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3.2 S-K Approximation Driven by a Poisson Random Measure . . . . . 24

4 Application in Finance: The Momentum Model . . . . . . . . . . . . . . 35
4.1 Market Friction, Price Delay, Momentum . . . . . . . . . . . . . . . 36
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ABSTRACT

Zhang Songfu Ph.D., Purdue University, December 2008. Smoluchowski-Kramers
Approximation for Stochastic Equations with Lévy-Noise. Major Professor: Michael
Röckner.

A generalization of Smoluchowski-Kramers approximation to Lévy processes is

given. It is proved that an analogue of the result in the classic Brownian motion

case holds. A momentum model is proposed by applying this result to the financial

market. Finally, a partial result of the Smolcuchowski-Kramers approximation in the

infinite dimensional case is given.
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1. Introduction

In this PhD thesis we will present some results on the Smoluchowski-Kramers ap-

proximation.

The motion of a particle of mass µ in a force field b(Xt) + σ(Xt)Ẇt with the friction

proportional to the velocity (without loss of generality, let the friction coefficient be

1) is governed by the Newton law:

µ
d2Xµ

t

dt2
= b(Xµ

t ) + σ(Xµ
t )

dWt

dt
− dXµ

t

dt
,Xµ

0 = x0 ∈ Rd1 ,
dXµ

0

dt
= y0 ∈ Rd1 (1.1)

where Wt, t ∈ [0, T ] is a Wiener process taking values in Rd1 .

The Smoluchowski-Kramers approximation (of Xµ
t by Xt) says that for any 0 ≤ T <

∞, δ > 0 and x0, y0 ∈ Rd1 ,

lim
µ↓0

P{ sup
0≤t≤T

|Xµ
t −Xt| > δ} = 0 (1.2)

Here X is the solution of the following stochastic differential equation

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x0 (1.3)

The Smoluchowski-Kramers approximation is the justification for using the first or-

der equation (1.3) to describe the motion of a small particle disturbed by a Wiener

process instead of using the Newton equation (1.1).

There are a number of papers on this subject. For example, Narita [35] proved the

Smoluchowski-Kramers approximation for the stochastic Liénard equation with mean-

field. In a subsequent paper [36], he showed that by a change of time and displace-

ment, the velocity process ∂Xµ

∂t
converges to a one-dimensional Ornstein-Uhlenbeck
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process. Boufoussi and Tudor [8] showed the Smoluchowski-Kramers Approximation

for fractional Brownian motion. Mark Freidlin included a proof for the classical situ-

ation (1.1) in his paper [21], which was fully elaborated by Ramona Westermann [46].

She also set up a financial model called momentum model by applying the approx-

imation to the financial market. Cerrai and Freidlin [9] extended the above result

to the infinite dimensional case. They showed that the solution of the semi-linear

stochastic damped wave equations

µutt(t, x) = ∆u(t, x)− ut(t, x) + b(x, u(t, x)) + QẆ (t), u(0) = u0, ut(0) = v0 (1.4)

endowed with Dirichlet boundary conditions, converges as µ goes to zero to the solu-

tion of the semi-linear stochastic heat equation

ut(t, x) = ∆u(t, x) + b(x, u(t, x)) + QẆ (t), u(0) = u0, (1.5)

endowed with Dirichlet boundary conditions. They further generalized the results to

the multiplicative noise case in [10].

This PhD thesis is to further generalize the Smoluchowski-Kramer approximation.

Specifically, first we generalize the approximation to Lévy processes in finite dimen-

sion. So we replace Wt, t ∈ [0, T ] by Lt, t ∈ [0, T ], which is a Levy process taking

values in Rd1 . The equations become





dXµ
t = Y µ

t dt,Xµ
0 = x0

dY µ
t = 1

µ
b(t,Xµ

t )dt + 1
µ
σ(t,Xµ

t )dLt − 1
µ
dXµ

t , Y µ
0 = y0

(1.6)

and the first order equation

dXt = b(t,Xt)dt + σ(t,Xt)dLt, X0 = x0 (1.7)

We show that if L(t) has finite moments of n-th order for n = 2m,m ∈ N, then

sup
t∈[0,T ]

E|Xµ
t −Xt|n → 0 as µ → 0 (1.8)
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Moreover, if the equations (1.6) and (1.7) are driven by a poisson random measure

with finite intensity measure, that is,





dXµ
t = Y µ

t dt,Xµ
0 = x0

dY µ
t = 1

µ
b(t,Xµ

t )dt + 1
µ

∫
Rd1

σ(t,Xµ
t )N(dt, dx)− 1

µ
dXµ

t , Y µ
0 = y0

(1.9)

and

dXt = b(t,Xt)dt +

∫

Rd1

σ(t,Xt)N(dt, dx), X0 = x0 (1.10)

We show that

lim
µ→0

P (‖Xµ −X‖D([0,T ];Rd) > ε) = 0. (1.11)

where ‖ · ‖D([0,T ];Rd) denote the Skorokhod metric. We prove this by first showing the

tightness of the solution Xµn of equations (1.9) with µn → 0, and then followed by

an argument used by Gyöngy and Krylov in [23].

We then apply the approximation to the financial market to establish a momentum

model following the idea of Westermann [46]. The differences are that we define the

parameter µ to measure the price delay with which a firm’s stock price responds to

information. This kind of measure is intended to capture all sources of price delay,

which may include the friction of the market, the size and analyst coverage of the

individual stock itself. We also choose our driving process to be the Generalized Hy-

perbolic Lévy motion, which is arguably better than Brownian motion by empirical

observations. Readers are referred to Eberlein [17] for more detailed argument.

In the infinite dimensional case, we want to prove the Smoluchowski-Kramers approx-

imation for ∂
∂x

, while Cerrai [9] proved it for the Laplacian operator ∆x. We consider

the solution of the following equation





µ∂2u
∂t2

(t, x) = ∂u
∂x

(t, x) + ∆x
∂u
∂t

(t, x)− ∂u
∂t

(t, x) + f(x, u(t, x))

+b(x, u(t, x))∂W Q

∂t
(t, x), t > 0, x ∈ [0,∞)

u(0, x) = u0,
∂u
∂t

(0, x) = v0

(1.12)
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where WQ(t, x) is a Gaussian mean zero random field, δ-correlated in time and the

operator Q characterizes the correlation in the space variables.

We add a remark that this kind of wave equation is difficult to solve for the first order

derivative operator. So we add a strong damping term, which is ∆x
∂u
∂t

.

We fit the above problem in the framework of mild solutions by rewriting it into an

abstract stochastic differential equations on a separable (infinite dimensional) Hilbert

space H





dX(t) = [AX(t) + F (X(t))]dt + B(X(t))dW (t), t ∈ [0, T ]

X(0) = ξ
(1.13)

where W (t), t ≥ 0, is a cylindrical Q-Wiener process in a separable Hilbert space U .

A mild solution of problem (1.13) is a predictable process X(t), t ∈ [0, T ], such that

X(t) = S(t)ξ +

∫ t

0

S(t− s)F (X(s))ds +

∫ t

0

S(t− s)B(X(s))dW (s) P-a.s. (1.14)

We prove the existence of a unique mild solution of problem (1.12). Further, under

some condition on Q, we will show the solution of the linear equation is δ-Hölder

continuous with respect to t for any δ < 1
2
. Moreover, the momenta of the δ-Hölder

norms of the solutions are bounded uniformly in µ. But so far we could not show the

convergence, that is, the solution of the equation (1.12) converges to the solution of

the equation





∂u
∂t

(t, x) = ∂u
∂x

(t, x) + f(x, u(t, x)) + b(x, u(t, x))∂W Q

∂t
(t, x), t > 0, x ∈ [0,∞)

u(0) = u0

(1.15)

in probability, i.e.

P (‖uµ − u‖C([0,T ],H) > ε) → 0 as µ → 0. (1.16)
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The reason is that we could not show the tightness of the solutions, which is one of

the main step of our approach.

Filipović introduced a weighted Sobolev space for the solutions of the first order equa-

tion with the same operator ∂
∂x

in [20]. This operator generates a semigroup which

has a lot of nice properties on the Sobolev space. We also considered this space. But

it turns out that we could not gain much by switching to this space, because in our

case the equations are of second order. The detail is included in Appendix A.

The chapters are summarized as the following. Chapter 2 we recall the concept of

Lévy processes, quadratic variation process and stochastic integration with respect

to a càdlàg martingale. In chapter 3 we prove the approximation in finite dimen-

sion with the Lévy noise. We then establish the momentum model in Chapter 4.

The chapter 5 begins with introduction of semigroups and mild solutions, followed

by the existence and uniqueness of the mild solutions of equation (1.12). We include

the existence and uniqueness result on the weighted Sobolev space in the Appendix A.
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2. Lévy Processes and Stochastic Integration

In this chapter we review the theory of Lévy Processes.

2.1 Lévy Processes

Let X = (X(t), t ≥ 0) be a stochastic process defined on a probability space (Ω,F , P ).

We say that X is Lévy process if:

• X(0)=0 a.s.;

• X has independent increments, i.e. for each n ∈ N and each 0 ≤ t1 < t2 ≤ · · · <
tn+1 < ∞ the random variables (X(tj+1)−X(tj), 1 ≤ j ≤ n) are independent;

• X has stationary increments, i.e. X(t) − X(s) has the same distribution as

X(t− s) for all 0 ≤ s < t < ∞

• X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P (|X(t)−X(s)| > a) = 0

Brownian motion, the Poisson process and the compound Poisson process are exam-

ples of Lévy processes.

For a Lévy process X the jump at time t is given by ∆X(t) = X(t)−X(t−) for each

t ≥ 0.

Lemma 1 If X is a Lévy process, then for fixed t > 0, ∆X(t) = 0 a.s..

Proof (cf. Applebaum [2] Lemma 2.3.2)
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Let 0 ≤ t < ∞ and A ∈ B(Rd1 − {0}). Define

N(t, A) = #{0 ≤ s ≤ t; ∆X(s) ∈ A} =
∑

0≤s≤t

χA(∆X(s)) (2.1)

We define

ν(A) = E(N(1, A)) (2.2)

and call it the intensity measure associated with X. We say that A ∈ B(Rd1 − {0})
is bounded below if 0 6∈ Ā.

Proposition 2 1. If A is bounded below, then (N(t, A), t ≥ 0) is a Poisson process

with intensity ν(A).

2. If A1, ..., Am ∈ B(Rd−{0}) are disjoint, then the random variables N(t, A1), ..., N(t, Am)

are independent.

Proof (cf. Applebaum [2] Theorem 2.3.5).

Remark 3 It follows immediately that ν(A) < ∞ whenever A is bounded below,

hence the measure ν is σ-finite.

Proof (cf. Applebaum [2] Remark 1 P.89).

Definition 4 A Poisson random measure η on a measurable space (S,S) is a collec-

tion of random variables (η(B), B ∈ S) such that:

1. η(∅) = 0;

2. (σ-additivity) given any sequence (Bn, n ∈ N) of mutually disjoint sets in S,

η(
⋃

n∈N
Bn) =

∑

n∈N
η(Bn) a.s.;

3. (independently scattered property) for each disjoint family (B1, ..., Bn) in S, the

random variables η(B1), ..., η(Bn) are independent;
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4. For each B ∈ S such that Eη(B) is finite, η(B) is a Poisson random variable

with parameter Eη(B).

Proposition 5 Given a σ-finite measure λ on a measurable space (S,S), there ex-

ists a Poisson random measure η on a probability space (Ω,F , P ) such that λ(B) =

E(η(B)) for all B ∈ S.

Proof (cf. Ikeda and Watanabe [26] p.42).

Suppose that S = R+ × U , where (U,B(U)) is a measurable space. Let S =

B(R+)
⊗

B(U). Let p = (p(t), t ≥ 0) be an adapted process taking values in U such

that η is a Poisson random measure on S, where η([0, t)×A) = #{0 ≤ s < t; p(s) ∈ A}
for each t ≥ 0, A ∈ B(U). In this case we say that p is a Poisson point process and

η is its associated Poisson random measure.

Let U = Rd1−{0}. Let X be a Lévy process; then ∆X is a Poisson point process and

N is its associated Poisson random measure. For each t ≥ 0 and A bounded below,

we define the compensated Poisson random measure by Ñ(t, A) = N(t, A)− tν(A).

