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Introduction

A very interesting quasi-linear parabolic system of backward partial differential
equations is the following:

(1) (0: + D)u(t,z) + f(t,x,u,Dyu) = 0 vo<t<T
wT,z) = ¢(z), zeR

where L is a second order differential operator with measurable coefficients and
D,u is defined as a generalized gradient, which depends on some coefficients
of L. In the analytic part of [BPS05] the above system is considered for an
operator L associated to the bilinear form

Z/W ) o (o) ) ), v € G (R

where C§°(R?) denotes the space of infinitely differentiable functions with com-
pact support. Here m(dz) := m,(x)dx, where 7, is a weight function and dx
denotes Lebesgue measure, such that m(R?) < oo if p > 0, and m(dz) = dx if
p = 0. In Section 2 of [BPS05| the authors, V. Bally, E. Pardoux and L. Stoica,
prove the existence and uniqueness of weak and also strong solutions for the
linear equation

(2) (O + L)u(t,z) + f(t,x) = 0 vo<t<T
uw(T,z) = ¢(z), zeR?
where f is an element of L'([0,T]; L?(R%,m)) and ¢ € L*(R%,m). Moreover,
they derive basic relations, which are very useful in the treatment of the non-
linear case. The third section deals with the nonlinear case (1). The authors

present an existence and uniqueness proof for a weak solution in the case of Lip-
schitz conditions and also in the case of more general monotonicity conditions.

In this thesis we generalize the analytic part of [BPS05] to a non-symmetric
case. More precisely, we consider the system (1) of BPDEs for a non-symmetric
second order differential operator L, which is associated to the bilinear form

i ( ov
= 3 [ 2w 2

1,5=1

+Z/ ( 3362 (z)d;i(z) + g{:l (m)v(x)bl(m)> m(dz)

+/Rd u(z)v(z)c(x) m(dz)

iii



iv INTRODUCTION

where a®7,b;,d;,c € L}OC(Rd,m), 1 <i,5 < d. We solve the system (1) in the
linear and also nonlinear case under general conditions on f and the coefficients

of the above bilinear form. Now let us give a brief overview of this work.

In the first chapter we explain the functional analytic methods needed to
understand the non-symmetric framework (Chapter 2) and to solve the system
(1) of BPDEs.

In Section 1.1 we repeat the basic definitions of semigroups and Dirichlet
forms and some useful lemmas and theorems from [MR92]. Moreover, we present
some important properties (cf. Lemma 1.9, 1.10 and 1.11).

Section 1.2 contains a Hilbert space version of [MR92, I. Lemma 2.12].

Chapter 2 deals with the framework of this thesis.
In Section 2.1 we introduce the non-symmetric framework. We define the
bilinear form (2.1) and state our basic conditions, which are

e (&, F) is a Dirichlet form, where F is the closure of C5°(R?) w.r.t. &,

o (E4,D(EM)) is a coercive closed form.

Note that there is no strong ellipticity condition on the coefficients of the bilinear
form. Examples of such forms are presented in Remark 2.2.

In Section 2.2 we introduce Cr = L2((0,T); F) N C*((0,T); L?(R%,m)) and
its completion F' w.r.t. |- || where ||Jul|? = supeo,7) llutll3 + fOTE(ut,ut)dt.
In Lemmas 2.4 - 2.6 we prove basic properties of these spaces, which were only
claimed, but not proved in [BPS05]. Moreover, we give our own proof for the
statement that bCr is dense in Cp (cf. Lemma 2.7). A characterization of F
is given in Lemma 2.10. In the proof we follow the very rough idea of [BPS05,
Lemma 2.1]. At the end of this chapter we give an approximation lemma for
functions in F'.

In Chapter 3 we solve the linear system (2) in the case where ¢ € L?(R%, m)
and f € LY([0,T]; L?(R%, m)).

Section 3.1 contains our definition of weak and strong solutions for the linear
case and some proofs of their important properties. Sufficient conditions for the
existence and uniqueness of a strong solution are given in Proposition 3.6, which
is taken from [BPS05, Proposition 2.6]. We prove it with all details for our non-
symmetric framework. Existence and uniqueness of weak solutions are proved
in Proposition 3.8. Here we follow the lines of arguments of [BPS05, Proposition
2.7].

In Section 3.2 we state useful relations. In Lemma 3.10 we point out an
important relation for the positive part u™ of a weak solution u:

to ta
I 5 +2 [ etaiyds <2 [ (udds + a3
t ty

1

The proof follows [BPS05, Lemma 2.8]. Note that in the symmetric framework
of [BPS05] the above relation is even an equality. A modified version of this
statement is Lemma 3.11. The main result of Section 3.2 is Proposition 3.12.
In this proposition we verify a representation of a function u € F satisfying the
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weak relation

T T
/0 (e, Boipe) + E g, 1)) dt = /0 (o) dt + (6, 07) — (o, p0) Vi € Cr

for certain data. Moreover, we show two very useful relations. The proof of this
proposition is a rewritten version of [BPS05, Proposition 2.9].

Chapter 4 deals with the nonlinear case, where f depends on ¢,z,u and
D,u, in the case of vector valued functions. This chapter contains our main
results: the existence and uniqueness of a solution of (1) in a weak sense, firstly
under Lipschitz conditions and secondly under monotonicity conditions on f.
The general conditions in this chapter are:

(A1) A= (di’j)i)j:17,,,7d is bounded and
d
> ahigg; > 0 forall = (&1,...,&) € RY,
ij=1
(A2) EAu,u) < KaE(u,u) + Callul2
for some K4 € [1,2),C4 € Ry and for all u € F.

In the monotonicity case we have to assume additional conditions.
In Section 4.1 we prove

gA(u,v):/ (Dyu, Dyv) dm
R4

where D,u is a generalized gradient. This equation is first shown for u,v €
Ce°(R?) (cf. Lemma 4.3) and then for u,v € F4 (cf. Proposition 4.4). Since £4
is exactly the bilinear form considered in [BPS05], the statement of Proposition
4.4 coincides with [BPS05, Proposition 2.3]. We present a completed proof with
all details, which follows the arguments of the proof in the original paper.

In Section 4.2 we give our definition for a solution of the nonlinear equation.

Section 4.3 contains the case of Lipschitz conditions. We basically follow
[BPS05, Proposition 3.1] and prove thereby the existence and uniqueness of a
solution under Lipschitz conditions on f.

We start Section 4.4.1 by introducing monotonicity conditions. Then we
prove some properties in Lemma 4.9, which are associated to these conditions.

The aim of Section 4.4.2 is to prove two important estimates for a solution.

By Lemma 4.10 we obtain an estimate in the || - ||z norm. For an estimate in
the || - || norm we need additional conditions on the coefficients of the bilinear
form:

(A3) di=0fori=1,...,d,

(A4) ce L®(R%R,).

We start by proving two approximation lemmas for the data (f,¢) (Lemma
4.11, Lemma 4.12.), which were not explicitly stated and proved in the original
paper. Next we give a version of [BPS05, Proposition 2.10] for nice data in our
framework. The main arguments of this proof are analogous to the symmetric
case. In general, an explicit formula of the non-symmetric Dirichlet form does
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not exist. Thus, our proof becomes very technical in contrast to the symmetric
case. The case with general data is treated in the next corollary. In Lemma
4.16 we show two important relations, which are useful for the || - || estimate
of our solution. Note that in this lemma it is essential that a Markov process is
associated to our sub-Markovian semigroup. By the last lemma of this section
we gain a || - ||oo estimate for the solution.

In the first theorem of Section 4.4.3 we prove the existence of a unique
solution under monotonicity conditions for the case p > 0. We follow [BPS05,
Theorem 3.2]. The case, where m(dx) is the Lebesgue measure, is treated in
Theorem 4.21. Note that in the latter case we postulate additional conditions
on the coefficients of (£, C5°(R%)):

(A1) A=A and A is bounded,

Jo ! such that oo~ =1 and |0~ !(x)| < oo uniformly,
-V-b>0,

be L*(RY dx),

E(u)<oo=uckF.

We point out that an essential condition, which is independent of the non-
symmetric part, is (A8) (cf. Theorem 4.21 (4)). Since this condition is not stated
in [BPSO05], the proof in the original paper is doubtful. Note that the form of
the operator (L,,D(L,)), which is used in step 4 of [BPS05, Theorem 3.2],
only exists under additional conditions on the coefficients. But these conditions
are not stated in the original work. In our proof we do not use any explicit
representation of this operator.

Finally, we prove analogous to [BPS05, Proposition 3.4] a comparison result
for solutions.

In the appendix we demonstrate an important proposition for the Bochner
integral and a very useful backward version of Gronwall’s Lemma.

Note that in the notation we do not distinguish between m-equivalence
classes of functions on R? and representatives, if there is no confusion.

We expect that our results are also valid in the framework of semi-Dirichlet
forms without major changes.

First of all I want to express my deepest thanks and gratitude to Prof. Dr.
Michael Rockner for his guidance. Further, I would like to thank Dr. Gerald
Trutnau for the discussions about open questions and problems. Finally, I am
grateful for the moral support and understanding of my wife.



Chapter 1

Functional Analytic
Methods

The aim of this chapter is to give an overview about the functional analytic
methods, which we will need afterwards. We start by repeating some definitions
and lemmas in the first section. In Section 1.2 we present a variant of [MR92, 1.
Lemma 2.12] in a Hilbert space form, which is an important tool in this work.

1.1 Semigroups and Dirichlet Forms

The following three definitions are taken from [MR92], (cf. [MR92, I.Definition
1.4, 1.6 and 1.8]).

Definition 1.1. [strongly continuous contraction resolvent |
A family (Go)aso of linear operators on a Banach space B with D(G,) = B
for all a €]0,00] is called a strongly continuous contraction resolvent on B, if

(1) lim aGyu=u for all u € B.
(i) aG, is a contraction on B for all o > 0.

(iii)  Go—Gs=(8—)GaGpy for all a, 3 > 0.

Definition 1.2. [strongly continuous contraction semigroup |
A family (T})t=o of linear operators on a Banach space B with D(Ty) = B for
all t > 0 is called a strongly continuous contraction semigroup on B, if

(1) thn(l) Tiu =u for allu € B.
(i) T} is a contraction on B for all t > 0.
(Z’L’L) Tth = Tg+t fOT‘ all t, s> 0.

Definition 1.3. [infinitesimal generator of (T)i>o ]
Given a strongly continuous contraction semigroup (Ty)iso on a Banach space
B, the linear operator (L, D(L)) on B defined by

1
D(L) = {ue B|1tilrgl Z(TtU*U) exists in B}
1
Lu = lim—(Tiu— D(L
u im - (Tyw — u),u € D(I),
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is called the infinitesimal generator of (T})i>o-

Notation. In this chapter we fix a Hilbert space (M, (-,-)). Let D be a
linear subspace of H and £ be a bilinear form on D x D. We define

gl('v*) = 5('7*) + ('v*)H

and the symmetric part

(%) =2 (EC %) + E(x, ).

N =

Moreover, we write L?(R?) := L%(R%,m) with the usual inner product (-,-)
where m(dz) is some o-finite measure.

Definition 1.4. [symmetric closed form (cf. [MR92, I.Def.2.5.])]

A pair (£,D(E)) is called a symmetric closed form on H, if D(E) is a dense
linear subspace of H and € : D(E) x D(E) — R is a positive definite bilinear
form, which is symmetric and closed on H.

Definition 1.5. [coercive closed form (cf. [MR92, I.Def.2.4.])]

A pair (£,D(E)) is called a coercive closed form on H, if D(E) is a dense linear
subspace of H and £ : D(E)xD(E) — R is a bilinear form such that the following
two conditions hold:

(4) Its symmetric part is a symmetric closed form on H.
(i4) (E,D(E)) satisfies the weak sector condition:

JKg > 0 such that |E1(u,v)| < Kggl(u,u)%gl(v,v)% for all u,v € D(E).

Definition 1.6. [Dirichlet form (cf. [MR92, I.Def.4.5.])]
A coercive closed form (€,D(€)) on L*(R?) is called Dirichlet form, if for all
u € D(E) one has that

utA1eDE) and E(uw+ut Alu—ut Al)>0
and  E(u—u" Alu+ut A1) >0.

Definition 1.7. [sub-Markovian (cf. [MR92, I.Def.4.1.])|

Let G be a bounded linear operator on L?(R?) with D(G) = L?(R%). G is called
sub-Markovian, if for all f € L*(R%),0 < f < 1 implies 0 < Gf < 1. A
strongly continuous contraction resolvent (Gu)aso resp. semigroup (Ty)iso 18
called sub-Markovian, if all oGy, > 0, resp. Ty, t > 0 are sub-Markovian.

The correspondence between (Go)a>0,(Tt)t>0,(L, D(L)) and (€, D(E)) is il-
lustrated in [MR92, Diagram 3]. Note that every sub-Markovian semigroup
(T})¢>0 is positivity preserving, i.e. f >0=T,f > 0.

Lemma 1.8. Let (L,D(L)) be the infinitesimal generator of a strongly con-
tinuous contraction semigroup (Ti)i=o on (H, | - ||#), which is associated to a
coercive closed form (£,D(E)). Then for allt > 0 and f € H it holds

(i)  Tuf € D(L),
(ii) LT, f |3 < CHI for some C €]0, 00| independent of f and t.

t




1.1. SEMIGROUPS AND DIRICHLET FORMS 3

Proof. See [MR92, p.25]. O

Lemma 1.9. Let (L,D(L)) be the infinitesimal generator of a strongly contin-
uous contraction semigroup (Ty)¢>o on (L2(R9), || - ||2), which is associated to a
coercive closed form (£, D(E)). Then for u € L*(R?) it holds

1 -
|E(Tyu, Tyu)| < ;IIUII%C

where C' €]0, ool

Proof. By Lemma 1.8 it holds Tyu € D(L) and
ILT u||2 < C’@ for some C' €]0, oo|.
Therefore, we conclude

2
(€T, Tow)| = (LT, T < | Lol Toa> < 12

O

Lemma 1.10. Let (T})i~0 be a strongly continuous contraction semigroup on
(L2(RY), || - ||2), which is sub-Markovian. Then for f,g € L*(R%) and t > 0 it
holds:

() T < T,
() Tilfo) < S TIIP +1P).

Proof. (i) Since Ty(|f| — f) = 0 and T3 (|f| + f) > 0, it follows T3(|f|) > |T:(f)|-
(i) Since 0 < Ty(|f[* + [g* — 2f9) = To(IfI* + [g]*) — T(2fg), the assertion
follows. O

Lemma 1.11. Let (T})¢>0 be a sub-Markovian strongly continuous contraction
semigroup on (L2(R?),]| - ||2). Then

ITeflloo < Iflloc for all f € L (R?,m) N L*(RY).

Proof. Let us first assume f = 0 m-a.e.. Hence, it holds ||f|lc = 0. Since
IT: fll2 < [ fll2 = 0, it follows T} f = 0 m-a.e. and we can conclude ||T;f|lo = 0.
Now we turn to the case f # 0 m-a.e. and define f = =" Since T is

sub-Markovian and | f | <1, we get

|T:f ()| < Ty f(z)| < 1 for m-a.e. x € RY

Lemma 1.10

and therefore,
Ty f ()| < || flloo for m-a.e. z € RY.

Finally, we obtain the assertion |73 flco < ||f|loo- O

Lemma 1.12. Let (£,D(£)) be a Dirichlet form on L?(R?). Then the symmet-
ric part of (£,D(E)) is a Dirichlet form. (cf. [MR92, I.Exercise 4.6])
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Proof. The assertion follows immediately from the definition of a Dirichlet form.
(cf. Definition 1.6) O

Theorem 1.13. Let (£,D(E)) be a Dirichlet form on L*(R?) and T : R — R
be a Cl-function, such that T(0) = 0 and T’ is bounded by K € Ry. Then we
have for u € D(E)

(@) T(u) € D),
(i) E(T(u), T(u)) < K2E(u,u).
Proof. The assertion follows by Lemma 1.12 and [MR92, I. Theorem 4.12]. O

Corollary 1.14. Let (£,D(£)) be a Dirichlet form on L*(R%). Then for all
Ui, ..., u, € D(E) andu € L*(R?) such that |u(z)—u(y)| < > p_; luk(z)—uk(y)|
and |u(z)| < Sop_, lug(z)| for all z,y € RY, we have u € D(E) and E(u,u)? <
Sy & un ur)?.

Proof. The assertion follows by Lemma 1.12 and [MR92, I. Corollary 4.13]. O

Corollary 1.15. Let (£,D(£)) be a Dirichlet form on L*(R?) and u,v €
D(E),u,v bounded. Then u-v € D(E) and

Eu-v,u-)? < [JullaEW,0)7 + [[0]|0e€ (u, u)? .

Proof. See [MR92, I. Corollary 4.15]. O

1.2 A Hilbert Space Lemma

In this section we present a Hilbert space form of the well known and useful
Lemma [MR92, I. Lemma 2.12]. For the proof we need the Banach-Alaoglu and
Banach-Saks theorems.

Theorem 1.16. [Banach-Alaoglu]
Let B be a Banach space with norm || - || and B’ its dual. Then the unit ball B}
in B’ is compact in the weak* topology.

Proof. See [MR92, A. Theorem 2.1] or [RS80, Theorem IV.21]. O

Theorem 1.17. [Banach-Saks)

Let H be a real Hilbert space with inner product (, ) and norm ||| := (, )2. Let
u,uy € H,n € N, with u, — u as n — oo weakly in H, then there exists a
subsequence (ng)ken such that the Cesdro mean

1 N
un = N;U/nk’ NEN,

converges strongly to u in H.
Proof. See [MR92, A. Theorem 2.2] or [NR55, Section 38]. O

Lemma 1.18. Let (B,| - ||g) be a Banach space and u,, a sequence in B such
that u, — u. Then the Cesdro mean of (up)nen converges to u in B.
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Proof. Since u,, — u in B, for every ¢ > 0 there exists K € N\{0} such that
|tn —ul|p < e for all n > K.

Hence, 2% |Jun| 5 is bounded by cx € Ry. Therefore, we have for N > K:

1 N
5], - [l
1 K N
< N(z e uls+ 3 nununB)
=1 n=K+1
1 (& 1
< ¥ (; (llunllB + IIUIB)> + 5 (BN = (K +1)))
K
1 K K+1
= N(;Ilunlls>+NIIUB+€—€ v
CK K K—l—l
<
< yHylulls—e—x—+e
< CK+K‘|U||;_E(K+1)+€.

Since K is fix, we can choose N > N big enough such that

cx + K||u||p —e(K +1)
n

<e foralln> N.

Finally, we get

N
1 -
H—N g_lun—uHBS% for all n > N.

O

Lemma 1.19. Let (Ho, (, )n,) and (H,(, )x) be Hilbert spaces, Ho C H, with
norms || - |x == (-, ) and || - || == (-, )1, Such that there exists ¢ € Ry with

cllulln, = llully  for all w € H.
If up, € Ho,n € N such that

sup [|un|lx, < o0
neN

and uw € H such that u, — u in H as n — oo, then:
(i) u € Ho and u, — u weakly in Ho.

(ii) There exists a subsequence (un, )ken Of (Un)nen such that its Cesdro mean
Wy, = %ZZ:1UM — u in Hy as n — oo.

(iit) [[ullry < liminfp oo [[tn 24
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Proof. We follow the idea from the proof of [MR92, I. Lemma 2.12].
Since sup,, ey ||tn ||+, < o0, we conclude by the Banach-Alaoglu theorem that
there exists v € Hg such that

Up, — v weakly in Hy,

for some subsequence (ng)ren of (n)pen. With Banach-Saks we obtain that
there exists a subsequence (ny, )ien such that

1 n
wn::qunkl, neN
[t

converges to v in Hg. Since we have c||-||x, > |||/, it follows that w,, converges
in H to v. By Lemma 1.18 we know, since u,, — u in H, that the Cesdro mean
w, converges to u in H. Therefore, we have u = v. Since this reasoning holds
for every subsequence, we get

Uy — u weakly in H.

This can be seen as follows: Assume that an element @ exists such that (@, un ),
does not converge to (@, u)s,. Then we can find e > 0 and a subsequence
(nk)ken such that

[(Ty Uy, )1 — (U, u)p,| > € forall k € N. (1.1)

Since the above reasoning holds for every subsequence, there exists a weakly
converging subsequence of (uy, Jxen in Ho. But this is a contradiction to (1.1).

Now we will prove the estimate (iii). W.l.o.g. we can assume |ul[, > 0.
Since

1 1
||u||${0 = nli_}rrgo(u, Un ) 1o = liminf(u, uy )y, < liminf ((u,u);"io (un,un)fio> ,

n—oo n—o0

we get
[[ullr, < Liminf [Jup 3.
n—o0



Chapter 2

Framework

In this chapter we define the non-symmetric framework. It is a generalization
of the symmetric framework in [BPS05, 2. Preliminaries|, which is based on the
symmetric bilinear form

d
ewo) = Y [ @) ) @y mds). wo e O R

where a*? = a’".

2.1 The Non-Symmetric Framework

Let us start by giving the definition of a weight function analogous to the sym-
metric case. For p € Ry we define

7(2) := expl—p0(a)
where
6 € C'(R?) such that 0 < f(x) < ||, if |z| <1 and O(z) = |z], if |z > 1.
For simplicity of notation let us define the measure
m(dz) = w(z)dx.

This will be the basic measure in this work.

Notation. From now on, L? denotes L%(RY,m) with the just specified den-
sity .

Lemma 2.1. If p > 0, then m(R?) < oo.

Proof.

m®Y) = [ exp(-pola))ds

/ exp(—p@(x))dx+/ exp(—plx|)dz < oo
{|z|<1,z€R4} {lz|=1,z€R?}

SJ'{MKLEERd}szconst =const [ exp(—pr) dr<const
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where we have used in the second term of the right hand side the d-dimensional
polar coordinates. O

We define for u,v € C§°(R?) the non-symmetric bilinear form:

Z | avwgr >§;’j< z)m(d) (2.1)

+Z / ( 8% 2)ds(x) + g;‘i (x)v(m)bi(x)) m(dz)
+/Rd u(z)v(z)e(x) m(dx)

= / <A(z)Vu(x),Vv(:r)>m(dx)+/ u(z)(d(x), Vo(z)) m(dz)
R4 Rd
+/Rd (b(x), Vu(x))v(z) m(dz) + /Rd u(x)v(x)e(x) m(dx)

where a®J,b;,d;,c € L}, (R*,m),1 < i,j < d and A = (a"¥)1<; j<a, cf.
[MR92, p.48(2.17)]. Moreover, we introduce the following notation for the sym-
metric and anti-symmetric part of (2.1):

E(u,v) = =Z(E(u,v) + E(v,u)),

O
N =N~

(w,0) = S(E(w,v) = E(v,u)), u,v € C°(RY)
and analogously
i = (a1 aid)
2 9
o 1 .. o
a o = 5((1” —a*’).

Let us denote by (£4,C5°(R?)) the first part of the bilinear form (2.1)

aii( ov
)= 3 [ a0 2 2 ey i

i,j=1
and
£ ) = Z [ o @ulalta) mde),
E%u,v) = /Rd c(z)u(z)v(xz) m(de), u,v € C°(RY).

We will write £(u) instead of £(u,u) and & (u) instead of & (u, u).

