. We shall apply both Theorems 7.43 and 7.46
in Corollaries 8.8, 8.14, 8.26, 8.39, which are, as a matter of fact, condensing our main
results.

Chapter 8 is divided into four sections corresponding to the four operators presented
above. Each of it exhibits a similar structure. First the convex functional for the oper-
ator is defined, as there are, respectively, the weighted Φ-energy, the weighted p-energy,
the 1-homogeneous total variation and the Φ-modular for the porous medium and fast
diffusion operator. We prove respective Gâteaux differentiability in Lemmas 8.1, 8.9
and 8.36. Regularity properties of the respective functionals are discussed in Lemmas
8.2, 8.10 and 8.37. The associated subgradient operators appear thereafter as, respec-
tively, the weighted Φ-Laplacian, the weighted p-Laplacian, the 1-Laplacian and the
porous medium operator and the fast diffusion operator, see Remarks 8.3, 8.11, 8.22
and the paragraph below Lemma 8.37, respectively. Then we state the conditions and
prove the approximations for our respective convex functionals. This is done in Theo-
rem 8.4 (Mosco convergence), Theorem 8.12 (Mosco convergence), Theorems 8.24, 8.25
(together: slice convergence) and in Theorem 8.38 (Mosco convergence). Below each of
the theorems, we give a corollary with our main results, the strong graph convergence
of the four operators as described above, see Corollaries 8.8, 8.14, 8.26, 8.39. Addition-
ally, in Section 8.1, there are some results specific to Orlicz spaces, in particular, the
method how we can avoid the pitfalls coming from non-homogeneity. In Section 8.3, we
recall the definition of the space BV , which is needed for the 1-Laplacian. In Section
8.4, we quote some results on intersections and sums of Banach spaces, needed for the
Ren-Röckner-Wang framework.

Appendix A collects the facts from general topology that are needed for our topological
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1 Introduction

arguments in Chapter 5. Some of them might be not so well-known, as e.g. Fréchet and
sequential spaces, as well as convergence operators.

Appendix B collects the necessary facts from the geometry of Banach spaces that
are used in this work. It starts with convexity and smoothness properties of the norm
(Section B.1) and then discusses duality maps (Section B.2), the Kadeč-Klee property
(Section B.3) and all necessary facts (only a few) from the theory of bases in Banach
spaces (Section B.4). At last, we give a short review on orthogonality in Banach spaces
(Section B.5), which is needed in some proofs.

At the end of the book, there is an introduction to Orlicz spaces, Appendix C. Ev-
erything necessary is collected; on Young functions (Section C.1) and on Orlicz spaces
with general measures (Section C.2). As usually, it is kept short and is by no means
complete. Anyway, it contains everything we need.
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2 Preliminaries

In this chapter, we collect some well-known facts about (linear and non-linear) operators
and related energy-forms. We shall restrict ourselves to those facts needed in our later
results and proofs. There are many books on linear dissipative operators in Hilbert
space as well as on nonlinear monotone operators in Banach space. We refrain from the
impossible task of presenting the theory comprehensively and refer to the literature as
e.g. [DS57, Bré73, Tan79, Paz83, BP86, Zei90a, Zei90b, Sho97].

2.1 Basic notations

For our convenience (in indexing), zero is not a natural number for us; hence N =
{1, 2, . . .} strictly positive integers. For a metric space X with distance dX(·, ·) we write
B(x, ρ) = BX(x, ρ) :=

{
y ∈ X

∣∣ dX(y, x) < ρ
}

for the open ball with center x ∈ X
and radius ρ ∈ [0,∞). Similarly, B(x, ρ) = BX(x, ρ) :=

{
y ∈ X

∣∣ dX(y, x) ≤ ρ
}

the
closed ball. For real Banach spaces E,F with norms ‖·‖E , ‖·‖F we denote the set of all
bounded linear operators from E to F by L (E,F ) with operator norm ‖·‖L (E,F ). For
convenience we set L (E) := L (E,E). For linear operators T denote the (algebraic)
kernel by ker(T ) and the range by ran(T ). For a real Banach space E we denote by
E∗ := L (E,R) its (topological) dual with norm ‖·‖E∗ := ‖·‖L (E,R). Let E∗〈·, ·〉E denote
the dualization between E∗ and E, i.e., E∗〈f, x〉E := f(x) ∈ R given f ∈ E∗, x ∈ E.
We shall also refer to this notation as the duality bracket. Denote by E∗∗ := L (E∗,R)
the bidual of E. For a real Hilbert space H we will denote the inner product by (·, ·)H
and define the norm by ‖·‖H := (·, ·)1/2

H . From now on we shall frequently omit the
attribute “real” since we will deal with real vector spaces only. We abbreviate α := α Id
for any α ∈ R. Let R := [−∞,+∞] be the so-called extended real numbers. As usually,
a+(±∞) = (±∞)+a = ±∞ for a ∈ R. Also (+∞)+(+∞) = +∞ and (−∞)+(−∞) =
−∞. +∞+(−∞) and −∞+(+∞) are not defined. Moreover, a·(±∞) = (±∞)·a = ±∞
for a ∈ (0,∞] and a · (±∞) = (±∞) · a = ∓∞ for a ∈ [−∞, 0). Also R+ := [0,+∞),
R+ := [0,+∞] and R∞ := (−∞,+∞]. Also N := N∪{∞}. Every of these sets carries a
topology well-known as the one-point (two-point) compactification. For d = 1, 2, . . . let
R
d =×d

i=1R which we shall usually (unless stated differently) equip with the Euclidean
distance, namely the Hilbertian metric of `2(d). When it is clear from the context, we
will write |·| := |·|Rd := ‖·‖`2(d) and 〈·, ·〉 := 〈·, ·〉

Rd
:= (·, ·)`2(d). Here `2(d), and more

generally, `p(d), `p := `p(∞) resp. for 1 ≤ p ≤ ∞ are equal to Rd (equipped with the
p-norm), resp. equal to the sequence spaces of p-summable real sequences (equipped

21



2 Preliminaries

with the p-norm). For v ∈ Rd we define the vector-valued sign function

sign(v) :=

{
v
|v| , if v 6= 0,

0, if v = 0.

Clearly, |sign(v)| ∈ {0, 1}. For a subset A of Rd, we write diamA for the diameter of
A and volA for the volume of A (when A is a measurable set). A domain Ω ⊂ Rd is a
non-empty, connected, open subset. For a domain Ω we say that a set D is compactly
contained in Ω and write D b Ω, if D is relatively compact and D ⊂ Ω, where D is the
closure in Rd. For a topological space T with topology T we write T - lim for a limit
w.r.t. to this topology, and interchangeably T - lim, when it is clear which topology is
meant. We shall sometimes write ‖·‖E - lim to indicate the limit in the strong topology
of a normed space E. For a subset A ⊂ T , we write A for the closure, intA for the
interior and ∂A for the boundary. For extended real-valued sequences or nets we denote
the limit superior by lim and the limit inferior by lim. For a real linear space V and a
subset U ⊂ V we set

linU :=

{
v =

m∑
i=1

αiui

∣∣∣∣ m ∈ N, αi ∈ R, ui ∈ U
}

and

coU :=

{
v =

m∑
i=1

αiui

∣∣∣∣ m ∈ N, αi ∈ [0, 1],
m∑
i=1

αi = 1, ui ∈ U

}
.

A subset S of a linear space V is linear iff linS = S and is convex iff coS = S. If V is a
real topological vector space and U ⊂ V we write linU and coU for the closure of linU
and coU resp. For extended real-valued functions u, v : S → R (S is any set) we write

u ∨ v := sup(u, v), u ∧ v := inf(u, v), u+ := u ∨ 0, u− := −(u ∧ 0).

For two sets A,B we write A ⊂ B (or B ⊃ A) if for each x ∈ A it holds that x ∈ B.
We shall not use the notation ⊆ or ⊇. If A ⊂ B and we would like to point out that
there is an element x ∈ B with x 6∈ A we will write A $ B (or B % A). If A ∩ B = ∅,
we write A∪̇B instead of A ∪ B, the disjoint union. For a set A included in a set B
we define the indicator function 1A as a function from B to {0, 1} such that 1A(x) = 1
iff x ∈ A and 1A(x) = 0 iff x ∈ B \ A. The Kronecker delta δi,j is a special indicator
function function on N × N with δi,j := 1∆(i, j), where ∆ := {(i, i) | i ∈ N} is the
diagonal. We say that a function f : V → R∞ on a real vector space V is positively
homogeneous of degree p ∈ R if f(tx) = tpf(x) for all t > 0. We say that f is even, if
f(x) = f(−x) for every x ∈ V and we say that f is odd, if f(−x) = −f(x) for every
x ∈ V . We use the notation D(·) instead of dom(·) to indicate the domain or the effective
domain of a function or an operator. The arg min and the arg max are defined to be
the sets of arguments such that an extended-real-valued expression attains its infimum
or supremum. For an extended-real valued function f : X → R on a topological space
X, denote by supp f := {x ∈ X | f(x) 6= 0} its support. For two measures µ, ν on a
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2.2 Bilinear forms and linear operators

measurable space (Ω,A ) we write µ� ν if µ(A) = 0 whenever ν(A) = 0 for any A ∈ A ,
i.e. µ is absolutely continuous w.r.t. ν. On a measure space (Ω,A , µ), if f : Ω → R

is a measurable function, we occasionally write f̃ or f̃µ for the equivalence class of all
functions that differ from f on a µ-null set. We use the notation ∗ for the convolution.

2.2 Bilinear forms and linear operators

For all of this section, fix a separable Hilbert space H.

Definition 2.1. A family of bounded linear operators Tt : H → H, t ≥ 0 is called
C0-contraction semigroup if ‖Tt‖L (H) ≤ 1 for all t ≥ 0,

lim
t→0
‖Ttx− x‖H = 0 ∀x ∈ H, (2.1)

and
TtTs = Tt+s ∀t, s ≥ 0. (2.2)

A family of bounded linear operators Gα : H → H, α > 0 is called C0-contraction
resolvent if ‖αGα‖L (H) ≤ 1 for all α > 0,

lim
α→+∞

‖αGαx− x‖H = 0 ∀x ∈ H, (2.3)

and
Gα −Gβ = (β − α)GαGβ ∀α, β > 0. (2.4)

A linear operator A : D(A) ⊂ H → H with linear domain D(A) is called infinitesimal
generator of a C0-contraction semigroup if D(A) ⊂ H is dense, (A,D(A)) is closed,
(−Ax, x)H ≥ 0 for every x ∈ D(A), (α−A)(D(A)) = H for some α > 0.

Compare [MR92, Ch. I.1] for details. See also [Kat66], [RS75, Ch. X.8] and [Paz83].
There is a one-to-one correspondence between the above classes.

2.2.1 Symmetric forms

Definition 2.2. We say that a functional

F : H → [0,+∞]

is a (non-negative) quadratic form (with extended real values) if there exists a linear
subspace D(F ) ⊂ H and a (non-negative) symmetric bilinear form E : D(F )×D(F )→ R
(i.e., D(F ) 3 u 7→ E (u, v) is linear for every v ∈ D(F ), D(F ) 3 v 7→ E (u, v) is linear
for every u ∈ D(F ), E (u, v) = E (v, u) for all u, v ∈ D(F ) and E (u, u) ≥ 0 for all
u ∈ D(F )) such that

F (x) =

{
E (x, x), if x ∈ D(F ),
+∞, if x ∈ X \D(F ).

(2.5)

The notation D(F ) is justified because it is the effective domain of F . We write D(E )
for D(F ).
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2 Preliminaries

Remark 2.3. Every non-negative quadratic form is convex.

The following proposition is purely algebraic and well-known. It draws the essential
connection between non-negative quadratic forms and the parallelogram identity.

Proposition 2.4. Let F : H → [0,+∞] be an arbitrary functional. If

(i) F (0) = 0,

(ii) F (tx) ≤ t2F (x) for every x ∈ H and for every t > 0,

(iii) F (x+ y) + F (x− y) ≤ 2F (x) + 2F (y) for every x, y ∈ H,

then F is a quadratic form. Conversely, if F is a quadratic form, then (i)–(iii) are
satisfied, and, in addition,

(iv) F (tx) = t2F (x) for every x ∈ H and for every t ∈ R, t 6= 0,

(v) F (x+ y) + F (x− y) = 2F (x) + 2F (y) for every x, y ∈ H.

In this case, D(F ) := {x ∈ H | F (x) < +∞} is a linear space and the bilinear form E
in (2.5) is given by

E (x, y) =
1
4

[F (x+ y)− F (x− y)] .

Proof. See [DM93, Proposition 11.9].

2.2.2 Coercive forms

Let A be a bilinear form on H with domain V ⊂ H. The symmetric part Ã of A is
defined by

Ã (u, v) :=
1
2

[A (u, v) + A (v, u)] , u, v ∈ V .

The antisymmetric part Ǎ of A is defined by

Ǎ (u, v) :=
1
2

[A (u, v)−A (v, u)] , u, v ∈ V .

It is clear that A = Ã + Ǎ . For α > 0, set

Aα(u, v) := A (u, v) + α(u, v)H , u, v ∈ V .

Ãα is defined similarly. We suppose that (A ,V ) is a coercive closed form with sector
constant K ≥ 1, that is,

(1) (Ã ,V ) is a non-negative definite, symmetric, closed form,

(2) (A ,V ) satisfies the weak sector condition, i.e., there exists a (sector) constant K ≥ 1
such that

|A1(u, v)| ≤ KA1(u, u)1/2A1(v, v)1/2 for all u, v ∈ V .

By closed we mean that V , equipped with the norm ‖·‖V := Ã1(·)1/2, is a Hilbert
space. Identifying H with its dual H∗ we obtain a dense and continuous embedding
V ⊂ H ≡ H∗ ⊂ V ∗. The pairing between V and V ∗ is expressed by V ∗〈 , 〉V .
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2.2 Bilinear forms and linear operators

2.2.3 Generalized forms

We continue with an introduction to so-called generalized (Dirichlet) forms, following
the framework of [Sta99b, Section I]. We will present bilinear forms E which are associ-
ated with some coercive closed form (A ,V ) and some properly chosen linear operator
(Λ, D(Λ, H)).

Now suppose that (A ,V ) is a coercive closed form with sector constant K ≥ 1
Let Λ be a linear operator on H with a linear domain D(Λ, H). We assume the

following:

(1) Λ generates a C0-semigroup of contractions (Ut)t≥0 on H.

(2) (Ut)t≥0 can be restricted to a C0-semigroup of contractions on V .

Denote the infinitesimal generator of the restricted semigroup by (Λ, D(Λ,V )). Note
that the adjoint operator (Λ̂, D(Λ̂,V ∗)) of (Λ, D(Λ,V )) also satisfies the conditions
above. In particular, D(Λ, H) ∩ V is dense in V . It follows from [Sta99b, Lemma I.2.3]
that Λ : D(Λ, H)∩ V → V ∗ is closable. Let us denote its closure by (Λ,F ). Then F is
a Hilbert space with (graphical) inner product

(·, ·)F := (·, ·)V + (Λ·,Λ·)V ∗ .

Furthermore, define F̂ := D(Λ̂,V ∗) ∩ V with (graphical) inner product

(·, ·) bF := (·, ·)V + (Λ̂·, Λ̂·)V ∗ .

F and F̂ are dense in V , V ∗〈Λu, u〉V ≤ 0 for u ∈ F ,
V ∗

〈
Λ̂u, u

〉
V
≤ 0 for u ∈ F̂ and

D(Λ,V ) is dense in F , cf. [Sta99b, Lemma I.2.5] and [Sta99b, Lemma I.2.6].
Now for given A and Λ, define the bilinear form E associated with (A ,V ) and

(Λ, D(Λ, H)) on H by

E (u, v) :=

A (u, v)− V ∗〈Λu, v〉V , if u ∈ F , v ∈ V ,

A (u, v)−
V ∗

〈
Λ̂v, u

〉
V
, if u ∈ V , v ∈ F̂ .

We extend E to a form defined on H and taking values in R by setting E (u, v) = +∞
for every other case, even if u ∈ H \ V and v = 0.

We also define the co-form Ê by

Ê (u, v) :=

A (v, u)−
V ∗

〈
Λ̂u, v

〉
V
, if u ∈ F̂ , v ∈ V ,

A (v, u)− V ∗〈Λv, u〉V , if u ∈ V , v ∈ F .

Remark 2.5. Let (A ,V ) be a coercive closed form and Λ = 0. Clearly F = V = F̂
and E = A is a generalized form by [Sta99b, Example I.4.9 (i)]. This is the case of
(Dirichlet) forms as described in [MR92].

25



2 Preliminaries

Let us recall some useful facts. As usually, we define for α > 0

Eα(u, v) := E (u, v) + α(u, v)H .

Proposition 2.6. For all α > 0 there exist continuous, linear bijections Wα : V ∗ → F
and Ŵα : V ∗ → F̂ such that

Eα(Wαf, v) = V ∗〈f, v〉V = Eα(v, Ŵαf)

for all f ∈ V ∗, v ∈ V . (Wα)α>0 and (Ŵα)α>0 satisfy the resolvent equation (cf. [Sta99b,
Proposition I.3.4]).

Furthermore, there exists a unique C0-resolvent (Gα)α>0 and a unique
C0-coresolvent (Ĝα)α>0 on H (being the restrictions of Wα, Ŵα resp. to H). such that
for all α > 0, f ∈ H and u ∈ V

Gα(H) ⊂ F , Ĝα(H) ⊂ F̂ ,

Eα(Gαf, u) = Eα(u, Ĝαf) = (f, u)H .
(2.6)

Ĝα is the adjoint of Gα and αGα, αĜα are contraction operators. Also, we have for
u ∈ V that

lim
α→∞

αGαu = u

strongly in V and thus in H.

Proof. See [Sta99b, Section I.3].

Note that the second line of (2.6) is equivalent with

V ∗〈(Mα − Λ)Gαf, g〉V = (f, g)H =
V ∗

〈
(M̂α − Λ̂)Ĝαf, g

〉
V
, f ∈ H, g ∈ V ,

where for α > 0 we set Mα : V → V ∗, V ∗〈Mαu, ·〉V := Aα(u, ·) and M̂α : V → V ∗,

V ∗

〈
M̂αu, ·

〉
V

:= Aα(·, u).

Define approximate forms E (β), β > 0 of E by

E (β)(u, v) = β(u− βGβu, v)H , u, v ∈ H

and set E
(β)
α (u, v) = E (β)(u, v) + α(u, v)H .

Proposition 2.7. (i) E (β)(u, v) = E (βGβu, v) for u ∈ H, v ∈ V .

(ii) E (β)(u, u) = E (βGβu, βGβu) + β ‖u− βGβu‖2H for u ∈ H.

(iii) limβ→∞ E (β)(u, v) = E (u, v) for u ∈ F , v ∈ V .

(iv) If supβ>0 E
(β)
1 (u, u) <∞, then u ∈ V .

Proof. For (i)–(iii), see [MR92, Lemma I.2.11] and [Sta98, Proposition 2.7 (iii)]. For (iv)
see [Hin98, Proposition 2.3 (iv)].

Let (Tt)t≥0, (T̂t)t≥0 resp. be the
C0-semigroup of contractions, the C0-cosemigroup of contractions resp. associated with
(Gα)α>0, (Ĝα)α>0 resp.
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2.3 Monotone operators

2.3 Monotone operators

Let X,Y be two general sets. A multi-valued map F is a binary relation ∼F (or cor-
respondence) between elements in X and Y . Define F (x) := {y ∈ Y | x ∼F y} ⊂ 2Y ,
where 2Y is the power set of Y . Hence F becomes a map F : X → 2Y which includes the
empty set as a possible target. The graph Γ(F ) ⊂ X × Y is defined as [x, y] ∈ Γ(F ) iff
x ∼F y. We consider F as a map and as a graph interchangeably (F = Γ(F )) and shall
write [x, y] ∈ F iff y ∈ F (x) iff x ∼F y. D(F ) := {x ∈ X | F (x) 6= ∅} is called the effec-
tive domain of F . ranF :=

⋃
x∈X F (x) is called the range. When each F (x), x ∈ D(F )

contains exactly one element of Y , we identify F with the function f : D(F ) → Y ,
f(x) := y whenever [x, y] ∈ F . A multi-valued map G is said to extend F if F ⊂ G in
the sense of graphs. A function f : D(F )→ Y is called selection of F if f(x) ∈ F (x) for
all x ∈ D(F ).

For this section, fix a Banach space X with (topological) dual X∗. Let J : X → 2X
∗

be the normalized duality map of X, see Appendix B.2.

Definition 2.8. A graph A ⊂ X ×X∗ is called monotone operator or monotone graph
if

X∗〈y1 − y2, x1 − x2〉X ≥ 0 ∀[x1, y1], [x2, y2] ∈ A.

A monotone operator A is called maximal monotone if for any extension B of A it must
hold: When B is monotone, then B = A.

By an application of Zorn’s Lemma, we see that any monotone graph has a maximal
monotone extension. The following lemma is called “monotonicity trick”. Compare with
Lemmas 5.59, 7.22 below. Many authors take it as a definition of maximal monotonicity.

Lemma 2.9. Let A be a monotone operator. Let x ∈ D(A) and y ∈ X∗. Consider the
following conditions:

(i) For all pairs [u, v] ∈ A it holds that

X∗〈y − v, x− u〉X ≥ 0.

(ii) [x, y] ∈ A.

(ii) implies (i). (i) implies (ii) if and only if A is maximal monotone.

Proof. See [AC84, Ch. 3, §1, Proposition 1].

Lemma 2.10. Let A ⊂ X×X∗ be maximal monotone. Then A(x) is convex and weak∗-
closed for all x ∈ D(A). In particular, when X is reflexive, A(x) is convex and strongly
closed for all x ∈ D(A).

Proof. See [Dei85, Theorem 23.3] and the fact that by Mazur’s Theorem in reflexive
Banach spaces weak∗ closed convex sets are strongly closed, cf. [HHZ96, Theorem 56].
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Lemma 2.11. Suppose that X is reflexive. Let A ⊂ X × X∗ be maximal monotone.
Then both D(A) and ran(A) are convex.

Proof. See [Bar76, Ch. II, Corollary 1.2].

Definition 2.12. Denote by A0 the principal section of a maximal monotone operator
A, i.e. the selection obtained by A0x := projAx(0), x ∈ D(A), where “ proj” denotes the
metric projection, see e.g. [Sin70b].

For x ∈ D(A), A0x are the elements of Ax with minimal norm. A0 is single-valued if
and only if X is reflexive and strictly convex (Definition B.1), see Lemma 2.10, [Sin70b].
For properties of A0 in the Hilbert space case, we refer to [Bré73].

2.3.1 Resolvents and Yosida-approximation

The following result is known as Minty’s Theorem in the Hilbert space case.

Theorem 2.13 (Browder-Rockafellar). Suppose that X is reflexive and has the Kadeč-
Klee property (see Appendix B.3). Let A : X → 2X

∗
be a monotone operator. Then A

is maximal monotone if and only if

ran(A+ J) = X∗.

In that case, A+ εJ is maximal monotone, one-to-one and onto for each ε > 0.

Proof. See [Bro76, Chapter 7].

Suppose that X is reflexive and has the Kadeč-Klee property (see Appendix B.3). Let
A : X → 2X

∗
be maximal monotone. For every λ > 0, for every x ∈ X, there exists a

unique element RAλ x belonging to D(A) such that

J(RAλ x− x) + λA(RAλ x) 3 0.

We introduce the notation
Aλx :=

1
λ
J(x−RAλ x),

thus
Aλx ∈ A(RAλ x).

Definition 2.14. The family of operators (Aλ)λ>0 is called the Yosida-approximation
of A and the family of operators (RAλ )λ>0 is called the resolvent of A.

Remark 2.15. When A is linear and maximal monotone on a Hilbert space H, then
RAλ = (1/λ)G−A1/λ for each λ > 0, where (GAα )α>0 is the resolvent as defined in 2.1.

Proposition 2.16. Suppose that X is reflexive and has the Kadeč-Klee property (see
Appendix B.3). Let A : X → 2X

∗
be maximal monotone. Then:
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(i) The operators RAλ : X → X and Aλ : X → X∗ are continuous (both X and
X∗ equipped with the strong (normed) topologies). When X is a Hilbert space,
the resolvents RAλ are contraction maps while each Aλ is a Lipschitz map with
continuity constant 1/λ.

(ii) For λ > 0, Aλ is a maximal monotone operator and the family (Aλ)λ>0 satisfies
the resolvent equation

(Aλ)µ = Aλ+µ ∀λ, µ > 0.

(iii) The net {Aλ} converges in the graph sense to A as λ↘ 0, that is,

∀[x, y] ∈ A, ∃xλ ∈ X, λ > 0 : lim
λ↘0
‖xλ − x‖X = 0, lim

λ↘0
‖Aλxλ − y‖X∗ = 0.

Moreover,
∀x ∈ D(A) : lim

λ↘0

∥∥Aλx−A0x
∥∥
X∗

= 0.

Here A0 denotes the principal section of A, i.e. the selection obtained by A0x :=
projAx(0), x ∈ D(A). Also

∀x ∈ X : lim
λ↘0

∥∥∥RAλ x− proj
D(A)

x
∥∥∥
X

= 0.

In both terms “ proj” denotes the metric projection, see e.g. [Sin70b].

The proof can be found in [Att84, Proposition 3.56]. We recall an important inequality
from this proof, used later in the proof of Theorem 7.23. For any [x0, y0] ∈ A, λ > 0,
x ∈ X:∥∥x−RAλ x∥∥2

X
≤
∥∥x−RAλ x∥∥X (‖x− x0‖X + λ ‖y0‖X∗) + λ ‖y0‖X∗ ‖x− x0‖X (2.7)

and thus ∥∥x−RAλ x∥∥X ≤ 2 (‖x− x0‖X + λ ‖y0‖X∗) (2.8)

and RAλ is a bounded operator.

2.3.2 Semigroups

For this paragraph, fix a Hilbert space H and identify it with its dual.

Definition 2.17. Let C ⊂ H. A family of (possibly nonlinear) maps St : C ⊂ H → H,
t ≥ 0 is called (nonlinear) nonexpansive semigroup on C (or plainly semigroup) if it
satisfies the following conditions:

(i) S0 = IdC , St(C) ⊂ C and St ◦ Ss = St+s for all t, s ≥ 0.

(ii) limt↘0 ‖Stx− x‖H = 0 for all x ∈ C.

(iii) ‖Stx− Sty‖H ≤ ‖x− y‖H for all x, y ∈ C and for all t ≥ 0.
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Theorem 2.18 (Komura-Kato). Let A ⊂ H ×H be maximal monotone. Let A0(x) :=
projAx(0), x ∈ D(A) be its principal section. Then the initial value problem

d
dt
u(t) +Au(t) 3 0, 0 < t <∞,

u(0) = f
(2.9)

has a unique solution t 7→ Stf for all f ∈ D(A), where the time-derivative is to be
understood in the sense of weak convergence in H. Moreover,

(i) Stf ∈ D(A) for all f ∈ D(A), t ≥ 0,

(ii) t 7→ Stf is Lipschitz continuous on [0,∞) for all f ∈ D(A),

(iii) For dt-a.a. t ∈ (0,∞) the derivative d
dtStf exists in the strong sense and solves

(2.9). Furthermore,
∥∥ d

dtStf
∥∥
H
≤
∥∥A0f

∥∥
H

,

and (St)t≥0 is a nonexpansive semigroup on D(A) which can be uniquely extended to a
nonexpansive semigroup on D(A).

Proof. See [Kom67], [Bré73, Théorème 3.1] and [Zei90b, Theorem 31.A].

Conversely, a Hille-Yosida-Phillips-type theorem holds:

Theorem 2.19 (Brézis). Let (St)t≥0 be a semigroup on a (strongly) closed convex subset
C ⊂ H. Then there exists a unique maximal monotone operator A ⊂ H ×H such that
D(A) = C and (St)t≥0 coincides with solution of (2.9) for A. In particular, we have

‖·‖H − lim
t↘0

Stx− x
t

= −A0x ∀x ∈ D(A). (2.10)

Proof. See [Bré73, Théorème 4.1].

In the situation of Theorems 2.18, 2.19, −A is called the generator of the semigroup
(St)t≥0.

2.4 Convex functionals

Definition 2.20. A function f : X → R on a topological space X is called lower
semi-continuous at a point x ∈ X if for every t ∈ R with t < f(x), there is an open
neighborhood U of x such that t < f(y) for all y ∈ U . We say that f is lower semi-
continuous if it is lower semi-continuous at every point x ∈ X.

Remark 2.21. In this work, we shall use lower semi-continuity exclusively w.r.t. the
strong Banach space topology. Also, in this work, we usually abbreviate “lower semi-
continuous” to “ l.s.c.”.

Lemma 2.22. Suppose that X satisfies the first axiom of countability. Let f : X → R

be a function and let x ∈ X. The following statements are equivalent:
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(i) f is l.s.c. at x.

(ii) f(x) ≤ limn f(xn) for every sequence {xn} which converges to x in X.

(iii) f(x) ≤ limn f(xn) for every sequence {xn} which converges to x in X such that
limn f(xn) exists and is less than +∞.

Proof. See [DM93, Proposition 1.3].

For the sequel, recall that R∞ = (−∞,+∞].

Definition 2.23. Let X be a Banach space and f : X → R∞ a functional. f is called
convex if

f(tu+ (1− t)v) ≤ tf(u) + (1− t)f(v) (2.11)

for every u, v ∈ X, t ∈ [0, 1]. If (2.11) holds with “≤” replaced by “<” whenever
t ∈ (0, 1) and u 6= v, f is called strictly convex. f is called (strictly) concave if −f
is (strictly) convex. f is called proper if f(u) < +∞ for some u ∈ X. We write
D(f) := {u ∈ X | f(u) < +∞} for the effective domain. For any set S ⊂ X we define
the indicator function IS : X → {0,+∞} by

IS(u) :=

{
0, if u ∈ S,
+∞, if u ∈ X \ S.

IS is not to be confused with the indicator function 1S. The epigraph of f is given by

epi(f) := {[u, a] ∈ X ×R | f(u) ≤ a} .

Remark 2.24. IS is proper if and only if S is non-void. IS is convex if and only if S
is convex. u ∈ D(f) if and only if [u, a] ∈ epi(f) for some a ∈ R.

Lemma 2.25. Let X be a Banach space and f : X → R∞. If f is convex and λ ≥ 0,
then λf is convex. If f1, f2 are convex, then f1 + f2 is convex. If each fi, i ∈ I (any
index set) is convex, then supi∈I fi is convex and epi(supi∈I fi) =

⋂
i∈I epi(fi). f is

proper, l.s.c. and convex if and only if epi(f) is, respectively, non-void, (strongly) closed
and convex in X ×R.

Proof. See [Sho97, Proposition II.7.1].

We shall not need the next Proposition but include it on account of completeness.

Proposition 2.26. A proper, convex, l.s.c. f : X → R∞ on a Banach space X is
strongly continuous on intD(f).

Proof. See [Sho97, Proposition II.7.3].
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2.4.1 The subgradient

Definition 2.27. Let f : X → R∞ be proper and convex on a Banach space X. The
subdifferential or subgradient of f is a possibly multi-valued operator ∂f : X → 2X

∗

defined by [x, x∗] ∈ ∂f if

f(x)− f(u) ≤ X∗〈x
∗, x− u〉X ∀u ∈ X, (2.12)

which makes sense if x ∈ D(f). Set D(∂f) := {x ∈ X | ∂f(x) 6= ∅}, which is called the
effective domain of ∂f . If x ∈ D(∂f), we say that f is subdifferentiable at x.

It is obvious that D(∂f) ⊂ D(f). Conversely, if f is l.s.c., proper and convex,
intD(f) ⊂ D(∂f) and D(∂f) is dense in D(f), cf. [BP86, Ch. 2, §2, Corollaries
2.1, 2.2].

Lemma 2.28. If a convex function f : X → R∞ is finite and continuous at some point
x0 ∈ X, then x0 ∈ D(∂f), i.e., f is subdifferentiable at x0.

Proof. See [BP86, Ch. 2, §2, Proposition 2.2].

Definition 2.29. Let f : X → R∞ be proper and convex on a Banach space X. For
any ε > 0 define the ε-subgradient ∂εf of f by

∂εf(x) := {x∗ ∈ X∗ | f(u)− f(x) + ε ≥ X∗〈x
∗, u− x〉X ∀u ∈ X} , x ∈ X.

Remark 2.30. In the above definition, for any ε > 0 and any x ∈ X, it holds that
∂εf(x) = {x∗ ∈ X∗ | f(x) + f∗(x∗)− X∗〈x

∗, x〉X ≤ ε}, where f∗ denotes the Legendre
transform of f , see Paragraph 2.4.3 below.

The next lemma is known as the “Brøndsted–Rockafellar Lemma” in the literature.
Its proof involves Zorn’s Lemma.

Lemma 2.31 (Brøndsted–Rockafellar). Let f : X → R∞ be proper, l.s.c. and convex
on a Banach space X. Let ε > 0. If [x, x∗] ∈ ∂εf , then there exists a pair [y, y∗] ∈ ∂f
such that

‖x− y‖X ≤
√
ε and ‖x∗ − y∗‖X∗ ≤

√
ε.

Proof. See [BR65].

Definition 2.32. An operator A : X → 2X
∗

is called cyclically monotone, if

∀n ∈ N :
n∑
i=1

X∗〈yi, xi − xi+1〉X ≥ 0 ∀[xi, yi] ∈ A, 1 ≤ i ≤ n, xn+1 := x1.

A is called maximal cyclically monotone if its graph is not properly contained in any
other cyclically monotone graph.
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Theorem 2.33 (Rockafellar). If f : X → R∞ is a proper, l.s.c. and convex functional
on a Banach space X, then ∂f : X → 2X

∗
is a maximal cyclically monotone operator.

Let A : X → 2X
∗
. In order that there exists a proper, l.s.c., convex functional f : X →

R∞ such that A = ∂f , it is necessary and sufficient that A be a maximal cyclically
monotone operator. Moreover, in this case A determines f up to an additive constant.
Indeed, (2.13) in Theorem 2.34 below holds with ∂f = A (where one can start with any
x0 ∈ D(A)).

Proof. See [Roc70, Theorems A and B]. See also [BP86, Ch. 2, §2, Theorem 2.2].

Theorem 2.34 (Rockafellar). Let X be a Banach space and f : X → R∞ be proper,
l.s.c. and convex. For each x ∈ X and x0 ∈ D(∂f)

f(x) = sup
x0yx

{
f(x0) +

n−1∑
i=1

X∗〈x
∗
i , xi+1 − xi〉X

}
, (2.13)

where x0 y x denotes all finite chains x0 = x1, x2, . . . , xn = x contained in D(∂f), and
where x∗i ∈ ∂f(xi).

Proof. See [Roc66, Roc70].

Equation (2.13) is called integration formula for subgradients.

2.4.2 Gâteaux and Fréchet differentiability

Definition 2.35. Let X be a normed linear space. A function f : X → R is said to be
Gâteaux differentiable at a point x ∈ X if the directional derivative in direction h ∈ X

f ′(x, h) := lim
t↘0

f(x+ th)− f(x)
t

exists for each h ∈ X and if h 7→ f ′(x, h) is a linear and strongly continuous map. In
this case we denote this map by ∇Gf or ∇Gf(x) which is an element in X∗ that satisfies

X∗〈∇Gf(x), h〉X = f ′(x, h) ∀h ∈ X.

f is called Fréchet differentiable at a point x ∈ X if it is Gâteaux differentiable at x and
for any ε > 0 there is δ > 0 such that

|f(x+ h)− f(x)− X∗〈∇Gf(x), h〉X | ≤ ε ‖h‖X whenever ‖h‖X < δ.

In that case we write ∇F = ∇G.

Proposition 2.36. If a convex function f is Gâteaux differentiable at x0, then ∂f(x0)
consists of a single element x∗0 = ∇Gf(x0). Conversely, if f is continuous at x0 and if
∂f(x0) contains a single element, then f is Gâteaux differentiable at x0 and ∇Gf(x0) =
∂f(x0).
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Proof. See [BP86, Ch. 2, §2, Proposition 2.4].

Remark 2.37. In connection with Proposition 2.36, we would like to mention that
generic differentiability of continuous convex functions on Banach spaces has been an
active interest of research for quite many years now. The class of Banach spaces known
best in this context are the so-called Asplund spaces. Skipping the details, let us only re-
call the result that if X is a separable Banach space, then any continuous convex function
defined on a non-empty open convex subset D of X is generically Gâteaux differentiable
at each point of some dense Gδ subset of D. If X∗ is separable, the corresponding
statement holds with Gâteaux replaced by Fréchet. For details, we refer to [Phe89].

2.4.3 The Legendre-Fenchel transform

Definition 2.38. Let f : X → R∞. Define the Legendre-Fenchel transform (or plainly
the Legendre transform) f∗ : X∗ → R∞ by

f∗(x∗) := sup
x∈X

[X∗〈x
∗, x〉X −f(x)] , x∗ ∈ X∗. (2.14)

f∗ is also called the conjugate function. The biconjugate function f∗∗ : X → R∞ is
defined via

f∗∗(x) := sup
x∗∈X∗

[X∗〈x
∗, x〉X −f

∗(x∗)] , x ∈ X. (2.15)

Conjugation reverses the order, that is, f ≥ g implies g∗ ≥ f∗. Also f∗∗ ≤ f . f∗ and
f∗∗ are always convex, cf. [BP86, Ch. 2, §1, Proposition 1.8].

Theorem 2.39 (Fenchel–Moreau). Let f : X → R∞ be proper. Then f∗∗ = f if and
only if f is convex and l.s.c.

Proof. See [BP86, Ch. 2, §1, Theorem 1.4].

Clearly, for every x ∈ X and every x∗ ∈ X∗

f(x) + f∗(x∗) ≥ X∗〈x
∗, x〉X (2.16)

and
f∗(x∗) + f∗∗(x) ≥ X∗〈x

∗, x〉X . (2.17)

We also define the conjugate (f∗)∗ : X∗∗ → R∞ of the conjugate. It coincides with
f∗∗ if X is reflexive. In general, the restriction of (f∗)∗ to X coincides with f∗∗.

Proposition 2.40. Let f : X → R∞ be a proper convex function. Then the following
three conditions are equivalent:

(i) [x, x∗] ∈ ∂f .

(ii) f(x) + f∗(x∗) ≤ X∗〈x
∗, x〉X .

(iii) f(x) + f∗(x∗) = X∗〈x
∗, x〉X .
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If, in addition, f is l.s.c., then (i)–(iii) are equivalent to:

(iv) [x∗, x] ∈ ∂f∗.

Proof. See [BP86, Proposition 2.2.1].

If one defines for a proper convex functional g : X∗ → R∞ the dual subgradient
∂∗f : X∗ → 2X by [x∗, x] ∈ ∂∗g if

g(x∗)− g(u∗) ≤ X∗〈x
∗ − u∗, x〉X ∀u∗ ∈ X∗, (2.18)

then by [BP86, Ch. 2, §3, Remark 2.1]

[x, x∗] ∈ ∂f ⇔ [x∗, x] ∈ ∂∗f∗. (2.19)

If X is reflexive, ∂∗g = ∂g, for g : X∗ → R∞. If one instead considers ∂f∗ ⊂ X∗ ×
X∗∗ in the non-reflexive case, the situation is more complicated, see [Roc70]. We note
also that, in Hilbert spaces, two possible definitions for subgradients exist, namely, one
involving the inner product and one involving the dualization. They are interchangeable
by application of the Riesz map.

2.4.4 Infimal convolution and Moreau-Yosida approximation

Definition 2.41. Let X be a normed space. Let C ⊂ X be a set. A function f : X →
R∞ is called weakly coercive over C if

lim
n→∞

f(xn) = +∞, whenever xn ∈ C, n ∈ N, lim
n
‖xn‖X = +∞.

f is plainly called weakly coercive if it is weakly coercive over X.
A function f : X → R∞ is called coercive over C if

lim
n→∞

f(xn)
‖xn‖X

= +∞, whenever xn ∈ C, n ∈ N, lim
n
‖xn‖X = +∞.

f is plainly called coercive if it is coercive over X.

Lemma 2.42. Let X be a reflexive Banach space. If f : X → R∞ is proper, convex,
l.s.c. and coercive, ran ∂f = X∗.

Proof. See [BP86, Ch. 2, §2, Proposition 2.5].

Proposition 2.43. Let X be a reflexive Banach space. Let C ⊂ X be a non-empty
closed convex subset. Let f : X → R∞ be convex, l.s.c. and proper. Suppose either that
C is bounded or that f is weakly coercive over C. Then

arg min
u∈C

f(u)

is non-empty. Moreover, if f is strictly convex, it contains exactly one element.
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Proof. See [ET76, Ch. II, Proposition 1.2].

Definition 2.44. Let X be a normed linear space. Given two functions ϕ,ψ : X → R∞
their infimal convolution ϕ � ψ is the well-defined function from X to R∞ equal to

(ϕ � ψ)(x) := inf
u∈X

[ϕ(u) + ψ(x− u)] , x ∈ X.

If ϕ,ψ are convex, so is ϕ � ψ, cf. [Mor70].

Lemma 2.45. Let X be a normed linear space. Suppose that we are given two functions
ϕ,ψ : X → R∞. Then

(ϕ � ψ)∗ = ϕ∗ + ψ∗.

Suppose that X is a reflexive Banach space and both ϕ,ψ are l.s.c, convex, proper and
D(ϕ)−D(ψ) is a neighborhood of the origin, then

(ϕ+ ψ)∗ = ϕ∗ � ψ∗.

Proof. See [Att84, p. 267–268, Proposition 3.4].

Proposition 2.46. Let X be a normed linear space and f : X → R∞ proper, convex
and l.s.c. Then, for every λ > 0 the so-called Moreau-Yosida approximation

(f)λ := f � 1
2λ
‖·‖2X (2.20)

is a continuous convex function. Moreover,

lim
λ↘0

(f)λ = sup
λ>0

(f)λ = f

pointwise.

If X is a reflexive Banach space, the function to be minorized in (2.20) is weakly
coercive by an argument similar to [ET76, Ch. II, p. 39].

By Lemma 2.45 for proper, convex, l.s.c. f, g,

(fλ)∗ = f∗ +
λ

2
‖·‖2X∗ (2.21)

and if X is a reflexive Banach space,

(g∗)λ =
[
g +

λ

2
‖·‖2X

]∗
(2.22)

Theorem 2.47. Let f : X → R∞ be proper, convex and l.s.c. Let A := ∂f . Then
(f)λ is Gâteaux differentiable on X and Aλ = ∂fλ (the Yosida approximation) for every
λ > 0. In addition,

(f)λ(x) =
λ

2
‖Aλx‖2 + f(Rλx) ∀λ > 0 ∀x ∈ X

and
f(Rλx) ≤ (f)λ(x) ≤ f(x) ∀λ > 0 ∀x ∈ X.

Also, if X is a reflexive Banach space, the infimum in (2.20) is attained (uniquely) and
is equal to the resolvent Rλ of A, compare with Paragraph 2.3.1.
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2.5 A variational setting

Proof. See [BP86, Ch. 2, §2.3, Theorem 2.3] and [Att84, Theorem 3.24].

2.5 A variational setting

We present a non-standard variational setting for convex functionals based on an embed-
ding V ↪→ X, where V and X are reflexive Banach spaces (usually X is a Hilbert space).
Nevertheless, in the case of linear symmetric operators this framework is well-known (see
e.g. [Tan79] and the preceding Paragraph 2.2.1 about quadratic forms).

2.5.1 Embeddings of Banach spaces

Let X be a separable reflexive Banach space with dual X∗. Let V be a Banach space.
Suppose that V can be embedded linearly, densely and continuously (w.r.t. the strong
topologies) into X, i.e., there is a linear one-to-one map i : V → X with dense range
such that for a positive constant M0 it holds that

‖i(v)‖X ≤M0 ‖v‖V . (2.23)

We shall write V
i
↪→ X and occasionally identify i(V ) with V such that V ⊂ X is a

dense linear subspace equipped with a stronger topology.
Let i∗ : X∗ → V ∗ be the linear adjoint of i, i.e., V ∗〈i

∗(x∗), v〉V := X∗〈x
∗, i(v)〉X . If

x∗�V denotes the restriction of x∗ ∈ X∗ to i(V ), then for v ∈ V

|X∗〈x
∗�V , i(v)〉X | = |X∗〈x

∗, i(v)〉X | ≤ ‖x
∗‖X∗ ‖i(v)‖X ≤M0 ‖x∗‖X∗ ‖v‖V . (2.24)

Hence i∗ is continuous. Since i(V ) is dense in X, the correspondence x∗ 7→ x∗�V and
hence the map i∗ is one-to-one, so that we can identify X∗ with i∗(X∗) and may write
X∗ ⊂ V ∗. Since ‖x∗�V ‖V ∗ ≤M0 ‖x∗‖X∗ by (2.24), X∗ has a stronger topology than V ∗.

Lemma 2.48. Denote by JX the normalized duality map of X, see Appendix B.2.
i∗JXi(V ) is total in V ∗ (see Definition B.19). In particular, i∗(X∗) is dense in V ∗,
whenever V is reflexive by Lemma B.20.

Proof. Let v ∈ V \ {0}, w ∈ JX(i(v)). Then

V ∗〈i
∗(w), v〉V = X∗〈w, i(v)〉X = ‖i(v)‖2X 6= 0,

since v 6= 0 and i is one-to-one.

Lemma 2.49. If V is reflexive, it is separable.

Proof. Since X is assumed to be separable so is X∗ by reflexivity. But X∗ is densely
and continuously embedded into V ∗ by the lemma proved before. Hence V ∗ is separable
by an elementary ε/2 argument. Reflexivity again proves that V is separable.
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If V and X are reflexive, we shall refer to the correspondence

V
i
↪→ X

J→ X∗
i∗
↪→ V ∗ (G)

as an evolution quadruple or a Gelfand quadruple. In the literature, however, X is usually
assumed to be a separable Hilbert space. Note that J might be multi-valued but it is
onto if and only if X is reflexive by [Dei85, Theorem 12.3]. It is single valued e.g. when

X is smooth, see Lemma B.3. We shall call V
i
↪→ X plainly a strong embedding.

2.5.2 Embeddings and convex functionals

Let V,X be reflexive Banach spaces. Suppose that V
i
↪→ X is a strong embedding. Let

X∗
i∗
↪→ V ∗ be the dual embedding. Suppose that we are given a finite-valued, convex

functional g : V → R with D(g) = V . Define f : X → R∞ by

f(x) :=

{
g(i−1(x)), if x ∈ i(V ),
+∞, if x ∈ X \ i(V ).

Then f is proper and convex. Furthermore,

g(v) = f(i(v)), ∀v ∈ V

and
D(f) = i(D(g)) = i(V )

and
D(∂g) ⊂ V, D(∂f) ⊂ i(V ).

The following elementary proposition was proved by Ottavio Caligaris in [Cal76, Di-
mostrazione della Proposizione 4.9] (when X is a Hilbert space).

Proposition 2.50. In the above situation,

i∗(∂f(i(v))) = ∂g(v) ∩ i∗(X∗) ∀v ∈ V.

Proof. Let v ∈ V . We prove i∗(∂f(i(v))) ⊃ ∂g(v) ∩ i∗(X∗) first. Let [v, w] ∈ ∂g ∩ (V ×
i∗(X∗)). If no such pair exists, the claim is trivial. Now,

g(z)− g(v) ≥ V ∗〈w, z − v〉V ∀z ∈ V.

Also,
f(i(z))− f(i(v)) ≥

X∗

〈
(i∗)−1(w), i(z − v)

〉
X
∀z ∈ V

and hence
f(y)− f(i(v)) ≥

X∗

〈
(i∗)−1(w), y − i(v)

〉
X
∀y ∈ i(V ),

which yields by definition of f

f(y)− f(i(v)) ≥
X∗

〈
(i∗)−1(w), y − i(v)

〉
X
∀y ∈ X.
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We have proved that [i(v), (i∗)−1(w)] ∈ ∂f and hence w ∈ i∗(∂f(i(v))).
We prove i∗(∂f(i(v))) ⊂ ∂g(v) ∩ i∗(X∗). Let [v, w] ∈ i∗(∂f(i(v))). If no such pair

exists, we are done. Now, w ∈ i∗(X∗) and (i∗)−1(w) ∈ ∂f(i(v)), hence

f(y)− f(i(v)) ≥
X∗

〈
(i∗)−1(w), y − i(v)

〉
X
∀y ∈ X,

and, in particular,

f(y)− f(i(v)) ≥
X∗

〈
(i∗)−1(w), y − i(v)

〉
X
∀y ∈ i(V ) ⊂ X,

and hence
f(i(z))− f(i(v)) ≥

X∗

〈
(i∗)−1(w), i(z − v)

〉
X
∀z ∈ V.

We get that
g(z)− g(v) ≥ V ∗〈w, z − v〉V ∀z ∈ V.

We have proved that [v, w] ∈ ∂g. Noting that w ∈ i∗(X∗) completes the proof.

If we identify i(V ) with V and i∗(X∗) with X∗, and if g is l.s.c., we are able to
summarize

D(f) = D(g) = V,

∀v ∈ V : f(v) = g(v),
∀v ∈ V : ∂f(v) = ∂g(v) ∩X∗,

D(∂g) ⊂ V,
D(∂f) ⊂ V,

if, additionally, g is coercive in V , and f is l.s.c. in X, by Lemma 2.42 and Proposition
2.50, we have that

ran ∂g = V ∗,

ran ∂f = X∗,

and when g is strongly continuous in V , by Lemma 2.28,

D(∂g) = V.

Corollary 2.51. When g : V → R is Gâteaux differentiable in V , then ∂f : D(∂f) ⊂
V ⊂ X → X∗ is single-valued.

Proof. Immediate from Propositions 2.36, 2.50 and the fact that the embedding X∗ ↪→
V ∗ is one-to-one.

In some cases, one can verify lower semi-continuity of f easily:

Lemma 2.52. Suppose that V and X are reflexive with a strong embedding V ↪→ X.
Let f , g be as above and suppose that g is l.s.c in V . Let S be a set in X. Suppose that
supx∈S ‖x‖X < +∞ and that supx∈S f(x) < +∞ always imply that supx∈S ‖x‖V < +∞.
Then f is l.s.c. in X.
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Proof. Clearly, supx∈S ‖x‖X < +∞ and supx∈S f(x) < +∞ imply that S ⊂ V and
supx∈S g(x) < +∞. Let un, u ∈ X, n ∈ N with un → u strongly in X. Suppose that
limn f(un) < +∞. Extract a subsequence of {un} (also denoted by {un}) such that
limn f(un) = C ∈ R. Hence {‖un‖V } is bounded by the assertion. But by reflexivity
of V , we can extract a subsequence (also denoted by {un}) such that un ⇀ v weakly
in V for some v ∈ V , see e.g. [Yos78, Ch. V, §2, Theorem 1]. By Mazur’s Lemma (cf.
Lemma B.7) there exists a sequence of convex combinations

vn :=
Nn∑
k=n

λ
(n)
k uk, with

Nn∑
k=n

λ
(n)
k = 1, λ

(n)
k ≥ 0, n ≤ k ≤ Nn,

such that vn → v strongly in V . But also by Lemma B.7, vn → u strongly in X since
un → u strongly in X. Therefore v = u. Since we can do so for every subsequence,
vn → u strongly in V . By applying (B.2), convexity and lower semi-continuity of g
successively, we get that

lim
n
f(un) = lim

n
g(un) ≥ lim

n

Nn∑
k=n

λ
(n)
k g(uk) ≥ lim

n
g

(
Nn∑
k=n

λ
(n)
k uk

)
≥ g(u) = f(u),

which is the desired lower semi-continuity of f .
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In this chapter, we introduce first order Sobolev spaces such that functions and their
weak gradients belong to an Orlicz space integrability class w.r.t. a weight as e.g.
LΦ
w := LΦ(Rd;w dx). We are restricting to the case that the domain is all of Rd.

Nevertheless, the weight w is allowed to be zero on a set of positive Lebesgue measure.
The weighted case for Φ(x) = (1/2)|x|2 with finite and infinite dimensional domains
has been studied well by Sergio Albeverio, Shigeo Kusuoka, Michael Röckner and Tu-
Sheng Zhang in [AR89, AR90a, AR90b, AKR90, RZ92, ARZ93a, ARZ93b, RZ94]. See
also [MR92, FOT94] for the related functional analytic and probabilistic theory. The
spaces H1,2

w and W 1,2
w are of particular interest in (mathematical) quantum field theory,

where the weight w is related to the potential of a generalized Schrödinger operator. For
1 < p <∞, weighted Sobolev spaces have been studied e.g. in [Kuf80, KO84, HKM93].
For weighted Orlicz-Sobolev spaces, we refer to [Vui87].

Our approach generalizes that in [AR90a, AKR90, ARZ93b] analogously. The main
advantage, compared to the standard definition (see Paragraph 4.3 below), is that we
have an integration by parts formula (3.4), which is non-distributional and rather involves
the logarithmic derivative of the weight w. We remind the reader that our definition
of the strong Sobolev space H1,Φ

w is classical and all later results could be restricted to
this case. Anyhow, we are also interested in the weak Sobolev space W 1,Φ

w , where our
approach might seem unfamiliar. For convenience, we give conditions on w such that
the classical case is recovered, see Paragraph 4.3. Also, in Chapter 4, we give a new
condition for the equality H = W .

For all of this chapter, fix a dimension d ∈ N and a complementary pair of nice Young
functions (Φ,Ψ) such that Φ,Ψ ∈ ∆2 ∩∇2. Denote by (ϕ,ψ) the pair of corresponding
gauges, i.e., d

dtΦ = ϕ, d
dtΨ = ψ and ϕ = ψ−1. We use the notation ‖·‖(Φ,w) for the Lux-

emburg norm of LΦ
w and ‖·‖Φ,w for the Orlicz norm of LΦ

w. We use the same notation for
the norms of LΦ

w(Ω→ R
d) (Ω ⊂ Rd), that is, the Rd-valued Orlicz functions. They are

defined either via Bochner integrals or component-wise. Rd carries the Euclidean metric
with norm |·| and scalar product 〈·, ·〉. See Appendix C for details. We shall use the
terms (weighted) Φ-Sobolev space and (weighted) Orlicz-Sobolev space interchangeably.
We use the notation ∂i for the partial derivative in direction i (either in the classical
sense or in the weak sense) and ∇ for the (classical or weak) gradient. In order to avoid
confusion, we use the notation Di for the i-th partial derivative in the sense of Schwartz
distributions and D for the gradient in the sense of Schwartz distributions, see [RS80,
Ch. V.4] or [Alt06, Ch. 3].

Definition 3.1. For a fixed pair of nice Young functions (Φ,Ψ) with the pair of gauges
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(ϕ,ψ) and a weight w ∈ L1
loc(R

d), w ≥ 0 define the Φ-regular set

R(w) := RΦ(w) :=

{
x ∈ Rd

∣∣∣∣ ∫
B(x,ε)

ψ

(
1

w(y)

)
dy <∞ for some ε > 0

}
,

where we set ψ(1/0) := +∞ and ψ(1/+∞) := 0.

R(w) is the largest open set such that ψ(1/w) is locally integrable. Clearly, w > 0
dx-a.e. on R(w). When Φ(x) := (1/2)|x|2, ϕ = ψ = Id, R(·) is the regular set as in
[AR90a, Proposition 5.1].

Definition 3.2. Fix a pair of nice Young functions (Φ,Ψ) and gauges (ϕ,ψ) and a
weight w ∈ L1

loc(R
d), w ≥ 0. Consider the following conditions (“ S” is for “ Sobolev”):

(S1) w = 0 dx-a.e. on Rd \R(w).

(S2) R(w) = Rd.

(S3) Diw ∈ L1
loc(R

d), ∀1 ≤ i ≤ d.

(S4) βi := Diw/w ∈ LΨ
w(Rd), ∀1 ≤ i ≤ d.

Indeed, LΨ
w in (S4) can be replaced by LΨ

w,loc.

Remark 3.3. Conditions (S2) just states that

ψ

(
1
w

)
∈ L1

loc(R
d; dx),

which is a well-known condition in the literature. It is obvious that (S2) implies (S1).
Condition (S1) is also known as Hamza’s condition, due to [Ham75].
βi is also called logarithmic derivative of w because of the heuristic formula βi =

∂i log(w).

Lemma 3.4. When for dx-a.a. x ∈ {w > 0},

ess inf
y∈B(x,δ)

w(y) > 0 (3.1)

for some δ = δ(x) > 0, then w satisfies (S1). In particular, each lower semi-continuous
function w ≥ 0 satisfies (S1).

Proof. Let x ∈ {w > 0} be such that (3.1) holds with some δ = δ(x) > 0. Obviously, for
some constant C > 0,

ess sup
y∈B(x,δ)

1
w(y)

≤ C.

It is enough to prove that x ∈ R(w). But by monotonicity of ψ,∫
B(x,δ)

ψ

(
1

w(y)

)
dy ≤ volB(x, δ) ess sup

y∈B(x,δ)
ψ

(
1

w(y)

)

≤ volB(x, δ)ψ

(
ess sup
y∈B(x,δ)

1
w(y)

)
≤ volB(x, δ)ψ(C) <∞.
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3.1 The strong Sobolev space H

Lemma 3.5. Suppose that (S1) holds for w ≥ 0, w ∈ L1
loc. Then

LΦ
w(R(w)) ⊂ L1

loc(R(w)).

Proof. Let u ∈ LΦ
w(R(w)) and O b R(w), open and bounded. By the Hölder inequality

(C.1) for Orlicz spaces ∫
O
|u|dx ≤

∥∥u1R(w)

∥∥
Φ,w

∥∥∥∥ 1
w

1O

∥∥∥∥
(Ψ,w)

. (3.2)

By Lemma C.12,
∥∥(1/w)1O

∥∥
(Ψ,w)

is finite iff
∫
O Ψ(1/w)w dx is. By Lemma C.4, the

latter is finite iff ∫
O
ψ

(
1
w

)
1
w
w dx =

∫
O
ψ

(
1
w

)
dx

is. But this term is in turn finite by (S1) and compactness of O.

3.1 The strong Sobolev space H

Let C∞ := C∞(Rd) be the set of infinitely often continuously differentiable real-valued
functions on Rd. For u ∈ C∞, we define the weighted Luxemburg Φ-Sobolev norm by

‖u‖(1,Φ,w) := ‖u‖(Φ,w) + ‖∇u‖(Φ,w)

and the weighted Orlicz Φ-Sobolev norm

‖u‖1,Φ,w := ‖u‖Φ,w + ‖∇u‖Φ,w .

We impose another condition, which is in fact implied by (S1), and is referred to as
closability. For any sequence {un} ∈ C∞,

lim
n
‖un‖Φ,w = 0 and {un} is ‖∇·‖Φ,w-Cauchy, always imply that lim

n
‖∇un‖Φ,w = 0.

(3.3)

Lemma 3.6. Condition (S1) implies (3.3).

Proof. Let {un} ∈ C∞ such that ‖un‖Φ,w → 0 and that {un} is {‖∇·‖Φ,w}-Cauchy.
By Lemma 3.5, we conclude that {∇un} is a Cauchy sequence in the Fréchet space
L1

loc(R(w) → R
d) and hence converges to some v ∈ L1

loc(R(w) → R
d). Let η ∈

C∞0 (R(w)), 1 ≤ i ≤ d,

0 = lim
n

∫
R(w)

un∂iη dx = − lim
n

∫
supp η∩R(w)

∂iunη dx =
∫

supp η∩R(w)
viη dx,

which yields v = 0 ∈ Rd dx-a.s on R(w). By a standard diagonal procedure there is
a subsequence {∇unk} with ∇unk(x) → 0 for dx-a.a. x ∈ R(w). Recalling that Φ is
continuous, by Fatou’s lemma∫

Rd

Φ(|∇un|)w dx ≤ lim
k

∫
R(w)

Φ(|∇(un − unk)|)w dx,

which is arbitrarily small for large n by assumption. Hence ‖∇un‖Φ,w → 0.
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3 Weighted Orlicz-Sobolev spaces

Definition 3.7. Let H1,Φ
w be the abstract completion X̃ of the set

X :=
{
u ∈ C∞(Rd)

∣∣ ‖u‖1,Φ,w <∞}
w.r.t. the norm ‖·‖1,Φ,w.

Lemma 3.8. Suppose that (S1) holds. Then H1,Φ
w can be identified with a linear subspace

of LΦ
w which is a Banach space with either norm. In particular, an element in H1,Φ

w is
uniquely characterized by its LΦ

w-class.

Proof. If [un] ∈ X̃ is a class, then by completeness of LΦ
w there are ũ ∈ LΦ

w, ṽi ∈ LΦ
w,

1 ≤ i ≤ d such that limn ‖un − ũ‖Φ,w = limn ‖un − ũ‖(Φ,w) = 0 and for each 1 ≤ i ≤ d,
limn ‖∂iun − ṽi‖Φ,w = limn ‖∂iun − ṽi‖(Φ,w) = 0. Set ∇ũ := (ṽ1, . . . , ṽd) which is a
unique (class of a) function in LΦ

w(Ω→ Rd) by (3.3). The representation does not depend
on the choice of the sequence in [un] by definition of the abstract completion. Therefore
X̃ is linearly isometrically isomorphic to a linear subspace Y of LΦ

w(Ω → R ×Rd). By
completeness of X̃, Y is closed and hence reflexive (cf. [HHZ96, Proposition 67], [Bea85,
Part 3, Ch. II, §1, Proposition 4]). We have proved that H1,Φ

w is a reflexive Banach
space with the Sobolev norm and a subspace of LΦ

w.

Remark 3.9. Under condition (S2), each u ∈ H1,Φ
w,loc is a Schwartz distribution and

Du = ∇u dx-a.s. To see this fix 1 ≤ i ≤ d and let {un} ⊂ C∞ with un → u and ∂iun →
∂iu in LΦ

w. By the proof of Lemma 3.6, un → u, ∂iun → ∂iu in L1
loc(R(w)) = L1

loc(R
d).

In particular, u and ∂iu are Schwartz distributions. Now for any ζ ∈ C∞0 (Rd),∣∣∣∣∫ u∂iζ + ζ∂iudx
∣∣∣∣ =

∣∣∣∣∫
supp ζ

(u− un)∂iζ + (∂iu− ∂iun)ζ dx
∣∣∣∣→ 0.

Hence ∇u = Du dx-a.s. on Rd.

Lemma 3.10. The w dx classes of C∞0 (Rd) are dense in H1,Φ
w .

Proof. Compare with [HKM93, Theorem 1.27]. Let u ∈ H1,Φ
w . For j ∈ N let Aj :=

B(0, j + 1) \B(0, j − 1) and choose functions ηj ∈ C∞0 (Aj), 0 ≤ ηj ≤ 1, such that

∞∑
j=1

ηj(x) = 1

for each x ∈ Rd; i.e. ηj is a partition of unity subordinate to the covering {Aj}j∈N, see
[Alt06, §2.19]. Then uηj ∈ H1,Φ

w (Aj) has compact support in Aj . Let ε > 0 and pick
ζj ∈ C∞0 (Aj) with

‖ζj − uηj‖1,Φ,w < 2−(j+1)ε.

Then ζ =
∑∞

j=1 ζj ∈ C∞(Rd) and

‖ζ − u‖1,Φ,w ≤

∥∥∥∥∥∥
∞∑
j=1

ζj − u
∞∑
j=1

ηj

∥∥∥∥∥∥
1,Φ,w

< ε/2.
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3.2 The weak Sobolev space W

Now choose j0 ∈ N such that ∥∥∥ζ1Rd\B(0,j0)

∥∥∥
1,Φ,w

< ε/2.

Then ϑ :=
∑j0

j=1 ζj ∈ C∞0 (Rd) and

‖ϑ− ζ‖1,Φ,w ≤
∥∥∥ζ1Rd\B(0,j0)

∥∥∥
1,Φ,w

< ε/2.

Hence
‖ϑ− u‖1,Φ,w < ε,

which proves the desired density.

3.2 The weak Sobolev space W

Lemma 3.11. Fix 1 ≤ i ≤ d. Let ei ∈ Rd be the unit vector in direction i. Suppose
that (S3) holds. Then there is a version w̃ of w differing on a set of Lebesgue measure
zero in {ei}⊥, such that for y ∈ {ei}⊥ and each compact interval I ⊂ R the map
I 3 t 7→ w̃(y + tei) is absolutely continuous for almost all y ∈ {ei}⊥. Furthermore, for
almost all y ∈ {ei}⊥,

R \R(w(y + ·ei)) ⊂ {t | w̃(y + tei) = 0}.

Recall that the almost sure inclusion “⊃” holds automatically.

Proof. The first part follows from a well-known theorem due to Nikodým, cf. [Miz73,
Theorem 2.7]. The second part follows from absolute continuity and Lemma 3.4.

Definition 3.12. Suppose that (S1), (S3) and (S4) hold. Let W 1,Φ
w (Rd) be the set of

w dx-equivalence classes of functions f ∈ LΦ
w(Rd) such that for each 1 ≤ i ≤ d there

exists a function ∂if ∈ LΦ
w(Rd) which satisfies∫
∂ifηw dx = −

∫
f∂iηw dx−

∫
fηβiw dx (3.4)

for all η ∈ C∞0 (Rd). For f ∈W 1,Φ
w , define ∇f := (∂1f, . . . , ∂df) ∈ LΦ

w(Rd → Rd).

Lemma 3.13. Suppose that (S1), (S3) and (S4) hold. W 1,Φ
w is a Banach space with

either Luxemburg-Sobolev norm

‖f‖(1,Φ,w) := ‖f‖(Φ,w) +
∥∥∇f∥∥

(Φ,w)

or Orlicz-Sobolev norm

‖f‖1,Φ,w := ‖f‖Φ,w +
∥∥∇f∥∥

Φ,w
.

In particular, an element in W 1,Φ
w is uniquely characterized by its LΦ

w-class.
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3 Weighted Orlicz-Sobolev spaces

Proof. Let {fn} be a Cauchy sequence in W 1,Φ
w which is the same in either norm by

∆2-regularity. By completeness of LΦ
w there is a function f ∈ LΦ

w with ‖fn − f‖Φ,w → 0.
Also, for 1 ≤ i ≤ d there are gi ∈ LΦ

w such that
∥∥∂ifn − gi∥∥Φ,w

→ 0. By (3.4) for all
η ∈ C∞0 ∫

∂ifnηw dx = −
∫
fn∂iηw dx−

∫
fnηβiw dx.

By Hölder’s inequality (C.1), using (S4), we can pass on to the limit∫
giηw dx = −

∫
f∂iηw dx−

∫
fηβiw dx.

Hence ∇f = (g1, . . . , gd) and ‖fn − f‖1,Φ,w → 0. The limits for the Luxemburg-Sobolev
norm follow by the ∆2-condition.

Lemma 3.14. Suppose that (S1), (S3) and (S4) hold. Then H1,Φ
w ⊂W 1,Φ

w .

Proof. By the Leibniz formula and the definition of βi, each f ∈ C∞0 satisfies (3.4) with
∇f = ∇f . The claim follows now by Lemma 3.10 and the completeness of W 1,Φ

w .

We point out that in general H1,Φ
w $ W 1,Φ

w . In [Zhi98], V. V. Zhikov constructs a
counterexample in the weighted W 1,2

w -case (assuming (S2)). In the subsequent chapter,
we shall give two types of sufficient conditions on the weight for H = W to hold.

We need another representation of functions in W 1,Φ
w , known as absolute continuity

on lines. It is needed to verify important properties of Sobolev functions as the Leibniz
formula and a chain rule for Lipschitz functions.

Proposition 3.15. Suppose that (S1), (S3) and (S4) hold. Fix 1 ≤ i ≤ d. Let ei ∈ Rd
be the unit vector in direction i. Then f ∈ W 1,Φ

w has a representative f̃ i such that
t 7→ f̃ i(y + tei) is absolutely continuous for (d − 1-dim.) Lebesgue almost all y ∈ {ei}⊥
on any compact subinterval of R(w(y+ ·ei)). In that case, for dy-a.a. y ∈ {ei}⊥, dt-a.a.
t ∈ R(w(y + ·ei)), setting x := y + tei, ∂if(x) = d

dt f̃
i(y + tei).

Conversely, if for each 1 ≤ i ≤ d a function f ∈ LΦ
w has a dy-version f̃ i, which is

locally absolutely continuous on almost all of R(w(y + ·ei)), equal to zero on Rd \R(w)
and satisfies d

dt f̃
i(·+ ·ei) ∈ LΦ

w, then f ∈W 1,Φ
w .