Let f be a Borel measurable function from Rd1 to Rd1 and let A be bounded below;

then for each t > 0, ω ∈ Ω, we define the Poisson integral of f as a random finite sum

by
∫

A

f(x)N(t, dx)(ω) =
∑
x∈A

f(x)N(t, {x})(ω) =
∑

0≤u≤t

f(∆X(u))χA(∆X(u)) (2.3)

Then:

Proposition 6 1. for each t ≥ 0,
∫

A
f(x)N(t, dx) has a compound Poisson distri-

bution such that, for each u ∈ Rd1,

E(exp[i(u,

∫

A

f(x)N(t, dx))]) = exp[t

∫

A

(ei(u,x) − 1)ν ◦ f−1(dx)]
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2. if f ∈ L1(A, ν(A)), we have E(
∫

A
f(x)N(t, dx)) = t

∫
A

f(x)ν(dx);

3. if f ∈ L2(A, ν(A)), we have V ar(| ∫
A

f(x)N(t, dx)|) = t
∫

A
|f(x)|2ν(dx)

Proof (cf. Applebaum [2] Theorem 2.3.8).

For each f ∈ L1(A, νA), t ≥ 0, define the compensated Poisson integral by
∫

A

f(x)Ñ(t, dx) =

∫

A

f(x)N(t, dx)− t

∫

A

f(x)ν(dx)

Then (
∫

A
f(x)Ñ(t, dx), t ≥ 0) is a martingale, which can be verified straightforwardly

by the definition of martingale.

Let (εn, n ∈ N) be a sequence that decreases monotonically to zero such that ε1 < 1.

Let

An = {x ∈ Rd1 , εn+1 ≤ |x| ≤ ε1}

Proposition 7 (
∫

An
xÑ(t, dx), t ≥ 0) is a Cauchy sequence in martingale space

which converges to (
∫
|x|<1

xÑ(t, dx), t ≥ 0).

Proof (cf. Applebaum [2] Theorem 2.4.11).

A very important representation for Lévy processes is:

Theorem 8 (Lévy-Itô decomposition) If X is a Lévy process, then there exists b ∈
Rd1, a Brownian motion BQ with covariance matrix Q and an independent Poisson

random measure N on R+ × (Rd1 − {0}) such that, for each t ≥ 0,

X(t) = bt + BQ(t) +

∫

|x|<1

xÑ(t, dx) +

∫

|x|≥1

xN(t, dx) (2.4)

Here the Poisson random measure N and the intensity measure ν are defined as in

(2.1) and (2.2). Moreover ν satisfies
∫

Rd1

(|y|2 ∧ 1)ν(dy) < ∞ (2.5)
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Proof (cf. Applebaum [2] Theorem 2.4.16).

Corollary 9 If X is a Lévy process then for each u ∈ Rd1 , t ≥ 0,

E(ei(u,X(t))) = exp(t{i(b, u)− 1

2
(u,Au) +

∫

Rd1

[ei(u,y) − 1− i(u, y)χB(y)]ν(dy)}) (2.6)

where B = {x ∈ Rd1||x| < 1}.

Proof (cf. Applebaum [2] Corollary 2.4.20).

2.2 Stochastic Integration

In this section, we follow the procedure and notation of the unpublished Prof. Jin

Ma’s lecture notes “Stochastic Analysis and Stochastic Differential Equations”.

Denote

• M2 = {all martingales such that supt∈[0,∞) E[|Mt|2] < ∞};

• M2
0 = {M ∈M2|M0 = 0 a.s.}

• M2,c
0 = {M ∈M2|t 7→ Mt is continuous and M0 = 0 a.s.}

• M2
loc = {all local martingales M such that supt∈[0,T ] E[|Mt|2] < ∞,∀T > 0}

• M2
0,loc = {M ∈M2

loc|M0 = 0 a.s.}

We also denote the space of all adapted processes that have finite variation paths to

be FV , and FV0 to be the subspace of FV consists of all FV -process null at 0. For

any càdlàg function f, define ∆f(t) , f(t)− f(t−),∀t.

Definition 10 • A process Z is said to be of Class (D) if the family of random

variables {XT : T a finite stopping time } is uniformly integrable;
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• A process Z is said to be of Class (DL) if for each a > 0, the family of ran-

dom variables {XT : T a stopping time such that T ≤ a, a.s. } is uniformly

integrable.

It is direct to verify that if a submartingale X can be represented as

Xt = Mt + At (2.7)

where M is a martingale and A is an integrable increasing process, then X is of class

(DL). The converse is given by the Doob-Meyer decomposition.

Proposition 11 (Doob-Meyer’s Decomposition Theorem) Suppose that X is a sub-

martingale of class (DL), then there is a unique predictable integrable increasing pro-

cess A, such that X can be written as (2.7).

Proof (cf. Robert J. Elliott [18], Theorem 8.9).

Proposition 12 Let M ∈ M2,c
0 . Then there exists a unique continuous increasing

process 〈M〉 null at 0 such that M2 − 〈M〉 is a uniformly integrable martingale.

Proof The existence follows from the Doob-Meyer decomposition. The continuity

of 〈M〉 follows from Robert J. Elliott [18], Remarks 8.21.

Definition 13 A subspace N of M2
0 is called stable if

• N is a closed subspace;

• N is stable under stopping, that is, if N ∈ N , then so is the stopped process

NT , for any stopping time T .

Proposition 14 Let N be a stable subspace of M2
0. Denote its stable orthogonal

complement
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N⊥ = {Z ∈M2
0|E(ZtNt) = 0,∀t ≥ 0,∀N ∈ N}

Then every M ∈M2
0 has a unique decomposition

M = N + Z, N ∈ N , Z ∈ N⊥

Proof (cf. Robert J. Elliott [18], Corollary 9.17).

Since M2,c
0 is a stable subspace of M2

0, we denote the stable orthogonal complement

by M2,d
0 . We call it the “subspace of purely discontinuous martingale”. By the above

proposition, every element of M ∈M2
0 can be uniquely decomposed as

M = M c + Md,M c ∈M2,c
0 ,Md ∈M2,d

0

Lemma 15 Let M ∈ M2,d
0 . Then M2

t −
∑

0≤s≤t(∆Ms)
2, t ≥ 0 is a uniformly inte-

grable martingale.

Proof (cf. Rogers, L.C.G. and Williams, D. [40]).

Thus we define for M ∈M2
0,

[M ]t , 〈M c〉t +
∑

0≤s≤t

(∆Ms)
2 (2.8)

It follows from Elliott [18] Remarks 10.3 that M2 − [M ] is a uniformly integrable

martingale. Moreover, for M,N ∈ M2
0, define the process [M,N ] by polarization

formula

[M,N ] , 1

4
([M + N ]− [M −N ]) (2.9)

For M,N ∈M2
0,loc, Since for any stopping time T , it holds that [MT , NT ] = [M,N ]T

(cf. Robert J. Elliott [18], Corollary 10.10), there exists a FV process [M,N ] null at

0 such that MN − [M,N ] is a local martingale.
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Definition 16 A process X is called a semimartingale if X is a {Ft}-adapted càdlàg

process, such that is can be written as

X = X0 + M + A

where M ∈M0,loc, and A ∈ FV0.

Let X be a semimartingale with decomposition X = X0 + M + A, since the decom-

position is not unique, we define the quadratic variation process of X as the follows.

We write M = M c + Md, then since the process [M c] is unique, we define

[X]t , [M c]t +
∑

0≤s≤t

(∆Xs)
2 (2.10)

By extending the above formula by polarization we obtain [X,Y ].

Now we are ready to define the stochastic integral against a square-integrable mar-

tingale. We define the space Hb to be all predictable processes of the form

Ht =
∑

i

Zi−1χ(Ti−1,Ti]

where Ti’s are stopping times, and Zi ∈ FTi
, i = 1, 2, · · · , and are uniformly bounded.

Let M ∈ M2
0. Then for any H ∈ Hb, we define the stochastic integral of H against

M to be

I(H)t , (H ·M)t =
∑

i

Zi−1{MTi∧t −MTi−1∧t}, t ≥ 0 (2.11)

Then it is easy to check that I(H) is an {Ft}-martingale and

E(H·M)2
∞ = E

∑
i

Z2
i−1[MTi

−MTi−1
]2 = E

∑
i

Z2
i−1{[M ]Ti

−[M ]Ti−1
} = E

∫ ∞

0

H2
s d[M ]s

(2.12)

where the right side above is understood as Lebesgue-Stieltjes integral.

Define:

L2(M) , { all predictable process H such that ‖H‖M < ∞} (2.13)
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where

‖H‖2
M , E

∫ ∞

0

H2
s d[M ]s (2.14)

Now consider the mapping Φ : Hb → L2(Ω,F∞), where

Φ(H) = I(H)∞ = (H ·M)∞

Since the norm in M2
0 is E(M2

∞), we see that I is a linear isometry between Hb and

M2
0. On the other hand, by simple truncation and a monotone class argument, Hb

is a dense subset of L2(M). Consequently, the mapping I can be extended to all

processes in L2(M).

Definition 17 Let M ∈ M2
0 and H ∈ L2(M). Then the stochastic integral of H

with respect to M , denoted by H ·M , is the image of H under the isometry mapping

I : Hb →M2
0, extended to L2(M).

Proposition 18

[H ·M,N ] = H · [M,N ] =

∫
Hsd[M,N ]s, dt× dP -a.e. (2.15)

Proof (cf. Robert J. Elliott [18], Corollary 11.21).

For M ∈ M0,loc, the stochastic integral of H against M is defined similarly after

localization. We still denote it by H ·M . If X is a semimartingale with decomposition

X = M + A, where M ∈M0,loc and A is an FV process null at zero. We define

H ·X = H ·M + H · A

where the second integral is the usual (pathwise) Stieltjes integral. Let H ∈ Lb, X,Y

be two semimartingales, we have

[H ·X,Y ] =

∫
Hd[X,Y ]. (2.16)

(cf. Robert J. Elliott [18], Theorem 11.44, Theorem 12.9).
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Proposition 19 (Integration-by-parts formula) Let X and Y be semimartingales.

Then

XtYt −X0Y0 =

∫ t

0+

Xs−dYs +

∫ t

0+

Ys−dXs + [X,Y ]t (2.17)

Proof (cf. Rogers, L.C.G. and Williams, D. [40]).

Proposition 20 (Itô’s formula) Let f : Rn → R be C2, and suppose X = (X1, · · · , Xn)

is an n-dimensional semimartingale. Then

f(Xt) = f(X0) +

∫

(0,t]

n∑
i=1

Dif(Xs−)dX i
s +

1

2

∫ t

0

∇2
ijf(Xs)d[(X i)c, (Xj)c]t(2.18)

+
∑

0<s≤t

{f(Xs)− f(Xs−)−Dif(Xs−)∆X i
s}. (2.19)

Proof (cf. Rogers, L.C.G. and Williams, D. [40]).

Proposition 21 (Burkholder-Davis-Gundy’s inequality.) If (Mt, t ≥ 0) is a càdlàg

martingale, then

cpE([M,M ]t)
p
2 ≤ E| sup

s≤t
Ms|p ≤ CpE([M,M ]t)

p
2 (2.20)

for any p ≥ 1.

Proof (cf. Dellacherie and Meyer [16]).
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3. Smoluchowski-Kramers Approximation with Lévy Noise

In this chapter we prove some convergence results. Section 3.1 we deal with a general

Lévy noise, then in the second section we prove a stronger result when driving by a

Poisson random measure.

3.1 S-K Approximation Driven by a General Lévy Noise

Let a Lévy process with characteristics (b,Q, ν) be given such that the corresponding

Lévy measure ν satisfies ∫

|x|≥1

|x|2ν(dx) < ∞ (3.1)

Remark 22 In this case, as seen in Knäble [33], since
∫
|x|≥1

xN(t, dx) =
∫
|x|≥1

xÑ(t, dx)+
∫
|x|≥1

xν(dx), the Lévy-Itô decomposition can be further rewritten as

L(t) = mt + BQ(t) +

∫

Rd1

xÑ(t, dx) (3.2)

where m = b +
∫
|x|≥1

xν(dx).

Define M(t, A) =
∫

A−{0} xÑ(t, dx), A ∈ B(Rd1), then (M(·, A))t is a pure jump type

martingale with [M(t, A)] =
∫

A−{0} x2N(t, dx) as seen from equation (2.8).

We consider solutions of the following equation:





dXµ
t = Y µ

t dt,Xµ
0 = x0

dY µ
t = 1

µ
b(t,Xµ

t )dt + 1
µ
σ(t,Xµ

t )dLt − 1
µ
dXµ

t , Y µ
0 = y0

(3.3)

and the first order equation

dXt = b(t,Xt)dt + σ(t,Xt)dLt, X0 = x0 (3.4)
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where L(t) is a Lévy process taking values on Rd1 with ν satisfies equation (3.1).

