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Chapter 0

Introduction

In this diploma thesis we will solve a stochastic partial differential equation
with Lipschitz coefficients where the noise is a Hilbert space-valued Lévy
process. Moreover we will apply our results to the Heath-Jarrow-Morton
interest rate model from mathematical finance.

At first we want to present the framework in which we treat the problem:
We consider the following type of stochastic differential equation on a sepa-
rable (infinite dimensional) Hilbert space H

{ df (t) = (Af(t) +a(t, f(1))) dt + oL, f(t) dL(t), t € [0, T] (1)
f0)=¢

where L(t), t € [0,T], is a Lévy process taking values in a separable Hilbert
space GG. A is the (possibly unbounded) generator of a strongly continu-
ous semigroup S(¢), t > 0, of linear operators on H. The drift coefficient
a: [0,7] x Q@ x H — H and the noise coefficient o : [0,7] x Q x H —
Ly (G, H)(:=space of Hilbert-Schmidt operators from G into H) are measur-
able mappings. £ € L*(Q, F, P; H) is a random initial value. We impose the
following condition on L

/ |2 () < oo, (2)
{l|z||>1}

where v is the corresponding Lévy measure governing the jumps of the Lévy
process. Thereby L(t) is in L*(Q, F, P; G) at any time 0 < ¢ < T.

A mild solution of problem (1) is a predictable process f(¢), t € [0,7], such
that

ft) = S(t)§+/0 S(t—s)a(s, f(s))ds +/0 S(t— s)o(s, f(s))dL(s) P-a.s.
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As far as we know there are no results on the equation (1) on infinite-
dimensional Hilbert spaces with state-dependent noise coefficient and a gen-
eral Lévy process as integrator. We will prove the existence of a unique mild
solution to this equation under Lipschitz conditions on a and o, which is the
central result of this diploma thesis.

We start with some comments on the history of the problem, while at the
same time trying to motivate our proceedings.

In order to give sense to the mild solution we have to define the stochas-
tic integral with respect to a Hilbert space-valued Lévy process. We apply
the Lévy-1t6 decomposition from Albeverio and Riidiger [AlRii 05]. Then the
definition of the integral w.r.t. the Brownian motion part of the Lévy process
is taken from [DaPrZa 92| (cf. Appendix A). The integral w.r.t. to the jump
part is constructed as a stochastic integral w.r.t. a Hilbert space-valued mar-
tingale measure following Applebaum [App|. A martingale measure (called
martingale-valued measure in [App|) is a mapping M : [0,1] x S x Q@ — G
where [0,¢] is a time interval, S a Lusin topological space and (2, F, P) a
probability space. Basically, it is a Hilbert space-valued martingale in the
time component and a o-finite measure in the S-component. In the real-
valued case (G = R) this concept was introduced by Walsh [Wal 86] in order
to treat stochastic partial differential equations. Our main example is the
Lévy martingale measure formed by the jump part of the Lévy process which
admits many desirable properties.

Métivier [Met 77| defines the stochastic integral for a wide class of cadlag
semimartingales as integrators. In Appendix B we give a detailed review
of his construction in the case of square-integrable martingales. One can as
well use this approach to define the stochastic integrals, but the construction
suggested by Applebaum [App| turns out to be much more useful when we
want to derive existence (and uniqueness) results for equation (1). In both
cases the integrals are defined as L2-limits of the integrals of simple processes
approximating the integrands in a suitable L2-space.

A different approach is to define the stochastic integral as a limit in
distribution. This was carried out by Chojnowska-Michalik [C-M 87] for de-
terministic integrands and Lévy processes as integrators.

In the case that L is a Brownian motion equation (1) was examined by
Da Prato and Zabczyk [DaPrZa 92| and solved via a fixed-point argument.
The first to consider a Hilbert space-valued Lévy process as integrator was
Chojnowska-Michalik [C-M 87]. For a = 0 and o the identity she constructed
(based on her integration theory) what she termed a mild solution, but what
is in fact even a weak one. Applebaum [App| obtained the same result for a



constant noise coefficient using different methods including martingale mea-
sure integration. This was later generalized by S. Stolze [Sto 05] to allow for
a Lipschitz non-linearity. C. Knoche [Kno 03] proved the existence of a mild
solution for a state-dependent noise coefficient and L a compensated Poisson
random measure.

We will now give an overview of the contents of the different chapters
and point out our contributions. Additional information may be found at
the beginning of every chapter.

In Chapter 1 we will introduce Lévy processes on separable Hilbert spaces.
Refering to Albeverio and Riidiger [AlRii 05] we define the Poisson random
measure and the compensated Poisson random measure corresponding to a
Lévy process. We also quote the main result from their paper: the Lévy-Ito
decomposition in separable Hilbert spaces (shown by them for separable Ba-
nach spaces). Next we give the definition of a Hilbert space-valued martingale
measure taken from [App|. As our main example we use a slight modification
of the Lévy martingale measure discussed in [Sto 05]. Finally we introduce
the stochastic integral with respect to a special class of martingale measures
(the Levy one among them). Basically we carry out the construction from
[App| with some complements from [Sto 05]. We add a slight generalization
by considering as integrands mappings which take values in a certain class of
linear operators from one Hilbert space into another (maybe different) one.

Chapter 2 is devoted to the study of equation (1). As a fundamentally
new result we show the existence of a mild solution using the methods of
|[DaPrZa 92| and some complements to their approach worked out by K.
Frieler and C. Knoche [FriKno 01]|. Hereby condition (2) on the Lévy process
allows us to treat the jump term of the stochastic integral with basically the
same techniques as the Brownian motion term. The solution is then found
as a fixed-point of the contraction f — ~(f) defined by

() = S(0)E + / S(t — s)a(s, £(s)) ds + / S(t — s)o(s, f(s)) dL(s).

on a suitable Banach space of processes. Existence and uniqueness are a con-
sequence of Banach’s fixed-point theorem. This main result of the diploma
thesis is stated in Theorem 2.1, while its proof covers most of Chapter 2.



In recent years Lévy processes have played an important role in finance.
While traditionally Brownian motion is used as a source of randomness, many
newer models use Lévy processes to allow for jumps (which may be inter-
preted as external shocks) and get a better fit to empirical data. For an
overview of the numerous applications of Lévy processes to finance consult
the book of Schoutens [Sch 03] and the references therein.

We will concentrate on the Heath-Jarrow-Morton interest rate model in
Chapter 3. It was introduced by Heath, Jarrow and Morton [HJM 92| to
model the dynamics of bond prices (enabling them to price bond options)
via the evolution of forward interest rates as Ito processes. They stated
the famous HJM drift condition which guarantees an arbitrage-free move-
ment of the bond prices. By a change of parametrization Musiela [Mus 93]
transformed the model to the framework of stochastic evolution equations
on an infinite-dimensional function space. Filipovi¢ [Fil 01] gives a rigorous
treatment of this approach and generalizes the model to allow for a state-
dependent volatility structure and an infinite-dimensional driving Brownian
motion. We will present a summary of this development and then make the
transition to Lévy noise. The equation for the forward rates then reads

{ dfy = (& fi + a(t, f) dt + o(t, fr) dL(t)
fO = f(oa ) €H

where H is a suitable Hilbert space of real-valued functions on [0, cc]. Among
the first to consider non-Gaussian noise are Bjork et al. |[BDKR 97| who add
a compensated as well as a non-compensated Poisson random measure part.
Eberlein and Raible [EbeRai 99] suggest a model with a (finite-dimensional)
Lévy process, while Raible [Rai 00| presents strong empirical evidence for
the use of Lévy noise instead of pure Gaussian one. Finally, Jakubowski
and Zabczyk [JaZa 04] and Ozkan and Schmidt [OzkSch 05| work with HJM
models driven by infinite-dimensional Lévy processes and develop the corre-
sponding HJM-type drift conditions. We will extend these models by con-
sidering state-dependent volatility coefficients which give more flexibility in
modeling. Here the results from Chapter 2 are essential in deriving the exis-
tence of an HJM model with Lévy noise in Proposition 3.2.

I wish to thank Prof. Dr. Michael Rockner who led me to the study of
stochastic differential equations with Lévy noise. His lectures which I have
attended since my first semester were an excellent guide to modern mathe-
matics, especially stochastic calculus. Moreover, I am grateful for support
and helpful proposals in connection with this diploma thesis.

I would also like to thank Dr. Walter Hoh for giving a report on this
thesis. Special thanks go to my brother, Florian Knéble.



Chapter 1

Lévy Processes and Stochastic
Integration

Lévy processes on a separable Hilbert space G are introduced in section 1.1
as stochastic processes with independent and stationary increments. To a
Lévy process L we can assign the Poisson random measure N (t,dx) which is

for any A € B(G — {0}) with 0 ¢ A given by
Nt A):={0 < s <t:AL(s) € A} = Y 14(AL(s))

0<s<t

with AL(s) the "jump" of the process L at time s. Centralization then
gives the compensated Poisson random measure N(t,dz). From [AIRii 03]
we take the Lévy-It6 decomposition which states that any Lévy process can
be written as the sum of a deterministic drift, a Brownian motion, an integral
with respect to the compensated Poisson random measure and an integral
with respect to the Poisson random measure. We show that the last term
may be expressed in the first and third one, if the expected number of "big
jumps" decreases sufficiently quickly. In section 1.2 we give the definition
of martingale measures in the Hilbert space case developed in [App|. In
the real-valued case this concept is due to [Wal 86]. Basically, a martingale
measure is a G-valued set function depending on a time component, a Borel
set and a random component, which for a fixed set is a martingale and locally
a measure in the set component. Our main example is the Lévy martingale
measure M given by

M(t, A) ;:/ xN(t,dz), t >0,
A—{0}

for A € B(G — {0}) with 0 ¢ A. Tt is a slight modification of the one men-
tioned in [App| and discussed in [Sto 05]. M is a nuclear martingale measure,
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i.e. its martingale component has a covariance operator which is positive,
self-adjoint and of trace class. Since the third part of the Lévy-Itd6 decompo-
sition is described by M, we want to construct the stochastic integral with
respect to nuclear martingale measures. This is done in section 1.3 following
the approach of [App|, later carried out in detail in [Sto 05]. (There the
integral is called strong stochastic integral.) We make a slight generalization
by considering integrands that take values in the linear operators from one
Hilbert space into another one. As usual the stochastic integral is first de-
fined for simple functions via an isometry. These simple functions are dense
in a space called N*(T) to which the integral can be extended by L*-limits.

1.1 Lévy processes in Hilbert spaces

Let be (G, (, )g) a separable Hilbert space; (2, F, P) a complete probability
space with (F;), t > 0, a right-continuous filtration on (€2, F, P) such that
Fo contains all P-nullsets.

Definition 1.1 Fiz T > 0. A subset A C [0,T]xQ of the form A =]s,t] x I
where FF € F,, 0 < s <t < T, or {0} x F, F € Fy, is called predictable
rectangle. The family of predictable rectangles is denoted by Ry .

Let be Pr = o(Rr), the o-algebra generated by Rr. Pr is called the o-
algebra of the predictable sets; a stochastic process X measurable with respect
to Pr is called predictable.

For E a Banach space B(E) denotes the Borel o-algebra on E, i.e. the
o-algebra generated by all open subsets of E.

Definition 1.2 A G-valued stochastic process L adapted to (F;),t >0, is a
Lévy process if

e L(0)=0

e L has increments independent of the past, i.e. L(t) — L(s) is indepen-
dent of Fs for all0 < s <t < o0

L has stationary increments, i.e. L(t) — L(s) has the same distribution
as L(t — s) for all 0 < s <t < o0

L is stochastically continuous, i.e. for allt > 0 and e > 0 holds

lim P([|L(s) = L(t)[|¢ > €) =0

L has strongly cadlag paths, i.e. the paths of L are right-continuous
and always have left limits w.r.t. the strong topology.
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Examples of Lévy processes are ()-Brownian motion (see App. A), or (for
G = R) the Poisson process and standard Brownian motion.

A o-finite measure v on G — {0} is called a Lévy measure if
/ (|]|* A 1) v(dx) < oc.
G—-{0}

(An alternative convention is to define the Lévy measure on the whole of G
via the assignment v({0}) = 0.)

Let be AL(s) := L(s) — L(s—), s > 0 the "jump" of L at time ¢. We say
that a Lévy process has bounded jumps if there exists a constant J > 0 with

sup [|AL(t)| < J.
£>0

Define for A € B(G — {0}) with 0 ¢ A and ¢ >0
N(t,A):=]{0<s<t:AL(s) € A} = Z 14(AL(s)). (1.1)
0<s<t
N admits the following properties:

Proposition 1.1 1. For A € B(G — {0}) with 0 ¢ A fized the process
(N(t,A)), t >0, is a Poisson process.

2. Fort > 0 and w € Q fized N(t,-)(w) is a set function from {A €
B(G —{0}):0¢ A} to R, U{+occ}. For P-a.a. w € ) there erists a
unique o-finite measure on B(G —{0}) extending this set function. We
denote this measure by N(t,dz).

8. Set (A) := E[N(1,A)] for A€ B(G —{0}) with 0 ¢ A. Then i has a
unique extension to a o-finite measure v on B(G — {0}). Moreover, v
18 a Lévy measure.

Proof.
1. (cf. [AIRi 05] Thm. 2.7, even for G a separable Banach space)
2. (cf. [AIRi 05] Thm. 2.13, Cor. 2.14)
3. (cf. [AIRi 05] Thm. 2.17, Cor. 2.18)

We follow the convention of [AIRii 05] and call N a Poisson random measure.
If N denotes the compensated Poisson random measure, i.e. N(dt,dz) =
N(dt,dz) — dt ® v(dx), we have the following result:
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Proposition 1.2 Let f € L*(G,B(G),v;G). Then for anyt > 0 and A €
B(G — {0}) the integral

/Af(x) N(t,dx)

exists and

E[H/Af(l‘)N(t dz)||’] = t/A 1f @)]I* v(dz) < 0.
Proof. (cf. |[AlIRi 05| Thm. 3.25)

Now we can formulate a very important representation for Lévy processes
which is given by the following theorem:

Theorem 1.1 (Lévy-Ité decomposition) For any G-valued Lévy process
L = (L(t))i>0 there exist b € G, a Brownian motion (Bg(t))i>0 with covari-
ance operator Q, independent of N(-, A) for any A € B(G —{0}) with0 ¢ A,
such that:

L(t) =tb+ Bo(t) +/ z N(t,dz) +/ xz N(t,dx).
{llzll<1} {ll/[>1}
Here the Poisson random measure N and the Lévy measure v are defined as
wn Prop. 1.1.
The triple (b, Q,v) is called the characteristics of the process L.