Proof. For the W 1,2
w -case, the first part was proved in [ARZ93b, Lemma 2.2], and the

second part was proved in [AKR90, Proposition 2.4 (ii)].
Fix 1 ≤ i ≤ d. By Lemma 3.11, fix a version of w (denoted also by w) such that the

map t 7→ w(y + tei) is locally absolutely continuous on R for dy-a.a. y ∈ {ei}⊥. By
(3.4), for any η ∈ C∞0 (Rd),∫

∂ifηw dx = −
∫
f∂iηw dx−

∫
fηβiw dx.
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3.2 The weak Sobolev space W

By Fubini’s theorem (and the fundamental lemma of variational calculus [Alt06, §2.21])
for dy-a.a. y ∈ {ei}⊥ and for all η ∈ C∞0 (R)

−
∫ [

∂if(y + tei) + f(y + tei)βi(y + tei)
]
w(y + tei)η(t) dt

=
∫

d
dt
η(t)f(y + tei)w(y + tei) dt,

(3.5)

and hence for dy-a.a. y ∈ {ei}⊥ the map

t 7→ f(y + tei)w(y + tei)

has a distributional derivative which lies in L1
loc(R). Hence by a well-known theorem

of Nikodým [Miz73, Theorem 2.7] it has an absolutely continuous dt-version on any
compact interval in R. By Lemma 3.11, R(w(y + ·ei)) ⊃ {w(y + ·ei) > 0} dy-a.s. and
hence R(w(y + ·ei)) = {w(y + ·ei) > 0} dy-a.s. We conclude that t 7→ f(y + tei) has a
version f̃ i which is absolutely continuous on any compact subinterval of R(w(y + ·ei))
for almost all y ∈ {ei}⊥. By the Leibniz formula for absolutely continuous functions and
integration by parts, (3.5) proves that

d
dt
f̃ i(y + tei) = ∂if(y + tei)

where the equality holds in the sense of w dx-classes.
Let us prove the converse. Fix 1 ≤ i ≤ d. By Lemma 3.11, fix an absolutely continuous

version of t 7→ w(y + tei) locally on R for dy-a.a. y ∈ {ei}⊥ (denoted also by w). Let
f ∈ LΦ

w with a locally absolutely continuous version f̃ i with derivative in LΦ
w and such

that f is equal to zero on Rd \R(w). Denote the maps t 7→ f̃ i(y+ tei), t 7→ w(y+ tei) by
f̃ i,y, wi,y resp. Since R(wi,y) as an open subset of R is a countable disjoint union of open
intervals it is easy to see that the set of isolated points of R\R(wi,y) is countable. Since
R \ R(wi,y) = {wi,y > 0} for dy-a.a. y ∈ {ei}⊥, it follows that for dy-a.a. y ∈ {ei}⊥,
d
dtw

i,y = 0 on R \ R(wi,y) dt-a.s. Let η ∈ C∞0 (R). Hence by the Leibniz formula, for
dy-a.a. y ∈ {ei}⊥,

d
dt

(f̃ i,yηwi,y) =
df̃ i,y

dt
ηwi,y + f̃ i,y

dη
dt
wi,y + f̃ i,yη

dwi,y

dt
· 1R(wi,y), (3.6)

dt-a.e. on R. Since, clearly, for dy-a.a. y

dwi,y

dt
· 1R(wi,y) =

Diw(y + tei)
w

w

dt-a.s. on R, it follows that

d
dt

(f̃ i,yηwi,y) ∈ L1(R; dt)

and hence by absolute continuity (see e.g. [Alt06, U1.6 (2), p. 68])∫
d
dt

(f̃ i,yηwi,y) dt = 0.
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3 Weighted Orlicz-Sobolev spaces

To see now that f̃ i,y satisfies (3.4), one needs only to multiply (3.6) with a function
ζ ∈ C∞0 ({ei}⊥) and note that the linear hull of functions of the type η⊗ ζ (η ∈ C∞0 (R))
is dense in C∞0 (Rd) w.r.t. uniform convergence by a locally compact version of the Stone-
Weierstraß Theorem [Cho69, p. 28 (iii)]. However, the issue of product measurability
needs some caution (since we would like to apply Fubini’s theorem). It can be treated by
the abstract disintegration formula in [Rip76, Proposition 1] (or [DM78, Ch. III, 70]),
see [AR90a, Section 5 (a)] for details.

Corollary 3.16. Suppose that (S2), (S3) and (S4) hold. Let f ∈ W 1,Φ
w . Then for each

1 ≤ i ≤ d there is a dx-version f̃ of f such that ∂if̃ = Dif̃ dx-a.s.

Proof. Obvious since R(w) = Rd.

Picking appropriate locally absolutely continuous versions, one immediately obtains
the following Leibniz formula:

Corollary 3.17. Suppose that (S1), (S3) and (S4) hold. If f, g ∈W 1,Φ
w and if fg, f∂ig

and g∂if are in LΦ
w for all 1 ≤ i ≤ d, then fg ∈W 1,Φ

w and ∂i(fg) = f∂ig + g∂if for all
1 ≤ i ≤ d. Then also, ∇(fg) = f∇g + g∇f .

The following lemma implies that we can truncate Sobolev functions. This is known
as the “sub-Markov property” or as the “lattice property” of the Sobolev space.

Lemma 3.18. Suppose that (S1), (S3) and (S4) hold. Suppose that f ∈W 1,Φ
w and that

F : R→ R is Lipschitz. Then F ◦ f ∈W 1,Φ
w with

∇(F ◦ f) = (F ′ ◦ f) · ∇f w dx-a.s.

In particular, when F (t) := N ∧ t ∨ −N , N ∈ N is a cut-off function,

|∇(F ◦ f)| ≤ |∇f | w dx-a.s. (3.7)

Proof. By Proposition 3.15, pick a locally absolutely continuous version f̃ i of f for 1 ≤
i ≤ d. The chain rule follows by a well-known chain rule for Lipschitz functions versus
absolutely continuous functions [BH84, Démonstration de la Proposition 5]. Repeating
the procedure for all 1 ≤ i ≤ d, the claim follows.

We remark that, indeed, we are able to prove the lattice property now. (For the
notion of (Banach) lattices, we refer to [MN91]). The procedure is standard and can be
excellently seen in [HKM93, Theorem 1.18 et sqq.]. As another consequence, bounded
and compactly supported functions are dense, which is crucial for the results in the next
chapter.

Lemma 3.19. Suppose that (S1), (S3) and (S4) hold. The set of bounded and compactly
supported functions in W 1,Φ

w is dense in W 1,Φ
w .
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3.2 The weak Sobolev space W

Proof. For f ∈ W 1,Φ
w , let fn := (n ∧ f ∨ −n)ηn, where {ηn} ⊂ C∞0 (Rd), 0 ≤ ηn ≤ 1,

ηn ↑ 1, ηn ≡ 1 on B(0, n), |∇ηn| ≤ C. Then, by Corollary 3.17 and Lemma 3.18,
fn ∈W 1,Φ

w and
∇fn = (n ∧ f ∨ −n)∇ηn + ηn∇(n ∧ f ∨ −n). (3.8)

Furthermore,
Φ(|fn|)w ≤ Φ(|f |)w ∈ L1(dx),

and, by (3.7), (3.8) and convexity,

Φ(|∇fn|)w ≤
1
2

Φ(2C|f |)w +
1
2

Φ(2|∇f |)w ∈ L1(dx).

Note that by continuity of Φ, by (3.8) and Lemma 3.18

Φ(|fn − f |)w → 0 and Φ(|∇fn −∇f |)w → 0 dx-a.s.

as n → ∞. Hence an application of Lebesgue’s dominated convergence theorem and
Lemma C.16 yields the assertion.

Note that the last two statements also hold for H1,Φ
w . Anyhow, the proof of Lemma

3.18 for H1,Φ
w needs some caution, because the Lipschitz function has to be approximated

by smooth functions. The method is well-known, we refer to [MR92, Proposition I.4.7,
Example II.2.c)] and [FOT94, Equation (1.1.5), Theorem 1.4.1].

Lemma 3.20. H1,Φ
w as well as W 1,Φ

w is separable and reflexive.

Proof. We can identify H1,Φ
w (Rd) with a linear subspace of the reflexive and separable

space LΦ
w(Rd → R

1+d) (where, for our convenience, R1+d is equipped with the norm

|x1| +
√∑1+d

i=2 |xi|2, (x1, x2, . . . , x1+d) ∈ R1+d) via the map Pu := (u, ∂1u, . . . , ∂du).
Since (by our choice of the norms) ‖u‖1,Φ,w = ‖Pu‖Φ,w, we see that P is an isometry.
ranP is linear and closed as it is isometrically isomorphic to a complete space. The
claim follows now by well-known inheritances for closed linear subspaces (cf. [HHZ96,
Proposition 67], [Bea85, Part 3, Ch. II, §1, Proposition 4]). The case of W 1,Φ

w (Rd) works
similarly.
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4 H = W for weighted p-Sobolev spaces

The problem of “H = W” for Sobolev spaces has many names. Classically, it was
called “strong equals weak” and solved by Norman G. Meyers and James Serrin in
[MS64] for the unweighted Rd-case. In fact, it already appeared in the earlier work of
Jacques Deny and Jacques-Louis Lions [DL54]. For p = 2 with weights, the problem is
known as “Markov uniqueness”. Another suggestive name would be “problem of smooth
approximation”. For the linear case (resp. Hilbert space case, resp. p = 2 case), Markov
uniqueness is related to the core problem for linear symmetric operators. We refer to
Andreas Eberle’s lecture notes [Ebe99] for a detailed discussion. See also [RS09] for a
recent work on arbitrary sub-domains of Rd. For 1 < p < ∞, the problem H = W is
also called “attainability problem” and related to the so-called Lavrent’ev phenomenon
(due to his work [Lav26]), we refer to [Zhi98, Pas07, ZP08, Zhi09]. A widely known
condition on the weight for H = W to hold (in arbitrary sub-domains of Rd) is the
so-called Muckenhoupt condition. We shall discuss it shortly in section 4.1.

For the spaces H1,2
w (Rd) and W 1,2

w (Rd), Michael Röckner and Tu-Sheng Zhang have
proved in [RZ92, RZ94] that √

w ∈ H1,2
loc (dx) (4.1)

is necessary and sufficient for Markov uniqueness. See also [ARZ93b]. Motivated by
this, we are suggesting a similar condition for p-Sobolev spaces, 1 < p <∞, namely

w1/p ∈ H1,p
loc ,

∂iw

w1/p
= pw(p−2)/p∂i(w1/p) ∈ Lqloc ∀1 ≤ i ≤ d. (HW)

Or equivalently, upon setting w = ϕp,

ϕ ∈ H1,p
loc ,

∂iϕ
p

ϕ
= pϕp−2∂iϕ ∈ Lqloc ∀1 ≤ i ≤ d. (HW)

Note that in this part, ϕ refers to w1/p and not to the gauge of an N -function! Clearly
for p = 2, (4.1) and (HW) are equivalent. As a matter of fact, the proofs of Röckner
and Zhang involve deep probability theory known to work only for p = 2. We do not
know whether it is possible to extend their probabilistic methods to the case 1 < p <∞,
p 6= 2. Nevertheless, there is a completely analytic proof by Patrick Cattiaux and
Myriam Fradon [CF96]. Luckily, we were able to transfer its arguments to the case
1 < p <∞, as is done in the proof of Theorem 4.4 below. The classical case is recovered
in Paragraph 4.3.

We remark that H = W is crucial for the problem of identifying the Mosco limit of
p-energies (condition (M2) in Definition 7.26). The results of this chapter can be directly
applied to Mosco convergence problems in Chapter 8, see Theorem 8.12. In this context,
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4 H = W for weighted p-Sobolev spaces

H = W becomes an “attainability condition”. We conjecture that the proof of Theorem
4.4 also works for weighted Orlicz-Sobolev spaces W 1,Φ

w such that Φ ∈ ∆′, see Definition
C.6. As above, we remark that we are working on all of Rd as a domain.

4.1 Muckenhoupt weights

We start with a well-known sufficient condition on w such that H = W holds; the
so-called Muckenhoupt condition.

Definition 4.1. Let Φ, Ψ be two complementary N -functions with gauges ϕ, ψ. A
weight w ∈ L1

loc(R
d) is called an AΦ-weight (is said to belong to the Φ-Muckenhoupt

class), written w ∈ AΦ, if there is a global K = KΦ,w > 0 with(
1

volB

∫
B
εw dx

)
· ϕ
(

1
volB

∫
B
ψ

(
1
εw

)
dx
)
≤ K (4.2)

for every ball B ⊂ Rd and every ε > 0.

It is straightforward that an AΦ-weight satisfies (S2).
For a measurable function f : Rd → R, let

Mf(x) := sup
{

1
volB

∫
B
|f(y)|dy

∣∣∣ B ⊂ Rd is a ball with x ∈ B
}

(4.3)

be the Hardy-Littlewood maximal operator.

Lemma 4.2. Suppose that Φ ∈ ∆2 ∩∇2. If w ∈ AΦ ∪Ap, where p−1 is the upper index
of Φ (cf. Definition C.10), then∫

Rd

Φ(Mf)w dx ≤ K
∫
Rd

Φ(|f |)w dx, (4.4)

where K > 0 is as in (4.2).

Proof. See [KT82, Theorem 1].

Proposition 4.3. Let Φ ∈ ∆2 ∩∇2. Suppose that w ∈ AΦ ∪Ap, where p−1 is the upper
index of Φ (cf. Definition C.10). Then H1,Φ

w (Rd) = W 1,Φ
w (Rd).

Proof. Let η ∈ C∞0 (Rd), η ≥ 0,
∫
η dx = 1, supp η ⊂ B(0, 1), ηε(x) := ε−d(x/ε), ε > 0,

be a standard mollifier. By Lemma 3.19, it is enough to approximate functions in W 1,Φ
w

which are bounded and compactly supported. Let u ∈ W 1,Φ
w (Rd) be such a function,

uε := u ∗ ηε, ε > 0. uε ∈ L1(dx) for all ε > 0. Then u ∈ L1(dx) and uε → u in L1(dx).
A subsequence converges dx-almost surely.

By [Ste93, Ch. II, §2, p. 57, Ch. V, §2, p. 198]

|uε| ≤M(u) and |∇uε| ≤M(|Du|) for all ε > 0 pointwise.

Combined with (4.4) and Lebesgue’s dominated convergence theorem, a subsequence of
{uε} converges in W 1,Φ

w to u (taking into account that ∇u = Du dx-a.e. by (S2) and
Corollary 3.16).
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4.2 Weakly differentiable weights: A new condition for uniqueness

4.2 Weakly differentiable weights: A new condition for
uniqueness

We arrive at the main result of this chapter. Fix 1 < p < ∞, d ∈ N. Our proof is
inspired by that of Patrick Cattiaux and Myriam Fradon in [CF96]. See also [Fra97].
Recall that we denote the gradient in W 1,p

w by ∇ or ∂i which is generally not equal to
the distributional gradient. Recall that w = ϕp.

Theorem 4.4. Let 1 < p <∞, q := p/(p− 1), d ∈ N. Suppose that for a weight w ≥ 0,
w ∈ L1

loc(dx) conditions (S1) and (HW) hold.
Then C∞0 (Rd) is dense in W 1,p

w (Rd), or equivalently, H1,p
w (Rd) = W 1,p

w (Rd).

Recall that if p = 2, (HW) reduces to
√
w ∈ H1,2

loc . Clearly, (HW) implies that
∇w = Dw ∈ L1

loc(R
d → Rd) and that

βi := p
∂iϕ

ϕ
∈ Lqloc(w dx) ∀1 ≤ i ≤ d. (4.5)

Hence w = ϕp satisfies (S3) and (S4). Note that (3.4) for f ∈W 1,p
w then becomes∫

∂ifζϕ
p dx = −

∫
f∂iζϕ

p dx− p
∫
fζ
∂iϕ

ϕ
ϕp dx, ζ ∈ C∞0 . (4.6)

The proof of Theorem 4.4 depends on Lemma 3.19 in an essential way. For the proof
of Lemma 3.19, the property of W 1,p

w being a lattice is crucial. We remind the reader
that this property had to be derived from the alternative representation of classes in
W 1,p
w provided by Proposition 3.15.
For the approximation, an integration by parts-lemma is needed. Compare with

[CF96, Lemma 2.9].

Lemma 4.5. Suppose that (S1) and (HW) hold for w. Set ϕ := w1/p. Let f ∈W 1,p
w (Rd)

such that f is bounded and compactly supported. Then for every ζ ∈ C∞0 (Rd) and every
1 ≤ i ≤ d ∫

∂ifζϕ dx+
∫
f∂iζϕdx+

∫
fζ∂iϕdx = 0. (4.7)

Proof. For all of the proof fix 1 ≤ i ≤ d. Let us first assure ourselves that all three
integrals in (4.7) are well-defined. Clearly,

|∂ifζϕ|p ≤ ‖ζ‖p∞ |∂if |
pϕp1supp ζ ∈ L1(dx),

and hence, by compact support,

|∂ifζϕ| ∈ L1(dx).

A similar argument works for the second integral. The third integral is well-defined
because by ϕ ∈ H1,p

loc we have that

|fζ∂iϕ|p ≤ ‖fζ‖p∞ |∂iϕ|
p1supp ζ ∈ L1(dx)
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4 H = W for weighted p-Sobolev spaces

and hence, by compact support,

|fζ∂iϕ| ∈ L1(dx).

Let M ∈ N and ϑM ∈ C∞0 (R) with

ϑM (t) = t for t ∈ [−M,M ], |ϑM | ≤M + 1, |ϑ′M | ≤ 1

and
supp(ϑM ) ⊂ [−3M, 3M ].

Define

ϕM := ϑM

(
1

ϕp−1

)
1{ϕ>0} + 0 · 1{ϕ=0}.

By boundedness, ϕM ∈ Lploc. Furthermore, define

ΦM := (1− p)ϑ′M
(

1
ϕp−1

)
∂iϕ

ϕp
1{ϕ>0} + 0 · 1{ϕ=0}.

Since ϑ′M (1/ϕp−1) = 0 on {ϕp−1 ≤ 1/(3M)} and

|ΦM | ≤ (p− 1)
|∂iϕ|
ϕp

1{ϕp−1>1/(3M)} = (p− 1)
|∂iϕ|
ϕp

1{ϕp>(1/(3M))q},

hence ΦM ∈ Lploc. Using an approximation by smoothing mollifiers and the chain rule, we
see that ΦM = ∂iϕM (where ∂i denotes the usual weak derivative) and that ϕM ∈ H1,p

loc .
Since ϕ ∈ H1,p

loc and since ϕM is bounded, we have that ϕM∂iϕ ∈ Lploc. Also, ϕ∂iϕM ∈
Lploc, since

|ϕ∂iϕM | ≤ (p− 1)
|∂iϕ|
ϕp−1

1{ϕp−1>1/(3M)} ≤ (p− 1)3M |∂iϕ|. (4.8)

Now by the usual Leibniz rule for weak derivatives (see e.g. [Alt06, §2.24])

ϕϕM ∈ H1,p
loc and ∂i(ϕϕM ) = ϕM∂iϕ+ (1− p)ϑ′M

(
1

ϕp−1

)
∂iϕ

ϕp−1

where by convention ∂iϕ/ϕ
p−1 = 0 on {ϕ = 0}. Consider the term ϕMϕ

p. As readily
seen, ϕϕM ∈ H1,p

loc . By (HW), ϕp−1 ∈ Lqloc and ∂i(ϕp−1) = (p − 1)ϕp−2∂iϕ ∈ Lqloc.
Therefore ϕp−1 ∈ H1,q

loc . Hence ϕϕM (∂iϕp−1) ∈ L1
loc and ∂i(ϕϕM )ϕp−1 ∈ L1

loc. It follows
that ϕMϕp ∈ H1,1

loc and by the Leibniz rule for weak derivatives

∂i(ϕMϕp) = pϕMϕ
p−1∂iϕ+ (1− p)ϑ′M

(
1

ϕp−1

)
∂iϕ ∈ L1

loc.

Let ζ ∈ C∞0 (Rd). Applying integration by parts, we see that∫
∂iζϕMϕ

p dx = −p
∫
ζϕM

∂iϕ

ϕ
ϕp dx+ (p− 1)

∫
ζ
∂iϕ

ϕp
ϑ′M

(
1

ϕp−1

)
ϕp dx. (4.9)
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4.2 Weakly differentiable weights: A new condition for uniqueness

Moreover, by (4.8) ∂iϕM ∈ Lploc(ϕ
p dx). ϕM ∈ Lploc(ϕ

p dx) was also verified above.
Therefore ϕM ∈W 1,p

w,loc (the weighted local Sobolev space) and

∂iϕM = (1− p)∂iϕ
ϕp

ϑ′M

(
1

ϕp−1

)
.

Though we have not defined W 1,p
w,loc explicitly, it should be clear what we mean by it.

For instance, the Leibniz rule also holds in W 1,p
w,loc, and so we would like to give sense

to the expression ∂i(fϕM ) = ϕM∂if + f∂iϕM . But ϕM ∈ W 1,p
w,loc, f ∈ W

1,p
w and f is

bounded and compactly supported, f∂iϕM ∈ Lpw,loc since f is bounded and compactly
supported and finally ϕM∂if ∈ Lpw,loc since ϕM is bounded. Hence fϕM ∈ W 1,p

w,loc and
the Leibniz rule holds (locally). By definition of ∂i for ζ ∈ C∞0 (Rd)∫

∂ifζϕMϕ
p dx =(p− 1)

∫
fζ
∂iϕ

ϕp
ϑ′M

(
1

ϕp−1

)
ϕp dx

−
∫
f∂iζϕMϕ

p dx− p
∫
fζϕM

∂iϕ

ϕ
ϕp dx

(4.10)

Now let M →∞ in (4.10). Note that ϕM → (1/ϕp−1)1{ϕ>0} dx-a.s. and ϑ′M (1/ϕp−1)→
1 dx-a.s. In order to apply Lebesgue’s dominated convergence theorem, we verify

|∂ifζϕMϕp| ≤ 2|∂ifϕ| ‖ζ‖∞ 1supp ζ ∈ L1(dx),

where we have used that

|ϕMϕp−1| ≤ (M + 1)/M ≤ 2.

Furthermore,

|fζ∂iϕϑ′M
(
1/ϕp−1

)
| ≤ |f∂iϕ| ‖ζ‖∞ 1supp ζ ∈ L1(dx),

|f∂iζϕMϕp| ≤ 2|fϕ| ‖∂iζ‖∞ 1supp ζ ∈ L1(dx),
and

|fζϕM∂iϕϕp−1| ≤ 2|f∂iϕ| ‖ζ‖∞ 1supp ζ ∈ L1(dx).

The formula obtained, when passing on to the limit M → ∞ in (4.10), is exactly the
desired statement.

Proof of Theorem 4.4. Let f ∈ W 1,p
w be (a class of) a function which is bounded and

compactly supported. By Lemma 3.19, we are done if we can approximate f by C∞0 -
functions. Let {ηε}ε>0 be a (radially symmetric) standard mollifier, i.e.,

ηε(x) :=
1
εd
η
(x
ε

)
,

where η ∈ C∞0 (Rd) with η ≥ 0, η(x) = η(|x|), supp η ⊂ B(0, 1) and
∫
η dx = 1.

Since f is bounded and compactly supported, ηε ∗ f ∈ C∞0 (Rd) with supp(ηε ∗ f) ⊂
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4 H = W for weighted p-Sobolev spaces

supp f + εB(0, 1) and |ηε ∗ f | ≤ ‖f‖∞. We claim that there exists a sequence εn ↘ 0
such that ηεn ∗ f converges to f in W 1,p

w . The Lpw-part is easy. Since ηε ∗ f, f ∈ L1(dx),
limε↘0 ‖ηε ∗ f − f‖L1(dx) = 0. Therefore we can extract a subsequence {εn} such that
ηεn ∗ f → f dx-a.s. Set ϕ := w1/p. For εn ≤ 1

|(ηεn ∗ f)ϕ− fϕ|p ≤ 2p ‖f‖p∞ |ϕ|
p1supp f+B(0,1) ∈ L1(dx).

By Lebesgue’s dominated convergence theorem, limn ‖ηεn ∗ f − f‖Lpw = 0.
Fix 1 ≤ i ≤ d. We are left to prove ∂i(ηεn ∗f)→ ∂if in Lpw for some sequence εn ↘ 0.

Or equivalently,
ϕ∂i(ηεn ∗ f)→ ϕ∂if in Lp(dx).

We shall use another approximation, as in∫
|ϕ∂i(ηε ∗ f)− ϕ∂if |p dx

≤2p−1

[∫
|ϕ∂if − (ηε ∗ (ϕ∂if))|p dx+

∫
|(ηε ∗ (ϕ∂if))− ϕ∂i(ηε ∗ f)|p dx

]
.

The first term tends to zero as ε ↘ 0 by a well-known fact [Alt06, Satz 2.14]. We
continue with studying the second term. Recall that ηε(x) = ηε(|x|).∫

|ϕ∂i(ηε ∗ f)− (ηε ∗ (ϕ∂if))|p dx

=
∫ ∣∣∣∣ϕ(x)

∫
∂iηε(x− y)f(y) dy −

∫
ηε(x− y)ϕ(y)∂if(y) dy

∣∣∣∣p dx

=
∫ ∣∣∣∣ ∫ ∂iηε(x− y)f(y)[ϕ(x)− ϕ(y)] dy

+
∫
∂iηε(x− y)f(y)ϕ(y)− ηε(x− y)ϕ(y)∂if(y) dy

∣∣∣∣p dx

apply Lemma 4.5 with ζ(y) := ηε(y − x) (noting that ∂iηε(x− y) = −∂iηε(y − x))

=
∫ ∣∣∣∣∫ ∂iηε(x− y)f(y)[ϕ(x)− ϕ(y)] dy +

∫
ηε(x− y)f(y)∂iϕ(y) dy

∣∣∣∣p dx

≤2p−1

[∫ ∣∣∣∣∫ ∂iηε(x− y)f(y)[ϕ(x)− ϕ(y)] dy
∣∣∣∣p dx+

∫
|ηε ∗ (f∂iϕ)|p dx

]
≤2p−1

∫ ∣∣∣∣∫ ∂iηε(x− y)f(y)[ϕ(x)− ϕ(y)] dy
∣∣∣∣p dx+ 2p−1 ‖f∂iϕ‖pLp(dx) .

We would like to control the first term. Replace ϕ by ϕ̂ ∈ H1,p defined by:

ϕ̂ = ϕξ with ξ ∈ C∞0 (Rd) and 1supp f+B(0,2) ≤ ξ ≤ 1supp f+B(0,3).

Let hε : Rd → R
d, hε(x) := −εx. Then upon substituting y = x + εz (which leads to
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4.2 Weakly differentiable weights: A new condition for uniqueness

dy = εd dz)∫ ∣∣∣∣∫ ∂iηε(x− y)f(y)[ϕ(x)− ϕ(y)] dy
∣∣∣∣p dx

=
∫ ∣∣∣∣∣
∫
B(0,1)

∂iηε(−εz)f(x+ εz)[ϕ̂(x)− ϕ̂(x+ εz)]εd dz

∣∣∣∣∣
p

dx

since by the chain rule −ε(∂iηε)(−εz) = ∂i(ηε ◦ hε)(z) = (1/εd)∂i(η)(z)

=
∫ ∣∣∣∣∣
∫
B(0,1)

∂iη(z)f(x+ εz)
ϕ̂(x)− ϕ̂(x+ εz)

ε
dz

∣∣∣∣∣
p

dx

≤2p−1

∫ ∣∣∣∣∣
∫
B(0,1)

∂iη(z)f(x+ εz) 〈−∇ϕ̂(x+ εz), z〉 dz

∣∣∣∣∣
p

dx

+ 2p−1

∫ ∣∣∣∣∣
∫
B(0,1)

∂iη(z)f(x+ εz)
[
ϕ̂(x)− ϕ̂(x+ εz)

ε
+ 〈∇ϕ̂(x+ εz), z〉

]
dz

∣∣∣∣∣
p

dx

By Jensen’s inequality, the first term is bounded by

C(p, d) ‖∂iη‖p∞
d∑
j=1

‖f∂jϕ‖pLp(dx) ,

where C(p, d) is a positive constant depending only on p and d.
Concerning the second term, we use Jensen’s inequality and Fubini’s theorem to see

that it is bounded by

C ′(p, d) ‖∂iη‖p∞ ‖f‖
p
∞

∫
B(0,1)

∫ ∣∣∣∣ ϕ̂(x)− ϕ̂(x+ εz)
ε

+ 〈∇ϕ̂(x+ εz), z〉
∣∣∣∣p dx dz,

where C ′(p, d) is a positive constant depending only on p and d. Let us investigate the
inner integral. We need a lemma on difference quotients. Compare with [GT77, Proof
of Lemma 7.23].

Lemma 4.6. Let z ∈ B(0, 1) ⊂ Rd and u ∈ H1,p(dx). Set for ε > 0

∆εu(x) :=
u(x− εz)− u(x)

ε

for some representative of u. Then

‖∆εu− 〈∇u, z〉‖Lp(dx) → 0

as ε↘ 0.

Proof. Start with u ∈ C1 ∩H1,p. By the fundamental theorem of calculus

∆εu(x) =
1
ε

∫ ε

0
〈∇u, z〉 (x− sz) ds.
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4 H = W for weighted p-Sobolev spaces

Use Fubini’s Theorem to get∫
|∆εu(x)− 〈∇u(x), z〉|p dx =

1
ε

∫ ε

0

∫
|〈∇u(x− sz), z〉 − 〈∇u(x), z〉|p dx ds. (4.11)

By a well-known property of Lp-norms [Alt06, Satz 2.14] the map

s 7→
∫
|〈∇u(x− sz), z〉 − 〈∇u(x), z〉|p dx

is continuous in zero. Hence s = 0 is a Lebesgue point of this map. Therefore the right
hand side of (4.11) tends to zero as ε ↘ 0. The claim can be extended to functions in
H1,p by an approximation by smooth functions as e.g. in [Zie89, Theorem 2.3.2].

By variable substitution, we get∫ ∣∣∣∣ ϕ̂(x− εz)− ϕ̂(x)
ε

+ 〈∇ϕ̂(x), z〉
∣∣∣∣p dx.

By the preceding lemma, the term converges to zero pointwise as ε ↘ 0 for each fixed
z ∈ B(0, 1). Let for g ∈ L1

loc,

Mg(x) := sup
ρ>0

1
volB(x, ρ)

∫
B(x,ρ)

|g(y)|dy,

be the centered Hardy–Littlewood maximal function. We shall need the useful inequality

|u(x)− u(y)| ≤ c|x− y| [M |∇u|(x) +M |∇u|(y)] (4.12)

for any u ∈ H1,p, for all x, y ∈ Rd \N , where N is a set of Lebesgue measure zero and c
is a positive constant depending only on d and p. For a proof see e.g. [AK09, Corollary
4.3]. The inequality is credited to L. I. Hedberg [Hed72].

Also for all u ∈ Lp
‖Mu‖Lp ≤ c

′ ‖u‖Lp (4.13)

by the maximal function theorem [Ste70, Theorem I.1] and c′ > 0 depends only on d
and p.

Hence for dz-a.a. z ∈ B(0, 1)∫ ∣∣∣∣ ϕ̂(x− εz)− ϕ̂(x)
ε

+ 〈∇ϕ̂(x), z〉
∣∣∣∣p dx ≤ C(p, d) ‖∇ϕ̂‖pLp(dx) |z|

p1B(0,1) ∈ L1(dz).

The desired convergence to zero as ε ↘ 0 follows now by the preceding discussion and
Lebesgue’s dominated convergence theorem.

We have proved that∫
|ϕ∂i(ηε ∗ f)− (ηε ∗ (ϕ∂if))|p dx

≤C(d, p, supp f)

 d∑
j=1

‖f∂jϕ‖pLp(dx) + ‖f‖p∞ θ(ε)

 (4.14)
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with θ(ε)→ 0 as ε↘ 0, and θ depends only on supp f .
To conclude the proof, we shall need another approximation. Let fδ := ηδ ∗ f for

δ > 0. By Lebesgue’s dominated convergence theorem again, we can prove that there is
a subnet (also denoted by {fδ}), such that

d∑
j=1

‖(f − fδ)∂jϕ‖pLp(dx) → 0 (4.15)

as δ ↘ 0. We shall estimate with the help of (4.14) (f replaced by f − fδ therein)∥∥ϕ∂i(ηε ∗ f)− (ηε ∗ (ϕ∂if))
∥∥p
Lp(dx)

≤2p−1
∥∥ϕ∂i(ηε ∗ (f − fδ))− (ηε ∗ (ϕ∂i(f − fδ)))

∥∥p
Lp(dx)

+ 2p−1
∥∥ϕ∂i(ηε ∗ fδ)− (ηε ∗ (ϕ∂ifδ))

∥∥p
Lp(dx)

≤C(d, p, supp f)

 d∑
j=1

‖f − fδ∂jϕ‖pLp(dx) + ‖f − fδ‖p∞ θ(ε)


+ 2p−1

∥∥ϕ∂i(ηε ∗ fδ)− (ηε ∗ (ϕ∂ifδ))
∥∥p
Lp(dx)

.

The use of (4.14) is justified, since ϕ̂ = ϕ on supp f + B(0, 2), thus on supp(f − fδ) +
B(0, 1). Taking (4.15) into account, by choosing first δ and then ε, the first term above
can be controlled (since ‖f − fδ‖∞ ≤ 2 ‖f‖∞). If we can prove for any ζ ∈ C∞0∥∥ϕ∂i(ηε ∗ ζ)− (ηε ∗ (ϕ∂iζ))

∥∥p
Lp(dx)

→ 0 (4.16)

as ε↘ 0, we can control the second term above and hence are done. But

‖ϕ∂i(ηε ∗ ζ)− (ηε ∗ (ϕ∂iζ))‖pLp(dx)

≤
∫ ∣∣∣∣∫ ηε(x− y)∂iζ(y) [ϕ(x)− ϕ(y)] dy

∣∣∣∣p dx

upon substituting y = x+ εz (dy = εd dz) and using “Jensen” and “Fubini”

≤C(d, p) ‖η‖p∞ ‖∂iζ‖
p
∞

∫
B(0,1)

‖(ϕξζ)(·)− (ϕξζ)(·+ εz)‖pLp(dx) dz,

where ξζ ∈ C∞0 (Rd) with ξζ = 1 on supp ζ +B(0, 1).

‖(ϕξζ)(·)− (ϕξζ)(·+ εz)‖pLp(dx)

tends to zero as ε↘ 0 again by [Alt06, Satz 2.14]. By inequalities (4.12) and (4.13) for
dz-a.a. z ∈ B(0, 1)

‖(ϕξζ)(·)− (ϕξζ)(·+ εz)‖pLp(dx) ≤ c(d, p) ‖∇(ϕξζ)‖pLp(dx) |εz|
p1B(0,1) ∈ L1(dz),

thus we can apply Lebesgue’s dominated convergence theorem.
The proof is complete.
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4.3 The classical case recovered

The weak weighted p-Sobolev space W 1,p
w is usually defined differently in the literature,

see [Kuf80, KO84]. Let 1 < p <∞ and

˜W 1,p
w (Rd) :=

{
u ∈ L1

loc(R
d; dx)

∣∣ u ∈ Lpw(Rd), Du ∈ Lpw(Rd → Rd)
}
. (4.17)

We also refer to [Kil97] for a discussion on H = W using Definition (4.17). It is related
to the so-called weighted Poincaré inequality. We shall not go into details. For the case
p = 2, the results of this section are known by [AR90b].

Lemma 4.7. Under (S2), (HW), W 1,p
w (Rd) ⊂ ˜W 1,p

w (Rd). In particular, ∇u = Du
dx-a.e.

Proof. Let u ∈ W 1,p
w . By (S2), u is a distribution in L1

loc, see Lemma 3.5. By Theorem
4.4, there is a sequence {ηk} ⊂ C∞0 with ηk → u in Lpw(Rd) and ∇ηk → ∇u in Lpw(Rd →
R
d). By (S2), the sequences converge in L1

loc, too. Let ζ ∈ C∞0 . Then∫
ηk∂iζ dx = −

∫
∂iηkζ dx

and in the limit, ∫
u∂iζ dx =

∫
∂iuζ dx,

hence Du = ∇u dx-a.e.

Basically, the claim could also have been deduced form the fact that our definition of
the strong Sobolev space H1,p

w is classical. For the converse, we need the lattice property

of ˜W 1,p
w (Rd).

Lemma 4.8. Under (S2), (HW), for f ∈ ˜W 1,p
w (Rd), bounded and compactly supported,

it holds that
Di(fϕ) = f∂iϕ+ ϕDif

in the sense of Schwartz distributions for any 1 ≤ i ≤ d.

Proof. Let M ∈ N and ϑM as in the proof of Lemma 4.5, that is, ϑM ∈ C∞0 (R) with

ϑM (t) = t for t ∈ [−M,M ], |ϑM | ≤M + 1, |ϑ′M | ≤ 1

and
supp(ϑM ) ⊂ [−3M, 3M ].

Set ϕM := ϑM (ϕ). ϕM is bounded and |ϕM | ≤ |ϕ|. By the chain rule for Sobolev
functions, DiϕM = ∂iϕM = ϑ′M (ϕ)∂iϕ a.e. By an approximation by smoothing mollifiers
one easily proves that Di(fϕM ) = fDiϕM + ϕMDif in the sense of distributions (just
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note that by (S2) f is locally integrable and Dif is locally integrable, also f and ϕM are
bounded, fϕM is locally integrable). Let η ∈ C∞0 . Then for every 1 ≤ i ≤ d∫

∂iηfϕM dx = −
∫
ηDifϕM dx−

∫
ηfϑ′M (ϕ)∂iϕdx. (4.18)

AsM →∞, ϕM → ϕ dx-a.e., ϑ′M (ϕ)→ 1 dx-a.e. But we are allowed to apply Lebesgue’s
dominated convergence theorem by

|∂iηfϕM | ≤ |fϕ| ‖∂iη‖∞ 1supp η ∈ L1(dx),

|ηDifϕM | ≤ |Difϕ| ‖η‖∞ 1supp η ∈ L1(dx),
and

|ηfϑ′M (ϕ)∂iϕ| ≤ |f∂iϕ| ‖η‖∞ 1supp η ∈ L1(dx).

Here, we have used that fϕ,Difϕ ∈ Lp and that f is bounded and ∂iϕ is locally
integrable. The formula obtained in the limiting procedure as M → ∞ is exactly the
assertion.

Lemma 4.9. Under (S2), each f ∈ ˜W 1,p
w (Rd) has a version f̃ i for 1 ≤ i ≤ d which is

locally absolutely continuous on almost all lines parallel to the coordinate axes.

Proof. Assuming (S2), by the proof of Lemma 3.5, each Dif is locally integrable. There-
fore the desired locally absolutely continuous version exists by [Miz73, Theorem 2.7].

Proposition 4.10. Under (S2), (HW), ˜W 1,p
w (Rd) ⊂W 1,p

w (Rd) and ∇u = Du dx-a.e.

Proof. By (S2), we conclude from Lemma 4.9 and the proof of Lemma 3.18, that
˜W 1,p
w (Rd) is a lattice. Now by an adaption of Lemma 3.19, bounded and compactly

supported functions are dense in ˜W 1,p
w (Rd). Let f be such a function. Fix 1 ≤ i ≤ d.

Let {ηk} ⊂ C∞0 be a sequence such that

ηk → ϕp−1 in Lqloc.

Since ϕ ∈ H1,p
loc , such a sequence can be obtained by a mollifier. Also

∂iηk → (p− 1)ϕp−2∂iϕ in Lqloc

since ϕp−2∂iϕ ∈ Lqloc by (HW). Fix ζ ∈ C∞0 . Now by Lemma 4.8∫
∂iζηkfϕdx = −

∫
ζ∂iηkfϕdx−

∫
ζηkDi(fϕ) dx

=−
∫
ζ∂iηkfϕdx−

∫
ζηkDifϕdx−

∫
ζηkf∂iϕdx.

(4.19)

The limit k → ∞ exists by Hölder’s inequality, taking into account that fϕ ∈ Lp,
Difϕ ∈ Lp, ∂iϕ ∈ Lploc. Taking the limit yields the formula∫

∂iζfϕ
p dx = (1− p)

∫
ζf
∂iϕ

ϕ
ϕp dx−

∫
ζDifϕ

p dx−
∫
ζf
∂iϕ

ϕ
ϕp dx,
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4 H = W for weighted p-Sobolev spaces

which proves that f ∈ W 1,p
w and ∇f = Df ϕpdx-a.s. and hence, since by (S2) Lpw(Ω) ⊂

L1(Ω) for each bounded open set Ω ⊂ Rd, ∇f = Df dx-a.s. Together with Lemma 4.7,

we have proved that W 1,p
w ∩L∞ = W̃ 1,p

w ∩L∞. The claim follows now by an approximation
in ‖·‖1,p,w-norm and the fact that W 1,p

w is a Banach space in this norm.
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5 The general theory of varying Banach
spaces

5.1 Gromov-Hausdorff convergence

This section is to be read as a prequel to the theory of varying spaces. That it is
embedded therein, we can see in Lemma 5.9. For the next definition see [KS08, Section
2]. See also [Gro99].

Definition 5.1. A metric space X is called boundedly compact, if its bounded and
closed subsets are compact.

A pair (X, o) is called pointed metric space, if X is a metric space and o ∈ X is a
distinguished point, called the basepoint.

Let X,Y ⊂ Z, where Z is a metric space.

dHZ (X,Y ) := inf {ρ > 0 | X ⊂ BZ(Y, ρ), Y ⊂ BZ(X, ρ)}

is called the Hausdorff distance.
Let X,Y be compact metric spaces.

dGH(X,Y ) := inf
{
dHZ (X,Y ) | Z a metric space, X, Y ↪→ Z isometrically

}
is called the Gromov-Hausdorff distance.

Let X,Y be compact metric spaces. Let Φ : X → Y be any map.

dis Φ := sup
x,y∈X

|dY (Φ(x),Φ(y))− dX(x, y)|

is called the distorsion.
Let X,Y be compact metric spaces. If a map Φ : X → Y satisfies dis Φ < ε and

BY (Φ(X), ε) = Y , then it is called an ε-approximation.

The Hausdorff distance turns the collection C (Z) of all non-empty compact subsets
of Z into a metric space. The Gromov-Hausdorff distance turns the collection of all
isometry classes of compact metric spaces into a metric space.

Lemma 5.2. Let X,Y be compact metric spaces. If dGH(X,Y ) < ε, then there exists a
2ε-approximation from X to Y .

Conversely, if there exists an ε-approximation from X to Y , then dGH(X,Y ) < 2ε.

Proof. See [BBI01, Corollary 7.3.28].
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5 The general theory of varying Banach spaces

Definition 5.3. Let N be a directed set and {(Xν , oν)}ν∈N a net of pointed boundedly
compact metric spaces. We say that {(Xν , oν)}ν∈N Gromov-Hausdorff converges to a
pointed boundedly compact metric space (X, o) if for any ρ > 0 there exist nets {ρν}ν∈N ,
{ερν}ν∈N of positive real numbers such that ρν ↘ ρ and ερν ↘ 0 and there exist ερν-
approximations ϕρν : BXν (oν , ρν)→ BX(o, ρ) such that ϕρν(oν) = o.

In the compact case, we have the following.

Lemma 5.4. Let N be a directed set and let {Xν}ν∈N be a net of compact metric spaces
and let X be a compact metric space. If for a net of points {oν}, oν ∈ Xν , ν ∈ N , o ∈ X
it holds that

(Xν , oν)→ (X, o) in the Gromov-Hausdorff sense, (5.1)

then
lim
ν∈N

dGH(Xν , X) = 0. (5.2)

Conversely, if (5.2) holds and o ∈ X, then one can find oν ∈ Xν , ν ∈ N such that (5.1)
holds.

Proof. See [BBI01, Exercise 8.1.2].

The following proposition is proved in [KS08, Proposition 2.3]. See also [Gro99, Proof
of 3.5(b)].

Proposition 5.5. Let N be a directed set and {(Xν , oν)}ν∈N a net of pointed bound-
edly compact metric spaces, such that {(Xν , oν)}ν∈N Gromov-Hausdorff converges to a
pointed boundedly compact metric space (X, o). Then there exists a boundedly compact
metric dX on the disjoint union

X :=
.⋃

ν∈N

Xν∪̇X

such that:

(i) The restrictions of dX on Xν , ν ∈ N , X coincide with the original metrics dXν ,
ν ∈ N , dX respectively.

(ii) {Xν}ν∈N compactly Hausdorff-converges to X in X, that is, for any ρ > 0 there
exists a net {ρν}ν∈N with ρν ↘ ρ such that

R- lim
ν∈N

dHX (BX(o, ρν) ∩Xν , BX(o, ρ) ∩X) = 0.

(iii) R- limν∈N dX(oν , o) = 0.

According to the references, the following metric matches our purposes. Let {p1 =
o, p2, . . .} = P ⊂ X be a countable dense set (which exists since X is boundedly com-
pact). By Gromov-Hausdorff convergence, there is a net {Nν} of natural numbers in-
creasing to +∞ and points pνn ∈ Xν , pν1 = oν , ν ∈ N , n ∈ N such that for all ν ∈ N

|dXν (pνn, p
ν
m)− dX(pn, pm)| ≤ 1

Nν
∀1 ≤ n,m ≤ Nν .
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5.2 Strong asymptotic relation

The proposed metric is

dX(x, y) := inf
1≤n≤Nν

[
dXν (x, pνn) + dX(pn, y) +

1
Nν

]
,

whenever x ∈ Xν , y ∈ X, dX := dXν on Xν ×Xν , ν ∈ N , dX := dX on X ×X,

dX(x, y) := inf
z∈X

[dX(x, z) + dX(z, y)] ,

whenever x ∈ Xν1 , y ∈ Xν2 , ν1, ν2 ∈ N , ν1 6= ν2. Such a metric satisfies

dX(pνn, pn) =
1
Nν

∀1 ≤ n ≤ Nν . (5.3)

5.2 Strong asymptotic relation

We work within a framework originating from K. Kuwae and T. Shioya. The standard
references are [KS03, KS08].

Let N be a directed set. Suppose that for each ν ∈ N there is a Banach space Eν
and suppose that there is a Banach space E. No index or the index “∞” (which is to
be understood as a symbol 6∈ N ) will refer to E in the sequel.

Using set-theoretic labeling, we define the disjoint unions

E :=
.⋃

ν∈N

Eν∪̇E, E∗ :=
.⋃

ν∈N

E∗ν ∪̇E∗, E∗∗ :=
.⋃

ν∈N

E∗∗ν ∪̇E∗∗,

where “ ∗”, “ ∗∗” resp. denote the Banach space dual, Banach space bidual resp. Note
that by labeling, the union is forced to be pairwise disjoint. Therefore, 0 ∈ Eν1 is not
equal to 0 ∈ Eν2 when ν1 6= ν2. In the sequel, when writing 0, it should be clear in which
space it is.

Definition 5.6 (Asymptotic Relation, Net Version). We call a topology τ on E a linear
strong asymptotic relation between {Eν}ν∈N and E (or on E) if τ satisfies the following
conditions:

(A1) The relative topologies of Eν , ν ∈ N , E in (E, τ) coincide with the original strong
topologies.

(A2) For any u ∈ E there exists a net {uν}ν∈N such that uν ∈ Eν , ν ∈ N and
τ - limν∈N uν = u.

(A3) For any subnet {νµ}µ∈M of {ν}ν∈N , for any net {uµ}µ∈M , with uµ ∈ Eνµ, µ ∈M
and any u ∈ E the following statement holds:
If τ - limµ∈M uµ = u, then

R- lim
µ∈M

‖uµ‖Eνµ = ‖u‖E .
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5 The general theory of varying Banach spaces

(A4) For any subnet {νµ}µ∈M of {ν}ν∈N , for any two nets {uµ}µ∈M , {vµ}µ∈M with
uµ, vµ ∈ Eνµ, µ ∈M and any u ∈ E the following statement holds:
If τ - limµ∈M uµ = u and R- limµ∈M ‖uµ − vµ‖Eνµ = 0, then τ - limµ∈M vµ = u.

(AL) For any subnet {νµ}µ∈M of {ν}ν∈N , for any two nets {uµ}µ∈M , {vµ}µ∈M with
uµ, vµ ∈ Eνµ, µ ∈ M and any two u, v ∈ E and any α, β ∈ R the following
statement holds:
If τ - limµ∈M uµ = u and τ - limµ∈M vµ = v, then τ - limµ∈M

[
αuµ+βvµ

]
= αu+βv.

Our definition using subnets {νµ} of {ν} might seem unnecessary at first glance. The
reason is that the directed set {ν} is used already to index the spaces {Eν}. Hence,
when considering any net in

.⋃
ν∈N Eν , that converges to some point in E, we use this

trick to keep track of the space in which an element uµ of a net {uµ} lies. Therefore,
one could think of picking {νµ} exactly such that uµ ∈ Eνµ . See also Section 5.14 for a
more elegant definition (when N carries a topology).

It is important to realize that O ⊂ E, ‖·‖E-open, is not a τ -neighborhood of its points!
This would violate (A2). E is the τ -closure of

.⋃
ν∈N Eν in E.

A strong asymptotic relation between {Eν}ν∈N and E is not a (topological) conver-
gence in general. This was noted by K. Kuwae and T. Shioya in [KS08, Remark 3.2]. To
see this, suppose that there is an asymptotic relation τ on

.⋃
ν∈N Eν∪̇E. Then for any

subspace U ⊂ E the restricted topology on
.⋃
ν∈N Eν∪̇U is also an asymptotic relation,

only (AL) fails to hold in general if U is not linear. Note also that an asymptotic rela-
tion depends on the norms of the spaces involved (and not only on the topologies). An
equivalent renorming leads to different limit points in E.

Remark 5.7. We also impose the following condition,

(A3’) For any subnet {νµ}µ∈M of {ν}ν∈N , for any two nets {uµ}µ∈M , {vµ}µ∈M , with
uµ, vµ ∈ Eνµ, µ ∈M and any two u, v ∈ E the following statement holds:
If τ - limµM uµ = u and τ - limµ∈M vµ = v, then

R- lim
µ∈M

‖uµ − vµ‖Eνµ = ‖u− v‖E ,

which is strictly stronger than (A3) if (AL) is lacking. Clearly (A3) and (AL) imply
(A3’). In the sequel we will always demand (AL).

Given (A3), (A4), we can replace (AL) equivalently by

(AL’) For any subnet {νµ}µ∈M of {ν}ν∈N , for any two nets {uµ}µ∈M , {vµ}µ∈M with
uµ, vµ ∈ Eνµ, µ ∈M and any two u, v ∈ E and any two nets {αµ}µ∈M , {βµ}µ∈M ⊂
R and any two α, β ∈ R such that R- limµ∈M αµ = α, R- limµ∈M βµ = β the
following statement holds:
If τ - limµ∈M uµ = u and τ - limµ∈M vµ = v, then τ - limµ∈M

[
αµuµ + βµvµ

]
= αu+

βv.

which follows from (A3), (A4), (AL) and the triangle inequality.
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5.2 Strong asymptotic relation

A (not necessarily linear) strong asymptotic relation was introduced by K. Kuwae and
T. Shioya in [KS08] for metric spaces, therein plainly called asymptotic relation, defined
as follows.

Definition 5.8 (Asymptotic Relation, Metric Version). If each Xν , ν ∈ N , X is a
metric space (with distances dν , ν ∈ N , d respectively) we will still call a topology τ on
X asymptotic relation if the following conditions are satisfied:

(A1) The relative topologies of Xν , ν ∈ N , X in (X, τ) coincide with the original strong
topologies.

(A2) For any u ∈ X there exists a net {uν}ν∈N such that uν ∈ Xν , ν ∈ N and
τ - limν∈N uν = u.

(A3) For any subnet {νµ}µ∈M of {ν}ν∈N , for any two nets {uµ}µ∈M , {vµ}µ∈M with
uµ, vµ ∈ Xνµ, µ ∈M and any two u, v ∈ X the following statement holds:
If τ - limµ∈M uµ = u and τ - limµ∈M vµ = v, then

R- lim
µ∈M

dνµ(uµ, vµ) = d(u, v).

(A4) For any subnet {νµ}µ∈M of {ν}ν∈N , for any two nets {uµ}µ∈M , {vµ}µ∈M with
uµ, vµ ∈ Xνµ, µ ∈M and any u ∈ X the following statement holds:
If τ - limµ∈M uµ = u and R- limµ∈M dνµ(uµ, vµ) = 0, then τ - limµ∈M vµ = u.

Additionally, if each Xν , ν ∈ N , X is a metrizable topological vector space, we call an
asymptotic relation on X linear whenever:

(AL) For any subnet {νµ}µ∈M of {ν}ν∈N , for any two nets {uµ}µ∈M , {vµ}µ∈M with
uµ, vµ ∈ Xνµ, µ ∈ M and any two u, v ∈ X and any α, β ∈ R the following
statement holds:
If τ - limµ∈M uµ = u and τ - limµ∈M vµ = v, then τ - limµ∈M

[
αuµ+βvµ

]
= αu+βv.

The next lemma was stated in [KS08, Remark 3.2].

Lemma 5.9. If a net of pointed boundedly compact metric spaces {(Xν , oν)}ν∈N con-
verges in the Gromov-Hausdorff sense to a pointed boundedly compact metric space
(X, o), then dX as in Proposition 5.5 constitutes an asymptotic relation in the sense
of Definition 5.8 on X.

Proof. (A1) follows from Proposition 5.5 (i).
For (A2) let x ∈ X. Let P ⊂ X be a countable dense set as in (5.3). Let pk ∈ P ,

k ∈ N be a sequence such that

lim
k
dX(pk, x) = 0. (5.4)

By (5.3) there are pνk ∈ Xν , ν ∈ N such that for all k ∈ N

lim
ν∈N

dX(pνk, pk) = 0,
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5 The general theory of varying Banach spaces

and hence by Proposition 5.5 (i) and continuity of “dX(·, ·)”

lim
ν∈N

dX(pνk, x) = dX(pk, x) = dX(pk, x). (5.5)

Combining (5.4) and (5.5) by a diagonal procedure (see e.g. “diagonal lemma” 5.27
below) we find a net of natural numbers kν increasing to +∞ such that

lim
ν∈N

dX(pνkν , x) = 0.

(A3) follows from∣∣dνµ(uµ, vµ)− d(u, v)
∣∣ = |dX(uµ, vµ)− dX(u, v)|

≤ |dX(uµ, u) + dX(vµ, v) + dX(u, v)− dX(u, v)| ,

where we have used Proposition 5.5 (i).
(A4) follows with from

dX(vµ, u) ≤ dX(vµ, uµ) + dX(uµ, u) = dνµ(vµ, uµ) + dX(uµ, u),

where we have used Proposition 5.5 (i).

5.2.1 “Variable space” by Zhikov and Pastukhova

Quite recently, by V. V. Zhikov and S. E. Pastukhova in [ZP07], the following definition
for a “variable Banach space” was proposed:

Definition 5.10 (Zhikov-Pastukhova). Let Xε, ε > 0 X be Banach spaces. A strong
convergence xε → x of a net of elements {xε}, xε ∈ Xε, ε > 0 to an element x ∈ X is
defined by the following properties:

1. If xε → x, then limε→0 ‖xε‖Xε = ‖x‖X .

2. If xε → x and yε → y, then xε − yε → x− y.

3. If, for an arbitrary δ > 0, there exist yε ∈ Xε and y ∈ X such that

yε → y, lim
ε→0
‖xε − yε‖ ≤ δ, ‖x− y‖ ≤ δ,

then xε → x.

4. Every element x ∈ X is the strong limit of some net {xε}, xε ∈ Xε, ε > 0.

This is how the original definition in [ZP07] reads. The reader readily verifies that
asymptotic relations and variable spaces are one and the same thing.
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5.2 Strong asymptotic relation

5.2.2 N = N

Suppose that our framework reduces to the case of

(N ,�) = (N,≥)

and
E =

.⋃
n∈N

En∪̇E.

Suppose that {uk} is a sequence in
.⋃
nEn. Picking nk ∈ N such that uk ∈ Enk for

all k ∈ N, we get a sequence {nk} of natural numbers, which is unique by disjointness.
Moreover, if the sequence {uk} is eventually in

.⋃
n≥N En for each N ∈ N, then limn nk =

+∞. For this reason, when we are saying below that {nk} is a countable subnet of {n},
we mean by saying so that {nk} is a sequence of natural numbers with limn nk = +∞.
For our purposes, saying that {nk} is a subsequence of {n}, is not satisfactory, since
many cases of sequences {uk} in

.⋃
nEn, converging (eventually) to a point in E, would

be excluded. See also Lemma A.1 (v) on subnets.

Remark 5.11. It is a well-known topological fact that a net converges if and only if all
of its subnets converge. Therefore it follows that τ - limk uk = u, whenever uk := vnk ,
{nk} is a countable subnet of {n} and τ - limn vn = u, vn ∈ En (as in (A2) below) for
any u ∈ E.

Note that condition (A1) in the definition below is sharpened. The deeper reason for
this can be seen in Lemma 5.75 at the end of this chapter.

Definition 5.12 (Asymptotic Relation, Sequence Version). We call a topology τ on E

a linear strong asymptotic relation between {En}n∈N and E if τ satisfies the following
conditions:

(A1) En, n ∈ N, E are closed in (E, τ), and the relative topologies of En, n ∈ N, E in
(E, τ) coincide with the original strong topologies. Also, En, n ∈ N are open in
(E, τ).

(A2) For any u ∈ E there exists a sequence {un}n∈N such that un ∈ En, n ∈ N and
τ - limn→∞ un = u.

(A3) For any countable subnet {nk}k∈N of {n}n∈N, for any sequence {uk}k∈N, with
uk ∈ Enk , k ∈ N and any u ∈ E the following statement holds:
If τ - limk→∞ uk = u, then

R- lim
k→∞

‖uk‖Enk = ‖u‖E .

(A4) For any countable subnet {nk}k∈N of {n}n∈N, for any two sequences {uk}k∈N,
{vk}k∈N with uk, vk ∈ Enk , k ∈ N and any u ∈ E the following statement holds:
If τ - limk→∞ uk = u and R- limk→∞ ‖uk − vk‖Enk = 0, then τ - limk→∞ vk = u.
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5 The general theory of varying Banach spaces

(AL) For any countable subnet {nk}k∈N of {n}n∈N, for any two sequences {uk}k∈N,
{vk}k∈N with uk, vk ∈ Enk , k ∈ N and any two u, v ∈ E and any α, β ∈ R the
following statement holds:
If τ - limk→∞ uk = u and τ - limk→∞ vk = v, then τ - limk→∞

[
αuk+βvk

]
= αu+βv.

Define also:

(A3’) For any countable subnet {nk}k∈N of {n}n∈N, for any two sequences {uk}k∈N,
{vk}k∈N, with uk, vk ∈ Enk , k ∈ N and any two u, v ∈ E the following statement
holds:
If τ - limkM

uk = u and τ - limk→∞ vk = v, then

R- lim
k→∞

‖uk − vk‖Enk = ‖u− v‖E ,

As well as:

(AL’) For any countable subnet {nk}k∈N of {n}n∈N, for any two sequences {uk}k∈N,
{vk}k∈N with uk, vk ∈ Enk , k ∈ N and any two u, v ∈ E and any two sequences
{αk}k∈N, {βk}k∈N ⊂ R and any two α, β ∈ R such that R- limk→∞ αk = α,
R- limk→∞ βk = β the following statement holds:
If τ - limk→∞ uk = u and τ - limk→∞ vk = v, then τ - limk→∞

[
αkuk + βkvk

]
=

αu+ βv.

(A3’) and (AL’) follow from (A3), (A4) and (AL).
Note the special rôle of E and the similarities between τ on E and the topology of the

Alexandroff one-point compactification on N := N∪ {∞}. N is a compact metric space
with the metric

d
N

(n,m) :=
∣∣∣∣ 1n − 1

m

∣∣∣∣
(setting 1

∞ := 0) and hence isometrically isomorphic to the compact set

N
−1 :=

.⋃
n∈N

{
1
n

}
∪̇{0}

with the usual metric. This is not a coincidence, see Section 5.14 at the end of this
chapter.

5.2.3 Topological bases and regularity

We continue with further topological properties of linear asymptotic relations for Banach
spaces. Assume always N = N.

Lemma 5.13. Let E, N = N be as above and suppose that (E, τ) is a linear strong
asymptotic relation. Let {nk}k∈N be a countable subnet of {n}n∈N. Let {uk}k∈N with
uk ∈ Enk , k ∈ N. Then τ - limk uk = 0 ∈ E if and only if R- limk ‖uk‖Enk = 0.

70



5.2 Strong asymptotic relation

Proof. The “only if”-part is a consequence of (A3). Note that by (A2) and (AL) Enk 3
0→ 0 ∈ E in τ -topology. Then by (A4) we obtain the “if”-part.

Compare the following lemma with Lemma 5.75 (iii) below.

Lemma 5.14. Suppose that N = N. Suppose either that (A3’) holds for sequences
replaced by nets or that τ is first-countable. Then (E, τ) is Hausdorff.

Proof. Let {ui}i∈I be a net in E with two limits u, v ∈ E. Suppose that u ∈ En for some
n ∈ N. Since En is open by (A1), {ui} is eventually in En. But since En is closed by
(A1), all limits of {ui} must lie in En. Hence v ∈ En. But then limi∈I un 3 u, v in the
original topology of En which is of course Hausdorff; hence u = v. Suppose now that
u ∈ E. If v ∈ En for some n ∈ N, we get a contradiction by the argument above. Hence
v ∈ E. For all N ∈ N,

.⋃
n≥N En∪̇E is an open neighborhood of u. Hence there is a net

of natural numbers {ni}i∈I such that ui ∈ Eni for i ∈ I and limi∈I ni = +∞. Then by
(A3’)

0 = lim
i∈I

0 = lim
i∈I
‖ui − ui‖Eni = ‖u− v‖E .

Hence u = v. If, alternatively, τ is assumed to be first-countable, by [Eng89, Proposition
1.6.17], the “sequence-version” of condition (A3’) is sufficient for the above proof.

For the following lemma, recall that separable metric spaces are second countable, cf.
[Kel75, Ch. 4, Theorem 11, p. 120].

Lemma 5.15. Let N = N, let E =
.⋃
n∈NEn∪̇E have a linear asymptotic relation τ

and suppose that each En, n ∈ N, E is separable. Then E is second countable (as a
topological space) with a base of open sets given by⋃

n∈N
On ∪

⋃
i,j,k∈N

{Oijk}

where On is a countable base of open sets for En and Oijk is given by

Oijk := BE(ui, 1/k) ∪
⋃
j′≥j

BEj′ (u
i
j′ , 1/k)

where {u1, u2, . . .} ⊂ E is a countable dense set and uij ∈ Ej with τ - limj→∞ u
i
j = ui.

Proof. The proof goes exactly as in [KS03, Lemma 2.13]. We repeat it for convenience.
We would like to apply [Kel75, p. 47, Theorem 11].
Oijk is a open neighborhood of ui in E, since every net converging to a point in Oijk is

eventually in Oijk by (A1) and (A3’) (using that τ - limj u
i
j = ui and hence every subnet

of it). Assume that u ∈ Oi1j1k1 ∩ Oi2j2k2 ∩ E. By [Kel75, p. 47, Theorem 11] it suffices
to prove that there are i3, j3, k3 ∈ N such that

u ∈ Oi3j3k3 ⊂ Oi1j1k1 ∩Oi2j2k2 . (5.6)
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Since
∥∥u− uip∥∥

E
< 1/kp for p = 1, 2, we find a number k3 ∈ N such that∥∥u− uip∥∥

E
+ 2/k3 < 1/kp, p = 1, 2, (5.7)

and then find a number i3 ∈ N such that∥∥u− ui3∥∥
E
< 1/k3. (5.8)

By (5.7), the triangle inequality and (5.8)∥∥ui3 − uip∥∥
E

+ 2/k3 <
∥∥ui3 − uip∥∥

E
+ 1/kp −

∥∥u− uip∥∥
E

≤ 1/kp +
∥∥u− ui3∥∥

E
< 1/kp + 1/k3, p = 1, 2.

(5.9)

By (A3’) there exists j3 ∈ N such that for any j ≥ j3 and p = 1, 2,∥∥∥ui3j − uipj ∥∥∥
Ej

+ 1/k3 < 1/kp. (5.10)

It follows from the triangle inequality that

B(x, r − ‖x− y‖) ⊂ B(y, r) if x ∈ B(y, r). (5.11)

Therefore the inequalities (5.8), (5.9), (5.10) together imply (5.6).
Suppose now that u ∈ O1 ∩ O2, where O1 ∈ On1 , O2 ∈ On2 , n1, n2 ∈ N. Then we

must have n1 = n2. By the property of On1 being a basis, we find O3 ∈ On1 with
u ∈ O3 ⊂ O1 ∩O2.

Suppose that u ∈ O1 ∩ Oi,j,k, for some i, j, k ∈ N and O1 ∈ On0 , n0 ∈ N. We must
have n0 ≥ j. Also u ∈ BEn0

(uin0
, 1/k) =: B. But since O1 ∩B is an open neighborhood

of u in En0 , we find an open set O2 ∈ On0 with u ∈ O2 ⊂ O1 ∩B = O1 ∩Oi,j,k.
Suppose that u ∈ Oi1,j1,k1 ∩Oi2,j2,k2 for some i1, j1, k1, i2, j2, k2 ∈ N and that u ∈ En0

for some n0 ∈ N. We must have n0 ≥ j1 and n0 ≥ j2. Hence u ∈ BEn0
(ui1n0

, 1/k1) ∩
BEn0

(ui2n0
, 1/k2) =: B1 ∩ B2. But B1 ∩ B2 is an open neighborhood of u in En0 and

hence by the property of On0 being a basis we find an open set O ∈ On0 with u ∈ O ⊂
B1 ∩B2 ⊂ Oi1,j1,k1 ∩Oi2,j2,k2 .

The proof is complete by an application of [Kel75, p. 47, Theorem 11].

The preceding result shows that in the separable case we know the topology of a
strong asymptotic relation whenever we know what sequences converge. This is not
clear a priori. Therefore we will later assume from time to time that a strong asymptotic
relation is Fréchet (see Appendix A).

Lemma 5.16. In the situation of Lemma 5.15 (E, τ) is a regular topological space and
hence separably metrizable.
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Proof. Each Hausdorff second countable regular topological space is separably metrizable
by [Kel75, p. 125, Theorem 17]. We are left to show that E is regular. It is enough to
show that for each x ∈ E and each element O in the base described in Lemma 5.15 such
that x ∈ O there exists an closed neighborhood A of x such that A ⊂ O (cf. [Eng89,
Proposition 1.5.5]).

Suppose that x ∈ En0 for some n0 ∈ N. W.l.o.g. x ∈ O ∈ On0 . En0 is regular w.r.t.
its original topology hence there is a closed neighborhood A ⊂ O containing x. But A
is also a τ -neighborhood and τ -closed by (A1).

Suppose that x ∈ E and x ∈ Oi1j1k1 for some i1, j1, k1 ∈ N. Select k2 such that 2/k2 <
1/k1−‖x− ui1‖E and ui2 such that ‖x− ui2‖E < 1/k2. Then 1/k2 < 1/k1−‖ui1 − ui2‖E
and hence by (5.11) x ∈ BE(ui2 , 1/k2) ⊂ BE(ui1 , 1/k1). By (A3’) there is j2 such that

Oi2,j2,k2 ⊂ A := BE(ui2 , 1/k2) ∪
⋃
j′≥j2

BEj′ (u
i2
j′ , 1/k2) ⊂ Oi1,j1,k1 .

Hence A is a τ -neighborhood. It remains to prove that it is τ -closed. But by (A1), (A3’)
there is no sequence (net) in A which converges to a point in E \A.

5.3 Weak and weak∗ asymptotic relation

Definition 5.17. A pair of real linear spaces (X,Y ) is called dual pair if there exists a
bilinear map X〈·, ·〉Y : X × Y → R which separates the points, i.e.:

for every x ∈ X \ {0} there is a y ∈ Y with X〈x, y〉Y 6= 0,
for every y ∈ Y \ {0} there is a x ∈ X with X〈x, y〉Y 6= 0.

If (X,Y ) is a dual pair, we define the locally convex Hausdorff topology σ(X,Y ) on X
via the family of semi-norms {py(x) := |X〈x, y〉Y | | y ∈ Y } (we also define σ(Y,X) on
Y in the obvious way).

If E(i) :=
.⋃
ν∈N E

(i)
ν ∪̇E(i) for a directed set N and real linear spaces E(i)

ν , ν ∈ N ,
E(i), i = 1, 2, we say that (E(1),E(2)) is a dual pair if (E(1)

ν , E
(2)
ν ) is a dual pair for each

ν ∈ N and (E(1), E(2)) is a dual pair.

If E is a Banach space and E∗ its dual with pairing E∗〈·, ·〉E , σ(E,E∗) is the weak
topology on E and σ(E∗, E) is the weak∗ topology on E∗. If E is reflexive, σ(E∗, E)
coincides with σ(E∗, E∗∗). When speaking of dual pairs of Banach spaces we shall always
use the standard dualization which is continuous w.r.t to the strong and weak topologies.

Definition 5.18. Let (E,F) be a dual pair consisting of Banach spaces such that τ(E)
and τ(F) are strong linear asymptotic relations on E and F respectively. We call a
topology σ = σ(E,F) on E a linear σ-asymptotic relation with respect to F between
{Eν}ν∈N and E if σ satisfies the following conditions:

(W1) The relative topologies of Eν , ν ∈ N , E in (E, σ) coincide with the original
σ(Eν , Fν) (resp. σ(E,F )) topologies.
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5 The general theory of varying Banach spaces

(W2) For any u ∈ E there exists a net {uν}ν∈N such that uν ∈ Eν , ν ∈ N and
σ- limν∈N uν = u.

(W3) σ(E,F) is weaker than τ(E) (or equal to).

(W4) For any subnet {νµ}µ∈M of {ν}ν∈N , for any net {uµ}µ∈M ⊂ E, with uµ ∈ Eνµ,
µ ∈M and any u ∈ E the following statement holds:
σ(E,F)- limµ∈M uµ = u if and only if supµ∈M ‖uµ‖Eνµ < +∞ and

R- lim
µ∈M Eνµ

〈uµ, vµ〉Fνµ = E〈u, v〉F

for every v ∈ F and every net {vµ}µ∈M ⊂ F with vµ ∈ Fνµ, µ ∈ M and
τ(F)- limµ∈M vµ = v.

(WL) For any subnet {νµ}µ∈M of {ν}ν∈N , for any two nets {uµ}µ∈M , {vµ}µ∈M with
uµ, vµ ∈ Eνµ, µ ∈ M for any two u, v ∈ E and for any α, β ∈ R the following
statement holds:
If σ- limµ∈M uµ = u and σ- limµ∈M vµ = v, then σ- limµ∈M

[
αuµ+βvµ

]
= αu+βv.

If in the above definition F = E∗, then we call a linear σ-asymptotic relation σ(E,E∗) a
linear weak asymptotic relation on E.

If in the above definition E = F∗, then we call a linear σ-asymptotic relation σ(F∗,F)
a linear weak∗ asymptotic relation on F∗.

As in the case of strong asymptotic relations, a σ(E,F )-open subset of E is not a
σ(E,F)-neighborhood of its points. This would violate (W2).