Thus the integration with respect to L is understood as integration with respect to

dt, a Brownian motion and a martingale M(·,Rd1).

We assume b : [0,∞) × Rd → Rd and σ : [0,∞) × Rd → Rd×d1 are measurable

functions. Suppose that b(t, x) and σ(t, x) are bounded uniformly in t and x and

satisfy the global Lipschitz condition:

|b(t, x)− b(t, y)|+ ‖σ(t, x)− σ(t, y)‖ ≤ K|x− y|,∀x, y ∈ Rd1 , t ∈ [0, T ] (3.5)

Then there exist unique solutions Xµ and X for these two equations (cf. Ikeda and

Watanabe [26] Theorem 4.9.1).

Proposition 23 Assume that
∫
|x|≥1

|x|nν(dx) < ∞ for some n = 2m, m ∈ N. Then

for every T ∈ [0,∞) we have

sup
t∈[0,T ]

E|Xµ
t −Xt|n → 0 as µ → 0 (3.6)

Proof We have dXµ
t = Y µ

t dt. We solve for Y µ
t from the second equation of (3.3),

and then integrate to get Xµ
t .

Y µ
t = e−

t
µ y0 + e−

t
µ

1

µ

∫ t

0

e
s
µ (b(s,Xµ

s ) + σ(s,Xµ
s )m)ds

+e−
t
µ

1

µ

∫ t

0

e
s
µ σ(s,Xµ

s )dBQ(s)

+e−
t
µ

1

µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )M(ds, dx) (3.7)

By the integration-by-parts formula in Proposition 19.
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∫ t

0

e−
s
µ

1

µ

∫ s

0

∫

Rd1

e
r
µ σ(r,Xµ

r )M(dr, dx)ds

=

∫ t

0

∫ s

0

∫

Rd1

e
r
µ σ(r,Xµ

r )M(dr, dx)d(−e−
s
µ )

=

∫ t

0

∫ s−

0

∫

Rd1

e
r
µ σ(r,Xµ

r )M(dr, dx)d(−e−
s
µ )

=

∫ t

0

∫

Rd1

σ(s,Xµ
s )M(ds, dx)− e−

t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )M(ds, dx)

where we used [
∫ ·

0

∫
Rd1

e
r
µ σ(r,Xµ

r )M(dr, dx),−e−
·
µ ]s = 0 above.

Similarly, for the Brownian stochastic integral and Lebesgue integral we have

∫ t

0

e−
s
µ

1

µ

∫ s

0

e
r
µ f(r)drds =

∫ t

0

f(s)ds− e−
t
µ

∫ t

0

e
s
µ f(s)ds (3.8)

∫ t

0

e−
s
µ

1

µ

∫ s

0

e
r
µ f(r)dB(r)ds =

∫ t

0

f(s)dB(s)− e−
t
µ

∫ t

0

e
s
µ f(s)dB(s) (3.9)

Applying these three formulas in the second equality below, we obtain

Xµ
t = x0 + µ(1− e−

t
µ )y0 +

∫ t

0

e−
s
µ

1

µ

∫ s

0

e
r
µ (b(r,Xµ

r ) + σ(r,Xµ
r )m)drds

+

∫ t

0

e−
s
µ

1

µ

∫ s

0

e
r
µ σ(r,Xµ

r )dB(r)ds

+

∫ t

0

e−
s
µ

1

µ

∫ s

0

∫

Rd1

e
r
µ σ(r,Xµ

r )M(dr, dx)ds

= x0 + µ(1− e−
t
µ )y0 +

∫ t

0

(b(s,Xµ
s ) + σ(s,Xµ

s )m)ds

−e−
t
µ

∫ t

0

e
s
µ (b(s,Xµ

s ) + σ(s,Xµ
s )m)ds

+

∫ t

0

σ(s,Xµ
s )dB(s)− e−

t
µ

∫ t

0

e
s
µ σ(s,Xµ

s )dB(s)

+

∫ t

0

∫

Rd1

σ(s,Xµ
s )M(ds, dx)− e−

t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )M(ds, dx)(3.10)
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Xµ
t −Xt = µ(1− e−

t
µ )y0

+

∫ t

0

[b(s,Xµ
s )− b(s,Xs) + (σ(s,Xµ

s )− σ(s,Xµ
s ))m]ds

−e−
t
µ

∫ t

0

e
s
µ (b(s,Xµ

s ) + σ(s,Xµ
s )m)ds

+

∫ t

0

[σ(s,Xµ
s )− σ(s,Xs)]dB(s)− e−

t
µ

∫ t

0

e
s
µ σ(s,Xµ

s )dB(s)

+

∫ t

0

∫

Rd1

[σ(s,Xµ
s )− σ(s,Xs)]M(ds, dx)

−e−
t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )M(ds, dx) (3.11)

Then

E|Xµ
t −Xt|n ≤ C1µ|y0|n

+C1E|
∫ t

0

[b(s,Xµ
s )− b(s,Xs) + (σ(s,Xµ

s )− σ(s,Xµ
s ))m]ds|n

+C1E|e−
t
µ

∫ t

0

e
s
µ (b(s,Xµ

s ) + σ(s,Xµ
s )m)ds|n

+C1E|
∫ t

0

[σ(s,Xµ
s )− σ(s,Xs)]dB(s)|n

+C1E|e−
t
µ

∫ t

0

e
s
µ σ(s,Xµ

s )dB(s)|n

+C1E|
∫ t

0

∫

Rd1

[σ(s,Xµ
s )− σ(s,Xs)]M(ds, dx)|n

+C1E|e−
t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )M(ds, dx)|n

= I1 + I2 + I3 + I4 + I5 + I6 + I7 (3.12)

Let us consider the terms separately, I1 = C1µ|y0|n.

I2 = C1E|
∫ t

0

[b(s,Xµ
s )− b(s,Xs) + (σ(s,Xµ

s )− σ(s,Xµ
s ))m]ds|n

≤ C1T
n−1E

∫ t

0

|b(s,Xµ
s )− b(s,Xs) + (σ(s,Xµ

s )− σ(s,Xµ
s ))m|nds

≤ C1T
n−12nKn(1 + mn)

∫ t

0

E|Xµ
s −Xs|nds (3.13)
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I3 = C1E|e−
t
µ

∫ t

0

e
s
µ (b(s,Xµ

s ) + σ(s,Xµ
s )m)ds|n

= C1(‖b‖+ ‖σ‖m)n|e− t
µ

∫ t

0

e
s
µ ds|n

≤ C1(‖b‖+ ‖σ‖m)n|µ|n (3.14)

I4 = C1E|
∫ t

0

[σ(s,Xµ
s )− σ(s,Xs)]dB(s)|n

≤ C1CnE(

∫ t

0

|σ(s,Xµ
s )− σ(s,Xs)|2ds)

n
2

≤ C1CnCT

∫ t

0

E|σ(s,Xµ
s )− σ(s,Xs)|nds

≤ C1CnCT Kn

∫ t

0

E|Xµ
s −Xs|nds (3.15)

I5 = C1E|e−
t
µ

∫ t

0

e
s
µ σ(s,Xµ

s )dB(s)|n

= C1e
−nt

µ E|
∫ t

0

e
s
µ σ(s,Xµ

s )dB(s)|n

≤ C1Cne
−nt

µ E(

∫ t

0

e
2s
µ |σ(s,Xµ

s )|2ds)
n
2

≤ C1Cn‖σ‖ne−
nt
µ (

∫ t

0

e
2s
µ ds)

n
2

≤ C1Cn‖σ‖nµ
n
2 (3.16)

To estimate the rest two terms, we will apply the famous BDG inequality Proposition

21. First we need to find the quadratic variation of
∫ t

0

∫
Rd1

σ(s,Xµ
s )M(ds, dx). By

Proposition 18,

[

∫ ·

0

∫

Rd1

σ(s,Xµ
s )M(ds, dx)]t =

∫ t

0

|σ(s,Xµ
s )|2d[M(·,Rd1)]s (3.17)

Then by formula (2.8), since M(s,Rd1) is a pure jump process,

[M(·,Rd1)]s =

∫ s

0

∫

Rd1

|x|2N(dr, dx) (3.18)
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Thus,

[

∫ ·

0

∫

Rd1

σ(s,Xµ
s )M(ds, dx)]t =

∫ t

0

∫

Rd1

|σ(s,Xµ
s )|2|x|2N(ds, dx) (3.19)

Below we apply BDG inequality repeatedly to reduce the power of N(ds, dx) integra-

tion by a factor of 2. We denote Mn =
∫
Rd1
|x|nν(dx) for n ∈ N. We also use Cn and

C
′
n to keep track the constants depending on n, but they may vary line by line.

I6 = C1E|
∫ t

0

∫

Rd1

[σ(s,Xµ
s )− σ(s,Xs)]M(ds, dx)|n

≤ C1CnE{|
∫ t

0

∫

Rd1

|σ(s,Xµ
s )− σ(s,Xs)|2|x|2N(ds, dx)|n2 }

≤ C1CnE{|
∫ t

0

∫

Rd1

|σ(s,Xµ
s )− σ(s,Xs)|2|x|2Ñ(ds, dx)|n2 }

+C1CnE{|
∫ t

0

∫

Rd1

|σ(s,Xµ
s )− σ(s,Xs)|2|x|2ν(dx)ds|n2 }

≤ C1CnC
′
nE{|

∫ t

0

∫

Rd1

|σ(s,Xµ
s )− σ(s,Xs)|4|x|4N(ds, dx)|n4 }

+C1CnE{|
∫ t

0

|σ(s,Xµ
s )− σ(s,Xs)|2dsM2|n2 }

≤ C1CnC
′
nE{|

∫ t

0

∫

Rd1

|σ(s,Xµ
s )− σ(s,Xs)|4|x|4N(ds, dx)|n4 }

+C1CnCT M
n
2

2 E{
∫ t

0

|σ(s,Xµ
s )− σ(s,Xs)|nds}

≤ C1CnC
′
nE{|

∫ t

0

∫

Rd1

|σ(s,Xµ
s )− σ(s,Xs)|4|x|4N(ds, dx)|n4 }

+C1CnCT M
n
2

2 Kn

∫ t

0

E|Xµ
s −Xs|nds

The last step is:

E|
∫ t

0

∫

Rd1

|σ(s,Xµ
s )− σ(s,Xs)|n|x|nN(ds, dx)|

=

∫ t

0

∫

Rd1

E|σ(s,Xµ
s )− σ(s,Xs)|n|x|nν(dx)ds

≤ MnK
n

∫ t

0

E|Xµ
s −Xs|nds
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Thus

I6 ≤ C(n, T,K, ν)

∫ t

0

E|Xµ
s −Xs|nds (3.20)

I7 = C1E|e−
t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )M(ds, dx)|n

≤ C1e
−nt

µ E{|
∫ t

0

∫

Rd1

e
2s
µ |σ(s,Xµ

s )|2|x|2N(ds, dx)|n2 }

= C1e
−nt

µ E{|
∫ t

0

∫

Rd1

e
2s
µ |σ(s,Xµ

s )|2|x|2Ñ(ds, dx)

+

∫ t

0

∫

Rd1

e
2s
µ |σ(s,Xµ

s )|2|x|2ν(dx)ds|n2 }

≤ C1Cne
−nt

µ E|
∫ t

0

∫

Rd1

e
2s
µ |σ(s,Xµ

s )|2|x|2Ñ(ds, dx)|n2

+C1Cne
−nt

µ E|
∫ t

0

∫

Rd1

e
2s
µ |σ(s,Xµ

s )|2|x|2ν(dx)ds|n2

≤ C1CnC
′
ne
−nt

µ E{|
∫ t

0

∫

Rd1

e
4s
µ |σ(s,Xµ

s )|4|x|4N(ds, dx)|n4 }

+C1CnM
n
2

2 e−
nt
µ ‖σ‖n|

∫ t

0

e
2s
µ ds|n2

≤ C1CnC
′
ne
−nt

µ E{|
∫ t

0

∫

Rd1

e
4s
µ |σ(s,Xµ

s )|4|x|4N(ds, dx)|n4 }+ C1CnM
n
2

2 ‖σ‖nµ
n
2

for the same reason as I6, we have

I7 ≤ C(n, ν)µ + C(n, ν)µ
n
2 (3.21)

So in all we have

E|Xµ
t −Xt|n ≤ µC(|y0|, n, T, K, ‖σ‖, ‖b‖, ν,m) + C(T, K, n, m, ν)

∫ t

0

E|Xµ
s −Xs|nds

(3.22)

By Gronwall’s lemma, the claim follows.
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3.2 S-K Approximation Driven by a Poisson Random Measure

Now consider the case that the driving process is the Poisson random measure N over

R+ × Rd1 with intensity measure dt
⊗

ν(dx), where ν is a finite measure on Rd1 .