Proof. (ct. |[AIR{ 05| Thm. 4.1)

The first integral is well-defined, since iy, <13 € L*(G,B(G),v; G) (cf.
Prop. 1.2). Moreover, seen as a process in t it is a square-integrable martin-
gale (see [Sto 05] Lem. 2.4.8).

The cadlag property of the Lévy process guarantees that for a given w € (2
on any finite interval [0, T'] there are only finitely many jumps with norm > 1.
Otherwise we could find an accumulation point ¢ € [0, T] where ¢ — L(t)(w)
would not have a left limit. Hence we can write the second integral just as a
random finite sum in G:

/ X N(Zf, dx) = Z AL(S)l{Hm”zl}(AL(S))
{llz(I=1} 0<s<t

Thus this term is of finite variation on any [0, T].

Remark 1.1 If we denote the distribution of L(t) by uy, then py is infinitely

divisible. The famous Lévy-Khintchine formula gives us the characteristic
function of L(t) as Elexp(i(u, L(t))g] = exp(—tp(u)), where

o) = =il e+ 5(@usu)= | explifu 2ha)=1=i(w,2)aT a1y (o) v(d)



with (b, Q,v) the characteristics of L from Theorem 1.1.

Remark 1.2 (L(t))cpo,r can be written in the form L(t) = M(t)+V (1) ,t €
[0,T], where M is a square-integrable martingale and V is a cadlag process
with bounded variation. Here

M(t) .= Bg(t) + /{I H<1}x N(t,dz) and

V(t) = tb+/ x N(t,dz).
{llzl|>1}
Hence L is a semimartingale of the type discussed at the end of Appendiz
B. So we could use the construction derived there to define the stochastic
integral of operator-valued stochastic processes w.r.t. to a general Lévy pro-
cess. Unfortunately, the isometry developed in App. B is too general to be
of much help in Chapter 2 where we want to study stochastic equations with
Lévy noise. Therefore we will introduce a construction that makes use of the
special structure of the N(t, dx)-term.

We say that a Lévy process fulfills condition (F) if for the corresponding
Lévy measure holds

/ 2] v(dz) < oo, (1.2)
{ll=zl|>1}

Note that via the definition of Lévy measure (F) actually yields [, ||z||* v(dz) <
oo. Bounded jumps of L are sufficient for (F), since then we have

/ 2l v(dz) < J?/ 1 v(dz) < .
{llzl|>1} {ll=>1}

Lemma 1.1 If L is a Lévy process with characteristics (b, Q,v) fulfilling (F),
the Lévy-Ito decomposition of L can be written in the following way:

L{t) = tm + Bo(1) +/ v N(t, dr) (1.3)
where m := b+ f{l\w\lzl} zv(dx).

Proof. We have
/ x N(t,dr) = / z N(t,dz) +t/ zv(dr).
{l=l|>1} {ll=l[>1} {llzll>1}

The integral w.r.t. the compensated Poisson measure exists, since thanks to
(F) idygz>1y € L*(G, B(G),v; G) (see again Prop. 1.2). (F) also ensures that
m has finite norm:

lmll < 1)+ | /{ A < Il / el v(dz) < o.

{llzl|=1}



1.2 Martingale measures

Define S =G, ¥ :=B(S), Ay :={Ae€X:0¢ A}, A=A U{4AU{0}:
Ae A}, Spi={zeS:+L< ||}, Ty :=B(Sn), then S =, S

Definition 1.3 A martingale measure is a set function M : Ry x AxQ — G
with the following properties:
M(0,A) = M(t,0) =0 a.s. forall A€ A, t>0. Fort>0 M(t,-) is

1. finitely additive, i.e. M(t,AU B) = M(t,A) + M(t,B) a.s. for all
A, B € A disjoint

2. o-finite, i.e. sup{E[||M(t, A)||4]A € 2,] < oo} for alln € N

3. countably additive on each ¥,, n € N, i.e. for any sequence decreasing
to the the empty set (4;) C I, we have lim;_, E[||M(t, A;)[|Z =0

For each A € A the process (M (t, A));>o is a strongly cadlag square-integrable
martingale. Finally the zero set in 1. s independent of t.

A martingale measure M is called orthogonal if for any disjoint A, B € A
and any orthonormal base (e,) of G the process

((M(t7 A): 6n)G ) (M(Zf, B)7 em)G)tZO

is a (real-valued) martingale for all m,n € N. In particular the process
((M(t, A), M(t, B))a)i>o is a martingale.

M has independent increments if M ((s,t], A) is independent of F for all
Ae A 0<s<t<oo Here M((s,t],A):=M(t,A)— M(s, A).

Let T = (T4, A € A) be a family of bounded non-negative self-adjoint
operators on G. 1" is a positive-operator valued (POV) measure on (S,Y) if

1. Ty=0
2. Tyup =14+ Tp for all A, B € A disjoint.

T is trace class if every Ty, A € A, is trace class.

T is called decomposable if there exist a o-finite measure p on (S, X) and
a family (T, € S) of bounded non-negative self-adjoint operators on G s.t.
x +— T,y is measurable for all y € G and

TAyz/Txyu(dﬂf)
A
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forall Ae Aand y € G.

M is nuclear with (T,p) if forall 0 <s<t<oo, A€ A, z,yeG

E[(M((S7 t]7 A): x)G(M((S7 t]7 A): y)G] = (1‘7 TAy)GP((S7 t])

where T = (T4, A € A) is a POV measure which is trace class and p is a
Radon measure on (0,00). If T' is decomposable we call M decomposable.

Our key example (and motivation) for these concepts is as follows:
Theorem 1.2 Consider a Lévy process fulfilling (F) with Lévy-Ité decompo-
sition (1.3). Then M defined by

M(t, A) ;:/ v N(tdr), >0, Ac A,
A—{0}

15 an orthogonal martingale measure with independent increments. We call
it a Lévy martingale measure

Proof. (cf. [Sto 05| Thm. 2.5.2)

Proposition 1.3 The Lévy martingale measure M is nuclear with (T,dt)
where dt denotes Lebesque measure on Ry and T = {Tx; A € A} with

Tay = / (2,y)q v(dz).
A—{0}

In particular T is decomposable with v and

T, = (z,)gx.
Proof. (cf. [Sto 05] Prop. 2.5.4)
In [Sto 05] these results are in fact proved for S = {||z|| < 1} instead of
S = G. But the crucial point is to have the inequality [ [|z|* v(dz) < oo,
which we obtain from condition (F)! Of course, for S = {||z|| < 1} this is

automatically fulfilled for any Lévy process.

For later use we calculate

1
T2 113 e = tr(Te) = > (Tuen, ) (1.4)
neN
= D (@ ez en) =Y (w,60) = |l
neN neN

where (e,), n € N, is an orthonormal basis of G.
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1.3 Stochastic integrals

Our aim is to define the stochastic integral f(f [s R(s,x) M(ds,dx) for an
operator-valued process R. M is an orthogonal martingale measure with
independent increments, nuclear and decomposable. Keeping in mind the
Lévy martingale measure we take S = G and p = dt Lebesgue measure.
However, note that the construction works for S a Lusin topological space
(i.e. a continuous one-to-one image of a Polish space) and p a Radon measure
on (0, c0).

We consider again separable Hilbert spaces G' and H with orthonor-
mal bases (e,), n € N, resp. (f,), n € N. Let L(G, H) denote the space
of all linear bounded operators from G to H with operator norm |[|R|| :=
Sup|ig o<1 [1129]lm. Then (L(G, H),||-]|) is a Banach space (see [ReSi 80] Thm.
I11.2.). Since the norm topology generated by || - || is too strong for our pur-
poses, we consider the strong topology on L(G, H) instead:

R, > R iff R,g— Rg for all ¢ € G.
The corresponding Borel g-algebra £ is generated by sets of the form
{Re L(G,H); Rg € A} with g € G, A € B(H).

(cf. |DaPrZa 96|, p.24ff.).
Moreover we need the space Lo(G, H) of Hilbert-Schmidt operators. An
operator R is Hilbert-Schmidt if ¢r(R*R) < oo. The space Lo(G, H) with
inner product (Ry, Ry)y, := tr(R;Rs) and induced norm ||R||., = tr(R*R)z
is a separable Hilbert space and a two-sided L(G, H)-ideal, i.e. for R €
Ly(G,H), Cy € L(G), Cy € L(H) we have

|C2RC L, < [|CalICL[|I Bz,

(cf. [Wei 80| p.138). Lo(G, H) is a strongly measurable subset of L(G, H)
(cf. |DaPrZa 96], p.25).

Definition 1.4 Let be N*(T) = N*(T;v,dt) the space of all mappings X
on [0,T] x S x Q taking values in the linear (possibly unbounded) operators
from G into H, such that

1. For any g € G the H-valued mapping (t,z) — X(t,2)g is Pz @ B(S)-
measurable.

. 1
2. For any (t,z,w) € [0,T] x S x Q X(t,z)(w)o Ty is a Hilbert-Schmidt
operator and we have

T L )
| X || a2y = (E[/O /S||X(<9,31:)T£H%2 v(dx)ds])? < oo.

12



(|App| and [Sto 05] treat the case G = H.)

Lemma 1.2 (cf. [Sto 05], Lemma 3.1.1)
The mapping

(X.Y) > E /0 /S 1 (X (£ 2) LY (£ 7)) w(de) df]

is an inner product in N?(T) and with respect to this inner product N*(T)
15 a Hilbert space.
Proof. Inner product is obvious. Now let (R,) be a Cauchy sequence in

1
N?(T). By the Riesz-Fischer Theorem (R,Ty) converges to some S in the
space L2(([0,T] x Q x S,Pz @ B(S),dt ® P ® v); (L2(G, H), B(Lo(G, H))).
Hence there exists a subsequence (R, ) such that

1
klim R, (t,w,2)T? = S(t,w,z) in || - ||1,¢m dt @ P ® v-a.s.
— 00
For (t,w, ) fixed choose an orthonormal basis (e,,,) of G with each e, either
1

1 1
in ker(T;?) or in its orthogonal complement (ker(T;?))*. Next we define

S(tw,2)(T2) 'g if g € T2 (G)
0 if g € (T7 (G))*

7

R(t,w,z)g = {

where )

(T2)™" : T2 ((ker (T2))Y) = T2 (G) — (ker(T2))*

=

1 1
is the pseudo-inverse of T;?. To finish the proof we show that (R, (t,w, z)T;?)

1
converges to R(t,w,x)T? in ||| 1,(,m) dt ® P ® v-a.s. which implies conver-
gence of (R,) to R in N?(T):

1
||(Rn (tawa l‘) - R(t>w>x))Tl’2 H%Q(G,H)

k

= Z H(Rnk (tw,z) — R(t,w,w))TEemeq

m=1

S ! Loipd g2
= ) R, (tw, 2) T e — S(t,w,2)(T3) 7 T e |

1
= Y |Bu(tw,2)Tien — S(tw, 2)enlly

VAN
ay
=
=~
&
2
&3
|
A
~
&
-
=
3
=
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1
= ||Rnk(t7w7I)Tﬂ?2 - S(tvwvx)H%g(G,H)'
O

As usual the construction of the integral is started by considering simple
functions. We denote by §?(T') := S*(T'; v, dt) the subspace of all R € N?(T)
which have the following form:

M N
R= ZZRijl(tiatHﬂlAJ‘a (15)

i=0 j=0

where M,N ENand 0=t <t1 < ... < tvre1 = T The A(),...,AN_;,_l S
A are disjoint sets (having finite v-measure!) and each R;; is an F,/L-
measurable random variable with values in L(G, H) (equivalently R;;g is
Fi,-measurable for any g € G).

Lemma 1.3 (cf. [Sto 05], Lemma 3.1.2)
The subspace S*(T') is dense in N*(T).

Proof. We have to show S*(T)* = {0} (where S*(T)* is the orthogonal
complement of §%(T") in N?(T)). Consider for k,! € N the operators Sy, €
L(G, H) and Uy, € L(H,G) defined by

[ fiftn=k
&&“_{Oﬁn#k’

Joepifm=1
Uikt —{ 0 it m 1

It is easy to see that the adjoint of Sy, is S}; = Uj,. Note that
tT(SleIUlk) S tT(TI)

and hence the mapping with constant value Sy; is an element of N?(T).
Consider the simple function S € §%(T) defined by

S(Sawa l‘) = 1B(S)1F(w)1A(x)Skl7
where B = (t1,t3] with t1,t, € [0,T], A € A, F € F,,. Then for arbitrary
R € 8*(T)* we have (R, S)n2r) = 0. Hence
T
ol / / (Rt 2)ToS (L 2)%) v(de) dt]
0 S
. / / S (Rt 2) Uik fo fu)ir () df]
BJA -
~ B[, / / (R(t, ) Toen, fi)u v(dz) dt] = 0.
BJA

14



Now define a signed measure p on Pj ® B(S) by setting

(@) = /G (R(t, ) Tyex, fi)u dt dP v(dz).