Remark 5.19. We can replace (WL) by

(WL’) For any subnet {νµ}µ∈M of {ν}ν∈N , for any two nets {uµ}µ∈M , {vµ}µ∈M with
uµ, vµ ∈ Eνµ, µ ∈M for any two u, v ∈ E and any two nets {αµ}µ∈M , {βµ}µ∈M ⊂
R and any two α, β ∈ R such that R- limµ∈M αµ = α, R- limµ∈M βµ = β the
following statement holds:
If σ- limµ∈M uµ = u and σ- limµ∈M vµ = v, then σ- limµ∈M

[
αµuµ + βµvµ

]
=

αu+ βv.

This follows from (W4), (WL), the linearity and strong continuity of the dualization and
the boundedness of norms of the nets involved (in particular, (A3)).

Remark 5.20. Let (E,F) be a dual pair consisting of Banach spaces such that τ(E) and
τ(F) are strong linear asymptotic relations on E and F respectively. If there is a linear
σ-asymptotic relation σ(E,F) on E then for any subnet {νµ}µ∈M of {ν}ν∈N , for any two
nets {uµ}µ∈M ⊂ E, {vµ}µ∈M ⊂ F and any two points u ∈ E, v ∈ F such that uµ ∈ Eνµ,
vµ ∈ Fνµ, µ ∈M and τ(E)- limµ∈M uµ = u, τ(F)- limµ∈M vµ = v we have that

R- lim
µ∈M Eνµ

〈uµ, vµ〉Fνµ = E〈u, v〉F . (5.12)
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This is a consequence of (W3) and (W4). Similarly, (5.12) holds if there is a linear
σ-asymptotic relation σ(F,E) on F. We shall see later (cf. Theorem 5.45) that (5.12) is
sufficient as well for a reasonable construction of linear σ-asymptotic relations on E or
F.

Definition 5.21. If N = N we sharpen (W1) as follows:

(W1) En, n ∈ N, E are closed in (E, σ), and the relative topologies of En, n ∈ N, E in
(E, σ) coincide with the original σ(En, Fn) (resp. σ(E,F )) topologies. Also, En,
n ∈ N are open in (E, σ).

5.3.1 A compactness result

The next result could be considered an asymptotic version of the Banach-Alaoglu The-
orem.

Theorem 5.22. Let N = N. Suppose that E has a linear strong asymptotic relation τ
which is Fréchet and Hausdorff. Suppose that E∗ has a linear weak∗ asymptotic relation
σ(E∗,E) corresponding to τ which is Fréchet. Then

B∗1 :=
.⋃

n∈N
BE∗n(0, 1)∪̇BE∗(0, 1)

equipped with the weak∗ topology induced by (E∗, σ(E∗,E)) is compact. (For the termi-
nology see Appendix A).

Proof. The set c(E) :=
{
{uk}k∈N ⊂ E

∣∣ {uk}k∈N converges in τ
}

is not empty and con-
tains for any u ∈ E a convergent sequence converging to u (since constant sequences
converge in a Fréchet space). Also by (A2) for any u ∈ E there is a sequence {uk},
uk ∈ Ek for k ∈ N such that uk → u in τ .

We decompose c(E) into disjoint non-empty subsets by saying

{uk} ∈ (1)n0

{uk} ∈ (2)
{uk} ∈ (3)

 if


lim
k
uk ∈ En0 for some n0 ∈ N,

lim
k
uk ∈ E and {uk} frequently (or eventually) in E,

lim
k
uk ∈ E and {uk} eventually in E \ E.

Note that (2) includes the case that {uk} is eventually in E. Therefore, by (A1),

c(E) =
.⋃

n∈N
(1)n∪̇(2)∪̇(3).

Let B∗1 be as in the assertion. Let ∆ 6∈ R be an isolated point. (A1) and (A3) imply
that the norms of each {uk} ∈ c(E) are convergent. For a, b ∈ R we endow [a, b] ∪ {∆}
with the topology induced by R∪ {∆} (i.e., the Alexandroff one point compactification
of R). Clearly [a, b] ∪ {∆} is compact.
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Define

X := ×
{uk}∈c(E)

([
− lim

k
‖uk‖ , lim

k
‖uk‖

]
∪ {∆}

)
and equip X with the product topology. By Tychonoff’s Theorem (cf. [Kel75, p. 143,
Theorem 13]) X is compact. A net {xi}i∈I in X converges to some x in X if and only if

(R ∪ {∆})- lim
i∈I

xi({uk}) = x({uk}) (5.13)

for all {uk} ⊂ E, {uk} τ -convergent. This is known as pointwise or coordinatewise
convergence. The notation might be irritating, since we write the “coordinate” {uk} in
the parentheses.

Define a map I : B∗1 → X as follows(
I (f)

)
({uk}) :=

E∗n0

〈
f, lim

k
uk

〉
En0

if f ∈ E∗n0
, {uk} ∈ (1)n0 ,

∆ if f ∈ E∗n0
, {uk} ∈ (1)n1 , n0 6= n1,

∆ if f ∈ E∗n0
, {uk} ∈ (2),

E∗n0

〈
f, uinf{k | uk∈En0}

〉
En0

if f ∈ E∗n0
, {uk} ∈ (3), uk0 ∈ En0 for some k0,

∆ if f ∈ E∗n0
, {uk} ∈ (3), uk 6∈ En0 for all k,

∆ if f ∈ E∗, {uk} ∈ (1)n for any n,
∆ if f ∈ E∗, {uk} ∈ (2),

E∗

〈
f, lim

k
uk

〉
E

if f ∈ E∗, {uk} ∈ (3).

Claim. I is injective and a homeomorphism between B∗1 and K := I (B∗1). K is
closed (and hence compact as a closed subset of a compact space).

If we can prove the Claim, we are done, since then B∗1 is compact as the continuous
image of a compact set.

Injectivity of I .
In what follows let f, g ∈ B∗1, f 6= g. Suppose that f, g ∈ E∗n0

for some n0 ∈ N.
Then there is u0 ∈ En0 with E∗n0

〈f, u0〉En0
6= E∗n0

〈g, u0〉En0
. Pick {uk} ∈ (1)n0 with

limk uk = u0. Hence I (f)({uk}) = E∗n0
〈f, u0〉En0

6= E∗n0
〈g, u0〉En0

= I (g)({uk}).
Suppose that f ∈ E∗n0

, g ∈ E∗n1
, for some n0, n1 ∈ N, n0 6= n1. Denote 0 ∈ En0 by 0(n0).

Then {0(n0)}k∈N ∈ (1)n0 and I (f)({0(n0)}) = 0 6= ∆ = I (g)({0(n0)}).
Suppose that f ∈ E∗n0

for some n0 ∈ N and g ∈ E∗. Denote 0 ∈ E by 0(∞). Define
uk := 0(k) for k < n0 and uk := 0(k+1) for k ≥ n0. Then {uk} ∈ (3) and limk uk = 0(∞).
Hence I (f)({uk}) = ∆ 6= 0 = I (g)({uk}).
Suppose that f, g ∈ E∗. Then there is u0 ∈ E with E∗〈f, u0〉E 6= E∗〈g, u0〉E . Pick by
(A2) {uk} ∈ (3) with limk uk = u0. Then I (f)({uk}) = E∗〈f, u0〉E 6= E∗〈g, u0〉E =
I (g)({uk}) and the injectivity is proved.
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Continuity of I .
By Lemma A.4 (iv) we only need to consider sequences. Let {fl}l∈N ⊂ B∗1 be a

convergent sequence such that liml fl ⊂ B∗1. Let f ∈ liml fl. Suppose that f ∈ E∗n0
for

some n0 ∈ N. Then {fl} is eventually in E∗n0
and converges pointwisely for points from

En0 by (W1). liml I (fl)({uk}) = I (f)({uk}) for every {uk} ∈ c(E) follows.
Suppose that f ∈ E∗ and {fl} is eventually in E∗. By (W1) {fl} converges pointwisely
for points from E. liml I (fl)({uk}) = I (f)({uk}) for every {uk} ∈ c(E) follows.
Suppose that f ∈ E∗ and {fl} is eventually in E∗ \ E∗. Only finitely many fl are in
any fixed E∗n0

, n0 ∈ N since otherwise there would be infinitely many members of the
sequence in the open set E∗n0

(by (W1)) which contradicts the convergence. Hence there
is a subsequence {nl} of {l} and an index L ∈ N for which fl ∈ E∗nl for l ≥ L. By
(W4) liml≥L E∗nl

〈fl, ul〉Enl = E∗〈f, u〉E for any {ul} ∈ (3) with ul ∈ Enl for every l ≥ L.
Clearly liml I (fl)({uk}) = I (f)({uk}) for every {uk} ∈ c(E). Suppose that {fl} is
frequently in E∗ and frequently in E \ E∗. Then the above arguments apply for two
distinct subsequences of {fl}.

Continuity of I −1.
We shall write “⇀∗” for weak∗ convergence of nets in E∗. Let {xi}i∈I be a convergent

net in K such that limi∈I xi ⊂ K. Let x ∈ limi∈I xi and f := I −1(x); also fi := I −1(xi).
Suppose that f ∈ E∗n0

for some n0 ∈ N. Let {uk} ∈ (1)n0 . Then fi is eventually in
E∗n0

since x({uk}) ∈ R and we cannot jump from ∆ to [− limk uk, limk uk]. Therefore
limi∈I E∗n0

〈fi, limk uk〉En0
= E∗n0

〈f, limk uk〉En0
. But since we can attain any limit in En0

with a sequence {uk} ∈ (1)n0 , fi ⇀
i∈I
∗ f by (W1).

Suppose that f ∈ E∗. Suppose that {fi} is frequently in E∗. Then there is a cofinal set
J ⊂ I with fj ∈ E∗ for j ∈ J and limj∈J E∗〈fj , limk uk〉E = E∗〈f, limk uk〉E for every
{uk} ∈ (3). Since we can attain any limit in E with a sequence {uk} ∈ (3) by (A2) and
since the restricted weak∗ topology of E∗ coincides with the one induced by E∗ we have
that fj ⇀

j∈J
∗ f . There are two cases now. Firstly, it is possible that {fi} is not frequently

in E∗ \ E∗. Then {fi} is eventually in E∗ and J = I. Secondly, it is possible that {fi}
is also frequently in E∗ \ E∗. Then there is a cofinal set J ′ ⊂ I with fj′ ∈ E∗ \ E∗
for j′ ∈ J ′. Define {nj′} by fj′ ∈ E∗nj′ . Then {nj′} converges to ∞ since otherwise
it would have an accumulation point at some n0 ∈ N which would mean that we had
to jump from a compact subset of R to ∆ (for sequences in (1)n0). Let {uk} ∈ (3)
such that uk ∈ Ek for every k (which exists by (A2)). Also limj′∈J ′ unj′ = limk uk.

Then limj′∈J ′
E∗nj′

〈
fj′ , unj′

〉
Enj′

= E∗〈f, limk uk〉E which yields the weak∗ convergence

fj′ ⇀
j′∈J ′

∗ f by (W4). Since we can choose J and J ′ such that their union is all I

convergence of the whole net is proved.
Suppose that {fi} is eventually in E∗\E∗. Then J ′ above is all I and the above argument
applies to the whole net. The continuity is proved.

Closedness of K.
By Lemma A.4 (ii) and the above proof that I is a homeomorphism, K is a Fréchet

space. Therefore it is enough to prove that for any sequence {xl}l∈N ⊂ K, which is
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convergent, all limit points are contained in K.
Let {xl} be such a sequence and x ∈ liml xl ⊂ X. Suppose that x({uk}) = ∆ for all
{uk} ∈ c(E). Then there exists an index L ∈ N with xl({uk}) = ∆ for l ≥ L and all
{uk} ∈ c(E) which is a contradiction to xl ∈ K for every l. Hence there is a sequence
{uk} ∈ c(E) with x({uk}) ∈ R and an index L ∈ N such that

xl({uk}) ∈ R for l ≥ L and R- lim
l≥L

xl({uk}) = x({uk}). (5.14)

Suppose that {uk} ∈ (1)n0 for some n0 ∈ N. It follows that I −1(xl) ∈ E∗n0
, l ≥ L.

Furthermore, R- liml≥L xl({vk}) = x({vk}) ∈ R for any {vk} ∈ (1)n0 . We define a
functional fx on En0 by

fx(v) := lim
l≥L

xl({vk}), for some {vk} ∈ (1)n0 , lim
k
vk = v,

which does not depend on the choice of {vk} by the definition of I . Let α, β ∈ R and
v, w ∈ En0 and {vk}, {wk} ∈ (1)n0 with limk vk = v, limk wk = w and vk is in the same
space as wk for each k. We prove linearity by

fx(αv + βw)
= lim
l≥L

xl({αvk + βwk})

= lim
l≥L E∗n0

〈
I −1(xl), αv + βw

〉
En0

= lim
l≥L

[
α
E∗n0

〈
I −1(xl), v

〉
En0

+β
E∗n0

〈
I −1(xl), w

〉
En0

]
=α lim

l≥L E∗n0

〈
I −1(xl), v

〉
En0

+β lim
l≥L E∗n0

〈
I −1(xl), w

〉
En0

=α lim
l≥L

xl({vk}) + β lim
l≥L

xl({wk})

=αfx(v) + βfx(v).

Moreover, |xl({vk})| ≤ limk ‖vk‖En0
= ‖v‖En0

for all l ≥ L. Hence |fx(v)| ≤ ‖v‖En0
.

Therefore fx ∈ B∗1 ∩ E∗n0
. It is left to prove that I (fx) = x. (I fx)({vk}) =

liml≥L xl({vk}) = x({vk}) if {vk} ∈ (1)n0 . If {vk} ∈ (1)n1 , n1 6= n0 or {vk} ∈ (2)
or {vk} ∈ (3) such that vk 6∈ En0 for all k then (I fx)({vk}) = ∆ = liml≥L xl({vk}) =
x({vk}) since xl({vk}) = ∆ for each l ≥ L. Suppose at last that {vk} ∈ (3) such that
some vk0 ∈ En0 and denote the smallest such index also by k0. Let {v(k0)

k } ∈ (1)n0

with limk v
(k0)
k = vk0 . Then (I fx)({vk}) = E∗n0

〈fx, vk0〉En0
= liml≥L xl({v

(k0)
k }) =

liml≥L xl({vk}) = x({vk}).
Suppose now that (5.14) holds for some {uk} ∈ (3). We can assume that (5.14) does

not hold for any {uk} ∈ (1)n and any n ∈ N since otherwise we could proceed as above.
Let I −1(xl) ∈ E∗nl , nl ∈ N ∪ {∞}. Equation (5.14) holds also for any {vk} ∈ (3) such
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that vk is in the same space as uk for each k. We define a functional fx on E by

fx(v) := lim
l≥L

xl({vk}), for some {vk} ∈ (3),

lim
k
vk = v, vk is in the same space as uk for each k.

fx does not depend on the choice of {vk} by (AL) nor on the definition of I . Let
α, β ∈ R and v, w ∈ E and {vk}, {wk} ∈ (3) with limk vk = v, limk wk = w and vk is in
the same space as wk for each k. We prove linearity as follows (supposing for a while
that I −1(xl) 6∈ E∗ for all l ≥ L)

fx(αv + βw)
= lim
l≥L

xl({αvk + βwk})

= lim
l≥L E∗nl

〈
I −1(xl), αvinf{k | vk∈Enl} + βwinf{k | wk∈Enl}

〉
Enl

= lim
l≥L

[
α
E∗nl

〈
I −1(xl), vinf{k | vk∈Enl}

〉
Enl

+β
E∗nl

〈
I −1(xl), winf{k | wk∈Enl}

〉
Enl

]
=α lim

l≥L E∗nl

〈
I −1(xl), vinf{k | vk∈Enl}

〉
Enl

+β lim
l≥L E∗nl

〈
I −1(xl), winf{k | wk∈Enl}

〉
Enl

=α lim
l≥L

xl({vk}) + β lim
l≥L

xl({wk})

=αfx(v) + βfx(v),

and, similarly, vinf{k | vk∈Enl} and winf{k | wk∈Enl} replaced by v and w for the remaining
case I −1(xl) ∈ E∗ for some l. For each l ≥ L we have |xl({vk})| ≤ limk ‖vk‖ = ‖v‖E .
Hence |fx(v)| ≤ ‖v‖E and fx ∈ B∗1 ∩ E∗. It is left to prove that I (fx) = x. If
{vk} ∈ (1)n for some n, then I (fx)({vk}) = ∆ = liml xl({vk}) = x({vk}) by the above
assumption that (5.14) does not hold for such {vk}. If {vk} ∈ (2) the assertion is clear.
Suppose that {vk} ∈ (3). Then I (fx)({vk}) = liml xl({vk}) = x({vk}).

The proof is complete.

Corollary 5.23. In the situation of Theorem 5.22 for a sequence {fk} ⊂ E∗ with fk ∈
E∗nk , {nk} ⊂ N ∪ {∞} and supk ‖fk‖E∗nk < ∞ we can find a subsequence {fkl} of {fk}
and a point f ∈ E∗ such that σ(E∗,E)- liml fkl = f .

Proof. Let {fk} be a sequence with fk ∈ E∗nk , {nk} ⊂ N ∪ {∞} and supk ‖fk‖E∗nk =:

K < ∞. Set f̃k := K−1fk, k ∈ N. Then {f̃k} ⊂ B∗1. By Theorem 5.22 a subnet of
{f̃k} converges weak∗ to some f̃ ∈ B∗1. But because B∗1 is a compact Fréchet-space (as
a subset of the Fréchet-space (E∗, σ(E∗,E))) it is also sequentially compact by Lemma
A.4 (v) and hence the subnet is a subsequence which we denote by {f̃kl}. Now by (WL)
or (W1) fkl = Kf̃kl ⇀

l→∞
∗ Kf̃ =: f .
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5.4 Metric approximation

We shall now be concerned with the question whether there exists a linear asymptotic
relation for a net of Banach spaces {Eν} and a limit space E. We will introduce the
notion of a linear metric approximation and prove (cf. Theorem 5.38 below) that it
guarantees the existence of an asymptotic relation and contains enough information to
uniquely characterize its strong topology.

Let N be a directed set. For ν ∈ N let Eν be a Banach space. Let E be a Banach
space, too. Let E :=

.⋃
ν∈N Eν∪̇E.

Definition 5.24 (Metric Approximation). We call a net

{Φν : D(Φν) ⊂ E → Eν}ν∈N

of maps Φν with domains D(Φν) ⊂ E a linear metric approximation between {Eν}ν∈N

and E if the following properties are fulfilled:

(B1) {D(Φν)}ν∈N is monotone non-decreasing in ν ∈ N ordered by the inclusion of
sets and

⋃
ν∈N D(Φν) =: C is dense in E with respect to its strong topology.

(B2) For any u ∈ C

R- lim
ν∈N

{
‖Φνu‖Eν , if u ∈ D(Φν)

+∞ , otherwise

}
= ‖u‖E .

(BL) Each D(Φν) is a linear space (when non-empty) and each Φν is a linear operator.

No continuity of the Φν ’s is assumed. Note also that (B2) holds for any subnet of a
metric approximation.

Remark 5.25. Adopting the notation of the above definition we conclude from the po-
larization identity for Hilbert spaces: if each Eν , ν ∈ N , E are Hilbert spaces, (B2) is
equivalent to

R- lim
ν∈N

{
(Φνu,Φνv)Eν , if u, v ∈ D(Φν)
+∞ , otherwise

}
= (u, v)E .

for every u, v ∈ C.

For the sake of completeness, we recall the original definition of Kuwae and Shioya in
[KS08]. Let (Eν , dν), ν ∈ N , (E, d) be metric spaces.

Definition 5.26 (Metric Approximation, Metric Version). We call a net

{Φν : D(Φν) ⊂ E → Eν}ν∈N

of maps Φν with domains D(Φν) ⊂ E a metric approximation between {Eν}ν∈N and E
if the following properties are fulfilled:
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5.5 Strong convergence

(B1) {D(Φν)}ν∈N is monotone non-decreasing in ν ∈ N ordered by the inclusion of
sets and

⋃
ν∈N D(Φν) =: C is dense in E with respect to its metric topology.

(B2) For any u ∈ C

R- lim
ν∈N

{
dν(Φνu,Φνv) , if u, v ∈ D(Φν)
+∞ , otherwise

}
= d(u, v).

A metric approximation is called linear, if, additionally:

(BL) Each D(Φν) is a linear space and each Φν is a linear map.

Examples of concrete metric approximations are given in Chapter 6.

5.5 Strong convergence

We start with a non-standard diagonalization lemma which will turn out to be highly
useful. Its proof is due to H. Attouch and R. J.-B. Wets, originally in [AW83b, Appendix],
and can also be found in [Att84, Lemma 1.15 et seq.].

Lemma 5.27 (Attouch-Wets). Let {an,m}n,m∈N ⊂ R be a doubly indexed sequence of
extended real numbers. Then there exists a map n 7→ m(n) with m(n) ↑ +∞ as n→∞
such that

lim
n→∞

an,m(n) ≥ lim
m→∞

[
lim
n→∞

an,m

]
, (5.15)

or, equivalently
lim
n→∞

an,m(n) ≤ lim
m→∞

[
lim
n→∞

an,m

]
. (5.16)

Moreover,

lim
m→∞

[
lim
n→∞

an,m

]
≥ lim

n→∞
an,m(n). (5.17)

We note that m(n) in (5.15) might be different from m(n) in (5.17).

Given a metric approximation, we define a “convergence relation” on E as follows.
Later it turns out to be exactly the convergence coming from a strong asymptotic relation
on E. Compare Appendix A for the topological procedure. Definition 5.28 makes sense
in a larger context, too, see Remark 5.77 at the end of this chapter.

Definition 5.28. Let N = N and let E have a linear metric approximation {Φn :
D(Φn)→ En}n∈N. The following relation between sequences {uk} ⊂ E and points u ∈ E

is called strong convergence and denoted by uk −−−→
k→∞

u:

Case 1: {uk} ⊂ E converges strongly to u ∈ En0, n0 ∈ N if there exists K ∈ N such that
uk ∈ En0 for every k ≥ K and limk≥K ‖uk − u‖En0

= 0.
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5 The general theory of varying Banach spaces

Case 2: {uk} ⊂ E converges strongly to u ∈ E if there exists K ∈ N such that uk ∈ E for
k ≥ K and limk≥K ‖uk − u‖E = 0.

Case 3: {uk} ⊂ E converges strongly to u ∈ E if there is a countable subnet {nk} of
{n} (i.e., limk nk = ∞) such that uk ∈ Enk , k ∈ N and there exists a sequence
{ũm} ⊂

⋃
k∈ND(Φnk) ⊂ C such that limm ‖ũm − u‖E = 0 and

lim
m

lim
k

{
‖Φnk(ũm)− uk‖Enk , if ũm ∈ D(Φnk)

+∞ , otherwise

}
= 0. (5.18)

Case 4: {uk} ⊂ E converges strongly to u ∈ E if there are two disjoint subsequences {kl}
and {k′l} of {k} such that their union is all N and Case 2 holds for {ukl} and u
and Case 3 holds for {uk′l} and u.

Remark 5.29. (i) Let {uk} ⊂ E be a sequence such that uk ∈ Enk , nk ∈ N. In
order to converge strongly in the sense of Definition 5.28, it is necessary that {nk}
converges in N. A deeper reason for this is explained in Remark 5.77.

(ii) If Case 3 in Definition 5.28 holds for some {uk}, u, {ũm}, {nk} then there exists
a subsequence {mk} of {m} and K ∈ N such that ũmk ∈ D(Φnk) for k ≥ K and

lim
k≥K
‖Φnk(ũmk)− uk‖Enk = 0. (5.19)

This follows with Lemma 5.27.

Lemma 5.30. In the situation of Definition 5.28 for a sequence {uk} ⊂ E and u ∈ E
Case 3 is equivalent to:
There is a countable subnet {nk} of {n} (i.e., limk nk =∞) such that uk ∈ Enk , k ∈ N
and for any sequence {ũm} ⊂

⋃
k∈ND(Φnk) ⊂ C such that limm ‖ũm − u‖E = 0 (if it

exists) we have that

lim
m

lim
k

{
‖Φnk(ũm)− uk‖Enk , if ũm ∈ D(Φnk)

+∞ , otherwise

}
= 0. (5.20)

Proof. It is trivial that (5.18) follows from (5.20). Let us prove the converse. Let {ũm} ⊂
C be such that (5.18) holds. Let {˜̃um} be any sequence in C with limm

∥∥∥˜̃um − u∥∥∥
E

= 0.

For each ˜̃um ∈ C by (B1) we have an index ˜̃nm ∈ N such that

˜̃um ∈ ⋃
n≥eenm

D(Φn).

By a diagonal procedure, we find ˜̃n1 ≤ ˜̃n2 ≤ ˜̃n3 ≤ . . . (denoting the new ˜̃nm by the same
symbol) such that ˜̃um ∈ ⋃

n≥eenm
D(Φn) for all m ∈ N.
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5.5 Strong convergence

Do so for {ũm}, too, and obtain a sequence {ñm} such that

ũm ∈
⋃

n≥enmD(Φn) for all m ∈ N.

Now for n ≥ ñm ∨ ˜̃nm it holds that

ũm, ˜̃um ∈ D(Φn).

We see that by the triangle inequality and (BL)

lim
m

lim
k


∥∥∥Φnk(˜̃um)− uk

∥∥∥
Enk

, if ˜̃um ∈ D(Φnk)

+∞ , otherwise


≤ lim

m
lim
k

{
‖Φnk(ũm)− uk‖Enk , if ũm, ˜̃um ∈ D(Φnk)

+∞ , otherwise

}

+ lim
m

lim
k


∥∥∥Φnk(ũm − ˜̃um)

∥∥∥
Enk

, if ũm, ˜̃um ∈ D(Φnk)

+∞ , otherwise

 .

The first term tends to zero by strong convergence, (B1) and the reasoning above. The
second term tends to zero by (BL), (B2) and the fact that both sequences approximate
u.

Lemma 5.31. (i) Let {ϕn}n∈N be a sequence of gauges that converges uniformly on
bounded subsets of R+ to a gauge ϕ. (Where we call a function ϕ : R+ → R+ a
gauge if it is continuous, strictly increasing, ϕ(0) = 0 and ϕ(t)→ +∞ as t→ +∞.)

Let {uk} ⊂ E such that there exists a countable subnet {nk} of {n} such that
uk ∈ Enk for every k. Then uk −−−→

k→∞
u if and only if there exists a sequence

{ũm} ⊂ C such that limm ‖um − u‖E = 0 and

lim
m

lim
k

ϕnk

(
‖Φnk(ũm)− uk‖Enk

)
, if ũm ∈ D(Φnk)

+∞ , otherwise

 = 0.

(ii) If u ∈ C, then {un} defined as follows

un :=

{
0 ∈ En if u 6∈ D(Φn),
Φn(u) ∈ En if u ∈ D(Φn)

for n ∈ N converges strongly to u.

Proof. (i): The “only if”-part follows from the uniform convergence of {ϕn} and ϕ(0) =
0. For the “if”-part note that if ϕn → ϕ uniformly on bounded sets also ϕ−1

n → ϕ−1

uniformly on bounded sets by e.g. [BDF91].
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(ii): Note that there exists n0 ∈ N such that u ∈ D(Φn) for all n ≥ n0. The assertion
is clear from the linearity of the Φn’s and (B2).

The next theorem constitutes the basis for a construction of an asymptotic relation
(topology) from a given metric approximation. See further Theorem 5.38. The condition
N = N is not as restrictive as it might seem, see Lemma 5.75 (iv) and Theorem 5.76
at the end of this chapter.

Theorem 5.32. Let N = N and {Φn : D(Φn)→ En} be a linear metric approximation.
Then E with the strong convergence from Definition 5.28 is an S ∗-space and thus has a
Fréchet topology. For the terminology we refer to Appendix A.

Proof. First notice that Case 1, Case 2, Case 3 and Case 4 are mutually exclusive. We
have to verify (L1)–(L4) in Definition A.5 in the appendix.

(L1): Suppose that {uk} ⊂ E with uk = u for all k ∈ N and some u ∈ E. If u ∈ En0 for
some n0 ∈ N we are in Case 1 and (L1) follows. If u ∈ E we are in Case 2 and
(L1) follows. Case 3 and Case 4 do not occur.

(L2): Suppose that u ∈ E and {uk} ⊂ E with uk −−−→
k→∞

u. Let {ukl} be any subsequence

of {uk}. If we are in Case 1 or Case 2 (L2) follows. Suppose that we are in Case
3, i.e., u ∈ E and there is a countable subnet {nk} of {n} with uk ∈ Enk for k ∈ N
and there is {ũm} ⊂ C with limm ‖ũm − u‖E = 0 such that

lim
m

lim
k

{
‖Φnk(ũm)− uk‖Enk , if ũm ∈ D(Φnk)

+∞ , otherwise

}
= 0.

Let {kl} be any subsequence of {k}. Then {nkl} is a countable subnet of {n} (cf.
(A.3) in the appendix). Now ukl −−−→

l→∞
u follows from the inequality

lim
l


∥∥∥Φnkl

(ũm)− ukl
∥∥∥
Enkl

, if ũm ∈ D(Φnkl
)

+∞ , otherwise


≤ lim

k

{
‖Φnk(ũm)− uk‖Enk , if ũm ∈ D(Φnk)

+∞ , otherwise

}

which gives us (L2). By the part already proved a subsequence of a Case 4 con-
vergent sequence either converges Case 2 or Case 3 or Case 4.

(L3): Let u ∈ E and {uk} ⊂ E with uk 6−−−→
k→∞

u. Suppose that u ∈ En0 for some n0 ∈ N.

Then no subsequence of {uk} satisfies Case 2 or Case 3 or Case 4. Suppose that
Case 1 is also not satisfied for {uk}. If there is no K ∈ N such that uk ∈ En0

for k ≥ K also no subsequence of {uk} has this property. If there is such an
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index K, but limk≥K ‖uk − u‖E > 0, there clearly is a subsequence {ukl} and
L := inf{l | kl ≥ K} with liml≥L ‖ukl − u‖E = α ∈ (0,+∞], which in turn means
that no subsequence of {ukl} converges to u in the sense of Case 1.
Suppose that u ∈ E. Suppose that {uk} violates Case 2 and Case 3 and hence
Case 4. If we can prove that no subsequence of {uk} satisfies Case 2 and Case
3 then no subsequence satisfies Case 4. Clearly Case 1 holds for no subsequence
of {uk}. If there is an index K ′ ∈ N such that uk ∈ E for every k ≥ K ′ and
limk≥K′ ‖uk − u‖E > 0, then there is a subsequence of {ukl} of {uk} from which
no subsequence satisfies Case 2 (as above). No subsequence of {uk} satisfies Case
3. Hence no subsequence satisfies Case 4.
Suppose that there is no such K ′ ∈ N. Then no subsequence of {uk} satisfies Case
2 or Case 4. Case 3 is still assumed to be wrong for {uk}. Suppose that there is
no sequence of natural numbers {nk} with limk nk = ∞ such that uk ∈ Enk for
k ∈ N. Then no subsequence of {uk} has this property.
Therefore suppose that there is a sequence of natural numbers {nk} with limk nk =
∞ such that uk ∈ Enk for k ∈ N.
Suppose that no sequences {ũm} ⊂ C with limm ‖ũm − u‖E = 0 satisfies (5.18).
Then

lim
m

lim
k

{
‖Φnk(ũm)− uk‖Enk , if ũm ∈ D(Φnk)

+∞ , otherwise

}
> 0

for all such sequences {ũm}. Pick any of those {ũm} and a subsequence {ukl} of
{uk} and a subsequence {ũms} of {ũm} such that

lim
s

lim
l


∥∥∥Φnkl

(ũms)− ukl
∥∥∥
Enkl

, if ũms ∈ D(Φnkl
)

+∞ , otherwise

 = α′ ∈ (0,+∞].

Since still lims ‖ũms − u‖E = 0 we see that (5.20) is violated for any subsequence
of {ukl} and hence by Lemma 5.30 no subsequence of it satisfies Case 3 or Case
4. By selecting common subsequences for all cases above, if necessary, we obtain
(L3).

(L4): Let u ∈ En0 for some n0 ∈ N and {uk} ⊂ E such that uk −−−→
k→∞

u in the sense

of Case 1. Let K ∈ N be such that uk ∈ En0 for k ≥ K. For each uk let there
be a sequence {u(k)

l } ⊂ E with u
(k)
l −−−→

l→∞
uk. For each k ≥ K, this is a Case 1

convergence. In particular, for each k ≥ K, there is an index L(k) ∈ N such that
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u
(k)
l ∈ En0 for all l ≥ L(k). Define

al,k :=


∥∥∥u(k)

l − u
∥∥∥
En0

, if l ≥ L(k),

+∞, otherwise,

bl,k :=


∥∥∥u(k)

l − uk
∥∥∥
En0

, if l ≥ L(k), k ≥ K,

+∞, otherwise,

cl,k :=

{
‖uk − u‖En0

, if l ≥ L(k), k ≥ K,
+∞, otherwise.

By Lemma 5.27, there exists a subsequence {kl} of {k} such that

lim
l
al,kl ≤ lim

k
lim
l
al,k ≤ lim

k
lim
l

[bl,k + cl,k] ≤ lim
k

lim
l
bl,k + lim

k
lim
l
cl,k = 0,

where we have used the triangle inequality. For each s ∈ N set

ls := max{L(kl) | l = 1, . . . , s}

. Then by the above

lim
s

∥∥∥uklsls − u∥∥∥En0

= 0,

which is the Case 1 convergence of {uklsls }s∈N to u and gives us (L4).

Let u ∈ E and {uk} ⊂ E such that uk −−−→
k→∞

u in the sense of Case 2. Let K ∈ N

be such that uk ∈ E for k ≥ K. For each uk let there be a sequence {u(k)
l } ⊂ E

with u
(k)
l −−−→

l→∞
uk. We say that k ∈ K if k ≥ K and u

(k)
l −−−→

l→∞
uk Case 2 and

associate L(k) as above. We say that k ∈ K ′ if k ≥ K and u
(k)
l −−−→

l→∞
uk Case 3

and associate {n(k)
l }, {ũ

(k)
m } as in the definition of Case 3. If u(k)

l −−−→l→∞
uk Case 4

we replace it by a subsequence which converges either Case 2 or Case 3.

At least one of K ,K ′ is unbounded. Let {ũm} ⊂ C such that limm ‖ũm − u‖E =
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0. Set

aml,k :=


‖u(k)

l − u‖E , if k ∈ K , l ≥ L(k),∥∥∥u(k)
l − Φ

n
(k)
l

(ũm)
∥∥∥
E
n

(k)
l

, if k ∈ K ′, ũm ∈ D(Φ
n

(k)
l

),

+∞, otherwise,

bml,k :=


‖u(k)

l − uk‖E , if k ∈ K , l ≥ L(k),∥∥∥u(k)
l − Φ

n
(k)
l

(ũ(k)
m )
∥∥∥
E
n

(k)
l

, if k ∈ K ′, ũm, ũ
(k)
m ∈ D(Φ

n
(k)
l

),

+∞, otherwise,

cml,k :=


‖uk − u‖E , if k ∈ K , l ≥ L(k),∥∥∥Φ

n
(k)
l

(ũ(k)
m − ũm)

∥∥∥
E
n

(k)
l

, if k ∈ K ′, ũm, ũ
(k)
m ∈ D(Φ

n
(k)
l

),

+∞, otherwise.

By applying Lemma 5.27 twice, there exists a subsequence {km} of {k} and a
subsequence {ml} of {m} such that

lim
l
amll,kml

≤ lim
m

lim
l
aml,km ≤ lim

k
lim
m

lim
l
aml,k

≤ lim
k

lim
m

lim
l

[bml,k + cml,k] ≤ lim
k

lim
m

lim
l
bml,k + lim

k
lim
m

lim
l
cml,k = 0,

where we have used the triangle inequality and (B2). The convergence of bml,k
to zero can be seen by picking a diagonal sequence of increasing domains for all
ũ

(k)
m exactly as in the proof of Lemma 5.30. By a similar argument as above, we

conclude that there is a sequence {u
(kmls

)

ls
}s∈N which strongly converges to u. If

K is bounded this is a Case 3 convergence, and if K ′ is bounded, it is a Case 2
convergence. If both K ,K ′ are unbounded it is a Case 4 convergence.

Let u ∈ E and {uk} ⊂ E such that uk −−−→
k→∞

u in the sense of Case 3. Let {nk},
{ũm} be as in the definition of Case 3, uk ∈ Enk for k ∈ N etc. For each uk let
there be a sequence {u(k)

l } ⊂ E with u
(k)
l −−−→

l→∞
uk Case 1. To k ∈ N associate

L(k) ∈ N such that u(k)
l ∈ Enk for l ≥ L(k). Set

aml,k :=


∥∥∥u(k)

l − Φnk(ũm)
∥∥∥
Enk

, if l ≥ L(k), ũm ∈ D(Φnk),

+∞, otherwise,

bml,k :=


∥∥∥u(k)

l − uk
∥∥∥
Enk

, if l ≥ L(k), ũm ∈ D(Φnk),

+∞, otherwise,

cml,k :=

{
‖uk − Φnk(ũm)‖Enk , if l ≥ L(k), ũm ∈ D(Φnk),

+∞, otherwise.
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Applying Lemma 5.27 twice, there is a subsequence {kl} of {k} such that

lim
m

lim
l
aml,kl ≤ lim

m
lim
k

lim
l
aml,k ≤ lim

m
lim
k

lim
l

[bml,k + cml,k]

≤ lim
m

lim
k

lim
l
bml,k + lim

m
lim
k

lim
l
cml,k = 0,

where we have used the triangle inequality. By similar arguments as above there
is a subsequence {ls} of {l} such that {u(kls )

ls
} converges Case 3 to u.

If u ∈ E and {uk} ⊂ E such that uk −−−→
k→∞

u in the sense of Case 4, we can extract

a subsequence {uks} such that we are in either one of the above cases. (L4) follows.

Justified by Theorems 5.32, A.6, we will start to use the notation “lim” for strong
convergence. We also occasionally write s- lim or →. If we consider strong convergence
on E∗, we also write →∗. This still has to be done with caution, since we have no a
priori Hausdorff property and limits might not be unique. We will obtain the Hausdorff
property a posteriori, see Theorem 5.38.

5.6 Weak and weak∗ convergence

The procedure for σ-convergence is similar. We need to assume the existence of linear
strong asymptotic relations in duality. “Consistency” in some sense is proved in Sub-
section 5.7.2. It is related to the notion of so-called asymptotic duality (cf. Definitions
5.42 and 5.43 below), which is a stronger condition than mere duality.

Definition 5.33. Let N = N. Suppose that (E,F) is a dual pair consisting of Ba-
nach spaces (En, Fn), n ∈ N, (E,F ) in duality. Suppose that E, F have linear strong
asymptotic relations τ(E), τ(F) respectively. The following relation between sequences
{uk} ⊂ E and points u ∈ E is called σ-convergence (also σ(E,F)-convergence) and
denoted by uk

σ−−−→
k→∞

u:

Case 1: {uk} ⊂ E σ-converges to u ∈ En0, n0 ∈ N if there exists an index K ∈ N such that
uk ∈ En0 for every k ≥ K and limk≥K En0

〈uk − u, x〉Fn0
= 0 for every x ∈ Fn0.

Case 2: {uk} ⊂ E σ-converges to u ∈ E if there exists an index K ∈ N such that uk ∈ E
for k ≥ K and limk≥K E〈uk − u, x〉F = 0 for every x ∈ F .

Case 3: {uk} ⊂ E σ-converges to u ∈ E if there is a countable subnet {nk}k∈N of {n}n∈N
such that uk ∈ Enk for k ∈ N, supk ‖uk‖Enk < +∞ and

lim
k

Enk
〈uk, xk〉Fnk = E〈u, x〉F

for all x ∈ F and all sequences xk ∈ Fnk , k ∈ N such that τ(F)- limk xk = x.
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Case 4: {uk} ⊂ E σ-converges to u ∈ E if there are two disjoint subsequences {kl} and
{k′l} of {k} such that their union is all N and Case 2 holds for {ukl} and u and
Case 3 holds for {uk′l} and u.

If F = E∗ σ-convergence is called weak convergence and denoted by “⇀” or “ w
⇀”. If

E = G∗ and F = G∗∗ for some G, we shall also write “⇀∗” or “ w
⇀
∗
”, but still call it

a weak convergence on G∗. If E = F∗ σ-convergence is called weak∗ convergence and
denoted by “⇀∗” or “w

∗
⇀”.

Remark 5.34. If E = F∗ it follows from the uniform boundedness principle (cf. [Yos78,
p. 69, Corollary 1]) that in Case 1 and Case 2 supk ‖uk‖ < +∞.

If F = E∗ it follows from the uniform boundedness principle and the fact that ‖u‖E =
‖ιE(u)‖E∗∗ that in Case 1 and Case 2 supk ‖uk‖ < +∞, where ιE : E → E∗∗ is the
canonical isometric embedding.

The following lemma is highly useful.

Lemma 5.35. Suppose that D ⊂ F is a strongly dense subset. Let {nk} be a countable
subnet of {n}. Let {uk} ⊂ E be such that uk ∈ Enk , k ∈ N and supk ‖uk‖Enk <∞.

For each d ∈ D pick an arbitrary {dk} ⊂ F with dk ∈ Fnk , k ∈ N and τ(F)- limk dk = d
strongly.

If
lim
k

Enk
〈uk, dk〉Fnk = E〈u, d〉F (5.21)

for all d ∈ D, then uk
σ−→
k
u Case 3.

A similar statement holds for Case 1 and Case 2, too.

Proof. Let M := supk ‖uk‖Enk <∞. Let fk ∈ Fnk , k ∈ N, f ∈ F with τ(F)- limk fk = f ,
which exists by (A2) and a subnet argument. Let dm ∈ D with limm ‖dm − f‖F = 0.
For each dm, m ∈ N pick dmk ∈ Fnk , k ∈ N with τ(F)- limk d

m
k = dm such that (5.21)

holds. We have that∣∣∣Enk 〈uk, fk〉Fnk −E〈u, f〉F
∣∣∣

≤
∣∣∣Enk 〈uk, fk − dmk 〉Fnk ∣∣∣+

∣∣∣Enk 〈uk, dmk 〉Fnk −E〈u, dm〉F
∣∣∣+ |E〈u, dm − f〉F |

≤M ‖fk − dmk ‖Fnk +
∣∣∣Enk 〈uk, dmk 〉Fnk −E〈u, dm〉F

∣∣∣+ ‖u‖E ‖dm − f‖F
−−−→
k→∞

(M + ‖u‖F ) ‖f − dm‖F

−−−−→
m→∞

0,

where we have used (A3’) and (5.21). Case 1 and Case 2 can be verified as in [Yos78,
Ch. V.1, Theorem 3, p. 121, Theorem 10, p. 125].

Lemma 5.36. The assumption of supk ‖uk‖Enk < +∞ in Case 3 is necessary.
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5 The general theory of varying Banach spaces

Proof. If F = E∗ then by the Hahn-Banach Theorem (cf. [Yos78, p. 108, Corollary 2])
for each u ∈ E, such that u ∈ En0 , n0 ∈ N∪{∞} there is a point f ∈ Fn0 ⊂ F such that

Fn0
〈f, u〉En0

= ‖f‖Fn0
‖u‖En0

.
If E = F∗ then by the Bishop-Phelps Theorem B.16 the set of points f in each En0 ⊂ E

for some n0 ∈ N∪{∞} such that there is u ∈ Fn0 ⊂ F with En0
〈f, u〉Fn0

= ‖f‖En0
‖u‖Fn0

is strongly dense in En0 .
Suppose that supk ‖uk‖Enk = +∞. Then there exists a subsequence {kl} of {k} such

that ‖ukl‖Enkl
≥ l for each l ∈ N.

Let xl ∈ Fnkl , l ∈ N be such that Enkl
〈ũkl , xl〉Fnkl

= ‖ũkl‖Enkl
‖xl‖Fnkl

for some

norm-attaining ũkl ∈ Enkl with

‖ukl − ũkl‖Enkl
≤ 1/l (5.22)

(if F = E∗ it is enough to consider ũkl = ukl).
Let fkl ∈ Fnkl , l ∈ N, f ∈ F such that τ(F)- liml fkl = f , which exists by (A2) and a

subnet argument. We have that∣∣∣∣Enkl 〈ũkl , fkl〉Fnkl −E〈u, f〉F

∣∣∣∣
≤
∣∣∣∣Enkl 〈ũkl − ukl , fkl〉Fnkl

∣∣∣∣+
∣∣∣∣Enkl 〈ukl , fkl〉Fnkl −E〈u, f〉F

∣∣∣∣
≤ ‖ũkl − ukl‖Enkl

‖fkl‖Fnkl
+
∣∣∣∣Enkl 〈ukl , fkl〉Fnkl −E〈u, f〉F

∣∣∣∣ ,
which tends to zero by (5.22), (A3) and the Case 3 σ-convergence of {ukl}. Therefore
ũkl

σ−−−→
l→∞

u also Case 3 (except for the uniform boundedness).

Moreover,

1
l
≥ ‖ukl − ũkl‖Enkl

≥
∣∣∣∣‖ukl‖Enkl − ‖ũkl‖Enkl

∣∣∣∣ ≥ ‖ukl‖Enkl − ‖ũkl‖Enkl
and hence

‖ũkl‖Enkl
≥ ‖ukl‖Enkl

− 1
l
≥ l − 1

l
.

Define
x̃l :=

1
l
· xl
‖xl‖Fnkl

.

By Corollary 5.13 x̃l → 0 ∈ E strongly. Hence

Enkl
〈ũkl , x̃l〉Fnkl

→ E〈u, 0〉F = 0,

but

Enkl
〈ũkl , x̃l〉Fnkl

=
1
l
Enkl

〈
ũkl ,

xl
‖xl‖Enkl

〉
Fnkl

=
1
l
· ‖ũkl‖Enkl

≥ 1− 1
l2
.
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5.6 Weak and weak∗ convergence

This is a contradiction and hence supk ‖uk‖Enk < +∞. For Cases 1 and 2 see Remark
5.34.

Theorem 5.37. Let N = N. Suppose that (E,F) is a dual pair consisting of Banach
spaces (En, Fn), n ∈ N, (E,F ) in duality. Suppose that E, F have linear strong asymp-
totic relations τ(E), τ(F) respectively which are assumed to be Fréchet. Then E with
the σ(E,F)-convergence from Definition 5.33 is an L ∗-space and thus has a sequential
topology. If each of Fn, n ∈ N and F are separable, then E with the σ-convergence is an
S ∗-space and thus has a Fréchet topology. For the terminology we refer to Appendix A.

Proof. Note that Cases 1, 2, 3 and 4 are mutually exclusive. Let us first verify (L1)–(L3)
in Definition A.5 in the appendix. For verifying (L4) therein assume that each of Fn,
n ∈ N, F are separable.

(L1): Clear; only Cases 1 and 2 occur.

(L2): Let {uk} ⊂ E, u ∈ E with uk
σ−−−→

k→∞
u. Case 1 and Case 2 are clear. Case 3 follows

since (L2) holds for any strongly convergent sequence τ(F)- limk xk = x. Case 4
follows.

(L3): Let {uk} ⊂ E, u ∈ E with uk 6
σ−−−→

k→∞
u.

First suppose that u ∈ En0 for some n0 ∈ N. If there is no K ∈ N with the
property that uk ∈ En0 for k ≥ K then no subsequence of {uk} has this property.
Also Cases 2 and 3 and hence 4 do not occur for any subsequence of {uk}. If there
is an index K ∈ N with uk ∈ En0 for k ≥ K then there exists a subsequence {kl}
of {k} and a point x(n0)

0 ∈ Fn0 with∣∣∣∣ Fn0

〈
x

(n0)
0 , ukl − u

〉
En0

∣∣∣∣→ α ∈ (0,+∞], as l→∞;

no subsequence of which fulfills σ-convergence Case 1. Cases 2 and 3 and hence 4
do not occur for any subsequence.
Suppose that u ∈ E. Suppose that there is an index K ′ ∈ N such that uk ∈ E for
k ≥ K ′. Then there is a point x0 ∈ F and a subsequence {kl} of {k} such that∣∣

F 〈x0, ukl − u〉E
∣∣→ α′ ∈ (0,+∞], as l→∞;

no subsequence of which satisfies Case 2. Case 1 and Case 3 and hence Case 4 do
not hold for any subsequence.
Now suppose that there is no K ′ ∈ N with uk ∈ E for k ≥ K ′. Suppose that Case
3 and Case 4 are violated. If there is no countable subnet of {nk} of {n} such that
uk ∈ Enk for k ∈ N then Cases 1, 2, 3, 4 do not hold for any subsequence of {uk}
and u.
Then suppose that there is such a countable subnet {nk} with uk ∈ Enk , k ∈ N.
Then (as Case 3 and 4 are assumed to be violated) there exists a τ(F)-convergent
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5 The general theory of varying Banach spaces

sequence {xk}, xk ∈ Fnk , k ∈ N, x ∈ F with τ(F)- limk xk = x (whose existence
follows by (A2)) such that

lim
k

∣∣∣ Fnk 〈xk, uk〉Enk − F 〈x, u〉E
∣∣∣ = α′′ ∈ (0,+∞].

Now by τ(F)-(L2) for {xk} there is a subsequence {ukl} no subsequence of which σ-
converges Case 3 (and hence 4) to u. Case 1 and 2 do not occur for any subsequence.
Select a common subsequence if necessary and (L3) is proved.

(L4): Let u ∈ En0 for some n0 ∈ N and {uk} ⊂ E such that uk
σ−−−→

k→∞
u in the sense

of Case 1. Let {xm} be a countable dense subset of Fn0 . Let K ∈ N be such
that uk ∈ En0 for k ≥ K. For each uk let there be a sequence {u(k)

l } ⊂ E with
u

(k)
l

σ−−−→
l→∞

uk. For each k ≥ K, this is a Case 1 convergence. In particular, there

is an index L(k) ∈ N with u
(k)
l ∈ En0 for each l ≥ L(k). Define

a
(m)
l,k :=

 Fn0

〈
xm, u

(k)
l − u

〉
En0

, if l ≥ L(k), k ≥ K,

+∞, otherwise,

b
(m)
l,k :=

 Fn0

〈
xm, u

(k)
l − uk

〉
En0

, if l ≥ L(k), k ≥ K,

+∞, otherwise,

c
(m)
l,k :=

{
Fn0
〈xm, uk − u〉En0

, if l ≥ L(k), k ≥ K,
+∞, otherwise.

By Lemma 5.27 there exists a subsequence {kl} of {k} such that

lim
l
|a(m)
l,kl
| ≤ lim

k
lim
l
|a(m)
l,k | ≤ lim

k
lim
l
|b(m)
l,k + c

(m)
l,k |

≤ lim
k

lim
l
|b(m)
l,k |+ lim

k
lim
l
|c(m)
l,k | = 0,

where we have used the linearity of the duality bracket. For each s ∈ N set
ls := max{L(kl) | l = 1, . . . , s}. Then by the above

lim
s

∣∣∣∣ Fn0

〈
xm, u

kls
ls
− u
〉
En0

∣∣∣∣ = 0, for each fixed m ∈ N. (5.23)

Therefore we get maps s 7→ lms and s 7→ kmls for each m such that (5.23) holds. By
a standard diagonal argument we can extract subsequences such that (5.23) holds
for all xm’s at the same time.

Note that {uklsls }s∈N is uniformly norm bounded and hence by an ε/3-argument

exactly as in the proof of Lemma 5.35 we get Case 1 σ-convergence of {uklsls }s∈N
to u. This is the first part of (L4).
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5.6 Weak and weak∗ convergence

Let u ∈ E and {uk} ⊂ E such that uk
σ−−−→

k→∞
u in the sense of Case 2. Let K ∈ N

be such that uk ∈ E for k ≥ K. For each uk let there be a sequence {u(k)
l } ⊂ E

with u
(k)
l

σ−−−→
l→∞

uk. We say that k ∈ K if k ≥ K and u
(k)
l

σ−−−→
l→∞

uk Case 2

and associate L(k) as above. We say that k ∈ K ′ if k ≥ K and u
(k)
l

σ−−−→
l→∞

uk

Case 3 and associate countable subnets {n(k)
l } as in the definition of Case 3. If

u
(k)
l

σ−−−→
l→∞

uk Case 4 we pick a subsequence {ls} of {l} such that u(k)
ls

σ−−−→
l→∞

uk

either Case 2 or Case 3 and replace the original sequence with it. At least one
of K ,K ′ is unbounded. Let {xm} ⊂ F be a countable dense subset. By (A2)
for each xm, m ∈ N pick a sequence {x(m),k

l } with x
(m),k
l ∈ F

n
(k)
l

for l ∈ N and

τ(F)- liml x
(m),k
l = xm strongly; do so for all k ∈ K ′. Set

a
(m)
l,k :=


F

〈
xm, u

(k)
l − u

〉
E
, if k ∈ K , l ≥ L(k),

F
n

(k)
l

〈
x

(m),k
l , u

(k)
l

〉
E
n

(k)
l

− F 〈xm, u〉E , if k ∈ K ′,

+∞, otherwise,

b
(m)
l,k :=


F

〈
xm, u

(k)
l − uk

〉
E
, if k ∈ K , l ≥ L(k),

F
n

(k)
l

〈
x

(m),k
l , u

(k)
l

〉
E
n

(k)
l

− F 〈xm, uk〉E , if k ∈ K ′,

+∞, otherwise,

c
(m)
l,k :=


F 〈xm, uk − u〉E , if k ∈ K , l ≥ L(k),

F 〈xm, uk − u〉E , if k ∈ K ′,

+∞, otherwise.

By applying Lemma 5.27 there exists a subsequence {kl} of {k} such that

lim
l
|a(m)
l,kl
| ≤ lim

k
lim
l
|a(m)
l,k |

≤ lim
k

lim
l
|b(m)
l,k + c

(m)
l,k | ≤ lim

k
lim
l
|b(m)
l,k |+ lim

k
lim
l
|c(m)
l,k | = 0,

where we have used the linearity of the duality bracket. By Lemma 5.35 and
similar arguments as above (extracting a sequence working for all xm at the same
time), we conclude that there is a sequence {uklsls }s∈N which σ-converges to u. If
K is bounded, this is a Case 3 convergence, and if K ′ is bounded, it is a Case 2
convergence. If both K ,K ′ are unbounded, it is a Case 4 convergence.

Let u ∈ E and {uk} ⊂ E such that uk
σ−−−→

k→∞
u in the sense of Case 3. Let {nk}

be a countable subnet as in the definition of Case 3, uk ∈ Enk for k ∈ N. For
each uk let there be a sequence {u(k)

l } ⊂ E with u
(k)
l

σ−−−→
l→∞

uk Case 1. To k ∈ N
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5 The general theory of varying Banach spaces

associate L(k) ∈ N such that u(k)
l ∈ Enk for l ≥ L(k). Pick a countable dense set

{xm} ⊂ F and by (A2) for each m pick a sequence {x(m)
k } with x(m)

k ∈ Fnk , k ∈ N
and τ(F)- limk x

(m)
k = xm strongly. Set

a
(m)
l,k :=

 Fnk

〈
x

(m)
k , u

(k)
l

〉
Enk

− F 〈xm, u〉E , if l ≥ L(k),

+∞, otherwise,

b
(m)
l,k :=

 Fnk

〈
x

(m)
k , u

(k)
l − uk

〉
Enk

, if l ≥ L(k),

+∞, otherwise,

c
(m)
l,k :=

 Fnk

〈
x

(m)
k , uk

〉
Enk

− F 〈xm, u〉E , if l ≥ L(k),

+∞, otherwise.

Applying Lemma 5.27 there is a subsequence {kl} of {k} such that

lim
l
|a(m)
l,kl
| ≤ lim

k
lim
l
|a(m)
l,k | ≤ lim

k
lim
l
|b(m)
l,k + c

(m)
l,k |

≤ lim
k

lim
l
|b(m)
l,k |+ lim

k
lim
l
|c(m)
l,k | = 0,

where we have used the linearity of the duality bracket. By similar arguments as
above (with e.g. an application of Lemma 5.35 and picking a common subsequence
that the convergence works for all m at the same time) we conclude: there is a
subsequence {ls} of {l} such that {u(kls )

ls
} converges Case 3 to u.

If {uk} ⊂ E, u ∈ E are such that uk
σ−−−→

k→∞
u Case 4, we can extract a subsequence

such that we are in either one of the two cases above.

The proof of (L4) is complete.

The above Theorem justifies the use of lim for σ-, weak- and weak∗-convergence. We
shall write σ- lim, σ(E,F)- lim, w- lim and w∗- lim in the sequel. We shall still write ⇀ for
weak convergence. We also write ⇀∗ for weak∗ convergence and σ(E∗,E∗∗)-convergence
interchangeably, when doing so does not lead to confusion.

5.7 Correspondence

By the following theorem the existence of linear strong asymptotic relations is guaranteed
given a linear metric approximation. This procedure is particularly applied to all of
the examples in Chapter 6, where explicit metric approximations are presented. The
converse is proved in Theorem 5.40.
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Theorem 5.38. Let N = N and E as above. Suppose that we have a linear metric
approximation {Φn : D(Φn) → En}. Then the Fréchet-topology τ of E defined in 5.28
and verified in Theorem 5.32 is a linear strong asymptotic relation on E. Moreover,
if τ ′ is another Fréchet linear strong asymptotic relation on E such that the following
compatibility condition holds

∀u ∈ C, ∃N ∈ N : u ∈ D(Φn) ∀n ≥ N : τ ′- lim
n≥N

Φn(u) = u, (C)

then τ ′ = τ .

Such a topology τ is Hausdorff a posteriori by Lemma 5.14 since the proofs of (A3),
(A4) and (AL) below work also for nets.

Proof of Theorem 5.38. We will verify (A1)–(A4), (AL) in Definition 5.12 and then prove
the uniqueness given condition (C). Recall Cases 1–4 in Definition 5.28.

(A1): En, n ∈ N, E are closed by Case 1 and Case 2 convergence. Since Case 1 conver-
gence is the only one valid for En, n ∈ N, from its definition we deduce that En,
n ∈ N are open in (E, τ). By Case 3 convergence and (A2) below this will not hold
for E.

We would like to prove that the relative topologies of En, n ∈ N, E coincide with
the original strong topologies (cf. Lemma A.1 (iv)).

Therefore let O ∈ τ , n0 ∈ N∪{∞}. We want to prove that O∩En0 is open in En0

endowed with the original strong topology. Suppose that O ∩ En0 is non-empty
and let {xk} ⊂ En0 be a sequence which ‖·‖En0

-converges to x ∈ O ∩ En0 . But
this means that {xk} converges to x Case 1 or Case 2. Therefore the sequence is
eventually in O, but since it is a Case 1 or Case 2 convergence, it is also eventually
in En0 .

Conversely, let n0 ∈ N, O ⊂ En0 open in the original strong topology. Any Case 1
convergent (other cases do not occur) sequence {xk} converging to a point x ∈ O
is eventually in O by the definition of the convergence. Therefore O ∈ τ (and of
course O ∩ En0 = O).

Let O ⊂ E open in the original strong topology. Then O ∪
⋃
nEn ∈ τ by

the definition of the convergence (especially Case 2 and Case 4). But clearly
[O ∪

⋃
nEn] ∩ E = O.

(A1) is proved.

(A2): Let u ∈ E. We would like to construct a Case 3 convergent sequence {un} with
un ∈ En, n ∈ N and τ - limn un = u. Let {ũm}, {˜̃um′} ⊂ C be sequences such that
limm ‖ũm − u‖E = 0 and limm′

∥∥∥˜̃um′ − u∥∥∥
E

= 0. Set

am,m
′

n :=


∥∥∥Φn(ũm)− Φn(˜̃um′)∥∥∥

En
, if ũm, ˜̃um′ ∈ D(Φn),

+∞, otherwise.
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Then by Lemma 5.27 there exists a subsequence {m′n} of {m′} such that

lim
m

lim
n
am,m

′
n

n ≤ lim
m

lim
m′

lim
n
am,m

′
n = lim

m
lim
m′

∥∥∥ũm − ˜̃um′∥∥∥
E

= 0,

where we have used (BL) and Lemma 5.31 (ii). Define

un :=

{
Φn(˜̃um′n) ∈ En, if ˜̃um′n ∈ D(Φn),
0 ∈ En, otherwise.

Then un −−−→
n→∞

u strongly, which is a Case 3 convergence. (A2) is proved.

(A3): Let {nk} be a countable subnet of {n}. Let {uk}, {vk} ⊂ E with uk, vk ∈ Enk ,
k ∈ N. Let u, v ∈ E and suppose that τ - limk uk = u, τ - limk vk = v in the sense
of Case 3. Let {ũm}, {ṽm} ⊂ C such that limm ‖ũm − u‖E = limm ‖ṽm − v‖E = 0.

We shall verify that
lim
k
‖uk‖Enk = ‖u‖E ,

which particularly implies that

sup
k
‖uk‖Enk < +∞.

Evidently,

∣∣∣‖uk‖Enk − ‖u‖E∣∣∣ ≤
{
‖uk − Φnk(ũm)‖Enk , if ũm ∈ D(Φnk),

+∞ , otherwise,

}

+


∣∣∣‖Φnk(ũm)‖Enk − ‖u‖E

∣∣∣ , if ũm ∈ D(Φnk),

+∞ , otherwise

 .

The first term tends to zero as m, k →∞ by Case 3 convergence. Taking k →∞
in the second term together with (B2) we obtain

|‖ũm‖E − ‖u‖E | ≤ ‖ũm − u‖E ,

which tends to zero as m→∞; (A3) is proved.

(A4): Let uk ∈ Enk for a countable subnet {nk} of {n}. We shall prove that uk → 0 ∈ E
if and only if ‖uk‖Enk → 0. Notice that Case 1 and 2 do not occur.

Assume that ‖uk‖Enk → 0. Set ũm = 0 ∈
⋂
nD(Φn) ⊂ C for every m ∈ N, since

zero is in each domain by (BL). Then

lim
m

lim
k
‖uk − Φnk(0)‖Enk = lim

m
lim
k
‖uk‖Ek = 0,

hence uk → 0 strongly Case 3.
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Assume now that uk → 0 ∈ E strongly. Then there exists a sequence {ũm} ⊂ C
with limm ‖ũm‖E = 0 and

lim
m

lim
k

{
‖uk − Φnk(ũm)‖Enk , if ũm ∈ D(Φnk),

+∞ , otherwise

}
= 0.

Clearly, using (B2),

lim
m

lim
k
‖uk‖Enk ≤ lim

m
lim
k

{
‖uk − Φnk(ũm)‖Enk , if ũm ∈ D(Φnk),

+∞ , otherwise

}

+ lim
m

lim
k

{
‖Φnk(ũm)‖Enk , if ũm ∈ D(Φnk),

+∞ , otherwise

}
= lim

m
‖ũm‖E = 0.

Combined with (AL) below (A4) now follows. Note that the proofs of (A3), (A4)
and (AL) also work for nets, this is needed for Lemma 5.14.

(AL): Obvious from Lemma 5.30 and (BL).

In order to complete the proof, let τ ′ be another Fréchet linear asymptotic relation on
E such that (C) holds. Recall that both τ and τ ′ are Hausdorff spaces a posteriori and
Fréchet by Theorem 5.32 and the assertion respectively. Therefore, if we can prove that
each τ -convergent sequence is τ ′-convergent to the same point and vice versa, we are
done. τ -convergence is divided into Cases 1–4.

Let us prove the first implication. Case 1 and Case 2 convergent sequences also
converge in τ ′ by (A1).

Let u ∈ E, uk → u Case 3. Then there is a countable subnet {nk} of {n} such that
uk ∈ Enk for each k ∈ N and a sequence {ũm} ⊂ C with limm ‖ũm − u‖E = 0 and

lim
m

lim
k

{
‖Φnk(ũm)− uk‖Enk , if ũm ∈ D(Φnk)

+∞ , otherwise

}
= 0. (5.24)

By (A2) there is a sequence {vn}, vn ∈ En such that τ ′- limn vn = u. Also {wk}, where
wk := vnk , τ ′-converges to u (see Remark 5.11). By (C) for each ũm there is a number
Nm ∈ N with ũm ∈ D(Φn) for all n ≥ Nm and τ ′- limn≥Nm Φn(ũm) = ũm. Since {nk} is
a countable subnet of {n}, for each Nm there is an index K with wk ∈ En for all n ≥ Nm

and k ≥ K. Then by (A3’)

lim
k≥K
‖wk − Φnk(ũm)‖Enk = ‖u− ũm‖E .

By an easy application of Lemma 5.27 and (A3’) there is a subsequence {mk} of {m}
with ũmk ∈ D(Φnk) and

lim
k
‖wk − Φnk(ũmk)‖Enk = 0.
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5 The general theory of varying Banach spaces

By (A4) τ ′- limk Φnk(ũmk) = u. But by extracting another subsequence, if necessary,
(also denoted by {mk}) combined with (5.24) we get

lim
k
‖uk − Φnk(ũmk)‖Enk = 0.

Which again by (A4) yields that τ ′- limk uk = u.
Case 4 convergence can be managed by dividing into two disjoint subsequences and

applying the arguments above.
Let us prove the converse implication. Suppose that {uk} ⊂ E with τ ′- limk uk = u

for some u ∈ E. Suppose that {uk} is eventually in any of En, n ∈ N, E. Then by (A1)
we have Case 1 or Case 2 convergence, which is similar for τ . If u ∈ En0 , n0 ∈ N this is
the case since En0 is open in τ ′ by (A1).

Suppose that u ∈ E and {uk} is eventually in E \ E. Then there is an index K ∈ N
with uk 6∈ E for k ≥ K and there is a map k 7→ nk with uk ∈ Enk for k ≥ K. Let
{ũm} ⊂ C with limm ‖ũm − u‖E = 0. By (C) for each m there is a number Nm ∈ N
such that ũm ∈ D(Φn) for all n ≥ Nm and τ ′- limn Φn(ũm) = ũm. For each n′ ∈ N,⋃
n≥n′ En ∪ E is an open neighborhood of any point in E. Therefore for fixed m by

convergence uk ∈
⋃
n≥Nm En for k ≥ K ′, where K ′ ≥ K depends on Nm. The same

argument also shows that {nk} is indeed a countable subnet (in particular, (A.1) in the
appendix holds; not to be confused with (A1)). Hence by (A3’)

lim
k≥K′

‖Φnk(ũm)− uk‖Enk = ‖ũm − u‖E ,

which by taking the limit m→∞ proves that τ - limk uk = u Case 3.
Suppose now that u ∈ E and {uk} is frequently in E as well as frequently in E \ E.

There exists a subsequence {uks} and a map s 7→ nks (which proves to be a countable
subnet of {n} by similar arguments as above) of {n} such that uks ∈ Enks and a disjoint
subsequence {uk′s} with {uk′s} ⊂ E. We have divided the proof in two sub-cases which
both have been proved above and yield that the τ ′ convergence is a Case 4 convergence.

The proof is complete.

Note that τ ′ in (C) above is always Fréchet if it is a linear asymptotic relation and
each En, n ∈ N, E is separable. This follows from Lemma 5.15 and Lemma A.4 (i).

5.7.1 Compatibility of metric approximations

Let {Φ(i)
n : D(Φ(i)

n ) → En}, i = 1, 2 be two linear metric approximations on E, let
Ci :=

⋃
nD(Φ(i)

n ).

Definition 5.39. We say that {Φ(i)}, i = 1, 2 are compatible if they generate the same
asymptotic relation on E.

If C1 ∩ C2 is dense in E, we can test compatibility via

R- lim
n


∥∥∥(Φ(1)

n − Φ(2)
n )(u)

∥∥∥
En

, if u ∈ D(Φ(1)
n ) ∩D(Φ(2)

n )

+∞ , otherwise

 = 0 (5.25)
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for all u ∈ C1 ∩ C2. This is an easy consequence of Theorem 5.38.

Theorem 5.40. Let N = N. Suppose that E has a linear strong asymptotic relation
τ . If E is separable, then there exists a linear metric approximation {Φn} such that (C)
in Theorem 5.38 holds with τ ′ replaced by τ . In other words, the topology of the strong
convergence generated by {Φn} coincides with τ .

Proof. By [OP75] from the separability of E it follows that there exists a fundamental
total biorthogonal sequence {(ei, e∗i )}i∈N ⊂ E × E∗ such that supi∈N ‖ei‖E ‖e∗i ‖E∗ ≤
M < +∞.

By (A2) for each ei pick a sequence {e(i)
n } with e

(i)
n ∈ En and τ - limn e

(i)
n = ei. Set

Φn(ei) := e
(i)
n and extend linearly to lin{ei} =: D(Φn) =: C for any n. (B1) follows since

{ei} is total. (B2) follows from (A3) and (AL). {Φn : D(Φn)→ En} is compatible (i.e.,
satisfies (C)) by definition.

Employing Hamel bases, more can be said:

Corollary 5.41. Let N = N. Suppose that E has a linear strong asymptotic relation
τ . Then there exists a linear metric approximation {Φn} with D(Φn) = E such that (C)
in Theorem 5.38 holds with τ ′ replaced by τ . In other words, the topology of the strong
convergence generated by {Φn} coincides with τ .

Proof. Choose a Hamel basis B for E (which always exists by Zorn’s Lemma). Then
lin B = E. The rest of the proof is similar to the proof of Theorem 5.40. Note that we
use the Axiom of (uncountable) choice.

5.7.2 Asymptotic duality

Definition 5.42. Let N = N. Suppose that (E,F) is a dual pair consisting of Ba-
nach spaces (En, Fn), n ∈ N, (E,F ) in duality. Suppose that {Φn : D(Φn) → En},
{Ψn : D(Ψn) → Fn} are linear metric approximations on E, F respectively. Set C :=⋃
nD(Φn) and D :=

⋃
nD(Ψn). We say that {Φn} and {Ψn} are asymptotically dual

(asymptotically in duality) if

R- lim
n

{
En
〈Φn(u),Ψn(v)〉Fn , if u ∈ D(Φn), v ∈ D(Ψn)

+∞ , otherwise

}
= E〈u, v〉F

for each u ∈ C and v ∈ D.