Thus we consider solutions of the following equations





dXµ
t = Y µ

t dt,Xµ
0 = x0

dY µ
t = 1

µ
b(t,Xµ

t )dt + 1
µ

∫
Rd1

σ(t,Xµ
t )N(dt, dx)− 1

µ
dXµ

t , Y µ
0 = y0

(3.23)

and

dXt = b(t,Xt)dt +

∫

Rd1

σ(t,Xt)N(dt, dx), X0 = x0 (3.24)

We again assume b : [0,∞)× Rd → Rd and σ : [0,∞)× Rd → Rd×d1 are measurable

functions. Suppose that b(t, x) and σ(t, x) are bounded uniformly in t and x and sat-

isfy the global Lipschitz condition (3.5). Again it is well known that equation (3.23)

and (3.24) admit a unique (strong) solution (cf. Ikeda and Watanabe [26] Theorem

4.9.1).

We fix T ∈ [0,∞), and take the space D([0, T ],Rd) to be the space of càdlàg functions

on [0, T ] with the Skorokhod topology, which makes it a polish space.

Lemma 24 Suppose the Lévy measure ν is a finite measure on Rd1, then

sup
0≤t≤T

E|Xµ(t)−X(t)| → 0 as µ → 0 (3.25)

Proof

Y µ
t = e−

t
µ y0 + e−

t
µ

1

µ

∫ t

0

e
s
µ b(s,Xµ

s )ds + e−
t
µ

1

µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx) (3.26)

By the integration by parts formula in Proposition 19, and using the fact that

[
∫ ·

0

∫
Rd1

e
r
µ σ(r,Xµ

r )N(dr, dx),−e−
·
µ ]s = 0
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∫ t

0

e−
s
µ

1

µ

∫ s

0

∫

Rd1

e
r
µ σ(r,Xµ

r )N(dr, dx)ds

=

∫ t

0

∫ s

0

∫

Rd1

e
r
µ σ(r,Xµ

r )N(dr, dx)d(−e−
s
µ )

=

∫ t

0

∫ s−

0

∫

Rd1

e
r
µ σ(r,Xµ

r )N(dr, dx)d(−e−
s
µ )

=

∫ t

0

∫

Rd1

σ(s,Xµ
s )N(ds, dx)− e−

t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx) (3.27)

Applying the above equation to the second equality below:

Xµ
t = x0 + µ(1− e−

t
µ )y0 +

∫ t

0

e−
s
µ

1

µ

∫ s

0

e
r
µ b(r,Xµ

r )drds

+

∫ t

0

e−
s
µ

1

µ

∫ s

0

∫

Rd1

e
r
µ σ(r,Xµ

r )N(dr, dx)ds

= x0 + µ(1− e−
t
µ )y0 +

∫ t

0

b(s,Xµ
s )ds− e−

t
µ

∫ t

0

e
s
µ b(s,Xµ

s )ds

+

∫ t

0

∫

Rd1

σ(s,Xµ
s )N(ds, dx)− e−

t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)(3.28)

Thus

E|Xµ
t −Xt| ≤ µ|y0|+ E|

∫ t

0

[b(s,Xµ
s )− b(s,Xs)]ds|+ E|e− t

µ

∫ t

0

e
s
µ b(s,Xµ

s )ds|

+E|
∫ t

0

∫

Rd1

[σ(s,Xµ
s )− σ(s,Xs)]N(ds, dx)|

+E|e− t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|

≤ µ|y0|+ K

∫ t

0

E|Xµ
s −Xs|ds + µ‖b‖

+Kν(Rd1)

∫ t

0

E|Xµ
s −Xs|ds + µ‖σ‖ν(Rd1) (3.29)

The assertion follows from Gronwall’s lemma.

Proposition 25 Let {µn|n ∈ N} be a sequence of positive real numbers converging to

0, and Xµn the solution of the second order equation (3.23) corresponding to µn, sup-
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pose that the Lévy measure ν is a finite measure on Rd1, then the family of probability

measures {L(Xµn)}n∈N is tight on D([0, T ],Rd).

Proof To show the tightness of Xµn , we apply Aldous’ tightness criterion, which

consists of two conditions. Condition 1:

lim
a→∞

lim
n→∞

P [sup
t≤T

|Xµn(t)| ≥ a] = 0 for each T > 0 (3.30)

Condition 2: For each ε, η, T > 0, there exist a δ0 > 0 and an n0 ∈ N such that, if

δ ≤ δ0 and n ≥ n0, and if τ is a Xµn-stopping time satisfying τ ≤ T , then

P [|Xµn

τ+δ −Xµn
τ | ≥ ε] ≤ η (3.31)

To verify the first condition, we use the first representation of equation (3.28):

Xµ
t = x0 + µ(1− e−

t
µ )y0 +

∫ t

0

e−
s
µ

1

µ

∫ s

0

e
r
µ b(r,Xµ

r )drds

+

∫ t

0

e−
s
µ

1

µ

∫ s

0

∫

Rd1

e
r
µ σ(r,Xµ

r )N(dr, dx)ds (3.32)

Then
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E sup
t≤T

|Xµ
t | ≤ |x0|+ µ|y0|+ E sup

t≤T
|
∫ t

0

e−
s
µ

1

µ

∫ s

0

e
r
µ b(r,Xµ

r )drds|

+E sup
t≤T

|
∫ t

0

e−
s
µ

1

µ

∫ s

0

∫

Rd1

e
r
µ σ(r,Xµ

r )N(dr, dx)ds|

≤ |x0|+ µ|y0|+ E

∫ T

0

e−
s
µ

1

µ

∫ s

0

e
r
µ |b(r,Xµ

r )|drds

+E

∫ T

0

e−
s
µ

1

µ
|
∫ s

0

∫

Rd1

e
r
µ σ(r,Xµ

r )N(dr, dx)|ds

≤ |x0|+ µ|y0|+ E

∫ T

0

e−
s
µ

1

µ

∫ s

0

e
r
µ |b(r,Xµ

r )|drds

+E

∫ T

0

e−
s
µ

1

µ

∫ s

0

∫

Rd1

e
r
µ |σ(r,Xµ

r )|N(dr, dx)ds

≤ |x0|+ µ|y0|+ ‖b‖
∫ T

0

e−
s
µ

1

µ

∫ s

0

e
r
µ drds

+

∫ T

0

e−
s
µ

1

µ

∫ s

0

∫

Rd1

e
r
µ E|σ(r,Xµ

r )|ν(dx)drds

≤ |x0|+ µ|y0|+ ‖b‖T + ‖σ‖ν(Rd1)T

≤ C(|x0|, |y0|, ‖b‖, ‖σ‖, ν(Rd1), T )

Plugging in µn, it is easy to see that the first condition is fulfilled. For the second

condition, we use the second representation of equation (3.28), namely

Xµ
t = x0 + µ(1− e−

t
µ )y0

+

∫ t

0

b(s,Xµ
s )ds− e−

t
µ

∫ t

0

e
s
µ b(s,Xµ

s )ds

+

∫ t

0

∫

Rd1

σ(s,Xµ
s )N(ds, dx)− e−

t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)(3.33)
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E|Xµ
τ+δ −Xµ

τ | ≤ E|µ(1− e−
τ+δ

µ )y0 − µ(1− e−
τ
µ )y0|

+E|
∫ τ+δ

0

b(s,Xµ
s )ds−

∫ τ

0

b(s,Xµ
s )ds|

+E|e− τ
µ

∫ τ

0

e
s
µ b(s,Xµ

s )ds− e−
τ+δ

µ

∫ τ+δ

0

e
s
µ b(s,Xµ

s )ds|

+E|
∫ τ+δ

0

∫

Rd1

σ(s,Xµ
s )N(ds, dx)−

∫ τ

0

∫

Rd1

σ(s,Xµ
s )N(ds, dx)|

+E|e− τ
µ

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)

−e−
τ+δ

µ

∫ τ+δ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|
≤ 2µ|y0|+ I2 + I3 + I4 + I5

Considering the terms separately,

I2 = E|
∫ τ+δ

0

b(s,Xµ
s )ds−

∫ τ

0

b(s,Xµ
s )ds| ≤ E{

∫ T

0

χ[τ,τ+δ](s)|b(s,Xµ
s )|ds} = ‖b‖δ

I3 = E|e− τ
µ

∫ τ

0

e
s
µ b(s,Xµ

s )ds− e−
τ+δ

µ

∫ τ+δ

0

e
s
µ b(s,Xµ

s )ds|

≤ E|e− τ
µ

∫ τ

0

e
s
µ b(s,Xµ

s )ds− e−
τ+δ

µ

∫ τ

0

e
s
µ b(s,Xµ

s )ds|

+E|e− τ+δ
µ

∫ τ

0

e
s
µ b(s,Xµ

s )ds− e−
τ+δ

µ

∫ τ+δ

0

e
s
µ b(s,Xµ

s )ds|
= J1 + J2
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J1 = E|e− τ
µ

∫ τ

0

e
s
µ b(s,Xµ

s )ds− e−
τ+δ

µ

∫ τ

0

e
s
µ b(s,Xµ

s )ds|

= E|(e− τ
µ − e−

τ+δ
µ )

∫ τ

0

e
s
µ b(s,Xµ

s )ds|

= E|e− τ
µ (1− e−

δ
µ )

∫ τ

0

e
s
µ b(s,Xµ

s )ds|

≤ E{e− τ
µ

δ

µ

∫ τ

0

e
s
µ |b(s,Xµ

s )|ds}

≤ ‖b‖ δ

µ
E{e− τ

µ

∫ τ

0

e
s
µ ds}

≤ δ‖b‖

J2 = E|e− τ+δ
µ

∫ τ

0

e
s
µ b(s,Xµ

s )ds− e−
τ+δ

µ

∫ τ+δ

0

e
s
µ b(s,Xµ

s )ds|

= E|e− τ+δ
µ

∫ τ+δ

τ

e
s
µ b(s,Xµ

s )ds|

≤ E{e− τ+δ
µ

∫ τ+δ

τ

e
s
µ |b(s,Xµ

s )|ds}

≤ ‖b‖E(

∫ τ+δ

τ

ds)

= ‖b‖δ

I4 = E|
∫ τ+δ

0

∫

Rd1

σ(s,Xµ
s )N(ds, dx)−

∫ τ

0

∫

Rd1

σ(s,Xµ
s )N(ds, dx)|

≤ E{
∫ T

0

∫

Rd1

χ[τ,τ+δ](s)|σ(s,Xµ
s )|N(ds, dx)}

=

∫ T

0

∫

Rd1

E(χ[τ,τ+δ](s)|σ(s,Xµ
s )|)ν(dx)ds

≤ ‖σ‖ν(Rd1)

∫ T

0

E(χ[τ,τ+δ](s))ds

= ‖σ‖ν(Rd1)E

∫ T

0

χ[τ,τ+δ](s)ds

= ‖σ‖ν(Rd1)δ
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I5 = E|e− τ
µ

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)− e−
τ+δ

µ

∫ τ+δ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|

≤ E|e− τ
µ

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)− e−
τ+δ

µ

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|

+E|e− τ+δ
µ

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)− e−
τ+δ

µ

∫ τ+δ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|
= J3 + J4

J3 = E|e− τ
µ

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)− e−
τ+δ

µ

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|

= E|(e− τ
µ − e−

τ+δ
µ )

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|

= E|(e− τ
µ )(1− e−

δ
µ )

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|

≤ E(e−
τ
µ

δ

µ

∫ τ

0

∫

Rd1

e
s
µ |σ(s,Xµ

s )|N(ds, dx))

=
δ

µ
E(

∫ T

0

∫

Rd1

χ[0,τ ]e
− τ−s

µ |σ(s,Xµ
s )|N(ds, dx))

=
δ

µ

∫ T

0

∫

Rd1

E|χ[0,τ ]e
− τ−s

µ σ(s,Xµ
s )|ν(dx)ds

=
δ

µ
‖σ‖ν(Rd1)

∫ T

0

E(χ[0,τ ]e
− τ−s

µ )ds

=
δ

µ
‖σ‖ν(Rd1)E(e−

τ
µ

∫ τ

0

e
s
µ ds)

≤ δ‖σ‖ν(Rd1)
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J4 = E|e− τ+δ
µ

∫ τ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)− e−
τ+δ

µ

∫ τ+δ

0

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|

= E|e− τ+δ
µ

∫ τ+δ

τ

∫

Rd1

e
s
µ σ(s,Xµ

s )N(ds, dx)|

≤ E(e−
τ+δ

µ

∫ τ+δ

τ

∫

Rd1

e
s
µ |σ(s,Xµ

s )|N(ds, dx))

≤ ‖σ‖E(

∫ τ+δ

τ

∫

Rd1

N(ds, dx))

= ‖σ‖
∫ T

0

∫

Rd1

E(χ[τ,τ+δ])ν(dx)ds

= ‖σ‖ν(Rd1)

∫ T

0

E(χ[τ,τ+δ])ds

= ‖σ‖ν(Rd1)E(

∫ T

0

χ[τ,τ+δ]ds)

= ‖σ‖ν(Rd1)δ

Adding all up, we have

E|Xµ
τ+δ −Xµ

τ | ≤ I1 + I2 + I3 + I4 + I5

≤ I1 + I2 + J1 + J2 + I4 + J3 + J4

≤ 2µ|y0|+ 3‖b‖δ + 3‖σ‖ν(Rd1)δ

which can be made arbitrary small by letting µ and δ small. Thus condition 2 follows,

hence the tightness.