For any G € P; ® B(S) of the type B x F' x A we have u(G) = 0. Since
the system of such sets is closed against intersections and generates the
o-algebra P; ® B(S) we can conclude that © = 0 on Py @ B(S). Thus
(R(t,z)Trex, fi)g = 0 dt ® P ® v-a.e. for any k,I € N and therefore
R(t,z)T, =0 dt ® P ® v-a.e. But then

1R]

T 1
2y = B / / \R(t,2)TE |12, v(de) df

— | /0 /5 tr(R(t, 2)TuR(t, 7)) v(dz) df] = 0

and we obtain S*(T")+ = {0}.
|

For t € [0,7] and every simple function R € S*(T") (cf. (1.5)) we define

M N

i=0 j=0
It is easy to see that .J;(R) does not depend on the representation of R.

Proposition 1.4 (cf. [Sto 05], Prop. 3.1.3/[App], p.11/12)
Ji, given by (1.6) for every R € S*(T'), can be extended to an isometry from
N2(T;t) to L*(Q, F, P; H).

Proof. Let R € 8*(T) be a simple function as in (1.5). Since
M N
ElJ(R)IPT = El1Y D RigM((E A tit Atina], A,
i=0 j=0

we study the individual terms under the sum. By the martingale property
of M(-, A;) we obtain for i < k such that ¢;,t; < t:

El(Riy M ((ti,t Ntiga], Aj), R M ((te, t A tia], A1) wl
B[Ry Rig M ((ti, t Atia], Aj), E[M ((tx, t A teaa], A)|F D)6l
= 0.

15



Let be j # [ and Nij = M((tl,t A tz'_|_1]7Aj). Then (N,-j,en)g(em,Nil)G is a
martingale for every n,m € N, because M is orthogonal. Moreover

E[(Rij M (i, t Atia), Aj), R M (L t A tiga], A1) 1)

o

= E[Z(RijNij,fn)H(fnaRilNil)H]

n=1
9]

= E[Z(NZJJR*fn) ( :lfn7Nil)G]

n=1

= Z E 1]7 (em, fn) (R:} n,er)g(er,Nil)G]

n,m,r=1

= Y Elew Rijf)o(Rifu, e B(Nij, ) (er, Nu)a|F |

n,m,r=1

= 0.
Since M has independent increments and is nuclear we can conclude

B[Ry M (it Atisa], 45)|I°]

o

- Z El(em, R fn) (R :jfmer)G]E[(Nijaem)G(er;Nij)G]
= Z El(em, R fn) (R :jfmer)G](eraTAjem)G((t/\tiﬂ)_ti)

= Y El(Rijem, Rij T, em)n)(t Atis1) — 1)

m=1

= E[tT(R;}RZ’jTAJ)]((t N ti—H) - ti).

And for any A € A and some operator ) € L(G) we have

o

tr(QTa) = Y (en,QTuen)c

n=1
o0

- Z(Q*%/ATw@ny(dx))G:/tT(QTx)V(dx).

n=1 A

16



Finally using the calculations from above we get

B[R] = EIIY_ Y RyM(Atit Ao, Aj)|]

= ZZE[||RijM(t/\ti;t/\tz’-l—l]vAj)HQ]
— ZZE[tr(RijijTAj)]((t Atip1) = (EA L))
- ZZE[/A tr( Ry Ry Ty ) v (da))((E A tigr) — (EA L))

T 1
=EM mewm@mmmmmwmm

= || Ry0.xaxslirz -

For general R € N?(T) we approximate R by a sequence (R,) C S*(T) (cf.
Lemma 1.3). Hence

lim E[||J(Ry) = Ji(R)|*] = 1 [(Ry = Run)j.gxxs |z = 0-

n,Mm—00 n,Mm—00

Thus (J;(R,)) is a Cauchy sequence in the Hilbert space L?(Q, F, P; H) and
we can define J;(R) as the L2-limit of J,(R,,).

O

For any R € N*(T) we define the (strong) stochastic integral of R with
respect to the orthogonal and nuclear martingale measure M by

/Ot/gR(5>$)M(dS,dx) = J,(R)

for t € [0,77.

Proposition 1.5 (cf. [Sto 05], Thm. 3.1.5)
The process (fot [s R(s,x) M(dx,ds))>o is an H-valued strongly cadlag square-
integrable martingale. Furthermore,

mLwamﬁmmmmmm (17)
=EWALR@wawwm,

where t € [0,T).

17



Proof. Consider a simple function R € 8*(T') given by (1.5). Take » < t and
set i := max{i : t; < r}. Without loss of generality we can assume ¢y < ¢
and obtain

B[ [ Rsa) M. ) )

M N

= Y ) E[RyM((ti t Atina], 4))| 5]
i=0 j=0
M N oo

= Z Z Z E[(RUM((Q, t A ti+1]7 Aj)> fn)an‘Fr]

i=0 j=0 n=1

M N
ST E[(M((ti,t A tia], A7), R fa) ol Fil fa
0 1

=2

i=0 j=0 n

Z tutZJrl ) fn)an

n=1

N -1
22
7=0 =0
N oo

D> (EIM((tigs t Atigia], ADIF, By fa)afa
7=0

=0 n=1

20 DD BUEM (1t Al ADIFL By fa)ol oL

1=io+

= Z( RijM((ti,tiJrl];A )+ RlojM(( 09 ]7AJ))

=0 =0

_ /OT/SR(S,Q:)M(dx,dS).

Thus we have proved the martingale property for simple functions. As before
the result can be extended to any R € N?(T) via the isometry from Propo-
sition 1.4: R can be written as the limit of some sequence (R,) C S*(T) in
N?Z(T). Hence the corresponding stochastic integral can be expressed as an
L2-limit of martingales which makes it a martingale again.

Proposition 3 in [Kun 70| states that every square-integrable martingale is
automatically strongly cadlag P-a.s.

=0 n=1

10—
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Chapter 2

Stochastic Equations with Lévy
Noise

As before let be (G, (, )g) and (H,(, )g) separable Hilbert spaces. Let
(2, F, P) be a complete probability space with (F;), t > 0, a right-continuous
filtration on (2, F, P) such that Fy contains all P-nullsets.

We fix a G-valued Lévy process L with characteristics (b, Q,v). For T' > 0
we consider the following type of stochastic equation with Lévy noise and
state space H

{ df (t) = (Af(t) +a(t, f(1)) dt +o(t, f(1)) dL(t), t €[0,T] (2.1)
f(0)=¢ '

where
o £ € L*(Q,Fy, P, H) is a given (possibly stochastic) initial condition

e A:D(A) — H is the infinitesimal generator of a Cy-semigroup (S(¢)):>o
of linear operators on H

e a is a measurable function from ([0,7] x © x H,Pr ® B(H)) into
(H,B(H))

e 0 is a measurable function from ([0,7] x Q@ x H,Pr ® B(H)) into
<L2<G7 H)aB(LQ(G7H>>

It is well-known (see [Paz 83]) that there exist constants w > 0 and M > 1
such that ||S(¢)||rm) < Me*', t > 0. Hence we find

My = sup ||S(t)||n) < oo.
te[0,T]
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Definition 2.1 An H-valued predictable process f(t), t € [0,T], is called a
mild solution of equation (2.1) if

ft) = 5(t)¢ +/0 S(t = s)a(s, f(s)) ds + /0 S(t = s)a(s, f(s)) dL(s)
P-a.s. for allt € [0,T).

In this chapter we show existence and uniqueness of the mild solution to
problem (2.1) under Lipschitz conditions on a and ¢ by a fixed-point argu-
ment. In [DaPrZa 92] this is done for L an infinite dimensional Brownian
motion. In order to use the isometry from Chapter 1, we have to impose the
following condition on the Lévy measure of L

/ 2|2 (d) < oo.
{llzl|>1}

|App| deals with the case that L is an H-valued Lévy process, a(-) = 0 and
o(-) = C € L(H). In [Sto 05] this is generalized to allow for a Lipschitz drift.
There the jumps of L are required to fulfill (see p.70)

sup ||AL(t)|| € L**4(Q, F, P) for some € > 0. (2.2)
te€[0,T]

Lemma 2.1 (2.2) implies [ ..., [lz]|* v(dz) < oc.

Proof. Set J := SuPsepo,r] [IAL(?)[|. Then using the definition of v(dz) from
Prop. 1.1 and Fubini’s theorem we get

xT 21/ dI — T 2 7dx
[ el = [l B
- F 2|2 N (1, da
[/{|5€|21} lll” N (2, )]

= B[ Lgpzn(AL(s) [|AL(s)]]

0<s<1

< B2 N {llall 2 1})] < oc.

Here the last inequality follows from Hélder’s inequality, because J2 € L'*3(P)
for some € > 0 by (2.2), and N(1,{||z|| > 1}) is Poisson-distributed with in-
tensity v({||z]| > 1}) and thus in all LP(P), 1 < p < oc.

O

Moreover, in Appendix C we present an example of a Lévy process fulfilling
our assumption, but not the one stated in [Sto 05|. Hence our condition is a
strictly weaker one! Note that bounded jumps of L are sufficient for (2.2).
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2.1 Existence of the mild solution

To prove the existence (and uniqueness) of a mild solution on [0, T] we make
the following Assumptions:

e a:[0,7] x Q2 x H — H is Lipschitz continuous in the third variable,
i.e. there exists a constant Lip, > 0 such that

||a(37o.)7 h1) - CL(57UJ7 h2)||H < Lipa||h1 - h2||H
for all hy,hy € H, s € [0,T], w € Q.

e 0:[0,7T] x Q2 x H— Ly(G, H) is Lipschitz continuous in the third
variable, i.e. there exists a constant Lip, > 0 such that

||O'(S7(U7 hl) - J(S7w7h2) Lo S LZpUth - h2||H
for all hy,hy € H, s € [0,T], w € Q.
e There is a constant C' > 0 with

sup ||a(s,w,0)||g < C and sup||o(s,w,0)||, < C.

(s,w) (s,w)

e [ fulfills the condition (F), i.e.
/ 2l v(dz) < oo, (2.3)
{llz(|>1}

We set [, ||z]|* v(dz) =: C), < cc.

Remark 2.1 (Linear growth)
The Lipschitz constant Lip, can be chosen in such a way that

la(s,w, W)||g < Lipa(1 + [|2]|x)
for allh € H, s € [0,T], w € Q. The same applies to Lip, respectively.
Proof. For all h € H

la(s,w, h)||la < [lals,w, h) — a(s,w, 0)|| + [[a(s, w, 0)]]
< Lipa||h]l + sup [la(s, w, 0)|| < (Lipa Vv CI]) (1 + [[A]])-

(5,w)
And of course we still have for all hy, ho € H
la(s,w, h1) = a(s,w, ha) || < (Lipa V C|) |1 = halln-

The same argument works for Lip,.
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Remark 2.2 The assumption for L gives us (cf. equation (1.4)):
AT vide) = [ falP vide) = €, < o

Next we define the space where we want to find the mild solution of the
above stochastic differential equation. A process Y : [0,T] x Q — H is called
H-predictable, if it is Pr/B(H)-measurable. We set

HA(T,H) := {Y(t),t € [0,T]|Y is an H-predictable process s.t.
sup E[|[Y/(1)[%] < oo}
te[0,17]

and for Y € H*(T, H)

Y|

1
w2 = sup (E[|[Y (#)[*])>.
te[0,7T]

Then (H2(T, H),|| ||2) is a Banach space.

Theorem 2.1 Assume that a, o and L fulfill the conditions stated above.
Then for every initial condition & € L*(Q0, Fy, P, H) there exists a unique
mild solution f(t), t € [0,T], of equation (2.1). Moreover, the solution is
continuous as a mapping from [0,T] to L*(Q, F, P; H).

The proof of the theorem uses the following lemmas.

Lemma 2.2 If f is a predictable H-valued process and o and S(t),t > 0,
are as above, then the mapping

(5,w) = Lio(s)S(t = s)a(f(s,w))

is Pr/B(L2(G, H))-measurable for all t € [0,T].
Proof. (cf. [FrKn 01], Lemma 3.6, p.69)

Lemma 2.3 Let & be a process on (2, F, P, (Fi)eor)) with values in a Ba-
nach space E. If ® is adapted to (Fi)icjo1)), and stochastically continuous
then there exists a predictable version of P.

Proof. (|DaPrZa 92|, Proposition 3.6 (ii), p.76)
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Lemma 2.4 Let ® be a predictable H-valued process which is P-a.s. Bochner
integrable. Then the process given by

( /0 S(t — $)®(s) ds)ieror

1s P-a.s. continuous and adapted to (}—t)te[o,T]- This especially implies that
it 18 predictable.

Proof. ([FrKn 01|, Lemma 3.9., p.70)

Lemma 2.5 Let (Tym)men, n € N, be sequences of real numbers such that
for each n € N there exists x, € R with

Tpm — Ty, QS M — OO.

If there ezists a further sequence (Yn)nen such that |Tpm| < yo Vm € N and
Y nen Un < 00 then

E Tnm — E T, GS M — OO.

neN neN

Proof. The claim follows by Lebesgue’s dominated convergence theorem with
respect to the measure p:= 3 . d,.

O

Lemma 2.6 Let (2, F) be a measurable space. Let E be a metric space with
metric d and f : Q — E strongly measurable. Then there exists a sequence
(fa)nen of E-valued simple functions (i.e. f, is F/B(E)-measurable and
takes only finitely many values) such that for arbitrary w € Q the sequence
d(f(w), fn(w)), n € N, is monotonely decreasing to zero.

Proof. ([DaPrZa 92|, Lemma 1.1)

Proof of Theorem 2.1
Let t € [0,T), £ € L*(Q, Fy, P, H) and f € H*(T, H). We define

() = S(1)E + / S(t— $)a(s, f(s)) ds + / S(t — s)o(s, f(s)) dL(s).
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Thus by Definition 2.1 a mild solution of problem (2.1) with initial condition
£ € L*(Q,Fy, P, H) is an H-predictable process such that v(f)(t) = f(t) P-
a.s. for all ¢ € [0, T]. Hence we have to look for a fixed-point of v, i.e. an f
such that v(f) = f in H*(T, H).