Our basic assumptions are that (£,C5°(R?)) and (£4,C5°(R%)) are closable
and that their closures are coercive closed forms. Furthermore we assume that
(€, F) is a Dirichlet form where F is the closure of C§°(RY) w.r.t. £7. We
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denote the sub-Markovian semigroup associated to (€, F) by (P;)¢>0 and the
infinitesimal generator of the semigroup by (L,D(L)). We say that L is non-
degenerate, if there exists a constant v > 0 such that Z” atigied > v|¢f? for
all £ € R9.
A Dirichlet form is regular on L2(R%, m), if Co(RY) N D(E) is dense in D(E)
1
wr.t. £ 2 and in Co(R?) w.r.t. the uniform norm || |s. Easily we see that
the Dirichlet form, which is associated to (2.1), is regular on L?(R% m) and
hence quasi regular (cf. [MR92, IV. Definition 3.1 and IV.4 Examples of quasi-
regular Dirichlet forms, a)]). Thus, there exists a Markov process X such that
P,f(x) = E.[f(X})] for f € L?. For more details we refer to [MR92, IV. Markov
Processes and Dirichlet Forms| and [MOR95].

Remark 2.2. (i) Sufficient conditions for the closability of (£4,C5°(RY)) are
given in [FOT9/, Section 3.1] and [MR92, II. Section 2.2].
(i) [degenerate case] (cf. [RS95, Theorem 1.2] and [MR95])

Let U C R? open,d > 3,p,0 € L}, (U,dx),p,oc > 0dz-a.e. and F be the
set of all functions g € L}OC(U, dx) such that the distributional derivatives
g—i,l < i < d, are in L, (U,dz) such that IVgll(g9o)~2 € L°(U,dx) or
IVg|[?(gPTio)~2 € LYU,dz) for some p,q € [1,00] with % —1—5 =1,p < 0.
We say that a B(U)-measurable function f has property (A, ), if one of the
following conditions holds:

. f(pa)_% € L>(U,dz),
P 1 1
. fp(ppHUE)*% € LYU,dx) for some p,q € [1,00] with » + p =1,p < o0,

and p € F.

Suppose that

d
(P1) S @igg; > pllé|da-ace. for all € = (&, Eq) € R
ij=1
(P2)  a“p~'e L>®(U,dx).
(P3) For all K C U, K compact ,1k||b+d|| and ]ch% have property
od; .
is a positive measure on B(U)
L

Oxs

d
(Ap0), and (¢ + apo)dx — Z
i=1

for some g € (0,00).
(P4) |b— d|| has property (A,o).
(P5)  |Ibll € Lj,e(U; da),
d

0b;
(¢ + apo)dx — Z P

is a positive measure on B(U).
i=1

%

Then (Eay,CSC(U)) is closable on L?(U,odx) and its closure (g, D(Eay)) is
a regular Dirichlet form, where ag is given by (P3) and Eu(u,v) := E(u,v) +
(U, V) L2(U,ode) -

(#ii) [non-degenerate case] (cf. [MR92, II. Examples 2.d)])
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Assume that it holds for d >3 and U C R, U open:

d d
(P1) cdx—zgdl >0, cdm—zabl >0

T; T;
i=1 v i=1 v

in the sense of Schwartz distributions.

(P2) [strong ellipticity condition]
d
v €]0,00] s.th. Y a7 &&; > v||¢|Ra for all € = (&1, .., &) € RY,
i,j=1
(P3)  3IM €]0,00] s.th. |a™| < MV1<i,j<d.
(P4)  ceL? (Udz),bi,d; € L (U, dz),
d; —b; € LU, dx) U L= (U,dz),1 <i < d.

Then (€,C8°(U)) is closable and its closure is a Dirichlet form on L*(U,dx).
Remark 2.3. If the coefficients of the bilinear form (2.1) fulfill the conditions

d
(D1) Y aEg >0 meae  forall € =(&,..., &) €RY

i,j=1

d
ou J
(D2) /}Rd (cu—l—izgl(dz-i-bz)axi) dm >0  for all u € C§°(R?),u > 0,

then 0 < EA(u,u) < E(u,u) for all u € C°(R?).

2.2 The Function Spaces Cr and F

Let us introduce the function space (cf. [BPS05, p.21])
Cr := CH((0,7); L%) N L*((0,T); F)
1
with the norm |||z := (Supte[o,T] lloell2 + foT E(ps, 1) dt) * . We denote the

completion of Cp w.r.t. |||z by F. The conditions in the next lemmas are
taken from [BPS05, p.21].

Notation. From now on 9; denotes the time derivative.
Lemma 2.4. Let ¢ : [0,T] x R? — R be measurable such that
(1) @€ F for almost all t,
@i | "o dt < o,

(iii) t v o, is differentiable in L?,
(vi) t = Oypy is L*-continuous on [0, T1}.

Then
Cr = {¢:[0,T] x R = R such that (i) — (iv) hold } .
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Proof. Let ¢ € CY((0,T); L?) N L*((0,T); F). Because ¢ € L?((0,T); F), it
follows ¢; € F for almost all ¢t and

/ o2y dt = / (E(or) + erll2) dt < . (2.2)

Since ¢ € C1((0,7); L?),
t = ¢y is L*-differentiable and t +— 0y is L*-continuous on [0, 7).

Moreover, we have:

T T
/ l[pe]|3 dt < / sup ||o¢ |3 dt < oo.
0 0 tel0,7]

Hence, we can reduce (2.2) to

T
/ E(¢)) dt < oo
0

and the assertion follows. O
Lemma 2.5. If o € C1([0,T]) and u € F, then a(t)u(z) € Cr.

Proof. We define () := ¢(t,x) := a(t)u(x). We have to prove (i) — (iv) from
Lemma 2.4.

(1)  Fixte€[0,T], then ¢i(z) = &(’tl u(x) = cu(z) and hence ¢¢(x) € F.

=:ceR

T T T
(i) /(]S(wt)dt:/o E(a(t)u)dt:é’(u)/o p@Fd < .

(#ii)  Since F C L?, it holds u € L. Therefore, we can calculate:
a(t+h) —alt) "

. <Pt+h Pt .

fim | 2= —ovete|, = o [ oty
. la(t) — +h

~ im ”h()amw\ Jull =0,

(i) lim [9p(a(t)u) = du(alt +h)u)o = lim [[(Dra(t) = Bealt + h))ull.
= lim [9,a(t) = dra(t + h)| [[ull> = 0.
O

Lemma 2.6. If u € Cr and ¢ € C*(R) such that ©(0) = 0 and the functions ¢’
and ©" are bounded by K € R, K # 0, then p(u) € Cr and Opp(ur) = ¢’ (ur)Opuz.

Proof. We will show (i) — (iv) from Lemma 2.4.
(i) — (41). By Theorem 1.13 we obtain ¢(u;) € D(E) = F and

T T
/ 5(<p(ut))dt§K2/ E(uy) dt < oo.
0 0
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(iid)

. u — U
%‘% QO( t+h)h SD( t) _80/(ut)atut i
. U — U
= }lllgb %Sﬁ/(fh)*wl(ut)atut ,
. U — U
< Jim |2 - G|
+ lim 1" (€) — ' ()| |Deael
< lim K| 2R T g+ lim ||| (6n) — ¢ (ue)|8ue 2
~  h—0 h 5  h—0
0

*)
where for every fixed 2 € R? we have chosen by the mean value theorem &, €
[t¢th,us]. Note that &, — uy as h — 0 in L2

1€n — utll2 < ||unte — uell2 — 0.

Now we will show (x). Since u € Cp, the first term converges to zero. Therefore,
we have to examine the second term. This will be done in five steps. Let h, be
a sequence such that h,, — 0.

(1.) Since dyu; is an element of L2 it follows that (|0;us|?) is uniformly
m—integrable.
(2.) Since ¢” is bounded by K, ¢’ is Lipschitz continuous with the constant K.
(3.) Let € > 0.

m ({z € R |¢' (€, (@) — ¢ (ur(@)||0pue(2)] > €})

(;) m ({m € Rd‘ |€n,, () — up(2)||Opue (x)] > %})
= . X / €n,, (2) — ug(x)]|Opue ()] m(da)
Markov’s inequality € JRd

IN

K
= (N, = willollOrui]2)

— 0

(4.) Since ¢’ is bounded by K and (|0yu|?) is uniformly m—integrable, we
conclude that (¢’ (&, ) |20kt |*)nen is uniformly m—integrable.
(5.) From (3.) and (4.) it follows that

@' (&n,)Oruy — ¢ (ug)Opuy in L2
(iv) The proof of this point will be done analogous to (iii). Let h,, be a sequence
such that h,, — 0. Since

(O (ue) — atsﬁ(ut+hn)||2 = H<P/(Ut)3tut - @l(ut+hn)atut+hn ll2

we have to show in L?

@' (e n, )Ostsin, — ¢ (ur)Oruy.
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(1.) Since we have Oyusypn, — Opuy in L2, it follows Oyusrn, — Opuy in
m—measure. It also follows that (|0;ussn, |*)nen is uniformly m—integrable.
(2.) Since ¢” is bounded, ¢’ is Lipschitz continuous with constant K.

(3.) Let € > 0. Then it follows by (2.) and (iii)

m ({z € Rd’ |0 (ur(2))Dpur () — @' (urgn,, (€)dpurin, (2)] > e})
m ({x € Rd| " (e (2))Orus (2) — @' (ueqn, () Druy (2)] > 6})

<

+m ({z € Rd| | (Ut s h, (2))Dpur(2) = @ (Win, (€))Dptissn, (x)] > €})
< m({z e RY ¢ (wi(x)) — ¢ (wiin, (@))||Orus(z)] > e})

+m ({z € Rd| K|0yuy(x) — Opugyn, (x)] > €})
< m({ze Rd’ Klug(z) — g, (2)||0u ()| > €})

+m ({I S Rd| K|6tut(1') — 8tut+hn (I)‘ > 5}) .
Since K is constant and (1.), we conclude:

m({z € Rd’ K0y (x) — Oyupyn, (x)| > €})

- m ({x c Rd’ |0y () — Optbggn,, ()] > %})
— 0.

Now we examine the other term

m ({z € RY| K|uy(z) — wisn, (2)]|0u(z)| > €})
m ({:E € Rd‘ lug(z) — wppn, (2)||Opus(z)] > %})

K
< — [ |w(z) = wirn, (@)]|Opue ()| m(dz)
Markov’s inequality g Jrd
K
< ?(Ilut —Ut+hn\|2||3tut||2)
— 0.

Hence, it follows that 0:(p(uitn, )) — Oi(p(ur)) in m—measure.

(4.) Since ¢’ is bounded by K and (|0;u¢sn, |*)nen is uniformly m—integrable,
we conclude that (| (usrn, (2))Optuirn, (7)]?)nen is uniformly m—integrable.
(5.) From (3.) and (4.) it follows that

O (ueyn, )Osussn, — ¢ (us)Opuz in L2,
O

We refer for detailed information about uniform integrability to [Bau92,
Chapter 21].

The assertion of the next lemma is taken from [BPS05]. In the proof we will
use instead of the C*(R) functions, which appear in the idea of the proof in the
original paper, C%(R) functions such that we can apply the above lemma.

Lemma 2.7. bCr is dense in Cp w.r.t. || - |-
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Proof. We define the function ¢,, € C*(R),n € N by

z for |[z| <n
| Enmtloe) L n for ge] — (n+ 1), —n
(pn(x) i sin(mw(n+1—=x)) T n
sign(z) - (n+ 3) for |z| >n+1
with the derivatives
1 for |z| <n
on(x) =<3 —Llcos(nr(n+1—=2)) foraze€]—(n+1),—nUn,n+1]
0 for |z| >n+1
and
0 for |z| <n
" _ ) __sin(n(n+l-x)) - B
on () = g for x €] — (n+1),—n[Un,n + 1]
0 for |x| > n + 1.

0

It is obvious that for all n € N the functions ¢, ¢), and ¢/ are bounded (i.e.
lon(ue(2))] <n+ 4 forall t € [0,T],2 € R?) and ¢,(0) = 0.

Now let us prove that from u € Cr follows ¢, (u) € bCr.

¢! and ¢! are bounded, p,, € C*(R), ©,,(0) = (0) = on(u) € Cr,

Lemma 2.6

©n, bounded = on(u) € bCr.

Easily we see that for all z € R and ¢ € [0, 7] it holds

lim o, (ur(2)) = wi(x)  lon(w(@))] < fu ()]

n—oo
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and since [@n(t)| < [@n1(2)],
[ue(2) = @n(us(@))ll2 = [lue(x) = Eny1(ur(2))]2 for all n € N.

Hence

Pn(t) = [Jua(z) = pn(ue(2))]2 \ 0.
Since u and ¢, (u) are elements of Cr, it follows that 4, is continuous on [0, 7.
By Dini’s theorem we get

sup |[|¢n (ug()) — ue(x)[2 — 0.
te[0,T]

Next we will show for a new sequence (@ (ut(x)))neny where @ (ut(x)) :
% 2221 P, (ue(x)):
T

n—00 0

Since ¢!, is uniformly bounded and ¢, (0) = 0, we have by Theorem 1.13 for a
constant K

T T
/ 5(¢n(ut))dt§K2/ E(uy) dt.
0 0

Hence,

T
sup/ E1(on(uy)) dt < 0.
neNJo

By Lemma 1.19 there exists a subsequence (ny)ren of (n)nen such that for
the Cesdro mean @p(us) :== = 31| ©n, (uy) it follows that
T
lim E(@n(ur) —ug)dt = 0.

n—oo O
Since sup, o 7y [lon(ut(2)) — ut(x)|]2 — 0, we obtain by Lemma 1.18 that

1 n
sup Hf On,, (Ug) — utH — 0.
tefo,7) ' 1 ; * 2

Finally, we get ||@n(u) — u|lr — 0, where @, (u) € bCrp. O
Lemma 2.8. With the definitions of the above proof it holds

T
/ 10050 (1) — () 2 d — 0.
0

Proof.
T T
Jim (|0 @n(ue) = Or(ug)ll2dt = T [y, (we)Orur — Op(ue) |2 dt
’ T
= lim [ [[Oue((ur) — 1|2 dt
n—oo 0
= 0
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Lemma 2.9. Ifu € F and ¢ € F, then we have fOT usdt € F' and

T T
& </ Uy dt,cp) :/ E(ug, ) dt.
0 0

Proof. Let u € F. Since ||u|r < oo, we deduce that u is an element of
L?((0,7T); F) and conclude

T ) T 2
lul| . 2 dt <T7= full2 1 dt | < oo.
0 &1? 0 &2

Let £°(uz) = E(ug, 1), then €9 : F — R is obviously linear. Moreover, we
have:

1€°1] sup [ (v)]

loll _1=1

£z
W (I€F ()] + (¢, v)])
v él%—

IN

IN

1 1
s ([ R+ elklle)
v 1 =1
e

IN

|Ke&1(9)% ]+ [lg]l2 < oo.

Hence, we get £¥ € L(F,R). Now we can use (ii) of Proposition A.1 to conclude

the assertion
T T
& </ utdt,go) :/ E(ug, ) dt.
0 0

Remark: It is enough to assume u € L([0,7]; F) in Lemma 2.9.

The next lemma presents a useful representation of F. It is taken from [BPS05,
Lemma 2.1], where already a very rough idea of the proof is given. Here we will
give this proof with all details.

Lemma 2.10. F = C([0,T]; L?) N L2((0,T); F).

Proof. (C) Let u € F. Since |ulr < oo, we deduce u € L?((0,T); F). Let
u™ € Cr such that [[u™ —ufl7 — 0. Then we have sup;c(o 7 [[uf — u:l|5 — 0 and
can conclude that u € C([0,77; L?).

(D) Let w € C([0,T]); L?) N L?((0,T); F). We have to show the existence of
a sequence u, € Cr such that

lim |lu, — ullz = 0.
n—oo

Then we can deduce u € F', which proves the lemma.
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Step 1: Let ¢ > 0. Define @t; = u; for t € [0, 7] and @y = uasr—¢ for t € [T, T+e¢].

Then set

umt:n/ Uprsds, te[0,T,neR,n>-.
0 €

First we will show that every u,, belongs to C1([0,T], L?). This can be seen as

follows:

e t+> uy, is L2-continuous:

}Lig}) [tn,t = wn,t4nll2

1

n
lim n/ [Ttts — Ttrsinll2ds
h—0 0
1
[ - -
= n/ lim ||t qs — Giqsynll2ds
o h—O0

= 0

IN

o tioupyis L?-differentiable:

We only consider the case % > h > 0. The other case f% < h < 0 can be

treated analogously.

IN
S

== n

N
R\0
(%)

Un,t+h — Un,t nlu u
ek U o O L7 LA L —
h e T
2
t+i+h - t+L
s ds— [, "™ tsds
A — Uy —ue
2
t+h ~ t+1+h -
— usds"'j;ur% U ds
A = (Uppr —ue
2
t+i+h -
t+h ~ n
ft+ s ds j;+% Us ds
h “‘* h R
2

2

uir, —UuU nijus 1 — U 1
"ot tH2+ H ey ta 2

(*) In step 2 we show limp\p [lur  — uel[2 = 0.

o t+ 0y(upy) is L?-continuous:

[0k (un.e) — 3t(un,t+h)||2

= (s =) =0 (e - )

= n HUH% ~ Upyhtl

2

h—0

Hence, u,, € C*([0,7], L?). Moreover, by Lemma 2.9 it follows that u,; € F.
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Since

T T
/ 51 (umt) dt = / 51 (n
0 0

IN IN IN
o (=)
S~ S S
3= 3 3w
T N
N h i N
N 3 O\
+ o sh=
» A ™
o s o
< Koy
N ¢ +
S~— w
Foos
N—— QL
Qu )
» Q. N——
o+ )
oW
~

T
S 2 / 51(’11,25) dt
0

< 00,

we finally deduce by Lemma 2.4 that u, € Cr.

Step 2: In this step we will show that the Cesdaro mean of a subsequence
of (un)nen converges to u in || ||7.

Note that t — 4, is L2-continuous. Let € > 0, then there exists § > 0 such
that:
|[Gtys — telle < e for all |s| < d,¢ € [0,T].
So we get for n > %

1

n
w [ e - el ds
0

IN

||Un,t - Ut||2
1

n 1
n/ ceds=¢ forallte[O,T],n>N::g
0

IN

and can deduce

lim sup ||un:— utl[2 = 0.
=0 (0,7

Next we will show by Lemma 1.19

T
/ 5(un7t — ’U,t) dt — 0.
0

Let H := L?([0,T]; L?) and Hy := L?([0,T]; F) be Hilbert spaces. We have to
check the conditions of Lemma 1.19:

Since we have sup,co 7 |unt — uell2 — 0, we deduce v, ¢+ — u; in H. In step 1

we have already shown sup,, ¢y fOT E1(up,¢) dt < oo. Hence, it follows

T
sup ||un||Ho = Sup/ ||un,t||2~ 1 dt < oo.
n n Jo &2
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By Lemma 1.19 we obtain

X
N Zunk — u in Hp.
k=1

Since limy, -, co SUPsefo 17 [|tn,e — utll2 = 0, it follows by Lemma 1.18 that
LN
Jim sup |53 e =), =0
O

The assertion of the following lemma is taken from the proof of [BPS05,
Lemma 2.2].

Lemma 2.11. Let (£,C5°(R?)) be closable and define A(u,v) := fOTé'(ut,vt) dt
for u,v € C§°([0,T] x RY). Then (A,C3°([0,T] x RY)) is also closable.

Proof. Let u™ € C3°([0,T] x RY) be a sequence such that

(i) u™ —0in L2((0,T) x R, dt x m(dz))
(i) (u™)nen is Cauchy with respect to the norm induced by Ay,

where A;(u,v) = fOT E1(ug,v) dt. By (i) and (i4) we can find a subsequence
(nk)ken of (n)nen such that for almost every ¢ € (0,7T)

up* — 0in L?

and
(uy*)g is Cauchy with respect to the norm induced by &;.

Since £ is closable, we have:
E1(uy*) — 0 for a.e. t.

Therefore, we deduce

T
A (u™, u™) _ / £1(ul', ul) dt
0
T

k—o0

_ / lim (& (ul* — ul,ul*) — & (uf* — uf,ull)) di
0

T
= / lim & (uf* —u})
o k—oo
T
< liminf [ & (uf* —uy)dt.

Fatou's lemma k—oo Jo

By (ii) the last term can be made arbitrarily small by choosing n large enough.
O

The next lemma shows the existence of approximation sequences of Cg°([0, T x
R?) functions for elements in F'. We follow the idea of [BPS05, Lemma 2.2].
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Lemma 2.12. For every u € F there exists a sequence u™ € C3°([0,T] x R%),
n € N such that fOT E(ug —u) dt — 0.

Proof. Define the bilinear form A; (u,v) := fOT &1 (ug, vy) dt and

o

- A
Q :=C5°([0,7] x RY)
where A, is the symmetric part of A;. By Lemma 2.11 (A, C5°([0,T] x R%)) is
closable. Therefore, @ is contained in the space H := L?((0,T); F). Now we
will prove that @ = H.

If we can check that
1
w e H and w L @ ( in the sense of A7) = w =0,
the assertion will follow immediately.

Let us assume that
T ~
/ E1(we, @) dt = 0 for all ¢ € C5°(]0,T] x Rd).
0

Then we obtain by replacing ¢; with oz, where a € C*([0,T]) and ¢ €
C5°(R%), the following equation

T
/ gl(wt, app)dt =0  for all .
0
Therefore, we have for all ¢ € C§°(R?)
T ~
/ a1 (we, ) dt =0 for all a € C*°([0,T1).
0

Hence, we deduce that for almost every t: E1(wy, ) = 0 for all ¢ € C°(RY).
Since C5°(R?) is separable and &; (-, ) is an inner product, it follows that w; = 0
for almost every t.

o=

- A
We have shown that C5°([0,T] x R4)"" = L?((0,T); F). This means for every
uw e F(= u e L*((0,T); F)) there exists a sequence (u")nen, u” € C5°([0,T] x

R?), such that fOT Er(uy —uft)dt — 0. O



Chapter 3

The Linear Equation

In this chapter we consider the linear equation
(0 + D)ug(x) + fr(z) = 0, vo<t<T (3.1)
ur(z) = ¢(x), zeR?

where f € L1([0,T]; L?), ¢ € L? and the operator (L,D(L)) is associated to
the bilinear form (2.1). Section 3.1 follows the ideas of [BPS05, Section 2.1]. In
Section 3.2 we present basic relations for a weak solution. The main ideas are
taken from [BPS05].

3.1 Solution of the Linear Equation

We start by giving the definitions and basic properties of weak and strong
solutions of the linear equation (3.1).

Definition 3.1. [ strong solution |

A function u € FNL*((0,T); D(L)) is called a strong solution of equation (3.1)
with data (¢, f), if t — uy is L2-differentiable on [0,T), dyu, € LY((0,T); L?)
and the equalities in (3.1) hold almost everywhere.

Definition 3.2. [ weak solution |
A function u € F is called a weak solution of equation (3.1), if the following
relation holds:

T

/0 (e, Bupr) + Eur, 1)) dt = / (o) dt + (6, 07) — (w0, o) Voo € Cr.
(3.2)

Note that we have not assumed u € L1((0,7); D(L)) in this definition.
Lemma 3.3. FEvery strong solution is a weak solution.
Proof. Let u be a strong solution. Then the equation
(O +L)ur + fr =0
holds almost everywhere and we can derive for ¢ € Cr and a.e. t € [0,T]

0= ((61511/,5 + Lut + ft)a Sot) = (atuta Sot) + (Lut7 3015) + (fta Sot)

21
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Then we have

/0 ((Opug, 1) + (Lug, 01) + (fi,00)) dt = 0.

With integration by parts we deduce

/0 (Oc(ut, or) — (ue, Oppr) + (Lug, 1) + (frope)) dt =0

and since —(Luy, ¢) = E(ut, @¢) for all up € D(L), we get

T T
/ (e, Boipr) + Eue, 0)) dt = / (o) dt + (ur, or) — (o, 0).
0 0

O
Lemma 3.4. (i) The equation (3.2) is equivalent to
T T
| i + Etunpoydt= [ (g dt+ (0pm) — (o) (33)
to tO

for every tg € [0, T] and every ¢ € Cr.
(ii) A weak solution satisfies ur = ¢.