Lemma 26 If X is a process with càdlàg sample paths in D([0, T ];Rd), then the

complement in [0, T ] of

D(X) , {0 ≤ t ≤ T : P (X(t) = X(t−)) = 1} (3.34)

is at most countable.

Proof (cf. S.N.Ethier and T.G.Kurtz [19] Lemma 3.7.7).
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Theorem 27 Assume the Lévy measure ν is a finite measure on Rd1. Let µn be a

sequence of positive real numbers converging to 0 as n goes to ∞. Let Xµn be the

solution of the second order equation (3.23) corresponding to µn and z the solution

of the first order equation (3.24). Then, for any T > 0 and for any ε > 0 we have

lim
n→∞

P (‖Xµn − z‖D([0,T ];Rd) > ε) = 0. (3.35)

Proof We base our proof on an observation by Gyöngy and Krylov in [23]. Let

Zn be a sequence of random elements in a Polish space (E, ρ) equipped with the

Borel σ-algebra. Then Zn converges in probability to an E-valued random element

if and only if for every pair of subsequences Znl
and Zn

′
l

there exists a subsequence

vk := (Znl(k)
, Zn

′
l(k)

) converging weakly to a random element v supported on the diag-

onal {(x, y) ∈ E × E : x = y}.

Now take any pair of subsequences µnl
and µn

′
l
, then (Xµnl , X

µ
n
′
l ) is a tight fam-

ily of processes in D([0, T ];R2d), due to the tightness of the sequence {L(Xµn)} in

D([0, T ];Rd) . By the Skorokhod representation theorem, there exists a sequence of

random elements {vk} := {(Xk
1 , Xk

2 ,
∫ ·

0

∫
Rd1

N̂k(ds, dx))} in D([0, T ];Rd)2×D([0, T ],R),

defined on some probability space (Ω̂, F̂ , P̂ ), such that the law of vk coincides with

the law of (X
µnl(k) , X

µ
n
′
l(k) ,

∫ ·
0

∫
Rd1

N(ds, dx)), for each k. And vk converges P̂ -a.s. to

some random element v := (X1, X2,
∫ ·

0

∫
Rd1

N̂(ds, dx)) ∈ D([0, T ];Rd)2×D([0, T ],R),

that is,

‖Xk
i −Xi‖D([0,T ];Rd) → 0, i = 1, 2 as k →∞

‖
∫ ·

0

∫

Rd1

N̂k(ds, dx)−
∫ ·

0

∫

Rd1

N̂(ds, dx)‖D([0,T ];R) → 0 as k →∞

Now we want to show X1 = X2. If that is true, then by Gyöngy and Krylov, there

exists some z ∈ D([0, T ],Rd) such that Xµn converges to z in probability.

Define:

F̂k
t , σ(Xk

1 (s), Xk
2 (s),

∫ s

0

∫

Rd1

N̂k(dr, dx) : s ≤ t)
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F̂t , σ(X1(s), X2(s),

∫ s

0

∫

Rd1

N̂(dr, dx) : s ≤ t)

Then it is easy to see that for every k the process (N̂k, F̂k
t ) and (N̂ , F̂t) are Poisson

random measures with the same distribution as N . Define the set

U , {(f, g, h) ∈ D([0, T ],Rd)2 ×D([0, T ],R)|
f(t) = x0 + µ(1− e−

t
µ )y0 +

∫ t

0

b(s, f(s))ds− e−
t
µ

∫ t

0

e
s
µ b(s, f(s))ds

+

∫ t

0

σ(s, f(s))dh(s)− e−
t
µ

∫ t

0

e
s
µ σ(s, f(s))dh(s);

g(t) = x0 + µ(1− e−
t
µ )y0 +

∫ t

0

b(s, g(s))ds− e−
t
µ

∫ t

0

e
s
µ b(s, g(s))ds

+

∫ t

0

σ(s, g(s))dh(s)− e−
t
µ

∫ t

0

e
s
µ σ(s, g(s))dh(s);∀t ∈ [0, T ]}

Then since

P̂ ((Xk
1 , Xk

2 ,

∫ ·

0

∫

Rd1

N̂k(ds, dx) ∈ U, ∀k) = P ((X
µnl(k) , X

µ
n
′
l(k) ,

∫ ·

0

∫

Rd1

N(ds, dx)) ∈ U, ∀k)

and the right hand side of the above equation equals to 1, so the left hand side also

equals to 1, that is, both Xk
1 and Xk

2 verify formula (3.32) with N replaced by N̂k, X

by X1 and X2 and µ by µnl(k)
and µn

′
l(k)

respectively. We define Rk
1 and Rk

2 obtained

from the expression R below replacing X by X1 and X2, µ by µnl(k)
and µn

′
l(k)

and N

with N̂k respectively.

R(t) = µ(1− e−
t
µ )y0 − e−

t
µ

∫ t

0

e
s
µ b(s,X(s))ds

−e−
t
µ

∫ t

0

∫

Rd1

e
s
µ σ(s,X(s))N(ds, dx) (3.36)

Then Rk
1(t) and Rk

2(t) converge to 0 in L1(Ω̂), as µnl(k)
and µn

′
l(k)

go to 0. Thus, for a

subsequence, they converge P̂ -a.s. to 0.
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Since X1 and X2 are processes with sample paths in D([0, T ],Rd), the complement

of D(Xi) (cf. Lemma 26) is at most countable. So for t ∈ D(Xi), Xk
i (t) → Xi(t) a.s.

follows from the convergence in Skorokhod topology. We also have:

∫ t

0

b(s,Xk
i (s))ds →

∫ t

0

b(s,Xi(s))ds a.s. (3.37)

by Lebesgue dominated convergence theorem. And

Ê{|
∫ t

0

∫

Rd1

σ(s,Xk
i (s))N̂k(ds, dx)−

∫ t

0

∫

Rd1

σ(s,Xi(s))N̂(ds, dx)|}

≤
∫ t

0

∫

Rd1

Ê|σ(s,Xk
i (s))− σ(s,Xi(s))|ν(dx)ds

=

∫

Rd1

Ê
∫ t

0

|σ(s,Xk
i (s))− σ(s,Xi(s))|dsν(dx) → 0 (3.38)

by Lebesgue dominated convergence theorem with respect to the product measure

P̂ × dx. Thus possibly for a subsequence,

∫ t

0

∫

Rd1

σ(s,Xk
i (s))N̂k(ds, dx) →

∫ t

0

∫

Rd1

σ(s,Xi(s))N̂(ds, dx) a.s. (3.39)

So for t ∈ D(Xi), i = 1, 2, we have

Xi(t) = x0 +

∫ t

0

b(s,Xi(s))ds +

∫ t

0

∫

Rd1

σ(s,Xi(s))N̂(ds, dx) a.s., i = 1, 2 (3.40)

For t outside of D(Xi), we can use right-continuity of the sample path to prove the

same equality. Thus both X1 and X2 coincide with the solution of equation (3.24)

perturbed by the noise N̂ , which is unique.

It follows that Xµn converges in probability to some random variable z ∈ D([0, T ],Rd).

But following the above argument again shows that z solves equation (3.24).



35

4. Application in Finance: The Momentum Model

In this chapter we will extend the famous Black-Scholes model and study this ex-

tended model using the results in Chapter 3.

The Black-Scholes model assumes:

• A frictionless market, that is, no transactions costs, no taxes, trading being

continuous. All securities are perfectly divisible. There are no penalties to

short selling.

• The risk-free rate of interest, r, is constant over time, i.e.

dBt = rBtdt (4.1)

• The underlying stock price is a Geometric Brownian Motion, i.e.

dXt

Xt

= bdt + σdWt (4.2)

We concentrate on two unreasonable assumptions in the B-S model showed by em-

pirical evidence. One is that the market is assumed to be frictionless, while the other

being that the driving process is Brownian motion.

This chapter is organized as follows: We use the first two sections to discuss how to

get around the two assumptions, respectively. We introduce a parameter µ to capture

the impact of the market frictions in the first section. Then we introduce Generalized

hyperbolic Lévy processes to be the driving process. After that - in the third section

- we define the momentum model combining the two extensions discussed above.
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4.1 Market Friction, Price Delay, Momentum

Ample empirical evidence demonstrates the existence of sizeable market frictions. Re-

searchers in behavior finance have discussed the importance of many market frictions,

such as incomplete information (Merton [34], Shapiro [43]), liquidity (Amihud and

Mendelson [1]), short sale constraints (Chen, Hong, Stein [12]), taxes (Constan-

tinides [13]). Those frictions can delay the process of information incorporation, and

hence there is a delay in asset price response to news. For example, Arbel, Carvell,

and Strebel [3] argue institutional forces and transactions costs can delay the process

of information incorporation for less visible, segmented firms. In addition, Peng [38]

shows that information capacity constraints can cause a delay in asset price responses

to news.

Price delay may also result from lack of liquidity of an asset’s shares, which can

potentially arise from many sources. First, according to Hicks’ [24] “liquidity prefer-

ence” notion, which says investors hold financial assets not only for their returns but

also to facilitate adjustments to changes in economic conditions. So when risk-averse

investors anticipate a recession, they prefer to invest in less risky, more liquid assets.

Secondly, firms themselves can also cause illiquidity. Small and high book-to-market

stocks are less liquid.

There are a number of papers document this kind of delayed reaction to news. For

example, McQueen, Pinegar, and Thorley [29] find that small stocks react to good

common news more slowly than large stocks, but not for bad common news. Hong,

Lim, and Stein [30] provide evidence to show that firm-specific information diffuses

only gradually across the investing public. This shows that in reality the market is

not efficient.
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On the other hand, some researchers find that, at medium-term horizons ranging from

three to twelve months, stock returns exhibit momentum. For example, Jegadeesh

and Titman [32] , using a U.S. sample of NYSE/AMEX stocks over the period from

1965 to 1989, find that past winners on average continue to outperform past losers.

The result appears to be robust: Rouwenhorst [41] obtains very similar numbers in

a sample of 12 European countries over the period from 1980 to 1995.

The frictions of information diffusion in the market and momentum in stock prices

may highly correlate with the underreaction. For example, Chan [11] relates the

evidence on momentum to the evidence on the market’s underreaction to earnings-

related information. Hong [31] assume that if information diffuses gradually across

the population, prices underreact in the short run, which means that the momentum

traders can make profit by trend-chasing.

So one natural question is: how do we incorporate the impact of those potential fric-

tions on the price process of a stock and capture the momentum effects?

We introduce a parameter µ to measure price delay with which a firm’s stock price

responds to information. We standardized it such that 0 ≤ µ < 1, where µ = 0

represents the case that the stock is “infinitely efficient” to incorporate news, and

µ = 1 the case that the stock is “infinitely delayed”. Delayed firms tend to be small,

volatile, less visible, and neglected by many market participants.

The parameter µ should be estimated using empirical data. For example, In Hou [25],

“Market Frictions, Price Delay, and the Cross-Section of Expected Returns”, several

measures are introduced to capture the average delay with which a firm’s stock price

responds to information. The liquidity measure defined by Liu [28] is also a good

candidate.
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In order to define the notion of momentum we interpret the price process of a financial

product as a motion. Considering the analogue between the mass in physics and the

price delay in finance, it is natural to define the momentum as the momentum of the

motion of a particle in physics:

Definition 28 Let Xt = Xt(ω) be the price process of a financial product, µ is the

measure of price delay, as introduced above. The momentum of Xt is defined as µYt,

where Yt , d
dt

Xt, if it exists.

So the momentum is just the time derivative of the price process multiplied with the

price delay µ. We note that in the real market, where price is given tick by tick, the

momentum always exist. If we model the price process by a continuous price process,

then this will also be the case.