Definition 5.43. Let N = N. Suppose that (E,F) is a dual pair consisting of Ba-
nach spaces (En, Fn), n ∈ N, (E,F ) in duality. Suppose that E, F have linear strong
asymptotic relations τ(E), τ(F) respectively. We say that E and F are asymptotically
dual (asymptotically in duality) if for any countable subnet {nk} of {n}, for any two
sequences {uk} ⊂ E, {vk} ⊂ F and any two points u ∈ E, v ∈ F such that uk ∈ Enk ,
vk ∈ Fnk and τ(E)- limk uk = u, τ(F)- limk vk = v we have that

R- lim
k

Enk
〈uk, vk〉Fnk = E〈u, v〉F . (5.26)

(Compare Remark 5.20).
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5 The general theory of varying Banach spaces

Note that (E,F) are asymptotically dual if and only if (F,E) are.

Proposition 5.44. Let N = N. Suppose that (E,F) is a dual pair consisting of Banach
spaces (En, Fn), n ∈ N, (E,F ) in duality. Suppose that {Φn : D(Φn) → En}, {Ψn :
D(Ψn)→ Fn} are linear metric approximations on E, F respectively. Set C :=

⋃
nD(Φn)

and D :=
⋃
nD(Ψn). If {Φn} and {Ψn} are in duality, then the strong linear asymptotic

relations generated by them on E and F, respectively, (cf. Theorems 5.32, 5.38) are
asymptotically dual. Conversely, if E and F are asymptotically dual, then any two linear
metric approximations compatible to the linear strong asymptotic relations on E and F

resp. are asymptotically in duality.

Proof. Fix a countable subnet {nk} of {n}, two sequences {uk} ⊂ E, {vk} ⊂ F and
two points u ∈ E, v ∈ F such that uk ∈ Enk , vk ∈ Fnk , k ∈ N and such that
τ(E)- limk uk = u, τ(F)- limk vk = v. Let {ũm} ⊂ C, {ṽm} ⊂ D with limm ‖ũm − u‖E =
0, limm ‖ṽm − v‖F = 0. By Case 3 convergence

lim
m

lim
k

{
‖Φnk(ũm)− uk‖Enk , if ũm ∈ D(Φnk)

+∞ , otherwise

}
= 0,

and

lim
m

lim
k

{
‖Ψnk(ṽm)− vk‖Fnk , if ṽm ∈ D(Ψnk)

+∞ , otherwise

}
= 0.

Fix m ∈ N and k ∈ N such that ũm ∈ D(Φnk) and ṽm ∈ D(Ψnk). We have that:∣∣∣Enk 〈uk, vk〉Fnk −E〈u, v〉F
∣∣∣

≤
∣∣∣Enk 〈uk, vk〉Fnk −Enk

〈Φnk(ũm),Ψnk(ṽm)〉Fnk

∣∣∣
+
∣∣∣Enk 〈Φnk(ũm),Ψnk(ṽm)〉Fnk −E〈ũm, ṽm〉F

∣∣∣
+ |E〈ũm, ṽm〉F −E〈u, v〉F |

≤
∣∣∣Enk 〈uk − Φnk(ũm), vk〉Fnk

∣∣∣+
∣∣∣Enk 〈Φnk(ũm), vk −Ψnk(ṽm)〉Fnk

∣∣∣
+
∣∣∣Enk 〈Φnk(ũm),Ψnk(ṽm)〉Fnk −E〈ũm, ṽm〉F

∣∣∣
+ |E〈ũm − u, ṽm〉F |+ |E〈u, ṽm − v〉F |
≤ ‖uk − Φnk(ũm)‖Enk ‖vk‖Fnk + ‖Φnk(ũm)‖Enk ‖vk −Ψnk(ṽm)‖Fnk

+
∣∣∣Enk 〈Φnk(ũm),Ψnk(ṽm)〉Fnk −E〈ũm, ṽm〉F

∣∣∣
+ ‖ũm − u‖E ‖ṽm‖F + ‖u‖E ‖ṽm − v‖F .

Note that strongly convergent sequences are norm-bounded by (A3). We finish the
argument by using the assertion and taking the limit first k →∞ and then m→∞.

The converse is clear.
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Theorem 5.45. Let N = N. Suppose that (E,F) is a dual pair consisting of Banach
spaces (En, Fn), n ∈ N, (E,F ) in duality. Suppose that E, F have linear strong asymp-
totic relations τ(E), τ(F) respectively. Suppose that E and F are asymptotically dual.
Then the sequential topology defined by the σ-convergence in Definition 5.33 and veri-
fied in Theorem 5.37 is a linear σ(E,F) asymptotic relation on E. σ(E,F) is a Fréchet
topology if each Fn, n ∈ N, F is separable. The corresponding statement with E and F

interchanged holds. Conversely, the existence of a linear σ-asymptotic relation either on
E or on F implies asymptotic duality whenever (E,F) is merely a dual pair.

Proof. Denote the topology coming from the σ-convergence in Definition 5.33 by σ. It
is sequential by Theorem 5.37 and Fréchet if Fn, n ∈ N, F are separable again by
Theorem 5.37. We will verify (W1)–(W4) and (WL) in Definition 5.18. Recall Cases
1–4 in Definition 5.33.

(W1): En, n ∈ N, E are closed by Case 1 and Case 2 convergence. Since Case 1 con-
vergence is the only one valid for En, n ∈ N, by its definition we deduce that En,
n ∈ N are open in (E, σ). By Case 3 convergence and (W2) below this will not
hold for E.

We would like to prove that the relative topologies of En, n ∈ N, E coincide with
the original σ(En, Fn)-, n ∈ N, σ(E,F )-topologies (cf. Lemma A.1 (iv)).

Therefore let O ∈ σ, n0 ∈ N ∪ {∞}. We want to prove that O ∩ En0 is open
in En0 endowed with the original σ(En0 , Fn0)-topology. Suppose that O ∩ En0

is non-empty and let {xk} ⊂ En0 be a sequence which σ(En0 , Fn0)-converges to
x ∈ O∩En0 . But this means that {xk} converges to x Case 1 or Case 2. Therefore
the sequence is eventually in O, but since it is a Case 1 or Case 2 convergence, it
is also eventually in En0 .

Conversely, let n0 ∈ N, O ⊂ En0 open in the original σ(En0 , Fn0)-topology. Any
Case 1 convergent (other cases do not occur) sequence {xk} converging to a point
x ∈ O is eventually in O by the definition of the convergence. Therefore O ∈ σ
(and of course O ∩ En0 = O).

Let O ⊂ E open in the original σ(E,F )-topology. Then O ∪
⋃
nEn ∈ σ by

the definition of the convergence (especially Case 2 and Case 4). But clearly
[O ∪

⋃
nEn] ∩ E = O.

(W1) is proved.

(W2): Follows from (A2) and (W3) below.

(W3): Follows from asymptotic duality and (W4) below.

(W4): Follows from the definition of Case 3 convergence.

(WL): Obvious from the definition and the bilinearity of the dualizations.

Interchanging the rôles of E and F completes the proof.
For the converse, consider Remark 5.20.
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5 The general theory of varying Banach spaces

We conclude the section with four useful lemmas.

Lemma 5.46. Let N = N, let (E,E∗) be a dual pair of two linear strong asymptotic
relations which are asymptotically dual. Suppose that un ∈ En, n ∈ N, u ∈ E. If un ⇀ u
weakly as n→∞, then supn ‖un‖En < +∞ and

lim
n
‖un‖En ≥ ‖u‖E .

Proof. The first part was proved in Lemma 5.36. From this it follows that limn ‖un‖En <
+∞. Extract a subsequence {unk} with limk ‖unk‖Enk = limn ‖un‖En . Since weak
convergence is a sequential convergence, unk ⇀ u as k → ∞. By the Hahn-Banach
Theorem pick a point f ∈ E∗ with ‖f‖E∗ = 1 and E∗〈f, u〉E = ‖u‖E . By (A2) pick
fn →∗ f strongly in E∗. By (A3) and weak convergence

lim
n
‖un‖En = lim

k
‖fnk‖E∗nk

lim
k
‖unk‖Enk ≥ lim

k E∗nk
〈fnk , unk〉Enk = E∗〈f, u〉E = ‖u‖E ,

which proves the assertion.

Lemma 5.47. Let N = N, let (E∗,E) be a dual pair of two linear strong asymptotic
relations which are asymptotically dual. Suppose that fn ∈ E∗n, n ∈ N, f ∈ E∗. If
fn ⇀

∗ f weakly∗ as n→∞, then supn ‖fn‖E∗n < +∞ and

lim
n
‖fn‖E∗n ≥ ‖f‖E∗ .

Proof. The first part was proved in Lemma 5.36.
Let ε > 0. There is a point x ∈ E with ‖x‖E = 1 such that |E∗〈f, x〉E | ≥ ‖f‖E∗ − ε.

By (A2), (AL’) pick xn ∈ En, n ∈ N such that xn → x strongly and ‖xn‖En = 1 for all
n ∈ N. We have that

lim
n

∣∣∣E∗n〈fn, xn〉En∣∣∣ = |E∗〈f, x〉E | ≥ ‖f‖E∗ − ε.

But since there is a natural number n(ε) ∈ N such that

‖fn‖E∗n ≥
∣∣∣E∗n〈fn, xn〉En∣∣∣ ≥ ‖f‖E∗ − 2ε ∀n ≥ n(ε),

it follows that
lim
n
‖fn‖E∗n ≥ ‖f‖E∗ .

Lemma 5.48. Let N = N and Jn, n ∈ N, J the normalized duality maps of En, n ∈ N,
E respectively. Suppose that E has a linear strong asymptotic relation τ and that it is
separable. Suppose that E∗ has a linear weak∗ asymptotic relation σ∗ corresponding to
τ . Then for each sequence {vn} ⊂ E with vn ∈ En, n ∈ N and each v ∈ E such that
τ - limn vn = v we have that for each v∗n ∈ Jnvn, n ∈ N, v∗ ∈ Jv

lim
n E∗n

〈v∗n, un〉En = E∗〈v
∗, u〉E (5.27)

for all {un} ⊂ E, un ∈ En, n ∈ N, u ∈ E with τ - limn un = u.
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Proof. Compare [Cio90, Ch. I, Theorem 4.12]. Suppose that (5.27) does not hold. Then
by (W4) there exist v ∈ E, an index N ∈ N, a weak∗ open set V ∗ ⊂ E∗ with Jv ⊂ V ∗

and a sequence {vn} ⊂ E with vn ∈ En and τ - limn vn = v such that for some v∗n ∈ Jnvn
it holds that v∗n 6∈ V ∗ for all n ≥ N .

Let Fn be the weak∗ closure of the set {v∗n, v∗n+1, . . .}. Then FN ⊃ FN+1 ⊃ . . ., but
by ‖v∗n‖E∗n = ‖Jnvn‖E∗n = ‖vn‖En the sets are bounded and hence compact by Theorem
5.22. By compactness there exists v∗ ∈

⋂∞
n=N Fn. v∗ 6∈ V ∗ and, in particular, v∗ 6∈ Jv.

From the definition of Fn and v∗ if follows that for each n ≥ N there is an index
m ≥ n such that ∣∣∣E∗〈v∗, v〉E −E∗k

〈v∗k, vk〉Ek
∣∣∣ ≤ 1

n
for all k ≥ m,

in other words, there is a subsequence vnm such that

lim
m

∣∣∣E∗〈v∗, v〉E −‖vnm‖2Enm ∣∣∣ = 0

hence by (A3) and an ε/2-argument

E∗〈v
∗, v〉E = ‖v‖2 . (5.28)

But

v∗ ∈ Fn ⊂
{
x∗ ∈ E∗

∣∣∣ ‖x∗‖ ≤ sup
m≥n
‖v∗m‖E∗m = sup

m≥n
‖vm‖Em

}
for every n ≥ N

which leads to ‖v∗‖E∗ ≤ limn ‖vn‖En = ‖v‖E which combined with (5.28) gives v∗ ∈ Jv;
the desired contradiction.

Lemma 5.49. Let E and E∗ have linear strong asymptotic relations. Suppose that E and
E∗ are asymptotically dual. Let {Φ∗n : D(Φ∗n)→ E∗n} be any linear metric approximation
compatible with the linear strong asymptotic relation on E∗. Then un ⇀ u weakly if and
only if supn ‖un‖En < +∞ and

R- lim
n

{
E∗n
〈Φ∗n(v), un〉En , if v ∈ D(Φ∗n)

+∞, otherwise,

}
= E∗〈v, u〉E

for any v ∈ C∗ =
⋃
nD(Φ∗n).

A similar statement holds for the weak∗ convergence.

Proof. Clear from Lemma 5.35 and compatibility.

5.8 Asymptotic continuity

Definition 5.50. Let N = N. A linear strong duality approximation {Φn : D(Φn) →
En} is called asymptotically continuous if for every n ∈ N we have that D(Φn) = E,
Φn is continuous and

Φn(un) −−−→
n→∞

u strongly

for every sequence {un} ⊂ E, u ∈ E with limn ‖un − u‖E = 0.
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Lemma 5.51. Let N = N. Let {Φn : D(Φn)→ En} be a linear metric approximation.
Suppose that E is separable and possesses a Schauder basis. Then there exists an asymp-
totically continuous linear metric approximation {Φn : E → En} which is compatible with
{Φn}.

Proof. The idea is similar to that in the proof of [KS08, Lemma 3.7]. Fix a Schauder
basis E = (e1, e2, . . .) of E with coefficient functionals F = (f1, f2, . . .) in E∗. Let
Pj(u) :=

∑j
i=1 E∗〈fi, u〉E ei, j ∈ N be the canonical projections. By Lemma 5.40 we can

find a metric approximation {Φ̃n : lin E → En} which is compatible with {Φn}. Define

εj,n := sup
{∣∣∣∣∥∥∥Φ̃m(u)

∥∥∥
Em
− ‖u‖E

∣∣∣∣ ∣∣∣ m ≥ n, u ∈ Pj(E)
}
.

For fixed j ∈ N we have limn εj,n = 0. By Lemma 5.27 there is a sequence jn ↑ ∞ with
limn εjn,n = 0. Define Φn : E → En via Φn := Φ̃n ◦ Pjn which are continuous linear
operators each as a composition of a continuous linear projection with finite dimensional
range and a finite dimensional linear operator. For u ∈ E we have∣∣∣∥∥Φn(u)

∥∥
En
− ‖u‖E

∣∣∣
≤
∣∣∣∥∥Φn(u)

∥∥
En
− ‖Pjn(u)‖E

∣∣∣+
∣∣‖Pjn(u)‖E − ‖u‖E

∣∣
≤ εjn,n + ‖Pjn(u)− u‖E −−−→n→∞

0,

hence {Φn} is a metric approximation. We would like to verify the asymptotic continuity.
Take {un} ⊂ E, u ∈ E with limn ‖un − u‖E = 0. We have that limn ‖Pjn(u)− u‖E = 0.
By a Theorem due to Banach (cf. [HHZ96, Theorem 237]) supj ‖Pj‖L (E) < ∞ and
hence also limn ‖Pjn(un)− u‖E = 0. Therefore limn ‖Pjn(un)− Pjn(u)‖E = 0. Since
limn εjn,n = 0 we get by linearity that limn

∥∥Φn(un)− Φn(u)
∥∥
En

= 0. Let τ ′ be the
strong topology on E generated by {Φn}. Since by definition τ ′- limn Φn(u) = u by
(A4) and the above we get that τ ′- limn Φn(un) = u which proves asymptotic conti-
nuity in τ ′. We are left to verify that {Φn} is compatible with {Φn}. Let τ be the
topology on E generated by {Φn}. We already know that {Φ̃n} generates τ . Let
u ∈ lin E . We have that limn ‖Pjn(u)− u‖E = 0. Together with limn εjn,n = 0 we

get that limn

∥∥∥Φn(u)− Φ̃n(u)
∥∥∥
En

= limn

∥∥∥Φ̃nPjn(u)− Φ̃n(u)
∥∥∥
En

= 0. By Theorem 5.38

τ = τ ′ and compatibility is proved, cf. equation (5.25).

5.9 Asymptotic reflexivity and weak compactness

Definition 5.52. Let N = N. We call a strong linear asymptotic relation on E asymp-
totically reflexive if E∗ has a strong linear asymptotic relation, E and E∗ are asymptot-
ically dual and each En, n ∈ N, E is reflexive. We say that E is separable if each En,
n ∈ N, E is separable.
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5.9 Asymptotic reflexivity and weak compactness

E is asymptotically reflexive if and only if E∗ is (cf. [HHZ96, Proposition 66]). Then
E∗ is asymptotically dual both to E and E∗∗ and the weak and weak∗ topologies on E∗

coincide. If E is asymptotically reflexive and separable, E∗ is separable as well by [Yos78,
Ch. V.2, p. 126, Lemma].

Lemma 5.53. Let N = N. Suppose that we are given a linear asymptotic relation on
E which is asymptotically reflexive and separable. Then the weak topology restricted to

B1 :=
.⋃

n∈N
BEn(0, 1)∪̇BE(0, 1)

is sequentially compact and countably compact. In particular, norm-bounded sequences
in E have weakly convergent subsequences; the limit point lies in the Banach space de-
termined by the “Convergence Cases” in Definition 5.33.

Proof. The second claim is equivalent to the first one by (WL) (cf. Corollary 5.23); we
shall prove the second one.

For Case 1 and 2 convergence the result is classical (cf. [Yos78, p. 126, Chapter V.2,
Theorem 1]). Case 4 follows from Case 2 since no uniqueness of the limit is asserted.

Let {nk} be a countable subnet of {n} and uk ∈ Enk for k ∈ N.
Set M := supk ‖uk‖Enk which is supposed to be finite. Since E and hence E∗ is sepa-

rable (by reflexivity and [Yos78, p. 126, Chapter V.2 Lemma]) we can pick a countable
dense subset E∗ ⊃ S = {s1, s2, . . .}. By (A2) for each i ∈ N pick a sequence {sik} with
sik ∈ E∗nk for each k ∈ N and limk s

i
k = si strongly. Clearly by uniform boundedness of

{uk}
lim
k E∗nk

〈
sik, uk

〉
Enk

is finite for every i ∈ N. By a standard diagonal argument we can select a common
subsequence of {uk} (still denoted by {uk}) such that

lim
k E∗nk

〈
sik, uk

〉
Enk

(5.29)

exists and is finite for all i ∈ N.
Now let ε > 0, x ∈ E∗. Pick an index i0 ∈ N with

‖si0 − x‖E∗ < ε.

Pick xk ∈ Enk , k ∈ N with limk xk = x strongly in E∗. Now by (A3’) and (5.29)∣∣∣E∗nk 〈xk, uk〉Enk −E∗nl
〈xl, ul〉Enl

∣∣∣
≤
∣∣∣∣E∗nk

〈
xk − si0k , uk

〉
Enk

∣∣∣∣+
∣∣∣∣E∗nl

〈
si0l − xl, ul

〉
Enl

∣∣∣∣+
∣∣∣∣E∗nk

〈
si0k , uk

〉
Enk

−
E∗nl

〈
si0l , ul

〉
Enl

∣∣∣∣
≤
∥∥∥xk − si0k ∥∥∥

E∗nk

‖uk‖Enk +
∥∥∥si0l − xl∥∥∥

E∗nl

‖ul‖Enl +
∣∣∣∣E∗nk

〈
si0k , uk

〉
Enk

−
E∗nl

〈
si0l , ul

〉
Enl

∣∣∣∣
≤(2M + 1)ε for large k, l.
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5 The general theory of varying Banach spaces

Hence
{
E∗nk
〈xk, uk〉Enk

}
k∈N

is a Cauchy sequence in R and thus convergent.

Define ` : E∗ → R via
` : x 7→ lim

k
E∗nk
〈xk, uk〉Enk .

We claim that ` is well-defined and that ` ∈ E∗∗.
` does not depend on the choice of xk above by

lim
k

∣∣∣E∗nk 〈xk, uk〉Enk −E∗nk
〈x̃k, uk〉Enk

∣∣∣ ≤M · lim
k
‖xk − x̃k‖E∗nk = 0,

where {x̃k} is another sequence with x̃k ∈ Enk , k ∈ N with limk x̃k = x strongly in
E∗. Linearity follows from (AL), the linearity of limits and the bilinearity of the duality
bracket. The continuity can be seen as∣∣∣E∗∗〈`, x〉E∗ ∣∣∣ =

∣∣∣∣limk E∗nk
〈xk, uk〉Enk

∣∣∣∣ = lim
k

∣∣∣E∗nk 〈xk, uk〉Enk ∣∣∣ ≤M ‖x‖E∗ .
Hence ` ∈ E∗∗. Therefore by reflexivity of E there exists u ∈ E with ` = ιE(u), where
ιE : E → E∗∗ is the canonical isometry. We have proved now that

E∗〈x, u〉E = E∗∗〈`, x〉E∗ = lim
k

E∗nk
〈xk, uk〉Enk

for any E∗-strongly convergent sequence {xk}. Since x ∈ E∗ was arbitrary, uk ⇀ u
weakly in E by (W4).

B1 is a weakly closed subset of the sequential space weak-E by (W1), properties of
weak convergence in fixed spaces and Lemma 5.46. Therefore B1 with the weak topology
is a sequential space by Lemma A.4 (iii). Hence sequential compactness implies countable
compactness by Lemma A.4 (v).

5.10 The asymptotic Kadeč-Klee property

Definition 5.54. Let N = N. Suppose that both E and E∗ have a linear strong asymp-
totic relation and that they are asymptotically dual. We say that E possesses the asymp-
totic Kadeč-Klee property, if each En, n ∈ N, E has the Kadeč-Klee property (see
Appendix B.3) and a sequence {un}, un ∈ En, n ∈ N converges strongly to u ∈ E if and
only if {un} converges weakly to u and limn ‖un‖En = ‖u‖E.

Lemma 5.55. Suppose that E has the asymptotic Kadeč-Klee property. Let un ∈ En,
n ∈ N, u ∈ E. Let {Φ∗n : D(Φ∗n) → E∗n} be any linear metric approximation compatible
with the linear strong asymptotic relation on E∗. Then un → u strongly if and only if
limn ‖un‖En = ‖u‖E and

R- lim
n

{
E∗n
〈Φ∗n(v), un〉En , if v ∈ D(Φ∗n)

+∞, otherwise,

}
= E∗〈v, u〉E

for any v ∈ C∗ =
⋃
nD(Φ∗n).
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5.10 The asymptotic Kadeč-Klee property

Proof. Clear from Lemma 5.49.

Definition 5.56. Let N = N. We say that a linear asymptotic relation E is asymp-
totically uniformly convex, if each En, n ∈ N, E is uniformly convex with respective
moduli δn, n ∈ N, δ and

δ0(ε) := inf
n
δn(ε) > 0 for each ε > 0. (5.30)

We say that a linear asymptotic relation E is asymptotically uniformly smooth, if each
En, n ∈ N, E is uniformly smooth with respective moduli ηn, n ∈ N, η and

η0(ε) := inf
n
ηn(ε) > 0 for each ε > 0. (5.31)

It follows from [Bea85, Part 3, Ch. II, §1, Proposition 6, §2, Proposition 2], that either
asymptotic uniform convexity or asymptotic uniform smoothness of E implies that both
E and E∗ are asymptotically reflexive.

Theorem 5.57. If E is asymptotically uniformly convex, it possesses the asymptotic
Kadeč-Klee property.

Proof. The “only if”-part follows from (A3) and (W3).
Suppose that the “if”-part is false. Let {un}, un ∈ En, ‖un‖En = 1, u ∈ E, ‖u‖E = 1

such that un ⇀ u and un 6→ u. Let {wn}, wn ∈ En, wn → u by (A2). Set vn :=
(1/ ‖wn‖En)wn for every n ∈ N. Then vn → u by (A3) and (AL’). Since un 6→ u by (A4)
there are ε > 0 and N ∈ N such that

‖un − vn‖En ≥ ε for every n ≥ N.

By uniform convexity of each En

1
2
‖un + vn‖En ≤ 1− δn(ε).

But infn δn(ε) ≥ δ0(ε) > 0. Therefore

sup
n≥N

1
2
‖un + vn‖En ≤ 1− δ0(ε), n ≥ N. (5.32)

Pick v∗n ∈ E∗n, ‖v∗n‖E∗n = 1, n ∈ N such that v∗n →∗ v∗ strongly in E∗ where v∗ ∈ J(u);
we can do so by (A2), (A3) and (AL). Now by weak convergence,

1
2
‖un + vn‖En ≥

1
2 E∗n
〈v∗n, un + vn〉En → ‖u‖

2
E = 1.

Pick n ≥ N such that
1
2
‖un + vn‖En ≥ 1− δ0(ε)/2,

which contradicts (5.32). The “if”-part is proved.
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5 The general theory of varying Banach spaces

Proposition 5.58. Let E∗ possess the asymptotic Kadeč-Klee property and let E be
asymptotically reflexive and separable. Then E possesses asymptotically strongly con-
tinuous duality mappings, that is,

vn →∗ v whenever un ∈ En, n ∈ N, u ∈ E, un → u, vn ∈ Jn(un), n ∈ N, v ∈ J(u).

Proof. Let un ∈ En, n ∈ N, u ∈ E, un → u strongly. Let vn ∈ Jn(un), n ∈ N, v ∈ J(u).
By Lemma 5.48 vn ⇀∗ v weakly∗ and hence weakly in E∗ by asymptotic reflexivity. But
‖vn‖E∗n = ‖un‖En → ‖u‖E = ‖v‖E∗ .

Lemma 5.59. Let E as well as E∗ possess the asymptotic Kadeč-Klee property and be
asymptotically reflexive and separable. Let xn ∈ En, yn ∈ Jn(xn), n ∈ N, x ∈ E, y ∈ E∗
such that

xn ⇀ x weakly in E as n→∞, (5.33)
yn ⇀

∗ y weakly in E∗ as n→∞, (5.34)
lim
n E∗n

〈yn, xn〉En = E∗〈y, x〉E . (5.35)

Then y ∈ J(x), xn → x strongly in E and yn →∗ y strongly in E∗ as n→∞.

Proof. Compare with the proof of Lemma 7.22 below.
Let {xn}, {yn}, x, y be as in the assertion. Recall that each Jn, n ∈ N, J is a maximal

monotone operator by Lemma B.14.
Let u ∈ E, v ∈ J(u). Let un ∈ En, n ∈ N with un → u strongly in E. Let vn ∈ Jn(un),

n ∈ N, v ∈ J(u). Then by Proposition 5.58 vn → v strongly in E∗. Now, since each Jn
is monotone,

E∗n
〈yn, xn〉En −E∗n

〈vn, xn〉En −E∗n
〈yn − vn, un〉En = E∗n

〈yn − vn, xn − un〉En ≥ 0.

Passing on to the limit,

E∗〈y, x〉E −E∗〈v, x〉E −E∗〈y − v, u〉E ≥ 0,

so

E∗〈y − v, x− u〉E ≥ 0,

which is true for all [u, v] ∈ J . Hence by maximal monotonicity [x, y] ∈ J .
Clearly,

‖yn‖2E∗n = ‖xn‖2En = E∗n
〈yn, xn〉En → E∗〈y, x〉E = ‖y‖2E∗ = ‖x‖2E

as n → ∞. The claim follows from the asymptotic Kadeč-Klee property of E and E∗

respectively.

Lemma 5.60. Suppose that E, as well as E∗, has the asymptotic Kadeč-Klee property
and that it is asymptotically reflexive and separable. Then un → u strongly, if and only
if

lim
n E∗n

〈vn, un〉En = E∗〈v, u〉E
for all vn ⇀ v weakly.
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Proof. The “only if”-part is trivial. For the “if”-part, recognize that un ⇀ u weakly.
Therefore supn ‖un‖En < +∞ by Lemma 5.36. By Lemma 5.53 a subsequence of
{Jn(un)} converges weakly to some ṽ ∈ E∗. But by Lemma 5.59 ṽ = Ju. Since we
can do so with any subsequence, we have for the whole sequence limn ‖un‖En = ‖u‖E .
The claim is proved.

5.11 Asymptotic embeddings

Let N = N. Let Xn, Vn, n ∈ N, X, V be a separable reflexive Banach spaces such that

Vn
in
↪→ Xn, n ∈ N, V

i
↪→ X

are embedded densely, linearly and continuously with continuous linear embeddings
in, n ∈ N, i respectively. Set Mn := ‖in‖L (Vn,Xn) = ‖i∗n‖L (X∗n,V

∗
n ), n ∈ N, M :=

‖i‖L (V,X) = ‖i∗‖L (X∗,V ∗), the continuity constants of the embeddings.
Suppose that V :=

.⋃
n∈N Vn∪̇V and X :=

.⋃
n∈NXn∪̇X both have linear strong asymp-

totic relations.

Definition 5.61. Under the assumptions above, we say that the embedding V ↪→ X is
asymptotically strong if

in(vn)→ i(v) strongly in X

for all vn ∈ Vn, n ∈ N, v ∈ V, vn → v, strongly in V.

We say that the embedding V ↪→ X is asymptotically weak if each in, n ∈ N, i is a
weakly continuous linear map and

in(vn)→ i(v) weakly in X

for all vn ∈ Vn, n ∈ N, v ∈ V, vn → v, weakly in V.

We say that the embedding V ↪→ X is asymptotically compact if each in, n ∈ N, i is
a compact linear map and

in(vn)→ i(v) strongly in X

for all vn ∈ Vn, n ∈ N, v ∈ V, vn → v, weakly in V.

By the discussion in Paragraph 2.5.1 the linear adjoints i∗n, n ∈ N, i∗ of in, n ∈ N, i,
respectively, form an embedding X∗ ↪→ V∗, on the topological dual spaces. The conti-
nuity constants are equal to Mn, n ∈ N, M respectively. For simplicity we shall assume
that X∗ as well as V∗ has a linear strong asymptotic relation which is asymptotically
dual to that of X, V respectively.

Lemma 5.62. If the embedding V ↪→ X is asymptotically strong, then limnMn ≥ M ,
moreover, if it is asymptotically compact, then limnMn = M .

Proof. See Lemma 7.6 in Chapter 7.
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We prove an easy lemma:

Lemma 5.63. V ↪→ X is asymptotically weak if X∗ ↪→ V∗ is asymptotically strong. If, in
addition, V and V∗ have the asymptotic Kadeč-Klee property, V ↪→ X is asymptotically
weak only if X∗ ↪→ V∗ is asymptotically strong.

Proof. Let vn ∈ Vn, n ∈ N, v ∈ V , vn ⇀ v weakly. Let x∗n ∈ X∗n, n ∈ N, x∗ ∈ X∗, x∗n →∗
x∗ strongly. By assumption, limn V ∗n

〈i∗n(x∗n), vn〉Vn = V ∗〈i
∗(x∗), v〉V . Consequently,

limn X∗n
〈x∗n, in(vn)〉Xn = X∗〈x

∗, i(v)〉X , which is the first part.
For the second part, let again vn ∈ Vn, n ∈ N, v ∈ V , vn ⇀ v weakly and let

x∗n ∈ X∗n, n ∈ N, x∗ ∈ X∗, x∗n →∗ x∗ strongly. By assumption, limn X∗n
〈x∗n, in(vn)〉Xn =

X∗〈x
∗, i(v)〉X and hence limn V ∗n

〈i∗n(x∗n), vn〉Vn = V ∗〈i
∗(x∗), v〉V . The claim follows with

Lemma 5.60.

And its converse:

Lemma 5.64. V ↪→ X is asymptotically strong only if X∗ ↪→ V∗ is asymptotically
weak. If, in addition, X and X∗ have the asymptotic Kadeč-Klee property, V ↪→ X is
asymptotically strong if X∗ ↪→ V∗ is asymptotically weak.

Proof. Let vn ∈ Vn, n ∈ N, v ∈ V , vn → v strongly and let x∗n ∈ X∗n, n ∈ N, x∗ ∈ X∗,
x∗n ⇀∗ x∗ weakly. By assumption, limn X∗n

〈x∗n, in(vn)〉Xn = X∗〈x
∗, i(v)〉X and hence

limn V ∗n
〈i∗n(x∗n), vn〉Vn = V ∗〈i

∗(x∗), v〉V , which is the first part.
For the second part, let again vn ∈ Vn, n ∈ N, v ∈ V , vn ⇀ v strongly and let

x∗n ∈ X∗n, n ∈ N, x∗ ∈ X∗, xn ⇀∗ x weakly. By assumption, limn V ∗n
〈i∗n(x∗n), vn〉Vn =

V ∗〈i
∗(x∗), v〉V and hence limn X∗n

〈x∗n, in(vn)〉Xn = X∗〈x
∗, i(v)〉X . The claim follows with

Lemma 5.60.

By a diagonal argument, we have an approximation result for asymptotic embeddings:

Lemma 5.65. Suppose that V ↪→ X is a strong (weak) asymptotic embedding. Then for
each x ∈ X there exists a sequence {xn} such that xn ∈ in(Vn) ⊂ Xn for n ∈ N and
xn → x (xn ⇀ x) strongly (weakly) in X.

Proof. Suppose that V ↪→ X is asymptotically strong. Let x ∈ X, let {vm} be a sequence
in V such that ‖i(vm)− x‖X → 0. Pick for each vm, vmn ∈ Vn, n ∈ N such that vmn → vm
in V for each m ∈ N. Then in(vmn ) → i(vm) in X. Let xn ∈ Xn, n ∈ N with xn → x
strongly in X (by (A2)). Then by (A3’)

lim
n
‖xn − in(vmn )‖Xn = ‖x− i(vm)‖X .

Hence by Lemma 5.27 there is a sequence of natural numbers mn ↑ ∞ such that

lim
n
‖xn − in(vmnn )‖Xn = 0

and therefore in(vmnn )→ x strongly in X.
For the weak part fix a countable dense set {s1, s2, . . .} ⊂ X∗. By (A2) pick for each

sk ∈ X∗, k ∈ N, skn ∈ X∗n, n ∈ N, skn →∗ sk strongly. Let x ∈ X. Let {vm} be a

110
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sequence in V such that i(vm) ⇀ x weakly in X (since i is weakly continuous). For each
vm, m ∈ N, by (W2) pick vmn ∈ Vn, n ∈ N with vmn ⇀ vm weakly in V for each m ∈ N.
Hence

lim
n

∣∣∣∣X∗n
〈
skn, in(vmn )

〉
Xn
−X∗〈sk, i(vm)〉X

∣∣∣∣ = 0 ∀k

and

lim
m
|X∗〈sk, i(vm)− x〉X | = 0 ∀k.

By Lemma 5.27 for each k ∈ N there is a sequence of natural numbers mk
n ↑ ∞ (as

n→∞) such that

lim
n

∣∣∣∣X∗n
〈
skn, in(vm

k
n

n )
〉
Xn
−X∗〈sk, x〉X

∣∣∣∣ = 0 ∀k.

By a standard diagonal procedure we can find a sequence m′n ↑ ∞ such that

lim
n

∣∣∣∣X∗n
〈
skn, in(vm

′
n

n )
〉
Xn
−X∗〈sk, x〉X

∣∣∣∣ = 0

for all k at the same time. Hence by Lemma 5.35 in(vm
′
n

n ) ⇀ x weakly in X.

5.11.1 Embeddings via metric approximations

Lemma 5.66. Let Vn ↪→ Xn, n ∈ N, V ↪→ X and suppose that V and X have metric
approximations {(ΦV

n , D(ΦV
n ))}, {(ΦX

n , D(ΦX
n ))} respectively, and set CV :=

⋃
nD(ΦV

n )
and CX :=

⋃
nD(ΦX

n ). Suppose now that C̃ := i(CV)∩CX is dense in X and that i−1(C̃)
is dense in V . Suppose that for any z ∈ i−1(C̃)

lim
n


∥∥∥inΦV

n (z)− ΦX
n (i(z))

∥∥∥
Xn

, if z ∈ D(ΦV
n ), i(z) ∈ D(ΦX

n )

+∞ , otherwise

 = 0. (5.36)

Suppose also that the embedding constants Mn are uniformly bounded. Then the embed-
ding V ↪→ X is asymptotically strong.

Proof. Let vn ∈ Vn, n ∈ N, v ∈ V , vn → v strongly in V. Let ṽm ∈ i−1(C̃), m ∈ N such
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5 The general theory of varying Banach spaces

that limm ‖ṽm − v‖V = 0 and limm ‖i(ṽm)− i(v)‖X = 0. Then,
∥∥∥ΦX

n (i(ṽm))− in(vn)
∥∥∥
Xn

, if i(ṽm) ∈ D(ΦX
n )

+∞ , otherwise


≤


∥∥∥ΦX

n (i(ṽm))− inΦV
n (ṽm)

∥∥∥
Xn

, if ṽm ∈ D(ΦV
n ), i(ṽm) ∈ D(ΦX

n )

+∞ , otherwise


+


∥∥∥inΦV

n (ṽm)− in(vn)
∥∥∥
Xn

, if ṽm ∈ D(ΦV
n ), i(ṽm) ∈ D(ΦX

n )

+∞ , otherwise


≤


∥∥∥ΦX

n (i(ṽm))− inΦV
n (ṽm)

∥∥∥
Xn

, if ṽm ∈ D(ΦV
n ), i(ṽm) ∈ D(ΦX

n ),

+∞ , otherwise


+
(

sup
n
Mn

)
·


∥∥∥ΦV

n (ṽm)− vn
∥∥∥
Vn

, if ṽm ∈ D(ΦV
n ), i(ṽm) ∈ D(ΦX

n )

+∞ , otherwise


which tends to zero by strong convergence and (5.36).

5.12 A useful isometric result

In this section, we would like to discuss an abstract existence result for metric approxi-
mations (given asymptotic relations) which consist of surjective isometries between the
limit space E and the approximating spaces En. We introduce the highly technical con-
dition (I) (see below) which guarantees, among the assumption of existence of Schauder
bases and isometric comparability, that such a metric approximation always exists. Con-
dition (I) has been verified for separable Hilbert spaces and atomless separable Lp-spaces
(1 < p < ∞), cf. Lemma 6.2 and Proposition 6.3 below. There is some indication that
it might hold for a subclass of Orlicz spaces as well, but this is still an open question.

The use of the central result 5.68 is revealed in Section 7.1, where a general lifting
method is presented. It allows us to transfer classical results on convergence of particular
classes of functionals or (possibly nonlinear) operators, as e.g. the Trotter Theorem, to
the situation of linear asymptotic relations. The general procedure was noticed by a
referee in 2007, when the isometry-result was known only for Hilbert spaces. Another
consequence is the complete metrization of E, which then turns out to be isometric to
N× E, cf. Proposition 5.73.

The proof of Theorem 5.68 is inspired by A. V. Kolesnikov’s proof in [Kol05, Propo-
sition 7.2] (see also [Töl06, Theorem 2.10]), but requires a somewhat finer reasoning
in parts of it. We would like to point out that, different from Kolesnikov’s proof, no
existence of an injective metric approximation or a basis consisting of smooth vectors is
assumed. As another feature, our proof works in general reflexive Banach spaces, not
only Hilbert spaces. We collect the necessary facts from the theory of bases in Banach
spaces in Appendix B.4.
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Definition 5.67. Let N = N. Suppose that E has a linear strong asymptotic relation.
We say that E is asymptotically isometric if there exists a compatible asymptotically

continuous linear metric approximation {Ψn} such that for each n ∈ N, Ψn : E → En
is surjective linear isometry.

We say that E possesses property (I) if there exist surjective isometries {In : E → En}
and E admits a monotone normal Schauder basis (ei)∞i=1 such that for each n, k, d ∈ N,
k ≤ d, and each subsequence {ij}lj=1 of {i}ki=1, l ≤ k ≤ d such that {i′j}

d−l
j=1 is the

complementary subsequence, the following statement holds:
There exists a another linear basis (fi)ki=1 of the finite dimensional space lin(ei)ki=1 such
that:

Whenever M := lin(fij )
l
j=1 is isometrically isomorphic (with isometry Φn,k,d,l) to

a closed linear subspace X of Z := lin(Inei)di=1, then X is complemented in Z with
X ⊕ Y = Z and Y is isometrically isomorphic to the complement N , where M ⊕ N =
lin(ei)di=1. Furthermore for n, k, d there exist surjective isometries Ψn,k,d,l : E → En
such that Ψn,k,d,l�M = Φn,k,d,l.

As already mentioned, we shall later see that separable Hilbert spaces and separa-
ble atomless Lp-spaces (1 < p < ∞) always satisfy property (I), cf. Lemma 6.2 and
Proposition 6.3 below.

Theorem 5.68. Let N = N. Suppose that E, E∗ have linear strong asymptotic relations
in duality. Suppose that E, as well as E∗, is asymptotically reflexive, separable and
possesses property (I).

Then E and E∗ are asymptotically isometric.

We shall need a couple of lemmas first. They are all new.

Lemma 5.69. Let N = N. Suppose that E has a linear strong asymptotic relation. Let
E be separable and reflexive. Suppose that E possesses a normal monotone Schauder
basis E = (ei)∞i=1. Suppose that for each n ∈ N there is a surjective isometry In : E →
En. Then there exists a compatible linear metric approximation Φn : lin E → En and a
sequence of natural numbers {dn} increasing to +∞ such that

ran(Φn) ⊂ ran
(
In�lin(ei)

dn
i=1

)
.

Proof. Let {Pd}∞d=1 be the associated projections to E = (ei)∞i=1, cf. Definition B.21.
By (A2) for each i ∈ N pick e

(i)
n ∈ En, n ∈ N, such that e(i)

n → ei. For each n ∈ N,
(In(ei))∞i=1 is a monotone basis for En. Denote by {P (n)

d }
∞
d=1 the associated projections.

Since for every i ∈ N
lim
d→∞

∥∥∥P (n)
d e(i)

n − e(i)
n

∥∥∥
En

= 0,

we can pick for each n ∈ N a number d′n ∈ N such that∥∥∥P (n)
d′n
e(i)
n − e(i)

n

∥∥∥
En
≤ 1
n

(5.37)
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for all 1 ≤ i ≤ n. Set dn := max{d′1, . . . , d′n} for each n ∈ N.

For ei ∈ E define Φn(ei) := P
(n)
dn

(e(i)
n ) and extend linearly to lin E . It is a linear metric

approximation by (5.37) and (A3). Compatibility follows from (5.37) and (A4).

Lemma 5.70. Suppose that the conditions of Lemma 5.69 hold. Let (ei), {Φn}, {dn}
be as in Lemma 5.69. Fix k ∈ N and set Φk

n := Φn�lin(ei)ki=1
. Then limn dim ran Φk

n = k.

Proof. We prove the lemma by contradiction. Suppose that lkn := dim ran Φk
n 6→ k. Then

there is a subsequence (denoted also by {lkn}) and an index N0 ∈ N such that lkn = k0

for n ≥ N0 and some 0 ≤ k0 < k. By linear dependence there exist αni ∈ R with some
αni 6= 0 for each n ≥ N0 such that

∑k
i=1 α

n
i Φk

n(ei) = 0.
If k0 = 0, k = 1 we can pick αn1 = 1 for all n ≥ N0. By (B2) and (BL), 0 =

limn α
n
1 Φ1

n(e1) = e1 which is a contradiction.
Therefore suppose that k ≥ 2. We prove by induction that (αn1 , . . . , α

n
k) is contained

in a compact subset of Rk away from zero uniformly in n.
Let k = 2:

We must have αn1 Φ2
n(e1) = −αn2 Φ2

n(e2) for all n. W.l.o.g. αn1 = 1 for all n. Fix ε > 0.
There is N1 ≥ N0 such that 1 − ε ≤

∥∥Φ2
n(ei)

∥∥
En
≤ 1 + ε for i = 1, 2, for all n ≥ N1.

Therefore 1−ε
1+ε ≤ |α

n
2 | ≤ 1+ε

1−ε for all n ≥ N1.
k 7→ k + 1:

Assume that 0 < A ≤ min(αn1 , . . . , α
n
k) ≤ max(αn1 , . . . , α

n
k) ≤ B < ∞ for all n ≥ N1 ≥

N0 and constants A,B independent of n. Fix ε > 0. Since the basis (ei) is normalized,
there is N2 ≥ N1 such that 1 − ε ≤

∥∥Φk+1
n (ei)

∥∥
En
≤ 1 + ε for all 1 ≤ i ≤ k + 1 and

n ≥ N2.

|αnk+1| ≤ |αnk+1|
[∥∥∥Φk+1

n (ek+1)
∥∥∥
En

+ ε

]
=

∥∥∥∥∥
k∑
i=1

αni Φk+1
n (ei)

∥∥∥∥∥
En

+ ε|αnk+1| ≤ Bk(1 + ε) + ε|αnk+1|.

Hence |αnk+1| ≤ Bk
1+ε
1−ε for n ≥ N2.

Furthermore, note that since by monotonicity {e1} ⊥ lin(ei)ki=2 (by Lemma B.31, see
Appendix B.5 for the terminology)

∥∥∥∥∥Φk+1
n (e1) +

k∑
i=2

βiΦk+1
n (ei)

∥∥∥∥∥
En

≥

∥∥∥∥∥e1 +
k∑
i=2

βiei

∥∥∥∥∥
E

− ε

≥ ‖e1‖E − ε ≥
∥∥∥Φk+1

n (e1)
∥∥∥
En
− 2ε,
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for any scalars βi ∈ R, 2 ≤ i ≤ k. Then

|αnk+1| ≥ |αnk+1|
[∥∥∥Φk+1

n (ek+1)
∥∥∥
En
− ε
]

=

∥∥∥∥∥
k∑
i=1

αni Φk+1
n (ei)

∥∥∥∥∥
En

− ε|αnk+1| ≥ |αn1 |

∥∥∥∥∥Φk+1
n (e1) +

k∑
i=2

αni
αn1

Φk+1
n (ei)

∥∥∥∥∥
En

− ε|αnk+1|

≥ A(
∥∥∥Φk+1

n (e1)
∥∥∥
En
− 2ε)− ε|αnk+1| ≥ A(1− 3ε)− ε|αnk+1|.

Hence |αnk+1| ≥ A1−3ε
1+ε for n ≥ N2. By induction and finiteness of k we can find small

ε such that (αn1 , . . . , α
n
k) is contained in a compact subset of Rk \ {0} for large n away

from zero. Therefore we can find a subsequence of {n} (also denoted by {n}) such that
(αn1 , . . . , α

n
k) converges in Rk to some (α∞1 , . . . , α

∞
k ) ∈ Rk \ {0}. But by (B2) and (BL)

((AL) resp.), taking into account that
∥∥∥∑k

i=1 α
n
i Φk

n(ei)
∥∥∥
En

= 0 for all large n we have

that
∑k

i=1 α
∞
i ei = 0. But at least one of the α∞i ’s is not equal to zero which contradicts

the linear independence of the ei’s. The proof is complete.

Lemma 5.71. Suppose that X,Y are separable reflexive Banach spaces with duals X∗,
Y ∗. Suppose that we are given linear isomorphisms U : X → Y , V : X∗ → Y ∗ with
‖U‖L (X,Y ) = ‖V ‖L (X∗,Y ∗) = 1. Then U, V are isometries if and only if

Y ∗〈V v, Uu〉Y = X∗〈v, u〉X ∀u ∈ X, ∀v ∈ X∗. (5.38)

Proof. Let us prove the “if”-part.
Let u ∈ X. Clearly ‖Uu‖Y ≤ ‖u‖X . But indeed by (5.38),

‖Uu‖Y = sup
{
| Y ∗〈v

∗, Uu〉Y |
∣∣ v∗ ∈ Y ∗, ‖v∗‖Y ∗ ≤ 1

}
≥ sup

{
| Y ∗〈V v, Uu〉Y |

∣∣ u ∈ X, v ∈ X∗, ‖V v‖Y ∗ ≤ 1
}

≥ sup {|X∗〈v, u〉X | | u ∈ X, v ∈ X
∗, ‖v‖X∗ ≤ 1} = ‖u‖X ,

where we have used that ‖V v‖Y ∗ ≤ ‖v‖X∗ for all v ∈ X∗. By reflexivity we can proceed
similarly for V .

We prove the “only if”-part. The idea of the proof is due to D. Koehler and P.
Rosenthal (cf. [KR70] and also [FJ03, Theorem 1.4.5]), who considered a semi-inner
product context.

Suppose that U, V are surjective isometries. Let U∗ be the linear adjoint of U . Set
W : X∗ → X∗, W := U∗V , which is a surjective isometry.

Note that for any u ∈ X, v ∈ X∗,

|X∗〈W
nv, u〉X | ≤ ‖W

nv‖X∗ ‖u‖X = ‖v‖X∗ ‖u‖X

so that {X∗〈W
nv, u〉X}n∈N is a bounded sequence of scalars. Let F be a linear functional

of norm 1 on `∞ such that F is a Banach limit, i.e., F ({1}n∈N) = 1, F ({xn}n∈N) =
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F ({xn+1}n∈N) for all {xn}n∈N ∈ `∞, and F ({xn}n∈N) ≤ F ({yn}n∈N) whenever xn ≤ yn
for all n ∈ N, whose existence is given by Banach [Ban32, p. 34]. Then define

〈〈v, u〉〉 := F ({X∗〈W
nv, u〉X}n∈N).

The properties of F and W guarantee that 〈〈v, u〉〉 defines a bilinear map that separates
points and satisfies the Cauchy-Schwarz inequality. Therefore 〈〈v, u〉〉 = X∗〈v, u〉X .
Since F is a Banach limit, X∗〈v, u〉X = X∗〈Wv, u〉X and hence

X∗〈v, u〉X = Y ∗〈V v, Uu〉Y .

Before we prove Theorem 5.68, we still need some preparations. Let A = (ai,j)1≤i,j≤m
be a quadratic matrix. Denote by tA := (a′i,j)1≤i,j≤m, a′i,j := aj,i, 1 ≤ i, j ≤ m the
transposed matrix. Denote by A−1 the inverse matrix of A whenever A is invertible. An
invertible A is called unitary if A−1 = tA. Let δi,j be the Kronecker delta. Denote by
Im := (δi,j)1≤i,j≤m the m ×m-unit matrix. We write |A| := detA for the determinant.
We consider real quadratic matrices with fixed finite number of rows m as elements of the
Hilbert space `2(m)⊗`2(m) and denote the corresponding submultiplicative matrix-norm
by ‖·‖`2(m)⊗`2(m) which is equal to the canonical operator norm on L (`2(m), `2(m)) as
well as equivalent for each fixed m to

‖(ai,j)1≤i,j,≤m‖`1(m)⊗`∞(m) := max
1≤j≤m

m∑
i=1

|ai,j |.

As is standard, for two m-dimensional vector spaces Xm, Ym with ordered bases Xm =
(x1, . . . , xm), Ym = (y1, . . . , ym) respectively and a realm×m-matrix A = (ai,j) we define
the associated linear endomorphism A : Xm → Ym via

A

(
m∑
i=1

αixi

)
=

m∑
i=1

αi

m∑
j=1

aj,iyj (5.39)

and write
A = [A]Xm

Ym
(5.40)

and shall refer to this notation below, when we “make an operator from a matrix”.
Compare [Lor88] for details.

Proof of Theorem 5.68. For all of the proof fix a normal monotone Schauder basis E =
(e1, e2, . . .) of E with a biorthogonal normal monotone Schauder basis E ∗ = (e∗1, e

∗
2, . . .)

in E∗. Let {Φn}, {dn} be metric approximations as in the proof of Lemma 5.69 w.r.t.
E and E ∗. Let {Φ∗n}, {d∗n} be the dual metric approximations. W.l.o.g. d∗n = dn (see
the proof of Lemma 5.69).

Fix n, k ∈ N. Let (fk,i)ki=1 be the alternative basis for lin(ei)ki=1 coming from property
(I), where d = dn. Let (f∗k,i)

k
i=1 be the dual basis, i.e.,

E∗

〈
f∗k,j , fk,i

〉
E

= δi,j . Set
Φk
n := Φn�lin(fk,i)

k
i=1

. Then ran(Φk
n) = lin(Φk

n(fk,i))ki=1.
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Extract a basis Bn,k = (bn,k,j := Φk
n(fk,ij ))

lkn
j=1 where lkn := dim ran(Φk

n) ≤ k ∧ dn.

Fix the sequence {ij} for later (it depends on n and k). Let B∗n,k = (b∗n,k,j)
lkn
j=1 ⊂

lin(Φk,∗
n (f∗i,k))

k
i=1 be any basis for the dual space of lin Bn,k. Let Fn,k := (fk,ij ))

lkn
j=1 and

F ∗n,k := (f∗k,ij ))
lkn
j=1.

In the matrix notation (5.40) Φk
n = [Ilkn ]Bn,k

Fn,k
.

Define for 1 ≤ j ≤ lkn

M j
n,k :=

(
E∗n

〈
b∗n,k,i′ , bn,k,i

〉
En

)
1≤i,i′≤j

which is a real j × j-matrix. By [Mil70, Lemma 1.6] there exists a renumbering of B∗n,k
such that ∆j

n,k := detM j
n,k 6= 0 for every 1 ≤ j ≤ lkn. We assume B∗n,k to be renumbered

in this way and shall show later that this does not restrict generality. Also denote the
new matrix by M j

n,k. Set Mn,k := M
lkn
n,k. Note that nothing about symmetry of M j

n,k

can be said.
Define for 1 ≤ j ≤ lkn (with ∆j = ∆j

n,k, bi = bn,k,i, b∗i = b∗n,k,i)

xj :=

∣∣∣∣∣∣∣∣∣∣
E∗n
〈b∗1, bj〉En(

E∗n
〈b∗i′ , bi〉En

)
1≤i,i′≤j−1

...

E∗n

〈
b∗j−1, bj

〉
En

b1 · · · bj−1 bj

∣∣∣∣∣∣∣∣∣∣
∆j−1

(5.41)

(∆0 := 1) and

x∗j :=

∣∣∣∣∣∣∣∣∣∣
b∗1(

E∗n
〈b∗i′ , bi〉En

)
1≤i,i′≤j−1

...

b∗j−1

E∗n

〈
b∗j , b1

〉
En

· · ·
E∗n

〈
b∗j , bj−1

〉
En

b∗j

∣∣∣∣∣∣∣∣∣∣
∆j

. (5.42)

By a result of Mil’man Xn,k = (xj = xn,k,j | 1 ≤ j ≤ lkn) and X ∗
n,k = (x∗j = x∗n,k,j | 1 ≤

j ≤ lkn) are mutually biorthogonal bases for lin Bn,k, lin B∗n,k resp. (cf. [MM64], [Mil70,
Lemma 1.7]). W.l.o.g. we can assume that the bases are normalized.

Let Sn,k = (sn,ki,j ) and Tn,k = (tn,ki,j ) be the invertible matrices defined by the basis
transformations Bn,k  Xn,k and B∗n,k  X ∗

n,k, in other words Sn,k and Tn,k have the
unique scalar entries such that

xn,k,i =
lkn∑
j=1

sn,kj,i bn,k,j and x∗n,k,i =
lkn∑
j=1

tn,kj,i b
∗
n,k,j , for 1 ≤ i ≤ lkn,
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cf. [Lor88, Kapitel III, §3]. Reformulating in the notation of (5.40) we say that Sn,k and

Tn,k are such that Id = [Sn,k]
Xn,k

Bn,k
and Id = [Tn,k]

X ∗n,k
B∗n,k

.

Define Vn,k = (vn,ki,j ), Wn,k = (wn,ki,j ) to be Vn,k := S−1
n,k, Wn,k := T−1

n,k . By the transfor-
mation rule for bilinear forms (or 2-tensors, cf. [Lor89, Kapitel VI, §3, Satz 3])

Ilkn = tSn,kMn,kTn,k and hence tVn,kWn,k = Mn,k.

Also Φn,k = [Sn,k]
Xn,k

Fn,k
.

Define operators Ψn,k : lin Fn,k → lin Xn,k and Ψ∗n,k : lin F ∗n,k → lin X ∗
n,k by Ψn,k :=

[Wn,k]
Xn,k

Fn,k
and Ψ∗n,k := [tTn,k]

X ∗n,k
F∗n,k

.

Claim 1:
E∗n

〈
Ψ∗n,k(f

∗
k,ij′

),Ψn,k(fk,ij )
〉
En

= δj,j′ , 1 ≤ j, j′ ≤ lkn, where {ij} is as in the

basis extraction above.

The claim is verified as follows (where tTn,k = (
t
tn,kj,j′))

E∗n

〈
Ψ∗n,k(f

∗
k,ij′

),Ψn,k(fk,ij )
〉
En

=
lkn∑
s=1

lkn∑
s′=1

wn,ks,j
t
tn,ks′,j′

E∗

〈
f∗k,is′ , fk,is

〉
E

=
lkn∑
s=1

lkn∑
s′=1

wn,ks,j t
n,k
j′,s′δs,s′ = δj,j′ .

Claim 2: Ψiso
n,k := Ψn,k/ ‖Ψn,k‖L (E,En) as well as Ψ∗,ison,k := Ψ∗n,k/

∥∥∥Ψ∗n,k
∥∥∥

L (E,En)
is a

linear Banach-space isometry.
Claim 2 follows from Lemma 5.71 noting that Fn,k and Xn,k are reflexive as closed

linear subspaces the reflexive spaces E, En resp. (cf. [HHZ96, Proposition 67]).
Claim 3: There exist isometries {Ψn} which are (asymptotically) compatible with
{Φn}.

Let Ψn,k,dn,lkn
be as in property (I), coming from Ψiso

n,k.

Let Φk
n as above. We would like to prove that for all k ∈ N

lim
n

∥∥∥(Ψn,k,dn,lkn
− Φk

n)(ei)
∥∥∥
En

= 0 for all 1 ≤ i ≤ k. (5.43)

If we succeed in doing so, by Lemma 5.27 we can find kn ∈ N, kn ↑ ∞ such that

lim
n

∥∥∥(Ψ
n,kn,dn,l

kn
n
− Φkn

n )(ei)
∥∥∥
En

= 0 for all i ∈ N. (5.44)
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Let E 3 x =
∑∞

i=1 E∗〈e
∗
i , x〉E ei. Then, upon setting Ψn := Ψ

n,kn,dn,l
kn
n

,

lim
m

lim
n

∥∥∥Φkn
n (x)−Ψn(x)

∥∥∥
En

= lim
m

lim
n

∥∥∥∥∥(Φkn
n −Ψn

)( m∑
i=1

E∗〈e
∗
i , x〉E ei

)
−Ψn

( ∞∑
i=m+1

E∗〈e
∗
i , x〉E ei

)∥∥∥∥∥
En

≤ lim
m

lim
n

∥∥∥∥∥(Φkn
n −Ψn

)( m∑
i=1

E∗〈e
∗
i , x〉E ei

)∥∥∥∥∥
En

+ lim
m

∥∥∥∥∥
( ∞∑
i=m+1

E∗〈e
∗
i , x〉E ei

)∥∥∥∥∥
E

=0.

Now, since Φkn
n is the restriction of a metric approximation, we find that Ψn(x) converges

strongly to x in E, i.e. is compatible.
Claim 4: (5.43) holds.
Recall that lkn = dim ran Φk

n. As (fk,i)ki=1 is an alternative basis for lin(ei)ki=1 used in
property (I), we infer that

lkn → k as n→∞

as a consequence of Lemma 5.70. Also dn ≥ k for large n.
Next we would like to prove that for large n, ∆j

n,k = detM j
n,k 6= 0 for all 1 ≤ j ≤ ln.

Take N0 such that lkn = k for all n ≥ N0. We can assume again by Lemma 5.70 that
lk,∗n = k for n ≥ N0, where lk,∗n := dim ran(Φk,∗

n ). For such n, B∗n,k := (Φk,∗
n (f∗k,i))

k
i=1

is a basis for ran(Φk,∗
n ) (which was picked arbitrarily above). This yields by asymptotic

duality of {Φk
n} and {Φk,∗

n }∥∥∥M j
n,k − Ij

∥∥∥
`2(j)⊗`2(j)

→ 0 as n→∞, n ≥ N0, (5.45)

and ∥∥∥tM
j

n,k − Ij
∥∥∥
`2(j)⊗`2(j)

→ 0 as n→∞, n ≥ N0. (5.46)

Therefore ∥∥∥Ij −M j
n,k

∥∥∥
`2(j)⊗`2(j)

<
1
2

for all n ≥ N1 ≥ N0, some N1, all 1 ≤ j ≤ k at the same time. An application of
the Neumann-series (cf. [Yos78, Ch. II.1, Theorem 2]) shows that M j

n,k is invertible for

n ≥ N1 and hence ∆j
n,k 6= 0, for all 1 ≤ j ≤ k. Therefore, for large n, there is no need

to rearrange the basis in (5.41).
Note that by definition for fixed k,

∥∥∥V −1
n,k

∥∥∥ = ‖Sn,k‖ is bounded in n whenever each

∆j
n,k, 1 ≤ j ≤ lkn is bounded away from zero and from above uniformly in n (compare

with (5.41)). But by the Leibniz formula det : `2(k) ⊗ `2(k) → R is a continuous map
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and det Ij = 1. Therefore limn≥N1 ∆j
n,k → 1 for each j and (∆1

n,k, . . . ,∆
k
n,k) contained

in a compact subset of Rk separated from zero for large n.
Fix fk,i and make n large. Then for a constant C = C(k) ≥ 1 depending only on k,∥∥∥(Ψn,k,dn,lkn

− Φk
n)(fk,i)

∥∥∥
En

=

∥∥∥∥∥∥
k∑
j=1

(
t
wn,kj,i − s

n,k
j,i )xn,k,j

∥∥∥∥∥∥
En

≤
∥∥∥tWn,k − Sn,k

∥∥∥
`1(k)⊗`∞(k)

max
1≤j≤k

‖xn,k,j‖En

≤C(k)
∥∥∥tMn,k − Ik

∥∥∥
`2(k)⊗`2(k)

∥∥∥V −1
n,k

∥∥∥
`2(k)⊗`2(k)

→0

as n → ∞ because of asymptotic duality and the fact that V −1
n,k = Sn,k stays bounded.

By linearity Claim 4 is proved.
Claim 5: {Ψn} is asymptotically continuous.
Let un ∈ E, n ∈ N, u ∈ E. limn ‖un − u‖E = 0. By compatibility Ψn(u)→ u strongly

in E. Isometry gives

‖Ψn(un)−Ψn(u)‖En = ‖un − u‖E → 0

as n→∞, which yields by (A4) that Ψn(un)→ u strongly in E.
Repeat all the steps for E∗ and obtain an isometric asymptotically continuous metric

approximation {Ψ∗n} which is in duality by Proposition 5.44. We note that then by
Lemma 5.71

E∗n
〈Ψ∗n(v),Ψn(u)〉En = E∗〈v, u〉E ∀n ∈ N, ∀u ∈ E, ∀v ∈ E∗. (5.47)

The proof is complete.

Corollary 5.72. In the situation of Theorem 5.68, for un ∈ En, n ∈ N, u ∈ E it holds
that:

un → (⇀)u strongly (weakly) in E

if and only if

Ψ−1
n un → (⇀)u strongly (weakly) in E.

(5.48)

A similar statement holds for E∗ and {Ψ∗n}.

Proof. Let un ∈ En, n ∈ N, u ∈ E. Suppose that un → u strongly in E.∥∥Ψ−1
n (un)− u

∥∥
E

= ‖un −Ψn(u)‖En → 0

120



5.12 A useful isometric result

as n → ∞ by strong convergence, (Ψn(u) → u strongly in E as {Ψn} is a compatible
metric approximation) and by (A3’). Suppose that un ⇀ u weakly in E. Let v ∈ E∗.
By (5.47)

E∗

〈
v,Ψ−1

n (un)− u
〉
E

= E∗n
〈Ψ∗n(v), un −Ψn(u)〉En → 0

as n→∞.
Suppose now that un ∈ E, n ∈ N, u ∈ E. Suppose that un → u strongly in E. Then

Ψn(un) → u strongly in E by asymptotic continuity. Suppose that un ⇀ u weakly in
E. Then supn ‖un‖E < +∞ by the uniform boundedness principle. By isometry also
supn ‖Ψn(un)‖En < +∞. Let v ∈ E∗. Again by (5.47)

E∗n
〈Ψ∗n(v),Ψn(un)〉En = E∗〈v, un〉E → E∗〈v, u〉E

as n→∞. Hence by Lemma 5.49 Ψn(un) ⇀ u weakly in E.
We can proceed similarly for E∗ and {Ψ∗n}.

Proposition 5.73. If E is separable and asymptotically isometric, then it admits a
complete metric dE compatible with the strong asymptotic relation (making it a Polish
space) such that (E, dE) is isometrically isomorphic (in the sense of metric spaces) to
N× E with the 1-product metric.

Proof. Let {Ψn} be the isometric metric approximation. Define for u ∈ En, v ∈ Em,
n,m ∈ N, (where we set 1

∞ := 0, Ψ∞ := IdE)

dE(u, v) :=
∣∣∣∣ 1n − 1

m

∣∣∣∣+
∥∥Ψ−1

n (u)−Ψ−1
m (v)

∥∥
E
. (5.49)

Clearly 0 ≤ dE < +∞. Symmetry follows from the definition. Also dE(u, u) = 0 for all
u ∈ E. Let dE(u, v) = 0 for some u, v ∈ E, u ∈ En, v ∈ Em. Then |1/n − 1/m| = 0,
hence n = m. Therefore

∥∥Ψ−1
n (u)−Ψ−1

n (v)
∥∥
E

= ‖u− v‖En = 0, u = v follows. The
triangle inequality follows from the triangle inequalities of the norms.

Let u ∈ En0 , n0 ∈ N and uk ∈ E, k ∈ N such that dE(uk, u)→ 0. Then for some K ∈
N, uk ∈ En0 for k ≥ K. And limk≥K

∥∥Ψ−1
n0

(uk)−Ψ−1
n0

(u)
∥∥
E

= limk≥K ‖uk − u‖En0
= 0.

By (A1) also τ - limn uk = u.
Let u ∈ E and uk ∈ E, k ∈ N such that dE(uk, u) → 0. Pick {uks}, {ukl} such that

their union is all of {uk} and uks ∈ Ens for a countable subnet {ns} of {n}, ukl ∈ E for
all l. Then liml ‖ukl − u‖E = 0 and lims

∥∥Ψ−1
ns (uks)− u

∥∥
E

= 0. τ - limk uk = u follows
now from Corollary 5.72.

The converse follows (similarly) by (A1) and Corollary 5.72.
Since τ is second-countable by Lemma 5.15, we can characterize the topology com-

pletely by convergent sequences.
We see that the map Ψ : E→ N× E, Ψ(u) := (n,Ψ−1

n (u)), whenever u ∈ En, n ∈ N,
is a surjective isometry of metric spaces. We finally remark that dE is complete by
completeness of E and N recalling that N is complete as a compact metric space.

The proof is complete.
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5.13 Overview

We conclude the chapter with a couple of figures summarizing the relations between
strong asymptotic relations and metric approximations.

E =
.⋃
ν∈N Eν∪̇E Banach spaces, N directed set:

(E, τ) linear strong asymp-
totic relation.

strong convergence of nets,
[KS08, Lemma 3.5]←−−−−−−−−−−−−−−−−

−−−−−−−−−−−−→
[KS08, Lemma 3.5]

{(Φν , D(Φν))}ν∈N linear
metric approximation.

τ Hausdorff.
E =

.⋃
n∈NEn∪̇E Banach spaces:

(E, τ) linear strong asymp-
totic relation.

strong convergence
of sequences,

Theorems 5.32, 5.38←−−−−−−−−−−−−

−−−−−−−−−−−−−−−→
Corollary 5.41,

τ assumed to be Fréchet

{(Φn, D(Φn))}n∈N linear
metric approximation.

τ Hausdorff, Fréchet.
E =

.⋃
n∈NEn∪̇E separable Banach spaces:

(E, τ) linear strong asymp-
totic relation.

strong convergence
of sequences,

Theorems 5.32, 5.38,
Lemmas 5.15, 5.16←−−−−−−−−−−−−−

−−−−−−−−→
Theorem 5.40

{(Φn, D(Φn))}n∈N linear
metric approximation.

τ Hausdorff, second count-
able, regular.
E =

.⋃
n∈NEn∪̇E separable Banach spaces, E possesses a Schauder basis:

(E, τ) linear strong asymp-
totic relation.

strong convergence
of sequences,

Theorems 5.32, 5.38,
Lemmas 5.15, 5.16←−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−→
Theorem 5.40, Lemma 5.51

{(Φn, D(Φn))}n∈N linear
metric approximation.

τ Hausdorff, second count-
able, regular.

{(Φn, E)}n∈N asymptot-
ically continuous linear
metric approximation.
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E =
.⋃
n∈NEn∪̇E separable reflexive Banach spaces, E possesses property (I):

(E, τ) linear strong asymp-
totic relation.

strong convergence
of sequences,

Theorems 5.32, 5.38,
Lemmas 5.15, 5.16←−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−→
Theorem 5.40, Lemma 5.51,

Theorem 5.68

{(Φn, D(Φn))}n∈N linear
metric approximation.

τ Hausdorff, second count-
able, regular.

{(Φn, E)}n∈N asymptot-
ically continuous linear
metric approximation.

E isometrically isomorphic
to N× E.

{(Ψn, E)}n∈N isometri-
cally isomorphic asymp-
totically continuous linear
metric approximation.

5.14 Addendum: Asymptotic topology

For the sake of completeness, we present a more general approach towards the Kuwae-
Shioya theory, which includes both asymptotic relations, as in this work and [KS08], and
the approach presented in [KS03, Section 2.2] as special cases. The advanced reader will
realize the unifying character of this approach.