Proof. (i) We have

T

T T
/ (e, Deipe) + Eur, 1)) dt = / (oo di + / Oi(wr, o) dt Yy € Cr.
0 0 0

Fix to € (0,7). By using an integration by parts formula and approximating
functions v, € C1([0,T];R), where v, (t) = 1 for t € [0,t0], 0 < ¥, (t) < 1 for
t € [to,to +enl, €n — 0, Yu(t) = 0 for t € [to + e, T] and 1y (-) — Ljg1(-), it
is a simple matter to show that

to

to
/0 (g, Beipr) + Eue, r)) dt = / (Fure) dt + (6, 910) — (o 00) Vg € Cr.

Hence, the assertion follows immediately.
(ii) Set to = T in (i). Then it holds 0 = (¢, 1) — (ur, ¢r) for all p € Cr. O

Lemma 3.5. If equation (3.2) holds for all ¢ € bCr, then u is a weak solution.
Proof. The assertion follows directly by Lemma 2.7 and 2.8. O

The next proposition shows sufficient conditions for the existence of a strong
solution. The proofs of (ii) and (iii) follow the idea of [BPS05, Proposition 2.6].
Note that in the proof of (ii) in [BPS05] the function f has to be extended on
[T, T + €], otherwise the appearing integrals are not well defined.

Notation. We recall that 9; denotes the time derivative, i.e. 0Oifs =
lim fs+n—1fs
h—0 I .
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Proposition 3.6. (i) If $ € L?, then t — Pr_,;¢ is L*-continuous on [0,T],
L2-differentiable on [0,T) and 0; Pr_1¢ = —LPr_¢.

(ii) Let f : [0,T] x R? — R be a function such that t — f; is L?-differentiable
and t — Oy f; is L?-continuous on [0, T]. Then the function

wi(z) i= / " P fula) ds

is L2-differentiable on [0, T] and

T
drwr(2) = —Pr_y fr(x) + / P 0ufu(x) ds.
t

Moreover, t — O;w(t, x) is L?-continuous on [0,T].

(iii) Let ¢ € D(L) and f satisfy the conditions of (ii). Define

T
Uy = -PTfit(;S + / Psftfs ds.
t

Then u is a strong solution of (3.1).

Remark 3.7. If (i) holds, we have OyPr_1¢p + LPr_i¢p = 0. This gives us a

strong solution for the homogeneous linear equation
(O:+ Lu=0, wur=a¢.

On the other hand by (i), for any [ satisfying the condition of (ii) and any
final condition ¢ € D(L), we can construct a strong solution for the linear
imhomogeneous equation

O+ Lu+f=0, up=a.

Proof of Proposition 3.6. (1) Let us first note that by Lemma 1.8 P;¢ € D(L)
for each ¢ > 0. Hence, the term LPr_;¢ is well defined. We have to prove:

(1) t+~ Pr_;¢ is L*-continuous on [0, T]
(2) t+ Pr_;¢is L*-differentiable on [0, 7)
(3) OPr—t¢p =—LPr_¢

(1) case: h < 0 such that T >t +h > 0,t € (0,7
}IL% | Pr—ct4+n)® — Pr—td||2
= lm |Pr—i[P-né = d]ll2
Ji [P — ¢l =0
case: h >0 such that T >¢t+h > 0,t€[0,7)
Flbi{% | Pr—(t+n)¢® — Pr—i9ll2

}ILIQIB ||PT—t—h¢ — PT—t(b} ”2
< lim | Pr—it—n[p — Pud]ll2

lim |6 — Pyo||s =
hlg})ﬂ(iﬁ holl2 =0

IN

IN
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The assertions (2) and (3) can be shown analogously to the assertion 0; Py¢ =
LP,¢ in [RS75, Theorem X.52]. The idea is to use the following representation

of the semigroup

1
T.=—— [ e **Gd\
2mi Jr

where z is an element of a sector in C. For more details we refer to [RS75].
(ii) Let € > 0. We extend the function f by defining
[T, T+e] xR R

such that fi(z) = for_s(x) for all s € [T, T + €] and € R? Therefore, we
derive for r € (—=t,T —t),|r| < e

T T
Wity — W = / Ps_t—rfsds — / Psifsds
t t

+r
T—t—r T—t
= / Py fiirqsds — / Psfirsds
0 0
T—t T—t
= / Py (ft+r+s - ftJrs) ds — / PsftJrrJrs ds.
0 T—t—r
Then we have to show in (L%, | - ||2)
1 T—t T—t
- / Ps(ft+r+s - ft+s) ds — / Psft+r+s ds
r 0 T—t—r
T
p—" s—t0¢ fs ds — Pr_¢ fr.
r— +

This will be done in two steps. In step (a) we will show the L2-convergence
of the first term and in step (b) the L2-convergence of the second term.

/

/
T
/
Since t + 0y f; is L?-continuous on [0, T, the last term converges to zero by the

dominated convergence theorem. A dominating function can be found by using
the mean value theorem for the L?-continuous function f.

1 T—t T
*/ Py(frarts — frrs)ds — / P,_,0,fsds
0 ¢

r

(a)

2

T
/ (rPs—t(fr—i-s - fs) - Ps—tatfs) ds

Rs—t (M - atfs)

fr+s — fs _8tfs

r

2

ds
2

IN

ds.
2

IN
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(b) Case: e>r>0,0<t<T—¢

1 [Tt
- / P, fiyrysds — Pr_y fr

T Jr—t—r

2

1 [Tt 1 0
= - / Psfiyrysds — - Pr_ifrds

r

T—t—r - 2
1 0
= ; / (PT—t+sz+7"+S - PT—th) ds
0 2
1 T
= - / (Pr—tys—rfrys — Pr—¢fr) ds
T 0 2
1 T
< — HPT—H-S—T (fT—i—s - r—sz)H2 ds
r>0 T Jo

1 ‘s
< */\Mﬁs—R=Jﬂbd3
T Jo
1 ‘s
= 2 [ IPestr = dre+ g = drlads
0
1 /" 1 [7
< f/HRﬂhwﬁﬂh®+f/lmwfﬁMb@
T Jo r Jo

1 /[ 1 [

= */|Wﬂh*hhﬁ+f/ﬂhﬂ*hhﬁ
7'7,,. TO
0

_

(D)
In (A) we have used the L?-continuity of f on [0,T + ] and the strong conti-
nuity of (P;)¢>o-

Case: 1 <0, |r|<eg, e<t<T

1 Tt
*/ Psfiyrysds — Pr_yfr
" Jr—t—r

2

1 O
= H/ (PT—t+sz+r+s - PT—th) ds
,

-Tr

2

1 0
< 5[ PP gl ds

r<0 —r

1 0
< o IRty ds

-

1 0
< L[ (1t = rll 4 1P = Pofrl) s

i

I I
< o[ IPgr=drlads ;[ rirss frlads
— 0
(&)

In (A) we have used the L?-continuity of f on [0,T + €] and the strong conti-
nuity of (Pt)¢>o.
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Left to show: ¢ — Qyw(t
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,+) is L2-continuous on [0,7]. We will only treat the

case h < 0 where |h| < t small enough. The other case can be done analogously.

0wy —
| —Pr—¢ft + Pr—s—nftll,

T
+ /t

IN

IN

8twt+h||2

Ps—tatfs ds — /

(&)

1Pralfy — Ponfillls + /

<lfe—P-nfell2

t
+ / |Potendifally ds
t+h

t+h

T
P, 101 fsds

2

| Ps—tO0tfs — Ps—t—n0¢ fs|2 ds

<8¢ fs—P-n0t fsll2<2sup 0,17 10 fsl2

T

<supgcpo, 7 10¢ fsll2(t—(t+h))—0

In (A) we have used the L?-continuity of ¢ — 9, f; on [0,T + €] and the strong
continuity of (P;)¢>o.

(iii) By (i) we calculate for s > ¢

Lps—tfs

()

Ps— s Ps— s
lim (t+h) of

- Ps— s — —

0Pt ey h
. Psfhftfsfh Psftfs + Ps—(t+h)fs - Psfhftfsfh
lim

h—0 h

1i (Pshtfsh Py tfs P, (t+h)fs —Ps p tfs )
1m

h—0 h h

(_8t(Psftfs) + Psftatfs) = at(Psftfs) - Psftatf&

We will show (x) in the case h < 0 (h := —h) where |h| < t small enough. The
other case can be done analogously.

(%)

IN

N
R0

Ps (t+h)fs -

shtfs

h

Psftatfs

2

Ps—t

P (Lot

forh = Js
h

(P—hfs —

P}"L <fs+hh fs - atfs) + (P}'Latfs - atfs)

_atfs

Pt ;)

2

- atfs) + (P_n0s fs — O fs)

2

2

+ H atfs atszQ
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Then we deduce that

T
L, = LPTft(ﬁ + / Lpsftfs ds
t

LBt [ (9P~ Poiis) i

T

= —OPr+¢— fi + Pr_tfr — / P,_0;fsds
¢

—Opuy — ft~

—~
=)
=

(i)

Next we will give an existence and uniqueness proof for a weak solution
under the assumptions f € L'([0,T]; L?) and ¢ € L?. Moreover, we will prove
two very useful relations. We follow the idea of [BPS05, Proposition 2.7].

Proposition 3.8. Assume that f € L'([0,T]; L*) and ¢ € L*. Then the equa-
tion (3.1) has a unique weak solution u € F

T
Ut = PT—t¢ + / Ps—tfs ds. (34)
t

The solution satisfies the two relations:

T T
||ut||§+2/ S(us)ds:Z/ (Fous)ds + |62, 0<t<T, (35)
t t
2

T
lullF < 2]16]13 +3 (/0 1 fell2 dt) : (3.6)

Proof. [ Uniqueness |
Let v,w € F be weak solutions of (3.1). Then by Lemma 3.4(i) u := v — w
satisfies

T
/ ((ut,atgot) + & (uy, gat)) dt = —(ug,, pt,) foralltg >0,p€Cpr. (3.7)

to

Define

1 g
uj = f/ Upys ds
€Jo

where we set uy = 0 for T <t < T + . Let us check that «® also fulfills (3.7).
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T T 1 5
/ (ug,Oppy) dt = / </ Ut s dsﬁt%) dt
to to \€Jo
1 1 T
- / / (Ut+3, 3t<pt) dtds
15 to
T+s
/ / (ug, 0@y ) dt ds
to+s

5 T+s
— 7EA [/ E(Ut,¢t)dt+ (Ut0+57@t0+9)] ds
t

o+s

e
— _g/ l/ g(ut-‘,-s,@t)dt_'_ (ut0+87¢to)‘| ds
0 to

T 1 5 1 5
= —/ 5(/ Ut+sd8,s0t> dt—(/ Uto+sd3a90tg>
to € Jo € Jo
T
- [ et~ iy v,
to

(%) Since ¢ € Cr, we can choose a function ¢° € Cr for a fixed s € [0,¢] such
that @5_, = ¢ on [tg, T.

Since t +— wu; is L%-continuous, it follows that ¢ — u§ is L2-differentiable and
t — Oyuf is L2-continuous (cf. proof of Lemma 2.10). Therefore, we deduce
that the function u® is an element of Cp. Hence, the above equation holds with
uf as a test function

T
/ (. B0 + 0 ) ) it = —(u ).
to

By the L2-continuity of t — dyui we have 9;(uf,u5) = 2(uf, dyus). Hence, it
follows that

T 1 T 1
| Gtowiyi =g [ otiaid o g
0

to ur=0 for T<t<T'+e¢

1 T
Sl i) + [ £ udt =
to

Clearly the left hand side of this equation is non-negative. Thus, we deduce
that ug, = 0 for all ¢y € [0,T]. Since

Therefore,

1
€
oy =l < 2 [ = wlads =0 ase =0,

the uniqueness follows by 0 = lim. o [|uf, [l2 = [Jug,|l2 = [[ve, — we, |2 for all
to € [O,T]
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[ Existence |
First let us assume that f satisfies the conditions of Proposition 3.6(i7) and that
¢ € D(L). Then we know by Proposition 3.6(iii) and the first part of this proof
that the unique weak solution u is an element of F' given by (3.4). By Propo-
sition 3.6(ii) it follows that u is L2-differentiable on [0, T] and that t — Osu, is
L?-continuous. Hence, actually v € Cr and the weak relation holds with u as a
test function.

/OT((UtaatUt) + E(ut,ut)) dt = /OT(fmut) dt + (¢, ur) — (ug, uo).

Next we will show the asserted relations in the above particular situation.

[ Relation (3.5) |
Let to € [0,T)]. Since t — Oyu; is L2-continuous, we have:

1
(ut, Opuy) = §8t(ut, ut).

Then for any ¢y € [0,7] we obtain by Lemma 3.4(i) and integration by parts

T
18] +2 / (forus) ds

to

T T
8] + 2 / (ug, Opuy) dt"‘/ E(ug,ug) dt — (¢, ur) + (uty, Uty )
to to —— ——

N =|lll3 =|luy 113

=1 ffj(; O (ug,ug) dt

T T
= 1l + 2fun | + / Oy (s, ) dt + 2 / € (g, we) dt
to to

T
= a2 +2 / € (g, ) dt. (3.8)

to

[ Relation (3.6) |
Since

/ (o) ds

T T
bron S ot /t ((fS,PTS¢)+ (fs, / Prtfrdr>> ds

T T T
< / 1 ullo |l Presdllz ds + / AR / Py_of, dr| ds
t t S 2
—_—
<STNPr—¢ frlly dr
<

T T T
II¢IIz/t Hszzds+/t (IIfsllz/ Ifr||2d7“> ds,
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it holds for t € [0, T7:

T
|12 +/ £ (ug) dt
t

T
< 2.9 £ dt
< Jult / (ue)
T
_ 2
o IoE+2 [ (uas
T T T
< 249 o|l2 d 2 § / adr | d
< eI+ <||¢||2/t 17l s>+ / <||f Ia [ 1l ) s
T T T
< 219 Slad 2 § ladr | d
< i3+ <||¢|2 / 17l ) 4 / (nf I / TAR ) s
<L (I13+(S3 155112 ds)?)
2
<

T
2|2+ 3 (/ ||fs||2ds>

Hence, it follows

T 2
lullz < 23 +3 (A [ £l dr) : (3.9)

Now we will obtain the result for general data ¢ and f. Let (f™)nen C
C5°([0,T) x R?) such that fOT Il fi* — ftll2dt — 0. Since all f™ and (f™)" have
compact support, they satisfy the conditions of Proposition 3.6(ii). Moreover,
take (¢")nen C D(L) such that ¢" — ¢ in L2. We denote the unique weak
solution for the data (¢™, f™) by u™.

By linearity it follows that u™ — u'™ is a unique weak solution for the data
(o™ — o™, f™ — f™). Since by relation (3.9) it holds

T
o~ <2en —omBas | [ U gl de| —o
—— 0 ——

—0 <WfE—=fella+ I fe—F 2

—0

we can deduce that (u™)en is a Cauchy sequence in F. Next we will show that
the limit w := lim, oo u™ in || - ||z is the solution corresponding to the data
(¢, f) and satisfies the relations (3.5) and (3.6).

More precisely we have to show that by passing to the limit in the weak re-
lation for the data (¢", f™) we get the weak solution u for the data (¢, f). The
weak relation for (f",¢") is

T T
| (oo + ) at = [ (e de+ (6" om) - (p0). (3.10)
0 0
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Since we have

T T
/ Er(ug —ug, @p) dt < Kg/ Er(uy — ug)2E1(pe) % dt
0 0
S Kg (/ gl — Ut dt) </ 51 QDt dt)
— 0
and
T
[l —wlede <7 sup i il — o,
0 t€[0,T n—0oo
it holds

T
/ E(uy —ug, ) dt| — 0.
O n—oo

Easily we see that by Holder’s inequality it follows on the one hand that

T
/ (uy — ug, Oppy) dt — 0
0 n—oo
and on the other
T
| = poendt| —_ o
0 n—oo

Finally, we deduce
T

/OT ((Utaat%) + 5(ut,<Pt)) dt = /o (fespe) dt + (¢, 1) — (10, 0)

by passing (3.10) to the limit. Therefore, u is a weak solution for the data (¢, f).

The relations (3.5) and (3.6) hold for the approximating functions:

T
|\utu2+2/ £ () ds—2/ (roalyds +||6"3 0<t<T

T 2
lu™ll7 < 2]16™ 13 +3 (/0 17l dt) :

Since ||u} ||z — |lut|lr, we conclude

lim ’ sup [lui|l2 — sup Hut||2’ < lim sup |Juf —uell2 =0
n=00 te(0,T te[0,T) n—= (0,71

and therefore

lim 5 (uy)dt = / E(uy)
It is easy to see that lim,_, ft roul)ds = ft (fs,us)ds. The convergence of
the other terms follows by the definition of f,, and u,, and by convergence of
Up — w in || - [|7. Finally, by passing to the limit in the above relations, we get
(3.5) and (3.6) for general data. O
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3.2 Basic Relations for the Linear Equation

In this section we will prove useful relations in the linear case. At first we
present an estimate for (&, F).

Lemma 3.9. Let u € F, then ut € F and E(u,u™) > E(ut,ut) where u™ =
u V0.

Proof. Since the resolvent (G, )a>0, which is associated to the Dirichlet form
(€, F), is sub-Markovian, we can deduce with the same arguments as in the
proof of [MR92,1. Theorem 4.4 (i) = (ii)] that v € F and E(uT,u™) < 0
where u~ := u A 0. Moreover, it follows that

0>Euu")=Ew" ut —u)

and hence
E(ut,u) > Eut,uh).
Since the adjoint (Ga)a>0 is positivity preserving, it holds with analogous ar-
guments that
E(u,u™) > E(ut,u™).
O

The next lemma follows the lines of arguments of [BPS05, Lemma 2.8]. The
proof will be given with all details. In the second step of the proof we will use
other approximating functions as in the original paper.

Lemma 3.10. If u is a weak solution of equation (3.1), then ut satisfies the
following relation with 0 <t; <ty <T

to ta
i |2 + 2 / E(ut)ds <2 / (Forud) ds + [l 2.
t

1 t1

Proof. The main idea of this proof is to approximate u; by test functions. In

the first step we will approximate v € F' with functions u™ € Cp and show that

it is enough to verify
tz t2

it B+2 [ ey ds =2 [C(fudds+ B (31

tl tl

for w € Cp. In the second step we will show that (3.11) holds for all v € Cp,

which satisfy the weak relation with data (¢, f) over the interval [t1,t2] where

O<e<t; <ty <T.

[Step 1] For n > 1 let us define

1

1 1 1
Uy = n/ Up_g dS, fi= n/ fi—sds, " = n/ ur_g ds.
0 0 0

Analogous to the proof of Lemma 2.10 (D) it follows that «™ is an element of
Cr. Let us show that the approximating functions satisfy the equation

1

O+ L)u" + f* =0, up=2¢"
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in the weak sense over the interval [, T] for n > 1.

1

n
° u}:n/ ur_gsds = ¢"
0

T
. / (] Brpe) + Eul, 1)) dt

_ n/OTIL _/IT((ut_s,aM)+5(ut_s,sot)) dt] ds

L™ n

i1 ,r
= TL/ / ((Ut—sa at@ffs) + g(ut—s, ()5;75)) dt| ds
(*) 0 n

L™ n

u weak sol.

= T
| [(ﬁﬁﬁsmmwws@%g—m;y@ﬂﬂw
0 1 n

L™ n

T
= [ Ui @en - @hey)

n

(*) Since ¢ € Cr, we can choose a function @* € Cr for fixed s € [0, 1] such

that @f—s = @t on [%aT]

Therefore, u™ is a weak solution for the data (¢, f") over the interval [1,T7.
Fix ¢ > 0. Then there exists N, € N such that u™ satisfies the weak relation with
data (@™, f™) over the interval [e, to] for all n > N, and t5 such that ¢ <ty <T.

We have the following equations for each & > 0:

(1) lim sup |juf — w2 =0,
N0 1e[8,T)
T
(2) lim E(uy —uy)dt =0,

T
@ Jim [ fllade=o.
@) lim 6" — g2 =0.

The equations (1), (2) and (4) can be proved analogously to the first part of
Lemma 2.10 (Step 2 of D). For (3) see [LSU68, II.Lemma 4.7].

Suppose that for € > 0 it holds

|uug>+n%+c3[zeXuzxuzw»ds=:2/"Wf:,u£>+>ds+wuung@ (3.12)

1 t1

where 0 < ¢ < t; <ty <T and n > N.. This will be shown in [Step 2] below.
Then we get by Lemma 3.9

gl%m@ﬂws4me%&[7ﬁmmﬂw+mﬁﬁﬁ (3.13)

1
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We note that for v, w : R? — R the relation |(v(z))* — (w(z))*| < |v(z) — w(z)]
holds for all x € R? . This can be verified as follows:

1. If 3% € R? such that (v(#))* =0 and (w(Z))* > 0,
[(0(@)" = (w(@) "] = [(w(@)*] < Jo(&) — w(@)].

2. If 37 € R? such that (v(%))* > 0 and (w(7))* > 0,
(@) * = (w(@)*] = [v(F) — w(@)].

Now fix ¢ > 0, t1,t such that 0 < ¢ < t; < t; < T and define the Hilbert
spaces H := L?([t1,t2]; L?) and Hg := L?([t1,t2]; F). Since

lim sup ||(u)T —uffls < lim sup ||u?—ut||2(=1)0 (3.14)

N=0 tele, T 00 tele, T
and
tz t2
/ (7 () ds — / (foru?) ds
t1 ty
t2 t2
< / 7 = o () ) ds| + / (For (a)F — u) ds
t t
1 . 1 .
< swp @) / 10— Fullads + / Vel () — ut ||z ds
s€[t1,t2] ty t1
ta
< s @ / 10— fullads
s€[t1,t2] ty
ta
bosup (@) -t / 1l ds
s€[t1,t2] ty
— 07

we obtain by equation (3.13)

lim sup {2 /tt 5((u?)+)ds}

n—oo

IN

to
i sup 1) 8 +2 (72, () s+ ) 1]

n— oo t1

to
lim [—||(ug)+||§+2/ ( &(u?)*)dsﬂl(ulb*l%}

ty

ta
- f||<ut1>+us+2/ (Forud) ds -+ [Jufs |2

t1
Hence, there exists a subsequence (ng)ren of (n)nen such that
ta

sup E((u™) ) ds < o0.
keN Ji
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Since

to

to
im [ ) —ut|2ds < lim / U™ — ug|2ds = 0,
k—oo Jyi, (1)

k—o0 t

it follows that .

sup E((ul*)T)ds < .
keN Jt

Therefore, by Lemma 1.19 we obtain limy_, o (u™* )+ = uT weakly in Hy,
t2 t2

lim E1(ps, (u)T)ds = E1(ps,uf) ds  forall p € Hy.  (3.15)

k—oo t t

Finally, we make the following calculation:

to ta
E(ul*, (u)™) ds—/ E(ug,u
t1 t1

12 ta
< / E1(ul — iy, () ds + / E(ua, (u)* — ) ds
t t
lt2 1
+f (|<usz g ) o [, () )) ds
1 t2
< K5/ E1 (™)) € (u S)ads+/ €1 (s, (W) — u) ds
t1 ty1
/(H Pl = wglla + 1) = ol ) ds
% to %
< </ E1(( d5> (/ El(ug’“us)ds>
t1
<const for all kEN — 0
(1),(2)
12
—|—/ 51(us,(ug’“)+—u:)ds
t1
— 0
(3.15)
ta
[ (I el = walla + 13 = u el ) ds
ty
— 0.
k—oo

By passing k to the limit in equation (3.12) for the subsequence (nj)ren we get
forO0<e<t; <to <T

to to
i ||2+2/ € (s, u >dsf2/ (Forud) ds + |lufs |2

t1

Since t + u;" is L2-continuous, the case t; = 0 can be easily verified by passing
€ to 0 in the following equation

to to
a1 +2 [ Sty ds =2 [ (outyds + i 13
€ S
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Finally, applying Lemma 3.9 yields the assertion.