4.2 Generalized Hyperbolic Lévy Motions

It is well known that the normal distribution fit poorly to log returns of most fi-

nancial assets such as stocks or indices. Empirical densities of log returns show that

tiny price movements and big changes occur with higher frequency, small and middle

sized movements are less more frequent than predicted by the normal law. In order to

achieve a better fit, it is preferable to replace Brownian motion by a Lévy process. In

the context of Lévy process, we mention the Meixner process which was introduced in

Schoutens, W. and Teugels, J.L. [42]. Barndorf-Nielsen, O.E. proposed the Normal

Inverse Gaussian Lévy process in [6]. Eberlein and Keller proposed the Hyperbolic

Lévy motion.

For the sake of completeness, we will briefly recall the Generalized Hyperbolic Lévy

motions. Readers are referred to Eberlein [17].
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Generalized hyperbolic distributions were introduced by Barndorff-Nielsen [4]. Their

Lebesgue densities are given by

dGH(x; λ, α, β, δ, µ) = a(λ, α, β, δ)(δ2 + (x− µ)2)(λ− 1
2
)/2

Kλ− 1
2
(α

√
δ2 + (x− µ)2) exp(β(x− µ)) (4.3)

where

a(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ− 1

2 δλKλ(δ
√

α2 − β2)

is the normalizing constant and Kν denotes the modified Bessel function of the third

kind with index ν. One key integral representation for Bessel functions of the third

kind is

Kν(x) =
1

2

∫ ∞

0

uν−1 exp

[
−1

2
x

(
u +

1

u

)]
du

The densities above depend on five parameters: α > 0 determines the shape, β with

0 ≤ |β| < α the skewness and µ ∈ R the location. δ > 0 is a scaling parameter com-

parable to σ in the normal distribution, while λ ∈ R characterizes certain subclasses.

By changing λ, we can essentially modify the heaviness of the tails.

There are certain subclasses of interest. The case when λ = 1 corresponds to the sub-

class of hyperbolic distributions. The normal inverse Gaussian distribution results

when λ = −1/2.

Generalized hyperbolic distributions have a number of nice analytic properties. Their

moment-generating function is given by

MGH(u) = eµu(
α2 − β2

α2 − (β + u)2
)λ/2Kλ(δ

√
α2 − (β + u)2)

Kλ(δ
√

α2 − β2)
(4.4)

for |β +u| < α. From this formula we can see that moments of all integer order exist.

This also gives the Lévy-Khintchin representation of the characteristic function of

generalized hyperbolic distributions.

ln(φGH(u)) = iuE[GH] +

∫ +∞

−∞
(eiux − 1− iux)g(x)dx (4.5)
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where the density of the Lévy measure is

g(x) =
eβx

|x| (
∫ ∞

0

exp(−
√

2y + α2|x|)
π2y(J2

λ(δ
√

2y) + Y 2
λ (δ

√
2y))dy + λe−α|x| ) if λ ≥ 0 (4.6)

and

g(x) =
eβx

|x|
∫ ∞

0

exp(−
√

2y + α2|x|)
π2y(J2

−λ(δ
√

2y) + Y 2
−λ(δ

√
2y))dy

if λ < 0 (4.7)

Here Jλ and Yλ are the Bessel functions of the first and second kind, respectively.

Barndorff-Nielsen and Halgreen [5] showed that generalized hyperbolic distributions

are infinitely divisible, and as such each member of this family generates a Lévy pro-

cess. By choosing a càdlàg version, we have the Generalized hyperbolic Lévy motion.

We note that since the Lévy-Khintchin representation has only a drift and a jump

term, thus Generalized hyperbolic Lévy motions do not have a continuous Gaussian

component.

Analyzing the behavior of the densities g of the Lévy measure for x → 0 shows that

the Lévy measures have infinte mass in every neighborhood of the origin. This means

that the process has an infinite number of small jumps in every finite time interval.

Since there is no continuous component in the Lévy-Ito decomposition, Generalized

hyperbolic Lévy motions Xt can be written in the form

Xt = bt +

∫

R
xÑ(t, dx) (4.8)

where Ñ is the compensated Poisson random measure associated with the process

(Xt)t≥0. The compensator of N is deterministic and of the form dtν(dx), since (Xt)t≥0

is a Lévy process.

4.3 The Momentum Model

Now we are ready to introduce the momentum model:
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• There exist certain market frictions, captured by the parameter µ.

• The risk-free rate of interest r is constant over time, i.e.

dBt = rBtdt (4.9)

• The price process of the risky asset Xµ
t follows:

dXµ
t = Y µ

t dt

dXµ
t

Xµ
t

= bdt + σ

∫

R
xÑ(dt, dx)− µdY µ

t

Xµ
t

(4.10)

where Ñ is the compensated Poisson random measure associated to a general-

ized hyperbolic Lévy process.

We note that µ is introduced in the model and the driving process becomes a gener-

alized hyperbolic Lévy process. Besides that, in the system (4.10), the first equation

states the relationship between the price process and the momentum given the price

delay µ according to Definition 28. The second equation models the “law of motion”

for the financial product. Comparing to the Black-Scholes model, we subtract
µdY µ

t

Xµ
t

representing the incremental momentum divided by the price of the financial product.

Motivated by considerations from behavioral finance as introduced in Section 4.1,

when the measure of price delay µ is not extremely small, investors would like to

model the asset price in terms of the momentum model which is essentially the sec-

ond order Newton equation. This momentum model helps to capture the momentum

effect.

Corollary 29 The system of stochastic differential equations for the the risky asset

in the momentum model (4.10) exhibits a unique strong solution (Xµ
t , Y µ

t ).
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Proof (cf. Ikeda and Watanabe [26] Theorem 4.9.1).

Corollary 30 Assume that
∫
|x|≥1

|x|nν(dx) < ∞ for some n = 2m, m ∈ N. Let Xt

denote the solution of
dXt

Xt

= bdt + σ

∫

R
xÑ(dt, dx) (4.11)

Then for every T ∈ [0,∞) we have

sup
t∈[0,T ]

E|Xµ
t −Xt|n → 0 as µ → 0 (4.12)

Proof The proof is a direct implication of Proposition 23 by setting b(t, x) =

bx, σ(t, x) = σx.

The economic interpretation of the above corollary is what by considering financial

products with very little frictions, the price process can be described by an equation

of “Black-Scholes type” but with generalized hyperbolic Lévy process as the disturb-

ing noise.

We note that there are a lot of possible future research points for this momentum

model, such as:

• What are pricing formulae for our momentum model?

• Can this model be evaluated with the help of empirical research?

• How should the model be calibrated?

• What further economical and mathematical interpretations and heuristics are

possible or reasonable?

• Any more parallels between physics and finance? And what consequences do

they exhibit?
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5. Smoluchowski-Kramers Approximation in Infinite

Dimension

In this chapter we will present some remarks on the Smoluchowski-Kramers approx-

imation in infinite dimension.

Section 5.1 states some basic concepts and definitions from semigroup theory. In

section 5.2 we introduce a kind of weak solution, the mild solution. Using these

tools we establish the existence and uniqueness of the solution for the generator ∂
∂x

in section 5.3.

5.1 Semigroups and Generators

Definition 31 Let B be a Banach space. A strongly continuous semigroup of bounded

linear operators or a C0-semigroup is a family (S(t), t ≥ 0) of bounded linear operators

on B with

• S(0) = I, where I is the identity operator on B;

• S(t + s) = S(t)S(s) for every t, s ≥ 0 (the semigroup property);

• limt↓0 S(t)u = u for all u ∈ B (strong continuity).

Lemma 32 Let (S(t), t ≥ 0) be a C0-semigroup. Then exist constant β ≥ 0 and

M ≥ 1 such that

‖S(t)‖ ≤ Meβt for all t ≥ 0 (5.1)

Proof (cf. Pazy [37], Theorem 1.2.2).
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Definition 33 Given a strongly continuous semigroup (S(t), t ≥ 0) on B, the linear

operator (A,D(A)) on B defined by

D(A) , {u ∈ B| lim
t↓0

1

t
(S(t)u− u) exists} (5.2)

Au , lim
t↓0

1

t
(S(t)u− u), u ∈ D(A) (5.3)

is called the (infinitesimal) generator of the semigroup S(t).

Proposition 34 Let S(t) be a C0-semigroup with infinitesimal generator A. Then

• For u ∈ B,

lim
h→0

1

h

∫ t+h

t

S(s)uds = S(t)u. (5.4)

• For u ∈ B,
∫ t

0
S(s)uds ∈ D(A) and

A

(∫ t

0

S(s)uds

)
= S(t)u− u. (5.5)

• For u ∈ D(A), S(t)u ∈ D(A) and

d

dt
S(t)u = AS(t)u = S(t)Au. (5.6)

• For u ∈ D(A),

S(t)u− S(s)u =

∫ t

s

S(τ)Audτ =

∫ t

s

AS(τ)udτ. (5.7)

Proof (cf. Pazy [37], Theorem 1.2.4).

Proposition 35 Let S(t) and T (t) be C0 semigroups of bounded linear operators with

infinitesimal generators A and B respectively. If A = B, then T (t) = S(t) for t ≥ 0.

Proof (cf. Pazy [37], Theorem 1.2.6).

Proposition 36 (Hille-Yosida).A linear operator A is the infinitesimal generator of

a C0 semigroup S(t) satisfying ‖S(t)‖ ≤ Meβt, if and only if
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1. A is closed and D(A) is dense in B;

2. The resolvent set ρ(A) of A contains the ray (β,∞) and the resolvent of A,

R(λ : A) = (λI − A)−1, λ ∈ ρ(A) satisfy

‖R(λ : A)n‖ ≤ M

(λ− β)n
for λ > β, n = 1, 2, ... (5.8)

Proof (cf. Pazy [37], Theorem 1.5.3).

Let B∗ be the dual of B. For every u ∈ B we define the duality set F (u) ⊂ B∗ by

F (u) = {f ∈ B∗|f(u) = ‖u‖2 = ‖f‖2} (5.9)

Definition 37 A linear operator A is dissipative if for every u ∈ D(A) there is a

f ∈ F (u) such that f(Au) ≤ 0.

Proposition 38 A linear operator A is dissipative if and only if

‖(λI − A)u‖ ≥ λ‖u‖ for all u ∈ D(A) and λ > 0 (5.10)

Proof (cf. Pazy [37], Theorem 1.4.2).

If B = H is a Hilbert space with inner product 〈·, ·〉, A : D(A) ⊂ B → B is dissipative

if and only if

〈A(u), u〉 ≤ 0,∀u ∈ D(A) (5.11)

Proposition 39 (Lumer-Phillips). Let A be a linear operator with dense domain

D(A) in B.

• If A is dissipative and (λ0 − A)(D(A)) = B, for some λ0 > 0, then A is the

infinitesimal generator of a C0 semigroup of contractions on B;

• If A is the infinitesimal generator of a C0 semigroup of contractions on B, then

(λ − A)(D(A)) = B for all λ > 0 and A is dissipative. Moreover, for every

u ∈ D(A), and every f ∈ F (u), f(A(u)) ≤ 0.
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Proof (cf. Pazy [37], Theorem 1.4.3).

Remark 40 If A is dissipative and (λ0 − A)(D(A)) = B, for some λ0 > 0, then A

is closed.

Proof (cf. Pazy [37], Theorem 1.4.3).

The following definition of analytic semigroups is essentially from Da Prato and

Zabczyk [14], Appendix A.4.

For any ω ∈ R and θ ∈ (0, π) we denote by Sω,θ the sector in C:

Sω,θ = {λ ∈ C− {ω} : | arg(λ− ω)| ≤ θ}.

Assume A is a linear closed operator satisfies the following condition (M):

• ∃ω ∈ R, θ0 ∈ (π
2
, π) : ρ(A) ⊃ Sω,θ0 ,

• ∃M > 0 such that

R(λ,A) ≤ M

|λ− ω| ,∀λ ∈ Sω,θ0 .

then we can define a semigroup S(·) of bounded linear operators in E by setting

S(0) = I and

S(t) =
1

2πi

∫

γε,θ

eλtR(λ,A)dλ, t > 0 (5.12)

where θ ∈ (π
2
, θ0) and γε,θ is the following, oriented counterclockwise, path in C

γε,θ = γ+
ε,θ ∪ γ−ε,θ ∪ γ0

ε,θ,

γ±ε,θ = {z ∈ C : z = ω + re±iθ, r ≥ ε}

γ0
ε,θ = {z ∈ C : z = ω + re±iη, |η| ≤ θ}
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Proposition 41 Assume that A fulfils condition (M) and let S(·) be defined by

(5.12). Then the following statements hold.