Definition 5.74. Let I be a topological space. Let {Ei | i ∈ I} be a family of metric
spaces indexed by I. A topology τ on the disjoint union

E :=
.⋃
i∈I

Ei

is called an asymptotic topology relative to I if for each point i0 ∈ I and each net
{iν}ν∈N (where N is a directed set) such that i0 ∈ (I- limν∈N iν) the topology τ re-
stricted to

.⋃
ν∈N Eiν ∪̇Ei0 is an asymptotic relation of metric spaces (in the sense of

Definition 5.8).
In particular, a net {uν}ν∈N of elements included in E converges to some u ∈ E if

and only if there is a net {iν}ν∈N of elements included in I such that there exists an
element i0 ∈ I such that i0 ∈ (I- limν∈N iν) and uν ∈ Eiν for all ν ∈ N and such that
there exists u ∈ Ei0 with u ∈ (τ - limν∈N uν), where τ is restricted to the asymptotic
relation on

.⋃
ν∈N Eiν ∪̇Ei0.

We remark that there might be many different asymptotic topologies for
.⋃
i∈I Ei.

Lemma 5.75. (i) If J ⊂ I is closed, then
.⋃
j∈J Ej is closed in τ . In particular, if I

is a T1-space, then each Ei, i ∈ I is closed in τ .

123



5 The general theory of varying Banach spaces

(ii) If J ⊂ I is open, then
.⋃
j∈J Ej is open in τ . In particular, if I is discrete, then

each Ei, i ∈ I is open in τ .

(iii) If I is Hausdorff, then τ is Hausdorff.

(iv) If I is Fréchet, and if each possible (sequential) asymptotic relation
.⋃
n∈NEin∪̇Ei0

is Fréchet, so is τ .

(v) If I is countable (as a set) and each Ei, i ∈ I is separable, then τ is second countable
and regular.

Proof. (i): Let J ⊂ I be a closed subset. Let {xν} be any convergent net included in
.⋃
j∈J Ej . Let x be any of its limit points. Then there is a net {iν} converging to

some i0 ∈ I such that x ∈ Ei0 and xν ∈ Eiν . Clearly {iν} is included in J . But J
is closed and hence i0 ∈ J . Therefore x ∈

.⋃
j∈J Ej which is proved to be closed.

(ii): Let J ⊂ I be an open subset. Let x ∈
.⋃
j∈J Ej . Let {xν} be a net in E which

converges to x. Then there is a net {iν} converging to j0 such that x ∈ Ej0 , j0 ∈ J
and xν ∈ Eiν . But since J is open, {iν} is eventually in J . Therefore {xν} is
eventually in

.⋃
j∈J Ej which is thereby open.

(iii): Suppose that I is Hausdorff. Let N be a directed set. Let {uν} be a convergent
net included in E. Suppose that u, v ∈ (τ - limν∈N uν), u ∈ Ei0 , v ∈ Ei1 . Let
{iν} be a convergent net included in I such that uν ∈ Eiν . We must have i0, i1 ∈
(I- limν∈N iν). By the Hausdorff property, i0 = i1 and hence u, v ∈ Ei0 . Now by
(A3)

di0(u, v) ≤ lim
ν∈N

diν (uν , uν) = 0.

(iv): Let A ⊂ E. Let x ∈ A (the τ -closure). Let J := {j ∈ I | A ∩ Ej 6= ∅} and
J ′ := {j ∈ I | A ∩ Ej 6= ∅}. By definition of τ -convergence (of nets), J ′ = J .
Since I is Fréchet, there is a sequence {jn} ⊂ J converging to j0, where j0 ∈ J such
that x ∈ Ej0 . Then E :=

.⋃
n∈NEjn∪̇Ej0 is an asymptotic relation which is Fréchet.

Therefore for each y ∈ A ∩ E (the closure w.r.t the asymptotic relation topology),
there exists a sequence {yn} included in A ∩ E converging to y. By definition
the relative topology on E coming from τ coincides with the asymptotic relation
topology and hence A ∩ E = A ∩ E . But x is contained in this set. Therefore,
upon setting y := x, the assertion is proved.

(v): Repeat the steps in [KS03, Lemma 2.13] and Lemmas 5.15, 5.16 for metric spaces.

Theorem 5.76. Suppose that for each i, j ∈ I, we are given maps Φi
j : D(Φi

j) ⊂ Ei → Ej
such that D(Φi

i) = Ei and Φi
i = IdEi and, moreover, for each i0 ∈ I and each net

{iν}ν∈N with I- limν∈N iν = i0 the net {Φi0
iν

: D(Φi0
iν

) ⊂ Ei0 → Eiν}ν∈N is a metric
approximation (in the sense of Definition 5.26 with sequences therein replaced by nets).
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Assume additionally that for all i, j, k ∈ I and each net {kν} such that I- limν∈N kν = k
it holds that for all u ∈ D(Φi

k), v ∈ D(Φj
k)

lim
ν∈N

{
dkν (Φi

kν (u),Φj
kν

(v)) , if u ∈ D(Φi
kν ), v ∈ D(Φj

kν
),

+∞ , otherwise

}
= dk(Φi

k(u),Φj
k(v)).

(5.50)
If we define for uν ∈ Eiν , ν ∈ N , u ∈ Ei0 that uν → u converges if (definition) for

one sequence {ũm}m∈N ⊂
⋃
ν∈N D(Φi0

iν
) with limm→∞ di0(ũm, u) = 0 we have that

lim
m→∞

lim
ν∈N

{
diν (Φi0

iν
(ũm), uν) , if ũm ∈ D(Φi0

iν
)

+∞ , otherwise

}
= 0, (5.51)

then this convergence is a convergence class (of nets) in the sense Definition A.7 and
the topology generated on

.⋃
i∈I Ei by this convergence class is an asymptotic topology in

the sense of Definition 5.74 (cf. Theorem A.8).

Proof. Let us check (i)–(iv) in Definition A.7 in the appendix.

(i): Let ν ∈ N be a directed set. Let uν = u ∈ E for every ν ∈ N . Let i0 ∈ I such that
uν , u ∈ Ei0 . Clearly {i0}ν∈N converges to i0 in I. Also, limν∈N di0(uν ,Φi0

i0
(u)) =

di0(u, u) = 0, since D(Φi0
i0

) = Ei0 and Φi0
i0

= IdEi0 . (i) is proved.

(ii): Let ν ∈ N be a directed set. Let {uν} ⊂ E, u ∈ E such that uν → u. Let iν ∈ I,
ν ∈ N , i0 ∈ I be such that uν ∈ Eiν , n ∈ N , i0 ∈ Ei0 . It is necessary that
I- limν∈N iν = i0. Let {ũm}m∈N ⊂

⋃
ν∈N D(Φi0

iν
) with limm→∞ di0(ũm, u) = 0

such that limm→∞ limν∈N am,ν = 0, where

am,ν :=

{
diν (Φi0

iν
(ũm), uν) , if ũm ∈ D(Φi0

iν
)

+∞ , otherwise

}
, m ∈ N, ν ∈ N .

Let {uµ}µ∈M be a subnet of {uν}ν∈N . Clearly, I- limµ∈M iµ = i0. For each fixed
m ∈ N, {am,µ}µ∈M is a subnet of {am,ν}ν∈N included in R+. Therefore

lim
µ∈M

am,µ ≤ lim
ν∈N

am,ν ,

(ii) follows.

(iii): Let ν ∈ N be a directed set. Let {uν} ⊂ E, u ∈ E such that uν 6→ u. Let iν ∈ I,
ν ∈ N , i0 ∈ I be such that uν ∈ Eiν , n ∈ N , i0 ∈ Ei0 . Suppose that iν 6→ i0
in I. Then by [Kel75, p. 74] there is a subnet {iµ} of {iν} no subnet of which
converges to i0. So we can suppose that I- limν∈N iν = i0. By an adaption of
the argument in the proof of Lemma 5.30, (5.51) is equivalent to holding for all
sequences {ũm} ∈ Ei0 with limm→∞ di0(ũm, u) = 0. Therefore, if (5.51) does not
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5 The general theory of varying Banach spaces

hold for {uν} and u, there is a sequence {ũm} ∈ Ei0 with limm→∞ di0(ũm, u) = 0
such that

lim
m→∞

lim
ν∈N

{
diν (Φi0

iν
(ũm), uν) , if ũm ∈ D(Φi0

iν
)

+∞ , otherwise

}
> 0.

SinceR+ is compact, we can pick a subnet {uµ}µ∈M of {uν}ν∈N and a subsequence
{ũml} of {ũm} such that

lim
l→∞

lim
µ∈M

{
diµ(Φi0

iµ
(ũml), uµ) , if ũml ∈ D(Φi0

iµ
)

+∞ , otherwise

}
= α ∈ (0,∞].

But I- limµ∈M iµ = i0 and liml→∞ limµ∈M diµ(ũml , u) = 0. Since it is necessary
for the convergence that (5.51) holds for all approximating sequences {˜̃um} of u
(see Lemma 5.30 again), we conclude that no subnet of {uµ} converges to u and
(iii) follows.

(iv): Let N be a directed set, let Mν be a directed set for each ν ∈ N , let K :=
N ××ν∈N Mν be the product directed set (with the product order (ν, f) � (ν ′, f ′)
iff ν � ν ′ and f(ν) � f ′(ν) for all ν ∈ N ). Suppose that uν,µ → uν for each
fixed ν ∈ N and uν → u, where {uν,µ}, {uν} ⊂ E, u ∈ E. Let iν,µ, iν , i0,
µ ∈ Mν , ν ∈ N be in I such that uν,µ ∈ Eiν,µ , uν ∈ Eiν , u ∈ Ei0 , µ ∈ Mν ,
ν ∈ N . It is necessary that I- limµ∈Mν iν,µ = iν for each fixed ν ∈ N and that
I- limν∈N iν = i0. By the diagonal lemma [Kel75, Ch. 2, Theorem 4, p. 69] it holds
that I- lim(ν,f)∈K iν,f(ν) = i0. For each ν ∈ N let {ũνm} ⊂

⋃
µ∈Mν

D(Φiν
iν,µ

) be an
approximating sequence for uν . Let {ũk} ⊂

⋃
ν∈N D(Φi0

iν
) be an approximating

sequence for u. Set

ak,ν,m,µ :=

{
diν,µ(uν,µ,Φi0

iν,µ
(ũk)), if ũk ∈ D(Φi0

iν,µ
),

+∞, otherwise,

bk,ν,m,µ :=

{
diν,µ(uν,µ,Φiν

iν,µ
(ũνm)), if ũνm ∈ D(Φiν

iν,µ
), ũk ∈ D(Φi0

iν,µ
),

+∞, otherwise,

ck,ν,m,µ :=

{
diν,µ(Φi0

iν,µ
(ũk),Φiν

iν,µ
(ũνm)), if ũνm ∈ D(Φiν

iν,µ
), ũk ∈ D(Φi0

iν,µ
),

+∞, otherwise.

By convergence, (5.50) and the triangle inequality

lim
k→∞

lim
ν∈N

lim
m→∞

lim
µ∈Mν

ak,ν,m,µ

≤ lim
k→∞

lim
ν∈N

lim
m→∞

lim
µ∈Mν

bk,ν,m,µ + lim
k→∞

lim
ν∈N

lim
m→∞

lim
µ∈Mν

ck,ν,m,µ = 0.

By a diagonal argument (see e.g. Lemma 5.27), for each k ∈ N, ν ∈ N , we find a
net of natural numbers {mk,ν

µ } with limµ∈Mν m
k,ν
µ =∞ such that for each k ∈ N,
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ν ∈ N ,
lim
µ∈Mν

a
k,ν,mk,νµ ,µ

≤ lim
m→∞

lim
µ∈Mν

ak,ν,m,µ.

When we apply diagonal lemma [Kel75, Ch. 2, Theorem 4, p. 69] again (in R+)
we get that for each k ∈ N

lim
(ν,f)∈K

a
k,ν,mk,ν

f(ν)
,f(ν)

= lim
ν∈N

lim
µ∈Mν

a
k,ν,mk,νµ ,µ

,

and hence
lim
k→∞

lim
(ν,f)∈K

a
k,ν,mk,ν

f(ν)
,f(ν)

= 0,

which is the desired convergence uν,f(ν) → u. (iv) is proved.

For the asymptotic relation part it is enough to notice that we can reprove Theorem
5.38 with sequences therein replaced by nets, norms therein replaced by distances.

Remark 5.77. Strong convergence, as defined in 5.28 is an example of such a conver-
gence. To see this, suppose that I := N, with Banach spaces En, n ∈ N, E = E∞. Fix
a metric approximation {Φn : D(Φn) ⊂ E∞ → En} and set Φ∞n := Φn for each n ∈ N.
All we have to do is to find maps Φm

n : D(Φm
n ) ⊂ Em → En for any n,m ∈ N, n 6= m

and maps Φn
∞ : D(Φn

∞) ⊂ En → E∞. Setting D(Φm
n ) = D(Φn

∞) = ∅ for n,m ∈ N does
the job. (5.50) is satisfied trivially. The metric approximations are indeed recovering
convergence Cases 1–4.

5.14.1 Example

Let I = [0, 1] with the usual topology. Let Eε := L2([0, 1];µε), ε ∈ I, where each µε is a
fully supported regular Borel measure on B([0, 1]) and the map I 3 ε 7→ µε is vaguely
continuous. Let ε, δ ∈ I. Set D(Φε

δ) := C0([0, 1]) when δ 6= ε and Φε
δ(f) := f̃ (the

µδ-equivalence class). Let ε0 ∈ I, εn ∈ I, n ∈ N with limn|εn − ε0| = 0. C0([0, 1]) is
dense in L2([0, 1];µε0). Also for f ∈ C0([0, 1]) by vague continuity

lim
n

∥∥Φε0
εn(f)

∥∥
L2([0,1];µεn )

= lim
n

√∫ 1

0
f2 dµεn =

√∫ 1

0
f2 dµε0 =

∥∥∥f̃∥∥∥
L2([0,1];µε0 )

.

Hence {Φε0
εn} is a linear metric approximation. Also for ε1, ε2 ∈ I, f, g ∈ C0([0, 1]) and

{εn}, ε0 as before,

lim
n

∥∥Φε1
εn(f)− Φε2

εn(g)
∥∥
L2([0,1];µεn )

= lim
n

√∫ 1

0
|f − g|2 dµεn

=

√∫ 1

0
|f − g|2 dµε0 =

∥∥Φε1
ε0(f)− Φε2

ε0(g)
∥∥
L2([0,1];µε0 )

,

hence (5.50) is satisfied as well.
More general examples can be found in the next chapter.
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6.1 Hilbert spaces

Let Hn, n ∈ N, H be separable Hilbert spaces (with Riesz-maps Rn, n ∈ N, R resp.)
such that H =

.⋃
nHn∪̇H has a strong linear metric approximation. We will give several

examples below. The case of L2-spaces is embedded into the case of Lp-spaces below.
H∗ carries a canonical strong linear asymptotic relation via the convention {yn} ⊂ H∗

converges to y ∈ H∗ strongly (weakly) in H∗ if and only if R−1
nk

(yk) converges strongly
(weakly) to R−1

n∞(y) in H, where yk ∈ H∗nk , k ∈ N, y ∈ Hn∞ for some nk ∈ N, k ∈ N,
n∞ ∈ N, N- limk nk = n∞. Equivalently, one can transfer a linear metric approximation
{Φn} on H (which always exists by Theorem 5.40) to H∗ by setting Φ∗n := RnΦnR−1

and D(Φ∗n) := {y ∈ H∗ | R−1(y) ∈ D(Φn)}. By the parallelogram identity and (A3’) it
is straightforward that (H,H∗) are asymptotically dual.

Remark 6.1. Let H be a Hilbert space. By the parallelogram identity

‖x+ y‖2H + ‖x− y‖2H = 2 ‖x‖2H + 2 ‖y‖2H

for every x, y ∈ H, which is a necessary and sufficient characterization of a norm being
a Hilbert space norm, we can conclude that H is uniformly convex with modulus δH(ε) =
1−
√

1− ε2/4 = ε2/8 + o(ε4). Since H is isometrically isomorphic to its dual, it follows
that H is uniformly smooth with asymptotically equivalent modulus ηH ' δH . (Compare
[Bea85, Part 3, Ch. II, §1]).

By Remark 6.1 applied to Theorem 5.57, H and H∗ possess the asymptotic Kadeč-
Klee property. See [KS03] for a direct proof (in the Hilbert space case) of the resulting
properties as proved in Section 5.10.

The lemma below recovers [Kol05, Proposition 7.2] as a consequence of Theorem 5.68.

Lemma 6.2. Suppose that H has a strong linear asymptotic relation consisting of sep-
arable infinite dimensional Hilbert spaces Hn, n ∈ N, H. Then H possesses property
(I).

Proof. By a well-known fact each of Hn, n ∈ N, H is isometrically isomorphic to `2 (cf.
[HHZ96, Theorem 30]). For each n ∈ N, let In : H → Hn be a surjective isometry. Let
(ei)∞i=1 be a fundamental total orthonormal basis of H. Fix n, k, d, l ∈ N, l ≤ k ≤ d.

Let {ij}lj=1, {i′j}
d−l
j=1 subsequences such that their union is {i}di=1. Suppose that M :=

lin(eij )
l
j=1 is isometrically isomorphic to some X ⊂ Z := lin(In(ei))di=1. X is closed

as a finite dimensional linear subspace. By the Hilbert space projection theorem (cf.
[Con90, Ch. I, §2]) there is a closed Hilbert subspace Y with X ⊥ Y , X ⊕2 Y = Z, and
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since X is isometric to `2(l), Y is isometric to `2(d − l) which in turn is isometric to
N := lin(ei′j )

d−l
j=1. Let Φn,k,d,l : M → X, Φ⊥n,k,d,l : N → Y be the isometries found. Set

Ψn,k,d,l := Φn,k,d,l ⊕2 Φ⊥n,k,d,l ⊕2 In on M ⊕2 N ⊕2 (M ⊕2 N)⊥ = H, which are mutually
orthogonal linear subspaces. It is clear that Ψn,k,d,l : H → Hn is a surjective isometry
(by e.g. taking into account that in a Hilbert space ‖x+ y‖H = ‖x− y‖H if and only if
x ⊥ y and using the parallelogram identity to get ‖x+ y‖2H = ‖x‖2H + ‖y‖2H for x ∈M ,
y ∈ N , etc.) and that Ψn,k,d,l�M = Φn,k,d,l.

6.2 Lp-spaces

For 1 ≤ p <∞ and normed spaces X,Y , let X⊕p Y be the algebraic direct sum normed
via ‖(x, y)‖X⊕pY :=

(
‖x‖pX + ‖y‖pY

)1/p, (x, y) ∈ X ⊕p Y . By [JL01, Section 4]

`p(n), `p, Lp([0, 1]; dx), `p(n)⊕p Lp([0, 1]; dx), `p ⊕p Lp([0, 1]; dx), n ∈ N, (6.1)

is a complete listing, up to isometry, of the separable Lp(µ) spaces when 1 ≤ p < ∞,
p 6= 2, which are all mutually non-isometric. If p = 2, `2(n), n ∈ N, `2 is a listing of
isometric classes of separable Hilbert spaces. If µ is purely non-atomic, then Lp(µ) is
isometric to Lp([0, 1]; dx) (see also [Lac74, Ch. 5, §14, Theorem 9, Corollary]). A general
representation for these kinds of isometries is known, see Lemma 6.11 below.

Proposition 6.3. Let 1 < p < ∞, p 6= 2, q := p/(p − 1). Suppose that E has a
linear strong asymptotic relation such that each En, n ∈ N, E is a separable (infinite
dimensional) non-atomic Lp-space, say, En = Lp(µn), n ∈ N, E = Lp(µ). Set Lp := E.
Suppose that Lq := E∗ also has a linear strong asymptotic relation which is asymptotically
dual. Then Lp and Lq have property (I).

Proof. First note that by (6.1) non-atomic Lp spaces are always infinite dimensional.
each Lp(µn), n ∈ N, Lp(µ) is isometrically isomorphic to Lp([0, 1],dx) =: Lp[0, 1]. Recall
that the sequence of equivalence classes H = (h̃i | i ∈ N) such that (hi) are the Haar
functions, i.e. the functions defined on [0, 1] by

h1(t) ≡ 1,

h2k+l(t) =



√
2k for t ∈

[
2l − 2
2k+1

,
2l − 1
2k+1

)
,

−
√

2k for t ∈
[

2l − 1
2k+1

,
2l

2k+1

)
,

0 for the other t,

l = 1, 2, . . . , 2k,
k = 0, 1, 2, . . .

constitutes a monotone Schauder basis for Lp[0, 1] (for a proof see [Sin70a, Chap-
ter I, Example 2.3] and especially equation (2.17) therein for the monotonicity). Set
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g
(p)
i :=

(
1/
∥∥∥h̃i∥∥∥

Lp[0,1]

)
h̃i, in particular, g(p)

i = (̃hi)2/p obtaining a normalized mono-

tone Schauder basis for Lp[0, 1]. Do so similarly for Lq[0, 1]. As proved in [Sin70a, Ch.
II, §2], the associated biorthogonal functionals to (g(p)

i ) are (g(q)
i ) (and vice versa by

reflexivity). We obtain a pair of normal bases.
By isometry and surjectivity we can find a normalized monotone Schauder basis (ei)∞i=1

on Lp(µ). Denote by In : Lp(µ)→ Lp(µn) the surjective isometries, that exist by (6.1).
Clearly (Inei)∞i=1 is a normalized monotone Schauder basis for Lp(µn). We shall need
a couple of results from the classification theory of Banach spaces. Lemma 6.12 is new.
We also refer to the survey paper [Ran01].

Lemma 6.4. Let 1 ≤ p <∞, p 6= 2, and M ⊂ `p be a closed linear subspace of `p. Then
the following conditions are equivalent:

(i) M is 1-complemented in `p.

(ii) M is isometrically isomorphic to `p(dimM).

(iii) There exist vectors (ei)dimM
i=1 of norm one and of the form

ei =
∑
k∈Si

λkuk,

with Si ⊂ N, Si ∩ Sj = ∅ for i 6= j such that M = lin(ei)dimM
i=1 , where (uk)∞k=1 is

the unit vector basis and λk are scalars.

Moreover, if these conditions are satisfied, the norm one projection P : `p → `p with
range M is given by

Px =
dimM∑
i=1

`q〈e
∗
i , x〉`p ei

with e∗i := J`pei (where J is the normalized duality map).

Proof. See [LT77, Ch. 2].

Lemma 6.5. Let 1 ≤ p <∞, p 6= 2 and let M be a linear subspace of Lp(X,F , µ). The
following conditions on M are equivalent.

(i) M is the range of a contractive projection on Lp(X,F , µ).

(ii) There is a measure space (Y,G , ν) such that M is isometrically isomorphic to
Lp(Y,G , ν).

Furthermore, in (ii) we can always choose Y = X, G a sub-σ-algebra of F and ν � µ.

Proof. See [And66] and [BL74, Theorem 4.1]. See also [Lac74, Ch. 6, §17, Lemma 8,
Theorem 3] for a more detailed discussion.
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For the notion of orthogonality in Banach spaces (needed in the next lemma) we refer
to Appendix B.5.

Lemma 6.6. Let X be a real Banach space and M a complemented subspace of X such
that M ⊕N = X. Let P be a linear projection on X with range M . Then M ⊥ N if and
only if P is contractive. Also, Id−P is a contractive projection from X onto N = kerP
if and only if N ⊥M .

Proof. See [Kin84].

Lemma 6.7. Let M be a finite dimensional linear subspace of an Lp-space. Then there
exists N complementary to M with N ⊥M if and only if there exist k disjoint subsets of
atoms B1, . . . , Bk such that M =

⊕k
i=1Mi, where Mi is either Lp(Bi) or a hyperplane

of Lp(Bi).

Proof. See [Lin85, Corollary 3].

We also need a characterization of Lp-isometries. Consider a definition first.

Definition 6.8. Let (X,F , µ), (Y,G , ν) be measure spaces. A set map T : F → G is
called a regular set isomorphism if

(i) T (X \ F ) = T (X) \ T (F ) for all F ∈ F .

(ii) T (
⋃∞
i=1 Fi) =

⋃∞
i=1 T (Fi) for all Fi ∈ F , i ∈ N, pairwise disjoint.

(iii) ν(T (F )) = 0 if and only if µ(F ) = 0.

T is called measure preserving if µ(F ) = ν(T (F )) for all F ∈ F .

The following two lemmas can be found in [FJ03, Ch. 3.2]. The first one follows
from the definitions, the second one can be proved with the help of the Radon-Nikodým
Theorem. See also [Doo53, Ch. X, §1].

Lemma 6.9. Let (X,F , µ), (Y,G , ν) be measure spaces. Let T : F → G be a regular
set isomorphism. Then the following holds true.

(i) If F1 ⊂ F2, then T (F1) ⊂ T (F2).

(ii) T (
⋃∞
i=1 Fi) =

⋃∞
i=1 T (Fi) for all Fi ∈ F , i ∈ N.

(iii) T (
⋂∞
i=1 Fi) =

⋂∞
i=1 T (Fi) for all Fi ∈ F , i ∈ N.

(iv) T (F1) ∩ T (F2) = ∅ if and only if F1 ∩ F2 = ∅.

Lemma 6.10. Let (X,F , µ), (Y,G , ν) be measure spaces. Let T : F → G be a regular
set isomorphism. T induces a unique linear transformation (also denoted by T ) from
M(X,F , µ) to M(Y,G , ν) (where M denotes the set of equivalence classes of a.e. finite
measurable functions) such that:
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6.2 Lp-spaces

(i) T1F = 1T (F ) for all F ∈ F .

(ii) If fn → f µ-a.e. for some fn, n ∈ N, f F -measurable, then Tfn → Tf ν-a.e.

(iii) (Tf)−1(B) = T (f−1(B)) for every Borel set B ⊂ R and every F -measurable f .

(iv) T (f · g) = (Tf) · (Tg) for all F -measurable f, g.

(v) T
(

1
f

)
= 1

Tf for all F -measurable f with f 6= 0 µ-a.e.

(vi) T (|f |) = |T (f)| for all F -measurable f .

(vii) T (fα) = (Tf)α for any α > 0 and all F -measurable f with f ≥ 0 µ-a.e.

The characterization of Lp-isometries follows.

Lemma 6.11 (Lamperti). Let (X,F , µ), (Y,G , ν) be σ-finite measure spaces. Suppose
that U is a linear isometry from Lp(X,F , µ) to Lp(Y,G , ν), where 1 ≤ p < ∞, p 6= 2.
Then there exists a regular set isomorphism T from F into G and a function h defined
on Y so that

(Uf)(y) = h(y) · (Tf)(y) (6.2)

and h satisfies ∫
T (F )
|h|pdν =

∫
T (F )

d(µ ◦ T−1)
dν

dν = µ(F ) ∀F ∈ F . (6.3)

Conversely, for any h and T as above, the operator U satisfying (6.2) is an isometry.

Proof. See [Lam58] or [FJ03, Theorem 3.2.5].

Lemma 6.12. Let 1 < p < ∞, p 6= 2, q := p/(p − 1). Fix two σ-finite measure spaces
µ, ν on (X,F , µ) and (Y,G , ν). Let U : Lp(µ) → Lp(ν) be a linear isometry. Let
J1 : Lp(µ)→ Lq(µ), J2 : Lp(ν)→ Lq(ν) be the normalized duality maps. Then the map

U∗ := J2UJ
−1
1 : Lq(µ)→ Lq(ν)

is a linear isometry as well.

Proof. Recall that J−1
1 is the normalized duality map from Lq(µ) to Lp(µ). Therefore,

g = J−1
1 (f) if and only if

g(x) =
|f(x)|q−1 sign(f(x))

‖f‖q−2
Lq(µ)

for µ-a.e. x ∈ X

and g = J2(f) if and only if

g(y) =
|f(y)|p−1 sign(f(y))

‖f‖p−2
Lp(ν)

for ν-a.e. y ∈ Y.
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Compare with Paragraph B.2.1 in the appendix. Let f ∈ Lq(µ). Justified by Lemma
6.11, suppose that U is of the form (6.2) with an regular set isomorphism T and a
function h.

Now, using Lemma 6.10

U∗f = J2UJ
−1
1 f

=J2U
[
|f |q−1 sign(f) ‖f‖2−qLq(µ)

]
=J2U

[
|f |1/(p−1) sign(f) ‖f‖(p−2)/(p−1)

Lq(µ)

]
=J2

[
hT
[
|f |1/(p−1) sign(f) ‖f‖(p−2)/(p−1)

Lq(µ)

]]
use Lemma 6.10 (vi) and (vii)

=J2

[[
|hp−1T (f)|1/(p−1) sign(hT (f))

]
‖f‖(p−2)/(p−1)

Lq(µ)

]
=
∣∣∣[|hp−1T (f)|1/(p−1) sign(hT (f))

]
‖f‖(p−2)/(p−1)

Lq(µ)

∣∣∣p−1

· sign
([
|hp−1T (f)|1/(p−1) sign(hT (f))

]
‖f‖(p−2)/(p−1)

Lq(µ)

)
·
∥∥∥[|hp−1T (f)|1/(p−1) sign(hT (f))

]
‖f‖(p−2)/(p−1)

Lq(µ)

∥∥∥2−p

Lp(ν)

=
∣∣hp−1T (f)

∣∣ ‖f‖p−2
Lq(µ) sign (hT (f))

·
∥∥∥|hp−1T (f)|1/(p−1) sign(hT (f))

∥∥∥2−p

Lp(ν)
‖f‖(p−2)(2−p)/(p−1)

Lq(µ)

=hp−1T (f) ‖f‖p−2
Lq(µ)

∥∥∥|hp−1T (f)|1/(p−1) sign(hT (f))
∥∥∥2−p

Lp(ν)
‖f‖(p−2)(2−p)/(p−1)

Lq(µ) .

Note that f 7→ hp−1T (f) is a linear isometry from Lq(µ) → Lq(ν). To see this,
consider F ∈ F and ∫

T (F )
(|h|p−1)q dν =

∫
T (F )
|h|p dν = µ(F )

and apply Lemma 6.11. Also the map f 7→ |f |1/(p−1) sign f is a duality map with gauge
t 7→ t1/(p−1) for Lq. Therefore,∥∥∥[|hp−1T (f)|1/(p−1) sign(hT (f))

]∥∥∥2−p

Lp(ν)
=
∥∥hp−1T (f)

∥∥(2−p)/(p−1)

Lq(ν)
= ‖f‖(2−p)/(p−1)

Lq(µ)

Finally,

p− 2 +
2− p
p− 1

+
(p− 2)(2− p)

p− 1
= 0,

and hence
U∗f = hp−1T (f)

which we have already verified to be a linear isometry.
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6.2 Lp-spaces

Proof of Proposition 6.3 continued. Fix k, n, d ∈ N, d ≥ k. Considering monotonicity of
(ei)∞i=1, by Lemma 6.5 and the classification of Lp-spaces, lin(ei)ki=1 and lin(ei)di=1 are
isometric to `p(k), `p(d) resp. Set vki := Jk(ui) for each 1 ≤ i ≤ k, where Jk : `p(k)→
lin(ei)ki=1 is an isometry and (ui) is the unit vector basis.

Suppose that l ≤ k and that there is a subsequence (vkij )
l
j=1 of (vki )ki=1 such that

M := lin(vkij )
l
j=1 is isometric to X ⊂ Z := lin(In(ei))di=1. (J −1

k (vkij ))
l
j=1 are disjointly

supported in `p(k), therefore by Lemma 6.4 M is isometric to `p(l) and so is X. But X
is a subspace of Z and Z is isometric to `p(d). Clearly by Lemma 6.5 X is in the range of
a contractive projection. Let Y be the complement of X in Z, i.e., X ⊕ Y = Z. Lemma
6.6 yields X ⊥ Y . But by Lemma 6.4 there are l atoms Bj in Z such that X =

⊕l
j=1Bj .

By Lemma 6.7 Y ⊥ X. This gives that Y is isometric to `p(d − l) by Lemma 6.6 and
Lemma 6.4. On the other hand, the complement N of M in lin(ei)di=1 is isometric to
`p(d− l) by exactly the same orthogonality arguments.

We would like to extend the partial isometries to an isometry Ψ : Lp(µ) → Lp(µn)
such that if we restrict Ψ we obtain the original isometries.

Firstly, M ⊥ N and N ⊥ M . Since both are finite dimensional, by Lemma 6.7 we
can find mutually disjoint atoms spanning both M and N . A similar statement holds
for X and Y . Let Ψ1 : M → X and Ψ2 : N → Y be the isometries found above. Let
(x, y) ∈M ⊕p N . Set Ψ : (x, y) 7→ (Ψ1(x),Ψ2(y)). Clearly

‖Ψ(x, y)‖X⊕pY =
(
‖Ψ1(x)‖pEn + ‖Ψ2(y)‖pEn

)1/p =
(
‖x‖pE + ‖y‖pE

)1/p = ‖(x, y)‖M⊕pN .

But by disjointness and a well-known property of Lp-norms (cf. [LT79, Ch. 1.b], [MN91])
‖x‖pE + ‖y‖pE = ‖x+ y‖pE and ‖Ψ1(x)‖pEn + ‖Ψ2(y)‖pEn = ‖Ψ1(x) + Ψ2(y)‖pEn . Therefore
Ψ(z) := Ψ1(x) + Ψ2(y) (whenever z = x + y, x ∈ M , y ∈ N) is an isometry in the
original norms of E and En.

Let J be the normalized duality map of E. Set e∗i := Jei for i ∈ N, which are the
unique Schauder biorthogonal coefficient functionals. Let E 3 x =

∑∞
i=1 E∗〈e

∗
i , x〉E ei

and E∗ 3 y =
∑∞

i=1 E∗〈y, ei〉E e∗i . Define Ψ∗ and I ∗n as in Lemma 6.12 which therein
are proved to be isometries. Define

Θ(x) :=
d∑
i=1

E∗n
〈Ψ∗(e∗i ),Ψ(x)〉En Ψ(ei) +

∞∑
i=d+1

E∗n
〈I ∗n (e∗i ),In(x)〉En In(ei).

and

Θ∗(y) :=
d∑
i=1

E∗n
〈Ψ∗(y),Ψ(ei)〉En Ψ∗(e∗i ) +

∞∑
i=d+1

E∗n
〈I ∗n (y),In(ei)〉En I ∗n (e∗i ).

Θ and Θ∗ are clearly linear and continuous. Take into account that

E∗n
〈Ψ∗(e∗i ),Ψ(x)〉En = E∗〈e

∗
i , x〉E , ∀i ∈ N,

E∗n
〈Ψ∗(y),Ψ(ei)〉En = E∗〈y, ei〉E , ∀i ∈ N,

E∗n
〈I ∗n (e∗i ),In(x)〉En = E∗〈e

∗
i , x〉E , ∀i ∈ N,

E∗n
〈I ∗n (y),In(ei)〉En = E∗〈y, ei〉E , ∀i ∈ N,

(6.4)
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by Lemma 5.71. Since Ψ and In are linear and continuous, they interchange with the
series. We also see that ‖Θ(x)‖En ≤ ‖x‖E for every x ∈ E. Also

‖Θ‖L (E,En) = sup
{
‖Θ(x)‖En | x ∈ E, ‖x‖E ≤ 1

}
≥ sup

{
‖Θ(x)‖En | x ∈ lin(ei)di=1, ‖x‖E ≤ 1

}
= sup

{
‖Ψ(x)‖En | x ∈ lin(ei)di=1, ‖x‖E ≤ 1

}
= 1.

We have proved that ‖Θ‖L (E,En) = 1. Replace Θ∗ by its normalized self.
By orthogonality, (6.4), continuity and linearity we get that

E∗n
〈Θ∗(y),Θ(x)〉En = E∗〈y, x〉E .

Hence both are isometries by Lemma 5.71. Surjectivity follows from surjectivity of Ψ, In

and the invariance of (complemented) subspaces. Θ�M = Ψ1 follows fromM ⊂ lin(ei)di=1.
(I) is proved. The case of Lq works similarly.

We can also say something about the asymptotic Kadeč-Klee property for asymptotic
relations of Lp spaces with fixed p. Consider the following properties of convexity and
smoothness:

If (Ω,F , µ) is a σ-finite measure space and 1 < p < ∞. Then Lp(Ω,F , µ) is both
uniformly convex and uniformly smooth with moduli depending on p but not on µ:

δLp(ε) :=

{
p−1

8 ε2 + o(ε2), 1 < p ≤ 2,
2p

p ε
p + o(εp), 2 ≤ p <∞;

ηLp(ε) :=

{
1
pε
p + o(εp), 1 < p ≤ 2,

p−1
2 ε2 + o(ε2), 2 ≤ p <∞.

(6.5)
Cf. [Han56] and [Bea85, Part 3, Ch. II, §1, Proposition 8]. See [LT79, Ch. 1.e, p. 63]
for the constants.

Finally we will present concrete metric approximations for Lp-spaces in order to obtain
asymptotic relations. We divide the presentation into a couple of subsections. In all of
what follows, let X be a Hausdorff topological space.

6.2.1 Varying measure

Let (X,B(X)) be a measurable space such that X is a Hausdorff topological space and
B(X) is the Borel σ-algebra, i.e., B(X) is generated by the open sets in X. We assume
for convenience that (X,B(X)) is a separable measurable space, which is for example
the case when X is second countable.

Suppose that µ is a σ-finite measure on B(X) such that (cf. [Bau74, Hal74, Bog07a,
Bog07b]):

(i) µ(B) ∈ [0,+∞] for each B ∈ B(X) (positivity),

(ii) for each x ∈ X there exists an open neighborhood U ⊂ X of x such that µ(U) <
+∞ (local finiteness),
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6.2 Lp-spaces

(iii) for every Borel set B ∈ B(X) we have

µ(B) = sup
{
µ(C)

∣∣ C ⊂ B, C compact
}

(inner regularity),

(iv) for every Borel set B ∈ B(X) we have

µ(B) = inf
{
µ(O)

∣∣ O ⊃ B, O open
}

(outer regularity),

(v) for every compact set C ∈ B(X)

µ(C) < +∞

(Borel),

(vi) µ(U) > 0 for every ∅ 6= U ⊂ X, U open (full support).

A measure satisfying (ii) and (iii) is called a Radon measure. A measure satisfying (ii),
(iii), (v) is called Borel measure. If, in addition, a Borel measure satisfies (iv), it is called
a regular Borel measure. In general, one defines the support suppµ of a positive measure
µ by

suppµ := {x ∈ X | ∃Ox 3 x open, µ(Ox) > 0} .

Let µn, n ∈ N, µ be fully supported regular positive Borel measures on X, i.e., all of
the above conditions are satisfied. Assume that we are in one of the two cases:

X is Souslinean, µn, n ∈ N, µ are finite, µn
w
⇀ µ weakly,

i.e., lim
n

∫
X
f dµn =

∫
X
f dµ ∀f ∈ Cb(X),

(6.6)

where Cb(X) denotes the continuous real-valued functions on X that are bounded.

X is locally compact, µn
v
⇀ µ vaguely,

i.e., lim
n

∫
X
f dµn =

∫
X
f dµ ∀f ∈ C0(X),

(6.7)

where C0(X) denotes the continuous real-valued functions on X that have compact
support.

Lemma 6.13. If X is Souslinean and µ is finite and fully supported, then the µ-classes
of Cb(X) are dense in Lp(X;µ) for any 1 ≤ p <∞.
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Proof. Let C̃b(X) be the µ-classes of Cb(X). By full support, C̃b(X) separates the points
of X. By [Sch73, Lemma 18, p. 108]

C̃b(X) generates B(X). (6.8)

Define

M :=
{
u ∈ Bb(X) | ∃un ∈ Cb(X), n ∈ N such that ‖u− un‖Lp(X;µ) → 0

}
.

By definition, Cb(X) ⊂ M and 1X ∈ M . Let us prove that M is a monotone vector
space. Let

0 ≤ u1 ≤ u2 ≤ u3 ≤ · · · ≤ f,

such that ui ∈ M , i ∈ N, f bounded and ui ↑ f as i → ∞. We have to prove that
f ∈ M . Note that by finiteness of the measure, it holds that Bb(X) ⊂ Lp(X;µ). Let
uin ∈ Cb(X), i, n ∈ N with

∥∥uin − ui∥∥Lp(X;µ)
→ 0 as n → ∞ (for all i). By Lemma 5.27

and the triangle inequality, there is a sequence of natural numbers {in} with in ↑ ∞ as
n→∞ such that

lim
n

∥∥uinn − f∥∥Lp(X;µ)
≤ lim

i
lim
n

[∥∥uin − ui∥∥Lp(X;µ)
+
∥∥ui − f∥∥

Lp(X;µ)

]
≤ lim

i
lim
n

∥∥uin − ui∥∥Lp(X;µ)
+ lim

i
lim
n

∥∥ui − f∥∥
Lp(X;µ)

= lim
i

∥∥ui − f∥∥
Lp(X;µ)

.

But
|ui − f |p ≤ 2p ‖f‖p∞ ∈ L

1(X;µ).

Hence an application of Lebesgue’s dominated convergence theorem gives that

lim
i

∥∥ui − f∥∥
Lp(X;µ)

= 0.

Now by (6.8) and the monotone class theorem, cf. [Sha88, Appendix A.0], Bb(X) ⊂M ,
hence Bb(X) = M . But Bb(X) is dense in Lp(X;µ). Hence we have proved that Cb(X)
is dense in Lp(X;µ).

Lemma 6.14. If X is locally compact and µ is fully supported, then the µ-classes of
C0(X) are dense in Lp(X;µ) for any 1 ≤ p <∞.

Proof. The proof is contained in the proof of Lemma 6.16 below.

Let 1 < p < ∞, q := p/(p− 1). Set C := C̃b(X) if we are in case one or C := C̃0(X)
if we are in case two. Define

Φn : C ⊂ Lp(X;µ)→ Lp(X;µn), Φn(x) := x, n ∈ N,

and
Ψn : C ⊂ Lq(X;µ)→ Lq(X;µn), Ψn(x) := x, n ∈ N,
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which are well-defined linear maps by full support of the µn’s. By Lemmas 6.13 and
6.14 C is dense in both Lp(X;µ) and Lq(X;µ). Furthermore, by weak resp. vague
convergence and the fact that C is invariant under the maps t 7→ |t|p, s 7→ |s|q,

lim
n
‖Φn(f)‖Lp(X;µn) = lim

n

(∫
X
|f |p dµn

)1/p

=
(∫

X
|f |p dµ

)1/p

= ‖f‖Lp(X;µ) , ∀f ∈ C,

and

lim
n
‖Ψn(f)‖Lq(X;µn) = lim

n

(∫
X
|f |q dµn

)1/q

=
(∫

X
|f |q dµ

)1/q

= ‖f‖Lq(X;µ) , ∀f ∈ C.

We have proved that {(Φn, C)}, {(Ψn, C)} are linear metric approximations (i.e., (B1),
(B2) and (BL) hold) for

Lp :=
.⋃
n

Lp(X;µn)∪̇Lp(X;µ), Lq :=
.⋃
n

Lq(X;µn)∪̇Lq(X;µ),

respectively. Since C is an algebra, also

lim
n Lp(X;µn)〈Φn(f),Ψn(g)〉Lq(X;µn) = lim

n

∫
X
fg dµn

=
∫
X
fg dµ = Lp(X;µ)〈f, g〉Lq(X;µ), ∀f, g ∈ C,

which yields that Lp and Lq are mutually asymptotically dual. Asymptotic reflexivity
is clear, too. The asymptotic Kadeč-Klee property was verified above as well as the
asymptotic isometry property.

We note that we merely need that µ is regular, and not the µn’s.

6.2.2 Varying domain

Suppose that X is either Souslinean or locally compact. Suppose that there is a sequence
of Borel subsets {Xn} of X such that Xn ⊂ Xn+1 for every n and Xn ↑ X, directed by
inclusion of sets.

Furthermore, suppose that Cb(X), C0(X) resp. is the strict inductive limit (in the
sense of locally convex linear topologies, cf. [Sch71, Ch. II, §6] or [RS80, Ch. V.4])
of {Cb(Xn)}, {C0(Xn)} resp., in particular, for each f ∈ Cb(X), there exists an index
n0 ∈ N such that f ∈ Cb(Xn) for every n ≥ n0 and

⋃
nCb(Xn) = Cb(X); similarly for

C0 resp.
Set either Cn := Cb(Xn), n ∈ N or Cn := C0(Xn), n ∈ N. Suppose that for each n ∈ N

we are given a regular positive Borel measure µn on B(X) such that suppµn = Xn

(closure), µn is finite in the first case and converges weakly, resp. vaguely to a fully
supported regular positive Borel measure µ on X.

Let 1 < p <∞, q := p/(p− 1). Define

Φn : D(Φn) := C̃n ⊂ Lp(X;µ)→ Lp(Xn;µn), Φn(x) := x, n ∈ N,

139



6 Examples of varying Banach spaces

and
Ψn : D(Φn) := C̃n ⊂ Lq(X;µ)→ Lq(Xn;µn), Ψn(x) := x, n ∈ N,

which are well-defined linear maps by full support of the µn’s on Xn resp.
Analogously to the preceding section we verify that {(Φn, D(Φn))} and {(Ψn, D(Ψn))}

are linear metric approximations for

Lp :=
.⋃
n

Lp(Xn;µn)∪̇Lp(X;µ), Lq :=
.⋃
n

Lq(Xn;µn)∪̇Lq(X;µ),

respectively and that Lp is asymptotically dual to Lq. Asymptotic reflexivity is clear,
too.

We note again that we merely need that µ is regular, and not the µn’s.

6.2.3 Varying p

Let X be a Hausdorff space with Borel σ-algebra B(X). Denote by Mb(X) the topo-
logical vector space of totally finite signed Borel measures on B(X) which is a Banach
space with the total variation norm ‖µ‖var := |µ|(X), where the variation |µ| of a signed
measure µ is a positive measure defined by

|µ|(B) := sup

{
k∑
i=1

|µ(Bi)|
∣∣∣∣ k ∈ N, Bi ∈ B(X) ∩B, pairwise disjoint

}
, B ∈ B(X).

Suppose either that X is metrizable or regular and strongly Lindelöf (i.e. is a Lindelöf
space). Then (Mb(X), ‖·‖var) is the topological dual space of (Cb(X), ‖·‖∞) with bilinear
dualization

〈f, µ〉 =
∫
X
f dµ

such that a Cauchy-Schwarz type inequality holds with the norms ‖·‖∞, ‖·‖var resp.,
cf. [Bog07b, Corollary 6.3.5 and §7.9]. The topology of weak convergence of measures
coincides with the sequential weak∗ topology on Mb(X). By duality for any µ ∈Mb(X)

‖µ‖var = sup
{∣∣∣∣∫

X
f dµ

∣∣∣∣ ∣∣∣∣ f ∈ Cb(X), ‖f‖∞ ≤ 1
}
.

Suppose that we are given a sequence of fully supported positive {µn} ⊂Mb(X) and
a fully supported regular positive Borel measure µ ∈Mb(X) such that

lim
n
‖µn − µ‖var = 0.

Suppose additionally, that X is a Souslin space.
Let pn ∈ (1,∞), n ∈ N, p ∈ (1,∞) such that limn pn = p. Let qn := pn/(pn − 1),

n ∈ N, q := p/(p− 1). Set C := C̃b(X).
Define

Φn : C ⊂ Lp(X;µ)→ Lpn(X;µn), Φn(x) := x, n ∈ N,
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and
Ψn : C ⊂ Lq(X;µ)→ Lqn(X;µn), Ψn(x) := x, n ∈ N,

which are well-defined linear maps by full support of the µn’s. The Φn’s and Ψn’s are
densely defined by Lemma 6.13.

Let f ∈ Cb(X). If ‖f‖∞ ≤ 1, set Kf := ‖f‖infn pn
∞ and if ‖f‖∞ > 1, set Kf :=

‖f‖supn pn
∞ . For µ-a.a. x ∈ X, supn|f(x)|pn ≤ Kf ∈ L1(X;µ) ∩ L∞(X;µ). Therefore by

Lebesgue’s dominated convergence theorem

lim
n

∫
X
||f |pn − |f |p| dµ = 0

and hence ∣∣∣∣∫
X
|f |pn dµn −

∫
X
|f |p dµ

∣∣∣∣
≤
∣∣∣∣∫
X
|f |pn d(µn − µ)

∣∣∣∣+
∣∣∣∣∫
X
|f |pn − |f |p dµ

∣∣∣∣
≤Kf ‖µn − µ‖var +

∫
X
||f |pn − |f |p| dµ

(6.9)

which clearly tends to zero as n→∞.
Combined with

Lemma 6.15. For each P ∈ [1,∞), the function

[1, P ]× [0,∞) 3 (p, t) 7→

{
t1/p, if t > 0,
0, if t = 0,

is continuous.

Proof. Let P ∈ [1,∞). For t 6= 0, (p, t) 7→ exp[(1/p) log(t)] is obviously continuous. Let
p ∈ [1, P ] and {(pn, tn)} a sequence in R2 with limn(pn, tn) = (p, 0). For large n, tn ≤ 1
and therefore ∣∣∣t1/pnn

∣∣∣ ≤ ∣∣∣t1/Pn

∣∣∣→ 0

as n→∞. The claim is proved.

we get that

lim
n
‖Φn(f)‖Lpn (X;µn) = lim

n

(∫
X
|f |pn dµn

)1/pn

=
(∫

X
|f |p dµ

)1/p

= ‖f‖Lp(X;µ) .

Hence {(Φn, C)} is a metric approximation for

L→p :=
.⋃
n

Lpn(X;µn)∪̇Lp(X;µ).
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With {(Ψn, C)}, the case of L→q works exactly the same way. Asymptotic duality is
easy, as is asymptotic reflexivity.

Note that we have excluded the case that p, q ∈ {1,∞}. An application with varying
domains as above is easy to construct, too.

The attentive reader will have noticed that this example allows us to talk about
convergence of vectors along “Lpn → Lp” in the special case of one fixed measure µ.

6.2.4 p→ 1 and q →∞

In this paragraph, we present an example that is built to fit for an application given
later. With the knowledge of the preceding sections, generalizations can easily be given.
An asymptotic relation on

L1 :=
.⋃
n

L1(X;µn)∪̇L1(X;µ)

with weakly converging measures µn → µ can be constructed as in Section 6.2.1.
Let d ≥ 1, Ω ⊂ Rd be a bounded open domain. Let pn ∈ (1,∞), n ∈ N such that

limn pn = 1. Let qn := pn/(pn−1) for each n ∈ N. Then limn qn =∞. Set C1 := C0(Ω),
C2 := L∞(Ω; dx).

Define
Φn : C1 ⊂ L1(Ω; dx)→ Lpn(Ω; dx), Φn(x) := x, n ∈ N,

and
Ψn : C2 = L∞(Ω; dx)→ Lqn(Ω; dx), Ψn(x) := x, n ∈ N,

which both are well-defined linear operators for all n ∈ N. The density C̃0(Ω) ⊂
L1(Ω; dx) is well-known. Let f ∈ C0(Ω). If ‖f‖∞ ≤ 1, set Kf := ‖f‖∞ and if ‖f‖∞ > 1,
set Kf := ‖f‖supn pn

∞ . For dx-a.a. x ∈ Ω, supn|f(x)|pn ≤ Kf ∈ L1(Ω; dx) ∩ L∞(Ω; dx).
Therefore by Lebesgue’s dominated convergence theorem

lim
n

∣∣∣∣∫
Ω
|f |pn dx−

∫
Ω
|f |dx

∣∣∣∣ ≤ lim
n

∫
Ω
||f |pn − |f || dx = 0.

With Lemma 6.15 we see that

lim
n
‖Φn(f)‖Lpn = lim

n

(∫
Ω
|f |pn dx

)1/pn

=
∫

Ω
|f |dx = ‖f‖L1 .

On the other hand, it is well-known that for all f ∈ L∞(Ω; dx) (in fact, we need only a
bounded measure)

lim
q→∞

(∫
Ω
|f |q dx

)1/q

= ‖f‖∞ ,

see e.g. [Ran02, Exercise 8.8.5]. From this formula we see that {(Φn, C1)}, {(Ψn, C2)}
respectively are metric approximations for

L→1 :=
.⋃
n

Lpn(Ω; dx)∪̇L1(Ω; dx), L→∞ :=
.⋃
n

Lqn(Ω; dx)∪̇L∞(Ω; dx),
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respectively. Let f ∈ C1, g ∈ C2. Their product is in L∞(Ω; dx) ⊂ L1(Ω; dx) and
therefore,

lim
n Lpn 〈Φn(f),Ψn(g)〉Lqn = lim

n

∫
Ω
fg dx =

∫
Ω
fg dx = L1〈f, g〉L∞ ,

which proves that L→1 and L→∞ are asymptotically dual. We point out that, although
each Lpn , Lqn are reflexive, L→1 and L→∞ are not asymptotically reflexive. In particular,
by the general theory of the preceding chapter, weak convergence on L→1 and weak∗

convergence on L→∞ make sense and are of interest.

6.3 Orlicz spaces

In the Orlicz space case, which is one of our main applications later on, convergence
of norms cannot be derived that simply from the convergence of modulars as in the
Lp-case. The proof below is employing duality theory of Orlicz spaces for both the
Luxemburg and the Orlicz norm. Anyhow, the remaining arguments are quite similar
to those above. For all of this section, fix a locally compact Hausdorff space Ω and a
pair of complementary N -functions (Φ,Ψ) (in particular, Φ(x) = Ψ(x) = 0 iff x = 0 and
both functions are continuous), such that Φ,Ψ ∈ ∆2 ∩ ∇2. All necessary facts about
Orlicz spaces can be found in Appendix C.

The next lemma is standard.

Lemma 6.16. Let Φ ∈ ∆2, Ω a Hausdorff locally compact space and µ a regular Borel
measure on (Ω,B(Ω)). Then C∞0 (Ω), i.e. the infinitely often differentiable real-valued
functions on Ω with compact support, is a dense linear subspace of LΦ(Ω;µ).

Proof. We will first show that C0(Ω), i.e. the continuous real-valued functions on Ω

with compact support, is a dense linear subspace of LΦ(Ω;µ). First note that C̃0(Ω) ⊂
L1(Ω;µ), which follows from∫

Ω
|f | dµ ≤ ‖f‖∞ µ(supp(f)) ∀f ∈ C0(Ω).

Since Φ(C0(Ω)) ⊂ C0(Ω), we get that C̃0(Ω) ⊂ LΦ(Ω;µ). By [RR91, Ch. III, §4,
Corollary 4, p. 77] step functions with finite Luxemburg norm are dense in LΦ(Ω;µ)
when Φ ∈ ∆2. Since the Luxemburg norm is absolutely continuous (cf. [RR91, p. 84 et
seq.]) when Φ ∈ ∆2 and when Φ(x) = 0 iff x = 0, it is enough to approximate functions
of the type 1A, A ∈ B(Ω), µ(A) < +∞. Let ε > 0 and 1A be such a function. Set
C := Φ(2). By outer regularity of µ, there is an open set U ⊃ A with µ(U \ A) < ε/C.
In particular, µ(U) < +∞. By inner regularity of µ, we can find a compact set K ⊂ U
with µ(U \K) < ε/C. By Urysohn’s Lemma (cf. [Bau74, Lemma 42.2]) we can find a
function f ∈ C0(Ω) with 1K ≤ f ≤ 1U , that is, 0 ≤ 1U − f ≤ 1U − 1K . We conclude by
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convexity∫
Ω

Φ(|f − 1A|) dµ ≤ 1
2

∫
Ω

Φ(2|1U − f |) dµ+
1
2

∫
Ω

Φ(2|1U − 1A|) dµ

≤ 1
2

∫
Ω

Φ(2|1U − 1K |) dµ+
1
2

∫
Ω

Φ(2|1U − 1A|) dµ ≤ C

2
[µ(U \K) + µ(U \A)] < ε

which yields the density of C0(Ω) by Lemma C.16.
It is easily seen that C∞0 (Ω) separates the points of Ω (consider e.g. compositions of

a suitable C∞0 (Ω) function, obtained by smoothing mollifiers, and x 7→ sin(αx) for some
suitable α ∈ R) and contains for each x ∈ Ω a function g ∈ C∞0 (Ω) with g(x) 6= 0. By
a locally compact version of the Stone-Weierstraß Theorem C∞0 (Ω) is dense in C0(Ω)
w.r.t. uniform convergence (cf. [Cho69, p. 28 (iii)]). Let ε > 0. Let g ∈ C∞0 (Ω) with
‖f − g‖∞ < ε. We see that∫

Ω
Φ(|f − g|) dµ ≤ Φ(‖f − g‖∞)µ(supp(f − g)) ≤ Φ(ε)µ(supp(f − g)).

Recall that µ is a Borel measure, hence µ(supp(f−g)) < +∞. Φ is continuous, increasing
and Φ(x) = 0 iff x = 0. Therefore we get the desired density by Lemma C.16.

Let Φ ∈ ∆2 ∩ ∇2. Ω a locally compact Hausdorff space and {µn} a sequence of fully
supported positive Borel measures with a vague limit µ, which is assumed to be a fully
supported regular positive Borel measure. Clearly for each f ∈ C0(Ω)

lim
n

∫
Ω

Φ(f)µn(dx) =
∫

Ω
Φ(f)µ(dx). (6.10)

The above equation holds for Φ replaced by Ψ as well.

Lemma 6.17. For each f ∈ C0(Ω)

lim
n
‖f‖(Φ,µn) = ‖f‖(Φ,µ) , (6.11)

that is, the Luxemburg norms converge. A similar statement holds for Φ replaced by Ψ.

Proof. For all of the proof fix a function f ∈ C0(Ω).
Let α := ‖f‖(Φ,µ). Suppose that α 6= 0. Let ε > 0 and δ > 0. Since Φ ∈ ∆2

there is a constant C > 2 with Φ(2x) ≤ CΦ(x). Therefore Φ(x/(1 + δ)) ≤ CsΦ(x)
when s ≥ − log2(1 + δ). But s can be chosen negative. Therefore there is a constant
Cs =: C(Φ, δ) ∈ (0, 1) depending only on Φ and δ such that large n∫

Ω
Φ
(

f

(1 + δ)α

)
µn(dx) ≤ C(Φ, δ)

∫
Ω

Φ
(
f

α

)
µn(dx) ≤ C(Φ, δ)

∫
Ω

Φ
(
f

α

)
µ(dx) + ε.

Choosing ε small enough we see that the right hand side is smaller or equal to 1. Thus
for large n

‖f‖(Φ,µn) ≤ (1 + δ)α.
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Since δ was arbitrary,
lim
n
‖f‖(Φ,µn) ≤ ‖f‖(Φ,µ) . (6.12)

If α = 0, (6.12) holds by a simple modification of the proof of Lemma C.16.
Let β := limn ‖f‖(Φ,µn). Suppose that 0 < β < ∞. Let ε > 0 and δ > 0. Extract a

convergent subsequence such that (1 + δ)β ≥ ‖f‖(Φ,µn) for large n (if necessary). Then
for large n we have that∫

Ω
Φ
(

f

(1 + δ)β

)
µ(dx) ≤

∫
Ω

Φ
(

f

(1 + δ)β

)
µn(dx) + ε ≤

∫
Ω

Φ

(
f

‖f‖(Φ,µn)

)
µn(dx) + ε.

The right hand side is smaller or equal to 1 + ε. Since ε was arbitrary,

‖f‖(Φ,µ) ≤ (1 + δ)β,

and hence, since δ was arbitrary,

lim
n
‖f‖(Φ,µn) ≥ ‖f‖(Φ,µ) . (6.13)

If β =∞, (6.13) holds trivially. If β = 0, (6.13) can be proved with the same arguments
as in the proof of Lemma C.16. (6.12) and (6.13) together give (6.11).

The part with the Luxemburg norms was the easier one. For the Orlicz norm-part we
need some preparation.

Lemma 6.18. Let Φ ∈ ∆2∩∇2. Let f ∈ LΦ(Ω, µ) with ‖f‖Φ,µ = 1. The set K ⊂ (1,∞)
such that k ∈ K iff k is a solution to

k − 1 =
∫

Ω
Φ(k|f |)µ(dx)

is bounded above by a constant solely depending on Φ (and not on µ).

Proof. The idea for the proof is borrowed from S. T. Chen, [Che96, Theorem 1.35]. By
Φ ∈ ∇2 there exists δ > 0 satisfying

Φ(2x) ≥ (2 + δ)Φ(x),

compare e.g. [RR91, Ch. II.3, Theorem 3, p. 22]. Set D := 1 + δ/2 > 1, such that we
have

Φ(2x) ≥ 2DΦ(x).

By Lemma C.14

1 = ‖f‖Φ,µ ≤
1
2

[
1 +

∫
Ω

Φ(2|f |) dµ
]
,
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which yields
∫

Ω Φ(2|f |) dµ ≥ 1. For any k ∈ K, if k > 4, there exists an integer i ∈ N
such that 2i < 2−1k ≤ 2i+1. Since Φ(2ix) ≥ 2iDiΦ(x), we have that (using Lemma C.14
in the second equality)

1 = ‖f‖Φ,µ =
1
k

[
1 +

∫
Ω

Φ(k|f |) dµ
]
≥ 1
k

∫
Ω

Φ(2−1k2|f |)µ(dx)

≥ 1
k
Di2i

∫
Ω

Φ(2|f |)µ(dx) ≥ 2
k

2i−1Di ≥ Di

2
.

Hence Di ≤ 2 which means that k ≤ 22+logD 2 is an upper bound for K. Note that D
does only depend on Φ and not on µ. The proof is complete.

Lemma 6.19. Suppose that Φ ∈ C1(R) such that ϕ = Φ′ (the gauge of Φ) is continuous.
Suppose that ϕ(t) > 0 if t > 0. For each f ∈ C0(Ω)

lim
n
‖f‖Φ,µn = ‖f‖Φ,µ , (6.14)

that is, the Orlicz norms converge. A similar statement holds for Φ replaced by Ψ.

Proof. For all of the proof fix a function f ∈ C0(Ω). As usually, ϕ(t) = ϕ(|t|) sign(t) for
t ∈ R.

Suppose that ‖f‖Φ,µ 6= 0. Let k > 1 be the solution to

k − 1 =
∫

Ω
Φ

(
k

f

‖f‖Φ,µ

)
µ(dx).

Let ε > 0 and δ > 0. Since Ψ ∈ ∆2 there is a constant C > 2 with Ψ(2x) ≤ CΨ(x).
Therefore Ψ(x/(1+δ)) ≤ CsΨ(x) when s ≥ − log2(1+δ). But s can be chosen negative.
Therefore there is a constant Cs =: C(Ψ, δ) ∈ (0, 1) depending only on Ψ and δ such
that large n ∫

Ω
Ψ

(
1

1 + δ
ϕ

(
k

f

‖f‖Φ,µ

))
µn(dx)

≤C(Ψ, δ)
∫

Ω
Ψ

(
ϕ

(
k

f

‖f‖Φ,µ

))
µn(dx)

≤C(Ψ, δ)
∫

Ω
Ψ

(
ϕ

(
k

f

‖f‖Φ,µ

))
µ(dx) + ε.

Choosing ε small enough we see that the right hand side is smaller or equal to 1 by
Lemma C.23. Thus for large n∫

Ω
fϕ

(
k

f

‖f‖Φ,µ

)
µn(dx) ≤ (1 + δ) ‖f‖Φ,µn .
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Since δ was arbitrary, ∫
Ω
fϕ

(
k

f

‖f‖Φ,µ

)
µn(dx) ≤ ‖f‖Φ,µn . (6.15)

Let ε > 0. For large n we have∫
Ω
fϕ

(
k

f

‖f‖Φ,µ

)
µ(dx)− ε ≤

∫
Ω
fϕ

(
k

f

‖f‖Φ,µ

)
µn(dx). (6.16)

It is well-known that the normalized duality map J : LΦ → LΨ is equal to the Gâteaux
derivative of f 7→ 1

2 ‖f‖
2 (cf. [Phe89]). But we know the Gâteaux derivative of the norm

by Lemma C.23. Therefore,

‖f‖Φ,µ
∫

Ω

f

‖f‖Φ,µ
ϕ

(
k

f

‖f‖Φ,µ

)
µ(dx) = ‖f‖Φ,µ . (6.17)

Combining (6.15), (6.16) and (6.17) we get

lim
n
‖f‖Φ,µn ≥ ‖f‖Φ,µ . (6.18)

If ‖f‖Φ,µ = 0, (6.18) can be proved with the same arguments as in the proof of Lemma
C.16.

Let us prove the other limit-estimate. For each n, let kn > 1 be a solution to

kn − 1 =
∫

Ω
Φ

(
kn

|f |
‖f‖Φ,µn

)
µn(dx).

By Lemma 6.18 [infn kn, supn kn] ⊂ [1, C(Φ)] where C(Φ) ≥ 4 is a constant only depend-
ing on the ∇2 condition of Φ.

Let α := limn kn/ ‖f‖Φ,µn . Suppose that 0 < α < ∞, which by the above remark is
satisfied if and only if 0 < limn ‖f‖Φ,µn <∞.

Let ε > 0, δ > 0. Extract a convergent subsequence (if necessary) such that

1
1 + δ

ϕ(α|f |) =
1

1 + δ
lim
n
ϕ
(
kn|f |/ ‖f‖Φ,µn

)
≤ ϕ

(
kn|f |/ ‖f‖Φ,µn

)
for large n, where we have used that ϕ is continuous.

Then for large n we have that∫
Ω

Ψ
(

1
1 + δ

ϕ (α|f |)
)
µ(dx)

≤
∫

Ω
Ψ
(

1
1 + δ

ϕ (α|f |)
)
µn(dx) + ε

≤
∫

Ω
Ψ

(
ϕ

(
kn

|f |
‖f‖Φ,µn

))
µn(dx) + ε.
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The right hand side is smaller than 1 + ε by Lemma C.23. Hence, since ε was arbitrary,∣∣∣∣∫
Ω
fϕ (α|f |) µ(dx)

∣∣∣∣ ≤ (1 + δ) ‖f‖Φ,µ .

Hence, since δ was arbitrary,∣∣∣∣∫
Ω
fϕ (α|f |) µ(dx)

∣∣∣∣ ≤ ‖f‖Φ,µ . (6.19)

We have for each fixed m ∈ N

lim
n

∣∣∣∣∣
∫

Ω
fϕ

(
km

|f |
‖f‖Φ,µm

)
µn(dx)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω
fϕ

(
km

|f |
‖f‖Φ,µm

)
µ(dx)

∣∣∣∣∣ . (6.20)

Also

lim
n

∣∣∣∣∫
Ω
fϕ (α|f |) µn(dx)

∣∣∣∣ =
∣∣∣∣∫

Ω
fϕ (α|f |) µ(dx)

∣∣∣∣ . (6.21)

Since the term inside the integral is bounded above and since ϕ is upper semi-continuous,
by Fatou’s Lemma (cf. [Yos78, p. 17]), for each fixed n ∈ N,

lim
m

∣∣∣∣∣
∫

Ω
fϕ

(
km

|f |
‖f‖Φ,µm

)
µn(dx)

∣∣∣∣∣ ≤
∣∣∣∣∫

Ω
fϕ (α|f |) µn(dx)

∣∣∣∣ (6.22)

and similarly

lim
m

∣∣∣∣∣
∫

Ω
fϕ

(
km

|f |
‖f‖Φ,µm

)
µ(dx)

∣∣∣∣∣ ≤
∣∣∣∣∫

Ω
fϕ (α|f |) µ(dx)

∣∣∣∣ . (6.23)

Define

a :=
∣∣∣∣∫

Ω
fϕ (α|f |) µ(dx)

∣∣∣∣
and for n,m ∈ N

an,m :=

∣∣∣∣∣
∫

Ω
fϕ

(
km

|f |
‖f‖Φ,µm

)
µn(dx)

∣∣∣∣∣ .
By (6.20), (6.21), (6.22) and (6.23)

lim
m

lim
n
an,m ≤ a and lim

n
lim
m
an,m ≤ a

and hence
lim
m

lim
n

1
2

[an,m + am,n] ≤ a. (6.24)

Let δn,m be the Kronecker delta. Clearly

δn,man,m ≤ an,m ∀n,m ∈ N,
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which together with (6.24) gives
lim
n
an,n ≤ a. (6.25)

It is well-known that the normalized duality map J : LΦ → LΨ is equal to the Gâteaux
derivative of f 7→ 1

2 ‖f‖
2 (cf. [Phe89]). But we know the Gâteaux derivative of the norm

by Lemma C.23. Therefore for any n ∈ N,

‖f‖Φ,µn

∣∣∣∣∣
∫

Ω

f

‖f‖Φ,µn
ϕ

(
kn

|f |
‖f‖Φ,µn

)
µn(dx)

∣∣∣∣∣ = ‖f‖Φ,µn ,

which equal to an,n. Hence by (6.19) and (6.25)

lim
n
‖f‖Φ,µn ≤ ‖f‖Φ,µ . (6.26)

If limn ‖f‖Φ,µn = 0, (6.26) holds by a simple modification of the proof of Lemma C.16.
The case of limn ‖f‖Φ,µn = +∞ does not occur by boundedness of modulars (6.10) and
a argument similar to that in the proof of Lemma C.17.

(6.26) and (6.18) together give (6.14) which completes the proof.

Finally, it is an easy consequence of the vague convergence of measures, that

lim
n

∫
Ω
fg µn(dx) =

∫
Ω
fg µ(dx) (6.27)

for all f, g ∈ C0(Ω).
Now set C := D := C0(Ω), Θn : C ⊂ LΦ(Ω;µ) → LΦ(Ω;µn), Θ∗n : D ⊂ LΨ(Ω;µ) →

LΨ(Ω;µn), Θn(f) := f , Θ∗n(g) := g, n ∈ N.
Lemma 6.16 guarantees that C is dense in LΦ(Ω;µ) and D is dense in LΨ(Ω;µ). Full

support of measures guarantees that each Θn, Θ∗n is a well-defined linear operator. (6.11)
and (6.14) prove that {Θn} and {Θ∗n} are metric approximations in either norm. (6.27)
tells that they are in duality. Therefore {Θn} and {Θ∗n} generate linear asymptotic
relations asymptotically in duality on

LΦ :=
.⋃
n

LΦ(Ω;µn)∪̇LΦ(Ω;µ),

and
LΨ :=

.⋃
n

LΨ(Ω;µn)∪̇LΨ(Ω;µ),

respectively equipped with either type of norm. For the asymptotic duality note that the
functional norm of the dual space is given by the Hölder inequality (C.1). This means
that if we consider LΦ with the Luxemburg norm, we will consider LΨ with the Orlicz
norm and vice versa.
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6.4 Scales of Banach spaces

For this section we refer to any comprehensive textbook on topological vector spaces,
e.g. [Sch71].