[Step 2 ] Let u € Cr such that u satisfies the weak relation with data (¢, f)
over the interval [t1,ts] where ¢ < ¢; < to < T. We define the function
©on € C*(R),n € N by:

T forx >0
on(T) = 24 (—%n?’) +23(-n?)+x for — % <z<0
721n for x < f%
with the derivatives
1 forx >0
on (@) = ¢ 423 (—1n?) + 32 (—n?) +1 for — 1 <z <0
0 for z < f%
and
0 forz >0
on(x) = < 1222 (—3n?) + 62(—n?) for — 1 <2 <0
0 for x < —%.
1" '
I Spn Qpn (pn
0
\ \

1
~-1 0
It is obvious that for all n € N the functions ¢}, and ¢! are bounded and

©n(0) = 0. Therefore, we get by Lemma 2.6 ¢, (u) € Cr. Next we give some
basic properties of @,,:

—1
op(t)=tfort >0, tV—<i,(t)<tVv0 and @,(t) "tVO0.
n

The weak relation (3.3), written with ¢, (u) as test functions, takes the form
to

/Q(Utaat%(ut))df + E(ug, n(ur)) dt + (ug,, pnlu,)) (3.16)

tl tl

= / 2(ft,(pn(ut)) dt+ (utga(pn(utz))

t1
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where 0 < ¢ < t; <ty < T. The convergence of the 3rd, 4th and 5th term is
easy to see. Hence, we will only check the convergence of the first two terms.
Let us start by examining the first term. The integrand can be written in the
form

(ut; Orpn(ur)) = (on(ur), Oon(ue)) + (we — pnlur), @y, (ue)Opuy). (3.17)

Lem;a 2.6

The relation

U]l{_%<u<0} < (U - QOn(u))QO;z(u) <0

=:g(u,n)
can be seen as follows:

Since @), (z) = 0 for < =1, p,(z) =z for . > 0, @), (z) >0 for all z € R
and (z — ¢n(z)) < 0 for z € [-1,0], the upper bound of g(u,n) is zero. Now
consider the function g(z,n) := g(x,n) — x. It is obvious that g is a polynomial
of degree 7 and g has a root (x,n) = (0,n) for all n € N. We only note here
that g has six other roots with imaginary parts unequal zero. It is easy to check
that g(—1,n) = L. Hence, j(z,n) > 0 for all z € [-1,0], n € N.

Now we can make the following calculation:

[Vwa%wmﬁ—l7%wm@%wmﬁ

T 1 —Fn 9 , dt
(3.17) A " (we — on(ue), o (ue) Opur)

to
< lim [[(ue = n(ue))r, (ue)ll2]| O |2 dt

n—oo t

lim {

ta
/nhmw—%mm%WMﬁwwwt
t1

n—oo

= 0.
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Since t +— Oypn (ug) is L2-continuous, we have

| Contu, Bty dt = 5 (o)1 = o)1),

Hence, we get for the first term of (3.16):
ta

. 1
tim [ (e, O () dt = 5 (Iues 13 = e, [3)-

n—oo tl

The convergence of the second term of (3.16) will follow by Lemma 1.19. Define
Ho := L3([t1,t2]; F). Since

sup [[on(ue)llz2 < sup [Juel[z < oo
tE[t1,ta] tE[t1,ta]

and

t2 t2
E(pn(uy))dt < sup (sup |g021(5)|2> E(ug) dt < oo,

t Theorem 1.13 neN \ s€R t1

it follows that

sup [|¢n (ug) |1, < o0
neN

The second condition of Lemma 1.19 follows from |¢,(u)| < |u| easily by the
dominated convergence theorem

nlLHgo llpn (u) — u+||L2((t17t2)><Rd') = nhjgo on(u) — qu”L?((thtz)de) =0.

We conclude by Lemma 1.19:

pnlu) — i weakly in (Ho, | - l2o).
Hence, we get for all p € Cp
t2 t2
lim E(pts pnlur)) dt = E(pr, u?) dt
n—oo t1 t1

and further the convergence of the 2nd term of (3.16)
to to

lim E(ug, on(ug)) dt = E(ug,u)) dt.

n— oo t1 th

By passing equation (3.16) to the limit we deduce for all 0 < e <t; <t <T

to ta
fuf B2 [ ) ds =2 [ (o) ds + a3
t1

ty

O

The assertion of the next lemma will be useful in the last proposition of this
section. It is a modified version of the above lemma.
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Lemma 3.11. Let u € F be bounded and f € L'(dt x dm), f > 0, be such
that the weak relation (3.2) is satisfied with the test functions in bCr and some
function ¢ > 0,9 € L> N L>®. Then ut satisfies the following relation with
0<t1 <ty <T:

to ta
o B +2 [ eds <2 (s +
t1 t1
Proof. First note that we can prove almost analogous to step 2 of the above
proof that for each w € Cr, which satisfies the weak relation with data (¢, f)
over the interval [t1,ts], where e < t; <ty <T for € > 0, it holds
to ta
[af 32 [ Suutyds =2 [(fuudds + B (318)
t1 tl
Analogous to the first step of the above proof we can define approximating
functions u™ and f™ and show that u™ satisfies the weak relation for the data
(o™, f™) with test functions in bCr over the interval [e,t5] where n > N, and
e <ty <T. Note that by [LSU68, II.Lemma 4.7] it holds that lim,,_. fET | £ —
ftll1dt = 0 for € > 0.
Fix € > 0. Then it holds by (3.18) for ™ and f™

t2 ta
It 3 +2 [ e ) ds =2 [ @ ds ) (3.9
t1 tl
where 0 < ¢ < t; <ty < T and n > N.. The convergence of all terms,
which do not depend on f, follows by the same arguments as in the above proof
altong a subsequence. Hence, we only have to check the convergence of the term
2
(f2, (ug)™)ds.

t \so
" Since u is bounded, it is easy to see that «™ is uniformly bounded. Now take

a subsequence (ng)ren such that limg_,o |u* — us| = 0 almost everywhere.
Then we get
to ta
lim (fe, (ugs)")ds — [ (fs,u])ds
k—oo | Jy, : ¢y :
to
< gim | [0 g ds
k—oo t
ta
ot | [ (f )~ s
- t SN————
' <J|ulloo- constant
to
< suput o fim [ folds
keN k—oo Jy,
to
[t () =t s
t1 —>
=0.

Finally, we obtain by passing a subsequence in equation (3.19) to the limit

to ta
i |2+ 2 / E (g ut) ds = 2 / (foru?) ds + i I3
ty

t1
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where 0 < ¢ < t; <ty < T. By letting € to 0 and applying Lemma 3.9 the
assertion follows. O

The next proposition will be useful in the nonlinear case. The proof is a

rewritten version of [BPS05, proof of Proposition 2.9].

Proposition 3.12. Let u € F be bounded and f € LY(dt x dm),f > 0 be
such that the weak relation (3.2) is satisfied with test functions in bCp and some
function ¢ > 0,¢ € L2 N L>®. Then u > 0 and it is represented by the following
relation:

T
w= [ Prifids+ Pro.
t
Proof. Let (f™)nen be a sequence of bounded functions such that
o< fr< <y, lim f™ = f.

Since f™ is bounded, we have f™ € L'([0,T]; L?). Next we define

T
= / Py o f7 ds + Pr_i6.
t

Then u™ € F is a unique weak solution for the data (¢, f™), cf. Proposition 3.8.
Clearly 0 <u" < u™t! for all n € N. Define y := u” —u and f:=f"—f. Then
f <0 and y satisfies the weak relation for the data (0, f). Therefore, we have
by Lemma 3.11 for all ¢; € [0,7]

T T
i3+ [ ewhds<2 [ (Ju)ds
tq t1 \/’
<0
Since the left hand side of this equation is positive and the right hand side is
negative, we conclude that the right hand side is zero and hence |ly;[|3 = 0.
Therefore, u > u™ for all n € N. Set v := lim,,_,,, u™. Note that we have also
shown that u > 0.
Now let us write equation (3.5) for v™ and f"

T
||ut||2+2/ E(u S_Q/t (7l ds + 1|62 (3.20)

It is easy to see that lim, . |[|[ul! — v;]|3 = 0 and

T
lim / /(fsnug—fsvs)dmds
n=eo e JRe
T
< hm/ / |(foug + fivs — flvs — fsvs)| dmds
< lim/ / |f" ul —vg)|  dmds
n—0oo

<|fs |un_vs|<2‘fsus|

+ lim / / lvs(fot — fs)| dmds
n—oo Jt R N———

SQ‘fsusl

= 0.
Lebesgue
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Since (&, F) is a positive preserving form (i.e. if u € D(E), then ut € D(E)
and E(u,u”) <0, cf. [MR92, I.Theorem 4.4], [Sch99, Note 2]), it follows by
[Sch99, Proposition 2] that

T T
/ E(vs)ds < / liminf E(ul) ds
t t

n—oo

and hence by Fatou’s lemma

T T
/ E(vs) ds < liminf E(uy)ds.
¢

n—oo t

Finally, we get for all ¢ € [0,T]

IN

T
lim Hu?H%+liminf2/ E(ul)ds
n—oo n—oo t

T
= liminf <|Iu?||§+2/ E(ug)ds>
n—oo :
T
—  lminf(2 [ (7l p
(3.20) oo /t (f&ug) ds + [[9]2

T
—  lim <2/ (;‘,u?)d8+||¢||§>
n—oo ¢

T
_ 2[<ﬁwgw+wwa

T
|wm§+2/‘swads
t

Since the right side of this equation is finite for all t € [0,T)], t + v; is L*-
continuous and by Lemma 1.19 it holds v; € F' (cf.(2) below), we obtain that
vekF.

Now we present that v satisfies the weak relation for the data (¢, f). To
conclude this we need the following three relations.

(1) Since @™ (t) = ||uf — v¢]]2 is continuous and decreasing, we conclude by
Dini’s theorem

lim sup |Juy —vell2 =0

T telo0,T)
and therefore
T
nh_)ngo |ult — v |3 dt < nh—{%o sup |[uf —wl|3-T = 0.
te(0,T]

(2) Since lim sup,,_, o ftTS(u?) ds < 1 <—||vt||§ + 2ftT(fs,vS) ds + ||<b||§), there
exists K € R} and a subsequence (ng)ien of (n)nen such that

T
/E(u?"‘)ds <K forallkeN.
0
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Moreover, there exists K € N such that

T T
|/ (E@) + [[ul3) ds| < / () + ||lus||3) ds| < K forall k € N.
0 0

By (1) we have limy_, o u;* = vy in C([0, T]; L?) and therefore limy,_, o up* = vy
in L2([0,T); F). We obtain by Lemma 1.19

lim v =wv weakly in (L2([0,T]; F), || - |2 (0,1;2))-

k—oo

Hence,
T T
lim E(U?k,gﬁs)dS:/ E(vs, ps) ds.
0

k—o0 0

T T
din | [ g d < [ i (7% = fuplde =0

Finally, we deduce from (1) — (3) by passing the weak relation for u™* as-
sociated to (¢, f™) to the limit, the weak relation for v associated to (¢, f).
Clearly u — v verifies the linear equation

(0 + L)(u—v) =0, up —vp =0
in the weak sense. By Proposition 3.8 we have u — v = 0. Since

T
v = / P,_;fsds+ Pr_;¢,
¢

the assertion follows. O



Chapter 4

The Nonlinear Equation in
Dependence of D, u

The aim of this chapter is to generalize [BPS05, Chapter 3]. Let ¢ be an element
of L%(R4, m;R"). We consider the nonlinear equation for ¢ € [0, T]]

(at+L)u+f('a'auaDJu) :07 ur :d) (41)
where the nonlinear term is the measurable function
f:00,T] xR x R x R'@ RF — R!, 1 € N*.

Here D,u is a generalized gradient, which is defined in Section 4.1 for a bounded
measurable map

c: RIS RIQRY 0 = (0}),i=1,....,d, 1 =1,....k

with the property (0o*)/ € LL (R, m).

loc

From now on we assume

(A1) A= (di’j)i7j:1,,,,,d is bounded and

d
S e > 0forall € = (&,...,69) € R

ij=1
and moreover,

(42)  &%(u) < Ka&(u) + Callull3
for some K4 € [1,2),C4 € Ry and for all u € F.

Note that we can always find o such that a*/ = (c00*)%/. We fix such a map.

Remark 4.1. (i) The condition K4 < 2 in (A2) is for example necessary at
the end of the proof of Proposition 4.8.

(ii) Let A be a matriz with elements a™ € L} (R, m),i,j =1,...,d such that
atd = (o0*)% + p"J where pJ = —pt and 0 # p*J € L} (R%m). Then
i = (00*) and a*’ # o’

(iii) The second part of condition (A1) is only a condition on the symmetric
part of A.

43
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Notation. We introduce the following notation:

fo(t7x) = f(t7x70’0)7 f(t,:z:,y) = f(t,x,y,-),
f’(t,x,y) = f(t,q:,y,O)—fO, f(y,z) = f('a'ayvz)a
fl77-(t7 .17) = SUPjy < |f/(t7 L, y)'»

where 7 € Ry. Let d, k,l € Nand z = (z}) € R ® R*. We will denote by

| the Euclidean norm on R¢,
() the scalar product on R,
)

(21,29) = tr(z125 the trace scalar product on R? @ R¥,

1
d k 2
|z| = Z Z(z;)2 the associated norm to the trace scalar product.
=1

i=1j

Moreover, we use the following notation for ¢, ¢ € L2(RY, m; R!):

1
.00 = [ Weoydm and [WlF = 313
Rd i=1
where L?(R%, m;R!) := {1/) : R? — R! measurable ’ Jga [0[? dm < oo}.

4.1 The Generalized Gradient

Lemma 4.2. There exists 7 : R? — RF @ R? such that
or =1%0*, TOo=0"7", orto=o0, |o7|=]|710||<1
where the norm is the operator norm.
Proof. See [BPS05, Lemma A.1]. O
Lemma 4.3. Let u, € C°(RY) then

(AVp, Vu) = (Vpo, Vuo).

Proof. Let us denote u; := % and p; := % fori=1,...,d.
d d d & ‘
R T S
i=1 j=1 i=1 j=1 I=1

Il
W
M=
M=~
3
2
9

&

Il
\M?r
PO
M=~

5

S
N—
M=~

£

NQQ

=1 i=1 j=1 =1 i—1 =
- <<<Z¢ol><2s@ak>> Syl | [ Sl >
i=1 i=1 i=1 =
= (Vpo,Vuo)
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By this lemma we have the following representation of the symmetric form
(€4,C5°(RY)):

ENu,v) = / (Voo, Vuo)dm  for all u,v € C5°(R?). (4.2)
Rd
Notation. From now on let us write L7, := L*(R% m;R*) and L*([0,T] x

R%) := L2([0,T] x R% dt x dm). We define for ¢ € C5°(R?) the term D, :=
2

Vyo. Let Vo := {D,p : p € C(RY)} and V := %Ldv{, i.e. the closure of Vg
w.r.t. || -[[zz . Moreover, we define the spaces FA and FA w.r.t. £ analogous

to F and E. Note that by (A2) it holds F4 > F and F4 > F.

In the next proposition we extend (4.2) to F4. In (i) we show that (4.2) is
well defined for v € F4 and in (ii) we give a representation for v € F4. In (iii)
we prove that D, is closable as an operator from F4 into L2((0,T) x R?). The
proof of the uniqueness in (i) and the proofs of (ii) and (iii) follow the arguments
of [BPS05, Proposition 2.3].

Proposition 4.4. (i) For every u € F4 there exists a unique element of V,
which we denote by D,u such that

EA(u, @) = /Rd<Dgu(x), Dyp(z)ym(dz)  for all ¢ € C°(R?). (4.3)
Moreover, the above formula (4.3) extends
EA(u,v) = /R'i (Dyu(zx), Dov(x))y m(dz)  for all u,v € FA. (4.4)
Furthermore, we have Dyuto = Dyu, where T is as in Lemma 4.2.

(i) If u € FA | there exists a measurable function ¢ : [0, T] x R — R such that
|pa| € L2((0,T) x RY) and Dyus = ¢s0 for almost every t € [0, 7).

(iii) Let u™,u € F4 n € N, such that u™ — w in L*((0,T) x RY) and (Dgu™)nen

is Cauchy in L*([0,T] x R?). Then Dou™ — Dyu in L*((0,T) x RY), i.e. D,
is closable as an operator from F4 into L?((0,T) x R%).

Proof. (i) [Uniqueness|: Let v,w € V such that
) = [ (@) Dopla)) mda)
= /Rd (w(z), Dyp(z)) m(dzx)  for all ¢ € C°(RY),
then we have
0= /]Rd (w(z) — v(x), Dep(x)) m(dz) for all ¢ € C°(RY).
Since by definition Vo C V densely and v — w € V, we deduce that v = w.

[Existence]: We have by Lemma 4.3

EA(u, ) = / (Dou(z), Dop(x)) m(dzx)  for all u,p € C°(RY).
Rd
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Let u € F4 and ¢ € C°(R%). Take u,, € C5°(R%) such that (£{*)2-limy,_ o0 ttp=u.

Then lim,, o0 E4(Un, 0)=E(u, ). Let ¢ > 0. Since (up)nen is a Cauchy-
sequence in (F4, (£{)2), there exists N. € N such that for all n,m > N,

| Doty — D(,um||2L2 = / |Dotty, — Dyt |* dm
d,k R

= |V (ty, — Uy )0|* dm
Rd

= c‘:'A(unfum)
< E&.

Hence, we deduce that (D,up)nen is a Lik—Cauchy—sequence and define the
Lg ;-limit Dyu := lim,, oo Doty,. Then

ENuyp) = lim E4(un, ) = lim [ (Dyu,(z), Dyp(x)) m(dx)

n—oo Lemma 4.3 n—oo R
= /]Rd (Dou(x), Dyp(z)) m(dx).

Therefore, equation (4.3) holds. Next we will show (4.4). Let v € F4. Then
we may find v, € C§°(R%) such that (£{*)2-lim, ..o v, = v. Analogous to
the above calculations (Dt )nen i8S a Li x-Cauchy-sequence. Hence, we define
Dyv :=lim,_, o Dyv,. Summarized it holds

ENu,v) = lim E4u,v,) = lim (Dyu(zx), Dyvn(2)) m(dx)

n—o0 (4.3) n—oo Jpa
_ /R (Dyuw), Dyvo(a)) md).
Therefore,
ENu,v) = /Rd (Dou(x), Dyv(x)) m(dz) for all v,u € FA.
Left to show is the assertion D,u = Dyuro. Let D,u € V. Then there exists

(Dgtn)nen such that Dyu, € Vo, L?“C—limnHOO Dy, = Dyuand u, € C°(R?).
Hence, we get

| Dyu — DUUTO'”Li’k

IN

| Dyu — DgunHLi,k + |Doup — DgunTO'HL;k

0, since u, €C5° (R?)

Lemma 4.2

+||DyunTo — DUUTO'”L?”C

= HDUU_DUUWHLZJC + H(Daun_Dau)TUHL;,C

Nl=

< HDoU - DaunHLi . + / |Daun - Dau|2 HTUH2 dm
, Rd N ,

<1

— 0.
n—oo
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(ii) Let u € 4. Then we have by (i)
EAuy, @) = / (Dyui(x), Dyp(x)) m(dz)  for all ¢ € C5°(R?) and a.e. t.
R4
Further we deduce analogous to Lemma 2.12 the existence of functions u™ €
Ce°([0,T] x RY), n € N, such that Af(u™ —u) = fOT EM(u™ —u) dt — 0. Hence,

we define 1 := lim, o, Vu"o in L%([0,T] x R%RF) and ¢ := 7. Then we
calculate by using Lemma 4.2

D,u" = Vu"o = Vu"oro (—; Y10 = ¢o in L*([0,T] x R% RF).

(*) 7}520 [(Vu"o — 1/J>TU||L2([0,T]de;Rk)

n—oo

T
< lim/ / |Vu"o — | ||7o||? dmdt
n—eeJo  JRe ~——
<1

< nhjgo [Vu"o — 9 [|L2(0, 1 xra:rE) = 0

T
= lim/ / |(Vu"o — )ra|® dm dt
0o JRa

Therefore, |¢o| € L*([0,T] x R?). Since
nh—>Holo ||Vu"a - (Z)UHLZ([O,T]X]Rd;Rk) = 0,
we can find a subsequence (ng)ren of (n)nen and a zeroset Ay C [0, T such that

lim ||Vui*o — ¢ol|3. =0 forallt e [0,T]\A;.
k—o0 d,k

Since lim,, o A (u™ — u) = 0, we also have limy_ o, A (u™ — u) = 0 and
therefore, we may find a subsequence (ng,)ien of (ng)reny and a zeroset Ay C
[0, T] such that

lim &7 (W™ — ) =0 for all t € [0, T]\As.

l—o0

Define A := A; U Ay and fix t € [0, T]\A. Clearly,

EA(u @) = / (Vu* o(z), Dow(x)) m(dz)  for all p € C°(RY).

Rd
Since
Jim &y =, )| < Jim (EA - u)BEN(R)E) = 0
and
lim / (Vul™ o — 6,0, Do) dm‘
l—oo | Jrd

1 1

3 3
lim (/ Vu?“o——qbtoﬁdm) (/ Dawl2dm>
l—o0 Rd R4

= O7

IN
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we deduce the following equation for u;

EMun) = [ (00, Do) for all € CF(RY.
]Rd

Therefore, the assertion D,u; = ¢y0 follows by uniqueness.

(iii) Define v := lim,, o Dou™ in L2([0,T] x R4 R¥). So we may find a ze-
roset A1 C [0,7] and a subsequence (ny)ren of (n)nen such that it holds for
every t € [0, T\ A4

lim [y = Dy, = 0. (4.5)

Since u™ — w in L2((0,T) x R?), we have u™ — u in L2((0,7) x R?) and can
find a subsequence (ny,)ien of (ng)ren and a zeroset Ay C [0, 7] such that for
every ¢ € [0, T\ Az

llim lug™ — ul|2 = 0. (4.6)

Fix the set A := A; U A2 and denote the infinitesimal generator associated to
EA by LA. Moreover, fix a t € [0,T]\A and let ¢ € D(L?4) C FA. Then

(vi, Dyp) (: llim (Douy*t, Dyip) = llim (Douy**, Do) dm
= Jim Eugt ) = = lim (u*', L) ) —(ug, L)

= Eup,p) = (Dous, Do)
Hence, it holds

0= (v; — Dyuy, Dyp)  for all p € D(LA).

——L3
If we can show that {D,¢ : ¢ € D(LA)} “* =V, the assertion vy = Dyuy will
follow. Note that by [MR92, I. Theorem 2.13] it holds that D(L*) is dense in
FA. First we will show

V:={Dyp:pecF}CV.

s A
Let ¢ € F4A. Then there exists ¢,, € Cg°(R?) such that ¢,, — ¢ w.r.t. (& )2.
2

. 2 . o . %) d Ld,k
Hence, Dypn — Do in L. Since V. = {Dyp: 9 € CC(RY)} ™7, we get
D,p € V and consequently
{Dyp:p € CPRN} C{Dyp:p e FA} CV.
Now it is obvious that V is dense in V. Next let us show that
Lk

V:={D,p:pe DL} C{Dyp:pe FA}Y C{Dyp:pecDLA)} .