1. The mapping S : (0, +∞) → L(B), t 7→ S(t) is analytic. Moreover for any

u ∈ B, t > 0 and n = 1, 2, ..., S(t)u ∈ D(An), and

S(n)(t)u = AnS(t)u.

2. S(t + s) = S(t)S(s) for all t, s ≥ 0.

3. S(·)u is continuous at 0 if and only if u ∈ D(A).

4. ∃M,N > 0 such that

‖S(t)‖ ≤ Meωt, t ≥ 0 (5.13)

‖AS(t)‖ ≤ eωt(
N

t
+ ωM),∀t > 0. (5.14)

5. S(·) can be extended to an analytic L(B)-valued function in S0,θ0−π
2
.

Proof (cf. Da Prato and Zabczyk [14], Appendix A.4).

Because of property 5, we say that S(·) is an analytic semigroup.

Now we consider an important subclass of analytic semigroups.

Definition 42 Let H be a Hilbert space. A linear operator A : D(A) ⊂ H → H is

variational if

• there exists a Hilbert space V densely embedded in H and a continuous bilinear

form a : V × V → R such that

− a(v, v) ≥ c1‖v‖2
V − c2‖v‖2

H (5.15)

for suitable constants c1 > 0, c2 ≥ 0;
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• D(A) = {u ∈ V |a(u, ·) is continuous in the topology of H};

• a(u, v) = 〈Au, v〉H ,∀u ∈ D(A),∀v ∈ V .

Proposition 43 Let A be a variational operator in H. Then A generates an analytic

semigroup S(·). Moreover, if A is symmetric then A is self-adjoint.

Proof (cf. Tanabe [45]).

5.2 Mild Solutions

This section is essentially taken out from Knoche and Frieler [22], Chapter 3.

Let (U, ‖‖U) and (H, ‖‖H) be separable Hilbert spaces. Let Q = IU and fix a cylin-

drical Q-Wiener process W (t), t ≥ 0, in U on a probability space (Ω,F , P ) with a

normal filtration Ft, t ≥ 0. For a fixed T > 0, we consider the following type of

stochastic differential equations in H





dX(t) = [AX(t) + F (X(t))]dt + B(X(t))dW (t), t ∈ [0, T ]

X(0) = ξ
(5.16)

where

• A : D(A) → H is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0, of

linear operators on H;

• F : H → H is B(H)/B(H)-measurable;

• B : H → L(U,H);

• ξ is a H-valued, F0-measurable random variable.

Definition 44 (Mild solution). An H-valued predictable process X(t), t ∈ [0, T ], is

called a mild solution of the above problem if

X(t) = S(t)ξ +

∫ t

0

S(t− s)F (X(s))ds +

∫ t

0

S(t− s)B(X(s))dW (s) P-a.s. (5.17)
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for each t ∈ [0, T ].

For each T > 0 and p ≥ 2, denote by Hp(T, H) the Banach space of all (equivalence

classes) of predictable H-valued processes Y with the norm

‖Y ‖Hp , sup
t∈[0,T ]

(E(‖Y (t)‖p))
1
p < ∞ (5.18)

Proposition 45 Assume

• F : H → H is Lipschitz continuous, i.e. that there exists a constant C > 0 such

that

‖F (x)− F (y)‖ ≤ C‖x− y‖ for all x, y ∈ H;

• B : H → L(U,H) is strongly continuous, i.e. that the mapping

x 7→ B(x)u

is continuous from H to H for each u ∈ U ;

• For all t ∈ (0, T ] and x ∈ H we have S(t)B(x) ∈ L2(U,H);

• There is a square integrable mapping K : [0, T ] 7→ [0,∞) such that

‖S(t)(B(x)−B(y))‖L2 ≤ K(t)‖x− y‖

and

‖S(t)B(x)‖L2 ≤ K(t)(1 + ‖x‖)

for all t ∈ (0, T ] and x, y ∈ H.

Then for any T > 0 and p ≥ 2 there exists a unique mild solution X(ξ) ∈ Hp(T, H)

with initial condition

ξ ∈ Lp(Ω,F0, P ; H) , Lp
0.

In addition we even obtain that the mapping

X : Lp
0 → Hp(T, H)
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ξ 7→ X(ξ)

is Lipschitz continuous with Lipschitz constant LT,p.

Proof (cf. Frieler and Knoche [22], Theorem 3.2).

Remark 46 It follows from the Lipschitz continuity of X that there exists a constant

CT,p independent of ξ ∈ Lp
0 such that

‖X(ξ)‖Hp ≤ CT,p(1 + ‖ξ‖Lp)

(cf. Frieler and Knoche [22], Remark 3.1).

5.3 S-K Approximation for the Operator ∂
∂x

We consider the following stochastic partial differential equation



µ∂2u
∂t2

(t, x) = ∂u
∂x

(t, x) + ∆x
∂u
∂t

(t, x)− ∂u
∂t

(t, x) + f(x, u(t, x))

+b(x, u(t, x))∂W Q

∂t
(t, x), t > 0, x ∈ [0,∞)

u(0, x) = u0,
∂u
∂t

(0, x) = v0

(5.19)

where we assume

• f : [0,∞)× R→ R is measurable and

sup
x∈[0,∞)

|f(x, σ)− f(x, ρ)| ≤ Kf |σ − ρ|, σ, ρ ∈ R

for some positive constant Kf . Moreover

sup
x∈[0,∞)

|f(x, 0)| , f0 < ∞.

• b : [0,∞)× R→ R is measurable and

sup
x∈[0,∞)

|b(x, σ)− b(x, ρ)| ≤ Kb|σ − ρ|, σ, ρ ∈ R

for some positive constant Kb. Moreover

sup
x∈[0,∞)

|b(x, 0)| , b0 < ∞.
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• The bounded linear operator Q : L2([0,∞)) → L2([0,∞)) is symmetric, non-

negative and with finite trace.

It follows that there exists an orthonormal basis ek, k ∈ N of L2([0,∞)) such that

Qek = λkek

And WQ(t) is formally defined as

WQ(t) =
∞∑

k=1

√
λkβk(t)ek

Then WQ is the noise with covariance given by

E〈WQ(t), h〉L2([0,∞))〈WQ(t), k〉L2([0,∞)) = (t ∧ s)〈Qh, k〉L2([0,∞)).

We add a remark here that usually it is difficult to solve this kind of wave equation

for the first order derivative operator. So we add a strong damping term, which is

∆x
∂u
∂x

.

Let

V , H1,2
0 ([0,∞))×H1,2

0 ([0,∞)), H , H1,2
0 ([0,∞))× L2([0,∞)) (5.20)

For any µ > 0, (h, k) ∈ H, we define

Aµ


 h

k


 =


 0 1

1
µ

∂
∂x

1
µ

∂2

∂x2 − 1
µ





 h

k


 (5.21)

Fµ(h, k)(x) =
1

µ
(0, f(x, h(x)), x ∈ [0,∞), (5.22)

Bµ(h, k)(x) =
1

µ
(0, b(x, h(x)), x ∈ [0,∞), (5.23)

Qµ(h, k) =
1

µ
(0, Qk), (5.24)
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Setting z , (u, ∂u
∂t

), we rewrite equation (5.19) in the following equivalent abstract

form

dz(t) = [Aµz(t) + Fµ(z(t))]dt + Bµ(z(t))dWQµ(t), z(0) = z0 (5.25)

Proposition 47 For each µ < 1, Aµ generates an analytic semigroup Sµ(·) on H

with ‖Sµ(t)‖H ≤ e( 1
2
+ 1

2µ
)t.

Proof note that

V ∗ := H1,2
0 ([0,∞))×H−1([0,∞)) (5.26)

We consider Aµ with initial domain C∞
0 ((0,∞))×C∞

0 ((0,∞)) as an operator taking

values in V ∗. So for u1, v1, u2, v2 ∈ C∞
0 ((0,∞)):

|V ∗〈Aµ


 u1

v1


 ,


 u2

v2


〉V |

= |V ∗〈

 v1

1
µ
u
′
1 + 1

µ
v
′′
1 − 1

µ
v1


 ,


 u2

v2


〉V |

= |〈

 v1

1
µ
u
′
1 + 1

µ
v
′′
1 − 1

µ
v1


 ,


 u2

v2


〉H |

≤ ‖v′1‖L2‖u′2‖L2 + ‖v1‖L2‖u2‖L2 +
1

µ
‖u′1‖L2‖v2‖L2 +

1

µ
‖v′1‖L2‖v′2‖L2 +

1

µ
‖v1‖L2‖v2‖L2

≤ (‖u2‖1,2 + ‖v2‖1,2)(‖v′1‖L2 + ‖v1‖L2 +
1

µ
‖u′1‖L2 +

1

µ
‖v′1‖L2 +

1

µ
‖v1‖L2)

≤ (
1

µ
+ 1)‖


 u1

v1


 ‖V ‖


 u2

v2


 ‖V

This shows that Aµ can be extended (uniquely) to a bounded linear operator Aµ :

V → V ∗. And we have:

‖Aµ


 u1

v1


 ‖V ∗ ≤ (

1

µ
+ 1)‖


 u1

v1


 ‖V (5.27)

Let µ < 1,
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V ∗〈Aµ


 u

v


 ,


 u

v


〉V

=

∫
v
′
u
′
dx +

∫
vudx +

1

µ

∫
u
′
vdx− 1

µ

∫
|v′|2dx− 1

µ

∫
|v|2dx

≤ 1

2
‖u′‖2

L2 +
1

2
‖v′‖2

L2 +
1

2
‖u‖2

L2 +
1

2
‖v‖2

L2 +
1

2µ
‖u′‖2

L2 +
1

2µ
‖v‖2

L2 − 1

µ
‖v′‖2

L2 − 1

µ
‖v‖2

L2

≤ (
1

2
+

1

2µ
)(‖u′‖2

L2 + ‖u‖2
L2)− (

1

µ
− 1

2
)‖v′‖2

L2 − (
1

2µ
− 1

2
)‖v‖2

L2

≤ 1

µ
‖


 u

v


 ‖2

H − (
1

2µ
− 1

2
)‖


 u

v


 ‖2

V

Define a bilinear form aµ : V × V → R by

aµ(w1, w2) = 〈Aµw1, w2〉. (5.28)

Then aµ is continuous and satisfy the inequality (5.15).

So if we restrict the domain of Aµ to the set {w1 ∈ V |a(w1, ·) is continuous in the topology of H},
that is

D(Aµ) = {w1 ∈ V |Aµw1 ∈ H} (5.29)

We still denote the operator by Aµ. Then Aµ is a variational generator. Hence it

generates an analytic semigroup Sµ(·).

For the norm, let Cµ = 1
µ
. Let Tµ(·) be the semigroup generated by Aµ − Cµ. For

w ∈ H,

d

dt
‖Tµ(t)w‖2

H = 2〈(Aµ − Cµ)Tµ(t)w, Tµ(t)w〉H ≤ −(
1

µ
− 1)‖Tµ(t)w‖2

V (5.30)

Then:

‖Tµ(t)w‖2
H ≤ ‖w‖2

H − (
1

µ
− 1)

∫ t

0

‖Tµ(s)w‖2
V ds ≤ ‖w‖2

H − (
1

µ
− 1)

∫ t

0

‖Tµ(s)w‖2
Hds

(5.31)
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By Gronwell’s lemma, we have ‖Tµ(t)w‖2
H ≤ ‖w‖2

He−( 1
µ
−1)t. Hence ‖Tµ(t)‖H ≤

e( 1
2µ
− 1

2
)t. And then ‖Sµ(t)‖H = ‖eCµtTµ(t)‖H ≤ e( 1

2
+ 1

2µ
)t,∀µ.

Proposition 48 For any initial data (u0, v0) ∈ H, problem (5.19) has a unique mild

solution.

Proof It suffices to show the lipschitz continuity of Bµ and Fµ. Then the assertion

follows from Proposition 45.

For any z1 = (u1, v1), z2 = (u2, v2) ∈ H, we have

‖Fµ(z1)− Fµ(z1)‖H =
1

µ
‖f(·, u1)− f(·, u2)‖L2 ≤ Kf

µ
‖u1 − u2‖L2 ≤ Kf

µ
‖z1 − z2‖H

(5.32)

‖Bµ(z1)−Bµ(z1)‖H =
1

µ
‖b(·, u1)− b(·, u2)‖L2 ≤ Kb

µ
‖u1 − u2‖L2 ≤ Kb

µ
‖z1 − z2‖H

(5.33)

Below we consider the linear equation of problem (5.19) where the trace of Q satisfying

certain conditions.