Definition 6.20. A projective scale of Banach spaces is a collection {Xn}n∈N of Banach
spaces such that Xk ↪→ Xn densely and continuously for all k ≥ n, k, n ∈ N. Define
X∞ :=

⋂
nXn.

A inductive scale of Banach spaces is a collection {Yn}n∈N of Banach spaces such that
Yk ↪→ Yn densely and continuously for all k ≤ n, k, n ∈ N. Define Y∞ :=

⋃
n Yn.

X∞ is clearly a linear space (called the projective limit). It inherits a locally convex
topology from the family {Xn} called the projective topology, that is, the coarsest locally
convex topology such that each embedding X∞ ↪→ Xn is continuous.

It is well-known that X∞ is dense in each of Xn, n ∈ N, cf. [Cap02, Lemma 2.1.2].
One can equivalently renorm each Xn, n ∈ N such that

· · · ≥ ‖·‖Xn+1
≥ ‖·‖Xn ≥ · · · ≥ ‖·‖X2

≥ ‖·‖X1
,

cf. [GS68, Chapter I, Section 3]. For x, y ∈ Xn set

dn(x, y) :=
n∑
k=1

1
2k

‖x− y‖Xk
1 + ‖x− y‖Xk

+
‖x− y‖Xn

1 + ‖x− y‖Xn
·
∞∑

k=n+1

1
2k
.

It is an easy exercise to see that dn(·, ·) generates the same uniformity on Xn as ‖·‖Xn
and that

· · · ≥ dn+1(·, ·) ≥ dn(·, ·) ≥ · · · ≥ d2(·, ·) ≥ d1(·, ·).
For x, y ∈ X∞ set

d∞(x, y) :=
∞∑
k=1

1
2k

‖x− y‖Xk
1 + ‖x− y‖Xk

,

which is a metric generating the projective topology (and uniformity) on X∞.
We see that

lim
n
dn(x, y) = d∞(x, y) for all x, y ∈ X∞. (6.28)

Therefore the embeddings defined on X∞ for each n define a sequence of linear metric
approximations in the sense of the original Definition 5.26 of Kuwae and Shioya for
metric spaces.
Y∞ is a linear space as well (called the inductive limit). It inherits a locally convex

topology from the family {Yn} called the inductive topology, that is, the finest locally
convex topology such that each embedding Yn ↪→ Y∞ is continuous. Nevertheless, we
will not concern ourselves with inductive limits of Banach spaces. The reason for this is,
that they never admit a metric, as was proved in [NS86, Corollary 3]. Inductive limits of
metrizable Fréchet spaces again might be metrizable. If one wants to include inductive
scales of Banach spaces into the framework of asymptotic relations, one has to develop
a more general asymptotic topology than the metric one (e.g. with approximations for
uncountable families of semi-norms).
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6.5 Finite dimensional approximation

6.5.1 Projection schemes

Let E be an infinite dimensional Banach space which admits a projection scheme, that
is, there exists a family {En}n∈N of finite dimensional subspaces such that En ⊂ En+1,
dimEn = n, n ∈ N,

⋃
nEn is dense in E and there exist continuous linear projections

Pn : E → En (onto) with ‖Pn‖L (E) = 1, n ∈ N such that

lim
n
‖Pn(x)− x‖E = 0 for any x ∈ E. (6.29)

If E admits a projection scheme and if PnPm = PmPn = Pm∧n for all n,m ∈ N, it
follows from Lemma B.23 that E has a monotone Schauder basis.

Even more can be said, E admits a projection scheme if and only if E has a monotone
Schauder basis, compare [Sin70a, Ch. II, Proposition 1.3].

It is straightforward that any separable Hilbert space admits a projection scheme. Any
Lp(Ω,F , µ)-space, 1 ≤ p < ∞, (Ω,F , µ) is σ-finite and separable, admits a projection
scheme by [Cio90, Ch. II, Proposition 5.14]. Also LΦ[0, 1], Φ ∈ ∆2, and all Banach
spaces isometric to it, admit a projection scheme by [RR91, Ch. VI, Corollary 2, p. 260]
and [LT79, Proposition 2.c.1].

By [Cio90, Ch. II, Proposition 5.16] if E is reflexive, E∗ admits a projection scheme
with subspaces {E∗n := P ∗n(E∗)} and projections {P ∗n} where P ∗n is the linear adjoint of
Pn : E → E, n ∈ N.

Setting E :=
.⋃
nEn∪̇E, E∗ :=

.⋃
nE
∗
n∪̇E∗ (with norms inherited from E, E∗ resp.)

we see that Φn := Pn, Φ∗n := P ∗n , n ∈ N are linear metric approximations and, indeed,
asymptotically continuous by (6.29). If E is reflexive, by the result cited above for x ∈ E,
y ∈ E∗,

lim
n E∗n

〈P ∗ny, Pnx〉En = lim
n E∗〈y, PnPnx〉E = lim

n E∗〈y, Pnx〉E = E∗〈y, x〉E ,

meaning that (E,E∗) are asymptotically dual.

6.5.2 Conditional expectations

Let 1 ≤ p <∞. Let (Ω,F , µ) be separable probability space (with expectation E) such
that F = σ{An | n ∈ N}. Set Fn := σ{Ak | k ≤ n}. Let f ∈ L1(µ). Denote by En[f ] :=
E[f | Fn] the conditional expectation w.r.t. the sub-σ-algebra Fn (cf. [Bau74, Ch. X,
§54]). Let f ∈ Lp(Ω,F , µ). By Jensen’s inequality En[|f |]p ≤ En[|f |p] for any n and
hence ‖En[f ]‖Lp(Ω,F ,µ) ≤ ‖f‖Lp(Ω,F ,µ) by the projectivity of the conditional expectation.
By the same argument, if f ∈ Lp(Ω,Fn, µ), ‖Em[f ]‖Lp(Ω,Fm,µ) ≤ ‖f‖Lp(Ω,Fn,µ) whenever
m ≤ n. Hence

‖Em[f ]‖Lp(Ω,Fm,µ) = ‖Em[En[f ]]‖Lp(Ω,Fm,µ) ≤ ‖En[f ]‖Lp(Ω,Fn,µ)

whenever m ≤ n. We see that

‖En[f ]‖Lp(Ω,Fn,µ) ↑ ‖f‖Lp(Ω,F ,µ) .
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Since Lp(Ω,Fn, µ) is finite dimensional, we get a projection scheme as in the previous
subsection, except that, dimLp(Ω,Fn, µ) = n only when all An’s are atoms. Therefore
we can easily construct a linear metric approximation for

.⋃
n

Lp(Ω,Fn, µ)∪̇Lp(Ω,F , µ)

in the analog way. Note also that, contrary to the above, each Lp space carries its own
norm. Asymptotic duality for 1 < p < ∞, q := p/(p − 1) follows by the remark that
Lq(Ω,Fn, µ) is the dual space of Lp(Ω,Fn, µ).

6.6 Two-scale convergence

The study of homogenization of convex functionals involves the employment of the so-
called two-scale convergence. In this section we prove that a two-scale convergence is
always a linear asymptotic relation convergence.

For the next definition see [Ngu89, All92, Nec01, LNW02, Zhi04].

Definition 6.21 (Nguetseng). Let Ω ⊂ Rd be an open bounded domain. Let � := [0, 1)d

be the unit cube in Rd. Let 1 < p <∞, q := p/(p−1). Let {ε} = {εn} be a fixed sequence
of positive real numbers converging to zero. A sequence {uε} of functions in Lp(Ω) is
said to two-scale converge (weakly) to a limit u ∈ Lp(Ω×�) if∫

Ω
uε(x)ϕ

(
x,
x

ε

)
dx→

∫
Ω

∫
�
u(x, y)ϕ(x, y) dy dx as ε↘ 0 (6.30)

for every ϕ ∈ Lq(Ω → Cper(�)), where Cper(�) is the function space of continuous
�-periodic real-valued functions on � that have continuous continuations on � = [0, 1]d.

If, in addition to (6.30),

lim
ε↘0

∥∥∥uε(x)− u
(
x,
x

ε

)∥∥∥
Lp(Ω)

= 0, (6.31)

we say that {uε} strongly two-scale converges to u.

For the next definition see [LW05].

Definition 6.22 (Lukkassen-Wall). Let Ω ⊂ Rd be an open bounded domain. Let � :=
[0, 1)d be the unit cube in Rd. Let µ be a �-periodic positive Borel measure on Rd such
that µ(�) = 1 and µ(∂�) = 0. Let 1 < p <∞, q := p/(p− 1). Let {ε} = {εn} be a fixed
sequence of positive real numbers converging to zero. Set µε(B) := εdµ(ε−1B) for any
Borel set B ⊂ Rd.

A norm-bounded sequence {uε} of functions, such that uε ∈ Lp(Ω,dµε) is said to
two-scale converge weakly to a limit u ∈ Lp(Ω×�,dx⊗ dµ) if∫

Ω
uε(x)ϕ

(
x,
x

ε

)
µε(dx)→

∫
Ω

∫
�
u(x, y)ϕ(x, y)µ(dy)dx as ε↘ 0 (6.32)
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for every ϕ(x, y) = ψ(x)σ(y), ψ ∈ C∞0 (Ω), σ ∈ C∞per(�) where C∞per(�) is the function
space of �-periodic real-valued infinitely often continuously differentiable functions on
� that have continuous and infinitely often continuously differentiable continuations on
� = [0, 1]d.

If, in addition to (6.32), for every bounded sequence {vε}, vε ∈ Lq(Ω,dµε), every
v ∈ Lq(Ω×�,dx⊗ dµ), such that {vε} weakly two-scale converges to v we have that∫

Ω
uε(x)vε(x)µε(dx)→

∫
Ω

∫
�
u(x, y)v(x, y)µ(dy)dx as ε↘ 0 (6.33)

we say that {uε} strongly two-scale converges to u.

Note that V. V. Zhikov introduced the same definition for p = 2 in [Zhi00].
Set now Eε := Lp(Ω, dµε), E := Lp(Ω × �, dx ⊗ dµ). E :=

.⋃
εEε∪̇E. Set E ⊃

C := C∞0 (Ω) ⊗ C∞per(�) (where we only take finite linear combinations of tensors), and
Φε : C → En is defined by

Φε(f ⊗ g)(x) := (f ⊗ g)
(
x,
x

ε

)
and linear extension. (B1) and (BL) are satisfied.

Let ϕ = f ⊗ g, f ∈ C∞0 (Ω), g ∈ C∞per(�). By [LW05, Theorem 1, Theorem 2]

lim
ε↘0

∫
Ω

∣∣∣ϕ(x, x
ε

)∣∣∣p µε(dx) =
∫

Ω

∫
�
|ϕ(x, y)|pµ(dy)dx.

By linear extension we see that (B2) is satisfied.
We repeat the above for E∗ε := Lq(Ω, dµε), E∗ := Lq(Ω×�,dx⊗dµ). E∗ :=

.⋃
εE
∗
ε ∪̇E∗.

E and E∗ are asymptotically dual again by [LW05, Theorem 1, Theorem 2].

Remark 6.23. If µ(dy) := dy is the Lebesgue measure on �, Definitions 6.21 and 6.22
are equivalent by an application of [LNW02, Theorem 11] and [LW05, Theorem 5].

Lemma 6.24. {uε} converges strongly (weakly) two-scale to u if and only if it converges
strongly (weakly) in the asymptotic relation sense.

Proof. Since we consider Lp-spaces for 1 < p <∞, we have the asymptotic Kadeč-Klee
property by Theorem 5.57 and (6.5). The equivalence follows now from Lemmas 5.35,
5.60.

Many properties following from our asymptotic relation theory have been proved
within the framework of two-scale convergence. We mention for instance the Kadeč-Klee
property, weak sequential relative-compactness of bounded set, the characterization of
strong and weak convergence in section and the attainability of limits points verified in
(A2).
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7 Variational convergence of operators
and forms

In this chapter, the abstract functional analytic theory of variational convergence for
operators and forms is treated. This is done in the varying-Banach-space-framework.
We note that the proofs are similar to the classical ones in the case of one fixed space. Our
theory from Chapter 5 hence provides rich enough in order to carry over the arguments.

7.1 Lifting via asymptotic isometry

As was noticed by a referee in 2007, Theorem 5.68 can be used to transfer classical
results in a single space to the case of an asymptotically isometric linear asymptotic
relation. Since the requirements for Theorem 5.68 are always satisfied in the case of
separable Hilbert spaces and non-atomic separable Lp-spaces, we find that numerous
classical results will hold in the case of asymptotic relations.

The implications of Proposition 7.2 below are enormous. The resulting method is
demonstrated as an example in the proof of Theorem 7.10 below.

Fix a linear asymptotic relation H consisting of separable Hilbert spaces Hn, n ∈ N,
H. Let {Ψn : H → Hn} be as in Theorem 5.68 (which always holds for separable Hilbert
spaces). Recall that by Corollary 5.72 for un ∈ Hn, n ∈ N, u ∈ H it holds that:

un → (⇀)u strongly (weakly) in H

if and only if

Ψ−1
n un → (⇀)u strongly (weakly) in H.

(7.1)

Definition 7.1. Let n ∈ N. If xn ∈ Hn is a vector, Fn : D(Fn) ⊂ Hn → R a
functional with domain D(Fn), En : D(En) ⊂ Hn ×Hn → R a bivariate functional with
domain D(En) or An : Hn → 2Hn a possibly multi-valued operator with (effective) domain
D(An). We shall define the lifting transformations xΨ

n := Ψ−1
n (xn), FΨ

n (·) := Fn(Ψn(·))
with domain D(FΨ

n ) := {x ∈ H | Ψn(x) ∈ D(Fn)}, E Ψ
n (·, ·) := En(Ψn(·),Ψn(·)) with

domain D(En) := {(x, y) ∈ H ×H | (Ψn(x),Ψn(y)) ∈ D(En)} or AΨ
n := Ψ−1

n ◦ An ◦ Ψn

with (effective) domain D(AΨ
n ) := {x ∈ H | Ψn(x) ∈ D(An)} which are objects defined

in/on H. Define the reverse lifting transformations xΨ−1

n for xn ∈ H, etc. in the obvious
way.

Proposition 7.2 (Lifting method). Let V = C 1, F = C 2, F 2 = C 3, O = C 4 be classes
of vectors, functionals, bivariate functionals, operators respectively in the Hilbert space
H. Suppose that there exist one-to-one and onto maps I i,j : C i → C j, 1 ≤ i, j ≤ 4.
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Suppose that (P) is a statement about strong and weak convergence of sequences in
these classes depending only on the classes, the maps and the Hilbert space H. Suppose
that for any n ∈ N we are given classes (of such objects) Vn = C 1

n , Fn = C 2
n , F 2

n = C 3
n

and On = C 4
n in the Hilbert space Hn with one-to-one onto maps I i,j

n : C i
n → C j

n ,
1 ≤ i, j ≤ 4.

If for the lifted classes (as in Definition 7.1) and every n ∈ N it holds that V Ψ
n ⊂ V ,

FΨ
n ⊂ F , (F 2

n)Ψ ⊂ F 2 and OΨ
n ⊂ O and if for 1 ≤ i, j ≤ 4 and for all Oin ∈ C i

n,
Ojn ∈ C j

n it holds that

I i,j((Oin)Ψ) = (Ojn)Ψ if I i,j
n (Oin) = Ojn, (7.2)

then an asymptotic version of (P) holds with the original classes replaced by
.⋃
n Vn∪̇V ,

.⋃
n Fn∪̇F ,

.⋃
n F 2

n∪̇F 2 and
.⋃
n On∪̇O respectively and H replaced by H with strong and

weak convergence replaced as well.
If the classes coincide and “if” in (7.2) is replaced by “iff”, (P) is equivalent to its

asymptotic version. The lifting method extends to families of classes in the obvious way.
A reverse statement with the reverse lifting transformations also holds.

Proof. Straightforward from (7.1).

The next result was noted by a referee. For the notions of strong and weak convergence
of bounded linear operators see Definition 7.4 below or [KS03].

Corollary 7.3 (A referee). Let An : Hn → Hn, n ∈ N, A : H → H be continuous linear
operators. Then:
An → A strongly in H if and only if AΨ

n → A strongly in H.
An ⇀ A weakly in H if and only if AΨ

n ⇀ A weakly in H.
Equivalent statements holds for a sequence {An} ⊂ L (H) and A ∈ L (H) relative to
{AΨ−1

n } and A.

Proof. Apply Proposition 7.2 with property

Anxn → Ax for every x ∈ H, {xn} ⊂ H, xn → x strongly. (P)

Furthermore, V = H, Vn = Hn, O = L (H), On = L (Hn), n ∈ N. Clearly, V = V Ψ
n

and O = OΨ
n for each n ∈ N by isometry. The proof is concluded by the remark that

(P) is equivalent to strong operator convergence by the Uniform Boundedness Principle
(cf. [Yos78, pp. 68–69, Corollary II.1.1]). The weak convergence case works similarly
(also using the Uniform Boundedness Principle).

As the reader has certainly noticed, we can easily extend all of the above to a dual
pair of asymptotically isometric linear asymptotic relations (E,E∗) consisting of dual
pairs of separable reflexive Banach spaces (En, E∗n), n ∈ N, (E,E∗). To do this one, we
need to adapt to the dual pair of isometries (Ψn,Ψ∗n). As a result, we can e.g. include
operators of the type An : En → 2E

∗
n .
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7.2 Convergence of bounded linear operators

For this section fix two pairs of asymptotically dual linear strong asymptotic relations
(E,E∗), (F,F∗).

Definition 7.4 (Convergence of bounded operators). {Bn}, Bn ∈ L (En, Fn), n ∈ N, is
said to strongly converge to B ∈ L (E,F ) if for every sequence {un}, un ∈ En strongly
converging to u ∈ E in E, {Bnun} strongly converges to Bu in F.
{Bn}, Bn ∈ L (En, Fn), n ∈ N is said to weakly converge to B ∈ L (E,F ) if for every

sequence {un}, un ∈ En weakly converging to u ∈ E in E, {Bnun} weakly converges to
Bu in F.
{Bn}, Bn ∈ L (En, Fn), n ∈ N, is said to demi converge to B ∈ L (E,F ) if for every

sequence {un}, un ∈ En strongly converging to u ∈ E in E, {Bnun} weakly converges to
Bu in F.
{Bn}, Bn ∈ L (En, Fn), n ∈ N, is said to compactly converge to B ∈ L (E,F ) if

for every sequence {un}, un ∈ En weakly converging to u ∈ E in E, {Bnun} strongly
converges to Bu in F.

Clearly, for a sequence of bounded operators following implications hold:

strong convergence
↗ ↘

compact convergence demi convergence
↘ ↗

weak convergence

Note that, in contrary to the case of one fixed space, in the case of asymptotic relations
strong operator convergence does not necessarily imply weak operator convergence. Also
uniform operator convergence does not make any sense.

Lemma 7.5. Let {Bn} be a sequence of bounded operators, Bn ∈ L (En, Fn), n ∈ N,
B ∈ L (E,F ). Then we have:

(i) Bn → B demi if and only if

lim
n F ∗n

〈vn, Bnun〉Fn = F ∗〈v,Bu〉F (7.3)

for any {un}, {vn}, u, v such that un → u strongly in E and vn →∗ v strongly in
F∗.

(ii) Bn → B weakly if and only if (7.3) holds for any {un}, {vn}, u, v such that
un ⇀ u weakly in E and vn →∗ v strongly in F∗.

If, additionally, F and F∗ both possess the asymptotic Kadeč-Klee property and are sep-
arable and asymptotically reflexive,

(iii) Bn → B strongly if and only if (7.3) holds for any {un}, {vn}, u, v such that
un → u strongly in E and vn ⇀∗ v weakly in F∗.
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(iv) Bn → B compactly if and only if (7.3) holds for any {un}, {vn}, u, v such that
un ⇀ u weakly in E and vn ⇀∗ v weakly in F∗.

Proof. The assertion follows from the definition and Lemma 5.60.

Lemma 7.6. Let {Bn} be a sequence of bounded operators, Bn ∈ L (En, Fn), n ∈ N,
B ∈ L (E,F ). Then:

(i) If Bn → B strongly, then

lim
n
‖Bn‖L (En,Fn) ≥ ‖B‖L (E,F ) .

(ii) If E is asymptotically reflexive and separable, and if Bn → B compactly, then

lim
n
‖Bn‖L (En,Fn) = ‖B‖L (E,F ) .

Proof. (i): For any ε > 0 there is a unit vector u ∈ E such that ‖Bu‖F > ‖B‖L (E,F )−
ε. Let {un}, un ∈ En, n ∈ N be strongly convergent to u. By (A3) ‖un‖En → 1.
Since Bn → B strongly, we have by (A3) ‖Bnun‖Fn → ‖Bu‖F and therefore,

lim
n
‖Bn‖L (En,Fn) ≥ lim

n

‖Bnun‖Fn
‖un‖En

= ‖Bu‖F > ‖B‖L (E,F ) − ε,

which gives the desired statement.

(ii): There is a sequence of unit vectors {un}, un ∈ En, n ∈ N such that∣∣∣‖Bn‖L (En,Fn) − ‖Bnun‖Fn
∣∣∣→ 0.

Replacing with a subsequence, we assume that un weakly converges to a vector
u ∈ E with ‖u‖E ≤ 1 (cf. Lemmas 5.46 and 5.53). Since Bnun → Bu strongly by
the assumption, we have

‖B‖L (E,F ) ≥
‖Bu‖F
‖u‖E

≥ ‖Bu‖F = lim
n
‖Bnun‖Fn = lim

n
‖Bn‖L (En,Fn) ,

which together with (i) completes the proof.

The following is a direct consequence of Lemmas 5.60 and 7.5.

Corollary 7.7. Let {Bn} be a sequence of bounded operators, Bn ∈ L (En, Fn), n ∈ N,
B ∈ L (E,F ). Let B∗n ∈ L (F ∗n , E

∗
n), n ∈ N, B∗ ∈ L (F ∗, E∗) be their linear adjoints.

Suppose that E and E∗ have the asymptotic Kadeč-Klee property, E is asymptotically
reflexive and separable. Then:

(i) Bn → B weakly if and only if B∗n → B∗ strongly.
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Suppose that F and F∗ have the asymptotic Kadeč-Klee property, E is asymptotically
reflexive and separable. Then:

(ii) Bn → B strongly if and only if B∗n → B∗ weakly.

Suppose that E,E∗,F,F∗ have the asymptotic Kadeč-Klee property, E is asymptotically
reflexive and separable. Then:

(iii) Bn → B compactly if and only if B∗n → B∗ compactly.

If E = F = H, where H consists of Hilbert spaces, then B∗n in the above corollary can
be replaced by the Hilbert space adjoint B̂n, since the Riesz maps preserve strong and
weak convergence (see Section 6.1).

Lemma 7.8. Suppose that E, E∗, F, F∗ have the asymptotic Kadeč-Klee property. Sup-
pose that E is asymptotically reflexive and separable. If Bn → B compactly, then B and
B∗ are compact operators.

Proof. By Lemma 5.60 it is enough to prove that B∗ is compact.
Let {um} ⊂ F ∗, be a sequence of vectors in F ∗ weakly converging to a vector u ∈ F ∗.

It suffices to prove that B∗um →∗ B∗u E∗-strongly. We easily see by continuity of B that
B∗um ⇀∗ B∗u E∗-weakly. For each m ∈ N, pick a sequence umn with umn ∈ F ∗n , n ∈ N
such that umn →∗ um F∗-strongly. Since B∗n → B∗ strongly, we have B∗nu

m
n →∗ B∗um

E∗-strongly for every m. By Lemma 5.27 there is a sequence of natural numbers mn ↑ ∞
such that

lim
n
umnn = u F∗-weakly, (7.4)

lim
n

∣∣∣‖B∗numnn ‖E∗n − ‖B∗umn‖E∗∣∣∣ = 0. (7.5)

The compact convergence B∗n → B∗ (cf. Lemma 7.7 (iii)) and (7.4) together show
that B∗nu

mn
n →∗ B∗u E∗-strongly. Hence, ‖B∗numn‖E∗n → ‖B∗u‖E∗ and so by (7.5)

‖B∗umn‖E∗ →∗ ‖B∗u‖E∗ . Since we can repeat the arguments for any subsequence,
B∗um →∗ B∗u E∗-strongly by the Kadeč-Klee property.

The next Lemma shows that strong convergence can be checked on a dense subset if
the operator norms are uniformly bounded. We remark that the proof also works for
nonlinear Lipschitz operators (as resolvents and semigroups in Section 7.4 below).

Lemma 7.9. Let Bn ∈ L (En, Fn), n ∈ N, B ∈ L (E,F ), such that

M := sup
n
‖Bn‖L (En,Fn) <∞.

Let C be a strongly dense subset of E. If Bnvn → Bv F-strongly for every v ∈ C and
some vn ∈ En, n ∈ N such that vn → v E-strongly, then Bn → B strongly.

In particular, for uniformly norm bounded sequences of operators it is enough to check
strong convergence along metric approximations.
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7 Variational convergence of operators and forms

Proof. Let u ∈ E and un ∈ En, n ∈ N with un → u E-strongly. Pick vm → u strongly
in E with vm ∈ C for every m. Pick vmn ∈ En, n ∈ N with vmn → vm strongly in E and
Bnv

m
n → Bvm strongly in F. Let fn ∈ Fn, n ∈ N with fn → Bu strongly in F, let for

each m ∈ N, gmn ∈ Fn, n ∈ N with gmn → Bvm strongly in F.
Clearly,

‖Bnun − fn‖Fn
≤‖Bnun −Bnvmn ‖Fn + ‖Bnvmn − gmn ‖Fn + ‖gmn − fn‖Fn
≤M ‖un − vmn ‖En + ‖Bnvmn − gmn ‖Fn + ‖gmn − fn‖Fn

−−−→
n→∞

M ‖u− vm‖E + ‖Bvm −Bvm‖F + ‖Bvm −Bu‖F
−−−−→
m→∞

0.

(7.6)

This proves the assertion by (A4).

7.2.1 A convergence theorem

For this section fix a linear asymptotic relation H consisting of separable Hilbert spaces
Hn, n ∈ N, H. The next Theorem is a linear version of Theorem 7.23 below. Classically,
it is referred to as the Trotter-Neveu-Kato Theorem as in [Tro58, Kat66]. See Section
2.2 for the terminology. As was noted by a referee, it is an easy exercise to verify that,
in the next theorem, the corresponding objects involved are invariant under lifting.

Theorem 7.10. For each n ∈ N let An be the infinitesimal generator of a contractive
C0-semigroup (Tnt )t≥0 on Hn. Let (Gnα)α>0 be the contractive C0-resolvent of An on Hn.
Let A be a generator of a contractive C0-semigroup (Tt)t≥0 on H. Let (Gα)α>0 be the
contractive C0-resolvent of A on H. Then the following statements are equivalent:

(i) An
G−→ A in the strong graph sense as n→∞ (see Definition 7.20 below).

(ii) Gnα0
→ Gα0 strongly as n→∞ for some α0 > 0.

(iii) Gnα → Gα strongly as n→∞ for each α > 0.

(iv) Tnt0 → Tt0 strongly as n→∞ for some t0 > 0.

(v) Tnt → Tt strongly as n→∞ for each t ≥ 0.

Proof. In order to demonstrate the method, we shall only give an example. See [Töl06,
§2.1.4 and §2.4] for a proof without lifting. For n ∈ N let (Tnt ) be the C0-contraction
semigroup associated to the C0-contraction resolvent (Gnα); let (Tt) be the C0-contraction
semigroup associated to the C0-contraction resolvent (Gα). Let n ∈ N. Ψ−1

n Tnt Ψn is
clearly a contraction for each t ≥ 0. Also limt→0 Ψ−1

n Tnt Ψnu = Ψ−1
n Ψnu = u and

Ψ−1
n Tnt ΨnΨ−1

n Tns Ψn = Ψ−1
n Tnt T

n
s Ψn = Ψ−1

n Tnt+sΨn for t, s > 0. Therefore (TΨn
t ) is a

C0-contraction semigroup on H for each n ∈ N. Furthermore, αΨ−1
n GnαΨn is clearly a

contraction for each α > 0. Also limα→∞Ψ−1
n αGnαΨnu = Ψ−1

n Ψnu = u and Ψ−1
n GnαΨn−
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7.3 Convergence of bilinear forms

Ψ−1
n GnβΨn = Ψ−1

n (Gnα − Gnβ)Ψn = (β − α)Ψ−1
n GnαG

n
βΨn = (β − α)Ψ−1

n GnαΨnΨ−1
n GnβΨn

for α, β > 0. Therefore (GΨn
α ) is a C0-contraction resolvent on H for each n ∈ N. By

[MR92, Proposition I.1.10]

Gnαu =
∫ ∞

0
e−αsTns uds, ∀u ∈ Hn, α > 0.

It is well-known that Bochner integrals interchange with continuous linear operators (cf.
[Yos78, Ch. V.5, Corollary 2]). Therefore (α > 0, v ∈ H)

Ψ−1
n GnαΨnv = Ψ−1

n

∫ ∞
0

e−αsTns Ψnv ds =
∫ ∞

0
e−αsΨ−1

n Tns Ψnv ds,

which proves that (GΨn
α ) is the resolvent associated to (TΨn

t ).
Now we can apply the classical Trotter-Neveu-Kato Theorem (see e.g. the survey

paper of Simeon Reich [Rei82] and the references therein) with Proposition 7.2 to get
(ii) ⇔ (iii) ⇔ (iv) ⇔ (v). The equivalence with (i) is proved in the same way. The
general method should be clear.

Quite recently, Zhikov and Pastukhova [ZP07] proved a Trotter-Kato-type theorem
in variable spaces. Please compare with Section 5.2.1. Anyhow, even if not taking
advantage of the lifting method demonstrated above, we claim that the general features
of linear asymptotic relations of Banach spaces suffice to transfer many classical results.
We will do so in the case of nonlinear operators below.

7.3 Convergence of bilinear forms

7.3.1 Symmetric forms

For this section fix a linear asymptotic relation H consisting of separable Hilbert spaces
Hn, n ∈ N, H.

Definition 7.11. A sequence {E n : Hn → R+} of non-negative, closed, quadratic forms
is said to Mosco converge to a non-negative, closed, quadratic form E : H → R+ if the
following two conditions hold:

(M1) If {un}, un ∈ Hn, n ∈ N weakly converges to u ∈ H then

E (u) ≤ lim
n

E n(un).

(M2) For every u ∈ H there exists a strongly convergent sequence un → u, un ∈ Hn,
n ∈ N such that

E (u) = lim
n

E n(un).

The following theorem is classical, compare [Mos94].
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7 Variational convergence of operators and forms

Theorem 7.12 (Mosco, Kuwae, Shioya). Let {E n : Hn → R+} be a sequence of
non-negative, closed, quadratic forms and let E : H → R+ be a non-negative, closed,
quadratic form. The following statements are equivalent:

(i) {E n} Mosco converges to E .

(ii) {Gnα} strongly converges to Gα for all α > 0.

(iii) {Tnt } strongly converges to Tt for all t ≥ 0.

(iv) An
G−→ A in the graph sense.

Proof. See [KS03, Theorem 2.4] or [Kol05, Theorem 2.8, Appendix] and Theorem 7.10.

7.3.2 Non-symmetric forms

Consider a generalized form E on the Hilbert space H which is associated to a coercive
closed form (A ,V ) (with sector constantK ≥ 1) and an operator (Λ,F ). See Subsection
2.2.3 for the terminology.

Define a functional, which measures the rate of asymmetry of our form E , and is, in
fact, an equivalent norm to ‖·‖ bF (cf. Lemma 7.13 below). So let

Θ(u) := sup
v∈V , ‖v‖V =1

|E1(v, u)| = ‖E1(·, u)‖V ∗ , for u ∈ F̂ ,

which is finite. If u ∈ H \ F̂ , we extend Θ to a functional on H with values in R+ by
setting Θ(u) := +∞.

Lemma 7.13. For u ∈ F̂ , we have

(i) Θ(u) ≤ K ‖u‖ bF ,

(ii) ‖u‖V ≤ Θ(u),

(iii)
∥∥∥Λ̂u

∥∥∥
V ∗
≤ (K + 1)Θ(u),

(iv) In particular, ‖·‖ bF ∼ Θ(·) on F̂ .

Proof. See [Hin98, Lemma 2.2].

For each n ∈ N let E n be a generalized form on the Hilbert space Hn which is
associated to a coercive closed form (A n,Vn) (with sector constant Kn ≥ 1) and an
operator (Λn,Fn). Also Θn as above. The following conditions have been introduced by
Masanori Hino in [Hin98, §3]. Compare Silvia Mataloni’s work [Mat99] for the sectorial
case.

Definition 7.14. Consider the following conditions:
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7.3 Convergence of bilinear forms

(F1) If a sequence {un} weakly convergent to u in H satisfies
limn Θn(un) <∞, then u ∈ V .

(F2) For any w ∈ F and any u ∈ V and any sequence {un} weakly convergent to u in
H, un ∈ Vn, n ∈ N, there exists {wn}, wn ∈ Hn, n ∈ N converging to w strongly
in H such that limn E n(wn, un) = E (w, u).

(F2’) There exists a linear subspace C of H such that C ⊂ F densely w.r.t ‖ ‖F and
for any sequence nk ↑ ∞ and every w ∈ C, u ∈ V and any sequence {uk},
uk ∈ Hnk , k ∈ N converging weakly to u in H and satisfying supk Θnk(uk) < +∞
one has a sequence {wk}, wk ∈ Hnk , k ∈ N converging H-strongly to w with
limk E nk(wk, uk) ≤ E (w, u).

(R) {Gnα} converges to Gα strongly for all α > 0.

Define also (F1a) (resp. (F1b)) by replacing Θn(un) by ‖un‖ bFn
(resp. ‖un‖Vn) in

(F1) and (F2’a) (resp. (F2’b)) by replacing Θnk(uk) by ‖uk‖ bFnk
(resp. ‖uk‖Vnk ) in

(F2’).

We have (F1b) ⇒ (F1) and (F2’b) ⇒ (F2’) by Lemma 7.13 (ii).
The following Theorem for a single Hilbert space H was proved by Masanori Hino in

[Hin98, Theorem 3.1].

Theorem 7.15.
(F2) ⇒ (F2’),

(F1) & (F2’) ⇔ (F1) & (F2) ⇔ (R).

Proof. As was proposed by a referee in 2007, it is an easy exercise to check that general-
ized forms, Θ and resolvents are invariant under lifting. Hence we can apply Proposition
7.2 to [Hin98, Theorem 3.1].

Corollary 7.16. (i) (F1b),(F2’b) ⇒ (R),

(ii) If the sector constants Kn of the A n’s are uniformly bounded, then
(F1a),(F2’a) ⇔ (R).

Proof. (i): This is trivial, since clearly (F1b) ⇒ (F1) and (F2’b) ⇒ (F2’) by Lemma
7.13 (ii).

(ii): This is an consequence of Theorem 7.15 and Lemma 7.13.

Remark 7.17. According to Theorem 7.10, corresponding statements to (R) hold also
for the associated semigroups (Tnt )t≥0, n ∈ N, (Tt)t≥0 resp. And for the associated co-
semigroups (T̂nt )t≥0, n ∈ N, (T̂t)t≥0 resp. and co-resolvents (Ĝnα)α>0, n ∈ N, (Ĝα)α>0

with strong operator-convergence replaced by weak operator-convergence by Lemma 7.7.
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7 Variational convergence of operators and forms

The next Proposition can easily be proved with the help of “diagonal-lemma” 5.27.
See [Töl06, Proposition 2.44]. Compare also [Mat99, Proposition 2.5] for one fixed space
H.

Proposition 7.18. Let E n, n ∈ N, E be as in Theorem 7.15. Suppose that there is a
dense linear subset C of F (V resp.), dense in ‖·‖F -norm (‖·‖V -norm resp.) Then the
following weaker version of (F2) ( (F2b) resp.) is equivalent to it:

For any w ∈ C and any un ∈ Vn, n ∈ N, u ∈ V with un → u H -weakly there exists
a sequence {wn}, wn ∈ Hn, n ∈ N, wn → w H -strongly such that

lim
n

E n(wn, un) = E (w, u).

This result also extends to (F2’) and (F2’b) in the obvious way.

Remark 7.19. (i) It is clear by Theorem 7.12 and Theorem 7.15 that in case of sym-
metric forms (F1) and (F2) are just another characterization of Mosco conver-
gence.

(ii) Obviously, if A n ≡ 0, Vn = Hn, n ∈ N, A ≡ 0, V = H, i.e., our generalized
forms {E n} depend only on operators (Λn, D(Λn, Hn)) = (Ln, D(Ln)), n ∈ N (see
[Sta99b, Remark I.4.10] for details), condition (F1) can be omitted.

7.4 G-convergence of nonlinear operators

Fix two linear strong asymptotic relations X,Y consisting of Banach spaces Xn, Yn,
n ∈ N, X,Y . For the terminology of monotone operators, resolvents etc. we refer to
Chapter 2.

Let An : Xn → 2Yn , n ∈ N, A : X → 2Y be multi-valued operators (graphs).

Definition 7.20. We say that An
G−−−→

n→∞
A ({An} G-converges to A, resp. {An} con-

verges strong graph to A) if for all [x, y] ∈ A there are [xn, yn] ∈ An, n ∈ N, such that
xn → x strongly in X and yn → y strongly in Y.

We say that An
G(w,s)−−−−→
n→∞

A ({An} G(w, s)-converges to A) if for all [x, y] ∈ A there are

[xn, yn] ∈ An, n ∈ N, such that xn ⇀ x weakly in X and yn → y strongly in Y.

We say that An
G(s,w)−−−−→
n→∞

A ({An} G(s, w)-converges to A) if for all [x, y] ∈ A there are

[xn, yn] ∈ An, n ∈ N, such that xn → x strongly in X and yn ⇀ y weakly in Y.
G(w∗, s)- and G(s, w∗)-convergence are defined analogously with weak convergence re-

placed by weak∗ convergence.

Remark 7.21. (i) G-convergence both implies G(w, s)- and G(s, w)-convergence.

(ii) If An, n ∈ N, A are linear continuous operators with domains D(An) = Xn, n ∈ N,
D(A) = X, An → A strongly clearly implies An

G−→ A in the G-sense. An → A
demi implies G(s, w)-convergence.
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7.4 G-convergence of nonlinear operators

From now on assume that (X,X∗) is a pair of asymptotically dual strong linear asymp-
totic relations consisting of Banach spaces Xn, n ∈ N, X and their duals respectively.

Lemma 7.22 (“Monotonicity trick”). Let An : D(An) ⊂ Xn → 2X
∗
n, n ∈ N, A :

D(A) ⊂ X → 2X
∗

be a G-convergent sequence of monotone operators. Suppose that A
is maximal monotone. Let [xn, yn] ∈ An, n ∈ N, x ∈ D(A), y ∈ X∗ such that

xn ⇀ x weakly in X as n→∞, (7.7)
yn ⇀

∗ y weakly in X∗ as n→∞, (7.8)

lim
n X∗n

〈yn, xn〉Xn ≤ X∗〈y, x〉X . (7.9)

Then y ∈ A(x).

Proof. Let [u, v] ∈ A. Let [un, vn] ∈ An with un → u, vn →∗ v strongly, which exist by
the G-convergence. Then

X∗n
〈yn, xn〉Xn −X∗n

〈vn, xn〉Xn −X∗n
〈yn − vn, un〉Xn = X∗n

〈yn − vn, xn − un〉Xn ≥ 0.

Passing on to the limit,

X∗〈y, x〉X −X∗〈v, x〉X −X∗〈y − v, u〉X ≥ 0,

so

X∗〈y − v, x− u〉X ≥ 0,

which is true for all [u, v] ∈ A. Hence by the maximality [x, y] ∈ A.

The subsequent theorem is proved essentially by the ideas of H. Attouch in [Att84,
Proposition 3.60]. Our proof illustrates profoundly that the concepts of asymptotic
reflexivity and asymptotic Kadeč-Klee property are excellent substitutes when making
the transition from a single space to an asymptotic relation.

Theorem 7.23. Suppose that X as well as X∗ is asymptotically reflexive and separable
and possesses the asymptotic Kadeč-Klee property. Suppose that Xn, n ∈ N, X as well
as their duals are strictly convex. Let An : Xn → 2X

∗
n, n ∈ N, A : X → 2X

∗
be maximal

monotone. Denote by (Anλ)λ>0, n ∈ N, (Aλ)λ>0 the associated Yosida-approximations
and denote by (Rnλ)λ>0, n ∈ N, (Rλ)λ>0 the associated resolvents. See Paragraph 2.3.1
for the terminology.

Then the following statements are equivalent:

(i) An
G−→ A.

(ii) Rnλxn → Rλx strongly in X for each λ > 0 and for each xn ∈ Xn, n ∈ N, x ∈ X
with xn → x strongly in X.

(iii) Anλxn →∗ Aλx strongly in X∗ for each λ > 0 and for each xn ∈ Xn, n ∈ N, x ∈ X
with xn → x strongly in X.

165



7 Variational convergence of operators and forms

(iv) Anλ0
xn →∗ Aλ0x strongly in X∗ for some λ0 > 0 and for each xn ∈ Xn, n ∈ N,

x ∈ X with xn → x strongly in X.

(v) Rnλ0
xn → Rλ0x strongly in X for some λ0 > 0 and for each xn ∈ Xn, n ∈ N, x ∈ X

with xn → x strongly in X.

Proof. Let us prove the sequence of implications: (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i).
(iii) ⇒ (iv) is trivial. Recall that by Proposition 5.58 and strict convexity (see ap-

pendix)
Jn(xn)→∗ J(x), J−1

n (yn)→ J−1(y) (7.10)

for all xn → x in X and all yn →∗ y in X∗. From this we infer (ii) ⇔ (iii) and (iv) ⇔
(v). We are left to prove (i) ⇒ (ii) and (v) ⇒ (i).

(i) ⇒ (ii):
Let xn ∈ Xn, n ∈ N, x ∈ X with xn → x strongly in X. Let λ > 0. By G-convergence
let [x0, y0] ∈ A, [x0

n, y
0
n] ∈ An, n ∈ N with x0

n → x0 strongly in X and y0
n →∗ y0 strongly

in X∗. By (2.8)

‖xn −Rnλxn‖Xn ≤ 2
[∥∥xn − x0

n

∥∥
Xn

+ λ
∥∥y0

n

∥∥
X∗n

]
so that

{
‖Rnλxn‖Xn

}
remains bounded by (A3’). Indeed, so does

{
‖Anλxn‖X∗n

}
, recalling

that Anλxn = 1
λJn(xn −Rnλxn).

Let {nk} be any subsequence of {n}. By asymptotic reflexivity and Lemma 5.53 find
a subsequence {nkl} of {nk} such that both

R
nkl
λ xnkl ⇀ f weakly in X as l→∞,

A
nkl
λ xnkl ⇀

∗ g weakly in X∗ as l→∞,

for some f ∈ X and some g ∈ X∗. For notational convenience we write {n} for {nkl} in
the sequel. By G-convergence pick [u, v] ∈ A, [un, vn] ∈ An, n ∈ N with un → u strongly
in X and vn →∗ v strongly in X∗. By monotonicity and [Rnλxn, A

n
λxn] ∈ An

X∗n
〈Anλxn − vn, Rnλxn − un〉Xn ≥ 0 (7.11)

for each n ∈ N. Now by weak convergence and Lemma 5.46

lim
n

X∗n
〈Anλxn, xn −Rnλxn〉Xn =

1
λ
‖xn −Rnλxn‖

2
Xn
≥ 1
λ
‖x− f‖2X . (7.12)

But also
lim
n

X∗n
〈Anλxn, xn −Rnλxn〉Xn = λ ‖Anλxn‖

2
X∗n
≥ λ ‖g‖2X∗ . (7.13)

Now multiply (7.12) and (7.13), take the square root and multiply with −1:

lim
n
−X∗n

〈Anλxn, xn −Rnλxn〉Xn ≤ −‖g‖X∗ ‖x− f‖X ≤ −X∗〈g, x− f〉X . (7.14)
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The last equation yields

lim
n X∗n

〈Anλxn, Rnλxn〉Xn = lim
n

[
−X∗n

〈Anλxn, xn −Rnλxn〉Xn +X∗n
〈Anλxn, xn〉Xn

]
≤− X∗〈g, x− f〉X +X∗〈g, x〉X = X∗〈g, f〉X .

(7.15)

Hence we can apply Lemma 7.22 and obtain that [f, g] ∈ A. Choosing u, v in (7.11)
equal to f, g yields

lim
n

X∗n
〈Anλxn, Rnλxn〉Xn ≥ X∗〈g, f〉X . (7.16)

Combining (7.15) and (7.16) yields

lim
n X∗n

〈Anλxn, Rnλxn〉Xn = X∗〈g, f〉X (7.17)

or equivalently

lim
n

X∗n

〈
Anλxn,

1
λ

(xn −Rnλxn)
〉
Xn

=
X∗

〈
g,

1
λ

(x− f)
〉
X

. (7.18)

But Anλxn = 1
λJn (xn −Rnλxn). Hence by Lemma 5.59 and the asymptotic Kadeč-Klee

property of X and X∗ respectively

R
nkl
λ xnkl → f strongly in X as l→∞,

A
nkl
λ xnkl →

∗ g strongly in X∗ as l→∞.

By strict convexity of X∗ we have that J is continuous w.r.t. the strong topologies of X
and X∗. Combined with (7.10) we get that g = 1

λJ(x− f). Therefore [f, g] ∈ A implies
f = Rλx and g = Aλx. Since the argument works for arbitrary subsequences with the
same limit points we see that the whole sequences converge strongly to these points. (ii)
is verified (as is (iii)).

(v) ⇒ (i):
Let [u, v] ∈ A. Pick ũn ∈ Xn, ṽn ∈ X∗n with ũn → u, ṽn →∗ v. Set

x := u+ λ0J
−1v, xn := ũn + λ0J

−1
n ṽn, n ∈ N.

Clearly, xn → x strongly in X by (7.10). From v = 1
λ0
J(x− u) and [u, v] ∈ A it follows

by definition of Rλ0 that
Rλ0x = u and Aλ0x = v.

By assumption (v) (and (iv)) Rnλ0
xn → Rλ0x in X (and Anλ0

xn →∗ Aλ0x in X∗). Set

un := Rnλ0
xn, vn := Anλ0

xn, n ∈ N.

Clearly, [un, vn] ∈ An and un → u, vn →∗ v: the G-convergence (i).

The next theorem works only in Hilbert spaces, however, if a sequence {An} of maximal
monotone operators is defined on a linear asymptotic relation of Banach spaces V, it is
sometimes possible to consider it as defined on H, where H is a linear asymptotic relation
of Hilbert spaces such that V ↪→ H is an asymptotically strong embedding as in Section
5.11.
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Theorem 7.24. Let H be a linear asymptotic relation consisting of infinite dimensional
separable Hilbert spaces. For each n ∈ N let An : D(An) ⊂ Hn → 2Hn be a maximal
monotone operator. Let (Snt )t≥0 be the non-expansive semigroup associated to −An via
Theorems 2.18, 2.19. Let A : D(A) ⊂ H → 2H be a maximal monotone operator.
Let (St)t≥0 be the non-expansive semigroup associated to −A. Then the following are
equivalent:

(i) An
G−→ A.

(ii) Snt xn → Stx strongly in H for all t ≥ 0 and for each xn ∈ Hn, n ∈ N, x ∈ H with
xn → x strongly in H.

Proof. As verified in Section 6.1, H is asymptotically isometric. For a fixed space, the
result above is classical, see [Bré73, Théorème 3.16, Théorème 4.2], Theorem 7.23 above
and [Bré75, Theorem 11] (see also [BP72]). By Theorem 2.19 the strong limit

lim
t↘0

Stx− x
t

= −A0x ∀x ∈ D(A), (7.19)

where A0x := ProjAx(0), x ∈ D(A) is the principal section of A and A is uniquely
characterized by this limit. A converse characterization and uniqueness also holds, see
Theorem 2.18. Therefore, according to Proposition 7.2 we need only check that this
one-to-one correspondence as well as the classes are invariant under lifting. But it is an
easy exercise to check that the semigroup-axioms in Definition 2.17 as well as the axioms
for A (namely: monotonicity and ran(A + Id) = H) and the properties of the domains
and principal section are preserved. Limit (7.19) is clearly also invariant under lifting.
For details on semigroups, we refer to Paragraph 2.3.2.

7.5 Γ, Mosco and slice convergence

Recall that R∞ := (−∞,+∞]. For this section assume that (X,X∗) is a pair of asymp-
totically dual strong linear asymptotic relations consisting of Banach spaces Xn, n ∈ N,
X and their duals respectively.

Definition 7.25 (Γ-convergence). For each n ∈ N let fn : Xn → R∞ be a proper
convex functional and let f : X → R∞ be a proper convex functional. We say that {fn}
Γ-converges to f (fn

Γ−−−→
n→∞

f) as n→∞ if the following two conditions are satisfied:

∀x ∈ X ∀xn ∈ Xn, n ∈ N, xn → x strongly : lim
n
fn(xn) ≥ f(x). (Γ1)

∀y ∈ X ∃yn ∈ Xn, n ∈ N, yn → y strongly : lim
n
fn(yn) ≤ f(y). (Γ2)

Definition 7.26 (Mosco convergence). For each n ∈ N let fn : Xn → R∞ be a proper
convex functional and let f : X → R∞ be a proper convex functional. We say that {fn}
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7.5 Γ, Mosco and slice convergence

Mosco converges to f ({fn} M -converges to f ; fn
M−−−→

n→∞
f) as n → ∞ if the following

two conditions are satisfied:

∀x ∈ X ∀xn ∈ Xn, n ∈ N, xn ⇀ x weakly : lim
n
fn(xn) ≥ f(x). (M1)

∀y ∈ X ∃yn ∈ Xn, n ∈ N, yn → y strongly : lim
n
fn(yn) ≤ f(y). (M2)

Definition 7.27 (Slice convergence). For each n ∈ N let fn : Xn → R∞ be a proper
convex functional and let f : X → R∞ be a proper convex functional. We say that {fn}
slice converges to f ({fn} S-converges to f ; fn

S−−−→
n→∞

f) as n→∞ if

fn
M−−−→

n→∞
f and f∗n

M∗−−−→
n→∞

f∗,

where M∗-convergence is defined to be Mosco convergence with “weakly” in (M1) replaced
by “weakly∗”. f∗ denotes the Legendre transform, cf. Section 2.4.3.

Remark 7.28. Obviously,(
fn

S−→ f
)
⇒
(
fn

M−→ f
)
⇒
(
fn

Γ−→ f
)
.

As we shall see below, when X is asymptotically reflexive and separable,(
fn

S−→ f
)
⇔
(
fn

M−→ f
)
.

This is a consequence of Theorem 7.38 below.

Proposition 7.29 (Asymptotic properties). Suppose that for each n ∈ N, fn : Xn →
R∞ is a proper functional and f : X → R∞ is a proper functional such that fn

Γ−−−→
n→∞

f .

(i) f is l.s.c.

(ii) If fn ≥ 0, n ∈ N, then f ≥ 0.

(iii) If fn, n ∈ N are convex, then f is convex.

(iv) If fn ≥ 0, n ∈ N are positively homogeneous with degree pn and pn → p as n→∞
for some p, then f is positively homogeneous with degree p.

(v) If fn, n ∈ N are quadratic forms, then f is a quadratic form.

Proof. The proof for the classical case can be found in [DM93, Propositions 6.7 and 6.8,
Theorem 11.1, Proposition 11.6].
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7 Variational convergence of operators and forms

(i): Let x ∈ X. Let xm ∈ X, m ∈ N with limm ‖xm − x‖X = 0 and the property that
limm f(xm) exists and is less than +∞. By Lemma 2.22 it is enough to prove that
limm f(xm) ≥ f(x). Let xmn ∈ Xn, n ∈ N with xmn → xm for each m ∈ N and

lim
n
fn(xmn ) = f(xm)

by (Γ1) and (Γ2). By Lemma 5.27 there is a subsequence {mn} of {m} such that
xmnn → x in X and

lim
m
f(xm) = lim

m
lim
n
fn(xmn ) ≥ lim

n
fn(xmnn ) ≥ lim

n
fn(xmnn ) ≥ f(x)

where we have used (Γ1).

(ii): Clear by (Γ2).

(iii): Let x, y ∈ X with f(x) <∞, f(y) <∞, t ∈ (0, 1). By (Γ2) there exist xn, yn ∈ Xn,
n ∈ N with xn → x, yn → y and limn fn(xn) ≤ f(x), limn fn(yn) ≤ f(y). By (AL)
txn + (1− t)yn → tx+ (1− t)y. By (Γ1) and the assertion

f(tx+ (1− t)y) ≤ lim
n
fn(txn + (1− t)yn)

≤ lim
n
fn(txn + (1− t)yn) ≤ lim

n
[tfn(xn) + (1− t)fn(yn)]

≤ t lim
n
fn(xn) + (1− t) lim

n
fn(yn) ≤ tf(x) + (1− t)f(y).

(iv): Let x ∈ X with 0 ≤ f(x) <∞, t > 0 (by (ii)). Let {pn}, p be as in the assertion.
By (Γ1), (Γ2) there are xn, n ∈ N, xn → x, limn fn(xn) ≤ f(x). Then

f(tx) ≤ lim
n
fn(txn) = lim

n
tpnfn(xn) ≤ lim

n
tpn lim

n
fn(xn) ≤ tpf(x).

But also for tx there are x̃n ∈ Xn, n ∈ N, x̃n → tx such that limn fn(x̃n) ≤ f(tx).
Furthermore,

f(tx) ≥ lim
n
fn(x̃n) ≥ lim

n
fn

(
t

t
x̃n

)
≥ lim

n
tpn lim

n
fn

(
1
t
x̃n

)
≥ tpf(x).

(v): By (Γ2) there are xn ∈ Xn, n ∈ N with xn → 0 and

f(0) ≥ lim
n
fn(xn) ≥ lim

n
0 = 0.

We are left to verify (i)–(iii) in Proposition 2.4. By (Γ1) and the assertion

0 = lim
n

0 = lim
n
fn(0) ≥ f(0),

hence f(0) = 0, which is (i) in Proposition 2.4. (ii) in Proposition 2.4 follows from
(iv) of this Proposition and the assertion. Let us prove (iii) of Proposition 2.4. Let
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7.5 Γ, Mosco and slice convergence

x, y ∈ X with f(x) < ∞, f(y) < ∞. Let xn, yn ∈ Xn, n ∈ N such that xn → x,
yn → y and limn fn(xn) ≤ f(x), limn fn(yn) ≤ f(y). By (AL) xn + yn → x + y
and xn − yn → x− y. Now by (Γ1) and the assertion

f(x+ y) + f(x− y) ≤ lim
n

[fn(xn + yn) + fn(xn − yn)]

≤ lim
n

[fn(xn + yn) + fn(xn − yn)] ≤ lim
n

[2fn(xn) + 2fn(yn)]

≤ 2 lim
n
fn(xn) + 2 lim

n
fn(yn) ≤ 2f(x) + 2f(y).

Remark 7.30. If fn
Γ−→ f as in the above proposition, then the properness of each fn,

n ∈ N does not make f proper necessarily. Consider the counter-example: fn : R→ R∞,
n ∈ N, f : R→ R∞

fn(t) :=

{
n, if t = n,

+∞, if t 6= n,
f :≡ +∞.

Then each fn, n ∈ N is proper and fn
Γ−→ f .

Theorem 7.31. Let Xn, n ∈ N, X be separable. Any sequence of functionals {fn :
Xn → R∞} has a Γ-convergent subsequence whose Γ-limit f̃ is a functional on X. If
each fn, n ∈ N is proper and there is a sequence un ∈ D(fn), n ∈ N such that un → u
for some u ∈ X, then u ∈ D(f̃).

Proof. Recall that X is second countable by Lemma 5.15 whenever each of Xn, n ∈ N,
X is separable. For each n ∈ N define

Fn : X→ R∞, Fn(x) :=

{
fn(x), if x ∈ Xn,

+∞, otherwise.

Since X has a countable base, we can apply [DM93, Theorem 8.5] and find that a
subsequence {Fnk} of {Fn} Γ-converges to some F̃ : X → R∞. Suppose that x ∈ Xnk0

for some k0 ∈ N. Then F̃ (x) = +∞ by (Γ2) and the definition of the Fn’s. Therefore
{fnk} Γ-converges to f̃ := F̃ �X .

Let uk ∈ Xnk ∩D(fnk), uk → u ∈ X. Then by (Γ1) f̃(u) = F̃ (u) <∞.

7.5.1 An excursion into epilimits and set convergence

Definition 7.32. Let (T, τ) be a (Fréchet) topological space. Let Fn : T → R∞, n ∈ N.
The sequential epilimit inferior of the sequence {Fn} w.r.t. the topology τ is a functional
τ - Lie Fn defined by

(τ - Lie Fn)(x) := inf
xn

τ−→
n
x

lim
n
Fn(xn).
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7 Variational convergence of operators and forms

The sequential epilimit superior of the sequence {Fn} w.r.t. the topology τ is a functional
τ - Lse Fn defined by

(τ - Lse Fn)(x) := inf
xn

τ−→
n
x

lim
n
Fn(xn).

If τ - Lie Fn = τ - Lse Fn, {Fn} is said to be epi-convergent with epilimit

τ - Lme Fn := τ - Lie Fn = τ - Lse Fn.

Let {Cn} be a sequence of subsets of T . The sequential limit inferior of {Cn} w.r.t. the
topology τ is a set τ - LiCn defined by

τ - LiCn := {x ∈ T | ∃xn ∈ Cn, n ∈ N, xn
τ−→
n
x}.

The sequential limit superior of {Cn} w.r.t. the topology τ is a set τ - LsCn defined by

τ - LsCn := {x ∈ T | ∃ subsequence {nk}∃xk ∈ Cnk , n ∈ N, xk
τ−→
k
x}.

A sequence of sets {Cn} is said to Painlevé–Kuratowski converge (PK-converge) to a
set C w.r.t. the topology τ if

τ - LsCn ⊂ C ⊂ τ - LiCn.

Remark 7.33. If one substitutes inf in the definition by sup, one defines the so-called
hypolimits. We shall not make use of them in the latter. There is a theory about epi-
and hypolimits of sets, functionals and bivariate functionals on general topological spaces
with broad contributions by H. Attouch et. al. Cf. [AW83a, AW83b, Att84, AAW88].

Lemma 7.34. Let (T, τ) be a Fréchet topological space. Let Fn : T → R∞, n ∈ N.
Then

τ - Lie Fn ≤ τ - Lse Fn.

Suppose that σ is another Fréchet topology on T such that σ is weaker than τ . Then

σ- Lie Fn ≤ τ - Lie Fn, σ- Lse Fn ≤ τ - Lse Fn,

and if σ- Lme Fn and τ - Lme Fn exist,

σ- Lme Fn ≤ τ - Lme Fn.

Proof. Straightforward from the definition.

Lemma 7.35. Let fn : Xn → R∞ for each n ∈ N, f : X → R∞. For each n ∈ N define

Fn : X→ R∞, Fn(x) :=

{
fn(x), if x ∈ Xn,

+∞, otherwise.

and define F in the same way.
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7.5 Γ, Mosco and slice convergence

Write w and s for the weak and strong topology on X resp. fn → f in the Γ-sense if
and only if

s- Lse Fn ≤ F ≤ s- Lie Fn

and fn → f in the Mosco sense if and only if

s- Lse Fn ≤ F ≤ w- Lie Fn.

Proof. Follows from the definitions.

Lemma 7.36. Let An : Xn → 2X
∗
n, n ∈ N, A : X → 2X

∗
be maximal monotone. For

each n ∈ N define

Bn : X→ 2X∗ , Bn(x) :=

{
An(x), if x ∈ D(An),
∅, otherwise.

and define B in the same way. Then An → A in the G-sense if and only if Bn → B
(understood as graphs) in the PK-sense w.r.t. to the product topology of strong X and
strong X∗.

Proof. Let τ be the product topology of strong X and strong X∗. Let An → A in
the G-sense. B ⊂ τ - LiBn follows from the definition. But by Lemma 7.22 and the
monotonicity also τ - LsBn ⊂ B. Therefore Bn → B in the PK-sense. The converse
follows from the definition.

Lemma 7.37. Let τ be either the strong or the weak topology on X. For each n ∈ N let
fn : Xn → R∞ be convex and proper. Then τ - Lse fn is convex on X.

Proof. For the classical case of one topological vector space X compare [Att84, Proposi-
tion 3.1]. τ - Lse fn is a map effectively defined on a subset of X by similar arguments as
in the proof of Theorem 7.31. Suppose that τ - Lse fn is proper, otherwise there is nothing
to prove. Let t ∈ (0, 1), x, y ∈ X with (τ - Lse fn)(x) < +∞, (τ - Lse fn)(y) < +∞. In the
subsequent inequality let x = τ - limn xn, y = τ - limn yn, tx+ (1− t)y = τ - limn zn where
x, y ∈ X and xn, yn, zn ∈ Xn, n ∈ N.

(τ - Lse fn)(tx+ (1− t)y) = inf
zn

τ−→tx+(1−t)y
lim
n
fn(zn)

≤ inf
xn

τ−→x,yn
τ−→y

lim
n
fn(txn + (1− t)yn)

≤ inf
xn

τ−→x

inf
yn

τ−→y

lim
n

[tfn(xn) + (1− t)fn(yn)]

≤ inf
xn

τ−→x

inf
yn

τ−→y

[
t lim
n
fn(xn) + (1− t) lim

n
fn(yn)

]
≤ t inf

xn
τ−→x

lim
n
fn(xn) + (1− t) inf

yn
τ−→y

lim
n
fn(yn)

= t(τ - Lse fn)(x) + (1− t)(τ - Lse fn)(y).

173



7 Variational convergence of operators and forms

7.5.2 Bicontinuity of the Legendre transform

In this subsection we shall prove that the map f 7→ f∗ is bicontinuous w.r.t. the Mosco
topology (one can define a sequential topology on the class of all convex, proper maps
from X to R∞ such that its convergence coincides with Mosco convergence). The proofs
in this section might seem a bit technical, but there seems to be no way to avoid a
regularization argument (more precisely, a coercification argument). We remind the
reader that the original Mosco Theorem [Mos94, Theorem 2.4.1] uses a similar argument
with regularized Dirichlet forms using the Moreau-Yosida-Deny-approximations. We
shall need Theorem 7.38 for our main result Theorem 7.43 below.

In what follows, we implicitly use the convention of Lemma 7.35, which allows us to
consider epilimits defined on an asymptotic relation.

Theorem 7.38. Let X be asymptotically reflexive and separable, X and X∗ be asymp-
totically dual. For each n ∈ N let fn : Xn → R∞ be convex, proper and l.s.c. Let
f : X → R∞ be convex, proper and l.s.c. Suppose that the same is true for the sequence
of conjugate functions {f∗n} and the conjugate function f∗.

Then the following statements are equivalent:

(i) fn
M−→ f .

(ii) f = w- Lme fn = s- Lme fn.

(iii) s- Lse fn ≤ f ≤ w- Lie fn.

(iv) f∗n
M−→ f∗.

(v) f∗ = w- Lme f
∗
n = s- Lme f

∗
n.

(vi) s- Lse f∗n ≤ f∗ ≤ w- Lie f∗n.

(vii)

∀x ∈ X ∃{xn}, xn ∈ Xn, xn → x strongly : fn(xn)→ f(x),
∀y ∈ X∗ ∃{yn}, yn ∈ X∗n, yn →∗ y strongly : f∗n(yn)→ f∗(y).

(7.20)

(viii) fn
S−→ f .

(ix) f∗n
S−→ f∗.

We shall need another result (similar to Attouch’s [Att84, Theorem 3.7]) for the proof,
whose proof in turn is postponed to the end of this section.

Definition 7.39. For n ∈ N let fn : Xn → R∞ be proper. We say that the sequence
{fn} is uniformly proper if there exists a norm-bounded sequence {xn}, xn ∈ Xn such
that supn fn(xn) < +∞.
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7.5 Γ, Mosco and slice convergence

Theorem 7.40. Let X be asymptotically reflexive and separable. For each n ∈ N let
fn : Xn → R∞ be convex, proper and l.s.c. such that {fn} is uniformly proper. Then

[w- Lie fn]∗ = s- Lse f∗n. (7.21)

Proof of Theorem 7.38. “(i) ⇔ (iii)” and “(iv) ⇔ (vi)” result from Lemma 7.35.
We shall prove “(ii) ⇔ (iii)”. (ii) is equivalent to f = w- Lie fn = w- Lse fn =

s- Lie fn = s- Lse fn. This sequence of equalities is clearly equivalent to the equality
smallest and the largest of these four functions, which are by Lemma 7.34 respectively
w- Lie fn and s- Lse fn. This is equivalent to (iii). “(v) ⇔ (vi)” is proved in the same
way.

We prove “(iii)⇔ (vi)”. Suppose that (iii) holds. By conjugation, the inequalities are
reversed, see Section 2.4.3:

[w- Lie fn]∗ ≤ f∗ ≤ [s- Lse fn]∗ .

Note that by properness of f and f ≥ s- Lse fn, {fn} is uniformly proper. Therefore
by Theorem 7.40 [w- Lie fn]∗ = s- Lse f∗n. By properness of f∗ and f∗ ≥ s- Lse f∗n,
{f∗n} is uniformly proper as well. Hence by Theorem 7.40 again and by conjugation,
[w- Lie f∗n]∗∗ = [s- Lse f∗∗n ]∗. Using that fn = f∗∗n by Theorem 2.39, we get

s- Lse f∗n ≤ f∗ ≤ [w- Lie f∗n]∗∗ .

Noticing that for any function g (not necessarily convex) the inequality g∗∗ ≤ g holds,
we obtain (vi). One can prove “(vi)⇒ (iii)” by repeating the arguments and taking into
account that fn = f∗∗n for each n and f = f∗∗ by Theorem 2.39.

(i) together with (iv) gives (vii) easily. We would like to prove “(vii) ⇒ (i)”. Suppose
that (vii) holds. (M2) is verified. We would like to verify (M1). Let xn ∈ Xn, n ∈ N,
x ∈ X such that xn ⇀ x weakly in X. Let y ∈ X∗ be any point, yn ∈ X∗n, n ∈ N be
such that yn →∗ y strongly in X∗ and f∗n(yn)→ f∗(y). From fn = f∗∗n for every n

fn(xn) ≥ X∗n
〈yn, xn〉Xn −f

∗
n(yn).

Passing on to the limit inferior, we see that

lim
n
fn(xn) ≥ X∗〈y, x〉X −f

∗(y).

This being true for any y ∈ X∗, noticing that f = f∗∗:

lim
n
fn(xn) ≥ f(x)

and (M1) follows.
“(i) & (iv) ⇔ (viii) ⇔ (ix)” is clear by reflexivity.

Before we prove Theorem 7.40, we need a technical lemma (cf. [Att84, Lemma 3.8]).

175



7 Variational convergence of operators and forms

Lemma 7.41 (Uniform minorization). For n ∈ N let fn : Xn → R∞ be proper, convex
and l.s.c. such that {fn} is uniformly proper. Then

(w- Lie fn)(x) > −∞ (7.22)

for each x ∈ X implies that there is a real number R ≥ 0 such that for each n ∈ N,
xn ∈ Xn

fn(xn) +R(‖xn‖Xn + 1) ≥ 0. (7.23)

Proof. Suppose that (7.23) is false. Then there is a map k 7→ nk and there are xk ∈ Xnk

such that

fnk(xk) + k(‖xk‖Xnk + 1) < 0. (7.24)

W.l.o.g. nk ↑ +∞ as k →∞. There are two possible situations:
1. {‖xk‖} is bounded :
By Lemma 5.53 there is z ∈ X such that a subsequence of {xk} (still denoted by {xk})
converges weakly to z. By definition of w- Lie

w- Lie fn(z) ≤ lim
k

[
−k ‖xk‖Xnk − k

]
= −∞,

a contradiction.
2. {‖xk‖} is unbounded :
Extract a subsequence (still denoted by {xk}) such that limk ‖xk‖Xnk = +∞. By uniform
properness there is a sequence {yk}, yk ∈ Xnk with supk ‖yk‖Xnk ≤ C < +∞ and
fnk(yk) < +∞. Extract another subsequence (still denoted by {yk}) such that yk ⇀ z
as k →∞, for some z ∈ X. W.l.o.g. ‖xk − yk‖Xnk > 1 for k ∈ N. Set

zk := tkxk + (1− tk)yk

with tk := 1√
k‖xk−yk‖Xnk

which lies in (0, 1) for each k ∈ N. tk → 0 as k → ∞ because

‖xk − yk‖Xnk → +∞ as k →∞. Also,

‖tkxk‖Xnk ≤
1√
k
·

‖xk‖Xnk∣∣∣‖xk‖Xnk − ‖yk‖Xnk ∣∣∣ =
1√
k
· 1∣∣∣∣1− ‖yk‖Xnk‖xk‖Xnk

∣∣∣∣ → 0,

as k → ∞, because ‖xk‖Xnk → +∞ as k → ∞ and {‖yk‖Xnk} is bounded. Therefore
tkxk → 0 ∈ X by Lemma 5.13. By (WL’) zk ⇀ z weakly as k → ∞. By convexity of
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fnk :

fnk(zk) ≤ tkfnk(xk) + (1− tk)fnk(yk)

≤ 1√
k ‖xk − yk‖Xnk

[
−k ‖xk‖Xnk − k

]
+ (1− tk)fnk(yk)

≤ −
√
k
‖xk‖Xnk

‖xk − yk‖Xnk
+ C ≤ −

√
k

‖xk‖Xnk
‖xk‖Xnk + ‖yk‖Xnk

+ C

≤ −
√
k

1
1 + C

‖xk‖Xnk

+ C.