~ s A
Let ¢ € FA. Then there exists ¢, € D(L?) such that ¢, — ¢ wr.t. (& )2.
Hence, we conclude that the limit of D, ¢, exists in Liyk. Summarized we get

V  C  V and therefore the assertion follows. O
densely
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4.2 Solution of the Nonlinear Equation

In this nonlinear framework we use the same definition of a solution as in
[BPSO05]. The proposition in the next section shows the existence of a unique
solution under Lipschitz conditions. In Section 4.4 the case of more general
monotonicity conditions is treated.

Definition 4.5. [ Solution of the nonlinear equation |

A solution of equation (4.1) is a system u = (u*,u?,...,u!) of | elements in F,

for which we denote by Dsuy the R! @ R¥-matriz whose rows are Dgui,i =
1,...,1, which has the property that each function fi(-,-,u, Dyu) belongs to
LY([0,T]; L?), and such that the function u' satisfies the following weak sense
equation associated to (¢%, fi(-,-,u, Dyu)) for all ¢ € Cr:

T
/0 [(ug, Depr) + E(uy, pp)] dt (4.7)

T
= /o (fi(ue, Dowy), 1) dt + (¢, 1) — (uf), ¢0).

Definition 4.6. [ mild equation ]
For every i € {1,...,1} we define the mild equation

T
u'(t,x) = Pp_1¢'(x) + / P, 1 f'(s, -, us, Doug)(x) ds, m-a.e.. (4.8)
t

We say that u solves the mild equation, if every u® solves the mild equation.

Lemma 4.7. u is a solution of the nonlinear equation (4.1), if and only if it
solves the mild equation (4.8).

Proof. The assertion follows by Proposition 3.8 (cf. [BPS05, p.33]). O

Notation. For u,v € F! we define &(u,v) := Y.\, E(uf, v?) and E4(u, v) :=
22:1 EA(u?,v?). We denote by L2([0,T] x R%; R!) the function space L?([0, T] x
R? dt x dm;R!) and by Lal the function space L?(R%, m;R?!).

4.3 The Case of Lipschitz Conditions

We follow [BPS05, Proposition 3.1].

Proposition 4.8. Consider a measurable function
f:00,T] xR x R x R @ R¥ — R
such that
[f(t2,y,2) = f(t 2,y 2 < Clly =y + |2 = 2')) (4.9)

with t,x,y,y', 2,2’ arbitrary and C € Ry constant. Let fO € L*([0,T) X R%; R
and ¢ € Li,l' Then the equation (4.1) admits a unique solution u € F*, which
satisfies the following estimate:

1 C+C*+C
lulf < G 2D (13 4+ 1 W a7y m )



50 CHAPTER 4. THE NONLINEAR EQUATION

Proof. By relation (4.9) we have

|f('v'vuvDau)| < |f('7'7U,DgU)_f(',',0,0)|+‘f(',',0,0)|
< O(lul + | Dgul) + |£°].

Note that if u € F', then it follows by Proposition 4.4(ii) that |Dyu| is an ele-
ment of L2([0,7] x R?). Since it holds f° € L%([0,7] x R4 RY), we get in this
situation f(-,-,u, Dyu) € L2([0,T] x R4 RY).

Now let us define the operator A4 : F! — F! by
T
(Au)i(t,z) = Pr_ @' (z) + / Py f'(s, -, us, Dyus)(x) ds, i=1,...,L
t
Then we know by Proposition 3.8 that Au € Fl.
Next we will show that if T is sufficiently small, then A is a contraction with
respect to || - ||r. Afterwards the existence and uniqueness of a solution will

follow by a recurrence procedure.

In the following we write f . := f'(s,-,us, Dous). Let us start with an es-
timate for £(Au; — Avy).

[E(Au, — Avy)]2

I l ~ T . .
d?f. -;8 (/t PS—t( u,s v7s) d8>‘|

[l T T, . ' . .
Lemrfa 2.9 Z/t /t (5 (Psft(f;,s - f:;,s)> Prft( Z,r - :mn))) ds d’l“‘|
Li=1

1
2

1
2

[ T T 1 1
< Z/t /t (g (PS*t( zit,s - 12;,3))5 g (PT*t( 72,7“ - 12;,7‘))5) deT]
Li=1
- 293
l T )
= Z / £ (Psft(fi,s - 5,5))5 ds
i=1 |
L >0
T 1 )
< /t Zf (PS*t( Z,s - 5,5))5 ds
=1

T
< Ve / Vs = Foslla

Lemma 1.9

ds
Vs—t

Further by using equation (4.9) and

T Ir T 1
/\#ﬁ&ﬂﬁVﬂ/——ﬁS%@ﬂT
0 t 0o Vi

T2V/2

IN

IN

1
2
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it follows that

T T[T as \°
E(Auy — Avy)dt < C/ / ws — fos|llo—] dt
| et - aw) [ W= fole s
T

N T ds T ds

< C u,s — Ju,s 2 dt
< ¢f (/ e v
_ 2O/T /Tlf  folB— 2T =) at

) \ u,s v,s 2\/@

T S T —1t)

= 20/ u,s — Jvu,s 2/ ( dt dS

i (IIf, fosl | \/i

3 T
< WICT [ fus— fuslids
() 0

) T
< 8\/§CCQT/ (”us_”sng"‘”Daus_DaUsng)ds

0

T
_ 8\/§C’O2T/ (s — vs|2 + E4(us — v2)) ds
0

< TKilu—vlf,
(42)

where K is a constant, which depends on Cs, K4, C, T and C. Moreover, we
have

2

l T
[du—aulp = S| [ Pealfi - fods
i=1 ||/t

T 1
< T/ SOUfL -
0 =1

T
T/ ”fu,s _fv,s
0

< TKafu—vllf,

2

2
5ds

IN

2
5ds

where K is a constant, which depends on C'4, K4, C' and T'. Finally, we obtain
| Au — Avljf < KT|lu— o7

where K is a constant, which depends on C4, K4, the Lipschitz constant C, T
and the constant C' from Lemma 1.9.
Now let us define

Ty 2
lulliz,my = | sup w3+ | E(ur)dt
tG[Ta,Tb] Ta

where 0 < T, < T, <T. Fix T; sufficiently small such that K77 < 1. Then the
following relation holds:

||[Au — Av|

[20,T1] < lu-— UH[QO,Tl]'
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Banach’s fixed point theorem yields
Jluq € F[O,Tl] cAu = ug

where Fir, 1,) == C([Tu, Tv); LY)NL?((Ty, Tp); F) for T,, € [0,T) and Ty, € [T, T).
Hence, u; satisfies the weak equation over the interval [0, T1] and also [T7 —e, T1],
where ¢ such that T} > ¢ > 0. ~

Analogous to the above calculations we get for 77 := T} — €, where € > 0
fixed, small enough and K is as above

[Auy — Av|l2 < K(T = Ty)u—o|F%, 5

Now we ghoose T such that T} =T — Tl and therefore Ts := T3 + Tl such that
K(T» —T1) < 1. By using Banach’s fixed point theorem again we conclude

Jlug € F[T1,T2] : Aug = us.

Hence, u; and ug satisfy the weak equation over the interval [T7 —¢,T1]. By
the uniqueness of u; and wy it follows that wi(t) = wua(t) for almost every
t € [T1 — ¢, T1]. Therefore, we can construct a solution over the interval [0, Ts].

Clearly there exists n € N such that T' < n(T; —¢). Hence, the construction
is done after n steps. Finally, the uniqueness of the fixed points implies the
existence of a unique solution over the interval [0, 7.

In order to obtain the estimate in the statement, let us start by writing

T T
/ (Fus — fOun)ds| < / O[] + | Dotia], [ua]) ds
t (4.9) t

T T
< ¢ / lusllZ ds + C / | Dot 2 ds.
t t

Hence, we conclude

/ uers)ds

T T T
[ ulds + ¢ [ s+ 0 [ Dol ds
t t t

1 r 012 1 1 2 T 2 1 r A
,/ ||fs||2ds+(+C’+C>/ ||us||2d5+7/ £ (uy) ds.
2/, 2 2 \ 2/,

By relation (3.5) of Proposition 3.8 it follows that

IN

IN

T
Juli +2 [ £w)ds
t

T
— / (Fuawsstts) ds + ]2
(3.5) t

T T
< ||¢>H§+/ ||f£||§ds+<1+ac+c2+cA>/ a2 ds
t

t

T
+/ Ka&(us)ds.
t
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Gronwall’s lemma yields

T T
|uA@+—@-—Ka>l‘eXuadsgeT“+ﬂ”C““h><n¢@+1é nﬁ)%mﬁ

and hence we get

T
_ b rayactericn |\¢||§+/ 17115 ds ) -
K4 0

2
<
lulfy < 5—

4.4 The Case of Monotonicity Conditions

4.4.1 The Monotonicity Conditions

Let f:[0,7] x RY x R! x Rl ® R¥ — R! be a measurable function and ¢ €
L?(RY,m;R!) be the final condition of (4.1). In this section we show the ex-
istence of a unique solution under monotonicity conditions on f, cf. [BPS05,
p.35]. We impose the following conditions:

(H1) [ Lipschitz condition in z |
There exists a fixed constant C > 0 such that for ¢,z,y, z, 2’ arbitrary

If(t,x,y,2) — f(t,z,y,2")| < Clz — 2.

(H2) [ Monotonicity condition in y |
For t,x,y,y', z arbitrary, there exists a fixed constant ;1 € R such that

(Y=o f(twy,2) = f(t2,y,2) < ply — o',
(H3) [ Continuity condition in y ]
For t,x and z fixed, the map
y — f(t7x7y’z)
is continuous.
(H4)

For each r > 0
e L0, T]; L?).

(H5)
1lloc < 00, [0l < 00, l¢] € L, |f°] € L*([0,T]; L?)

Lemma 4.9. (i) If p > 0, the last two conditions in (H5) are ensured by the
boundness of ¢ and f°. (cf. [BPS05, page 35])
(i) If f is Lipschitz continuous in y with Lipschitz constant K, then (H2) is
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fulfilled with constant K.

(iii) The conditions (H1),(H4) and (H5) imply that, if u € F is bounded, then
|f(u, Dyu)| € LY([0,T); L?). (cf. [BPS05, page 35])

(iv) We can assume in (H2) without loss of generality that u = 0. (cf. [BPS05,
page 36])

Proof. (i) By Lemma 2.1 we have m(R?) < co. Hence, the assertion follows.

1) (y—o, f(t2,y) — ft 2, y) <|ly =y f(t,z,y) — ftz,y)| < Kly—y' |
(iii) We have by (H1)

[f (u, Dow)| = | f"(w)| = [f°] < £ (u, Do) = f'(u) = £°] < C|Doul
= |f(u, Dou)| < C|Doul + |f' ()| + |f°].

Since u € F is bounded, we deduce by (H4) and (H5) that
|F(u, Dyu)| € L*([0,T]: L?).
This can be proved as follows:
we F W |Dyu| € L2([0,T] x RY) = |Dou| € L*([0,T); L?).

(H5) = |f°leL}([0,T];L?),
(H4) = f'me LY[0,T); L.

Since u is bounded, there exists 7 such that |u| < 7. Hence, we get | f/(u)| < |f"7|
and therefore f'(u) € L'([0,T]; L?). It remains to show (%)

T T %
/ |Douladt = / (/ Dgu|2dm> dt
0 0 R4
1
T 2
T> //|Dgu|2dmdt
0 R4

< 0o0.

IA

(iv) First of all we will show that the function (¢, z) — 9 (t, x) := (t, x) exp(ut)
is an element of Cp for all ¢ € Cr and p € R. Let 4 € R be fixed and ¢ € Cr.
We will verify the properties (i)-(iv) of Lemma 2.4 for the function .

e Fix t € [0,7]. Then exp(ut) is constant and hence, it is obvious that
exp(put)p, € F for almost every t.

T T
/ E(exp(yt)pr) dt = / (exp(ut))*E (1) dt
0 0

T
< sup (exp(ut))z/ E(py) dt
t€[0,T] 0

< o0
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e Since we have

. exp((t + h)u) — exp(t
lim ||, p((t +h)p) —exp(tp) o exp(ty)
h—0 h 9
. exp((t + h)p) —exp(tu
< ||80t||2}b1£1}J < ( )h) () _ uexp(tu))
=0
and
‘ w exp((t + h)u) — Oppr exp(tp)
2
= exp(tp) H w exp(hp) — Ovpr
2
< exp(tp) ( H w exp(hp) — Oppr exp(hp)
2
+ |05 s exp(hp) — 875%”2)
Pt+h — Pt
< et | fewlh] | 24— aup -+ (et ~ 1) 0cal,
——— 5 ————
—1 —0 €R
—0, since 9€Cr
— 0,
h—0

it follows that

Penexp((t + h)p) — oy exp(tpu)

. — (pepexp(tp) + dppr exp(tp))

2

- t+h — t
_ @Hhh ot exp((Hh)u)wtexp(( + )/Z) exp(tp)

—(pepexp(ut) + dppr exp(tpn)) H ,

exp((t+ h —exp(t
< o p(( )Z) p(tu) _ oupexp(ty)
2
[ x4 ) = e
2
— 0.
h—0

e By the above calculation it holds
By (exp(tp)p:) = Orpr exp(tp) + prpexp(tp) in L.

Hence, we have to show

10 (exp(tp)pr) — Op(exp((t + h)p)esn)ll2
< |0spr exp(tp) — Orpeyn exp((t + h)p)ll2
+lpepexp(tu) — peynpexp((t + h)p)ll2

!
h—0
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This can be seen as follows:

10r ¢ - exp(tp) — Orprrn - exp((t + h)p)|l2
exp(tp)||0vpr — Orpran + Orpryn — Orpern exp(hp))||2

< exp(tp)||Owpr — Orprrnll2 + exp(tp) (1 — exp(hp))[|Orprrnll2
— O7
h—0
e exp(ti) — peynpexp((t+ h)p)ll2
< pexp(tp)llee — ran + Cren — Peanexp(hi)])2
< pexp(tu)ller — prrnllz + pexpEp)ll@irn — pirn exp(hi)|l2
< pexptp)ler — @rinllz + pexp(tp)(1 — exp(hp))|@esnll2
— 0.
h—0

Finally, Lemma 2.4 yields:
(t,x) — @i(x) exp(pt) € Cr  for all p € R,p € Cr.

Now let us make the change u} = exp(ut)u; for the solution and the changes
¢* = exp(uT)é and f(y,2) = exp(ut) fi(exp(—ut)y, exp(—pt)z) — uy for the
data. Next we will prove that u is a solution associated to the data (¢, f), if and
only if u* is a solution associated to the data (¢*, f*). Let us start by writing
equation (4.7) for u

T
/0 (Fi (g, Doe), o) dt + (i, o) — (15, 00)

T
- / Eul 1) + (ul, Drpy)) dt.
0

By the above calculations this equation is equivalent to
[ (61 Do), explityon) de + (i, exp(u)r) = (uh,exp( - 0))
0

T
- / £ (us exp(ut)pe) + (ot Dy (exp(jut)pe)) .

Moreover, this is equivalent to
| (explut) s, D) = pexplutyuy o) dt + (u exp(uT o)
0

T
- / E (ot exp(ut) pe) + (ot exp(ut)Deipe) dt + (1 exp(p - 0)po)
0

and hence also to

T . .
/O (f¢" (ug exp(put), Doy exp(pt)), p¢) dt + (wp exp(uT), or)

T
= / E(ujexp(ut), 1) + (ug exp(pt), Oppy) dt + (ug exp(p - 0),¢p).
0
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By substituting u} = u; exp(ut) this equation is the weak equation for u*

T . .
/0 (£ (uf, Doul), 1) dt + (u*, or)
- / (Ul 00) + (W, Bopr) dt + (u", 00)-
0

Left to show is that the function f* satisfies the conditions (H1)-(H5). It
is obvious that (H1), (H3)-(H5) are not altered by the above transformation.
Therefore, let us prove that f* satisfies (H2) with 4 =0

(y—0. f(t,z,y,2) — [*(t,2,9,2))
= (Y=, puy+exp(ut)f(t,z,exp (—ut)y, exp (—put)z))
=y — 7, py + exp (ut) f (¢, z, exp (—put)g, exp (—put)z))
= (y— 0,y — py)
+(exp(ut))* (exp(—put)y — exp(—put)g, f(t, z, exp (—pt)y, exp (—put)z))
—(exp(ut))?(exp(—pt)y — exp(—ut)g, f(t, x, exp (—put)g, exp (—ut)z))

& T §° 4 plexp (ut))?| exp (—pt)y — exp (—pt)|?
=ply—7|?
= 0.
Thus, by making the transformation f — f*, we may assume that 4 =0. O

4.4.2 Estimates for the Solution

In this section we prove two important estimates for a solution of (4.1). These
are essential tools in the proof of the uniqueness and existence theorem in Section
4.4.3. The || - ||r-estimate will be proved under a weaker form of condition (H2)
with g = 0 denoted by (H2’).

(H2')  (y,f'(t,z,y)) <0.

Lemma 4.10. Let f satisfy the conditions (H1), (H2’) and (H5). Then there
exists a constant K € Ry, which depends on Ku,Ca,T, 1 and C such that for
a solution u the following relation holds:

T
lullZ < K (II¢II§+/O f?l%dt> - (4.10)

Proof. (cf. idea of the proof of [BPS02, Lemma 3.8])

Since u is a solution of (4.1), we have by Proposition 3.8

T T
fulg+2 [ Ew)ds =2 [ (fuvu)ds -+ url
t t
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The conditions (H1) and (H2’) yield

<fs(u57D0'us)7us> = <f5(usaDou8)_fS(u570)+f8(u870)_f£+f£au8>
= <fs(us,DaUs)—fs(U570)+f;(Us)+fgaus>
< |fs(us, Dous) — fs(us,0)||us| + <fé(u8)7U5> +|f£||u5|
———
<0 by (H2))
< (C|Dgus| + |£7])|us].
(H1)

Hence, it follows

T
nmm+2/ £ (uy) ds
t

IN

T
2L/’<cwznw@|+wf£L|uA>ds4-nuTH%
t

T

T T
l|@wm%s +Anﬁﬁ@+&ﬂ+n[n%ﬁ@+wﬂa
| S —

S (KAE(us)+Callus|3) ds

IA

Gronwalls’ lemma yields

1 T
lulfy < 5 Kemam+c%uu»<m@+/nﬁﬁw>.
. i

=K

O

The aim of the following is to give an upper estimate for a solution of the
nonlinear equation. This will be done under additional conditions in Lemma
4.18. Let us start by presenting two useful approximation lemmas.

Lemma 4.11. Let f € LY([0,T);L?), ¢ € L? and u be a weak solution of
(3.1) associated to the data (¢, f). Then there exists f, € C([0,T];L?) and
¢n € D(L) such that

T
(4) Ut = Pr_ydp, + / Pyt fnsds is a weak solution for (¢n, fn),
t

T
(i) lim / | frr,s — fsll2ds =0,
n—oo ¢
(i) lim |6 — 9]l =0,

(iv) lim ||lu, — ul|lr = 0.
n—oo

Proof. To verify (ii) let f € L'([0,T]; L?). Then there exists f,, € C1([0,T]; L?)

such that lim,_ fOT | fen — fll2dt = 0. The existence of such f,, follows by

the well known fact C([0, T); L?) dC LY([0,T]; L?) and arguments analogous
ense

to the approximation in the proof of Lemma 2.10. In order to show assertion
(iii), let ¢ € L2. Define ¢ := AGx¢. Then ¢, € D(L) (cf.]MR92, I. Proposition
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1.5]) and ¢y T ¢ in L? by the strong continuity of G. Now the assertion
— 00

(i) follows directly by Proposition 3.8 and (iv) follows by (ii),(iii) and equation
(3.6). O

Lemma 4.12. Let f € C([0,T); L?), ¢ € D(L) and u be a weak solution of
(3.1) associated to the data (¢, f). Then there exists f, € C*([0,T]; L?) bounded
and ¢, € D(L) bounded such that

T
(2) Un,t = Pr_ydyp, —l—/ Ps_yfn,sds is a weak solution for (¢n, fn),
t

T
(i) im [ [ fns = fsll2ds =0,
t

(#@i) — lim |[¢n = ¢ll2 =0,
n—oo
(iv) lim ||u, — u|lr = 0.

Proof. To verify (ii) let f € C1([0,T]; L?). Then there exists f,, € C1([0,T]; L?)
bounded such that lim,,—.cc supse(o 1y [|fn — fll2 = 0. The existence of such f,
can be shown analogously to the approximation in the proof of Lemma 2.7. In
order to show (iii), let ¢ € D(L), then we can find ¢ € L? such that G1¢ = ¢
(cf.[MR92, proof of I. Proposition 1.5]). Define ¢,, := G1(¢» AnV —n). Since
G1(L*(R4,m)) = D(L), we have ¢,, € D(L) (cf.]MR92, proof of 1. Proposition
1.5]). With the same argumentation as in the proof of Lemma 1.11 it follows that
¢n is bounded. Moreover, by [MR92, I. Remark 2.9 (i)] we can deduce ¢,, —

n—oo

¢ in (F,&.?). The assertions (i) and (iv) follow by the same argumentation as
(i) and (iv) in the above lemma. O

From now on we assume the following additional conditions:

(A3) di=0fori=1,...,d,
(A4) ce€ L®R%R,).

By (A3) the bilinear form (2.1) has the following representation for w,v €
Cs° (RY):

Eluv) = > /R dai’j(x)agif)agif)m(dx) (4.11)

Analogous to Chapter 2 we construct F ,F and Cp w.r.t. the norm associated
to £ in (4.11). In the next proposition we will prove the assertion of [BPSO05,
Proposition 2.10] for our framework in the case of nice functions. The main
arguments are the same, but note that in contrast to the symmetric case of
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[BPS05], we do not have an explicit form of the bilinear form (4.11) for u,v € F.
Hence, the proof is more technical than in the symmetric case. Moreover, the
assertion () in our framework contains a term depending on ¢. For the proof
we need the following lemma, which can be easily verified:

Lemma 4.13. If Ac R'®@R* and y € R', then one has

tr(AAT)|y> > (y, AA™y).
Proposition 4.14. Let u = (u',--- ,u!) be a vector valued function where each
component is a weak solution of the linear equation (3.1) associated to certain
data f* € C1([0,T); L?) bounded and ¢* € D(L) bounded fori =1,--- 1. Denote
by ¢, f the vectors ¢ = (¢, ,8'), f = (f1,---, f)) and by Dyu the matriz

whose rows consist of the row vectors Dyu®. Then the following relations hold
m-almost everywhere

T 1
(1) g |* + 2/ P,_, (|D(,us|2 + 20u52> ds
t
T
- PT,t|qb|2 + 2/ P, {us, fs) ds,
t
T
(i0) hﬂéfhﬂw+/ Po_iin, f) ds.
t

Here we write & = x/|z|, forz € R, 2 # 0 and & = 0, if x = 0.

Proof. By Proposition 3.6 it holds u € bCr.