µ∂2η
∂t2

(t, x) = ∂η
∂x

(t, x) + ∆x
∂η
∂t

(t, x)− ∂u
∂t

+
∂W Q

µ

∂t
(t, x)

η(0) = 0, ∂η
∂t

(0) = 0
(5.34)

We define Qµ as in (5.24). We have

Tr(Qµ) =
1

µ
Tr(Qµ). (5.35)

According to Proposition 45, we know there exists a mild solution W µ(t) in H, defined

as in (5.20).

W µ(t) =

∫ t

0

Sµ(t− s)dWQµ(s) (5.36)

then ηµ(t) = Π1W
µ(t).
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Lemma 49 Fix T > 0, assume TrQµ < µe−
T
µ , then the solution ηµ(t), t ∈ [0, T ] is

γ-Hölder continuous with respect to t for any γ < 1
2
. Moreover, the momenta of the

γ-Hölder norms of ηµ are bounded uniformly in µ, that is

sup
0<µ<1

E‖ηµ‖Cγ([0,T ];H) := CT,p < ∞ (5.37)

Proof Let T ≥ t > s > 0. By Itô’s isometry, we have

E‖W µ(t)−W µ(s)‖2 =

∫ t

s

‖Sµ(t− σ) ◦ Q
1
2
µ‖2dσ

+

∫ s

0

‖ (Sµ(t− σ)− Sµ(s− σ)) ◦ Q
1
2
µ‖2dσ

= I1 + I2 (5.38)

Plugging (5.35) in the third inequality below:

I1 ≤
∫ t

s

‖Sµ(t− σ)‖2Tr(Qµ)dσ ≤
∫ t

s

e2( 1
2
+ 1

2µ
)(t−σ)Tr(Qµ)dσ

≤ e(1+ 1
µ

)T 1

µ
µe−

T
µ (t− s) ≤ eT (t− s) (5.39)

For I2, let (fk)k∈N be an orthonormal basis of H. Below we use (5.6) in the second

line, and (5.14) in the fourth line.
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I2 = Σk

∫ s

0

‖(Sµ(t− σ)− Sµ(s− σ))Q
1
2
µfk‖2dσ

= Σk

∫ s

0

‖
∫ t−σ

s−σ

AµSµ(ρ)Q
1
2
µfkdρ‖2dσ

≤ Σk

∫ s

0

(

∫ t−σ

s−σ

‖AµSµ(ρ)Q
1
2
µfk‖dρ)2dσ

≤ Σk

∫ s

0

(

∫ t−σ

s−σ

C1‖Q
1
2
µfk‖dρ

ρ
)2dσ

= C1Σk‖Q
1
2
µfk‖2

∫ s

0

(

∫ t−σ

s−σ

dρ

ρ
)2dσ

= C1Tr(Qµ)

∫ s

0

(

∫ t−σ

s−σ

dρ

ρ
)2dσ

= C1
1

µ
Tr(Qµ)

∫ s

0

(

∫ t−σ

s−σ

dρ

ρ
)2dσ

≤ C1 exp(−T

µ
)

∫ s

0

(

∫ t−σ

s−σ

dρ

ρ
)2dσ

Let γ ∈ (0, 1
2
), note that

∫ t−σ

s−σ

ργ−1dρ =

∫ t

s

(ρ− σ)γ−1dρ ≤
∫ t

s

(ρ− s)γ−1dρ =

∫ t−s

0

ργ−1dρ =
(t− s)γ

γ

Then,

I2 ≤ C1 exp(−T

µ
)

∫ s

0

(s− σ)−2γ|
∫ t−σ

s−σ

ργ−1dρ|2dσ

≤
C1 exp(−T

µ
)T 1−2γ

γ2(1− 2γ)
(t− s)2γ

Thus for any γ ∈ (0, 1
2
) we have

E‖W µ(t)−W µ(s)‖2 ≤ C[(t− s) +
T 1−2γ

γ2(1− 2γ)
(t− s)2γ] (5.40)

Since ηµ(t) = Π1W
µ(t), we have

sup
0<µ<1

E‖ηµ(t)− ηµ(s)‖2 ≤ C(t− s)2γ (5.41)

By the Garcia-Rodemich-Rumsey theorem,and using the fact that ηµ(t) is gaussian

for each t, we have ∀p ≥ 1

sup
0<µ<1

E‖ηµ‖p
Cγ([0,T ];H) := CT,p < ∞ (5.42)
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But so far we could not get the tightness of ηµ.
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A. S-K Approximation for ∂
∂x on Weighted Spaces

As seen from Chapter 5, we could not prove the convergence of the Smoluchowski-

Kramers approximation on our chosen space H. In [20], Filipović considered a

weighted Sobolev space on the first order equation with the same operator ∂
∂x

. We

also considered this space. But it turns out to be not helpful, because our equation

is of second order. Below is the detail explanation.

We consider the same problem described in section 5.3, that is, we have the following

equation





µ∂2u
∂t2

(t, x) = ∂u
∂x

(t, x) + ∆x
∂u
∂t

(t, x)− ∂u
∂t

(t, x) + f(x, u(t, x))

+b(x, u(t, x))∂W Q

∂t
(t, x), t > 0, x ∈ [0,∞)

u(0, x) = u0,
∂u
∂t

(0, x) = v0

(A.1)

written into the following abstract form

dz(t) = [AµZ(t) + Fµ(Z(t))]dt + Bµ(z(t))dW (t), z(0) = z0 (A.2)

with z , (u, ∂u
∂t

). For any µ > 0, (u, v) ∈ H, we define

Aµz = Aµ


 u

v


 =


 0 1

1
µ

∂
∂x

1
µ

∂2

∂x2 − 1
µ





 u

v


 (A.3)

Fµ(u, v)(x) =
1

µ
(0, f(x, u(x)), x ∈ [0,∞), (A.4)

Bµ(u, v)(x) =
1

µ
(0, b(x, u(x)), x ∈ [0,∞), (A.5)

Qµ(u, v) =
1

µ
(0, Qv), (A.6)
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We consider Aµ as an operator on the sobolev weighted space V := H0
w × H0

w with

H := H0
w × L2

w. Here

Hw := {h ∈ L1
loc(R+)|∃h′ ∈ L1

loc(R+) and ‖h‖w < ∞} (A.7)

with the norm

‖h‖2
w :=

∫ ∞

0

|h(x)|2w(x)dx +

∫ ∞

0

|h′(x)|2w(x)dx (A.8)

where w : R+ → [1,∞) is a non-decreasing C1-function such that w− 1
3 ∈ L1(R+). In

this section, we choose a particular w(x) = eαx, for α 6= 0.

Let

H0
w := {h ∈ Hw|h(0) = 0} (A.9)

L2
w := {f ∈ L1

loc|‖f‖2
Lw

=

∫ ∞

0

|f(x)|2w(x)dx < ∞} (A.10)

Remark 50 If f ∈ L2(R+) and also f
′ ∈ L2(R+) then since

2

∫ y

0

f(x)f
′
(x)dx = |f(y)|2 − |f(0)|2 (A.11)

|f(x)|2 tends to a limit as x → ∞. And then we can conclude f(∞) = 0, since

f ∈ L2(R).

Proposition 51 For each µ < 2, Aµ generates an analytic semigroup Sµ(·) on H

with ‖Sµ(t)‖H ≤ e( 1
2
+α2−1

2µ
∨ 1

2µ
)t.

Proof First we consider Aµ with initial domain {f ∈ H0
w|f ′ ∈ H0

w} × {f ∈ H0
w|f ′ ∈

H0
w} as an operator taking values in V ∗. Note that this domain is dense in V .
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V ∗〈Aµ


 u

v


 ,


 u

v


〉V

= V ∗〈

 0 1

1
µ

∂
∂x

1
µ

∂2

∂x2 − 1
µ





 u

v


 ,


 u

v


〉V

=

∫
vuwdx +

∫
v
′
u
′
wdx +

1

µ

∫
u
′
vwdx +

1

µ

∫
v
′′
vwdx− 1

µ

∫
vvwdx

Integrating by parts, the fourth term becomes:

1

µ

∫
v
′′
vwdx =

1

µ
(v(∞)v

′
(∞)w(∞)− v(0)v

′
(0)w(0)−

∫
v
′
v
′
wdx−

∫
v
′
vw

′
dx)

(A.12)

We apply Remark 50 on f = vw
1
2 . First, ‖f‖2

L2 ≤ ‖v‖2
w < ∞. On the other hand,

∫ ∞

0

|f ′|2dx =

∫ ∞

0

|v′w 1
2 +

1

2
vw− 1

2 |2dx

=

∫
|v′|2wdx +

∫
v′vdx +

1

4

∫
|v|2w−1dx < ∞

Hence v(∞)w
1
2 (∞) = 0. And for the same logic as above, since v

′ ∈ Hw, we have

v
′
(∞)w

1
2 (∞) = 0. Thus v(∞)v

′
(∞)w(∞) = 0.

Now note that w
′
= αw, the fourth term becomes

1

µ

∫
v
′′
vwdx =

1

µ
(v(∞)v

′
(∞)w(∞)− v(0)v

′
(0)w(0)−

∫
v
′
v
′
wdx−

∫
v
′
vw

′
dx)

= − 1

µ

∫
v
′
v
′
wdx− 1

µ

∫
v
′
vw

′
dx

= − 1

µ

∫
|v′|2wdx− α

2µ

∫
(v2)

′
wdx

= − 1

µ

∫
|v′|2wdx− α

2µ
(v2(∞)w(∞)− v2(0)w(0)− α

∫
|v|2wdx)

= − 1

µ

∫
|v′|2wdx +

α2

2µ

∫
|v|2wdx
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Thus,

V ∗〈Aµ


 u

v


 ,


 u

v


〉V

=

∫
vuwdx +

∫
v
′
u
′
wdx +

1

µ

∫
u
′
vwdx +

1

µ

∫
v
′′
vwdx− 1

µ

∫
vvwdx

=

∫
vuwdx +

∫
v
′
u
′
wdx +

1

µ

∫
u
′
vwdx− 1

µ

∫
|v′|2wdx +

α2

2µ

∫
|v|2wdx− 1

µ

∫
vvwdx

=

∫
vuwdx +

∫
v
′
u
′
wdx +

1

µ

∫
u
′
vwdx− 1

µ

∫
|v′|2wdx +

α2 − 2

2µ

∫
|v|2wdx

≤ 1

2

∫
|u|2wdx +

1

2

∫
|v|2wdx +

1

2

∫
|u′|2wdx +

1

2

∫
|v′|2wdx

+
1

2µ

∫
|u′|2wdx +

1

2µ

∫
|v|2wdx− 1

µ

∫
|v′|2wdx +

α2 − 2

2µ

∫
|v|2wdx

= −(
1

µ
− 1

2
)

∫
|v′|2wdx +

1

2

∫
|u|2wdx + (

1

2
+

1

2µ
)

∫
|u′|2wdx + (

1

2
+

α2 − 1

2µ
)

∫
|v|2wdx

= −(
1

µ
− 1

2
)‖


 u

v


 ‖V +

1

µ

∫
|u|2wdx +

3

2µ

∫
|u′|2wdx +

α2 + 1

2µ

∫
|v|2wdx

= −(
1

µ
− 1

2
)‖


 u

v


 ‖V + (

α2 + 1

2µ
∨ 3

2µ
)‖


 u

v


 ‖H

Now Aµ can be extends(uniquely) to a bounded linear operator Aµ : V → V ∗. By

restricting the domain of Aµ as in the proof of Proposition 47, we get a variational

generator. We still denote it by Aµ. Then it generates an analytic semigroup Sµ(·),
for each µ. And follow the same calculation in Proposition 47, we have ‖Sµ(t)‖H ≤
e( 1

2
+α2−1

2µ
∨ 1

2µ
)t, ∀µ < 2.

Proposition 52 For any initial data (u0, v0) ∈ H, problem (A.1) has a unique mild

solution.

Proof It suffices to show the lipschitz continuity of Bµ and Fµ. Then the assertion

follows from Proposition 45.
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For any z1 = (u1, v1), z2 = (u2, v2) ∈ H, we have

‖Fµ(z1)− Fµ(z1)‖H =
1

µ
‖f(·, u1)− f(·, u2)‖L2

w
≤ Kf

µ
‖u1 − u2‖L2

w
≤ Kf

µ
‖z1 − z2‖H

(A.13)

‖Bµ(z1)−Bµ(z1)‖H =
1

µ
‖b(·, u1)− b(·, u2)‖L2

w
≤ Kb

µ
‖u1 − u2‖L2

w
≤ Kb

µ
‖z1 − z2‖H

(A.14)
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