Therefore we show that v is a well-defined mapping from H?(T, H) to H*(T, H)
which also is a strict contraction. That means there exists C' < 1 such that
for all f1, fg € H2 (T, H)

17(f1) = v ()l < Cllf1 = fallae-

Then we get the existence and uniqueness of the mild solution f € H?*(T, H)
with initial condition & € L?(Q, Fy, P, H) by Banach’s fixed-point theorem.

Step 1. The mapping v : H*(T, H) — H*(T, H) is well-defined.

Let £ € L2(Q, Fo, P H) and f € H2(T, H). Then (S(t))cpor € H(T, H)
(cf. |FrKn 01|, Proof of Thm. 3.2, Step 2, p.74).

The process a(s, f(s)), t € [0,T], is P-a.s. Bochner integrable because

B[ ot o) < [ BlLina(1+ )0 as)

< T Lip,(1+ || fll9e2(1,my) < 00.

Moreover it is predictable and hence by Lemma 2.4 the process
/St—s F(s))ds, 0<t<T,

is well-defined and admits a predlctable version. It is in H?*(T, H), since

tE[)T
< MTT’ sup ( /H HHdS])%
tEOT
< MyTbLips sup ( / Bl(1+ [£(s)])?] ds)*
te[0,T] J0o
t
< MyTHLipy sup ( / BR(1+ |1£()]2)] ds)*
tel0,T] Jo
t
< MyT*Lipov/2 sup ( / 1+ B ()7 ds)}
tel0,T] J0
< MyTLipV2(1 + || f|l32) < <.
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Hence it only remains to prove that the process

( / S(t — 8)o (s, (5)) dL(s))epr

is well-defined and admits a version which is an element of H*(T, H). We
use Lemma 1.3 to decompose the Lévy process into

L(t) =tm + Bg(t) +/ z N(t,dx).

Then we define the stochastic integral as
/0 S(t— $)o(s, f(s)) dL(s):= /0 S(t— $)o(s, f(s))m ds (2.4)
+ / S(t —s)a(s, f(s)) dBg(s) (2.5)

N /0/GS(t—s)a(s,f(s))xN(dt,dx) (2.6)

and show the required properties for each summand. First we prove that the
processes are well-defined, then that they have finite H*(7T, H)-norm, and
finally that we can find a predictable version.

Claim 1: The integrals are well-defined.
1. o is Pr/B(Ly(G, H))-measurable. Hence om is Pr/B(H)-measurable for
all m € G. Moreover

T
E[/O lo (s, f(s))mlla ds] < T Lipg|[m|| (1 + |[fllsez,m)) < o0

Therefore om is predictable and P-a.s. Bochner integrable. By Lemma 2.4
we get that

( /0 S(t — s)o(s, f(s))mds)eo

exists and has a predictable version.

2. The stochastic integrals fot S(t—s)o(s, f(s)) dBg(s), t € 0,71, are well-
defined because the processes 1(oz(s)S(t — s)o(s, f(s)), s € [0,t], are in
NZ(0,T) (cf. App. A) for all ¢t € [0,T:

(i) The mapping

(5,w) = Log(s)S(t = s)o(s,w, f(s,w))
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is Pr/B(L2(G, H))-measurable by Lemma 2.2.
(ii) With respect to the norm we have

BL[ 10 = s)ots. 16)QH, s
< MALiptr(Q) / E[(L+|If () )] ds

0
< MZTLiptr(Q)2(1 + |1f]3) < oc.

We know from Prop. A.3 that the stochastic integral is again a martingale
and hence is (F;)-adapted.

3. Define a Lévy martingale measure by
M(t, A) ;:/ v N(t,dz), Ae A
A—{0}

Then we now from Chapter 2 that M is an orthogonal martingale measure
with independent increments which is nuclear and decomposable (see Thm.
1.2, Prop. 1.3). Thus we can define the stochastic integrals with respect to
a Lévy martingale measure by

/t/ St — s)o(s, f(s))a N(dt, dx)) / /s (t = $)o(s, f(s)) M(ds, dx).

They are well-defined because the processes 1(g4(s)S(t — s)o(s, f(s)), s €
[0, ], are in N?(T; v, dt) (cf. Def. 7?) for all ¢ € [0, T]:
(i) The mapping

(s,0) = L(5)S(t = s)a(s,w, f(s,w))
is Pr/B(L2(G, H))-measurable by Lemma 2.2. Hence

(Saw) — 1(0,,5}(8)5(15 - S)O(Sawa f(S,w))g

is Pp/B(H))-measurable for all ¢ € G. (Note that o does not depend on
r € Gl
(i) For the norm we obtain with T, = (z,)gx

B[ [ 15— shote. ST I, )]

< [ BUSE - Mot ML [ 11 v s

t

MLt [+ 156, ds
0

< MZTLip?2C,(1

IN

2;)<OO.

26



Again the stochastic integral is a martingale and therefore (F;)-adapted (cf.
Prop. 1.5).

Claim 2: The three expressions (2.4), (2.5)and (2.6) have finite H*(T, H)-

norm.
1. Similar to the calculations for the term involving a(-) we can conclude:

s (] /St—s F(s)mds|?])

IN

), s (61 ot SR, )’

IN

My T || Lip, sup ( / E[(1+ /()% ds)*

t€[0,T]

< MyTH|ml|Lip,/2 sup ( / 1+ B[ f(s)]?] ds)*

t€[0,7] Jo

< MyT|jm|| Lips V2
2. For (2.5) we get:

sup (Bl [ (6= s)ats. 16)) (o))}

t€[0,T]

= sup (B[ 1150 )t £)@3 I o)’

t€[0,T7]

32) < 00.

N

< MyLip,tr(Q) ux;]</0 B[+ 11 (s)[)?]ds)?

tefo
< My Lipgtr(Q)TvV2(1+ || fllae) < oo,
3. Finally for (2.6) we obtain:

t?SpT ”// (t = s)o(s, f(5)) M(ds, da)||”])?

= //"“—S Sy

s / E[IS(t — 9)[2llo(s. ()2, / |7

MyLip, sup ([ B0+ 56 )C, d)}
] J0

te[0,T

, v(dz)ds])?

(M

IA

v(dz) ds):

IA

MpT? LipsV/2C2 (1 + || f]|22) < o0

IA

27



Claim 3: For each process there is a predictable version.

To prove this claim we will use Lemma 2.3. Hence we have to show that the
processes are adapted and stochastically continuous.

1. The existence of a predictable version was already proved in Claim 1, 1.

2. The following argument goes back to [FriKno 01] and [Kno 03].
As seen in the proof of Claim 1, 2.

Z(1) ;:/0 St — s)o(s, f(s)) dBals), t € [0,T],

is (F;)-adapted. In addition we show that it is continuous in the mean square
and therefore stochastically continuous:

For o > 1 the process Z*(t) := (f/a S(t—s)o(s, f(s))dBg(s), t € [0,T],
is mean-square continuous.
To prove this claim we first use the semigroup property and get that

t/a
| st =s)ots. 160 dBo(s)
t/a
= /0 S(t—as)S((a—1)s)a(s, f(s)) dBg(s), t € [0,T],

where we set ®*(s) := L(o11(s)S((a — 1)s)o(s, f(s)), s €[0,T7.
Then it is clear that ®(¢), ¢ € [0,T], is an element of NZ(0,T). Hence we
have to show now that the process

t/a B
Z(t) ::/O S(t— as)®(s)dBg(s), t € [0,T],

is continuous for each a > 1 and ® € N3(0,T).
(a) In the first step let ® be a simple process of the form

Q= uly, (2.7)
=1
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where m € N, w; € Lo(G,H) and A; € Pp, 1 < i < m. We take arbitrary
0<r<t<T and get

r/o 5 1
ol / S(t = as)(s) dBa(s) = [ S(r —as)(s) dBo()|*)

< II/ S(t — as) — S(r — as)]®(s) dBo(s)|*])?
+ (Ell / S(t—as)‘i)(s)dBQ( NRE

r/a N ) .
< (E[/O I[S(t — as) — S(r — as)|®(s)Q2 ||, ds])?

t/o )
n <E[// 1S(t — as)B(5)QH I, ds])?

r/o 1 1
(E[/O La (5, M[S(t = as) = S(r — as)|uiQ2 |7, ds])>

™

z;l t/a 1
+ Z(E[// 1a,(s,)|1S(t — as)u;Q2 |2, ds])>
=1 1 . o 1
< w(@QF- D / 11S(t = as) = S(r — as)luil3, ds)? (2.8)
1 = t/e 1
+ tr(Q)2.Z(/ 1S(t — as)ull%, ds). (2.9)

The second summand (2.9) converges to zero because for any 1 <i <m

t/Oé 9 Zf—T 9
/ IS~ as)ully, ds < "L a2uil7, — 0 asr trort Ly

r/a

The same is true for the first summand (2.8) for the following reason:
Let be e,, n € N, an orthonormal basis of G. Then for any s € [0,7] and
1 <7 < m we have that

Lo,r/a) (S)[S(t — as) = S(r — as)]uil7,
> Lowsa) (SIS — as) — S(r — as)uea|;

neN

where

Lios /oy (8)[|[S(t — as) — S(r — as)]uien]|* — 0 asr T tort | r
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by the strong continuity of the semigroup S(t). Combined with the inequality
Loy (IS(E — as) = S(r — as)uen|” < M2 e, |
forall n € N, 1 < i < m, we get the pointwise convergence
Lo/a) (S)|I[S(t — as) = S(r — as)u||7, — 0 asr T tort | r
by Lemma 2.5. Finally, the following integrable upper bound
Loa/a) ($)I[S(t — as) = S(r — as)ugllz, < 4M7||uill7, € L'([0, T], d)

for all s € [0,7],0 < r <t < T, allows us to use Lebesgue’s dominated
convergence theorem. Thus we obtain the convergence of the integrals

r/a
/ 1[S(t — as) = S(r — as)|u|7, ds, 1 <i<m,
0

we were looking for.
Hence we have proved the continuity of

/t/a St — as)d(s) dBo(s), t € [0,T],

in the case that ® is a simple process.

(b) Now consider an arbitrary ® from NZ(0,T):
There exists a sequence (®,)ncn of simple processes considered in (a) such
that (see Lemma 2.6)

n—oo

T
P 196 = 0.l 4] o
By step (a) we know that for each n € N
t/a B
Z"(t) ::/ S(t—as)®,(s)dBg(s), t €[0,T],
0
is continuous. To show the continuity of
t/a B
Z(t) = / S(t —as)®(s)dBg(s), t € [0,T],
0
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we prove that Z" converges to Z uniformly in t € [0, 7:
sup E[IIZ"(t) = 2]
t<T

= swp B[l [ S(t—as)(@u(s) — B(s)) dBo(s)|)

t<T

t/a B N L
= sup B / 1S(t — a5)(Ba(s) — () Q32 ds]

<T

IN

MEtr(Q)E] / |(@a(s) — B(s))|2, ds]

n—oo

— 0.

Taking ® = ®* we thus obtain the continuity of

t/a t/a
7o(1) = / S(t — as)®%(s) dBo(s) = / S(t — s)o(s, f(s)) dBo(s).

for a > 1. With this result we can prove the assertion we are interested in.

(c) To establish the mean-square continuity of

Z<t>=/0 S(t — 5)o(s, /() dBa(s), t € [0,T],

we proceed as in (b) and show that Z*" converges to Z uniformly in ¢ € [0, T
for (v )nen any sequence of real numbers such that «,, | 1 as n — oc:

§l§?AE9H|27an(t) - Zz(t)Hgl]

t/an

= swp B[ [ S(t = )a(s. ) dBols /St—s  £(s)) dBo(s) |2

t<T
- gg;En 1 (5)S(E = $)a(s, £(5)) dBo(s)|)
< MEr(Q)Lipk sup F| / L g (s) 1+ ()2 ds)

t<T 0 n
< MEF(Q)LipE2(1 + || fllae) sup(t — —)
t<T e47)

< MEr(QLiR2(1 + | fllae) T2

700
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Thus Z is adapted and continuous in the mean square, and the application
of Lemma 2.3 finally gives the existence of a predictable version.

3. The proof is basically the same as the previous one: The fact that

= /Ot/GS(t— s)o(s, f(s)) M(ds,dzx), t € [0,T],

is (F;)-adapted again follows from the martingale property as already men-
tioned in the proof of Clalm 1, 3.

For @ > 1 we define Y*(t) := Ot/a Jo St —=s)o(s, f(s)) M(ds,dz), t € [0,T).

Remember that ®(s) = 1(07T}( $)S((a—1)s ) (s,f(s)), s €10,7T).
Then ®(¢), t € [0,T], is also an element, of N*(T’;v,dt), and we show as in
2. that the process

t/o R
:/ / S(t — as)®(s) M(ds,dx), t €[0,T),
0 G
is mean-square continuous for each a > 1 and ® € N?(T; v, dt).

(a) To show continuity in the case that ® is a simple process of the form
defined above in (2.7) we use the following estimate (analogously to that in

2.):
||/ /St—as M (ds, dx)
_ / /ST_as M (ds, dz)|))

ol

r/o - 1
< (&l / 18— ) = (7 = as))b(s) M (ds, ) )
t/a L
+ /s (t — as)B(s) M(ds, dz)[2])*
r/a 1
< (o] / [ (= as) = Str = as BT, ) ds)

. //a /HSt_O‘S (s)T# |13, v(dz) ds])*

< C'u% Z(/ I[S(t — as) — S(T—as)]uiﬂiz ds)%
i=1 70
1 m t/a .
e -Z(/ 1St = asyui|l2, ds)*.
i=1 Jr/e
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The two summands converge to zero by the same arguments as in 2. and
thus we have proved that

t/o 5
/ /S(t— $)B(s) M(ds, dz), t € [0,T],
0 G
is continuous for @ a simple process.