Thus,
(w- Lie fn)(z) ≤ lim

k
fnk(zk) = −∞,

again a contradiction.

Proof of Theorem 7.40. Suppose that {fn} is uniformly proper.
We first verify

[w- Lie fn]∗ ≤ s- Lse f∗n,

which is the same thing as

∀y ∈ X∗, ∀yn ∈ X∗n, n ∈ N, yn →∗ y strongly : [w- Lie fn]∗ (y) ≤ lim
n
f∗n(yn).

By definition of w- Lie fn, for every ε > 0 and for every x ∈ X, there exist xn ∈ Xn,
n ∈ N with x

(ε)
n ⇀ x weakly as n→∞ such that

(w- Lie fn(x) + ε) ∨ −1
ε
≥ lim

n
fn(x(ε)

n ).

By definition of f∗n, for any yn ∈ X∗n, n ∈ N, y ∈ X with yn →∗ y strongly,

f∗n(yn) ≥
X∗n

〈
yn, x

(ε)
n

〉
Xn
−fn(x(ε)

n ). (7.25)

Passing on to the limit superior,

lim
n
f∗n(yn) ≥ X∗〈y, x〉X − lim

n
fn(x(ε)

n ).

Together with (7.25),

lim
n
f∗n(yn) ≥ X∗〈y, x〉X −

[
(w- Lie fn(x) + ε) ∨ −1

ε

]
.

Being true for any ε > 0 and x ∈ X, we get

lim
n
f∗n(yn) ≥ sup

x∈X
[X∗〈y, x〉X −w- Lie fn(x)] = [w- Lie fn]∗ (x).
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The harder part is to prove

s- Lse f∗n ≤ [w- Lie fn]∗

which is,

∀y ∈ X∗, ∃yn ∈ X∗n, n ∈ N, yn →∗ y strongly : lim
n
f∗n(yn) ≤ [w- Lie fn]∗ (y). (7.26)

Suppose for a while that w- Lie fn(x) > −∞ for any x ∈ X. Then by Lemma 7.41
there is a real number R ≥ 0 such that

fn(xn) +R(‖xn‖Xn + 1) ≥ 0 (7.27)

for all xn ∈ Xn, n ∈ N.
Set f := w- Lie fn. For each λ > 0, define coercified functionals

fλn (xn) := fn(xn) +
λ

2
‖xn‖2Xn , xn ∈ Xn, n ∈ N

and
fλ(x) := f(x) +

λ

2
‖x‖2X , x ∈ X.

{fλn} is equi-coercive in the following sense:

Each fλn , n ∈ N is weakly coercive and:

whenever xn ∈ Xn, n ∈ N such that sup
n
fλn (xn) < +∞, then sup

n
‖xn‖Xn < +∞.

(7.28)

This follows from (7.27). Let y ∈ X∗, yn ∈ X∗n, n ∈ N and yn →∗ y strongly in X∗.
(7.26) for {(fλn )∗} and (fλ)∗ is satisfied if

lim
n

inf
xn∈Xn

[
fλn (xn)− X∗n

〈yn, xn〉Xn
]
≥ inf

x∈X

[
fλ(x)− X∗〈y, x〉X

]
.

By (7.28) and Proposition 2.43 the infimum infxn∈Xn
[
fλn (xn)− X∗n

〈yn, xn〉Xn
]

is at-
tained for each n ∈ N at some xn ∈ Xn and the sequence of minimizers {‖xn‖Xn} is
bounded by (7.28) and uniform properness. Applying Lemma 5.53 a subsequence of
{xn} converges weakly in X. Using that for all x ∈ X by Lemma 5.46

fλ(x) ≤ f(x) +
λ

2
‖x‖2X ≤ w- Lie fn(x) +

λ

2
‖x‖2X ≤ w- Lie fλn (x),

we get that
lim
n

(fλn )∗(yn) ≤
[
w- Lie fλn

]∗
(y) ≤ (fλ)∗(y). (7.29)

The function x 7→ λ
2 ‖x‖

2
X being continuous on X, from Lemma 2.45 and (2.22) for every

l.s.c. proper convex function g[
g +

λ

2
‖·‖2X

]∗
= g∗ � 1

2λ
‖·‖2X∗ = (g∗)λ,
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7.5 Γ, Mosco and slice convergence

where � denotes the infimal convolution and ( )λ the Moreau-Yosida approximation.
Applying this formula to (7.29) we obtain

lim
n

(f∗n)λ(yn) ≤ (fλ)∗(y).

This being true for any λ > 0,

lim
λ→0

lim
n

(f∗n)λ(yn) ≤ sup
λ>0

(fλ)∗(y). (7.30)

The right hand side of (7.30) is equal to

sup
λ>0

sup
x∈X

[
X∗〈y, x〉X −f(x)− λ

2
‖x‖2X

]
= sup

x∈X
sup
λ>0

[
X∗〈y, x〉X −f(x)− λ

2
‖x‖2X

]
= f∗(y).

(7.30) can be rewritten
lim
λ→0

lim
n

(f∗n)λ(yn) ≤ f∗(y).

By Lemma 5.27 there is a map n 7→ λ(n) with λ(n) ↓ 0 as n→∞ such that

lim
n

(f∗n)λ(n)(yn) ≤ lim
λ→0

lim
n

(f∗n)λ(yn).

Thus,
lim
n

(f∗n)λ(n)(yn) ≤ f∗(y).

Let us examine the quantity

(f∗n)λ(n)(yn) = inf
un∈X∗n

[
f∗n(un) +

1
2λ(n)

‖yn − un‖2X∗n

]
.

By Theorem 2.47 and reflexivity the Moreau-Yosida approximation is attained at the
unique minimizer of this function which is equal to the resolvent yn := R

f∗n
λ (yn) :=

R
∂f∗n
λ (yn) ∈ X∗. Hence

f∗(y) ≥ lim
n

[
f∗n(yn) +

1
2λ(n)

‖yn − yn‖
2
X∗n

]
. (7.31)

The term 1
2λ(n) ‖yn − yn‖

2
X∗n

being positive, it follows that

f∗(y) ≥ lim
n
f∗n(yn)

which implies (7.26) if we can prove that yn →∗ y strongly in X∗.
By the uniform properness assumption on the {fn} there are xn,0 ∈ Xn, n ∈ N and a

constant C > 0 with

f∗n(yn) ≥ X∗n
〈yn, xn,0〉Xn −fn(xn,0) ≥ −C

[
1 + ‖yn‖X∗n

]
.
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7 Variational convergence of operators and forms

Returning to (7.31), for sufficiently large n

f∗(y) + 1 ≥ −C
[
1 + ‖yn‖X∗n

]
+

1
2λ(n)

‖yn − yn‖
2
X∗n

.

If f∗(y) = +∞, (7.26) holds trivially. Otherwise, the above inequality clearly implies
that yn →∗ y by (A4) (since λ(n) ↓ 0 as n→∞).

In order to complete the proof, suppose that there is x0 ∈ X such that w- Lie fn(x0) =
−∞. Therefore, for any y ∈ X∗

[w- Lie fn]∗ (y) = sup
x∈X

[X∗〈y, x〉X −w- Lie fn(x)]

≥X∗〈y, x0〉X −w- Lie fn(x0) ≥ +∞.

On the other hand, since w- Lie fn(x0) = −∞, there exists a sequence {xn}, xn ∈ Xn,
n ∈ N for which xn ⇀ x0 weakly and which satisfies

lim
n
fn(xn) = −∞.

It follows that, for any sequence {yn}, yn ∈ X∗n, n ∈ N and for any y ∈ X∗ such that
yn →∗ y strongly,

lim
n

sup
zn∈Xn

[
X∗n
〈yn, zn〉Xn −fn(zn)

]
≥ lim

n

[
X∗n
〈yn, xn〉Xn −fn(xn)

]
≥ +∞.

Thus s- Lse f∗n ≡ +∞ and [w- Lie fn]∗ = s- Lse f∗n ≡ +∞. So, equality (7.21) is always
satisfied.

The proof is complete.

7.6 G-convergence of subdifferentials

Definition 7.42. For each n ∈ N let fn : Xn → R∞ be a proper convex functional and
let f : X → R∞ be a proper convex functional. We say that the normalization (N) holds
for the sequence {fn} relative to f if

∃[u, v] ∈ ∂f, ∃[un, vn] ∈ ∂fn, n ∈ N such that:
un → u strongly, vn →∗ v strongly, fn(un)→ f(u) and f∗n(vn)→ f∗(v).

(N)

By Proposition 2.40 either of fn(un) → f(u) and f∗n(vn) → f∗(v) in (N) implies the
other.

Theorem 7.43. Let X be asymptotically reflexive and separable. For each n ∈ N let
fn : Xn → R∞ be a proper, l.s.c., convex functional and let f : X → R∞ be a proper,
l.s.c., convex functional.

The following two statements are equivalent:

(i) fn
M−→ f as n→∞.
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7.6 G-convergence of subdifferentials

(ii) ∂fn
G−→ ∂f as n→∞ and (N) holds for {fn} relative to f .

The original proof of Theorem 7.43 in the case of a single Hilbert space can be found
in [Att77]. Compare [Att84, Theorem 3.66] for the proof in the case of a single reflexive
Banach space. The proof depends heavily on the integration formula (2.13) for subd-
ifferentials by R. T. Rockafellar. By Theorem 7.38, Theorem 7.43 is a special case of
Theorem 7.46 below. We follow the proof of C. Combari and L. Thibault in [CT98]
which depends on the alternative integration formula given in the following lemma.

Lemma 7.44. Let g : X → R∞ be l.s.c. and f : X → R∞ be proper, l.s.c. and convex.
If ∂f ⊂ ∂Feng, then f = g+C, where C is some constant real number. Here the Fenchel
subgradient ∂Fen is defined for any (not necessarily convex) g by

∂Feng := {x∗ ∈ X∗ | X∗〈x
∗, u− x〉X +g(x) ≤ g(u), ∀u ∈ X}

if x ∈ D(g) and by ∂Feng(x) = ∅ if x 6∈ D(g).
Define also ∂∗, (∂Fen)∗ (mapping from X∗ to X and not to X∗∗) in the obvious way.

Then the above statement holds similarly for functions g∗ : X∗ → R∞, f∗ : X∗ → R∞.

Proof. See [CT98, Lemma 3.3]. The proof is heavily inspired by techniques in [Roc70].

We need another lemma. The proof is similar to that in [CT98]. Recall that by Lemma
7.37 s- Lse fn is convex, whenever fn : Xn → R∞ are convex.

Lemma 7.45. For each n ∈ N let fn : Xn → R∞ be a proper, l.s.c., convex functional.
Suppose that s- Lie fn > −∞ and that there exist un ∈ Xn, n ∈ N, un → u strongly and

lim
n
fn(un) < +∞. (7.32)

Then for any sequence {[xn, yn]} with [xn, yn] ∈ ∂fn and xn → x strongly, yn →∗ y
strongly one has

(w- Lie fn)(x) = lim
n
fn(xn) and (s- Lse fn)(x) = lim

n
fn(xn)

and
[x, y] ∈ ∂Fen(w- Lie fn) ∩ ∂(s- Lse fn).

So,
Li ∂fn ⊂ ∂Fen(w- Lie fn) ∩ ∂(s- Lse fn).

The analog statements hold for a sequence {f∗n : X∗n → R∞} with w (weak) replaced by
w∗ (weak∗) and ∂, ∂Fen replaced by ∂∗, (∂Fen)∗ (mapping from X∗ to X and not to X∗∗).

Proof. Fix any sequence {[xn, yn]} with [xn, yn] ∈ ∂fn and xn → x strongly, yn →∗ y
strongly. Let x̃ ∈ X, x̃n ∈ Xn, n ∈ N, x̃n ⇀ x̃ weakly. By subdifferentiability

X∗n
〈yn, x̃n − xn〉Xn +fn(xn) ≤ fn(x̃n).
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7 Variational convergence of operators and forms

Passing on to the limit we find that

X∗〈y, x̃− x〉X + lim
n
fn(xn) ≤ lim

n
fn(x̃n).

If we take x̃n = un, n ∈ N, x̃ = u as in (7.32) we get that limn fn(x̃n) < +∞ and hence
lim fn(xn) ∈ R by s- Lie fn > −∞. By taking the infimum over all weakly converging
sequences {x̃n}, we find

X∗〈y, x̃− x〉X + lim
n
fn(xn) ≤ w- Lie fn(x̃), (7.33)

and, setting x̃ = x
lim
n
fn(xn) ≤ (w- Lie fn)(x)

which ensures (by definition)

lim
n
fn(xn) = (w- Lie fn)(x).

Going back to (7.33) we see that [x, y] ∈ ∂Fen(w- Lie fn). By similar arguments we prove
that

X∗〈y, x̃− x〉X + lim
n
fn(xn) ≤ s- Lse fn(x̃), (7.34)

and
lim
n
fn(xn) = (s- Lse fn)(x),

proving [x, y] ∈ ∂(s- Lse fn). The last part of the statement follows by similar arguments
on the conjugate space.

Now we are ready to formulate and prove the nonlinear Mosco Theorem in all its
generality.

Theorem 7.46. For each n ∈ N let fn : Xn → R∞ be a proper, l.s.c., convex functional
and let f : X → R∞ be a proper, l.s.c., convex functional.

The following two statements are equivalent:

(i) fn
S−→ f .

(ii) ∂fn
G−→ ∂f and (N) holds for {fn} relative to f .

Proof. Suppose that (i) holds. Fix [x, y] ∈ ∂f . By (M2) there exist un ∈ Xn, vn ∈ X∗n,
n ∈ N with un → x, vn →∗ y such that fn(un)→ f(x) and f∗n(vn)→ f∗(y). Set

εn := f∗n(vn) + fn(un)− X∗n
〈vn, un〉Xn ≥ 0.

Then {εn} converges to f∗(y)+f(x)− X∗〈y, x〉X = 0 and vn ∈ ∂εnfn(un), see Definition
2.29. By Lemma 2.31 there exist [xn, yn] ∈ ∂fn such that

‖xn − un‖Xn ≤
√
εn and ‖yn − vn‖X∗n ≤

√
εn.

182



7.6 G-convergence of subdifferentials

Obviously, the requirements of Lemma 7.45 are satisfied. Combined with the Mosco
convergence we get

lim
n
fn(xn) ≥ f(x) ≥ lim

n
fn(xn)

which yields the normalization condition (N). (ii) is proved.
Suppose that (ii) holds. From (N) it follows that the requirements of Lemma 7.45 are

satisfied. Therefore by Lemma 7.45 and the G-convergence

∂f ⊂ Li ∂fn ⊂ ∂Fen(w- Lie fn) ∩ (s- Lse fn)

and by the “integration-lemma” 7.44 we deduce

f = w- Lie fn + C1 = s- Lse fn + C2 (7.35)

with two constant real numbers C1, C2. By condition (N) (with u and v) and Lemma
7.45 again we see that

(w- Lie fn)(u) = f(u) = (s- Lse fn)(u) (7.36)

in R which shows that C1 = C2 = 0 and hence (7.35) becomes fn
M−→ f by Lemma 7.35.

To show f∗n
M∗−−→ f∗ we note that by equation (2.19)

∂fn
G−→ ∂f ⇔ ∂∗f∗n

G−→ ∂∗f∗

and (N) includes the conjugate statement. So we can repeat all of the above arguments
for the conjugate case.

183



7 Variational convergence of operators and forms

184



8 Examples of Mosco and slice
convergence

As announced in the introduction, we establish Mosco and slice approximations for four
types of convex functionals within the theory of varying spaces. In all of this chapter,
denote by ∂i, ∇ the ordinary or weak i-th partial derivative and gradient resp. and
denote by Di, D the i-th partial derivative in the sense of Schwartz distributions and the
gradient in the sense of Schwartz distributions resp. We remark that in in Sections 8.1,
8.2, our domain is all of Rd, whereas, in Section 8.3, due to a more specific situation, we
are working on a bounded subdomain Ω ⊂ Rd. In Section 8.4, we consider an abstract
Souslin space E.

8.1 Convergence of weighted Φ-Laplace operators

Let (Φ,Ψ) be a pair of complementary N -functions with pair of gauges (ϕ,ψ). Suppose
that Φ,Ψ ∈ C1(R) and that Φ,Ψ ∈ ∆2 ∩ ∇2. Let d ∈ N. Let w ∈ L1

loc(R
d), w ≥ 0

satisfy condition (S1) in Definition 3.2 (with Φ), that is, w = 0 dx-a.e. on Rd \RΦ(w),
where

RΦ(w) :=

{
x ∈ Rd

∣∣∣∣ ∫
B(x,ε)

ψ

(
1

w(y)

)
dy <∞ for some ε > 0

}
.

Let H1,Φ
w , W 1,Φ

w , resp. be the strong, resp. weak weighted Φ-Sobolev spaces of first
order with norms ‖·‖(1,Φ,w,0), ‖·‖1,Φ,w,0, ‖·‖(1,Φ,w) and ‖·‖1,Φ,w resp., cf. Section 3.1.

Define the Φ-energy functionals GΦ,w,0 : H1,Φ
w → R+, GΦ,w : W 1,Φ

w → R+ by

GΦ,w,0(u) :=
∫

Φ(|∇u|)w dx, u ∈ H1,Φ
w ,

and
GΦ,w(u) :=

∫
Φ(|∇u|)w dx, u ∈W 1,Φ

w .

Denote the dual space of H1,Φ
w , W 1,Φ

w resp. by H−1,Ψ
w , W−1,Ψ

w . The following lemma was
proved in the unweighted case in [GHLMS99, Lemma 3.4].

Lemma 8.1. GΦ,w,0 and GΦ,w are strongly continuous, convex and Gâteaux differen-
tiable and the Gâteaux derivative is given by

H−1,Ψ
w
〈∇GGΦ,w,0(u), h〉

H1,Φ
w

=
∫
〈ϕ(|∇u|) sign(∇u),∇h〉 w dx, u, h ∈ H1,Φ

w . (8.1)

A similar formula holds for ∇GGΦ,w.
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8 Examples of Mosco and slice convergence

Proof. Strong continuity follows from Lemma C.16. Convexity is clear. We have for
u, h ∈ H1,Φ

w and t > 0

1
t

[GΦ,w,0(u+ th)−GΦ,w,0(u)] =
∫

1
t

∫ |∇u+t∇h|

|∇u|
ϕ(s) dsw dx.

On the other hand, as t→ 0,

|∇u+ t∇h| → |∇u|, dx-a.e.

and hence w dx-a.e. We see that for t ≤ 1∣∣∣∣∣1t
∫ |∇u+t∇h|

|∇u|
ϕ(s) ds

∣∣∣∣∣ ≤
∣∣∣∣∣1t
∫ t|∇h|

0
ϕ(s+ |∇u|) ds

∣∣∣∣∣ ≤ ϕ(|∇u|+ |∇h|)|∇h|

with ϕ(|∇u| + |∇h|) ∈ LΨ
w (by Lemma C.21) and |∇h| ∈ LΦ

w and hence ϕ(|∇u| +
|∇h|)|∇h| ∈ L1

w by the Hölder inequality (cf. Theorem C.15). We calculate the direc-
tional derivative

lim
t→0

1
t

[|∇u+ t∇h| − |∇u|] =
〈∇u,∇h〉
|∇u|

,

where we have used that

∇(|∇u|) =

{
∇u
|∇u| , if ∇u 6= 0,

0, if ∇u = 0.

Thus, by the dominated convergence theorem and the fundamental theorem of calculus

lim
t→0

1
t

[GΦ,w,0(u+ th)−GΦ,w,0(u)]

=
∫
ϕ(|∇u|)〈∇u,∇h〉

|∇u|
w dx =

∫
〈ϕ(|∇u|) sign(∇u),∇h〉w dx.

The proof for GΦ,w works in the same way.

By Lemma 3.20, H1,Φ
w , W 1,Φ

w are reflexive and separable. The continuity of the embed-
dings H1,Φ

w ↪→ LΦ
w, W 1,Φ

w ↪→ LΦ
w with continuity constant equal to 1 is straightforward.

Note also that the embeddings have dense range, since the w dx classes of C∞0 (Rd) are
contained in both Sobolev spaces and are known to be dense in LΦ

w, cf. Lemma 6.16.
Define the Φ-energy on LΦ

w by

FΦ,w,0(u) :=

{
GΦ,w,0(u), if u ∈ H1,Φ

w ,

+∞, if u ∈ LΦ
w \H

1,Φ
w ,

and

FΦ,w(u) :=

{
GΦ,w(u), if u ∈W 1,Φ

w ,

+∞, if u ∈ LΦ
w \W

1,Φ
w .

186



8.1 Convergence of weighted Φ-Laplace operators

Lemma 8.2. FΦ,w,0 and FΦ,w are proper, convex and l.s.c. Furthermore, the subdiffer-
entials ∂FΦ,w,0 ⊂ LΦ

w × LΨ
w and ∂FΦ,w ⊂ LΦ

w × LΨ
w are single-valued.

Proof. Properness and convexity are obvious. Recall that GΦ,w,0 is continuous and
Gâteaux differentiable by Lemma 8.1. Let S ⊂ H1,Φ

w . Note that supu∈S ‖u‖Φ,w <
+∞ and supu∈S FΦ,w,0(u) < +∞ imply that supu∈S ‖u‖1,Φ,w < +∞ by Lemma C.17.
Therefore, FΦ,w,0 is l.s.c. by Lemma 2.52. ∂FΦ,w,0 is single-valued by Corollary 2.51.
Repeat the steps for FΦ,w.

Remark 8.3. By Proposition 2.50 and (8.1), the subdifferential ∂FΦ,w,0 : LΦ
w → LΨ

w has
the representation (u ∈ D(∂FΦ,w,0) ⊂ H1,Φ

w , h ∈ H1,Φ
w )

LΨ
w
〈∂FΦ,w,0(u), h〉LΦ

w
=
∫
ϕ(|∇u|) 〈sign(∇u),∇h〉 w dx.

Suppose that (S3) and (S4) holds for w. Then by integration by parts for u, h ∈ C∞0 , we
get the formula,

LΨ
w
〈∂FΦ,w,0(u), h〉LΦ

w
= −

∫
div [wϕ(|∇u|) sign(∇u)]hdx,

which extends to all h ∈ LΦ
w by the Hahn-Banach theorem. Moreover, if

β := (β1, . . . , βd) :=
Dw
w
,

it is easily seen that

LΨ
w
〈∂FΦ,w,0(u), h〉LΦ

w
=−

∫
div [ϕ(|∇u|) sign(∇u)]hw dx,

−
∫
〈ϕ(|∇u|) sign(∇u), β〉 hw dx.

We arrive at the main result of this section.

Theorem 8.4. Let (Φ,Ψ) be a pair of complementary N -functions, Φ,Ψ ∈ ∆2 ∩ ∇2

and Φ,Ψ ∈ C1(R). Denote by (ϕ,ψ) the pair of associated gauges. Let wn ∈ L1
loc(dx),

wn ≥ 0 be weights, such that (S1) holds with Φ for n ∈ N. Let w ∈ L1
loc(dx), w ≥ 0 be a

weight, such that (S1) holds with Φ. Suppose that the measures wn dx, n ∈ N, w dx have
full support. Let Fn := FΦ,wn, n ∈ N, F := FΦ,w. Fn,0 := FΦ,wn,0, n ∈ N, F0 := FΦ,w,0.
Suppose that the following two conditions hold true:

wn → w weakly in L1
loc(dx), (8.2)

H1,Φ
w = W 1,Φ

w , (8.3)

which, in particular, implies that F0 = F . Let

LΦ :=
.⋃
n

LΦ
wn∪̇L

Φ
w, LΨ :=

.⋃
n

LΨ
wn∪̇L

Ψ
w .

Suppose furthermore that one of the following conditions holds true.
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8 Examples of Mosco and slice convergence

Case 1:

wn, n ∈ N, w satisfy (S2) with Φ,

sup
n

∫
B
ψ

(
1
wn

)
dx <∞ for all balls B ⊂ Rd,

η

wn
→ η

w
strongly in LΨ for each η ∈ C0.

(8.4)

Case 2:

wn, n ∈ N, w satisfy (S3) and (S4),

Diwn → Diw weakly in L1
loc for each 1 ≤ i ≤ d,

Diwn
wn

→ Diw

w
strongly in LΨ for each 1 ≤ i ≤ d.

(8.5)

Then Fn → F = F0 Mosco and Fn,0 → F0 = F Mosco in LΦ.

It follows from (8.2), that the measures wn dx → w dx converge in the vague sense.
Also, w dx is a regular measure. Hence by full support and the results of Section 6.3,
{Id : C0 ⊂ LΦ

w → LΦ
wn}n∈N is a linear metric approximation for both norms.

Sufficient conditions on w for (8.3) to hold can be found in Section 4.1. Instead, one
could just consider the statement of the above theorem for Fn,0, n ∈ N, F0.

Lemma 8.5. Suppose that (8.2) holds. Suppose that Ψ ∈ ∆2, Ψ ∈ C1(R). Suppose
additionally that Ψ is strictly convex and that for each ε > 0 there exist Kε > 1 such
that ψ((1 + ε)t) ≥ Kεψ(t) for all t ≥ 0. Then a sufficient condition for

η

wn
→ η

w
strongly in LΨ for each η ∈ C0, (8.6)

is ∫
Ψ
(
η

wn

)
wn dx→

∫
Ψ
( η
w

)
w dx. (8.7)

Furthermore, a sufficient condition for

Diwn
wn

→ Diw

w
strongly in LΨ for each 1 ≤ i ≤ d, (8.8)

is
Diwn → Diw weakly in L1

loc for each 1 ≤ i ≤ d, (8.9)

and ∫
Ψ
(

Diwn
wn

)
wn dx→

∫
Ψ
(

Diw

w

)
w dx. (8.10)
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Proof. Under the condition imposed, each LΨ
wn , n ∈ N, LΨ

w is uniformly convex by
Lemma C.24. The moduli of convexity do not depend on the weights. As a result, LΨ

is asymptotically uniformly convex, see Definition 5.56. By Theorem 5.57, LΨ possesses
the asymptotic Kadeč-Klee property.

(8.7) applied to the proof of Lemma 6.19, gives that

lim
n

∥∥∥∥ η

wn

∥∥∥∥
Ψ,wn

=
∥∥∥ η
w

∥∥∥
Ψ,w

.

Clearly, for η, ζ ∈ C0,

lim
n

∫
ζ
η

wn
wn dx = lim

n

∫
ζη dx =

∫
ζ
η

w
w dx.

Now by Lemma 5.35 and asymptotic duality, we get that
η

wn
⇀

η

w

weakly in LΨ. By the asymptotic Kadeč-Klee property, (8.6) holds.
Fix 1 ≤ i ≤ d. (8.10) applied to the proof of Lemma 6.19, gives that

lim
n

∥∥∥∥Diwn
wn

∥∥∥∥
Ψ,wn

=
∥∥∥∥Diw

w

∥∥∥∥
Ψ,w

.

Clearly by (8.9), for ζ ∈ C0,

lim
n

∫
ζ

Diwn
wn

wn dx = lim
n

∫
ζDiwn dx =

∫
ζDiw dx =

∫
ζ

Di

w
w dx.

Now by Lemma 5.35 and asymptotic duality, we get that

Diwn
wn

⇀
Diw

w

weakly in LΨ. By the asymptotic Kadeč-Klee property, (8.8) holds.

In the weighted Orlicz space setting, different from Lp-spaces, norm inequalities as
well as convergence of norms turn out to be weaker than the corresponding modular
statements. This pitfall can be avoided by the following idea due to Bloom and Kerman
in [BK94, Proof of Proposition 2.5].

Lemma 8.6. Suppose that the following holds true. If fn ∈ LΦ
wn, n ∈ N, f ∈ LΦ

w,
fn ⇀ f weakly in LΦ, then for all ε > 0

lim
n
‖∇fn‖(Φ,εwn) ≥ ‖∇f‖(Φ,εw) (8.11)

where we set ‖∇f‖ := +∞ if f 6∈ W 1,Φ
w (and so for n). Then condition (M1) of the

Mosco convergence holds for the sequence of modulars, i.e.,

lim
n

∫
Φ(|∇fn|)wn dx ≥

∫
Φ(|∇f |)w dx

for all fn ⇀ f weakly in LΦ.
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8 Examples of Mosco and slice convergence

Proof. Suppose that 0 < limn

∫
Φ(|∇fn|)wn dx <∞. Set

ε :=
(

lim
n

∫
Φ(|∇fn|)wn dx

)−1

.

Consider

Kn := inf

kn ≥ 0
∣∣∣∣

∫
Φ
(
|∇f |
kn

)
wn dx

limn

∫
Φ (|∇f |) wn dx

≤ 1

 .

Let δ > 0. By Φ ∈ ∆2 there is a constant C > 2 with Φ(2x) ≤ CΦ(x). Therefore
Φ(x/(1+δ)) ≤ CsΦ(x) when s ≥ − log2(1+δ). But s can be chosen negative. Therefore
there is a constant Cs =: C(Φ, δ) ∈ (0, 1) depending only on Φ and δ such that for all n∫

Φ
(
|∇fn|
1 + δ

)
wn dx ≤ C(Φ, δ)

∫
Φ(|∇fn|)wn dx.

For large n the right hand side is smaller or equal to limn

∫
Φ(|∇fn|)wn dx. Therefore

Kn ≤ 1 + δ for large n and hence limnKn ≤ 1 since δ was arbitrary. We conclude that

lim
n
‖∇fn‖(Φ,εwn) ≤ 1.

Thus ‖∇f‖(Φ,εw) ≤ 1 by the assertion and hence∫
Φ(|∇f |)w dx ≤ 1

ε
= lim

n

∫
Φ(|∇fn|)wn dx.

The case of limn

∫
Φ(|∇fn|)wn dx = +∞ is trivial. Suppose that limn

∫
Φ(|∇fn|)wn dx =

0. Then by an easy modification of the proof of Lemma C.16, we have for a subsequence
liml ‖∇fnl‖(Φ,wnl ) = 0. By (8.11) with ε = 1, ‖∇f‖(Φ,w) = 0 and hence

∫
Φ(|∇f |)w dx =

0.

As seen from the above proof, we have that:

Corollary 8.7. Let µn, n ∈ N, µ be finite measures on some measurable space (E,B).
Suppose that LΦ :=

.⋃
n L

Φ(µn)∪̇LΦ(µ) has an asymptotic relation which is asymp-
totically dual to LΨ (defined similarly). Suppose that the following holds true. If
fn ∈ LΦ(µn), n ∈ N, f ∈ LΦ(µ), fn ⇀ f weakly in LΦ, then for all ε > 0

lim
n
‖fn‖(Φ,εµn) ≥ ‖f‖(Φ,εµ) (8.12)

where we set ‖f‖ := +∞ if f 6∈ LΦ(µ) (and so for n). Then condition (M1) of the
Mosco convergence holds for the sequence of modulars, i.e.,

lim
n

∫
Φ(|fn|) dµn ≥

∫
Φ(|f |) dµ

for all fn ⇀ f weakly in LΦ.
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8.1 Convergence of weighted Φ-Laplace operators

We note that the following proof is somewhat similar to those of [Kol05, Theorem
1.1] and [Kol06, Proposition 4.1] by Alexander V. Kolesnikov. Anyhow, we have to cope
with the technicalities caused by the Orlicz spaces.

Proof of Theorem 8.4. We would like to prove (8.11). Let ε > 0.
Let {un}, un ∈ LΦ

wn , n ∈ N be a sequence with limn ‖∇un‖(Φ,εwn) < +∞. Extract a
subsequence (also denoted by {un}) such that limn ‖∇un‖(Φ,εwn) = limn ‖∇un‖(Φ,εwn) =:

C and un ∈W 1,Φ
wn for n ∈ N.

Suppose that (8.4) holds. Fix a ball B ⊂ Rd. By Hölder’s inequality,∫
B
|un| dx ≤ ‖un‖(Φ,εwn)

∥∥∥∥ 1B
εwn

∥∥∥∥
Ψ,εwn

and ∫
B
|∇un| dx ≤ ‖∇un‖(Φ,εwn)

∥∥∥∥ 1B
εwn

∥∥∥∥
Ψ,εwn

.

Suppose that
sup
n
‖un‖(Φ,εwn) =: c < +∞. (8.13)

By Ψ ∈ ∆2,
∥∥∥ 1B
εwn

∥∥∥
Ψ,εwn

is finite if and only if
∫
B ψ(1/wn)(1/wn)wn dx is, which in

turn is finite if and only if
∫
B ψ(1/wn) dx is. Hence by (8.4), {un} and {∇un} are

bounded in L1
loc. Hence the sequences of measures {un dx}, {∂iun dx}, 1 ≤ i ≤ d are

vaguely bounded and hence vaguely relatively compact, see [Bau74, 46.1, 46.2]. Extract
a subsequence such that {un dx} tends vaguely to some locally finite Radon measure
m. Also for each 1 ≤ i ≤ d, we can extract a subsequence of {∂iun dx} that converges
vaguely to some locally finite Radon measure mi. For any η ∈ C0(Rd),

∫
η dm = lim

n

∫
ηun dx ≤ sup

n

[
‖un‖(Φ,εwn)

∥∥∥∥ η

εwn

∥∥∥∥
Ψ,εwn

]
,

which is finite uniformly in η by (8.4) and (8.13). Hence m is absolutely continuous
w.r.t. the Lebesgue measure. Let f := dm/dx.

Also, by (8.4), for any η ∈ C0(Rd → Rd),

d∑
i=1

∫
ηi dmi = lim

n

∫
〈η,∇un〉 dx

≤ lim
n

[
‖∇un‖(Φ,εwn)

∥∥∥∥ η

εwn

∥∥∥∥
Ψ,εwn

]
≤ C

∥∥∥ η
εw

∥∥∥
Ψ,εw

,

which implies that each mi is absolutely continuous w.r.t. the Lebesgue measure. Let
gi := dmi/dx. By vague convergence and integration by parts (choosing a version of
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8 Examples of Mosco and slice convergence

each un which is absolutely continuous on almost all parallel axes to the i-coordinate,
compare with Corollary 3.16)∫

ηgi dx = lim
n

∫
η∂iun dx = − lim

n

∫
∂iηun dx = −

∫
∂iηf,

for every η ∈ C∞0 . Hence gi = Dif (the distributional derivative). For η ∈ C0(Rd → Rd)∫
〈η,∇un〉 dx ≤ ‖∇un‖(Φ,εwn)

∥∥∥∥ η

εwn

∥∥∥∥
Ψ,εwn

.

Taking the limit inferior, using (8.4), gives that∫
〈η,Df〉 εw

εw
dx ≤ lim

n
‖∇un‖(Φ,εwn)

∥∥∥ η
εw

∥∥∥
Ψ,εw

.

Take the supremum over all η ∈ C∞0 such that
∥∥ η
εw

∥∥
Ψ,εw

≤ 1. Using the l.s.c. property
of the supremum, we get that

‖Df‖Φ,εw ≤ lim
n
‖∇un‖(Φ,εwn) .

But ‖Df‖Φ,εw ≥ ‖Df‖(Φ,εw), see Lemma C.13. Hence

‖Df‖(Φ,εw) ≤ lim
n
‖∇un‖(Φ,εwn) . (8.14)

Suppose now that {un} converges weakly in LΦ to u. Thereby (8.13) is justified by
Lemma 5.36. Hence by (8.4), for all η ∈ C0,∫

ηf dx = lim
n

∫
ηun dx = lim

n

∫
η

wn
unwn dx =

∫
η

w
uw dx =

∫
ηudx,

and therefore f = u dx-a.s. By the results of Paragraph 4.3, (S2) and (8.3) imply that
Df = Du = ∇u dx-a.s. Since our arguments work for any subsequence of {un}, (8.14)
holds for the whole sequence {un} and Df replaced by ∇u. (8.11) is proved. (M1)
follows by Lemma 8.6.

Suppose now that (8.5) holds. Fix a ball B ⊂ Rd. By Hölder’s inequality,∫
B
|un| εwn dx ≤ ‖un‖(Φ,εwn) ‖1B‖Ψ,εwn

and ∫
B
|∇un| εwn dx ≤ ‖∇un‖(Φ,εwn) ‖1B‖Ψ,εwn .

Suppose again that condition (8.13) holds. Then both inequalities combined with (8.2)
give that the sequences {un εwn}, {∂iun εwn}, 1 ≤ i ≤ d are bounded in L1

loc and hence
the measures {un εwn dx}, {∂iun εwn dx}, 1 ≤ i ≤ d are vaguely bounded and hence
vaguely relatively compact, see [Bau74, 46.1, 46.2]. Hence we can extract a subsequence
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8.1 Convergence of weighted Φ-Laplace operators

of {un εwn dx} that converges vaguely to some locally finite Radon measure m. Also for
each 1 ≤ i ≤ d we can extract a subsequence of {∂iun εwn dx} that converges vaguely to
some locally finite Radon measure mi. For any η ∈ C0(Rd → Rd),

d∑
i=1

∫
ηi dmi = lim

n

∫
〈η,∇un〉 εwn dx

≤ lim
n
‖∇un‖(Φ,εwn) lim

n
‖η‖Ψ,εwn ≤ C ‖η‖Ψ,εw ,

where in the last step we have used the fact that LΨ is an asymptotic relation. Thus
we have proved that mi is absolutely continuous w.r.t. εw dx. Let f be such that
dmi = f εw dx.

Suppose now that un ⇀ u weakly in LΦ. This justifies (8.13) by Lemma 5.36. By
Lemma 5.35 and vague convergence,∫

η dm = lim
n

∫
ηun εwn dx =

∫
ηu εw dx,

which holds for all η ∈ C0, hence dm = u εw dx.
Upon setting βni := Diwn/wn, n ∈ N, βi := Diw/w, 1 ≤ i ≤ d, by integration by parts

(3.4) and condition (8.5), for all η ∈ C∞0 , 1 ≤ i ≤ d,∫
ηf εw dx = lim

n

∫
η∂iun εwn dx

= − lim
n

[∫
∂iηun εwn dx+

∫
ηunβ

n
i εwn dx

]
= −

∫
∂iηu εw dx−

∫
ηuβi εw dx,

where we have used strong convergence βni → βi in LΨ, weak convergence un ⇀ u in LΦ

and asymptotic duality. Since f ∈ LΦ
w, by (3.4), f = ∇u in LΦ

w(Rd → Rd).
For η ∈ C0(Rd → Rd)∫

〈η,∇un〉 εwn dx ≤ ‖∇un‖(Φ,εwn) ‖η‖Ψ,εwn .

Taking the limit inferior, using that LΨ is an asymptotic relation, gives∫
〈η,∇u〉 εw dx ≤ lim

n
‖∇un‖(Φ,εwn) ‖η‖Ψ,εw .

Take the supremum over all η such that ‖η‖Ψ,εw ≤ 1. Using the l.s.c. property of the
supremum, we get

‖∇u‖Φ,εw ≤ lim
n
‖∇un‖(Φ,εwn) ,

and hence by Lemma C.13

‖∇u‖(Φ,εw) ≤ lim
n
‖∇un‖(Φ,εwn) .
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8 Examples of Mosco and slice convergence

(8.11) is proved. (M1) follows by Lemma 8.6.
Let us prove (M2). Let u ∈ W 1,Φ

w (the case u ∈ LΦ
w \W

1,Φ
w is trivial). Since C∞0 is

dense in W 1,Φ
w by (8.3), we find a sequence {ηm} ⊂ C∞0 with limm ‖u− ηm‖1,Φ,w = 0.

Hence by Lemma C.16

lim
m

∫
E

Φ(|∇ηm|)w dx =
∫
E

Φ(|∇u|)w dx.

By Lemma 3.14, ηm ∈W 1,Φ
wn for each n. Clearly ηm → ηm strongly in LΦ. Also, by (8.2),

for each m,

lim
n

∫
E

Φ(|∇ηm|)wn dx =
∫
E

Φ(|∇ηm|)w dx.

By Lemma 5.27, there exists a sequence of natural numbers {mn}, mn ↑ ∞ as n → ∞
such that ηmn → u in LΦ (indeed, limm limn ‖ηmn − ηm‖(Φ,wn) = 0) and such that

lim
n

∫
E

Φ(|∇ηmn |)wn dx ≤ lim
m

lim
n

∫
E

Φ(|∇ηm|)wn dx

= lim
m

∫
E

Φ(|∇ηm|)w dx =
∫
E

Φ(|∇u|)w dx.

But ηmn → u in LΦ as n→∞. (M2) is proved.
We conclude the proof by noting that one can repeat all steps for the sequence of

functionals {Fn,0}.

Combining the previous result with Theorem 7.43, we immediately get:

Corollary 8.8. Under the assumptions of Theorem 8.4 (recall that then, F0 = F ), the
subdifferential operators ∂Fn → ∂F and ∂Fn,0 → ∂F0 in the G-sense (the strong graph
sense).

8.2 Convergence of weighted p-Laplace operators

Although the operators in this section are a special case of those in the previous section,
we are able to weaken our conditions due to a more specific situation. Moreover, we are
also varying p. As a special feature of the weighted p-Laplace case, in contrast to the
Φ-Laplacian, we have given an explicit new condition (HW) on the weight such that the
uniqueness of Sobolev spaces H = W holds (different from the Muckenhoupt condition).
See Chapter 4 for the results on uniqueness. As mentioned already in the introduction,
the uniqueness of the Sobolev space is needed to identify the Mosco limit, see condition
(8.18) below. In some sense, H = W implies “attainability” of a gradient, which is
linked to the Mosco condition (M2) in Definition 7.26. We note that the idea of proof is
analog to the proof of Theorem 8.4.
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8.2 Convergence of weighted p-Laplace operators

Let 1 < p <∞, q := p/(p− 1), d ∈ N. Let w ∈ L1
loc(R

d), w ≥ 0 satisfy condition (S1)
in Definition 3.2 (with p), that is, w = 0 dx-a.e. on Rd \Rp(w), where

Rp(w) :=

{
x ∈ Rd

∣∣∣∣ ∫
B(x,ε)

w−1/(p−1) dy <∞ for some ε > 0

}
.

Let H1,p
w , W 1,p

w , resp. be the strong, resp. weak weighted p-Sobolev spaces of first
order with norm

‖u‖1,p,w :=
(∫
|u|pw dx

)1/p

+
(∫
|∇u|pw dx

)1/p

,

cf. Chapter 3. We implicitly assume that (S3) and (S4) hold, when we define the weak
Sobolev space. In Chapter 3, we have used the suggestive notation ∂i and ∇ for the
gradient in W 1,p

w . We do not use it here, anyhow, caution is needed, since, even if the
gradients are in L1

loc, they are generally not equal to the ordinary weak derivatives nor
to the distributional derivatives!

Define the p-energy functionals Gp,w,0 : H1,p
w → R+, Gp,w : W 1,p

w → R+ by

Gp,w,0(u) :=
1
p

∫
|∇u|pw dx, u ∈ H1,p

w ,

and
Gp,w(u) :=

1
p

∫
|∇u|pw dx, u ∈W 1,p

w .

Denote the dual space of H1,p
w , W 1,p

w , resp. by H−1,q
w , W−1,q

w , resp.

Lemma 8.9. Gp,w,0 and Gp,w are strongly continuous, convex and Gâteaux differentiable
and the Gâteaux derivative is given by

H−1,q
w
〈∇GGp,w,0(u), h〉

H1,p
w

=
∫
|∇u|p−1 〈sign(∇u),∇h〉 w dx, u, h ∈ H1,p

w . (8.15)

A similar formula holds for ∇GGp,w.

Proof. Strong continuity and convexity are clear; the Gâteaux differentiability follows
exactly as in Lemma 8.1 with Φ(·) replaced by (1/p)|·|p and ϕ(·) replaced by |·|p−1 sign(·).

By Lemma 3.20, H1,p
w , W 1,p

w are reflexive and separable. The continuity of the embed-
dings H1,p

w ↪→ Lpw, W 1,p
w ↪→ Lpw with continuity constant equal to 1 is straightforward.

Note also that the embeddings have dense range, since the w dx classes of C∞0 (Rd) are
contained in both Sobolev spaces and are known to be dense in Lpw, cf. Lemma 6.16.

Define the p-energy on Lpw by

Fp,w,0(u) :=

{
Gp,w,0(u), if u ∈ H1,p

w ,

+∞, if u ∈ Lpw \H1,p
w ,
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and

Fp,w(u) :=

{
Gp,w(u), if u ∈W 1,p

w ,

+∞, if u ∈ Lpw \W 1,p
w .

Lemma 8.10. Fp,w,0 and Fp,w are proper, convex and l.s.c. Furthermore, the subdiffer-
entials ∂Fp,w,0 ⊂ Lpw × Lqw and ∂Fp,w ⊂ Lpw × Lqw are single-valued.

Proof. Properness and convexity are obvious. Recall that Gp,w,0 is continuous and
Gâteaux differentiable by Lemma 8.9. Let S ⊂ H1,p

w . Note that supu∈S
(∫
|u|pw dx

)1/p
<

+∞ and supu∈S Fp,w,0(u) < +∞ imply that supu∈S ‖u‖1,p,w < +∞. Therefore, Fp,w,0 is
l.s.c. by Lemma 2.52. ∂Fp,w,0 is single-valued by Corollary 2.51. Repeat the steps for
Fp,w.

Remark 8.11. By Proposition 2.50 and (8.15), the subdifferential ∂Fp,w,0 : Lpw → Lqw
has the representation (u ∈ D(∂Fp,w,0) ⊂ H1,p

w , h ∈ H1,p
w )

Lqw
〈∂Fp,w,0(u), h〉Lpw =

∫
|∇u|p−1 〈sign(∇u),∇h〉 w dx.

Suppose that (S3) and (S4) holds for w. Then by integration by parts for u, h ∈ C∞0 , we
get the forumla,

Lqw
〈∂Fp,w,0(u), h〉Lpw = −

∫
div
[
w|∇u|p−1 sign(∇u)

]
hdx,

which extends to all h ∈ Lpw by the Hahn-Banach theorem. Moreover, if

β := (β1, . . . , βd) :=
Dw
w
,

it is easily seen that

Lqw
〈∂Fp,w,0(u), h〉Lpw =−

∫
div
[
|∇u|p−1 sign(∇u)

]
hw dx,

−
∫ 〈
|∇u|p−1 sign(∇u), β

〉
hw dx.

We are ready to formulate the main result of this section.

Theorem 8.12. Let 1 < p < ∞, q := p/(p− 1) and {pn} ⊂ (1,∞), qn := pn/(pn − 1).
Let wn ∈ L1

loc(dx), wn ≥ 0 be weights, such that (S1) holds with pn for n ∈ N. Let
w ∈ L1

loc(dx), w ≥ 0 be a weight, such that (S1) holds with p. Suppose that the measures
wn dx, n ∈ N, w dx have full support. Let Fn := Fpn,wn, n ∈ N, F := Fp,w. Fn,0 :=
Fpn,wn,0, n ∈ N, F0 := Fp,w,0. Suppose that the following three conditions hold true:

lim
n
|pn − p| = 0, (8.16)

wn → w weakly in L1
loc(dx), (8.17)

H1,p
w = W 1,p

w , (8.18)
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8.2 Convergence of weighted p-Laplace operators

which, in particular, implies that F0 = F . Define

L→p :=
.⋃
n

Lpnwn∪̇L
p
w, L→q :=

.⋃
n

Lqnwn∪̇L
q
w

Suppose furthermore that one of the following conditions holds true.

Case 1:

wn, n ∈ N, w satisfy (S2) with pn, n ∈ N, p resp.,

sup
n

[∫
B
wn

1−qn dx
](pn−1)/pn

<∞ for all balls B ⊂ Rd,

w1−qn
n → w1−q weakly in L1

loc(dx),

(8.19)

Case 2:

wn, n ∈ N, w satisfy (S3) and (S4),

Diwn → Diw weakly in L1
loc for each 1 ≤ i ≤ d,(∫ ∣∣∣∣Diwn

wn

∣∣∣∣qn wn dx
)1/qn

→
(∫ ∣∣∣∣Diw

w

∣∣∣∣q w dx
)1/q

for each 1 ≤ i ≤ d.

(8.20)

Then Fn,0 → F0 = F Mosco in L→p. If (S3) and (S4) hold for wn, n ∈ N, w, also
Fn → F = F0 Mosco in L→p.

We would like to construct a linear strong asymptotic relation on L→p similar to that
in the example in Paragraph 6.2.3. But, in the case with densities, measure-convergence
in total variation norm is too strong. It follows from (8.17), that the measures wn dx→
w dx converge in the vague sense. Anyhow, weak convergence in L1

loc is stronger and
sufficient for the estimate (6.9) (with Cb replaced by C0). Hence by full support and
arguments analog to those in Paragraph 6.2.3, {Id : C0 ⊂ Lpw → Lpnwn}n∈N is a linear
metric approximation.

As mentioned above, condition (8.18) is fundamental for proving (M2). With its help,
we can identify the limit and attain a given gradient by a sequence of smooth func-
tions, which naturally is linked to (M2) being an attainability condition, too. Sufficient
conditions on w for (8.18) to hold are discussed in Chapter 4.

Condition (8.19) can be regarded as a uniform (S2) condition, which in some sense
can be regarded a uniform lower semi-continuity of the gradient forms. The connection
to (M1) then is natural.

Condition (8.20) is used to prove (M1) with an alternative method, via strong L→q

convergence of logarithmic derivatives and integration by parts. This method is the
more straightforward one.

When in Theorem 8.12, pn = p = 2 for any n ∈ N, it reduces to [Kol05, Theorem 1.1]
and [Kol06, Proposition 4.1] by Alexander V. Kolesnikov. Our proofs have an analog
argument structure.
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Proof of Theorem 8.12. We have to verify (M1), (M2) in Definition 7.26. We start with
(M2) which is a consequence of (8.16), (8.17) and (8.18). It follows that C∞0 is dense
in W 1,p

w . Since by full support ϕ ∈ Lpnwn(Rd), ∇ϕ ∈ Lpnwn(Rd → R
d) for any n ∈ N

and any ϕ ∈ C∞0 , C∞0 ⊂ W 1,pn
wn for any n ∈ N. Hence repeating the arguments in

Paragraph 6.2.3 with Cb replaced by C∞0 and ‖·‖pn,wn replaced by ‖·‖1,pn,wn for each
n (we can consider the gradient and the zero order norms separately) we infer that
{Id : C∞0 ⊂W

1,p
w →W 1,pn

wn }n∈N is a linear metric approximation for

W1,→p :=
.⋃
n

W 1,pn
wn ∪̇W

1,p
w .

Since C∞0 ⊂ C0, C∞0 is dense in Lpw (Lemma 6.16) and ‖u‖pn,wn ≤ ‖u‖1,pn,wn for any
u ∈ W 1,pn

wn by our choice of the Sobolev norm, condition (5.36) (in Paragraph 5.11.1) is
satisfied. Hence by Lemma 5.66, W1,→p ↪→ L→p is an asymptotically strong embedding.

Let u ∈ Lpw be any vector. If F (u) = +∞, (M2) is trivial. Hence we can assume that
u ∈ W 1,p

w . Let un ∈ W 1,pn
wn , n ∈ N be such that un → u strongly in W1,→p, which exists

by (A2). By (A3),
lim
n
‖un‖1,pn,wn = ‖u‖1,p,w .

But W1,→p ↪→ L→p is an asymptotically strong embedding, hence un → u strongly in
L→p, and as a consequence,

lim
n

(∫
|∇un|pn wn dx

)1/pn

=
(∫
|∇u|pw dx

)1/p

.

(M2) follows now with the help of

Lemma 8.13. For each P ∈ [1,∞), the function

[1, P ]× [0,∞) 3 (p, t) 7→

{
tp, if t > 0,
0, if t = 0,

is continuous.

Proof. Let P ∈ [1,∞). For t 6= 0, (p, t) 7→ exp[p log(t)] is obviously continuous. Let
p ∈ [1, P ] and {(pn, tn)} a sequence in R2 with limn(pn, tn) = (p, 0). For large n, tn ≤ 1
and therefore

|tpnn | ≤ |tn| → 0

as n→∞. The claim is proved.

Let us prove (M1). Let {un}, un ∈ Lpnwn , n ∈ N be a sequence with limn Fn(un) < +∞.
Extract a subsequence (also denoted by {un}) such that

lim
n
Fn(un) = lim

n
Fn(un) =: C

and un ∈W 1,pn
wn for n ∈ N.
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8.2 Convergence of weighted p-Laplace operators

Suppose that (8.19) holds. Fix a ball B ⊂ Rd. By Hölder’s inequality,∫
B
|un|dx ≤

(∫
B
|un|pn wndx

)1/pn (∫
B
w1−qn
n dx

)(pn−1)/pn

and ∫
B
|∇un|dx ≤

(∫
B
|∇un|pn wndx

)1/pn (∫
B
w1−qn
n dx

)(pn−1)/pn

.

Suppose that
sup
n
‖un‖Lpnwn = c < +∞. (8.21)

Then both inequalities combined with (8.19) give that {un} and {∇un} are bounded
in L1

loc. Hence the sequences of measures {un dx}, {∂iun dx}, 1 ≤ i ≤ d are vaguely
bounded and hence vaguely relatively compact, see [Bau74, 46.1, 46.2]. Extract a sub-
sequence such that {un dx} tends vaguely to some locally finite Radon measure m. Also
for each 1 ≤ i ≤ d, we can extract a subsequence of {∂iun dx} that converges vaguely to
some locally finite Radon measure mi. For any ϕ ∈ C0(Rd), by (8.19) and (8.21),∫

ϕdm = lim
n

∫
ϕun dx ≤ sup

n

[
‖un‖Lpnwn

(∫
|ϕ|qnw1−qn

n dx
)1/qn

]
,

which implies that m is absolutely continuous w.r.t. the Lebesgue measure. Let f :=
dm/dx.

Also, for any ϕ ∈ C0(Rd → Rd),

d∑
i=1

∫
ϕi dmi = lim

n

∫
〈ϕ,∇un〉 dx

≤ lim
n

[
(pnF (un))1/pn

(∫
|ϕ|qnw1−qn

n dx
)(pn−1)/pn

]

≤ (pC)1/p

(∫
|ϕ|qw1−q dx

)(p−1)/p

,

which implies that each mi is absolutely continuous w.r.t. the Lebesgue measure. The
second convergence can be proved with the help of (8.19) as in Paragraph 6.2.3. Let
gi := dmi/dx. By vague convergence and integration by parts (choosing a version of
each un which is absolutely continuous on almost all parallel axes to the i-coordinate,
compare with Corollary 3.16)∫

ϕgi dx = lim
n

∫
ϕ∂iun dx = − lim

n

∫
∂iϕun dx = −

∫
∂iϕf,

for every ϕ ∈ C∞0 . Hence gi = Dif (the distributional derivative). For ϕ ∈ C0(Rd → Rd)(∫
〈ϕ,∇un〉 dx

)pn
≤ pnFn(un)

(∫
|ϕ|qn w1−qn

n dx
)pn/qn

.
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Taking the limit inferior, using (8.19), gives

1
p

(∫
〈ϕ,Df〉 dx

)p
≤ lim

n
Fn(un)

(∫
|ϕ|q w1−q dx

)p−1

.

Pick a sequence {hNk } in C0 in order to approximate

hN := |Df |p−1 sign(Df)w1{|Df |p−1 w≤N} ∈ L∞, N ∈ N

in Lq(w1−q dx)-norm. Since w1−q ∈ L1
loc, a subsequence converges dx-a.s. Cutting off,

if necessary, and noting that |hNk Df | ≤ N |Df | ∈ L1
loc, we get by Lebesgue’s dominated

convergence theorem that

1
p

∫
{|Df |p−1 w≤N}

|Df |pw dx ≤ lim
n
Fn(un),

which is true for any N . By the monotone convergence theorem,

1
p

∫
|Df |pw dx ≤ lim

n
Fn(un). (8.22)

Suppose now that {un} converges weakly in L→p to u. This justifies (8.21) by Lemma
5.36. Let ϕ ∈ C0. Define vn := ϕ/wn, n ∈ N, v := ϕ/w. Let ψ ∈ C0.

lim
n

∫
ψvnwn dx = lim

n

∫
ψϕdx =

∫
ψv w dx.

Also, by (8.19),

lim
n

∫
|vn|qn wn dx = lim

n

∫
|ϕ|qn w1−qn

n dx =
∫
|ϕ|q w1−q dx =

∫
|v|q w dx,

where the convergence follows exactly like in Paragraph 6.2.3. Hence limn ‖vn‖Lqnwn =
‖v‖Lqw . By Lemma 5.35, vn ⇀ v weakly in L→q. Since {pn} and hence {qn} is contained
in a compact interval away from one and infinity, by (6.5) in Paragraph 6.2, L→q is
uniformly asymptotically convex (see Definition 5.56) and hence possesses the asymptotic
Kadeč-Klee property by Theorem 5.57. We conclude that vn → v strongly in L→q. Hence
for all ϕ ∈ C0,∫

ϕf dx = lim
n

∫
ϕun dx = lim

n

∫
vnunwn dx =

∫
vuw dx =

∫
ϕudx,

and therefore f = u dx-a.s. By the results of Paragraph 4.3, (S2) and (8.18) imply that
Df = Du = ∇u dx-a.s. Since our arguments work for any subsequence of {un}, (8.22)
holds for the whole sequence {un} and Df replaced by ∇u. (M1) is proved.

Suppose now that (8.20) holds. Fix a ball B ⊂ Rd. By Hölder’s inequality,∫
B
|un|wn dx ≤

(∫
|un|pn wndx

)1/pn (∫
1Bwn dx

)(pn−1)/pn
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and ∫
B
|∇un|wn dx ≤

(∫
|∇un|pn wndx

)1/pn (∫
1Bwn dx

)(pn−1)/pn

.

Suppose that condition (8.21) holds. Then both inequalities combined with (8.17) give
that the sequences {unwn}, {∂iunwn}, 1 ≤ i ≤ d are bounded in L1

loc and hence the
measures {unwn dx}, {∂iunwn dx}, 1 ≤ i ≤ d are vaguely bounded and hence vaguely
relatively compact, see [Bau74, 46.1, 46.2]. Hence we can extract a subsequence of
{unwn dx} that converges vaguely to some locally finite Radon measure m. Also for
each 1 ≤ i ≤ d we can extract a subsequence of {∂iunwn dx} that converges vaguely to
some locally finite Radon measure mi. For any ϕ ∈ C0(Rd → Rd),

d∑
i=1

∫
ϕi dmi = lim

n

∫
〈ϕ,∇un〉 wn dx

≤ lim
n

(pnF (un))1/pn lim
n

(∫
|ϕ|qn wn dx

)(pn−1)/pn

≤ (pC)1/p

(∫
|ϕ|q w dx

)(p−1)/p

,

where in the last step we have used the fact that L→q is an asymptotic relation. Thus
we have proved that mi is absolutely continuous w.r.t. w dx. Let f be such that
dmi = f w dx.

Suppose now that un ⇀ u weakly in L→p. This justifies (8.21) by Lemma 5.36. By
Lemma 5.35 and vague convergence,∫

ϕdm = lim
n

∫
ϕunwn dx =

∫
ϕuw dx,

which holds for all ϕ ∈ C0, hence dm = uw dx.
Upon setting βni := Diwn/wn, n ∈ N, βi := Diw/w, 1 ≤ i ≤ d by (8.20),

lim
n

∫
ϕβni wn dx =

∫
ϕβiw dx ∀ϕ ∈ C0,∀1 ≤ i ≤ d.

Also, by (8.20)

lim
n
‖βni ‖Lqnwn = ‖βi‖Lqw ∀1 ≤ i ≤ d.

By Lemma 5.35 and the density C0 ⊂ Lqw (Lemma 6.16) βn ⇀ β weakly in L→q. Since
{pn} and hence {qn} is contained in a compact interval away from one and infinity,
by (6.5) in Paragraph 6.2, L→q is uniformly asymptotically convex (see Definition 5.56)
and hence possesses the asymptotic Kadeč-Klee property by Theorem 5.57. We conclude
that βni → βi strongly for 1 ≤ i ≤ d in L→q.
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By integration by parts (3.4) and condition (8.20), for all ϕ ∈ C∞0 , 1 ≤ i ≤ d,∫
ϕf w dx = lim

n

∫
ϕ∂iunwn dx

= − lim
n

[∫
∂iϕunwn dx+

∫
ϕunβ

n
i wn dx

]
= −

∫
∂iϕuw dx−

∫
ϕuβiw dx,

where we have used strong convergence βni → βi in L→q, weak convergence un ⇀ u in
L→p and asymptotic duality. Since f ∈ Lpw, by (3.4), f = ∇u in Lpw(Rd → Rd).

For ϕ ∈ C0(Rd → Rd)(∫
〈ϕ,∇un〉wn dx

)pn
≤ pnFn(un)

(∫
|ϕ|qn wn dx

)pn/qn
.

Taking the limit inferior, using (8.19), gives

1
p

(∫
〈ϕ,∇u〉 w dx

)p
≤ lim

n
Fn(un)

(∫
|ϕ|q w dx

)p−1

.

Finally, pick a sequence in C0 approximating |∇u|p−1 sign(∇u) ∈ Lqw in Lqw-norm. Since
∇u ∈ Lpw, we can pass to the limit by Hölder’s inequality and get that

F (u) =
1
p

∫
|∇u|pw dx ≤ lim

n
Fn(un).

(M1) is proved.
We conclude the proof by noting that one can repeat all steps for the sequence of

functionals {Fn,0}.

Combining the previous result with Theorem 7.43, we immediately get:

Corollary 8.14. Under the assumptions of Theorem 8.12 (recall that then, F0 = F ),
the subdifferential operators ∂Fn → ∂F and ∂Fn,0 → ∂F0 in the G-sense (the strong
graph sense).

For the sake of completeness, we add the following result, for which we do not give
explicit sufficient conditions. Anyhow, it particularly holds, if all spaces involved are
Hilbert spaces.

Proposition 8.15. In the above situation, consider

W1,→p =
.⋃
n

W 1,pn
wn ∪̇W

1,p
w , W−1,→q =

.⋃
n

W−1,−qn
wn ∪̇W−1,q

w .

Suppose that W1,→p and W−1,→q have linear asymptotic relations which are asymptot-
ically dual. Suppose furthermore that both the embeddings W1,→p ↪→ L→p and L→q ↪→
W−1,→q are asymptotically strong. Set Gn := Gpn,wn, n ∈ N, G := Gp,w. Then Gn → G
Mosco.
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8.3 p→ 1: The critical case

Proof. Let un ∈ W 1,pn
wn , n ∈ N, u ∈ W 1,p

w such that un ⇀ u weakly in W1,→p. Since
L→q ↪→ W−1,→q is asymptotically strong, W1,→p ↪→ L→p is asymptotically weak by
Lemma 5.63. Hence un ⇀ u weakly in L→p. By Lemma 5.46,

lim
n
‖un‖1,pn,wn ≥ ‖u‖1,p,w

and
lim
n
‖un‖pn,wn ≥ ‖u‖p,w ,

and hence
lim
n
Gn(un) ≥ G(u)

by Lemma 8.13. (M1) is proved.
(M2) follows from (A2), the strong embedding W1,→p ↪→ L→p and Lemma 8.13.

Obviously, a version of the above proposition also holds for the strong Sobolev spaces
H1,pn
wn and the functionals Gpn,wn,0.

8.3 p→ 1: The critical case

Let 1 < p < ∞, q := p/(p − 1), d ∈ N. Let Ω ⊂ Rd be a bounded domain with
Lipschitz boundary ∂Ω. Let W 1,p(Ω) be the standard p-Sobolev space of first order. Let
W 1,p

0 (Ω) be the closure of C∞0 (Ω) in W 1,p(Ω) w.r.t. the Sobolev norm. Denote the weak
partial derivative in direction i by ∂i and denote the weak gradient by ∇. Denote the
distributional derivative in direction i by Di and denote the distributional gradient by
D.

For u ∈W 1,p(Ω), define the trace γ(f) to ∂Ω by∫
Ω
f div η dx = −

∫
Ω
〈η,∇f〉 dx+

∫
∂Ω
γ(f) 〈η, ν〉 dH d−1 ∀η ∈ C1(Ω→ Rd), (8.23)

where ν is the outward normal and dH d−1 is the Hausdorff measure on ∂Ω. We have
that γ(f) ∈ Lp(∂Ω; dH d−1). See [EG92, §4.3]. By [Eva98, §5.5, Theorem 2], W 1,p

0 (Ω)
are precisely the elements of W 1,p(Ω) with zero trace.

Define

F p0 (u) :=

{
1
p

∫
|∇u|p dx, if u ∈W 1,p

0 (Ω),

+∞, if u ∈ Lp(Ω) \W 1,p
0 (Ω).

Clearly, F p0 is convex and proper. By Lemma 2.52, it is l.s.c.
The corresponding subgradient ∂F p0 is a realization of the p-Laplace operator on Ω

with Dirichlet boundary conditions. On smooth functions ϕ ∈ C∞0 (Ω), it has the repre-
sentation

(∂F p0 )(ϕ) = −div
[
|∇ϕ|p−1 sign(∇ϕ)

]
,

see e.g. Remark 8.11 with w ≡ 1.
Denote by (F p0 )∗ the Legendre transforms of F p0 , see Paragraph 2.4.3 for the definition.

We shall give a functional representation for it.
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Lemma 8.16. Let

Gq0(v) :=
1
q

[
sup

{∫
Ω
uv dx

∣∣∣ u ∈W 1,p
0 (Ω), ‖∇u‖Lp(Ω;Rd) ≤ 1

}]q
, v ∈ Lq(Ω). (8.24)

Then Gq0 = (F p0 )∗.

Proof. Let v ∈ Lq(Ω). If v = 0, clearly Gq0(v) = 0 = (F p0 )∗(v). Thus, let v ∈ Lq(Ω)\{0}.
Set C := {u ∈W 1,p

0 (Ω) | ‖∇u‖Lp(Ω;Rd) = 0}. Clearly, C = {0}. Hence,

(F p0 )∗(v) = sup
u∈W 1,p

0 (Ω)

[∫
Ω
uv dx− 1

p

∫
Ω
|∇u|p dx

]
= sup

u∈C

∫
Ω
uv dx ∨ sup

u∈W 1,p
0 (Ω)\C

[∫
Ω
uv dx− 1

p

∫
Ω
|∇u|p dx

]
= sup

α>0
sup

u:‖∇u‖
Lp(Ω;Rd)

=α

[
α

∫
Ω

u

α
v dx− αp

p

]

≤ sup
u:‖∇u‖

Lp(Ω;Rd)
=α

sup
α>0

[
αp

p
+

1
q

(∫
Ω

u

α
v dx

)q
− αp

p

]

= sup
u∈W 1,p

0 (Ω)\C

1
q

(∫
Ω

u

‖∇u‖Lp(Ω;Rd)

v dx

)q
= Gq0(v),

and the Young inequality is attained at α0 :=
(∫

Ω uv dx
)q/(p+q) and hence becomes an

equality. The claim is proved.

We shall continue investigating the limit case p = 1.

Definition 8.17. A function f ∈ L1
loc(Ω) is said to be of bounded variation if

‖Df‖ (Ω) := sup
{∫

Ω
f div η dx

∣∣∣∣ η ∈ C∞0 (Ω→ Rd), ‖η‖∞ ≤ 1
}
< +∞.

The value ‖Df‖ (Ω) is called the total variation of f . The space of all classes of functions
in L1(Ω) that are of bounded variation is denoted by BV (Ω).

Lemma 8.18. BV (Ω) is a Banach space with norm

‖f‖BV (Ω) := ‖f‖L1(Ω) + ‖Df‖ (Ω).

Proof. See [AFP00, Ch. 3].

Let f ∈ BV (Ω). Then there is a Radon measure µf on Ω and a measurable function
σf : Ω→ Rd such that |σf | = 1 µf -a.e. and∫

Ω
f div η dx = −

∫
Ω
〈η, σf 〉 dµf ∀η ∈ C1

0 (Ω→ Rd). (8.25)
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8.3 p→ 1: The critical case

By [EG92, §5.1], ‖Df‖ (Ω) = µf (Ω). Set d[Df ] := σfµf (dx), which is a Rd-valued
Radon measure on Ω. Hence (8.25) becomes∫

Ω
f div η dx = −

∫
Ω
〈ϕ,d[Df ]〉 ∀η ∈ C1

0 (Ω→ Rd). (8.26)

For each f ∈ BV (Ω) there is the trace γ(f) to ∂Ω defined by∫
Ω
f div η dx = −

∫
Ω
〈η,d[Df ]〉+

∫
∂Ω
γ(f) 〈η, ν〉 dH d−1 ∀η ∈ C1(Ω→ Rd), (8.27)

where ν is the outward normal and dH d−1 is the Hausdorff measure on ∂Ω. We have
that γ(f) ∈ L1(∂Ω; dH d−1). We refer to [EG92, Ch. 5.3] and [AFP00, Ch. 3] for
details.

Definition 8.19. Let BV0(Ω) be the space of functions in BV (Ω) with vanishing trace
on ∂Ω.

We have that W 1,1
0 (Ω) ⊂ BV0(Ω) and∫

Ω
|∇u|dx = ‖Du‖ (Ω) ∀u ∈W 1,1

0 (Ω), (8.28)

see [EG92, Ch. 5.1, Example 1].

Remark 8.20. Suppose that ∂Ω is Lipschitz. Let u ∈ BV (Ω). Then

‖Du‖ (Rd) = ‖Du‖ (Ω) +
∫
∂Ω
|γ(u)| dH d−1

where γ(u) ∈ L1(∂Ω,H d−1) is the trace of u. We refer to [AFP00, Theorem 3.87].

Define

F 1
0 (u) :=

{
‖Du‖ (Ω), if u ∈ BV0(Ω),
+∞, if u ∈ L1(Ω) \BV0(Ω).

F 1
0 is proper, convex and l.s.c. on L1(Ω) by [AFP00, Proposition 3.6].

Definition 8.21. Define the multi-valued sign function on Rd by

sign(v) :=

{
v/|v|, if v ∈ Rd \ {0},
B(0, 1), if v = 0 ∈ Rd.