(i) First we prove the relation in the case [ = 1. If we can check that u? verifies
the equation

(0r + L)u? + 2uf — 2|Dyul® — cu? =0,  ud = ¢? (4.12)

in the weak sense with test functions of bCr, the assertion will follow by Propo-
sition 3.12. We need the following two relations:

T
i / (uf, upr) dt (4.13)
0

T T

= / /(&(ufgot))dmdt /(&uf,cpt)dt
0 R4 t
T

T T
= /(@(Ut%@t)’ut)dt‘*‘/ (atutaut@t)dt_/ (Opui, pr)dt
0

0 0

T T T
= / (8t(utg0t),ut) dt+ / (atut,utgat)dt+ / (atgot,uf) dt
0 0 0

[ [ ooy ama
T

= 2/ (utaat(ut¢t))dt+ (U%,Qﬁo) - (U%HSQT),
0

° E(uf,got) = 2& (u, uppt) — (2|Dgut|2 + cuf,gpt). (4.14)
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[Proof of equation 4.14]
First note that for v,w € C5°(R¢) we have

EAW W) = Z/Rd 8:@8% m(dz)

7,7=1
. Ov Ow
= ;1 /Rd (%jia—xjm(dx)
; Ov d(vw)
= m(dz
132:1 /]Rd 8.’& 8% ( )
ov Ov
) Z/ 8$28—%wm(dz)
7,7=1
= 28%w,vw) — 2(|Dov|?,w),
d
ov?
By, 2 _ ov” .
EF (v w) = Z y axiwbzm(d:s)
= QZ )
= QSB(v,vw),

ECW3w) = /cv2wm(dx)
Ra

= 2/ cvvwm(dx)—/ cv®wm(dr)
Rd Rd
= 28%w,vw) — (cv?, w).

Now let us approximate u? and ¢; by C§°(R) functions. For simplicity of nota-

tion we will write u instead of u; and ¢ instead of ¢, in the following calculations.

Take u,, € C5°(R?) such that u, — u in | - ||(€~ ;- Let 1 >¢ >0 and ¢ be a
1

smooth function on R with bounded derivative such that ||9)||oc < [|u]|co +€ and
Y(x) =z for |z| < |Jul|oo-

=

[ v

[let/leo

flll

A 1 e
i t (lullcote)
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Now define 9, := 9(u,). Then we deduce by Theorem 1.13

E(Yn) < sup [[9]2E (un) < oo
neN

Since (|9n|?)nen is uniformly integrable and there exists a subsequence
(nk)ken of (n)nen such that limy_ o ¥ (un, (z)) = u(x) m-a.e., it follows by
[Bau92, Korollar 21.5]

lim ||¢n, —ull2 =0.
k—oo

By Lemma 1.19 we obtain that there exists a subsequence of (¢, )gen such that
for its Cesaro mean, denoted by w,,, it holds:

o=

w, — wuin (F,&

n—oo

).

Further we have

sup ||wnlleo < Jttfloo +1 < 0.
neN
Hence, it follows
Iy, = w?ll2 < Jwnlloollwn — ull2 + ulloo|wn —ull2 = 0
and by Corollary 1.15

sup &(w?) < 4sup(||wn]|%E(wn)) < 0.
neN neN

Now we use Lemma 1.19 to deduce

lim E(w2,¢r) = E(u?, ¢y) for all p € Cr.

n—oo

With the same arguments as above we construct a sequence (py,)ren of C5°(R9)
functions such that

sup || ¢k |leo < 00 and  lim & (¢ — ) = 0.
keN k—o0

It is easy to see that there exists a subsequence (ky,)men of (k)ken such that
Pk, — ¢ m-a.e.. Let us set ¢, := ¢y, . Now it is a simple matter to check that

E(? )= lim lim E(w?, ).

Next we will approximate the right hand side of (4.14). Let us start by writing
E(wp, wnpm) — E(u, up)

= 5(w7l —u, wn(pm) - g(uv up — wn@'rn)
E(wpn, — Uy Wpm) — E(Uu, up — wpm) — E(U, Wpm — Wpom). (4.15)
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Since

lim &(w, — w, wWpem)

< lim (Kefa(wn = 0) € (waem)? + wn — ull2wnpmll2)
- lim {Kggl (wn — u)*
%
(E@npm) + lwnpmllz)” + llwn = ull2lwnmll]
< lim [Kggl(wn —u)? ((2||wn||§o sup €(om)
Corollary 1.15 1—7© SN——meN

bdd. in n

M

+25up [lomlZ Ewn) )+ sup llpmlloc [wnlz )
meN N——" meN SN——
bdd. in n bdd. in n
Hlewn = ullz sup [mlloo [wallz |
meN W—/
bdd. in n
pr— ()7

it follows that
lim lim &(w, — u, w,pm) =0.

m—0o0 N—00

Let us examine the second term of (4.15). Since we have on the one hand
[ule = em)ll2 < llullcolle = pmlla — 0
n—oo
and on the other

E(ulp — om))?

1 1
< [ulloc€(® = om)? + [0 = Pmlloc€(u)?
Corollary 1.15

1 1
< sup fulloble — o)t + (nsonoo T sup ||som|oo) £(u)?
meN meN
< o0,

it follows by Lemma 1.19
limof,’(u,u(go —@m)) =0.

The convergence of the last term of (4.15) can be shown analogously to the
second one. Hence, we get

lim lim &(wn, wnpm) = E(u, up).

m—00 N—00

Next we have to show

lim lim (cw?, om) = (cu?, @).

m—00 N—00

The convergence follows from

lim |(cwy, om — @) < sup |e(z)|sup [wpllz Lim [lgm —¢f2 =0
m— oo zERd neN m—oo
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and

[(c(wy, —u?), )]

< sup [e(@)|lell2lw? — wou + wou — o2l
z€ER?
< sup fe(@)|[lellz (lwnlloolwn = ull2 + lufloc [[wn — ull2)
zER4
< (sup [e(@)] loll2(llwnlloc + llulloo)) llwn —ull2
z€R4
N——— < constant
< constant
(A4)
— 0.
n—o00

At last we have to verify

lim lim (|Dyw,|*,om) = (|Doul®, ).

m—00 N—00
This follows from
lim lim |(|Down|?, om) — (|Dsul?, ¢)|

< Dim1im (J(Dgwal® = [Dgul®, o)l + [(1Doul, om = 9)1)

~ m—oon—oo

by the following two calculations:

|(|D0wn|2 - ‘DUU‘Za ©m)]

< swlnlle [ 1Dawal? = |Dyul| am
meN R4
= sup H‘PMHOO/ |(|Down‘ — |Doul)(| Down | + |Dgu\)‘ dm
meN Rd
. \4
< sup gl ( [ Dol = 1D dm)
meN R4
1
2 2
. (/ ||Dgwn| + \DguH dm)
Rd
< sup omlloeE (wa — ) (VIEAwa)E + VIEAW)})
meN
bdd. in n
— 0,
n—oo
lim [(Douf,  pm—v ) =/ Dyul? Tim [(pm — )| dm = 0.
m—o0 —— Rd m—oo

Ssupen lom llooHllelloo

Summarized we get for ¢ € bCp, u € bCr and almost every t

E(uf,cpt) = lim lim S(wf’n,gpt,m)

m—00 N—00

23 @t,m))

= lim lim (2(9('(Ut7n,wt7n@t7m) - (2‘Dowt,n‘2 + clwy,p,

m—0o00 N—00

= 28(ug, uppr) — (2| Dowe|® + cui, ).
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Since u is a weak solution of (3.1), we have
T T
[ (s dutup)) de  ururor) + (o) = [ (ivpe) d
0 0

T
= —/ & (ug, ugepy) dt.
0

By (4.13) we obtain

1 T 2 1 2 1 2 4
5 (Ut,at@t) dt+ 5(“07%00) - §(UT7@T) - (ftaut(pt) dt
0 0

T
= 7/ E(Ut,utgot) dt
0

Moreover, by (4.14) it follows that

1 T 2 1 2 1 2 r
5/ (ug, Oppy) dt + 5(%7@0) - 5(“T7%0T) - / (fe, uripr) dt
0 0

T ]. 2 2 ]‘ 2
— / 755(7-%79025) - |D0Ut| + §C|’U,t| ) Pt dt.
0

This equation is equivalent to the weak form of equation (4.12)
T T
| o dt+ (o) ~ o) + [ Gt o) de
0 0

T T
_ 2/ (ftut,wt)dt—/ (2 Doudl? + clug2, 00) .
0 0

Hence, by Proposition 3.12 the relation (i) holds in the case I = 1. To deduce
this relation in the case [ > 1 it suffices to add the relations corresponding to
the components |uf|?,i =1--- 1.

T
1
|ut\2+2/ Po Dol + el ) ds
t
. T ) 1 .
il 2 [ Pooi(IDa + elud?)ds
t
. T .
]DT—25|¢Z|2 +2/ Ps—t(uzvfs)ds
t

T
- PT7t|¢|2+2/ Psft<usvfs>d8
t

M- I~
[S [S

(ii) Let us define for € > 0

he(t) = Vit+e—/e fort >0
T (Wt +e—+E)  fort<o.
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Easily we see that
|he(t) — he(s)] < Kc|t — s] and h(0) =0

where K. := sup,cg |h.(s)|. Our first aim is to verify the following equation for
@ € bCr and almost every t:

E(he(Jue?),00) = E(uel? BL(lue*)r) — (B (Jue|*)[ Do (Jue|*)[?, o¢)
+(c(he(ue]?) — luel*RL(Juel?)), ).

Let us start by approximating ¢; and |us|?. For simplicity of notation we will

write u instead of u; and ¢ instead of ¢, in the following calculations. Ana-

logous to the proof of step (i) we construct (@, )nen,@n € C°(RY) such that
1

SUP,en |@nlloo < 00 and ¢, — ¢ in & . Moreover, u’ can be approximated
by (uf)nen, ul, € C8°(RY) such that sup, ey [|uf ]l < 00, ul, — u’ m-a.e. and
1

ul, — u' in £ 2. Since limy,_ o |||un|? — [u/?]2 = 0 and

d d
Elunl?) <> E((uh)?) < 4ng§ [, 120 (u,) < o0,
i=1 1"

CorollaTry 1.15

we obtain by Lemma 1.19 that there exists a subsequence (ng)ren of (n)nen
such that the Cesdro mean w; := % i:l |tin, |? converges to |u|? in £ 2. Hence,
there exists a subsequence (jy,)men of (j);jen such that w;,, — |ul* m-a.e..

From now on we fix the sequence (wp)nen := (wj, )nen. It is easy to see
that w, > 0,sup,cy [|[Wnlloo < 00 and w, € C§°(R?). Note that for w,, and ¢,
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the following equations hold:

n) Op
A _ m
et en) = [ 3 el o m(da)
i,j=1
- / Z a“Ihl(w awn Opm m(dx)
Rdij 1 al']
B 8wn hL(wn)Pm)
_ / Z G mld)
7,7=1
d ow,, Ow
_ " i,j OWn OWn
/Rd hf(w")i;“ B, B, o ")
3xj
Z] 1

_(hg(wn)|Da(wn)|27‘Pm)
= €A(wn,h’€(wn)<p) - (hls’(wn)|Da(wn)|2»90m)v

EP (helwn) om) = /Rdz elnl) o bmiaa)

Oow,,
/Z B )by )

= &° (wn, hla(wn)@m)a

£ (he(wn), om) = / ¢ (e (wn) — wohl. (1)) m(d)
R4

+/ cwph (wy,)m m(dx)
R

= gc(wnv hla(wn)@m) + (e(he(wn) — wnhls(wn))a Om)-
Our next aim is to verify

lim lim E(he(wn), om) = E(he(ul?), ) (4.16)

n—oo m—0o0

and
Jim Tim [£(wn, A (wn)em) = (2 (wn)| Do (i) om) — (4.17)
+(e(he(wn) = wahl(wa)), om)]

= E(ul’, L (lul*)p) = (hZ (lul*)| Do ([ul*)[?, )
H(e(he (ul®) = [ulRL(luf*)), ¢)-
Let us start with equation (4.16). Since we have by Theorem 1.13 E(he(wy,)) <
K2&(wy) for all n € N and it holds

lim [e(wn) = he(Jul)]l2 < Ke lim lw, —[ul?[l2 =0,

n—oo
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we obtain by Lemma 1.19

lim £(he(wy), @) = E(he(|ul?), ) for all ¢ € Crp.

n—oo

Further we deduce for all n € N

E(he(wn), o) = lim E(he(wn), om)

m—00

by the following calculation:

lim |E(he(wn), om — @)

m— 00

< lim (Kg€1(h5(wn))%gl(§0m - )

m—0o0

o=

+ e (wn) 2 llem = ¢l )

< lim (KeKssupsmwn)%el(som o)} + Ko o — m)

m—oo neN

= 0.

Hence, the first equation is shown. Next we have to verify equation (4.17). Let
us start by showing the convergence in m. Since we have

lim (| (wa) (P~ @) < Ko lim_[lpm — oll =0,

m— 00

the convergence of the first term will follow by Lemma 1.19, if we can show

sup E(hL(wn)om) < 00. (4.18)
meN
Let us define v := RL(wn)@m, v1 = Kepm and vy := K’EHtpmHOOwn where

K. :=sup,cp |h’(s)|. Then we have m-a.e.

lv| = ‘h/s(wn)@m| < Kelom| < Kelom| + f{EH@mHOO|wn| = |v1] + [ve]

and
v(z) —v(y)|
= [hL(wn)(@)pm () — PL(wn) () Pm (y)]
< |h(wn)(@)pm (@) — BL(wn)(2)em (y)]
+lom W)l|he(wn)(x) — he(wn) (y)]
< Kelpm(®) — om(y )|+||90mHooK£|wn(-r)_wn(y)|

= |vi(@) = vi(y)] + [va(z) — v2(y)|.

Hence, by Corollary 1.14 it follows that

E(hL(w)pm)? = E(v)?
< Ew)? +E(vy)?
= K.L(pm)? + K| omll o€ (wn)
< K sup g(@er)2+K Sup ||§0m||oosup5(wn)%

meN
0.

A
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Therefore, we can apply Lemma 1.19 and deduce for all n € N

Hm E(wn, hL(wn)om) = E(wn, AL (w,) ).

m—00

The remaining terms of equation (4.17) converge in m by the following argu-
ments for fixed n:

|(n @) Do () om = ¢)|

= (A l(Twn) 2 om — )|

< sup [(Vwn)olKe[(Van)olom — ¢l
z€R

— 0,

Jm_|(che(wn) om — @) < sup [e(a)[he(wn)lz Jim_ om — ollz =0
€
and

lim |(wnh (wn), m — @)| < Kc|lwnl2 "}E)nm lom — ¢ll2 = 0.

m—00

Next we have to pass to the limit in n

(@) lim E(wn, hl(wn)p) = E(Jul*, AL(|ul*)¢),

(b)  lim (b (wn)[ Do (wn)|?, ) = (B2 ([uf*)| Do (Jul*)?, #),
() lim (c(he(wn)), @) = (c(he(lu]*)), ),

(d)  lim (c(wnhl(wn)), @) = (c(|u*hL(lu]*)), ¥).

(a) First of all let us note that analogous to equation (4.18) we can show that

sup E(hL(wy,)p) < oo.
neN

Since we have

n—oo

lim || (R (wn) = R (Jul*))¢ll2 < Supdlwlf(e lim {|w,, — |uf*l2 = 0,

it follows by Lemma 1.19
lim &(|uf?, (h(wn) — hL(|uf*))¢) = 0.

n—o0

Now we deduce the assertion (a)

[ (wn, h(wn)) = E(lul, he(ul?)e)]
K& (wn — [ul*) 2 (W (wn) @) ? | + l[wg = [uf [ lIPL (wn )2
HE(lul?, (hz(wn) = hL(luf*)e)]

— 0.
n—oo

IN
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(b) Since w,, — |u|?> m-a.e., we calculate

tim | (42 (wn) = B (ul2)IDo ([ul?) 2, ¢ )|

n—oo

< suplpl(s)| T wa—[ul| Do ()R )
seR n—00 N———
Ssup,,en [[wa lloo+ullZ,
< sup H/(s)| sup [ola)] [ T w1 Dy () dm
s€R zeR? Rd 700
= 0
and
[ (00) (1Dg (wn) = [Do([ul*)) )]
< Koswp o) [ (1Da(wn) = 1D (u)P) dm
z€ERY R4
N 2 3
< Reswp o) ([ [IDswnd = 10,1l am)
z€R4 R4

1
2 2
(/ 1Dgwn] + Douf?| dm>
Rd

< Reosup lp(@) € (wn — [u?)? (V2EA (wn)t + VIEA (uf?)?)

r€Rd
— 0.
(c)
Tim [(c(he(wn) = he([uf*)), ¢)]
< sup [e(@)|[lell2Ke lim [w, — [ul?|2
:EGRd n—oo
=0
(d)
Jim |(e((wn = [uf*)hL (wn), @)
<

sup [c(z)|[¢]l2Ke lim [lw, — |uf*||2
.’L’E]Rd n—oo

= 0

i |(elul?, (B (wn) — B (1u))e)

< sup le@)Kell@loo lullocllulz Tim [fwn — [ul?];
zER n—o0

=0

Finally, we obtain equation (4.17). Summarized we have shown that

T
0 = / (78(h6(|Ut|2)7@t)+g(|ut|27hlg(|ut|2)cpt)
0

—(hZ (Jue|*) [ Do (ue|*) [, 1) + (c(he(luel*) — IUtIZh’E(IUtIQ))APt)) dt.
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Since we have the identity (cf. Lemma 2.6)

Oy (he(|ul*)) = AL(|uf*)y(|uf?),
he(Jul?) is a weak solution of

(0 + L)he(Jul) (4.19)
= hL([u*) (@ + D)|ul® + b (Jul*)| Do (Jul*)* = e(he(lul?) — [ul*BL(Jul*)).

Further by the product rule for generalized gradients it holds

!
4 Z u' Dy (u)
i=1

= 4|u1D u1)++ulDa-(ul)|

2

Do (Jul?)]? = (4.20)

2

= 4| Dy (u))”
= 4w Do ()", (u" Do (u))")
= 4u, Dy (u)(u” Dy (u))")

= 4(u, Dyu(Dyu)*u).
Now we deduce

(0 + L)he(Jul?) + e(he(Jul) — [ul*hL(luf*))

iy MeluP)@t Dl + R (u) Do (ful)?

o E(lul*) (=2 9| Dyuf? + clul?
(4.20),(i) he([ul”)(=2(u, f) + 2| Doul” + clul”)

+4h” (|ul?)(u, Dyu(Dyu)*u)
—(u, f) + |Doul*  |ul* (i, Dow(Dou)* )

_ IS e St + clul*h(Juf®)
. _twh
(lul* + €)=
L e(Doup) + u|2(|(i(|,2u|jE—)éﬂ,DgU(Dou)*m) T clul?h. (|ul?)
—(u, f)

—— 2 4 clul*hL(|ul?).
Lemma 4.13  (|uf2 4 ¢)2 ful e (ful®)

Hence, we conclude

(u, f)

Oy + L)he(|ul?) + ——2—L—
@t Dhe(ul) + o

+ ¢ (he([ul?) = 2lul*hL(ju?)) = 0
Since ¢ (he(Jul?) — 2Jul*hL(|u?)) <0, we get by Proposition 3.12

uS? S
) < Prnlof)+ [P i
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Let (en)nen be a sequence such that e, — 0. Now we show the existence

n—oo

of a subsequence of (¢, ),en such that passing to the limit in the above relation
will yield the assertion. More precisely we have to show that there exists a
subsequence such that the following equations hold m-a.e.:

(@) lim Aoy (Juel?) = Juel,
n—oo
(0)  lim Pr_jhe,(|6) = Proiof,
T T
(©  lim ﬂ,f—ﬁﬁjQ—T%:i/ Py {iis, £) ds.
e Je (Jus|? +en)2 t

Before starting the calculations we note that h., (|z|?) < |z| for all x € R.
(a)
lim heq(fw?) = tim (ViwP +en - vEr) = lul

n— 00 def. n—oo

(b) Since we have

lim || Pro(hen(6P) = 16D < Tim | heu(92) = 18] I
n—oo n—oo _,_/
<2|¢|
= | lim hen(6P) ~ 6]l

= 0’

there exists a subsequence such that (b) holds m-a.e..
(c) First note that we have for |us| > 0

(us, fs) (us, fs)

’ : _o.
n—oeo (|“3|2 +en)?2 |us]

Hence, we calculate

T
lim / <Ps_t<u57f‘9>1_ _t<uf>> ds
n— o0 t (|us|2 -+ En)E ‘us‘ )
T
< lim <us;fs> —— <us7fs> ds
el Jt (Jus|? +en)? |us| 5
<2|fs|
T
_ / hm( (us, fs) 1_<us,fs>> .
o S\ G tem® Tl
= 0

and deduce that a subsequence of the sequence in (b) exists such that (¢) holds
m-a.e..

O

The next corollary is a version of the above proposition for general data.
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Corollary 4.15. Let u = (u',--- ,u') be a vector valued function where each
component is a weak solution of the linear equation (3.1) associated to certain
data f* € L*([0,T); L?) and ¢* € L? fori=1,--- 1. Denote by ¢, f the vectors
b= (o', ), f=(f1,---, fY, and by D,u the matriz whose rows consist of
the row vectors Dyut. Then the following relations hold m-almost everywhere

T
1
('L) |ut|2+2/ Py <Daus|2+2c|us|2> ds
t
T
= Pr_Jof? +2 / Py i(ta, f2) ds,
t

T
()l < Pr_io| + / Po_sliiy, £.) ds.
t

Proof. (i) Analogous to the proof of the above proposition it is enough to verify
the assertion (i) for [ = 1. Let ¢ € D(L) and f € C1([0,T]; L?). Then by Lemma
4.12 there exists ¢,, € D(L) bounded and f,, € C1([0, T]; L?) bounded such that

T
(a) Un,t = Pr_t¢pn + / Ps_yfnsds is a weak solution,
¢

(¢ lim [|¢n —oll2 =0,
n—oo
(d) lim ||, — u|lr = 0.

n—oo

T
(b) lim | fn,s — fsll2ds =0,
t

By the above proposition it holds
T 1
\unﬁt|2 + 2/ P, <|Dgun78|2 + 2c|un,5|2> ds (4.21)
t

T
- PT7t|¢|2 + 2/ Psft(un,sfn,s) ds.
t

Hence, we have to pass to the limit.

Since we have by (d) ||un, — ull2 — 0 for all ¢ € [0,T], it follows for a
subsequence (n1)n,en Of (N)pen that [|Jup, ¢ — Jw]] < |up, ¢ — w] — 0 m-ae.
and hence |uy,, +|? — |u]* m-a.e..

Fix ¢t € [0,T]. By (c) it follows that || Pr_¢|¢n,| — Pr—t|¢||l2 — 0 and hence
there exists a subsequence (n2)n,en such that Pr_;|¢y,,| — Pr_¢|¢| m-a.e.. By
(b) and (d) we obtain

T
< / (||un2,5||2anz7s — fsll2 + ||f8||2||unz7s — Us|l2) ds
t

T
/t P, ((Unz,sfnz,S) - (quS)) ds

1

T T
< sup [umslle / Vouns — follods + sup [lumg.s — sl / 1 fell2 ds
s€[0,T] t s€[0,T] t

— 0.
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Hence, there exists a subsequence (n3)n,en such that we get

T T
lim Py (Ung. s fny,s)ds = / Py_i(usfs)ds m-ae..
t

nz—oo [,

Again by (d), we calculate
T
/ |||D(,uns’s|2 - |D(,us|2H1 ds
t
T
< / 1Dt lalll Do ting.| — | Dotis|l|2 ds
t

T
+ / | Dot 12| Dirting o] — | Dertis 2 s
t

T % T
< / | Dot |12 ds / | Doty « — Dyus]|2 ds
t t
1
T 2 T
+</ Dous%ds> (/ ||Dgun3,s—Daus||§ds>
t t
1
T 2 T
< (/ |Dgun3,s||3ds) +</ ||Dgus||§ds>
t t

Sf{ constant

T
. / ||Dgun3757Dous||gds
t

T
< K (/ K A€ (tny s — 113) + Caltiny.o — usgds>
t

- 0

1
2

1
2

Nl=

1
2

Nl

and obtain for a subsequence (n4)n,en Mm-a.e.
T T
hm Ps_t(|Dgun47s|2) dS = / PS—t(‘DUUSF) dS.
t

ng—oo [,

Since

T
/ leftneel? — clusl?|l1 ds
t

T
< sup |C($)|/ (luny,sllz + l[usll2)[tn,,s — usll2 ds
zER? t

— 0,
there exists a subsequence (ns)n,en such that m-a.e.
T

T
lim Ps_t(c|un575|2)ds:/ Poy(clusl?) ds.
t

ns—oo [
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Summarized we can find a subsequence (n5),,en of (n),en such that by passing
to the limit in equation (4.21), the assertion (i) holds m-a.e. for ¢ € D(L) and
f € CL([0,T]; L?). Absolutely analogous to these calculations we can show that
by using Lemma 4.11 the assertion (i) holds for f € L'([0,T]; L?) and ¢ € L?.