(b) For arbitrary ® from N?(T;v,dt), which does not depend onz € G,
we again have the sequence of approximating simple processes (®,,)nen (see
Lemma 2.6). We proceed exactly as in the previous proof and show that

Fr(r) = /Ot/a/SS(t—as)&)n(s)M(ds,dx), te0,7],

converges uniformly in ¢ € [0, 7] to

Y(t) = /t/a/S(t — as)®(s) M(ds, dz), t € [0,T].
Hence:

§1<1$E[||§7n(t) —Y(®)7]

t/a ~ -
— sup | / / S(t — as) (B, (s) — B(s)) M(ds, do) |2

t<T

t/a 5 5 1
_ supE[/O /S||S(t—ozs)(<1>n(s)—<I>(3))T;||%2u(dx)ds]

t<T

IN

M2C, / 1(@a(s) — B(s))2, ds]

n—oo

— 0.

Taking ® = & we get for any o > 1 the continuity of

yo(r) = /0 v /5 S(t—as) 3 (5) M{(ds, dz) = /0 v /S S(t—s)o(s, f(s)) M(ds, dx).

(c) Finally, to prove the mean-square continuity of
t
V() = [ [ St=s)o(s. 1) Mlds,an), 1 € 0.7,
0o Js
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we proceed as before and show the uniform convergence of Y*» to Y where
(n)nen is any sequence of real numbers with a,, | 1 as n — oo:

sup B[|[Y" (1) — Y (1)[[7]

t<T

— sup E| / / <+ y(3)S(t — $)o(s, /() M(ds, )|

<T

< MEC,Lisup El / L o)1+ [1£5) )P s
t<T 0 an
: t
< MpC,Lipp2(1 + || fllae) sup(t — —)
t<T Oy
9 9 ap — 1
< MECLIE2(+ |l )T
n—0o0 "
— 0.

So Y is adapted and continuous in the mean square. Thus Lemma 2.3 again
yields the existence of a predictable version.

Step 2. The mapping v : H*(T, H) — H*(T, H) is a strict contraction.

Let fi, fo € HY(T, H), £ € L*(Q, Fy, P, H). Then we get

I7(f1) =7 (f2)lle = H(/O S(t = s)(al(fi(s)) — alfa(s))) ds
+ / S(t = s)(o(fi(5)) = o(f2(5))) dL(s))eefo.rlloe2
< sup ( H/ S(t = s)(a(f1(s)) = a(fa(s))) ds|[])

t€[0,T]

T+ sup (B / (1 = )0 (1()) — o(fals))) dL(s) 2.

t€[0,T]

The first summand can be estimated by

< 7 s (B[ 150 = 9)al () — al o)) )

t€[0,T7]

o=

IA

MoLipT sup / ElI(f1()) — fols))]12) ds)

te[0,T
< MpLip T fi — false-
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As in Step 1 we decompose our Lévy process according to Lemma 1.3 and
obtain the following upper bound for the second summand:

s (] / S(t — 5)(0(f1(s)) — o(fo(s)))m ds][2)* (2.10)
+ s (7] / S(t— $)(0(h(9) - o(L(s) dBo(9)|F)F  (211)

T+ sup (5| / / (1 = $)(o(()) — o(fols)e N (dr, dr)) 7)) (2.12)

t€[0,T]

1. Tt is easy to see that (2.10)

< T7 sup ( / I1S(t = $)(@(f1(5)) = o (fals)))mlP* ds])?

te[0,7

IN

M Lipo||m|T% sup ( / Ellfi(s) — Fal(s)| ds)

te€[0,7
< Mg Lips||m||T[| f1 — fallse.

2. We get that (2.11)

— up ( / 15(t = $)(o(fu(s) — o(fo(s) QL s’

te[0,7

< MrLip,tr(Q)z sup (E /||f1 (5| ds]) 2

te[0,T]

< MyLipstr(Q)Tz|| fi — fllse.

3. Finally we conclude that (2.12)

— sup (E] / / (t = $)(o(fu(s)) — o(fals))) M(ds, da))|"])

tEOT
— sup <E[/ / 15(t = $)(0(f1(5)) — o (fals))TE |2, w(de)ds])*
te[0,T]
< / 15t - )2 llo (2 (5)) — o( ()2, / | T2 12, w(de)ds))’
< MyLip, sup ( / L (s) — Fols)[2C, ds))
tEOT
< MTLZ'paT2Cqu1—f2H%2-
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Hence by taking T'= T} sufficiently small we can find C' < 1 such that

17(f1) = v(f2)l

for all £ € L?(Q, Fy, P, H), f1, f» € H?(Ty, H). Thus we have established the
existence of a unique mild solution on [0, 7).

For general T we start with the unique mild solution f on [0,7}]. Then we
solve again for the new initial condition f(77). Since the constants involved,
Mry, Lip,, Lips, C,, tr(Q), ||m||, only depend on T' (if at all) we can proceed
exactly as before and get a unique mild solution on [17,27}]. To be precise,
set Fy := Fiopy, a(t,”) = a(t + 11,°), 6(t,") := ot + T1,-) and L(t) :=
L(t+Ty) — L(Ty), t € [0,T — T1]. We consider the equation

we(ry,m) < Ol fi = fol

H2(T1,H)

{ F(1) = (A (1) + a(t, f(2))) dt + (2, F0) AL
F(0) = f(T)) € L2(Q, Fy, P, H).

Guaranteed a unique mild solution f on [0, T} A (T — T})] we define

O fO) 1 €[0,T]
f() = { ft—"Ty) ,te (11,211 ANTY,

thus extending the solution to [0,277 A T
We continue this procedure until we have constructed the solution f on the
whole interval [0, T.
Step 3. The mild solution f : [0,7] — L*(Q,F, P; H) is continuous.
For 0 < s <t < T we can conclude
B[|S()€ = S(s)El”] < E[1S(1) = S(s)[1mlIElI°]) < 4MFE[€]1%) < o0.
Due to the strong continuity of S(t), t > 0, we get the pointwise convergence
I[S(t) — S(s)|é|lg —> 0 ass T tortls.
Hence the application of Lebesgue’s dominated convergence theorem yields

the L?-continuity of (S(¢)€)ieo.11-
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The proof for (fot S(t—s)a(s, f(s)) ds)ico,r] makes use of the same argument:
We take arbitrary 0 < r <t <7 and get

||/St—s ds—/Sr—s f(s)) ds||?)?

Bl [ 18t~ 9) = 5 = s)lals, F9) ) (2.13)

A

||/ S(t = s)als. £(s)) ds|?)). (214)
Again by using Lebesgue’s theorem we show that (2.13) tends to zero:
Bl [ 15t~ 5) = S0 = s)la(s, £ (s)) ds|
B[ (6= 5) = S0 = s)la(s, £(s)) |7 ]

< AMFr*Lipp2(1 + || fI52) < oc.

IN

Moreover by the strong continuity of S(¢), ¢ > 0, we have for all (s,w)
I[S(t —s5) = S(r—s)|a(s, f(s)|lg — 0 asr T tort | r.

And (2.14) converges to zero because

||/ (t - $)als, f(s) ds|?] < (t—r)E /||St—s F(s)|P? ds]

< (t =) MpLipg2(1 + [ f]152)
—» 0 asr fttort]r.

The continuity of (fot S(t—s)o(s, f(s)) dL(s))icpo,r follows (cf. (2.4) ff.) from
the continuity of [ S(t=s)a(s, f(s))mds, [y S(t—s)o(s, f(s)) dBg(s) and
fo Jo St —s)a(s, f(s)) M(dt,dx).

For the second and third term this property has already been shown in Step

1, Claim 3, 2. & 3. The proof for the first term is completely analogous to
that for (f(f S(t —s)a(s, f(s)) ds)tco,r) and so we are finally done.
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Chapter 3

Application to
Heath-Jarrow-Morton Interest
Rate Models

In this final chapter we want to apply our results from Chapter 2 to modeling
bond prices via Heath-Jarrow-Morton interest rate models.

Section 3.1 states some basic concepts and definitions from general interest
rate theory. In section 3.2 we introduce the classical Heath-Jarrow-Morton
model put forward in [HIM 92|. It attempts to capture the movement of
bond prices by modeling forward rates ("expected future interest rates")
with stochastic equations driven by Brownian motion. Similar to [Fil 01] we
show how to reformulate the original approach in the framework of stochastic
evolution equations. Motivated by empirical findings we then switch from
Gaussian noise to the more general Lévy noise in the underlying equation in
section 3.3. Following [OzkSch 05] we develop an HJM-type condition for the
drift coefficient to guarantee the absence of arbitrage in our model. Finally,
we use our existence and uniqueness theorem from section 2.1 to prove the
existence of an HJM model with Lévy noise (conditional upon an assumption
on the drift).

3.1 General interest rate theory

As before let (Q,F, P) be a complete probability space with (F;), t > 0, a
right-continuous filtration on (Q, F, P) such that Fy contains all P-nullsets. We
fix a time horizon T > 0.

A zero-coupon bond (ZCB) of maturity T is a financial security paying
to its holder one unit of cash at the prespecified date T in the future. I.e.
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the bond’s face value is one unit of currency (normalized for convenience).

We assume throughout the whole chapter that the bonds have no risk of
default.

By B(t,T) we denote the price of a zero-coupon bond of maturity 7" at
any instant ¢ < T. B(t,T) < 1, because the interest earned on this bond
appears as a discount to the face value. Clearly B(T,T) =1 for any T < T.
We assume that B(-,T) follows a strictly positive and adapted process on
(Q,F,P).

Since the interest received depends on the time to maturity, interest rates
are not a one-dimensional object. Thus modeling them requires a vector- or
function-valued process. We assume the existence of a complete set of zero-
coupon bonds for all maturities T € [0, T]. (In reality bonds with a finite
number of maturities between 0 and at least 30 years are traded.)

The term structure of interest rates (at time t) is the set of yields-to-
maturity (Y (¢,T)), t <T < T, where

Y(t,T)=— InB(t,T), t<T<T.

Tt
This is derived from the discount equation (using continuous compounding)
B(t,T) =exp(=Y(,T)(T —t)), t<T <T.

(Y(t,T)),t <T <T,is known as the yield curve at time t.

The Short Rate
The short rate r(t) = Y (¢,t) := limy, Y (¢,7") is the rate for instantaneous
borrowing or lending at date ¢. Since the short rate can fluctuate over time,
we consider the process (r(t)), ¢ > 0. (Note that the short rate is a theoret-
ical construction which cannot be directly observed in real life. It may be
approximated by the overnight, one-week or one-month interest rate.)

The money-market account is one unit of cash invested in the short rate
and continuously "rolled over", i.e. instantaneously reinvested. At time ¢ its
value is

D(t) = exp(/o r(s) ds).

Originally, the short rate was modeled as a (one-dimensional) stochastic
process to calculate prices of bonds and bond options. For an account of the
most popular models see e.g. [Shr 04], 6.5 and 10.2. The primary shortcoming
of these so-called short rate models is that they cannot capture complicated
yield curve behavior as changes in slope or curvature.
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3.2 The classical Heath-Jarrow-Morton model

Instead of using only the short rate as a state variable, Heath, Jarrow and
Morton (HJM) proposed in their seminal paper ([HIM 92]) to use the entire
forward rate curve as the (infinite-dimensional) state variable. In the HJM
model an entire forward curve evolves simultaneously. Moreover, the HIM
model uses all the information available in the initial term structure of in-
terest rates.

Forward Interest Rates
We call f(t,T) the forward (interest) rate at date ¢ < T for instantaneous
riskfree borrowing or lending at date 7. One should think of f(¢,T) as the
interest rate over the infinitesimal time interval [T, T + dt] as seen from time
t. Hence the short rate is given by r(t) = f(¢,1).

If we specify a family of forward rates f(¢,T), 0 <t < T < T, then we
can express the bond price as

B(t,T) = exp(—[ f(t,u) du).

If we assume that the family of bond prices B(¢,T) is sufficiently smooth
with respect to the maturity 7', we may formally define

dln B(t,T)
oT
Thus we can calculate zero-coupon bond prices from forward rates and vice

versa; the two concepts contain equivalent information. (However, note that
forward rates are a mathematical idealization, not directly observable.)

ft,T) = ,0<t<T<T. (3.1)

The Heath-Jarrow-Morton Model

Assume that f(0,7), 0 <T < T, is known at time 0. We call this the initial
forward rate curve. In the HJM model the forward rate at later times ¢ for
investing at still later times 7' is given by

t t
f(t,T)= f(0,T) +/ a(s,T) ds+/ o(s,T)-dW(s).
0 0
Or written in differential form:
df (t,T) = a(t,T)dt + o(t,T) - dW(t), 0 <t <T. (3.2)

Here the variable T is held constant. W is a d-dimensional standard Brownian
motion. The coefficient functions a: A2 x Q@ - R and 0 : A2 x Q — R? are
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adapted processes in the ¢ variable for each fixed T, where A% := {(t,T) €
R?:0<t<T <T}is a triangle set.

The dynamics of the forward rates can be used to gain that of the bond
prices (cf. [Shr 04], 10.3 for details), given by

dB(t,T) = B(t,T) (m(t,T) dt + i o (t,T) dW(t))

7j=1
where
T 1 d T
T) = — d - : du)?
mtT) = [(t1) /t alt, u) u+2;(/t o3t u) du)?,

T
S(HT) = — / o5 (1, ) d.
t

From (3.2) we get the dynamics of the short rate under this model as

r(t) = £(0,¢t) +/0 a(s,t) d$+/0 o(s,t) - dW(s).