Remark 8.22. ∂F 1
0 ⊂ L1(Ω)× L∞(Ω) is multi-valued and difficult to describe. Never-

theless, when u ∈W 1,1
0 (Ω), then ‖Du‖ (Ω) = ‖∇u‖L1(Ω) and if

v = −div
[
sign(∇u)

]
] ∈ L∞(Ω),

then [u, v] ∈ ∂F 1
0 . Compare with [BDPR09]. ∂F 1

0 is called the 1-Laplacian on Ω with
Dirichlet boundary conditions.
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Denote by (F 1
0 )∗ the Legendre transform of F 1

0 . It has the following representation:

Lemma 8.23. For v ∈ L∞(Ω), let

G∞0 (v) :=

{
0, if sup

{∫
Ω uv | u ∈ BV0(Ω), ‖Du‖ (Ω) ≤ 1

}
≤ 1,

+∞, otherwise.

Then G∞0 = (F 1
0 )∗.

Proof. It is straightforward that G∞0 (0) = 0 = (F 1
0 )∗(0). Therefore, let v ∈ L∞(Ω)\{0}.

Set C := {u ∈ BV0(Ω) | ‖Du‖ (Ω) = 0}. By Poincaré’s inequality [EG92, §5.6.1,
Theorem 1 (i)] and Remark 8.20, C = {0}. Now,

(F 1
0 )∗(v) = sup

u∈BV0(Ω)

[∫
Ω
uv dx− ‖Du‖ (Ω)

]
= sup

u∈C

∫
Ω
uv dx ∨ sup

u∈BV0(Ω)\C

[∫
Ω
uv dx− ‖Du‖ (Ω)

]
= sup

α>0
sup

u:‖Du‖(Ω)=α

[
α

∫
Ω

u

α
v dx− α

]
= sup

α>0
α

[
sup

{∫
Ω
uv dx | u ∈ BV0(Ω), ‖Du‖ (Ω) ≤ 1

}
− 1
]

= G∞0 (v).

The proof is complete.

We are ready to formulate the main result of this section. Fix a sequence {pn} ⊂ (1,∞)
with limn pn = 1. Set qn := pn/(pn − 1). Then limn qn = +∞. Denote by

L→1 =
.⋃

n∈N
Lpn(Ω)∪̇L1(Ω), L→∞ =

.⋃
n∈N

Lqn(Ω)∪̇L∞(Ω)

the asymptotic relations constructed in Paragraph 6.2.4.

Theorem 8.24. Suppose that pn → 1. Then F pn0 → F 1
0 in the Mosco sense in L→1.

Theorem 8.25. Suppose that pn → 1. Let qn := pn/(pn − 1). Then Gqn0 → G∞0 in the
Mosco∗ sense in L→∞.

Combining both results, we immediately obtain:

Corollary 8.26. F pn0 → F 1
0 in the slice sense in L→1.

The above result implies that ∂F pn0 → ∂F 1
0 in the strong graph sense by Theorem

7.46.
Before we prove Theorem 8.24, we need an approximation result for BV0(Ω) functions.

We shall use an approximation similar to that in [BDPR09].
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Lemma 8.27. Let u ∈ BV0(Ω). Then there is a sequence {uk} of elements in W 1,2
0 (Ω)

such that
‖uk − u‖L1(Ω) → 0

and
‖Duk‖ (Ω)→ ‖Du‖ (Ω).

This mode of convergence is called strict convergence, see [AFP00, Definition 3.14].

An application of Lemma 5.27 gives:

Corollary 8.28. Let u ∈ BV0(Ω). Then there is a sequence {ηk} of elements in C∞0 (Ω)
such that {ηk} converges strictly to u.

Before we prove Lemma 8.27, we need some preparations.

Lemma 8.29. Assume that ∂Ω is Lipschitz. Let u ∈ BV (Ω). Then there is a sequence
{ζk} of elements in C∞(Ω) such that {ζk} converges strictly to u in BV (Ω).

Proof. By [EG92, §5.2, Theorem 2] there is a sequence {vk} ⊂ C∞(Ω)∩BV (Ω) converg-
ing strictly to u. Every vk belongs particularly to W 1,1(Ω) and can hence be approxi-
mated by {wkm} ⊂ C∞(Ω) ∩W 1,1(Ω) in W 1,1-norm (see e.g. [EG92, §4.2, Theorem 3]).
In particular,

∥∥Dwkm
∥∥ (Ω) → ‖Dvk‖ (Ω) by [EG92, Ch. 5.1, Example 1]. The claim is

obtained by Lemma 5.27.

Remark 8.30. By Remark 8.20 and continuity of the trace operator from BV (Ω)
(equipped with the strict convergence) to L1(∂Ω,H d−1), see [AFP00, Theorem 3.88],
the statement of Lemma 8.29 can be extended to

“ {ζk} converges strictly to u in BV (Rd) ”.

Proof of Lemma 8.27. Let z ∈ BV0(Ω). Let {ζk} be the approximating sequence for z
in C∞(Ω) given by Lemma 8.29. Fix y := ζk. We shall prove that

lim
ε→0
‖∇Jε(y)‖L1(Ω) ≤ ‖Dy‖ (Ω).

Here Jε(y) := (1 − ε∆)−1y is the resolvent of the Dirichlet Laplacian −∆ on Ω. It is
well-known that limε↘0 Jε(y) = y in L2(Ω) and hence in L1(Ω). Let ψ ∈ C∞0 (Ω;Rd)
such that ‖ψ‖∞ ≤ 1. By definition of the resolvent and self-adjointness of −∆, we have
that ∫

Ω
Jε(y) divψ dx ≤

∣∣∣∣∫
Ω
y divψ dx

∣∣∣∣+ ε

∣∣∣∣∫
Ω
Jε(y)∆ divψ dx

∣∣∣∣ .
After integrating by parts and taking the limit ε→ 0 we get that

lim
ε→0

∫
Ω
〈∇Jε(y), ψ〉d dx ≤ ‖Dy‖ (Ω). (8.29)

Define
Lε(ψ) :=

∫
Ω
〈∇Jε(y), ψ〉d dx ψ ∈ C0(Ω;Rd).
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Lε is a continuous linear functional on C0(Ω;Rd) and hence a Radon measure. By
[AFP00, Proposition 3.6],

‖Lε‖(C0(Ω;Rd))∗ = ‖DJε(y)‖ (Ω) = ‖∇Jε(y)‖L1(Ω;Rd) . (8.30)

Now, by the Bishop-Phelps Theorem B.16, for each ε > 0, we can pick a norm attaining
continuous linear functional L̃ε on C0(Ω;Rd) such that ‖Lε − L̃ε‖(C0(Ω;Rd))∗ < ε. Add
limε→0(L̃ε − Lε)(ψ) to (8.29) and get

lim
ε→0

L̃ε(ψ) ≤ ‖Dy‖ (Ω) + lim
ε→0

ε ‖ψ‖∞ .

For each ε > 0, let ψε ∈ C0(Ω;Rd), ‖ψε‖∞ = 1 be the element, where L̃ε attains its
norm. Plugging into the inequality, gives

lim
ε→0

[
‖Lε‖(C0(Ω;Rd))∗ − ε

]
≤ lim

ε→0
‖L̃ε‖(C0(Ω;Rd))∗ ≤ ‖Dy‖ (Ω).

Finally, by (8.30), the claim is proved. Taking into account that by [AFP00, Proposition
3.6],

lim
ε→0
‖∇Jε(y)‖L1(Ω) ≥ ‖Dy‖ (Ω),

the proof can be completed by Lemma 5.27.

Proof of Theorem 8.24. We start with proving (M1). Suppose that un ∈ Lpn(Ω) with

lim
n
F pn0 (un) < +∞.

Extract a subsequence (also denoted by {un}) such that

lim
n
F pn0 (un) = lim

n
F pn0 (un) =: C.

Since (for large n) un ∈ W 1,pn
0 (Ω) and hence γ(un) = 0, we can extend un to Rd by

zero outside Ω (denoted also by un) and get that un ∈ W 1,pn(Rd) (cf. [Leo09, Exercise
15.26]).

Fix a ball B ⊂ Rd. Then by Hölder’s inequality,∫
B
|un| dx ≤

(∫
B
|un|pn dx

)1/pn

(volB)1/qn ,

and ∫
B
|∇un| dx ≤ (pnF

pn
0 (un))1/pn (volB)1/qn . (8.31)

Suppose that
sup
n
‖un‖Lpn (Rd) <∞. (8.32)

Hence {un} is bounded in W 1,1(B). By compactness of the embedding W 1,1(B) ⊂
L1(B), a subsequence of {un} converges in L1(B) (see e.g. [Maz85, §1.4.6, Lemma] or
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8.3 p→ 1: The critical case

[Ada75, Theorem 6.2]). By a diagonal argument, we can extract a subsequence such that
{un} converges strongly to some f ∈ L1

loc(R
d). W.l.o.g. un → f dx-a.s., by extracting

another subsequence, if necessary. Also, the measures {∂iun dx} are vaguely bounded
and hence vaguely relatively compact, see [Bau74, 46.1, 46.2]. For each 1 ≤ i ≤ d, we
can extract a subsequence, such that {∂iun dx} converges to some locally finite Radon
measure mi on Rd. By vague convergence and integration by parts,∫

ϕdmi = lim
n

∫
ϕ∂iun dx = − lim

n

∫
∂iϕun dx = −

∫
∂iϕf dx,

for every ϕ ∈ C∞0 (Rd) and every 1 ≤ i ≤ d. Hence mi = Dif . Furthermore, for every
ϕ ∈ C∞0 (Rd → Rd),

1
pn

∣∣∣∣∫ un divϕdx
∣∣∣∣pn =

1
pn

∣∣∣∣∫ 〈∇un, ϕ〉 dx
∣∣∣∣pn ≤ F pn0 (un) ‖ϕ‖∞ (vol(suppϕ))pn/qn .

(8.33)
Upon taking the limit, ∣∣∣∣∫ f divϕdx

∣∣∣∣ ≤ lim
n
F pn0 (un) ‖ϕ‖∞ . (8.34)

Taking the supremum over all ϕ with ‖ϕ‖∞ ≤ 1 yields

‖Df‖ (Rd) ≤ lim
n
F pn0 (un).

Suppose now that un ⇀ u weakly in L→1. This justifies (8.32) by Lemma 5.36. Clearly,
for all ϕ ∈ C0(Rd), ∫

uϕdx = lim
n

∫
unϕdx =

∫
fϕdx,

hence u = f dx-a.e. and Du = Df . We are left to prove that u ∈ BV0(Ω), because then
by Remark 8.20

‖Du‖ (Rd) = ‖Du‖ (Ω) = F 1
0 (u) < +∞.

We have that un → u in L1
loc(R

d) and that ∂iun dx → Diu in the vague sense on Rd.
Hence by the definition of the trace (8.23), (8.27),

lim
n

∫
∂Ω
γ(un) 〈ϕ, ν〉 dH d−1 =

∫
∂Ω
γ(u) 〈ϕ, ν〉 dH d−1 ∀ϕ ∈ C∞0 (Rd;Rd).

Let ϕ ∈ C∞0 (Rd;Rd) such that ‖ϕ‖∞ ≤ 1. Then, analog to (8.33) and (8.34), by taking
the supremum over all such ϕ,∫

∂Ω
|γ(u)| dH d−1 ≤ lim

n

∫
∂Ω
|γ(un)|pn dH d−1 = 0.

Compare with [AFP00, Lemma 3.90]. We get that γ(u) = 0 H d−1-a.s. and hence
u ∈ BV0(Ω). Since we can repeat the steps for any subsequence of {un}, we have proved
(M1).
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8 Examples of Mosco and slice convergence

Let us prove (M2). Let u ∈ BV0(Ω). Then by Corollary 8.28 there is a sequence
{um} ⊂ C∞0 (Ω) ⊂ BV0(Ω) with

um → u in L1(Ω) and ‖Dum‖ (Ω)→ ‖Du‖ (Ω) as m→∞.

But by the example in Paragraph 6.2.4 and (8.28) for each m ∈ N
1
pn

∫
Ω
|∇um|pn dx→

∫
Ω
|∇um|dx = ‖Dum‖ (Ω) as n→∞.

An application of Lemma 5.27 shows that there exists a sequence {mn}, mn ↑ ∞, such
that

lim
n
F pn0 (umn) = lim

n

1
pn

∫
Ω
|∇umn |pn dx = ‖Du‖ (Ω) = F 1

0 (u),

which proves (M2).

Proof of Theorem 8.25. We observe that (M1)∗ follows from (M2), as proved above.
Indeed, let un ∈ Lqn(Ω), n ∈ N, u ∈ L∞(Ω) such that un ⇀∗ u weakly∗ in L→∞ (see
Paragraph 6.2.4). Let v ∈ L1(Ω). By (M2), there are vn ∈ Lpn(Ω) such that vn → v
strongly in L→1 and limn F

pn
0 (vn) ≤ F 1

0 (v). Clearly,

lim
n

(F pn0 )∗(un) ≥ lim
n

[ Lqn 〈un, vn〉Lpn −F
pn
0 (vn)] ≥ L∞〈u, v〉L1 −F 1

0 (v).

Since v ∈ L1(Ω) was arbitrary, we get that

lim
n

(F pn0 )∗(un) ≥ (F 1
0 )∗(u),

which is (M1)∗.
Let us prove (M2)∗. Let v ∈ L∞(Ω). For v ∈ L∞(Ω) \D(G∞0 ), (M2)∗ is trivial. So we

can assume that v ∈ D(G∞0 ). Set

H(v) := sup
{∫

Ω
uv | u ∈ BV0(Ω), ‖Du‖ (Ω) ≤ 1

}
.

Let u ∈W 1,pn
0 (Ω) with 0 < ‖∇u‖Lpn (Ω;Rd) ≤ 1. Note that by Jensen’s inequality,

‖∇u‖−1
Lpn (Ω;Rd) ≤ ‖∇u‖

−1
L1(Ω;Rd) (vol(Ω))1/qn .

Therefore,

1
qn

∣∣∣∣∫
Ω
uv dx

∣∣∣∣qn ≤ 1
qn
‖∇u‖qn

Lpn (Ω;Rd)
H(v)qn vol(Ω) ≤ 1

qn
H(v)qn vol(Ω).

If ‖∇u‖Lpn (Ω;Rd) = 0, then u = 0 and the inequality also holds. Hence, taking the

supremum over all u ∈W 1,pn
0 (Ω) with ‖∇u‖Lpn (Ω;Rd) ≤ 1 yields

Gqn0 (v) ≤ 1
qn
H(v)qn vol(Ω),

but since v ∈ D(G∞0 ), H(v) ≤ 1 and hence taking the limit superior gives

lim
n
Gqn0 (v) ≤ 0 = G∞0 (v).

(M2)∗ is proved.
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8.4 Convergence of generalized porous medium and fast diffusion operators

8.4 Convergence of generalized porous medium and fast
diffusion operators

We follow the framework of J. Ren, M. Röckner and F.-Y. Wang in [RRW07]. See also
[RW08] for the non-monotone case. The reader should not worry about the stochastic
statements of these works, for we are merely using their functional analytic parts.

Let (E,B, µ) be a separable σ-finite measure space. Let (L,D(L)) be a negative
definite self-adjoint operator on L2(µ) with kerL = {0}. Let (E ,F ) be the quadratic
form on L2(µ) associated to (L,D(L)), i.e.

F := D(
√
−L) and E (u, v) := (

√
−Lu,

√
−Lv)L2(µ), u, v ∈ F .

Let Fe be the abstract completion of F with respect to the pre-norm

‖·‖Fe
:=
√

E (·, ·)

and let F ∗e be its dual space. Obviously, F ⊂ Fe.

Definition 8.31. Let X,Y be Banach spaces. Define norms on X ∩ Y by

‖z‖X∩Y,1 := ‖z‖X + ‖z‖Y

or
‖z‖X∩Y,∞ := max [‖z‖X , ‖z‖Y ] .

Define W ⊂ X ⊕ Y by W := {(x, y) |x = −y}. Define X + Y := (X ⊕ Y )/W to be the
quotient space. Define norms on X + Y by

‖u‖X+Y,1 := inf
x+y=u

[‖x‖X + ‖y‖Y ]

or
‖u‖X+Y,∞ := inf

x+y=u
max [‖x‖X , ‖y‖Y ] .

Lemma 8.32. Let X,Y be Banach spaces. If

{un} ⊂ X ∩ Y, ‖un − x‖X → 0, ‖un − y‖Y → 0 always implies x = y ∈ X ∩ Y, (8.35)

then X ∩Y is a Banach space with either norm ‖·‖X∩Y,1 or norm ‖·‖X∩Y,∞. Also X+Y
is a Banach space with either norm ‖·‖X+Y,1 or norm ‖·‖X+Y,∞.

Proof. See [AG65, §2].

Lemma 8.33. Let X,Y be Banach spaces such that (8.35) holds. Suppose that X ∩ Y
is dense in both X and Y . Then (X + Y )∗ = X∗ ∩ Y ∗ and (X ∩ Y )∗ = X∗ + Y ∗. In
the functional norms related to the norms as in Definition 8.31, 1 becomes ∞ and vice
versa. Furthermore, x∗ = y∗ in X∗ ∩ Y ∗ if and only if

X∗〈x
∗, z〉X = Y ∗〈y

∗, z〉Y ∀z ∈ X ∩ Y.
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8 Examples of Mosco and slice convergence

Proof. See [AG65, §8].

Let (Φ,Ψ) be a pair of complementary N -functions with gauges (ϕ,ψ). Suppose that
Φ,Ψ ∈ C1(R) and Φ,Ψ ∈ ∆2 ∩ ∇2. Let LΦ := LΦ(E,B, µ), LΨ := LΨ(E,B, µ) be cor-
responding Orlicz spaces. Set H := F ∗e with inner product (·, ·)H := E (−L−1·,−L−1·),
where −Lv := E (v, ·), v ∈ Fe is the Riesz map of Fe, which is the canonical extension
of −L : D(L) → L2(µ). Furthermore, set V := H ∩ LΦ with norm ‖u‖V := ‖u‖H∩LΦ,1

as in Definition 8.31. In this choice, we shall select the Orlicz norm.

Definition 8.34. Consider the following conditions:

(1) There exists a strictly positive g ∈ L1(µ)∩L∞(µ) such that Fe ⊂ L1(g ·µ) contin-
uously.

(2) Fe ∩ LΨ is a dense linear subset of both Fe and LΨ.

(3) V is a dense linear subset of both H and LΦ.

Proposition 8.35 ([RRW07]). Suppose that Φ,Ψ ∈ ∆2 ∩ ∇2 and that (E ,F ) is a
transient Dirichlet space in the sense of [FOT94, §1.5]. Then conditions (1)–(3) of
Definition 8.34 hold.

Proof. See [RRW07, Proposition 3.1].

As a consequence, V is a well-defined dense linear subspace of H, which gives (8.35).
V is a Banach space with norm ‖·‖V by Lemma 8.32. By Lemma 8.33 and condition
(2),

V =
{
u ∈ LΦ

∣∣∣ the map Fe ∩ LΨ 3 v 7→
∫
E
uv dµ is in F ∗e

}
.

Since the map V 3 u 7→ (u, µ(u·)) ∈ LΦ × H is an isomorphism from V to a closed
subspace of LΦ ×H (which is a reflexive Banach space), V itself is reflexive.

Define GΦ,µ : V → [0,+∞) by

GΦ,µ(u) :=
∫
E

Φ(|u|) dµ. (8.36)

Lemma 8.36. GΦ,µ is strongly continuous on V , convex and Gâteaux differentiable and
the Gâteaux derivative is given by

V ∗

〈
∇GGΦ,µ(u), h

〉
V

=
∫
E
ϕ(|u|) sign(u)hdµ.

Proof. Convexity is clear. Strong continuity follows from the definition of the V -norm
and Lemma C.16. Compare with the proof of Lemma 8.1. We have for u, h ∈ V and
t > 0

1
t

[
GΦ,µ(u+ th)−GΦ,µ(u)

]
=
∫
E

1
t

∫ |u+th|

|u|
ϕ(s) dsdµ.
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8.4 Convergence of generalized porous medium and fast diffusion operators

On the other hand, as t→ 0,

|u+ th| → |u|, µ-a.e.

and hence µ-a.e. We see that for t ≤ 1∣∣∣∣∣1t
∫ |u+th|

|u|
ϕ(s) ds

∣∣∣∣∣ ≤
∣∣∣∣∣1t
∫ t|h|

0
ϕ(s+ |u|) ds

∣∣∣∣∣ ≤ ϕ(|u|+ |h|)|h|

with ϕ(|u|+ |h|) ∈ LΨ(µ) (by Lemma C.21) and |h| ∈ LΦ(µ) and hence ϕ(|u|+ |h|)|h| ∈
L1(µ) by the Hölder inequality C.15. We calculate the directional derivative

lim
t→0

1
t

[|u+ th| − |u|] =
uh

|u|
,

where we have used that

∇|u| =

{
u
|u| , if u 6= 0,

0, if u = 0.

Thus, by the dominated convergence theorem and the fundamental theorem of calculus

lim
t→0

1
t

[
GΦ,µ(u+ th)−GΦ,µ(u)

]
=
∫
E
ϕ(|u|)uh

|u|
dµ =

∫
E
ϕ(|u|) sign(u)hdµ.

Define

FΦ,µ(u) :=

{
GΦ,µ(u), if u ∈ V,
+∞, if u ∈ H \ V.

(8.37)

Lemma 8.37. FΦ,µ : H → [0,+∞], as defined above, is a proper, convex and l.s.c.
functional. Furthermore, the subdifferential ∂FΦ,µ ⊂ H ×H∗ is single-valued.

Proof. Properness and convexity are obvious. Recall that, by Lemma 8.36, GΦ,µ is
continuous and Gâteaux differentiable. Let S ⊂ V . Note that by Lemma C.17, if both
supu∈S ‖u‖H < +∞ and supu∈S FΦ,µ(u) < +∞, then we have that supu∈S ‖u‖LΦ(µ) <

+∞ and hence that supu∈S ‖u‖V < +∞. Therefore, FΦ,µ is l.s.c. by Lemma 2.52. ∂FΦµ

is single-valued by Corollary 2.51.

We are ready to define the fast diffusion operator (if Φ ≺ |·|2) respectively the porous
medium operator (if Φ � |·|2). Set

Ã := ∂FΦ,µ : D(∂FΦ,µ) ⊂ V ⊂ F ∗e → Fe,

When considered as an operator on the Hilbert space F ∗e = H, we concatenate the Riesz
map −L : Fe → F ∗e (which is equivalent to an alternative definition the subgradient in
Hilbert spaces using the scalar product instead of the dualization) and obtain

A : D(A) ⊂ V ⊂ H → H, Au := −LÃu

213



8 Examples of Mosco and slice convergence

which is an operator having the variational representation

(Au, v)F∗e = −
∫
E
L [ϕ(|u|) sign(u)] v dµ

and

Fe

〈
Ãu, v

〉
F∗e

= −
∫
E
ϕ(|u|) sign(u)v dµ,

which by the Hahn-Banach Theorem holds for all v ∈ LΨ(µ) ⊂ V ∗, u ∈ D(A). We would
like to point out, that the operator A defined in this way differs from the one defined in
[RRW07], wherein an operator defined on all of V mapping into V ∗ is considered.

Suppose now that for each n ∈ N we are given operators Ln with the properties stated
above. Associate quadratic forms (En,Fn), symmetrizing measures µn and spaces Vn,
Hn. Set

V :=
.⋃
n

Vn∪̇V, H :=
.⋃
n

Hn∪̇H.

We are ready to formulate the main theorem of this section. For concrete examples
satisfying its conditions, we refer to [FOT94, Ebe99]. For d ≥ 3, it is verified that the
Laplacian −∆ on all ofRd has a transient Dirichlet form and satisfies the assumptions on
L in Theorem 8.38 below (in particular, it has a core consisting of continuous functions).
Here µ := dx. We refer to [FOT94, Example 1.5.2, p. 44]. Hence the classical porous
medium operator is included as a possible limit, see Introduction. For the notion of a
core for symmetric operators we refer to [RS80, Ch. VIII.2].

Theorem 8.38. Suppose that the following holds true. E is a Souslin space, µn, n ∈ N,
µ are finite Borel measures with full support in E, µn ⇀w µ weakly, µ is a regular
measure, L possesses a core C ⊂ Cb(E) such that C is dense in Fe and C ⊂ Fe,n,
D := L(C) ⊂ F ∗e,n for n ∈ N. Suppose that D ⊂ Cb(E) densely w.r.t. the uniform
norm. At last, suppose that

lim
n

En(u, u) = E (u, u) ∀u ∈ C. (8.38)

Set Fn := FΦ,µn, n ∈ N, F := FΦ,µ.
Then H has an asymptotic relation and Fn → F Mosco in H.

Proof. Firstly, by the results of Paragraph 6.2.1, L2 :=
.⋃
n L

2(µn)∪̇L2(µ) has a linear
asymptotic relation. Because C ⊂ Fe densely, and by (8.38), H∗ =

.⋃
n Fe,n∪̇Fe and

hence H have linear asymptotic relations (with an obvious candidate for the metric
approximation). By the results of Paragraph 6.3, LΦ :=

.⋃
n L

Φ(µn)∪̇LΦ(µ) have linear
asymptotic relations. By our assumptions, D is dense in LΦ(µ) and also in F ∗e . Now,
Ln → L strongly in the sense of Definition 7.4 (with the topologies of H∗, H resp.)
because of being the Riesz maps, cf. Section 6.1. We get that

lim
n
‖u‖Hn = ‖u‖H ∀u ∈ D.
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8.4 Convergence of generalized porous medium and fast diffusion operators

Furthermore, by arguments similar to those in Paragraph 6.3,

lim
n
‖u‖LΦ(µn) = ‖u‖LΦ(µ) ∀u ∈ D.

Now, since D ∩ V is dense in V ,

lim
n
‖u‖Vn = ‖u‖V ∀u ∈ D.

Hence V has a linear strong asymptotic relation. As the embedding constants are all
equal to 1 and D is dense both in V and H, it follows by Lemma 5.66 that the embedding
V ↪→ H is asymptotically strong.

Let us prove (M1). We would like to apply Corollary 8.7. Fix ε > 0. Let {un} be
a sequence in H, un ∈ Hn, n ∈ N. Suppose that limn ‖un‖(Φ,εµn) is finite. Extract a
subsequence, also denoted by {un}, such that

lim
n
‖un‖(Φ,εµn) = lim

n
‖un‖(Φ,εµn) =: C.

By the proof above,
LΦ
ε :=

.⋃
n

LΦ(εµn)∪̇LΦ(εµ)

has a asymptotically reflexive asymptotic relation, asymptotically dual to LΦ
ε . Hence by

Lemma 5.53 there is a LΦ
ε -weakly convergent subsequence {un} with un ⇀ ũ ∈ LΦ(µ).

By Lemma 5.46,
lim
n
‖un‖(Φ,εµn) ≥ ‖ũ‖(Φ,εµ) .

Suppose now that un ⇀ u weakly in H. Then∫
E
ηudµ = lim

n

∫
E
ηun dµn =

∫
E
ηũdµ,

for all η ∈ D. But D is dense both in H and LΦ(εµ). Hence u = ũ in H and in LΦ(εµ),
and hence

lim
n
‖un‖(Φ,εµn) ≥ ‖u‖(Φ,εµ) .

Since the arguments work for any subsequence of {un} we have proved (8.12). (M1)
follows now from Corollary 8.7.

Let us prove (M2). Let u ∈ V (the case u ∈ H \ V is trivial). Since D ⊂ Cb(E) is
dense in V , we find a sequence {ηm} ⊂ D with limm ‖u− ηm‖V = 0. Hence by Lemma
C.16

lim
m

∫
E

Φ(|ηm|) dµ =
∫
E

Φ(|u|) dµ.

By the proof above, ηm ∈ Vn for each n and ηm → ηm strongly in V. Also, by weak
convergence of measures and Φ ∈ C1(R), for each m,

lim
n

∫
E

Φ(|ηm|) dµn =
∫
E

Φ(|ηm|) dµ.
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By Lemma 5.27 there exists a sequence of natural numbers {mn}, mn ↑ ∞ as n → ∞
such that ηmn → u in V (indeed, limm limn ‖ηmn − ηm‖Vn = 0) and such that

lim
n

∫
E

Φ(|ηmn |) dµn ≤ lim
m

lim
n

∫
E

Φ(|ηm|) dµn = lim
m

∫
E

Φ(|ηm|) dµ =
∫
E

Φ(|u|) dµ.

But we have proved above that the embedding V ↪→ H is asymptotically strong. Hence
ηmn → u in H as n→∞ and (M2) is proved.

Combining the previous result with Theorem 7.43, we immediately get:

Corollary 8.39. Under the assumptions of Theorem 8.38, the subdifferential operators
∂Fn → ∂F in the G-sense (the strong graph sense).

216



A Facts from general topology

A.1 Nets

Lemma A.1. Let (T,T ) be a topological space.

(i) We assume that the reader is familiar with the notions net, subnet, directed set,
cofinal, to be frequently in a set, to be eventually in a set. They are e.g. explained
in [Kel75, Eng89].

(ii) A set A included in T is open if and only if every net {xi}i∈I which converges to
a point x ∈ A is eventually in A.

(iii) A set A included in T is closed if and only if it contains with any net all its possible
limits, or equivalently, no net included in A converges to a point in T \A.

(iv) For a set A included in T one defines the relative topology of A in T by TA :=
{O ∩A | O ∈ T }. B ⊂ A is called relatively open if B ∈ TA and B ⊂ A is called
relatively closed if A \B ∈ TA.

(v) Consider a directed set (N ,�). The identity ν 7→ νν on N is a net {νν}ν∈N =
{ν}ν∈N directed by �. Consider another directed set (M ,%). A net {νµ}µ∈M of
elements in N directed by % is is a subnet of {νν}ν∈N if and only if there exists
a map M 3 µ 7→ ν̃µ ∈ N such that

for every ν0 ∈ N there exists a µ0 ∈M

such that ν̃µ � ν0 whenever µ % µ0
(A.1)

and
νeνµ = νµ for all µ ∈M . (A.2)

Since {νν}ν∈N = {ν}ν∈N is the identity, (A.2) yields {νµ}µ∈M = {ν̃µ}µ∈M . Thus
{νµ}µ∈M is a subnet of {ν}ν∈N if and only if it has property (A.1). A famous
special case of (A.1) is well-known:

µ 7→ νµ is non-decreasing,
i.e., νµ1 � νµ2 whenever µ1 % µ2

(A.3)

and the image {νµ | µ ∈M } is a cofinal subset of N .
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A.2 Sequential spaces and convergence

Recall the following basic definition.

Definition A.2. A (Kuratowski) closure operator on a set S is a mapping : 2S → 2S

such that the Kuratowski closure axioms

(K1) ∅ = ∅,

(K2) for each A ∈ 2S: A ⊂ A,

(K3) for each A,B ∈ 2S: A ∪B = A ∪B,

(K4) for each A ∈ 2S: (A) = A,

hold.

If X is a topological space, we define for any subset A ⊂ X the closure w.r.t. the
topology of X as A :=

⋂
B⊃A,
B closed

B. It satisfies the Kuratowski closure axioms. Con-

versely, a Kuratowski closure operator on a set S defines a topology on S by saying
A ⊂ S is closed if A = A. Then the Kuratowski closure operator coincides with the
closure w.r.t. to the topology it generates. See e.g. [Kel75, Chapter 1]. We also define
∂A := A ∩X \A and intA := A \ ∂A.

Definition A.3. A topological space X is called sequential space if a set A ⊂ X is
closed if and only if together with any sequence it contains all its limits. A topological
space X is called a (topological) Fréchet space or Fréchet-Urysohn space if for every
A ⊂ X and every x ∈ A there exists a sequence {xn}n∈N of points of A converging to x.

We assume that the reader is familiar with the terms first countable, second countable,
compact, sequentially compact and countably compact.

Lemma A.4. (i) Every first-countable space is a Fréchet space and every Fréchet
space is a sequential space.

(ii) Any subspace of a Fréchet space is itself a Fréchet space; in particular, being Fréchet
is a topological invariant.

(iii) Any closed subspace of sequential space is itself a sequential space.

(iv) A mapping F of a sequential space X to a topological space Y is continuous if and
only if F (limn→∞ xn) ⊂ limn→∞ F (xn) for every sequence {xn}n∈N in the space
X.

(v) Sequential compactness and countable compactness are equivalent in the class of
sequential spaces.

(vi) In a sequential space the characterization of open and closed sets found as in Lemma
A.1 (ii), (iii) hold with nets replaced by sequences.

218
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Proof. (i): [Eng89, Theorem 1.6.14], (ii),(iii): [Eng89, Exercise 2.1.H], (iv): [Eng89,
Proposition 1.6.15], (v): [Eng89, Theorem 3.10.31], (vi): clear from the definition.

Definition A.5. Let S be a set. A L ∗-sequential convergence or L ∗-(sequential) limit
operator C on S is a relation between sequences {sn}n∈N of members of S and members
s of S, denoted sn

C−−−→
n→∞

s (in words: {sn} C -converges to s), such that:

(L1) If sn = s for each n ∈ N, then sn
C−−−→

n→∞
s.

(L2) If sn
C−−−→

n→∞
s, then snk

C−−−→
k→∞

s for every subsequence {snk} of {sn}.

(L3) If sn 6
C−−−→

n→∞
s, then {sn} contains a subsequence {snk} such that no subsequence of

{snk} converges to s.

C is called a S ∗-sequential convergence or S ∗-(sequential) limit operator if addition-
ally:

(L4) If sn
C−−−→

n→∞
s and snm

C−−−−→
m→∞

sn for each n ∈ N, then there exist increasing

sequences of positive integers n1, n2, . . . and m1,m2, . . . such that snkmk
C−−−→

k→∞
s.

The pair (S,C ) is called L ∗-space (S ∗-space respectively).
For a subset A ⊂ S of a L ∗-space we define the C -closure AC ⊂ S by the convention

s ∈ AC if and only if there is a sequence {sn} included in A C -converging to s.

Theorem A.6. The C -closure of an L ∗-sequential convergence C on a L ∗-space S
fulfills the first three of the Kuratowski closure axioms ( (K1)–(K3)). (K4) holds in
addition if C is a S ∗-sequential convergence.

In an S ∗-space S with convergence C the topology τ generated by the C -closure is T1.
τ - limn→∞ sn = s if and only if sn

C−−−→
n→∞

s, that is, convergence a posteriori is equivalent
to the convergence a priori.

Alternatively, if we impose the convention that a set A ⊂ S is closed if and only if it
contains all convergent sequences together with all their limits, this defines a T1-topology
with the property that convergence a priori is identical to convergence a posteriori even
in the cases of an L ∗-space. If S is an S ∗-space this topology coincides with the one
coming from the closure defined above.

A topology coming from an L ∗-convergence in the above sense is a sequential topology
in the sense of Definition A.5. A topology coming from an S ∗-convergence in the above
sense is a Fréchet-topology in the sense of Definition A.5.

Conversely, the usual convergence of sequences in a (topological) sequential space is an
L ∗-convergence and the usual convergence of sequences in a (topological) Fréchet space
is an S ∗-convergence.

Proof. Cf. [Eng89, Problems 1.7.18–1.7.20] and the references therein for the proof.

219



A Facts from general topology

If in Definition A.5 we replace sequences consistently by nets, we get the classical
Definition of convergence classes as proposed by J. L. Kelley in [Kel75, p. 73 et seq.].

Definition A.7 (Convergence class). Let S be a set. We call a relation C between nets
{sν}ν∈N of members of S and points s ∈ S convergence class and denote it by sν

C−−−→
ν∈N

s

(in words, {sν}ν∈N C -converges to s), if it satisfies the following four conditions.

(i) If {sν}ν∈N is a net such that sν = s for each ν ∈ N , then {sν}ν∈N C -converges
to s.

(ii) If {sν}ν∈N C -converges to s, so does every subnet of {sν}ν∈N .

(iii) If {sν}ν∈N does not C -converge to s, then there is a subnet of {sν}ν∈N , no subnet
of which C -converges to s.

(iv) Let N be a directed set, let Mν be a directed set for each ν ∈ N , let K :=
N ××ν∈N Mν be the product directed set (with the product order (ν, f) � (ν ′, f ′)
iff ν � ν ′ and f(ν) � f ′(ν) for all ν ∈ N ). Suppose that sν,µ

C−−−−→
µ∈Mν

sν for each

ν ∈ N and sν
C−−−→

ν∈N
s. Then sν,f(ν)

C−−−−−→
(ν,f)∈K

s.

It is classical that a convergence coming from an arbitrary topology satisfies the above
axioms (cf. [Kel75, Ch. 2, Theorem 4, p. 69 and p. 74]).

We quote the related result [Kel75, Ch. 2, Theorem 9, p.74] as follows. See also
[Eng89, Exercises 1.6.B and 1.7.21].

Theorem A.8. Let C be a convergence class for a set S, and for each subset A of S let
A

C be the set of all points s such that, for some net {sν}ν∈N included in A, {sν}ν∈N

C -converges to s. Then C is a Kuratowski closure operator, and sν
C−−−→

ν∈N
s if and only

if {sν}ν∈N converges to s relative to the topology associated with C ; in other words,
convergence a priori is equivalent to convergence a posteriori.
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Let H be a Hilbert space, E or X be a Banach space. In the sequel we will use the
notation RH : H → H∗ for the Riesz map of H, which is a linear isometric isomorphism,
and the notation ιE : E → E∗∗ for the canonical linear isometry of E into its bidual
E∗∗ defined by ιE : x 7→ E∗〈·, x〉E , which is onto if and only if E is reflexive. Clearly,

E∗〈f, x〉E = E∗∗〈ιE(x), f〉E∗ for f ∈ E∗, x ∈ E.

B.1 Convexity and smoothness

Definition B.1. A Banach space E is called strictly convex or rotund if, whenever
x, y ∈ E are linearly independent, then:

‖x+ y‖E < ‖x‖E + ‖y‖E .

A Banach space E is called smooth, if whenever x, y ∈ E are linearly independent, then
the function

t 7→ ‖x+ ty‖E
is differentiable for all values of t ∈ R.

Lemma B.2. A Banach space E is smooth if and only if the map x 7→ ‖x‖E is Gâteaux
differentiable for any x 6= 0.

Proof. See [Bea85, Part 3, Ch. I, §2, Proposition 2].

Lemma B.3. If a Banach space E is smooth, then the normalized duality map JE :={
f ∈ E∗

∣∣
E∗〈f, x〉E = ‖f‖2E∗ = ‖x‖2E

}
is single valued and norm-weak∗-continuous at

all points except zero.

Proof. See [Bea85, Part 3, Ch. I, §2, Proposition 1].

Lemma B.4. If E∗ is smooth, E is strictly convex. If E∗ is strictly convex, E is smooth.

Proof. See See [Bea85, Part 3, Ch. I, §3, Proposition 1].

Definition B.5. (i) A Banach space E is called uniformly convex (or uniformly ro-
tund) if for each ε ∈ (0, 2) there exists δE(ε) > 0 for which

‖x‖E ≤ 1, ‖y‖E ≤ 1 and ‖x− y‖E ≥ ε imply∥∥∥∥1
2

(x+ y)
∥∥∥∥
E

≤ 1− δE(ε).

The map ε 7→ δE(ε) is called modulus of convexity ( rotundity).
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B The geometry of Banach spaces

(ii) A Banach space E is called uniformly smooth if for each ε > 0 the exists ηE(ε) > 0
for which

‖x‖E = 1 and ‖y‖E ≤ ηE(ε) always implies
‖x+ y‖E + ‖x− y‖E < 2 + ε ‖y‖E .

The map ε 7→ ηE(ε) is called modulus of smoothness.

δ and η are unique up to asymptotic equivalence in zero.

Clearly uniform convexity implies strict convexity and uniform smoothness implies
smoothness.

Lemma B.6. A Banach space E is uniformly convex if and only if E∗ is uniformly
smooth. E is uniformly smooth if and only if E∗ is uniformly convex.

Proof. See [Bea85, Part 3, Ch. II, §2, Proposition 2].

If E is uniformly convex, we have ηE∗ ' δE (where “'” denotes asymptotic equiva-
lence). If E is uniformly smooth, we have δE∗ ' ηE . Uniformly convex Banach spaces are
reflexive. Therefore uniformly smooth Banach spaces are reflexive. See [BP86, Chapter
1, §2] or [Bea85, Part 3, Ch. II, §1, Proposition 6].

Uniform convexity of E is equivalent to following condition:
For any two sequences {xn}, {yn} ⊂ E with ‖xn‖E = ‖yn‖E = 1 for each n ∈ N such
that limn ‖xn + yn‖E = 2 we have that limn ‖xn − yn‖E = 0.

Lemma B.7 (Mazur). Let X be a normed space, {un} ⊂ X, u ∈ X. Let un ⇀ u weakly
in X. Then there is a sequence of convex combinations {vn}:

vn :=
Nn∑
k=n

λ
(n)
k uk, with

Nn∑
k=n

λ
(n)
k = 1, λ

(n)
k ≥ 0, n ≤ k ≤ Nn, (B.1)

such that vn → u strongly, that is, in norm. Moreover, if un → u strongly, then any
convex combination {vn} similar to (B.1) converges also strongly to u. Also, if {an} is
a convergent sequence of real numbers, then

lim
n
an ≥ lim

n

Nn∑
k=n

λ
(n)
k ak. (B.2)

Proof. See [ET76, Ch. I.1] or [Yos78, Ch. V.1, Theorem 2] for the first part. We shall
verify (B.2) first. Clearly,

lim
n
an = lim

n
an = lim

n
sup
k≥n

ak ≥ lim
n

sup
Nn≥k≥n

ak ≥ lim
n

Nn∑
k=n

λ
(n)
k ak.

For the remaining part just note that x 7→ ‖x− y‖X is a convex function for all y ∈ X
and apply (B.2).
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B.2 Gauges and the duality map

Definition B.8. We call a function ϕ : R+ → R+ a gauge if it is continuous, strictly
increasing, ϕ(0) = 0 and ϕ(t)→ +∞ as t→ +∞.

It is clear that a gauge ϕ is bijective, so there exists ψ := ϕ−1 : R+ → R+ with
ϕ(ψ(t)) = ψ(ϕ(t)) = t for all t ≥ 0. One verifies that ψ is again a gauge.

Definition B.9. For a normed space X with dual X∗ the (multi-valued) map JX : X →
X∗,

JX(x) :=
{
f ∈ X∗

∣∣
X∗〈f, x〉X = ‖f‖2X∗ = ‖x‖2X

}
is called the normalized duality map.

For a gauge ϕ the (multi-valued) map JϕX : X → X∗,

JϕX(x) :=
{
f ∈ X∗

∣∣
X∗〈f, x〉X = ‖f‖X∗ ‖x‖X , ‖f‖X∗ = ϕ(‖x‖X)

}
is called the duality map with gauge ϕ.

Clearly JX = J
IdR+

X . If H is a Hilbert space, JH is the Riesz isometry. JX is linear if
and only if X is a Hilbert space. It is an easy application of the Hahn-Banach Theorem
that JϕX(x) 6= ∅ for all x ∈ X. For the next proposition see [Sho97, Propositions
8.6,8.7,8.8].

Proposition B.10. Let E be a Banach space and ϕ a gauge. Suppose that E is uni-
formly smooth with modulus of smoothness ηE. Then JϕE is single-valued, monotone, and
uniformly continuous on bounded sets in E with modulus of continuity equal to η. More
precisely, JϕE is a function,

E∗

〈
JϕE(x)− JϕE(y), x− y

〉
E
≥
(
ϕ(‖x‖E)− ϕ(‖y‖E)

)
(‖x‖E − ‖y‖E) ≥ 0

and for any ε ∈ (0, 2] and M > 0 we have that

‖x‖E , ‖y‖E ≤M and ‖x− y‖E < ηE(ε)
imply

∥∥JϕE(x)− JϕE(y)
∥∥
E∗

< ε

In [DP71] it has been proved:

Proposition B.11. Let E be a Banach space and ϕ a gauge. Let ψ := ϕ−1. Suppose
that E is uniformly convex with modulus of convexity δE. Then JϕE is strictly monotone,
that is,

E∗

〈
JϕE(x)− JϕE(y), x− y

〉
E
> 0 if and only if x 6= y.

Then JϕE is also invertible such that for (JϕE)−1 : E∗ → E we have JψE∗ = ιE ◦ (JϕE)−1 :
E∗ → E∗∗ and the above proposition holds for JψE∗ with ϕ replaced by ψ and η replaced
by δ.
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B The geometry of Banach spaces

One easily notices:

Lemma B.12. Let ϕ be a gauge which is multiplicative, that is, ϕ(ts) = ϕ(t)ϕ(s),
t, s ≥ 0. Then JϕE is homogeneous in a certain sense, namely,

JϕE(αx) = ϕ(α)JϕE(x), α ≥ 0, x ∈ E.

Remark B.13. f ∈ JϕE if and only if

E∗〈f, y − x〉E ≤ Φ(‖y‖E)− Φ(‖x‖E)

where Φ(t) :=
∫ t

0 ϕ(s) ds. In other words, f ∈ ∂Φ(‖·‖E), where “∂” denotes subgradient,
cf. Definition 2.27.

If E is smooth, the map x 7→ 1
2 ‖x‖

2
E is always Gâteaux differentiable and the Gâteaux

differential is equal to the normalized duality map JE (and to ∂ 1
2 ‖·‖

2
E), which then is

single valued.

Lemma B.14. JϕE : E → 2E
∗

is a maximal monotone operator (graph) as defined in
2.32.

Proof. See [Phe89, Theorem 2.25] or [Zei90b, Proposition 32.21].

Lemma B.15. In a reflexive Banach space E any x∗ ∈ E∗ attains its norm on the unit
ball, that is,

E∗〈x
∗, x〉E = ‖x∗‖E∗ for some x ∈ E, ‖x‖E = 1.

Proof. This is an easy consequence of the Hahn–Banach Theorem.

Theorem B.16 (Bishop–Phelps). Let E be a Banach space. Then the set of all func-
tionals x∗ ∈ E∗ which attain their norms on the unit ball, that is, which satisfy

E∗〈x
∗, x〉E = ‖x∗‖E∗ for some x ∈ E, ‖x‖E = 1,

is strongly dense in E∗. Equivalently, the duality map JE has strongly dense range.

Proof. See [Phe89, Theorem 3.22].

B.2.1 The Lp-case

Let 1 < p < ∞, q := p/(p − 1) (so that p−1 + q−1 = 1) and ϕ(t) := tp−1, t ≥ 0.
Let (Ω,F , µ) be a σ-finite measure space. Set E := Lp(Ω,F , µ). It is well-known that
E∗ = Lq(Ω,F , µ) (Cf. [Yos78, Example IV.9.3]). f ∈ JϕLp(x) is characterized by∫

Ω
f(ω)x(ω)µ(dω) = ‖f‖Lq ‖x‖Lp and ‖f‖Lq = ‖x‖p−1

Lp ,

which is equivalent to

f(ω) ∈ |x(ω)|p−1 sign(x(ω)), for µ-a.e. ω ∈ Ω,
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B.3 The Kadeč-Klee property

for f ∈ Lq(Ω,F , µ), x ∈ Lp(Ω,F , µ). Likewise, f ∈ JLp(x) (normalized duality map) if
and only if

f(ω) ∈ |x(ω)|p−1 sign(x(ω))

‖x‖p−2
Lp

for µ-a.e. ω ∈ Ω.

One notices that we have a pointwise characterization of JLp regardless the underlying
measure µ.

It is well-known that the dual space of L1(Ω,F , µ) is L∞(Ω,F , µ). Let JL1 : L1 → 2L
∞

be the normalized duality map. Let x ∈ L1. Then for

f(ω) := ‖x‖L1 sign(x(ω)), for µ-a.e. ω ∈ Ω,

clearly f ∈ JL1(x).

B.3 The Kadeč-Klee property

Definition B.17. A Banach space E is said to have the Kadeč-Klee property (or prop-
erty (h)) if a sequence {xn} ⊂ E converges strongly to some x ∈ E if and only if {xn}
converges weakly to x and limn ‖xn‖E = ‖x‖E.

Theorem B.18. If E is locally uniformly convex, E has the Kadeč-Klee property.

Proof. See [Mil71, Theorem 1.8].

B.4 Schauder bases

A standard reference on Schauder bases is given by [Sin70a]. For an introduction, see
[HHZ96, Ch. 9]. All facts in this paragraph can be found there.

Definition B.19. Let X be a Banach space with dual X∗. A subset S ⊂ X∗ is called
total if X∗〈s, e〉X = 0 for all s ∈ S implies e = 0 or, equivalently, for any e ∈ X \ {0}
there is s ∈ S such that X∗〈s, e〉X 6= 0.

A subset S ⊂ X is called fundamental in X if the finite linear combinations linS are
norm-dense in X.

Lemma B.20. If X is reflexive, a total set S ⊂ X∗ is fundamental in X∗ by the Hahn-
Banach Theorem. If X fails to be reflexive, linS is still weak∗ dense in X∗, cf. [HHZ96,
Chapter 3, Exercise 16].

Definition B.21. A sequence {ei}i∈N in an infinite-dimensional normed linear space X
is called a Schauder basis of X if for every x ∈ X there is a unique sequence of scalars
{ai}i∈N such that

lim
N→∞

∥∥∥∥∥x−
N∑
i=1

aiei

∥∥∥∥∥
X

= 0.
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Define the canonical projections

Pn(x) :=
n∑
i=1

aiei,

whenever x =
∑∞

i=1 aiei.

Lemma B.22. A Banach space with a Schauder basis is separable.

Lemma B.23. If {ei} is a Schauder basis of a normed space X, then the canonical
projections {Pn} satisfy

(i) dimPn(X) = n

(ii) PnPm = PmPn = Pm∧n

(iii) limn ‖x− Pnx‖X = 0 for every x ∈ X,

n,m ∈ N. Conversely, if we are given a sequence of linear projections {Pn} that satisfy
(i), (ii) and (iii), then they are canonical projections associated with a Schauder basis
of X. When X is a Banach space, supn∈N ‖Pn‖L (X,X) < +∞.

Lemma B.24. For a Schauder basis {ei}i∈N of a Banach space X, there is a unique
sequence of continuous linear functionals {e∗i }i∈N ⊂ X∗ such that

x =
∞∑
i=1

X∗〈e
∗
i , x〉X ei.

{e∗i }i∈N are called the associated biorthogonal functionals or the associated coefficient
functionals. Biorthogonal means

X∗

〈
e∗j , ei

〉
X

= δi,j ∀i, j ∈ N.

Lemma B.25. If X is smooth and the Schauder basis is normalized, then e∗i = Jei for
every i ∈ N.

Lemma B.26. When X is reflexive with a Schauder basis {ei}i∈N, the coefficient func-
tionals {e∗i }i∈N form a Schauder basis for X∗.

Definition B.27. A Schauder basis {ei}i∈N is called monotone, if ‖Pn‖L (X,X) = 1 for
every n ∈ N, where {Pn} are the associated canonical projections.

A Schauder basis {ei}i∈N is called normalized, when ‖ei‖X = 1 for every i ∈ N.
A Schauder basis {ei}i∈N is called normal, when ‖ei‖X = ‖e∗i ‖X∗ = 1 for every i ∈ N,

where {e∗i }i∈N is the sequence of associated coefficient functionals.
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B.5 Orthogonality in Banach space

Definition B.28 ([Lum61, Gil67]). A semi-inner product ( s.i.p.) on a vector space V
is a real-valued bivariate form [·, ·]V : V × V → R satisfying:

(i) [x, x]V ≥ 0 for every x ∈ V ; [x, x]V = 0 if and only if x = 0.

(ii) The map x 7→ [x, y]V is linear for each y ∈ V .

(iii) The map y 7→ [x, y]V is 1-homogeneous for each x ∈ V .

(iv) | [x, y]V |
2 ≤ [x, x]V · [y, y]V for all x, y ∈ V .

A s.i.p. is sometimes also called a semi-inner product in the sense of Lumer-Giles.

Let X be a vector space. Then a s.i.p. [·, ·]X on X generates a norm by ‖·‖X :=
[·, ·]X

1/2. Conversely, for each norm on X there is a s.i.p. generating it. Every s.i.p.
[·, ·]X which generates a norm ‖·‖X if of the form

[x, y]X =
X∗

〈
J̃X(y), x

〉
X

where J̃X is a selection of the normalized duality map JX coming from the norm ‖·‖X .
See [Dra04, Chapter 2] for details. We infer that: if (X, ‖·‖X) is smooth, the s.i.p.
generating ‖·‖X is unique.

Definition B.29 ([Bir35, Jam47]). In a normed linear space X an element x is said to
be orthogonal to an element y (written x ⊥ y) if

‖x‖X ≤ ‖x+ λy‖X
for all scalars λ ∈ R.

Two subsets M,N ⊂ X are said to be orthogonal (written M ⊥ N) if m ⊥ n for all
m ∈M and for all n ∈ N .

Orthogonality is sometimes also called Birkhoff-James orthogonality.

Note that in general “⊥” is not a symmetric relation. Birkhoff-James orthogonality of
a Hilbertian norm is the usual orthogonality coming from the inner product associated
to this norm (cf. [Sin70b, Ch. I, §1.14]).

Lemma B.30. Let X be a normed space. If [·, ·] generates the norm of X, then [y, x]
implies x ⊥ y.

If x ⊥ y, then there is a s.i.p. [·, ·] generating the norm such that [y, x] = 0 (which
may depend on x, y).

If X is smooth, x ⊥ y if and only if [y, x]X = 0 for the unique s.i.p. generating the
norm.

Proof. See [FJ03, Propositions 1.4.3 and 1.4.4]. See also [Dra04, Proposition 32].

Lemma B.31. Let X be a Banach space with a Schauder basis {ei}i∈N. Then {ei}i∈N is
monotone (see Definition B.27) if and only if lin(ei)ni=1 ⊥ lin(ei)mi=n+1 for all n,m ∈ N.

Proof. See [Sin70a, Ch. II.I §1].
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C Orlicz spaces

C.1 Young functions

Definition C.1. A mapping Φ : R→ R+ is called a Young function if

(i) Φ is even and convex,

(ii) Φ(0) = 0,

(iii) limx→∞Φ(x) = +∞.

Definition C.2. A mapping Φ : R → R+ is called an N -function (i.e., a nice Young
function) if

(i) Φ is even, convex and continuous,

(ii) Φ(x) = 0 if and only if x = 0,

(iii) limx→0
Φ(x)
x = 0, limx→∞

Φ(x)
x = +∞.

The left derivative ϕ(t) := limh↓0
1
h(Φ(t−h)−Φ(t)) exists and is left continuous, non-

decreasing on (0,∞), satisfies ϕ(t) ∈ (0,∞) for t ∈ (0,∞), ϕ(0) = 0 and limt→∞ ϕ(t) =
+∞. The left inverse ψ of ϕ is defined as ψ(s) := inf{t > 0 | ϕ(t) > s} for s > 0,
ψ(0) := 0. Such ϕ,ψ are also referred to as generalized gauges. Φ,Ψ given by

Φ(x) =
∫ |x|

0
ϕ(t) dt, and Ψ(y) =

∫ |y|
0

ψ(s) ds

are called a pair of complementary N -functions which satisfy the Young inequality :

|xy| ≤ Φ(x) + Ψ(y).

The N -function Ψ complementary to Φ can be equally defined via the so-called
Legendre-Fenchel transform:

Ψ(y) := sup
x≥0

[x|y| − Φ(x)] , y ∈ R,

cf. Paragraph 2.4.3. Instead of complement we shall from time to time use the term
conjugate.

The standard example of an N -function is x 7→ 1
p |x|

p, 1 < p <∞ with gauge t 7→ tp−1

and conjugate y 7→ 1
q |y|

q with gauge s 7→ sq−1 where q := p
p−1 .
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Definition C.3. Φ is said to belong globally to the class ∆2 (written Φ ∈ ∆2) if it is an
N -function and if there is a constant K > 2 such that

Φ(2x) ≤ KΦ(x) for all x ≥ 0;

and it is said to belong globally to the class ∇2 (written Φ ∈ ∇2) if it is an N -function
and there is a constant c > 1 such that

Φ(x) ≤ 1
2c

Φ(cx) for all x ≥ 0.

Lemma C.4. Let (Φ,Ψ) be complementary N -functions with gauges (ϕ,ψ) respectively.
Then the following statements are equivalent:

(i) Φ ∈ ∆2;

(ii) supt>0
tϕ(t)
Φ(t) <∞;

(iii) infs>0
sψ(s)
Ψ(s) > 1;

(iv) Ψ ∈ ∇2.

Proof. See [RR91, Chapter II, Theorem 3, p. 23].

Lemma C.5. If for an N -function Φ ∈ ∆2 globally, there are constants α, β > 1,
C,D > 0 such that Φ(x) ≤ C|x|α for x ≥ 0 and Ψ(y) ≥ D|y|β for y ≥ 0, where Ψ
denotes the complementary N -function to Φ.

Proof. See [RR91, Chapter II, Corollary 5, p. 26].

Definition C.6. An N -function Φ is said to belong globally to the class ∆′ (written
Φ ∈ ∆′) if there is a constant a > 0 such that

Φ(xy) ≤ aΦ(x)Φ(y) for all x, y ≥ 0;

and it is said to to belong globally to the class ∇′ (written Φ ∈ ∇′) if there is a constant
b > 0 such that

Φ(x)Φ(y) ≤ Φ(bxy) for all x, y ≥ 0.

Lemma C.7. An N -function Φ ∈ ∆′ if and only if there is a constant a′ > 0 such that

Φ(axy) ≤ Φ(x)Φ(y) for all x, y ≥ 0.

In particular, ∆′ ⊂ ∆2.

Proof. See [RR91, Chapter II, Lemma 8, p. 28].

Lemma C.8. Let (Φ,Ψ) be complementary N -functions with gauges (ϕ,ψ) respectively.
Then the following statements are equivalent:
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(i) Φ ∈ ∆′;

(ii) there is a constant D > 0 such that ϕ(xy) ≤ Dϕ(x)ϕ(y) for all x, y ≥ 0;

(iii) there is a constant d > 0 such that ψ(x)ψ(y) ≤ ψ(dxy) for all x, y ≥ 0;

(iv) Ψ ∈ ∇′.

In particular, ∇′ ⊂ ∇2.

Proof. See [RR91, Chapter II, Theorem 11, p. 30].

Lemma C.9. For an N -function Φ ∈ ∆′ ∩∇′ there are p > 1 and c, C > 0 such that

Φ(cx) ≤ |x|p ≤ Φ(Cx) for all x ≥ 0.

Proof. See [RR91, Chapter II, Proposition 12, p. 31].

For the next definition see [Boy69].

Definition C.10. For a Young function Φ define the upper index α and lower index β
by

α := inf
0<s<1

− log h(s)
log s

= lim
s↘0
− log h(s)

log s
,

and
β := sup

1<s<∞
− log h(s)

log s
= lim

s→∞
− log h(s)

log s
,

where

h(s) := sup
t>0

Φ−1(t)
Φ−1(st)

.

A simple calculation shows that if Φ(x) = C|x|p for some 1 ≤ p <∞ and some C > 0,
then both the upper and lower index of Φ is p−1.

Another characterization for indices of Orlicz spaces, more common in the literature
nowadays, can be found in [LT79, Chapter 2.b, Proposition 2.b.5]. See also [Boy71].

C.2 Orlicz spaces with general measures

Let (Ω,F , µ) be a σ-finite measure space.

Definition C.11. Let Φ be a Young function. Let L̃ Φ(Ω;µ) be the set of all F -
measurable functions f : Ω→ R such that

ρΦ,µ(f) :=
∫

Ω
Φ(|f |) dµ <∞.

ρΦ,µ is called the modular. Let L Φ(Ω;µ) be the set of all F -measurable functions
f : Ω → R such that αf ∈ L̃ Φ(Ω;µ) for some α > 0, that is, ρΦ,µ(αf) < ∞ for some
α > 0. Let L̃Φ(Ω;µ), LΦ(Ω;µ) be the sets of equivalence classes of µ-a.e. identical
functions from L̃ Φ(Ω;µ), L Φ(Ω;µ) resp. LΦ(Ω;µ) is called the Orlicz space w.r.t. the
measure space (Ω,F , µ) and the N -function Φ. We shall also write LΦ(µ).
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Note that Φ(|·|) : R→ R+ is Borel-measurable as it is continuous. If Φ(x) := |x|p for
1 ≤ p <∞ (or Φ(x) = 1

p |x|
p), then LΦ(µ) = Lp(µ).

Lemma C.12. If Φ ∈ ∆2, then L̃ Φ(Ω;µ) = L Φ(Ω;µ) and L̃Φ(Ω;µ) = LΦ(Ω;µ).

Lemma C.13. Suppose that Φ is an N -function with complement Ψ. Then LΦ(µ) is a
Banach space with either norm:

‖f‖(Φ,µ) := inf
{
k > 0

∣∣∣∣ ρΦ,µ

(
f

k

)
≤ 1
}
, f ∈ LΦ(µ),

which is called the Luxemburg norm or gauge norm;

‖f‖Φ,µ := sup
{∣∣∣∣∫

Ω
fg dµ

∣∣∣∣ ∣∣∣∣ ρΨ,µ(g) ≤ 1
}
, f ∈ LΦ(µ),

which is called the Orlicz norm. Moreover, for every f ∈ LΦ(µ)

‖f‖(Φ,µ) ≤ ‖f‖Φ,µ ≤ 2 ‖f‖(Φ,µ) ,

that is, the norms are equivalent.

Lemma C.14. For any f ∈ LΦ(µ),

‖f‖Φ,µ = inf
k>0

1
k

[1 + ρΦ,µ(k|f |)]

and the infimum is attained at some (not necessarily unique) kf such that

inf {k > 0 | ρΨ,µ(ϕ(k|f |)) ≥ 1} ≤ kf ≤ sup {k > 0 | ρΨ,µ(ϕ(k|f |)) ≤ 1} .

In particular, if ‖f‖Φ,µ = 1, then a solution k > 1 of

k − 1 = ρΦ,µ(k|f |)

is such a real number kf .

Proof. See [RR91, Ch. III.3, Theorem 13, p. 69].

Theorem C.15 (Hölder inequality). Let f ∈ LΦ(µ), g ∈ LΨ(µ). Then fg ∈ L1(µ) and∣∣∣∣∫
Ω
fg dµ

∣∣∣∣ ≤ ‖f‖(Φ,µ) ‖g‖Ψ,µ ,
∣∣∣∣∫

Ω
fg dµ

∣∣∣∣ ≤ ‖f‖Φ,µ ‖g‖(Ψ,µ) . (C.1)

Proof. See [RR02, Ch. I.2, Theorem 8, p. 17].
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Lemma C.16. Suppose that Φ ∈ ∆2. Suppose that we have a sequence {fn} of functions
in LΦ(Ω;µ). Then {fn} is a Cauchy sequence in ‖·‖Φ,µ-norm (or ‖·‖(Φ,µ)-norm) if and
only if

ρΦ,µ(fn − fm)→ 0 as n,m→∞

which we call “ to be a Cauchy sequence in mean”.
Suppose that f ∈ LΦ(Ω;µ) a priori. Then

ρΦ,µ(fn − f)→ 0 as n→∞

(which we call “ to converge (strongly) in mean”) if and only if fn converges to f in
either norm.

Note that if Φ 6∈ ∆2, norm convergence is stronger than mean convergence.

Proof. Compare [RR91, Ch. III, Theorem 12, p. 83].
Let ‖fn − fm‖Φ,µ → 0 as n,m → ∞. For each k > 0 there is an index n0 ∈ N such

that k ‖fn − fm‖Φ,µ ≤ 1 for all n,m ≥ n0. Then

ρΦ,µ(k(fn − fm)) =
∫

Ω
Φ(k(fn − fm)) dµ

≤ k ‖fn − fm‖Φ,µ
∫

Ω
Φ

(
fn − fm

‖fn − fm‖Φ,µ

)
dµ ≤ k ‖fn − fm‖Φ,µ → 0

as n,m → ∞. Since k(fn − fm) ∈ LΦ(Ω;µ) for each k, {fn} is a Cauchy sequence in
mean.

Conversely, let {fn} be a Cauchy sequence in mean. Let ε > 0. Since Φ ∈ ∆2 there is a
constant K > 2 with Φ(2x) ≤ KΦ(x); therefore Φ(x/ε) ≤ KsΦ(x) where s ≥ − log2(ε).
Set Kε := Ks. Hence

ρΦ,µ

(
fn − fm

ε

)
=
∫

Ω
Φ
(
fn − fm

ε

)
dµ ≤ Kε

∫
Ω

Φ(fn − fm) dµ.

There is an index n0 ∈ N such that KερΦ,µ(fn − fm) ≤ 1 for all n,m ≥ n0. Hence

ρΦ,µ

(
fn−fm

ε

)
≤ 1 for n,m ≥ n0 so that ‖fn − fm‖Φ,µ ≤ ε for n,m ≥ n0, which proves

the assertion.
The case of strong convergence works similarly.

Lemma C.17. Suppose that Φ ∈ ∆2. Let f, gn ∈ LΦ(Ω;µ), n ∈ N. Then ρΦ,µ(gn)→ 0
as n→∞ implies ρΦ,µ(f + gn)→ ρΦ,µ(f) as n→∞. Moreover, a subset S ⊂ LΦ(Ω;µ)
is modular bounded if and only if it is norm bounded in either norm.

Proof. We prove only the second part. Compare [RR91, Ch. III, Corollary 15, p. 86]
for the first part.
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Suppose that supf∈S ρΦ,µ(f) ≤ K for some K ≥ 1. Then for any f ∈ S, by convexity
of Φ and Φ(0) = 0,

1 ≥ 1
K

∫
Ω

Φ(f) dµ ≥
∫

Ω
Φ
(
f

K

)
dµ, (C.2)

which implies ‖f‖(Φ,µ) ≤ K and ‖f‖Φ,µ ≤ 2K.
Conversely, if supf∈S ‖f‖(Φ,µ) ≤ K and S is not modular bounded, then we can find

fn ∈ S, n ∈ N such that ρΦ,µ(fn) ≥ n, n ∈ N. So (C.2) becomes, for n ≥ n0 ≥ 1 ∨K0,

ρΦ,µ(fn) =
∫

Ω
Φ
(
n0fn
n0

)
dµ ≤ Cn0

∫
Ω

Φ
(
fn
n0

)
dµ ≤ Cn0 ,

by the ∆2-condition. But this is a contradiction. If supf∈S ‖f‖Φ,µ ≤ K then also
supf∈S ‖f‖(Φ,µ) ≤ K.

Lemma C.18. Suppose that Φ ∈ ∆2. Then LΦ(µ) is separable if and only if (Ω,F , µ)
is separable.

Proof. See [RR91, Ch. III, Theorem 1, p. 87].

Lemma C.19. Suppose that Φ ∈ ∆2 and (Ω,F , µ) is σ-finite. Then (LΦ(µ))∗ = LΨ(µ)
with dualization

LΦ〈f, g〉LΨ =
∫

Ω
fg dµ

the functional norms are given by Hölder’s inequality.

Proof. See [RR91, Ch. IV, Theorem 7, Corollary 9, pp. 110-111].

Lemma C.20. Suppose that Φ ∈ ∆2 ∩∇2. Then LΦ(µ) (and LΨ(µ)) is reflexive.

Proof. See [RR91, Ch. IV, Theorem 10, p. 112].

For the following we extend ϕ : R+ → R+ to an odd function from R onto R by
defining t 7→ ϕ(|t|) sign(t).

Lemma C.21. Let Φ ∈ ∆2 ∩∇2. Let f ∈ LΦ(µ). The map f 7→ ϕ(f) maps the ‖·‖Φ,µ-
unit ball of LΦ(µ) into the ‖·‖(Ψ,µ)-unit ball of LΨ(µ). More generally, ϕ(LΦ(µ)) ⊂
LΨ(µ).

Proof. See [RR91, Ch. VII, Proposition 1, p. 265].

Lemma C.22. Let Φ ∈ ∆2 ∩∇2. Suppose that Φ is continuous with continuous deriva-
tive ϕ = Φ′ such that ϕ(t) > 0 if t > 0. Then the map ‖·‖(Φ,µ) : f 7→ ‖f‖ is Gâteaux
differentiable at each point of the ‖·‖(Φ,µ)-unit sphere with

LΨ(µ)

〈(
∇G ‖·‖(Φ,µ)

)
(g), f

〉
LΦ(µ)

=
∫

Ω
fϕ(g)µ(dx)

for all f, g ∈ LΦ(µ), ‖f‖(Φ,µ) = ‖g‖(Φ,µ) = 1.
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Proof. See [RR91, Ch. VII, Theorem 2, p. 278].

Lemma C.23. Let Φ ∈ ∆2 ∩∇2. Suppose that Φ is continuous with continuous deriva-
tive ϕ = Φ′ such that ϕ(t) > 0 if t > 0. Then the map ‖·‖Φ,µ : f 7→ ‖f‖ is Gâteaux
differentiable at each point of the ‖·‖Φ,µ-unit sphere with

LΨ(µ)

〈(
∇G ‖·‖Φ,µ

)
(g), f

〉
LΦ(µ)

=
∫

Ω
fϕ(kg)µ(dx)

for all f, g ∈ LΦ(µ), ‖g‖Φ,µ = 1 such that k > 1 solves

k − 1 =
∫

Ω
Φ(kg)µ(dx).

For such k, ∫
Ω

Ψ (ϕ(k|g|)) µ(dx) = 1.

Proof. See [RR91, Ch. VII, Theorem 5, p. 281] and [Che96, Theorem 2.51].

Lemma C.24. The Orlicz spaces (LΦ(µ), ‖·‖(Φ,µ)) and (LΦ(µ), ‖·‖Φ,µ) are uniformly
convex if for each ε > 0, there is kε > 1 such that ϕ((1 + ε)t) ≥ kεϕ(t), t ≥ 0, and if Φ
is ∆2-regular and strictly convex.

Proof. See [RR91, Ch. VII, Theorem 8, p. 288, Theorem 10, p. 293].
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