(ii) Let ¢* € D(L) and f* € C1([0,T]; L?). Then there exist by Lemma 4.12

approximating functions ¢!, € D(L) bounded and f: € C!([0,T]; L?) bounded
such that

T
(a) ui%t :PT_t¢;+/ Po_1f} ods s a weak solution,
¢
T . .
Ot [ 5 filds=o.
n—oo [, ’
@ lim |6 2 =0,

(d) lim |u!, —u'||7 = 0.

n—oo
By the above proposition it holds:

T
lime] < Pr_ilé| + / Py (it s, ) ds. (4.22)
t

It is easy to see that analogous to the above calculations the first two terms of
this equation converge m-a.e. along a subsequence. Hence, we will only examine
the last term.

T
lim / Psft<an,sa fn,s> - Psft<asv fs> dS
n—oo t 9
T
< lim H('an,Safn,s> - <7:L87fs>||2 ds
n—oo t
T
< lm o (ans| [fos = Follla + lan,s — @[ fs]ll2 ds
n—oo N——
=1
T T
< i [ e = flladst tim [ s~ |2l ds
n—oo t n—oo t w_/
<2
=0
T
< [0t [ £l ds
t n—oo
=0
Here we have chosen by (d) a subsequence such that
lim |ul, ,—ul|=0 fori=1...]1 ae.

n—oo

Summarized we can find a subsequence and a zero set such that we can pass to
the limit in equation (4.22) and get (ii) for ¢* € D(L) and f* € C1([0,T); L?).
Absolutely analogous to these calculations we can show that by Lemma 4.11
the assertion (ii) holds for f* € L'([0,T]; L?) and ¢* € L?. O
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The next lemma presents two useful relations. We follow [BPS05, Lemma
2.12]. Our proof of the second estimate bases on the Markov process associated
to (Tt)tz[)-

Lemma 4.16. If f,g € L'([0,T); L?) and ¢ € L?, then the following relations

hold m-a.e.:

/P”fSPT 0)ds < 5| 5Pris? +/ / Poi (foPrmsfy) drds|.

[ [ Pt oo ot

T T T T
S 2/ / Psft(fsprfsfr) drds + 2/ / Psft(gsprfsgr) drds.
t s t s

Remark 4.17. In the case of the above lemma it holds for every e > 0

Ps—t(.fsPT—s(b) ds S 5 55 PT—t(z) + 572 Ps—t (fsPr—sz) drds|.
t t s

Proof of Lemma 4.16. (i) Let us define

T
]’Lt = PT—t¢, V¢ = / Ps—tfs ds.
t

By relation (i) from Corollary 4.15 we deduce

T
1
h? + 2/ Py, <|Dghs|2 + 2c|h52> ds = Pr_i¢?, (4.23)
t

T
1
v? +2/ Py, <D0v5|2 + 2c|v5|2> ds
t
T T
:2/ P,_, (fs/ P._.f, dr) ds, (4.24)
t s

r 1
hivy + 2/ Py <<Doh37Dovs> + 2c(hsvs)> ds
t
T
= 2/ Ps—t (fsPT—s¢) ds. (425>
t

The equation (4.23) follows from Corollary 4.15 by setting u; = h; and (4.24)
follows by setting u; = v;. Since u; = hy + vy, the equation (4.25) follows from
Corollary 4.15

T
1
|he + v + 2/ Py (|Da(hs + )2 + §C|hs + vs|2) ds
t

T
— ProJoP 42 / P o((he + v3) ) ds
t
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by subtracting the equations (4.23) and (4.24). The relation (i) is a consequence
of the preceding relations.

T
/ PS—t(fSPT—S(b) ds

1 T T 1
(435) ihtvt +[ Ps—t<Dahsades> d5+/t Ps_t (20(}15'05)) ds
1 1 2 2 r 2 2
< 1 f(ht—i—vt)—i—/ Py (IDohs]? + | Dovs|?) ds
>0 212 ¢
Lemmal.1l0

T 1
—|—/ P,y (2c(h§—|—vf)) ds
t
111, 4 2 T Lo
3 5ht+ ) Ps_¢|Dyhg|” ds + ) P,_; §Chs ds
1 T T 1
+fvt2+/ Ps—t|DgUS|2 d5+/ P, (cv§> ds
2 p ] 2
§PT—t¢ +/ Py fs/ P._ifrdr| ds
t S

T T
%PT_t(bZ + /t /S Ps—t (fsPr—sfr) dr dS]

(4.23),(4.24) 2

1
2
(ii) First let us prove that the symmetric bilinear form

Qf.9) = / ' / P (fuPsg) drds + / ' / P (P fy) drds

is non-negative.

Ps—t(fsPr—sfr)(fE) drds

Psft(fs (x)Ez [fr(ers)]) drds

By [fs(Xs—t) Ex[fr(Xo—t) | Fs—i]] drds

By [fs(Xs—t) fr(Xo—t)] drds

[
[
-/ ' / U B [a(Xae ) B 1 (X)) drds
[
I

= 7EJJ

/ "X )ds / : ﬁ(}@»dr}
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Then it is easy to see that

T T
/t / Ps—t[(fs + gS)PT—S(fT + gr)] drds

T ,T T T
/ / Psft(fsprfsgr) drds + / / Psft(gsprfsfr) drds
t s t s
T T T ,T
+/ / Ps—t(fspr—sfr) drds + / / Ps—t(gsPr—ng) drds

/ / s—t fs r— Sfr drd5+/ / s—t 99 r— sgr)drds

f)+Q(g,9))

/ / Ps t fs r— Sfr d’l"d8+/ / Ps t gs r— Sgr)drds
= 2/ / Ps—t(fspr—sfr) d?"d8+2/ / Ps—t(gspr—sgr) drds.
t s t s

IN

O

Finally, the next lemma presents an upper estimate for a solution u. We
follow the idea of [BPS05, Lemma 3.3]. Note that in the framework of [BPS05]
£ is conservative and hence it is possible to deduce an estimate for |lul|7 from
the first equation of the following lemma. Since generally our Dirichlet form is
not conservative, we have proved a || - |7 estimate directly in Lemma 4.10.
Lemma 4.18. Assume that u is a solution of (4.1) such that the conditions

(H1) and (H2’) hold. Then there exists a constant K, which depends on C, u
and T such that

T
1
(z) g ® + 2/ P,_, <|Dgus|2 + 2cu52> ds
¢

T T
< f%(PT_t|¢|2+ / / Ps—t(lfSIPr—sffl)drd8>-
t s

Moreover, there exists a constant K, which depends on C,u and T such that
(i) ulloo < K(lllloo + 11/°lloo)-
Proof. Writing relation (i) from Corollary 4.15 for the solution u we get
T 1
\ut|2—|—2/ P, <|Daus|2 + 26|us|2) ds (4.26)
t

T
- PT—t|¢|2+2/ Ps—t<us;fs(usaDUus)> ds.
t
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By (H1) and (H2’) we deduce

(us, fs(us, Dog)) < {us, fs(us, Dous) — f'(s, 2, us,0))
(F2))

= <US’fS(US7DO'uS)_f(us?0)+f0>
= (us, fs(us, Dous) — fs(us,0)) + (us, 0>

< |US|(C|DGUS|+‘JC§)|)
(H1)

and therefore by Corollary 4.15 (ii)
T
u < Prolél+ [ Poos(ClDow] + |£21) dr
Finally, we get

T
/Psft<usvfs(usaDaus)>d3
t
T
S / Ps—t
t

Note that it holds

/ / t (|Dotus| Pr—s|Douyl) drds

T T 1
< / / 3 Py_y (|Dous|® + (Pr—s|Douy|)?)) drds
t
T T 1
< [ ] 5D+ PDou)) drds
T T
= / / B (Ps—t|Dous|® + Ps—y Pr_s| Do, |?) drds
t s
T Ty T T4
= / / = (Ps_t\Dgus|2) d?“ds—i—/ / = (Pr—¢|Dyuy|?) drds
t s 2 ¢ s 2
T
< (T'—1) P,_|Dyug|? ds.

t

79

(4.27)

T
(PT—5|¢ +/ Pr—s(C|Dyuyr| + |f£|) dr) (C|Dous| + |f£|)1 ds

We use the relations (¢) and (i4) from Lemma 4.16 and the equations (4.26)
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and (4.27) to obtain

T
1
\ut|2+2/ P, (|Dgu8|2 + 2c|u5|2) ds
t

T
< ol +2( [ po(Prdo
t
T _
+ [ Pl + 182 dr) (€D +112))] ds)
T
— Prel +2 / Po_y(Pr_|6|C|Dyus]) ds
t
<3G Proi|¢l?+C2 [T [T Po_i(|Dotis| Pr_s| Douy]) dr ds) |
T
12 / P (Pr_a|ol|f0]) ds
t
<L Pr 02T [T Pt (1F01Ps—a | £0]) dr ds)
T T
42 / P, / Pro(CDytr| + [f0) dr - (1] + C|Dyua) | ds
t S
L =[ [T Pyt [Pr_ o (C|Dour |+ £21)-(1£014+C|Dous))] dr ds
T T
< 2Pr 6] 4 C? / / Py (1Dt | Po—s | Doy ) dr ds
(Z) t S

T T
+ / / P (|f| P, £0]) drds
t s
T T
12 / / Poet [Pr—o(CDuy| + £2]) - (1% + C|Dys])] drds
t S
T T
< 2PT,t\¢|2+502/ / Py (IDytis|Prs| Do) dr dis
(21) t s
T T
15 / / Py (10| Po | £2]) dr ds.
t S

Summarized we get
r 1
|’U1t‘2 + 2/ Psft (|Dgus|2 + 2CU52> dS
t
T
< 2Pr_4|¢)? +5C’2(T—t)/ P, 4| Dyus|* ds
t

T T
+5/ / Poy(|fI1Pr—s| 7)) dr ds.
t S

Hence, the first estimate of this lemma holds on the interval [T — e, T] where
€ > 0 such that C%¢5 = 1. It is easy to see that we can deduce by iteration the



4.4. THE CASE OF MONOTONICITY CONDITIONS 81

estimate over the interval [0, T].

Left to show is the upper estimate for u. We obtain from the first estimate:

T T
wP < sw swp K| Profof+ [ [ PPl drds
t€[0,T] zeRe t s

<(T—t) [T Pat|£912 ds

T

< sup sup IN(PT,t|¢\2+I~((T—t)/ Ps,t|f£|2ds

t€[0,T] zeR4 t

. } T

< sup <K||¢2||M+K(T—t)/ sup Pst|f£|2|d8>

te[0,T] t xzeR?

R R T
< K||¢2||oo+KT/ sup || /0| ds

0 xzcR4

< max(K, KT?)([|¢*[lo + /°lI%)
———
=K?2
< K2(loll3 + 1£01%)-

Hence, we have

jul < K (V1612 + 1% ) < K (I8l + 1/°l) -

Finally,

[ullss < K (9]l + 1flsc) -

4.4.3 The Existence and Uniqueness Theorem

We consider the conditions (A1)-(A4). The next theorem follows the lines of
arguments of [BPS05, Theorem 3.2] in the case p > 0.

Theorem 4.19. Under the conditions (H1)-(H5) and p > 0 there ezists a
unique solution of equation (4.1). It satisfies the following estimates with con-

stants K1 and Ko
T
K, <|¢||2 +/ 1212 dt) ;
0

lullo < Kz (6l + [1°llc)

IA

ull7

A

where Ky depends only on the constants C, u,T,Ca,K 4 and Ko only on C, u,T.

Proof. | Uniqueness ]
Let u; and ug be two solutions of equation (4.1). By using (3.5) for the difference
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up — Uy we get
T
w1, — ol + 2/ Eury —ugy)ds
t
T
= 2/ (f(sa'aul,saDaul,s) - f(57'7u2,saDou2,s)aul,s *UQ,S) ds
t

T
S 2/ C(‘Daul,s - Dau2,s|a |u1,s - 7-’42,5|) ds
t

T T
¢ [ e unelBds+ [ ) ds
t t ——

<Ka&(ur,s—ug s)+Callur,s—uz s3

and therefore
2
B

T T
< (CQJrCA)/ [l s qu73|\2ds+(KAf2)/ E(ur,s —ugs)ds
t ¢

Hul,t — U2t

<0

) >
< (02+CA>/ sy — gy o ds.
t

By Gronwall’s lemma it follows that

5 <0-exp((C? + Ca)T).

Hul,t — U2t

This implies ||u1,; — ua,]l2 = 0 for all ¢ € [0,T] and hence u; = ug.

[ Existence |
The existence will be proved in four steps.

[ Step 1: ]
We suppose the existence of r € R such that

r 214+ K(|9loo + 1Ml + 1 o)

where K is the constant appearing in Lemma 4.18(ii), and such that f is uni-
formly bounded on the set

A, =[0,T) xR? x {|y| <r} x R' @ R*.

We define
M = sup{|f(t,z,y,2)|: (t,2,9,2) € A} < 0.

Next we will regular f with respect to the variable y. Let us define
fn(t7 z,Y, Z) = nl /l f(t7 z, ylv Z)(p(n(y - y/)) dy/
R

where ¢ € C5°(R%) of support contained in {|y| < 1} such that [, ¢ dm = 1.
Then it holds (cf. [Kan03, Theorem II.1.2])

f=lim f,.

n—oo
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We set 1

r—

hnt777 ::nt7577
T ).
—_————
<1
and denote v, = Wy The derivatives 0y, f,, satisfy (cf. [Alt06, 2.12
Faltung (4)])
O fultirn) = [ fad/ 2o, enly =) d

y/
[y = L2000 dy'
R! n
Thus, we deduce for |y| <r —1
Oy, fu(t,,y,2) < M y Dy p(y') dy'.

This shows that the partial derivatives 0y, f,, are uniformly bounded on A,_; for
each n. Since f, = hy, on A,_1, the partial derivatives d,,h,, are also uniformly
bounded on A,_;. Hence, the functions h,, satisfy the Lipschitz condition with
respect to y and z. Thus, by Proposition 4.8 each h,, determines a solution
u, € F! with data (¢, hy,).

Now we will show that f, satisfies (H1) and (H2'):
|fn(ta Z,Y, Z) - fn(ta €, Y, 2)|
= /]Rl ftay' 2) = f(t 2,y 2)] e(n(y —y)) dy

R
= COlz— %,
(v, £1(t, . 1))
= yafn(t x,Y, ) fn(t z,0, 0)>
=t [ S/ 0)elnty /ftwyo(( y))dy')
- (f(t,aay L0)~ f(t,,0 -~ 0)) o) )
= /Rl < (y— i{:) - (—%) : (f(t,ar,y— %,0) —f(t%—iﬁ)) ><p(y’)dy'
< 0.
(2)

Therefore, it is easy to see that h,, also satisfies (H1) and (H2') with the same
constants (C' > 0 and y = 0):

|hn(tax7yaz)_hn(t7$7y7'z/)| = |fn(taxay~haz)_fn(taxay~hazl)| §C|2_2/|7
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Viir—1), _

ey = PO D G n e y)

ylvir—1) _ B

= VD G e )

r—1
< 0.
Since

ha(t,2,0,0)] = |fu(t,,0,0)

IN

o [ 15t 0) = £t + (el )]
< )]+ 1 (),

we deduce by Lemma 4.18 that ||u,||cc < 7 — 1 and by Lemma 4.10 that there
exists a constant K such that ||u,|7 < Kp. This can be derived as follows: Let
us denote the constant that appears in Lemma 4.18(ii) by K7 and the constant
from Lemma 4.10 by K.

K1 ([16llos + lIAn 1)
K1(Igllso + 1 lle + I1F (£ 2)lloc) < 7 =1,

T
lunll? < K> <¢|Iz+/0 IIhﬁllzdt>

T
< Ky <¢||2 +/0 (||f0||2 + ||f"1||2) dt) = K?

<
r (H4),(H5)

[[tn |l oo

INIA

AN

Since by definition h,, = f, on A,_1, it follows that u, satisfies (4.1) in the
weak sense with data (¢, f,,).

For b > 0 we define

dn,b(t7$) = sup |f(t,x,y,z) _fn(t7x7y7z)|'
ly|[<r—1,|2<b

It holds for |y| <r —1

falt,z,y,2) = 0l Rlf(t,ar,y’,Z)w(n(y—y'))dy’

< Mnl/ e(n(y —y))dy = M.
(v'|<r)

Hence, we deduce that |d, (¢, z)| < 2M. Moreover, since we have y-continuity
and uniform z-continuity of f, we obtain that for fixed ¢,z and b the family of
functions {f(t, z,-, 2)||z| < b} is equicontinuous, and hence by Arzela Ascoli’s
theorem compact in C({|y|] < r — 1}). Since the fact that convolution oper-
ators approach the identity uniformly on compact sets (cf. [Kan03, Theorem
I1.1.2.(2)]), we get

lim d, ,(t,z) = 0.

n—oo
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Therefore, by Lebesgue’s theorem it follows that lim,, . dy » = 0 in L2(dtxm).
Moreover, it holds for u € F, |u| <7 —1

|f(u7 Dau) - fn(u7 Drru)| < ]]-\Dgu\gbdn,b + 2A7\4-:II\D(,1L|>17 (428)
2M
S dn,b + T|DU’U,|
Next we will show that (un)nen is a || - ||p-Cauchy-sequence. Let us start by

writing relation (3.5) for the difference u; — w,,.

T
e =l +2 e =) ds
t

T
= 2/ (fl(sv ’7ul,saDaul,s) - fn(sv '7un,saDaun,s)7ul,s - un,s) ds
t

(3.5)
T
S 2/ (‘fl(ul,& Daul,s) - f(ul,m Daul,s)|7 |ul,s - un,s|) ds
t
T
+2/ (|f(un737 Doun,s) - fn(un,S7Doun,s)|7 |ul,s - un,s‘) dS
t
T
+2/ (|f(ul,sa Daul,s) - f(ul,m Da'un,s)lv ‘ul,s - un,s|) dS
t
T
+2/ (f(ul,syDUun,s) - f(un,sa Da'un,s); Ur,s — un,s) ds
t
T
< 2/ (‘fl(ul,sv Daul,s) - f(ul,sa Daul,s)|7 |Ul,s - un,s|) ds
(H2) t
T
+2/ (|f(un737 Doun,s) - fn(un,svDoun,s)|7 |ul,s - un,s‘) dS
t
T
+2/ (|f(ul,sa Daul,s) - f(ul,sa Da“n,s)lv ‘ul,s - un,s|) dS
t
T
< 2/ (‘fl(ul,sa Daul,s) - f(ul,sa Daul,s)|7 |ul,s - un,s|) ds
(H1) t

T
+2/ (|f(un,sa Daun,s) - fn(un,sa Daun,s)|» |ul,s - un,s‘) dS
t
T
42 [ €Dt = Dl e ) ds
t

T
< 9 / (diy(5,-) + dn(5, ), [tt.s — tm.s]) s
(4.28) t

T
2M
+2/ ( b (|Daul,s| + ‘Daun,s )7 |ul,s - un,s|) ds
t

T
+2/ C(‘Daul,s - Doun,s|7 |ul,s - un7s|) ds
t
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T T
< [ st s+ [ Iduats. B s
t t
1 T

(I1Dour 53 + 1 Do, s13) ds

7 ),
T
H1 2+ C) [ = e[ ds
t
T
+/ ||Do'ul,s - Daun,sng ds
t
Since we have ||u,||7 < Kt for all n, we deduce

T
/ | Do s||3ds < Kr
0

where the constant Kp is independent of [ and b. Thus, for b, [, n large enough,
we get for an arbitrary € > 0

T T
e = g B+ [ S~ ) ds < S 4 K [ e s
t t

- A

where K depends on C, M , Ca , g and K 4. It is easy to see that Gronwall’s
lemma implies that (u,),en is a Cauchy-sequence. Let us define the || - ||7-limit
u = lim,,_,o u, and take a subsequence (ng)ien of (n)nen such that u,, — u
a.e..

Now we show that u is a solution of (4.1) associated to (¢, f). Since uy,, — u
a.e., it follows

FCy oty , Do) — f(- - u, Dgu) in L2(dt x m)

by the following calculation:

T
lim / / |f(',',unk,DgU)*f(',',U,DgU)F dm dt
t R!

k—o0

<4M?2

T
= / / lim |f(-, -, Un,, Do) — f(-, -, u, Dou)|? dm dt
Lebesgue t R
= 0.

1 k—o0
(H3)
Since |[uy, — ul|lr — 0, we obtain by (A2) that
Dot = Doting || L2 (dtxm) — 0.
Then by (H1) it follows that
Jim £ (s ttng, Do) = (5 tnyy Doting) || L2 (dt xm)
lim €D Doty s (atm

<
(H1)
= 0.
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By using (4.28) and passing to the limit first in k£ and then in b we get

”f(a '7unk’D0'unk) - fnk(7 '7unk7D0unk)”L2(dt><m)

2M
< dnk,bJr 7‘D0unk|
b L2(dtxm)

2M
< ||dnk,b |L2(dt><m) + THDaunkHLz(dtxm)

2M
< ”dnk,b |L2(dt><m) =+ T v Kt
— 0.

Finally, we conclude

Jm | froie Uy s Dotiny, ) — f (1 Dot)[| L2 dtxm)
= lim | fr (Wnys Doting) = f(tnys Doting) || L2 dt xm)
+ | f(unys Dotiny) = f(ungs Dot 22 (aexom)
+ lm | fup,, Do) = f(u, Do) L2 arxm)
=0.

By passing to the limit in the weak equation associated to u,, with data (¢, f,,),
it follows that w is the solution associated to (&, f).

[ Step 2: |
In this step we will prove the assertion under the assumption that there exists
some constant r such that f"" is uniformly bounded and

o)

where K is the constant appearing in Lemma 4.18(ii). Let us define

r 21+ K([|8llo + 17 lloc + 1

fn(t7x7yaz) ::f(ta‘ray7‘z|%z)a TLGN\{O}
<1

Since it holds for |y| < r

|f7l| = ‘f(tvxay7|z|"z/’rlz)+f<t7may70)_f(t7x7y70)_f0+f0

Cn+ || f" oo + ||f0||ooa

ZIA

(

fn is bounded on A, by Cn + || f"""[|oc + | f°]ls- It is easy to see that each of
the functions f,, satisfies the same conditions as f. Hence, we apply step 1 and
obtain the existence of a solution u, associated to the data (¢, f,,). By Lemma
4.18 we get
[tnlloc < K(Iglloc + 1 fr lloo) <7 —1
~~

=f0
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and by Lemma 4.10

T
[unll? < K <|¢>||2 +/O 17212 dt> < Kr

where K € R, fix. The conditions (H1) and (H2) yield

|(fl(ul7D0ul) _fn(un7Doun)7ul _un)| (429)
< |(fl(ul7 D(rul) - fl(uh Daun) + fl(un7 Daun) - fn(un7 Doun)yul - un)|

< C(‘Daul _Daun|a|ul _unD

+[(fi(un, Doun) = fn(un, Dotin), ur = un)|.
By the relations for n <1
Fults 2,9, 2) U< = F(3,9,2)1 2
and

\fl(t,x,y,z) - fn(tvxvyaz)|ﬂ\z|2n
‘fl(tvmayuz) - f(taxvzho) + f(tvxayao) - fn(tvx7yvz)|]l|z|2n
QC|Z‘]]“Z‘ZTL

IN

we conclude that
|(fi(tn, Dotin) = fr(tn, Dotin), wi —un)| < | (2C|D0un|]l{|Daun\2n}a uy — Un|) |

Next we will show that (u,),en is a Cauchy sequence.