The HJIM model includes zero-coupon bonds with maturity 7" for each
T € [0,T]. To rule out the possibility of arbitrage by trading in these bonds
we have to guarantee that each discounted bond price process

D(t) 'B(t,T) = exp(— /Otr(s) ds)B(t,T), 0<t<T

is a (local) martingale ("First fundamental theorem of asset pricing"; cf.
[DelSch 94]|). We use a standard approach and work under a risk-neutral
setting, i.e. we assume that risk-adjustments have already been made with
the measure P and thus prices can be derived as if all traders were risk-
neutral. Then we give conditions on « ensuring that the price processes
are martingales under P. Such P is then called a risk-neutral measure or
martingale measure (We will prefer the former name, because the latter has
nothing to do with our notion of martingale measure from section 1.2).
This leads to the HIM no-arbitrage condition (cf. [HJM 92] Prop.3 (18))
relating forward drifts and volatilities:
d T
alt,T) =) ot T)/ o;(t,u)du, 0<t<T<T, (3.3)
=1 t
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In terms of bond prices this results in replacing the drift coefficient m(t,T)
by the short rate r(¢). Thus under a risk-neutral setting in the HJM model
the bond price dynamics are given by

dB(t,T) = B, T) (r(t)di + > o (. T) dW9 (1)). (3.4)

The solution of (3.4) can be written as

B(t,T) = B(0,T)D(t) exp Z/ (s, T) AT (s) — ;/0 ot (5, T)? ds)).
: (3.5)

The HJIM model was later extended to allow for an infinite number of
driving Brownian motions, i.e. an infinite number of factors influencing the
forward rate movement. For example, Filipovic (|[Fil 01]) considered the
approach

f(t,T) :f(O,T)+/0toz(s,T) ds+Z/0taj(s,T) dp (s) (3.6)

where again T is held constant, 0 <t < T, 0/ : A2x Q -+ R, j € N, and
the 87, j € N, form a sequence of independent standard Brownian motions.
Then for (g;), j € N, the standard orthonormal basis in (2, the series By :=
ZjeN Bg; defines a Q-Brownian motion in the weighted sequence Hilbert
space (3. Here (5 := {(v;)jen € RY[ 35,0 \jvi < oo} where A = (\))jen is a
sequence of strictly positive numbers with ZjeN Aj < oo (cf. |Fil 01], Prop.
2.1.1.).

Thus in the HJIM framework the dynamics of the forward rate are given
by a system of infinitely many stochastic differential equations indexed by 7'.

Musiela Parametrization
Naturally this led to the idea to treat the whole system as one infinite dimen-
sional process. L.e. transforming (3.6) into a Hilbert space-valued stochastic
evolution equation, thus entering the field of stochastic partial differential
equations.

To avoid problems with a varying state space depending on ¢ we switch
to a parametrization proposed by Musiela (see [Mus 93|): For x > 0 set
T =z +t. Denote by (S(t))i>o the semigroup of right shifts, i.e.

S(t)g(z) :==g(z+1), t >0, g: Ry = R
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Applying these definitions we can rewrite (3.6) as
t
ft,e+t) = S)f(0,z)+ / S(t—s)a(s,x+s)ds
+ Z/ (t—s)o? (s, x4 s) df (s). (3.7)

jeN

Now we consider fi(-) := f(t,-+1), t > 0, as a stochastic process with state
space H, where H is a suitable separable Hilbert space of functions from R,
to R. We call H the space of forward curves.

Possible choices of H are thoroughly discussed in [Fil 01]. He proposed a
family of weighted Sobolev spaces (H,,) defined as follows:

Definition 3.1 (State space for the HIM model)

Hy, ={f:R, = R: f is absolutely continuous, / f'(x)*w(x) dz < oo},
0

where w : Ry — [1,00) is a non-decreasing C' -function s.t. [;° w(z)"3 dr <
oo and f' denotes the weak derivative of f.

Then for a fixed weight function w the space H,, is a separable Hilbert space
w.r.t. the inner product

(f,9)m, == f(0)g(0) +/Ooo f(2)d (x)w(x)dx, f,g€ H,.

Moreover, the shift semigroup (S(t))i=0 is strongly continuous on H,, with
infinitesimal generator A = a . There exists a constant C' such that for any
f € H, we have || f||poor,) < C||f||H (cf. [F11 01], Thm. 5.1.1.)

Introducing the notation oy := a(t, -+t), o] == o7(t,-+t) and fy := f(0,-)
equation (3.7) transforms into

(t)fo+ /St—SOést-l-Z/St—saﬂdﬁJ()

JeEN
Thus f looks like a a mild solution to the stochastic evolution equation
{ dfy = (Zfi+ o) dt+3 001 dF (1) (3.9)
fO - f(oa )

Finally allowing state-dependent coefficients (we could have done this
before) we arrive at the following stochastic equation for the forward rates:

dfs = (2 fi + alt, f) dt + o(t, f;) dBg(t)
{ fo= f(0,) ’ (3.9)

where
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e f(0,-) € H is the (deterministic) initial forward curve

e « is a measurable function from ([0,7] x Q@ x H,Pr ® B(H)) into
(H.B(H))

e 0 is a measurable function from ([0,7] x Q x H,Pr ® B(H)) into
(Lo(G, H), B(Ly (G, H))

e By is the Q-Brownian motion on G := /3.

Hence (3.9) is just a special case of our setup from Chapter 2, with A = %
and L = BQ.

3.3 HJM models with Lévy noise

The log return between times ¢ and ¢t + At on a zero-coupon bond maturing
at T is defined as In(B(t + At,T)) — In(B(¢,T)). It can be shown that log
bond returns resulting from Gaussian HJM models approximately follow a
Normal distribution.

But as in the case of stock prices, empirical studies (see [Rai 00| for a de-
tailed study concerning German government bonds) show that this normality
assumption is not really true in reality. Log returns of bonds calculated from
historical data turn out to follow a leptokurtic distribution. I.e. very small
and very large price movements occur more often than predicted by a Gaus-
sian law. Hence it seems reasonable to replace the Normal distribution by a
more flexible one to obtain a more realistic model. That means switching to
the much wider class of Lévy processes, with the driving Brownian motion
from the classical HIM model as just one prominent example.

Instead of starting with the driving SDE Eberlein and Raible [EbRai 99|
suggest to use the explicit bond price formula in the Gaussian framework
(3.5) and replace the Brownian motion with a Lévy process. They study the
one-dimensional case, while in [Rai 00] the multi-dimensional setting with d
independent Lévy processes (L (t)), j = 1,...d, is considered. The derived
bond price process is of the form

exp(>_ J lfo (s,T) dL]( )
exp(_;_ 1f0 T))ds)

B(t,T) = B(0,T)D(t) (3.10)

where 6;(u) := In(E[exp(uL’(1))]) is the logarithm of the moment-generating
function of the jth Lévy process at time 1. In the classical HIM model we
choose I = W7, j =1,...d and 6;(u) = u*/2 and get back formula (3.5).
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It is shown that the approach (3.10) also yields the martingale property
for each discounted bond price process

D(t) 'B(t,T) = exp(— /Otr(s)ds)B(t, T), 0<t<T,

thus ruling out arbitrage. ([Rai 00|, Col.7.10, with integrability conditions
on L and o.)

HJM equation with Lévy noise

We will explore another approach, i.e. we begin with the driving SDE and
replace the Q)-Brownian motion in (3.9) by an infinite-dimensional Lévy pro-
cess.

Concerning the two different approaches we refer to [App 04|, p.273, 1.18-24,
where a similar topic is discussed in the context of modeling a stock price by
a simple one-dimensional linear stochastic equation:

The use of Lévy processes in finance is at a relatively early stage
of development and there seems to be some disagreement in the
literature as to whether it is best to employ a stochastic exponen-
tial to model stock prices, (...), or to use geometric Lévy motion,
S(t) = eX® (the reader can check that these are, more or less,
equivalent when X is Gaussian). Indications are that the former
is of greater theoretical interest while the latter may be more
realistic in practical models.

Starting with the dynamics leads to the equation

{ dfy = (2 fi + alt, ) dt + o(t, f,) dL(t)
fO = f(0= )

Then a mild solution to this equation has to satisfy

(3.11)

fi=St)fo+ /OtS(t —s)a(s, fs)ds + /OtS(t —s)o(s, fs)dL(s). (3.12)

Working with the Musiela parametrization the short rate is given by r(¢) =
£(0) and the discounting process by D(t)~" = exp(— [ f,(0) ds).

We take H = G = H,, for a fixed weight function w. (For the definition
and properties of the state space H, see Def. 3.1.) We will loosely follow
the setting of [OzkSch 05], section 3, and assume that our Lévy process L is
a martingale, more precisely that L fulfills condition (F) and can be written
as

L(t) = Bg(t) +/ x N(t,dz). (3.13)

H
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Such L have second moments in the following sense

E(LMOI* = E[I|BQ(t)+/H$N(t,div)ll2]

< 2(E[||BQ(2?)||2]+E[||/HIN(t7dI)||Q])

= 2(t tr(Q) +t/H |z||* v(dx)) < oo, t € [0,T).

Here the last equality results from Prop. A.2 and Prop. 1.2. For Lévy
processes with second moments we have the following useful representation

Proposition 3.1 ([OzkSch 05], Prop. 2.1.)

Consider a Lévy process (L(t)),cjom with values in H and E[||L(t)|]"] < oo
for all t € [0, ). Then for (ex), k € N, an arbitrary orthonormal basis of H
we have the following decomposition

L(t) = > (L(t), ex) mex,

00
k=1

where the series converges in L?. Moreover, the process (Ix(t)),cjo7) defined
by le(t) :== (L(t), ex)n is a real-valued Lévy process for any k € N.

Proof. Consider t € [0,T] fixed. Then by the Bessel inequality we have for
any m € N

m

E[| Y (L), en)merll’] = Y BULW), er)(L(1), e))] (e, )

k=1 k=1

= ) E[(L(t),ex)?] < E[|IL(B)[F].

Hence the series converges in L?. The fact that the processes I, are real-
valued Lévy processes is clear by the definition.

O

To ensure the existence of exponential moments for L needed later, we impose
the following condition on v

/| | esplle ) lda) < o0, Ve e B (3.14)
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Unlike [OzkSch 05] we allow the coefficients to explicitly depend on the
state f;. As before o is a measurable function from [0, 7] x 2 x H into Ly(H)
and « is a measurable function from [0, 7] x Q x H into H. We require o to
be Lipschitz continuous in the third variable and uniformly bounded. The
process (-, f.) is assumed to be P-a.s. Bochner integrable on [0, T].

To shorten notation we define o*(s, f)(T) := T *a(s, f,)(u) du and also
(s, J)(T) = [y lols, fo)ex](u) du

As outlined in section 3.2, to guarantee the absence of arbitrage we have
to make sure that all discounted bond prices follow local martingales under
the risk-neutral measure P. This is done in the next theorem which states a
HJM-type condition relating forward drifts and volatilities (compare formula

(3-3))

Theorem 3.1 (cf. [OzkSch 05], Thm. 3.1.) )
All discounted bond prices are local martingales, if for all 0 <t <T <T the
following condition holds P-a.s.:

0 = —a*(t, f)(I) + = Z)\k o5 (t, £)(T)]? (3.15)

+ /H[exp(/0 lo(t, fo)x](u) du) — 1 —/0 ) [o(t, fr)x](u) du] v(dzx).

In the proof we make use of the following Ité6 formula for Lévy processes
obtained from [Kun 70]:

Theorem 3.2 Let (L(t)).cio.1) be a Lévy process with values in the separable
Hilbert space H. Moreover, let (o ( ))te 0.7] be a predz'ctable L(H)-valued pro-

cess which is bounded and set X (t fo s) for allt € [0, T]. Denote
by A\, and e, k € N, the ezgenvalues resp. ezgenvectors of Q. For an open
subset A C H and a twice differentiable function F': A — H with uniformly
continuous second derivatives on bounded subsets of H it holds, that

F(X(t) = /DF )) dX(s)
+ /OZA'@DQ s=)) (o(s)e, o(s)ex) ds

k=1

+ D IA(F(X))(s) = DF(X (s-))AX(s)].

s<t

Note that the second derivative D?F(+) is a bilinear mapping, and we just
write D?F(+) (g, h) for this mapping evaluated at g and h.
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Proof of Thm. 3.1. Define
Tt

y(t,T) = — fi(u) du

0

Then B(t,T) = exp(y(t,T)) and we first derive the dynamics of the process
(y(t,T))i>0. From (3.12) we get

y(t,T) = —/0 t[fo(u+t)+/Ota(s,fs)(u+t—s)ds
+ (/0 S(t— s)o(s, fs)dL(s))(u)] du. (3.16)

Setting ¢ = 0 yields

T—t

T Tt
— folut+t)du = y(O,T)+/ fo(u) du — fo(u+1t) du
0 0

= y(0,7) +/0t fo(u) du. (3.17)

Since we have to consider the discounted bond prices, it is convenient to have
the short rate explicitly appear in the dynamics of y. Again from (3.12) we

conclude
/Otfu(())du _ /fo du+// 5. £2)(u — s) ds du

; / ([ Stu=sots. ) dL)©@du. (319

Inserting (3.17) and (3.18) into (3.16) we obtain
y(t.T) = y(0.T)+ / £ul0

_ // s, fs) u—sdsdu—// s, f3)(u— s)ds du

_ /0 T /0 S(t - 8)o(s, f,) dL(s))(w) du

B /0(/Ous(u_8)0(5>fs)dL(5))(0) du. (3.19)

Now we can interchange the order of the a-integrals by using Fubini’s theo-
rem. This gives us the following expression for the sum of the a-integrals

// s, fs)(u — s)duds.
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We apply the decomposition of L from Prop. 3.1 to get
t
(/ S(t— $)o(s, £.) dL(s))(u) = Z/ 5y f)en](u+ 1t — ) dl(s)
0

_ Z/o o5, [ )+t — ) dls(s),

where o (s, fs)(u) := [o(s, fs)er](u). Note that o, and thus oy, for any k € N,
is uniformly bounded.

This property also allows us to use the stochastic Fubini theorem (cf.
[Sto 05], Thm. 3.3.4; [DaPrZa 92|, Thm. 4.18) to interchange the order of
integration in the last two terms of (3.19). Hence we obtain

/ Lt(/ St~ s)oe, ) dL(s))(w) du
- /Tt OO/Uk ) (u+t—s)dly(s) du

- Z / / o1 (5, £2)(u — ) du diy ()

as well as

/Ot(/ous(u_s)( fs) dL(s) dU_Z//ak fo) (uw— s) dudlp(s).

Combining these calculations leads to the following formulation of y:

vt T) = yO0.T)+ /f“ d“_// s, fs)(u — s)ds
;/0/ ok(s, fo) (u — 5) dudl(s).

Finally we use the abbreviations o*(s, f5)(1) and oi(s, f5)(T) introduced
above and obtain the dynamics of y:

y(t,T) = y(0,T) /fu du—/o a*(s, f5)(T) duds
3 / T) diy(s). (3.20)
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Again, note that the o}, are bounded. In order to apply the It6 formula from
3.2 we need a more functional analytic representation of the equation for y.
So we define @ : [0,7] x Q — L(H) by

[B(s))() = / [o(s, f)g)(u— ) ds, g€ H.
Then

/O (®(s) dL(s)|(T) = Z / T) dly(s
— Z// s, fs)ex|(u — s) ds dly(s)
= Z/ or (s, f)(T) du dly(s).

Setting m( fs)( ) : fs( ) fs)() we get

/m fsds—/ B(s) dL(s). (3.21)

Since B(t,T) = exp(y(t,T)), we define
F:H—H, g(-) = exp(g()),

where exp(g(+)) is the function h such that h(z) = exp(g(x)), = > 0. Then
B(t,:) = F(y(t,-)). For two real-valued functions functions g, h we set (g x
h)() := g(-)h(-). Tt is easy to show that DF(-) = F(-) x id and D?F(-) =
F(-) x id x id. Hence the application of Theorem 3.2 yields

B5(0) / DF(y (s, fs) ds — ®(s) dL(s))
/0 Z)‘kDQ ) (@(s)er, P(s)ex) ds
+ Y [F(y(s)) — Fy(s—)) — DF(y(s—)) B(s)AL(s)].

Inserting the derivatives of F' we conclude

B(t) = B(0) —i—/o B(s—=) x (m(s, fs) ds —/0 B(s—) x ®(s)dL(s))

T / > MB(5) x (B(s)er) X (@) s
+ STIAB(s) - B(s—) x (@(s)AL(s))].
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By evaluating B(¢,T) at maturity 7' we can deduce

t

B(t.T) = B(0.T)+ / B(s—.T)[£,(0) — o’ (s, £.)(T)] ds

- / B(s—,T)oy(s, f)(T) dix(s)

- %/0 B(S_’T)kz:;)\k[UZ(Safs)(T)]Q ds

+ Y [AB(s,T) — B(s—,T)(®(s)AL(s))(T)].

Since B(s) = F(y(s)) we get B(s)/B(s—) = exp(®(s)AL(s)) and thus obtain
B(s,T)

B(s—,T)
= B(s=, T)(exp([2(s) AL(s)|(T)) — 1).

AB(s,T) = B(s—,T)(

_1)

This leads to

> [AB(s,T) = B(s—,T)(®(s)AL(s))(T)]

s<t

= Y Bls— Dlexp((P(s)AL())(T)) = 1 = (&(s) AL())(T)].
And this expression can also be written as

/0 /H B(s—, T)[exp((®(s)2)(T)) — 1 — (B(s))(T)] N(ds, d).

Since D(t)~! is real-valued and of finite variation, applying Itd’s product rule
yields

diD#) 'B(t,T)] = (—f; (0))D(t—) 'B(t—,T)dt + D(t—) ' dB(t,T)

52



and therefore the discounted bond price process fulfills:
D()"'B(t,T) (3.22)

- D(o)—lB(o,T)—/O D(s)~' B(s—, T)a* (s, £,)(T) ds

= 3 [ D) Bl Do £)(T) ds)

k
1
2

o0

JRCORECEA) SPRCIENATE R

k=1

n / /H D(s)" B(s—. T) exp(((s)2)(T)) — 1 — ((s)2)(T)] N (ds, dx)

_|_

+ /0 /HD(s)_lB(s—,T)[exp((cb(s)x)(T)) —1—=(®(s)x)(T)] v(dx) ds.

The term D(0)"'B(0,T) is just a constant. The Lévy processes [ are
martingales by assumption. The same holds for fH:EN(-,dx). Hence the
stochastic integrals w.r.t. them are local martingales. Remembering, that
(@(s)2)(T) = [} "*[o(s, fs)x](u) du, we conclude.

O

Note that if the forward rates are positive (a suitable property indeed), the
discounted bond prices will also be true martingales as they are bounded by 1.

Writing out the abbreviations (3.15) reads
T—t 1 oo T—t
0 = —/ a(t, fi)(u) du + 5 Z)\k(/ [o(t, fi)ex](u) du)?
0 1 0

+ /H fexp( /0 o, ft)x](u)du)—l—/o ot £)2](u) du] v(dz).

Taking derivatives on both sides we get
00 Tt

alt, T =) = > Mot filex (T~ t)/ [o(t, fo)exl(u) du (3.23)
k=1 0

+ /H[a(t, fo)x|(T — t)(exp(/o ) lo(t, f)z](u) du) — 1) v(dz).

Here interchanging differentiation and summation is justified by [Fil 01] Lem.
4.3.2. (uniform convergence on compacts); interchanging differentiation and
integration by Lebesgue’s dominated convergence theorem and (3.14).
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We can now state the following (conditional) proposition on the existence
of an HJM model with Lévy noise and state-dependent coefficients:

Proposition 3.2 Let beo : ([0, T)|xQUxH, PrB(H)) — (L2(H), B(Ly(H)))
measurable, uniformly bounded and Lipschitz continuous in the third variable.
Moreover let L be a Lévy process satisfying (3.13) and (3.14). Define the drift
coefficient o by formula (3.23).

If then a : ([0,T] x Q x H,Pr ® B(H)) — (H,B(H)) is measurable and
Lipschitz continuous in the third variable with sup, ) |la(s,w,0)[[z < C,
we get an HJM model with Lévy noise. 1le., for any initial forward curve
fo € H equation (3.11) has a unique mild solution, describing the forward
rate dynamics and thus the arbitrage-free movement of the discounted bond
prices.

Proof. Existence (and uniqueness) of the mild solution is just an application
of Theorem 2.1. Absence of arbitrage is due to the special form of o derived
in Theorem 3.1.

|

Of course, it would be desirable to give explicit (additional) conditions on o
and L which would ensure that o has the required properties.

In the case of L = Bg (hence v = 0) this is done in [Fil 01]:
Define H as a closed subspace of H by

H® .= H) :={f € H,: f(co) =0}.

Assume that Bg takes values in H°. If o is a measurable, Lipschitz continu-
ous (in f) and uniformly bounded mapping from ([0,7] x Q2 x H, Pr @ B(H))
into (Ly(H®), B(Ls(H"))), a is a mapping from ([0,7] x Q x H,Pr @ B(H))
into (H, B(H)) with the same properties.

Proof. (cf. |Fil 01] Lem. 5.2.1., Lem. 5.2.2. ii))

In the case of general L finding explicit conditions for the moment remains
an open problem. While the first term of « is covered by Filipovic’s results,
there seems to be no straightforward approach for the second one. One might
think of strengthening the requirements on the state space or a special form
of 0. Another idea to get the Lipschitz continuity of « could be to assume
the Frechét differentiability of ¢ and then find conditions under which this
would give the Frechet differentiability of o with bounded derivative.
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Appendix A

(Q-Brownian Motion and
Stochastic Integration

Let be (G, (, )¢) and (H, (, )u) separable Hilbert spaces; (2, F, P) a com-
plete probability space with (F;), ¢ > 0, a right-continuous filtration on
(2, F, P) such that Fy contains all P-nullsets.

Definition A.1 An operator T € L(G,H) is called nuclear if there exist
sequences (a;)jen i H and (b;)jen in G such that

Tx = Zaj(bj,a:)g Jorallz € G
jeN

and

Z||aj||H||bj||G < 00.
JEN

The space of nuclear operators from G to H is denoted by L,(G, H).

Proposition A.1 The space L1(G, H) endowed with the norm
I T\ Ly =it llajllullbjlle = Tz = a;(bj,x)e for all z € G}
J JeN
1s a Banach space.

Proof. ([MeVo 92|, 16.25 Cor.)

Definition A.2 For T € L(G) and (e,), n € N, an orthonormal basis of G
we define the trace of T as

tr(T) :== Z(Ten,en)g

neN

if the series converges.
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This expression is well-defined independently of the choice of (e,), n € N (cf.
|[ReSi 80, Thm. VI.18]). Moreover, for T' € L(G) we have that |tr(T)| <

17|21 (c)-

If (T’2 is the adjoint operator of T, then T*T is non-negative. By the
square-root lemma ([ReSi 80|, Thm. VI.9) for every non-negative bounded
linear operator () on G the square-root Q% exists, i.e. a unique non-negative
bounded linear operator with Q2Q2 = (). Hence for any T € L(G) we can
define |T'| := (I*T)z. T is called trace class if tr|T| < co. We have that
L1(G) is the space of trace class operators and tr|T| = ||T||z,(q)-

Definition A.3 A G-valued stochastic process Bg adapted to (F;), t > 0, is
a Q-Brownian motion if

o Bo(0) =0

e By has increments independent of the past, i.e. Bg(t) — Bg(s) is in-
dependent of Fs for all 0 < s <t < o0

e Bg has stationary Gaussian increments, i.e. P o (Bg(t) — Bg(s)) ™! =
N, (t—9)Q) for all0 < s <t < 0

e Bg has P-a.s. continuous trajectories

Here (0, @) denotes a Gaussian probability measure on G with mean 0 and
covariance operator (). () is a non-negative, symmetric trace class operator
(cf. [FriKno 01], Section 1.1).

Definition A.4 Let M be a stochastic process with values in a separable
Banach space E. The process M s called an Fi-martingale, if

o E[||M(t)]|] < oo forall0 <t < o0
o M(t) is Fi-measurable for all 0 <1 < oo

o E[M(t)|Fs] = M(s) P-a.s. for all0 < s <t < o0

Proposition A.2 A Q-Brownian motion Bg(t), t € [0,T], is a continuous
square-integrable martingale. Moreover, E[||Bg(t)|*] =t - tr(Q) < .

Proof. ([FriKno 01|, Prop. 1.20 & Prop. 1.3).

Definition A.5 Set Gy := Q%(G). Let be N3(0,T) the space of all mappings
X on [0,T] x Q taking values in Lo(Gy, H ), such that
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1. X is predictable, i.e. Pp/B(La(Gy, H))-measurable.

2. For any (t,w) € [0,T] x Q X(t,w) o Q2 is a Hilbert-Schmidt operator
and we have

7, ds])% < 00

T
Xl = (B 1X()Q}
Proposition A.3 For X € NA(0,T) the stochastic integrals

/OtX(s) dBg(s), t € (0,7,

are well-defined and we have

Bl [ x()aso)P1= B[ IXGQHE, ) te 0Tl ()

Moreover the process (fOtX(s) dBg(s))tco 45 a continuous square-integrable
martingale with respect to Fy, t € [0,T].

These results are taken from Section 1.3 of [FriKno 01| which is based on
[DaPrZa 92]. There a detailed construction of the stochastic integral with
respect to a Q-Brownian motion is carried out (including more general inte-
grands and further properties of the integral).
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Appendix B

The Stochastic Integral in Hilbert
Spaces with respect to General
Martingales

Let be (2, F, P) a complete probability space. Let (F;), t > 0, be a right-
continuous filtration on (€2, F, P) such that Fy contains all P-nullsets.
(H,(, )g) and (G, (, )¢) are (infinite-dimensional) separable Hilbert spaces.
Fix T > 0. A G-valued martingale M = (M})cqo,r is called square-integrable
martingale, if for any ¢ € [0, T] holds E(||M]|?) < oc.

Following Métivier [Met 77|, our aim is to define the stochastic integral
“[ X dM” for M a square-integrable martingale and X from a wide class of
stochastic processes taking values in the linear (possibly unbounded) opera-
tors from G to H.

First we recall some basic facts about tensor products in Hilbert spaces used
in the following sections (cf. [Tre 67]):

B.1 Tensor products in Hilbert spaces
Let (H,(, )g) and (G, (, )g) be separable Hilbert spaces.

Definition B.1 The algebraic tensor product H @ G of H and G is defined
as the (smallest) vector space such that

1. there exists a bilinear mapping 7 from HxG :={(h,g)|h € H, g € G)}
mto H® G

2. any bilinear mapping b : H x G — K, K any Hilbert space, can be
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written in the form b = uyom where uy is a uniquely defined linear map
from H® G into K (depending on b).

For existence and uniqueness (up to isomorphism) of the tensor product see
e.g. ([Tre 67|, Theorem 39.1, p.404).

Proposition B.1 On H ® G there exists a unique norm such that for any
continuous b the corresponding map up is also continuous, and moreover

||b||B(H><G,K) = ||Ub||L(H®G,K)-
Proof. ([Tre 67|, Proposition 43.4, p.438 & Proposition 43.12(b), p.443).

Definition B.2 The norm from B.1 is called trace norm and is denoted by
|- 1. The completion of the space H® G w.r.t. ||-||1 is called the projective
tensor product of the spaces H and G, denoted by H®1G.

For K =R and b = (, )¢ the linear mapping u, in the factorization b = upon
is called the trace on G®,G and we write u, = tr. Thus tr is the unique
linear continuous extension of the mapping

9®9¢ — (9.9)a-

On H ® G we can introduce an inner product which is the unique linear
continuous extension of the mapping

<h®ghN®q¢g>— (h,h)g-(9,9)c.

We can assign to h®g the linear mapping (h, -)gg. Thereby H®G is uniquely
embedded into L(H,G). For H®,G we have the following characterization:

Proposition B.2 H®,G is (canonically) isomorphic to the space of nuclear
(or trace class) operators from H to G, i.e. L1(H,G).

Proof. (|Tre 67|, p.495 ff.).

To the element Q € H®,G we assign the operator Q € Li(H, Q) given by
the following equation:

(Qh,9)e =< Q,h®g>, he H gcG.
Then [|Qll1 = Q|1 (m.c)-

Proposition B.3 H®,G has the properties of the dual space of a separable
Banach space.
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Proof. ([Tre 67|, Theorem 48.5%, p.498).