T
Hul—un||§+2/ E(uy — uy)ds
¢
T
= 2 [ (il Dow) = folttn, Dain) 0 = ) ds
t

T
< 2/ C(|Dous — Dotin |, |ur — up) ds
¢

T
+2/ |(fl(un7DUU'n) - fn(unaDo'un)aul - un)| ds
t

<2Clur—un|s|[|Dotun|l{|Dgun|>n}!)
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T T
< 02/ lur — un 13 ds +/ EMNuy — uy) ds
t t

lunlloo <r—1

T
+8C(7" — ].)/ / ‘Dgun|]l{|D6un|Zn} dm ds
t R4

T T
< (02+0A)/ I —un\|§ds+KA/ E(w — uy) ds
(A2) t t

T 3
+80(7’ — 1)/ [ </ ]12\Dgun|2n dm)
t R4
. ( |D0un|2dm) ] ds
]Rd

T T
< (CQ—i—CA)/ [l —unH%ds—i—KA/ E(up — uy)ds

t t

2

T
+SC(T - 1) </ / ]lz\D(,un|2n dmds)
t R4
r :
. (/ / Dgun|2dmds>
t R4

T T
= (C*1Cw) / lut — un 3 ds + K / E(uy — ) ds
t t

T 1
( / Dounn%ds>
t

1
2

T
50 - 1) ( / |n{|Dau,L|>n}||§ds>
t

89

Since |uy||% < K7 for all n, we have fOT | Do nll3 ds < K independent of n.

Hence,

T
t

T
n? / 1L om [2ds < / 1 Dotinl L, 0, 5m 12 ds < K.

Therefore, we conclude for n big enough

T T
Hul—un||2+(2—KA)/ E(uy — up) ds < (02+0A)/ i — |2 ds + <.
t t

By Gronwalls’ lemma it is easy to see that (u, )nen is a Cauchy sequence. Hence,
the || - ||p-limit w := limy, o0 uy, is well defined. Now we can find a subsequence

(nk)ken of (n)nen such that

(tUny, Dotin,,) e (u, Dyu) a.e.
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and conclude a.e.
‘fnk (unka Daunk) - f(u7 Dau)|

’f <unk, nkDUunk) — f(u, Dyu)

‘Dgunk | V ng

Nk
< n 77D0 o - n 7DU
< | (st Dt ) = e D)
+|f(unkaDou) - f(uv Da'u)|
Nk
S C ‘|D0unk\/nkDo-Unk — DO-U + \f(unk,Dgu) — f(U,Do-U)|
— 0.
k—oo

Since

| f(u, Do) — fr, (tn,, s Dotin, )]

= |f(u,Dou) = f(u,0) = fn(tny, Doting) + fry (tn,,0)]
+H = o (i, 0) + f (w0, 0) + £ — f°]

< |f(u, Dou) = f(u,0)] + | fu, (Un,, Dotin,) = fr (un,, 0)]
| fg (i, 0) = O] + [ f (w, 0) — f°

< C(|Doul + [Dotin,|) + 2f"",

by Lebesgue’s theorem it follows that
kh—>H;o fnk (unk , Daunk) = f(u, Dau)

in L'. By passing to the limit in the weak equation we conclude that u is a
solution of (4.1) associated to the data (¢, f).

[ Step 3: ]
Now we only suppose that f! is bounded. Hence, we can choose a constant r
such that

r 21+ K([élloe + 1/ 0 + 1" 1)

where K is the constant that appears in Lemma 4.18(ii). Let us define

n: (f = f) + £

= f/7’l‘ vV n

n

Easily we see that the functions f, have the same properties as f. We present
for example (H1) in the case f""(¢,x) > n:

‘fn(tvxay7 Z) - f’ﬂ(tvxay7 zl)|
n

i g va ey = o) + ()

(Frgy Ut - Pt + o)) |

t,x)Vn
n

= |Faova ey - Ihey. )

n
< 702—2,.
iy Frayvn P

<1
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Since fn(t,x,y,2) = f(t,x,y,2) for f" < n, we deduce

lim f, = f.

n—oo

Let us introduce the following notation:

() = sup otz y)l and f(t,2,y) = fult,z,y,0) = fOt,2).
Yy|Isr

Note that we have

Fult, 2,0,0) = ﬁ(f(t,x,o,o) — Ot 2)) + fOt, ) = fO(t,x).

Next we will show that

) <AL

If f/" < n, then we have

37 = sup | fu(t,2,y,0) = fO(t,2)| = f""

ly|<r

and if f" > n, then

|f7/l,r| = sup |fn(tax’y70) _fo(t’x”
ly|<r
. n _ 40
< o (o) e Ve 60 )
< n.

91

Hence, f! is uniformly bounded. By the preceding step we obtain that there
exists a solution u,, associated to the data (¢, f,,) such that by Lemma 4.10 and

4.18 it holds
|un]loo <7 —1 and |Ju,|r < const.

Next we prove the convergence of u,,. We have for n <1
|fl - fn‘
= |f=r

l _n
f/,r \V l f/,r V' n

|f(t,z,y,z) —f(t,z:,y,O)—Ff(t,x,y,O) —f(t,$,0,0)|

l n

) I n
f/,r \VA f/,r vV n
< (Clal + 1 Dhgrrsny-

Hence it holds

IA

(Clzl + |f]

frrvi o frrvn

T
/ |(fl(unaDaun) *fn(un7DaUn),Ul *Un)|d5 (430)
t

T
< 2(7«—1)/ / (ClDyun| + ) dm ds.
¢ Jiprsn

llelloo <r—1
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To show the convergence of u, we start as in the preceding step:
T
e = w42 [ e = un) ds
t
T
= 2/ (fl(sv'vul,s;Daul,s) _fn(sa'vun,syDaun,s);ul,s _un,s)ds-
t

T
< 2/ C(|Dsu; — Do |, |uy — uy|) ds
t

T
+2/ ‘(fl(unvDaun)_fn(un;Daun)aul_un)‘ds
t
T T
< / | Dou; — Doty |3 ds + 02/ llwg — wn |3 ds
t t

T
+4(r — 1)/ / (C|Dyuyn| + ") dm ds.
t J{fm>n}

Note that we have on the one side

T
lim / / fmdmds =0
e J{frr>n}

and on the other one

T
/ / Doun|dmdt < |1 grrsmll s | Dottn| 12 atxm) — 0.
t {f"m>n}

Fix € > 0. Then for n big enough it follows by (A2) that

T T
[l —un7t||§—|—(2—KA)/ E(ups —un,s)ds < e+ (CQ—i—CA)/ |l —unH%ds.
t t

By Gronwall’s lemma we deduce that (u,)nen is a Cauchy sequence. Hence, u,,
converges to a limit u, which solves the equation (4.1) with data (¢, f).

[ Step 4: ]
Now we prove the theorem without additional conditions. Let us define

foi= g = £+

Then it holds
lim f, = f where f, = f for f"! <n.

Moreover, we define

fat= Sup [tz y)| and £ (t,2,y) = fu(t,2,y,0) = Ot ).
Y=

Analogous to the calculations in step 3 it follows that f"* <n = |fi1| =|f"!]
and f"! > n = |f/!] < n. Therefore, we deduce

lfo <nAalft

Since f/! is uniformly bounded, we apply step 3. Thus, we get a solution u,, for
the data (¢, f,,). The convergence of u, can be shown analogous to step 3. O
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Notation. The bilinear form (2.1) has the following representation:

d
) = -Zl /Rd a*’ <x>a§S) a;g) m(dzx) (4.31)
: ou(x) ‘
+§_;/R o, V(@)@ mdr) + /]R Jcl@)u()v(z) m(dz).

where u,v € Cg° (RY). We denote the function spaces, which are associated to
(4.31) by F,, F, and C%. In the case p = 0 we drop p in the notation, i.e.
&% = &£. Further we denote by (, ), the inner product on L?(R%, m).

To treat the general case (p = 0) we need to modify condition (Al):
(A1) A= A and A is bounded

and additionally assume

(A5) Jo ! such that oo™ =1 and |0~ (z)| < oo uniformly,
(46) -V -b>0,

(A7) be L*(RY dx),

(A8) E(u)<oco=uecl.

By (A5) and (A7) the Dirichlet form has the following representation for u,v €
F,, p=>0:

E (u,v) = /}Rd(DUu,Dgw dm + /Rd cuv dm + /Rd<(D[,u)g—17b>v dm.

Furthermore, by condition (A6) there exists a measure p;, such that for u € F,
p > 0 it holds

EBP(u,u) = %/ u? exp(—pb) dus.
Rd

Note that condition (A45) is an assumption on the coefficients a®/, usually
called global strict ellipticity. More precisely condition (A5) is equivalent to the
non-degeneracy of L.

Lemma 4.20. Let p > 0. Then it holds
E(u, ) = E(u, pexp(=bp)) + (M,u, ¢),
foru € F,,p € bF,, where
Myu = p(D,0, Dyu).

Proof. 1t is easy to see that the only term, which is not trivial, is

ENP(u, @) = /(Dgu,D(,@)dm
Rd

| (Dt D exp(=p0)) = Drexnl=pt))e)
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Since
/Rd (Dyu, Dyp — Dy (¢ exp(—p8)) exp(pf) + D, (exp(—pd)) exp(pd)p) dm

< Dotll2,pl| Dot — Do (p exp(—pb)) exp(pb) + Do (exp(—pb)) exp(pd)¢ |20,
it is enough to show that the last term is zero. Take ¢, € CS°(R?) such that
¢on — ¢ in L2 R4 m) and D,p, — D,p in L?(R% m). Then we obtain in
L(RY, m)

lim_ (D (o exp(—p8)) exp(pf) )

= nlim (Da@n + Do (exp(—pG)) eXP(Pa)wn)
= DG'QD - pDo (9)S0
and the assertion follows. O

Theorem 4.21. Under the conditions (H1)-(H5) and p = 0 there exists a
unique solution of equation (4.1). It satisfies the following estimates with con-

stants K1 and Ko
T
2 0
luld < K [l + / 1002 dt |

[ullo < K2 ([8lloo + 115]l)
where Ky depends only on the constants C, u,T,Ca,K 4 and Ko only on C, u,T.

A

Proof. W.l.o.g. we consider the case of a single equation (I = 1 in Definition
4.5). We set for p >0

k d
fp(ta'rayv ) _f t €, Y,z +p220l1($)819(1‘)2[(1‘)

=1 =1

and define
(0 + Ly)u+ fP(u, Dyu) =0, ur = ¢. (4.32)

The associated weak equation has the form

T
/ 5p(uta§0t) + (ufwaﬂot)p dt (433)
0

T
- / 2ro0)pdt + (ur, o7)p — (o, 00)p Vo € CE.
0

[Step 1] We easily see that f” satisfies the conditions (H2)-(H5). Hence, we
show (H1):

|fp(t7l‘,y, Z) - fp(tvxaya 2)‘

ko d
pZZaf@lG 21— 21)

=1 =1

-t

IA

|f(t,$,y,2) - f(tax7y72)| +

(c+

k d
pz Zafazﬂ

=1 1=1

IA
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Thus, the existence of a unique solution of (4.32) is obtained in » for p > 0 by
the above theorem.

[Step 2] In this step we prove the existence of a unique function, which sa-
tisfies the weak equation (4.7) in a weaker sense for p = 0 (cf. equation (4.34)).
Moreover, we prove that u” = u” for all p, 5 > 0, where u” resp. u” satisfies the
weak equation (4.33) associated to p resp. p.

Fix p > 0 and define f, € C°(R?) such that f,(z) = 1 for x € B,(0),

fn(z) = 0 for z € BS,(0), %Z(f) are uniformly bounded and %ﬁ

— 0,

where B,.(0) denotes the R? dimensional ball with radius r centered at 0.

Let us show ¢ € bCr = (¢ fn exp(0p)) € bCH-:

. | frexp(0p) (0t sn — @t)ll2,p < const||piin — @tll2,, — 0
o e (P < 0 ) a0
J | fr. exp(0p) (Orpr4n — Orpt)ll2,0 — O

T
o Eletiexnion)di

0

T
< / 2ell2 £° (£ exp(0p)) dt
0 N e’

<00, since fnp€CS®(R?),exp(0p)eCt(R?)

T
+ / 2 £ cxp(00) 2.7 (i)

<oo0, since pebCH,
< 00,

Let u” be a solution of (4.32), then we have for all ¢ € bC/.

T T
| ertion v whow,de = [ (o), e+ (o), - (W00,
0 0
Since (@ f, exp(fp)) € bCY. for all ¢ € bCr, it holds:
T
/ EP(uf, Pufn exp(0p)) + (uf, 0pe fu exp(6p)), dt
0
T
= [ GGt exp (@) dt + (oo exp(60)), — (uh. G exp(Op)
0
Moreover, the above equation is equivalent to
T
| et autuespO0) + (. 0u S
0

T
- / (P fuBe) dt+ (1o, fupr) — (ul fuBo)
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and also

T
/0 E( fuBe) + (P(Dab Dyl fupe) + (uf Dupefo) dt

T k d
/ 053 00Dl 1, fue) dt + (e, fur) — (uly Fubo).

=1 i=1

Finally, this yields to a weaker form of (4.7)

T
/ E(uf, fape) + (uf, Orprfr) dt (4.34)
0
T
_ /0 (For fuBe) b+ (s frr) — (il fuiBo).

Note that (f,®) € bCr for all $ € bCr.

Now let u € F » be a function, which satisfies (4.34) for all ¢ € bCr and f,
as above for a fixed p > 0. Fix p > p and take ¢ € bC.

Let us show (@ exp(—0p)) € bCr:

] /Rd |Bern — @el” exp(—0p) dm < ||@ran — Bell2,p — 0
~ ~ 2

. / (W — 8,5@) exp(—6p)dm — 0

Rd
o /d |0¢Brsn — O pe|? exp(—Bp) dm — 0

R

T

I A L

0

T
< [ [ 2Del? expl(-60)" + 24Dy exp(-60) 5 do e
0 R4

T
+/ /(%eXp(—Hp))zdubdt
0o Jre
T
+/ / c(py exp(—0p))? dx dt
0o Jre
0.

By the same arguments as above, we conclude that u satisfies the weak
equation (4.33) for p with test functions ¢f, where ¢ € bC%. and f, as above.
By passing to the limit in this equation we conclude that u is a solution for
every p > p. Note that in this equation we can pass n to the limit, since we
have u € Fp. The only not trivial convergence is

T T
/ EP(ug, @y fn) dt _’/ EP(ug, @y) dt
0 0
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Let us examine this term:

T
/0 E° (up, B f — 1)) dit

IN

/0 K€ ((u0) €L Belfu — 1)} + [(ues @1(fu — 1) dt

T 3 /o7
Ke (/0 5f(ut)df> (/0 E(Be(fn — 1))dt>

+ / (ues Be(fn — 1)), .

Nl=

IN

Easily we see that the last term converges to zero. Hence, we examine only the
first one:

T
/0 EP(Ge(fn —1))dt
T
< /0 /]Rd 2|D0¢t|2(fn_1)2+2|D0(fn_1)|2|¢t|2dmdt

T
[0 ] @it = 1) expl=00)

T
A CTU
— 0.

n—oo

Now fix p; > 0. Then there exists a solution u”* of the weak equation (4.33)
associated to p; (cf. step 1). Now we can conclude that u”* also satisfies the
equation (4.34) with test functions of the form ¢f,, where ¢ € Cr and f, as
above. Moreover, we obtain by the above argumentation that u”! satisfies the
weak equation (4.33) for all p > p; with test functions ¢ € bC/.. By step 1 there
exists a unique solution u” of (4.32) for every p > 0. Hence, by uniqueness it
follows that u”* = uf for all p > p;.

Finally, we can deduce that a solution u” of (4.32) associated to p, is a so-
lution of (4.32) for all p > 0.

[Step 3] Let u” be a solution of (4.32). Then by (2.) w” is a solution of
(4.32) for every p > 0. Moreover, by Theorem 4.19 it holds:

T
|7, < K <|I¢||2,p +/0 172112, dt) for all p > 0.

Letting p — 0, the estimate passes to the limit and we get

T
lim K <|¢||2,p+/ ||fto||27pdt>
p—0 0
T
K<||¢||2+ / ||f?||2dt>-

lim sup w7,

p—

IN
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Next we have to verify that
[l = lim [u?|7..

Clearly it holds

limsgp HUﬁHT,p < Ju|lr.

p—

Since
liminf sup ||u‘)||2p> sup |’
e t€(0,7]

and

T T
/ E0ufydt = / / |Dyul)? + c(uf)Q) lim exp(—pf) dzx dt
0 Rd p—0

/ / hrn exp(—p0) duy dt
]Rd

lim inf 5”( Py dt,
p—0 0

IN

it follows ||u?||z = lim,_g ||[u”||T,,. Easily we see that the second estimate holds:

[u”lls < K(I0lls0 + 11°]lo0)-

[Step 4] In this step we show that a solution u? € F7? of (4.32) for j > 0
is an element of F. Note that since £(uf) < oo for almost every t (cf. step
3), it follows by assumption (A8) that uf € F for almost every t. Moreover,
we have already verified that foT 51(uf )dt < oo. Hence, it is left to show that
u? € C(]0,T); L?).

Since u” is a solution of (4.32) for all p > 0 (cf. step 2), we can deduce by
equation (3.5) that

i t+h
2 2 o
P, kel < 2| [ dognpds| 4
t
t+h t+h B
b [ lds| | [ ey ds
t t

t+h t+h _
m/ wmmw+/ kapEA (uf)} ds
t t

IA
[N
—

IN
[N}
| —

where k1, ko are constants. Let us make an additional assumption on the func-
tion f: fOT || fsllz2ds < oo. We point out that, if u? € F, this assumption is
always fulfilled (cf. Lemma 4.9). Analogous to the arguments of step 3 we can
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show that
. lim [[u? 3, = l[ufl3,
t+h ~ t+h 5
. lim EP(uf) ds :/ E(uf)ds,
p—0 ¢ t
t+h .
. lim pELP(ul)2 ds = 0.

Hence, we only examine the term, which depends on f

t+h
lim sup / I /s
t

p—0

t+h
2pds < / 1 fill2 ds

t+h
. 0p
= /t ||fs})lgg)exp<—3)||2ds

t+h
liminf/ | £sll2.p ds.
p—0 t

t+h
[ 15eds
t

: o112 o 2|
tim |13 — [uf. 3] = 0.

IN

Summarized it holds:

+

13— uf, 3] < 2 [

By passing h to zero it follows

Now fix a sequence h, — 0. Clearly, since u? € F* for p > 0, the following

convergence holds for every subsequence (ng)gen of (n)nen:
s, — ufllap — 0.

Therefore, there exists a subsequence such that u! th — uf for m-almost
. _ "kl
every z. Hence, uf h, T uf for dz-almost every z. Consequently, it follows
-

that uf+hn — u? in measure (cf. [Bau92, Korollar 20.8]). Now we can obtain by
[Bau92, Satz 21.7] that uf;hn — u? in L?(R?% dz). Since this reasoning holds
for every sequence h, — 0 as n — oo,

u? € C([0,T], L?).

[Step 5] Let u € E, be a solution of (4.32) for p > 0. The existence follows
by step 1. In step 2 we have shown that u satisfies (4.34) for ¢ € bCr and
fn € C°(R?) as above.

T
/ g(uh fn‘pt) + (Ut7 at@tfn) dt
0

T
- / (For Fuspe)dt + (ur fuipr) — (0, fuspo)

Since by step 4 it holds u € F, we can pass n to the limit in this equation. Now
we see that u satisfies the weak equation (4.7) for p = 0. Thus, u is a solution
of (4.1). O
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The next proposition is a comparison result. We follow [BPS05, Proposition
3.4].

Proposition 4.22. Let f: [0, T]xRIxRxRF - R, p >0 andu’ € F i=1,2
be such that fi(u', Dyu®) € L*([0,T); L>(R?, m)). Assume that f! satisfies the
conditions (H1) and (H2) and that the following inequality holds
fHu?, Dou?) < f2(u?, Dou?).
If u' is a solution of the equation (4.1) with data (¢°, f%),i = 1,2 such that
¢t < @2, then one has
ut < u?.
Proof. Let us define
vi=u' - u2a Y= d)l - ¢2 and g = fl('7 '7“17 Daul) - f2('a ) u27 Dauz)'

Then v is a solution of equation (3.1) associated to the data (i, g). Moreover,
it holds v}’ = 0. Hence, we can apply Lemma 3.10

T T
o 12, +2 / £9(vF) ds < 2 / (ge,0F)p ds.
t t

By (H1), (H2) and the condition f!(u?, D,u?) < f?(u?, D,u?) we deduce

g’U+ = (fl('7'7U1,Do-’l,L1)—fl(',',UQ,DO-Ul))U+
+(f1('7 '7u27 Da'ul) - fl('a ) 'LL2, DO-U2))’U+
+(f1('7 '7u27 Dduz) - fz('a B UZ’ DUuz))er

IN

w2+ C|DvT |t

Now it follows
T
o713, +2 [ &) ds
t
T
2/ / (n(v")? + C|D,v T |vt) dmds
t Jre

T T
= 2#/ /(v+)2dmd8+2/ / C|Dovt|vt dmds
t R4 t Rd

T T
< @ut ) / [ 12, ds + / £0A () ds
t t

IA

T T
< (2u+Cz+C’A)/ ijﬂg)pds—i—/ K A& (v]) ds.
t t

By applying Gronwall’s lemma we get v+ = 0. Hence, u! < u?. O



Appendix A

The Bochner Integral

In this section we outline a useful proposition for the Bochner integral. For
more details we refer to [Coh94, Appendix E], [PR0O7, Appendix A] and [YosT71,
V.5. Bochner’s Integral.

Proposition A.1. Let (B, ||-||5), (Y, ||:|lv) be Banach spaces, f € L*([0,T]; B)
and P € L(B,Y), where L(B,Y) is the set of all bounded linear operators

P:B —Y. Then we have
T
< / | fllz dt (Bochner inequality)
0

[ B
) /OTpofdtp(/Odet)

(4)

Proof. See [Yos71, V.5. Bochner’s Integral]. O
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Appendix B

Backward Gronwall’s
Inequality

In this section we present a backward version of Gronwall’s lemma. It is a
simplified version of [SY08, Lemma 3.1].

Lemma B.1. Let u: [0,T7] — R be a integrable function and B, € Ry. If it
holds for 0 <t <T
T
ult) <a+p u(r) dr,

then
T
ut) <a-+ ﬂa/ A=) dr
¢
and
u(t) < aePT
Proof.

T
i(exp((Tt)ﬁ)/t u(r)dr)

= Bexp(—(T —1t)pF) /t u(r) dr — exp(—(T — t)B)u(t)

= exp(—(T —1)B) (ﬁ/t u(r) dr — U(t))

—aexp(=(T' = t)h)

v

Hence, by integration we deduce

/f u(s)ds < exp((T — t)ﬁ)a/f exp(—(T —r)pB) dr.

103
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Finally, we deduce

u(t)

IN

a+ Bexp((T — t)ﬁ)a/t exp(—(T —r)B) dr

T
o+ ,Ba/t exp((r —t)8) dr
aexp(B8T).

IN
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