For u € L(G, H) we denote by u ® u the unique linear continuous extension
of the mapping
u@u(g®g) — ulg) ®u(g)

from G G to H® H.

B.2 Doleans measures

Definition B.3 A subset A C [0,T] x Q of the form A =|s,t| x F where
FeF,0<s<t<T,or{0} x F, Fe€Fy, is called predictable rectangle.
The family of predictable rectangles is denoted by Rr.

Let be Pr = 0(Ry), the o-algebra generated by Ry. Pr is called the o-
algebra of the predictable sets; a stochastic process X measurable with respect
to Pr is called predictable.

Definition B.4 (cf. [Met 77|, 2.3/2.4, p.6/7)
Let be (Zy)iejor) o real-valued process adapted to (Fy)i>o with E(|Z,]) < oo
for allt € [0,T]. The real-valued function Az is defined on Ry by setting

M58 x F) = E(lp - (Zs — Z4)) , As({0} x F) = 0.

Az is additive and therefore can be extended to a content on Ar, the ring
generated by Rr.

If Az has a o-additive extension from Ry to Pr, also denoted by Az, this
o-additive measure on ([0,T] x Q,Pr) is called the Doleans measure of the
process Z.

Remark B.1 [t is easy to show that the process Z is a martingale (sub-
martingale | supermartingale), if and only if Az is identically zero (positive
/ negative).

Proposition B.4 1. If My, t € [0,T], is a G-valued Fy-martingale then
IMy||%, ¢ €[0,T], is a positive real-valued F;-submartingale.

2. If additionally M has right-continuous paths, then the process | M|, t €
[0,T], admits a Doleans measure.

Proof.
1. (|[DaPrZa 92|, Proposition 3.7, p.78)
2. (|[Met 77|, Prop. 2.6, p.-1.9- & Prop. 20.1, p.-111.20-)
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O

The positive Doleans measure of || M;||? from Proposition B.4 will be denoted
by ppr. From [Kun 70| we know that every square-integrable martingale ad-
mits a strongly cadlag version. In the following we only consider this cadlag
version.

The measure ap(cf. [Met 77|, p.-1.83-)

For a square-integrable martingale M we have ||M; ® M,||, = ||M;||%. Hence
the Banach space-valued random variable M; @ M; (taking values in G&,G)
is integrable. For any predictable rectangle |s,t] x F' we define

an(]s,t] x F) == E(1p - (My — M,)®?) (B.1)
The equation
E(lp - (M — M,)®%) = E(lp - (M7 = M?))
— E(lp-M;® (M;— M,)) — E(1p - (M; — M) ® M)
combined with the martingale property gives
ar(]s,t] X F) = E(1p - (M — M2?)).

Therefore it is clear that a,, is additive and that it is possible to extend a
to an additive function on Ar, the ring generated by Rr.

For the proof of the next proposition we need the following abstract the-
orem from the theory of linear operators:

Theorem B.1 Let (S, %, p) be a o-finite positive measure space and let T be
a continuous linear map of L'(S, X, u) into the dual space B* of a separable
Banach space B. Then there is a p-essentially unique function b*(-) on S to
B* such that b*(-)b is p-essentially bounded for each b € B and

(Tf)b= /Sb*(s)bf(s) u(ds), f € LS, 2, pu), be B. (B.2)

Moreover, ||T|| = esssup,cg ||b*(s)||. Conversely, if b*(-) is any function on
S to B* such that b*-)b is measurable for each b € B, and such that

esssup ||b*(s)|| = M < oo,
scS

then equation (B.2) defines a continuous linear map T of L*(S, %, ) into B*
whose norm s M.
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Proof. ([DunSch 57|, V1.8.6, 6Theorem, p.508).

Proposition B.5 (cf. [Met 77|, p.-1.84-)
There exists a unique (up to ppr-equivalence) predictable process Qn with
values in GG such that

Vo € L0, T] x Q,Pr, piar) : /gp day = /gp Qur dua.

Proof.
From (B.1) follows

lars(Js, 1] x F)[ln < E(Lp - [[(Me — Mo)**||1)
= E(lp-||M; = Milla) = E(1p - (MG = IIMi]2))  (B.3)
= (s, t] x F)

For any real-valued process X of the form
X = Z%‘ : 1]si7ti]><Fl-a ]Siati] x Iy € Ry Vi,
i=1

we set "
/X d(IM = Z’YZ . aM(]3i7ti] X E)
=1

By inequality (B.3) we get

n
||/X dCLM||1 < ZH% : 1]8i,ti]><Fi
=1

= bl st < B) = [ 1X] dus = X
1=1

1

Therefore the mapping X + [ X day, has a unique linear, continuous exten-
sion to a contraction from L'([0,T] x Q, Pr, uas) into G&,G; also denoted
by X — [ X day.

By Prop. B.3 G®.G is the dual space of a separable Banach space. Hence
the application of the first part of Theorem B.1 completes the proof.

O

Remark B.2 The equation ay(A) == [14 day, A € Pr, defines a o-
additive measure on Prp.

The process Qur turns out as the "density function” of the G®,G-valued
measure ay; w.r.t. the real-valued measure iy, and the measure ap; as the
Doleans measure of the G®,G-valued process M @ M.
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Qn can be chosen in such a way that for any (t,w) € [0,7] x Q Q(t,w) is a
positive element of G®,G. Le., < Qu,g® g >> 0 for all g € G-
For any g € G and A =]s,t] x F € Ry holds

<ay(A),g®g> = <E(lp-(My—M,)**),9®g >
= E(lF(Mt—Msag)Qg)ZO-

Hence the real-valued measure A +— < ap(A),g ® g > is positive, and
because of

<apy(A),g®yg >:/ <Q(t,w),g® g > dup(t,w)
A

the function < Q(t,w), g ® g > is uy-a.e. positive. Since G is separable, it
is possible to choose a version of @,y which fulfills < Qu(t,w),g ® g >> 0
for all ¢ € G and all (t,w) € [0,T] x Q. (cf. [Met 77|, 11.7, p.-1.85-)

To the process @ we assign the process Q) taking values in L;(G) and
given by the following equation:

(Qu9,9)e =< Qu,g® ¢ >, g, € G.

- <1
Since Qs (+) is positive, the same holds for @ (-) and therefore Q3,(-) is well-

defined. In fact, Q(-) is also symmetric and thus Q2,(-) a Hilbert-Schmidt
operator.

B.3 Stochastic integrals with respect to general
martingales

Similar to the Brownian motion or the martingale measure case (see section
1.3), in the first step the stochastic integral is defined for so-called simple
processes. In the second step the construction is then extended (via an L2-
isometry) to the closure of such processes in a suitable Hilbert space.

Definition B.5 MZ2(G) is the vector space of square-integrable cadlag G-
martingales with the inner product (M, N) := E((Mr, N7)g). M%(G) is a
Hilbert space isomorphic to L*(Q, Fr, P, G).

Definition B.6 (cf. [Met 77|, 32.1, p.-V.7-)

Let be L*(G, H; Py, M) the space of processes X taking values in the lin-
ear (possibly unbounded) operators from G into H, which have the following
properties
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<1
1. The domain of X (t,w) contains Q3,(t,w)(G) C G, (t,w) € [0,T] x Q.
<1
2. For any g € G the H-valued process X o Q},(g) is predictable.

1
3. For any (t,w) € [0,T] x Q@ X(t,w) o Q3(t,w)is a Hilbert-Schmidt
operator and we have

~ 1
/[0 o Qhl, di < oo
T x

Proposition B.6 ([Met 77], 32.2, p.-V.8-) )
For any X,Y € L*(G, H;Pr, M) the process tr(X o Qu o Y*) is predictable
and py-integrable. The mapping

(X,)Y) — tr(X oQu oY) duy
[0,7]x2
is an inner product on L*(G, H; Py, M) and with respect to this inner product
L*(G, H; Py, M) is complete; i.e. a Hilbert space.

Proof. 3
Claim 1. tr(X o Q0 Y*) is a predictable real-valued process.
Because of the polarization identity

tr(XoQuoY") =tr(Y oQu o X*)
= LY+ X) 0 Quro (¥ 4 X)) — (Y — X) 0 Quro (¥ — X))

it is enough to show that for any X € L*(G, H;Pr, M) tr(X o Qu o X*) is
a predictable process.
Let be (e,) an orthonormal basis of G. By

tr(X o Qo X*) = X0 Qpll7, =D 11X 0 QF(en)

and property 2. we can conclude that the process tr(X o Qu o X*) is indeed

predictable.

Claim 2. The mapping given above defines an inner product on L*(G, H; Pr, M).

We have . . o
tr(X oQuoY") <[[XoQillL, - [[Y o Qf

Applying Holder’s inequality and property 3. gives

La-

~ 1
Ly ||Y © Qi/[HLZ dMM

/ tr(X o Qu o Y*) dpa < / [ X o QE/[
[0,T]xQ

[0,7]x2
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1 1

-1 -1
<O IXeQbIE, dunt ([ Y e@il, dunt < .
[0,7]x%2 0,71x%2

Hence the mapping defines a positive definite, symmetric, continuous bilinear
form on L*(G, H; Pr, M).

Claim 3. L*(G, H;Pr, M) is complete for this inner product.

Let be (X,,) a Cauchy sequence in L*(G, H; Pr, M), i.e.

lim (X, — Xpn) 0 Q?\/[H%Z dupyr = 0.

n,m—o0 [O,T} <Q

By the Riesz-Fischer Theorem (X, o Qz) converges to some Y in the space
L*([0, T] x Q, Pr, par; Lo(G, H)). Hence there exists a subsequence (X, )ken
such that o

lim X, 0 Q% (t,w) =Y (t,w) pu-ae.

k—o0
<1
Since Q3 (t,w)f = 0 implies Y (t,w)f = 0, Y (¢t,w) can be written in the
form (cf. the proof of Lemma 1.2)
Y(t,w)=X(t,w)oQ}
~1

where X (¢,w) is a linear mapping from Q)?,(G) into H. Obviously X has the
required properties 1.-3., hence belongs to L*(G, H; Py, M).

]

Now we introduce the space of simple processes:

Definition B.7 ([Met 77/, 32.3, p.-V.10-)
E(G, H) denotes the vector space of processes of the form

i=1

where A; € Ry and u; € L(G, H) for any i. Such processes are called simple
processes.
L*(G, H; Py, M) is defined as the closure of E(G, H)in L*(G, H; Py, M).

Unfortunately we get no explicit characterization of EQ(G,H :Pr, M) and
have to content ourselves with the following result:

Proposition B.7 ([Met 77], 32.4, p.-V.10-)
The space L*(G, H; Py, M) contains all processes X with the following prop-
erties
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1.V (t,w) € [0,T] x Q we have X (t,w) € L(G, H).
2. VY g € G the H-valued process X g is predictable.

3. f[o,T]xQ tr(X o Qu o X*) duy < 0.

Proof.

Claim 1. It is enough to show that any process X with properties 1.-3. and
sup,, || X (t,w)|| < K for some constant K belongs to L*(G,H;Pr, M).

Let be X a process fulfilling 1.-3., (g, )nen a countable dense subset of the
unit ball in G. Then we have

| X (s, w) || = sup || X (£, w)gnllm

and therefore the process ||X|| is predictable. Thus the process 1x|<p}X
has properties 1.-3. and is, of course, bounded by n.
For any (s,w) € [0,T] x § we get

Tim [ 1x<ny X (5,0) = X(s,w)] = 0.
Hence we have for all (s,w) € [0,T] x Q:

~1
lim H(l{HXHSTL}X(S’w) — X(S,OJ)) (0] Qj/[(s,w)HL:) = 0.

n—oo

Since n
[(Lyx < X (5,w0) — X (s,w)) 0 Q3 (s, w17, =

L snp |l X (s,w) 0 Q3 (s,w)]7, < [1X(s,w) 0 Q3 (s,w)]|7,

we can conclude by Lebesgue’s dominated convergence theorem that

lim N2 gem X (5 0) = X(5,0)) 0 Qi (s,)|13, dpag = 0.

=00 J10,T)xQ

Claim 2. Any process X with properties 1.-3. and || X|| < K for some K is
in L*(G, H; Pr, M).

Let be Y a mapping from [0,7] x € into the Banach space L(G, H) with
|Y|| < K which is strongly measurable with respect to P;. Then by Lemma
2.6 there exists a sequence (Y;,) in £(G, H) converging to Y (t,w) in L(G, H)
for all (t,w) € [0,T] x . For such a sequence we have

lim IV = Y) 0 Q3[13, dyuas = 0.

=00 J0,Tx 0

67



Now consider a process X from Claim 2. We show that such an X can
be approximated in L*(G, H;Pr, M) by a sequence of strongly measurable
processes of the type discussed above. Then it is clear that X belongs to
L2(G,H; Pp, M).

Let be (f;) resp. (e;) an orthonormal basis of H resp. G. Denote by 7% resp.
m¢ the orthogonal projection from H resp. G onto the subspace generated
by {fi,..., fu} resp. {e1,...,ex}. Set X, := 7}, 0 X ont. Then for any n
we have that X, ([0, 7] x ) is separable and that X, g is predictable for all
g € G. This gives us the strong measurability of X,,.

For any 7 we get:

~ 1
Tim [[(wy 0 X ot — X) 0 Qiyeilly = 0 (B.4)
~ 1 ~1
I(w 0 X oy — X) 0 Qreilly < 4K Qe (B.5)
S Qi = 1Q4IE, < . (B.6)
i—1

It follows for all (¢,w) by (B.4) — (B.6) that
T (%, X) 0 @b, = lim 3wty o X o7~ X) 0 Qlyerlly = 0

with B »
(X = X) 0 QiyllZ, < 41X 0 QIIL,-
Hence again by Lebesgue’s dominated convergence theorem we can finally
conclude
lim 10X = Xa) 0 Qifll, dhaas =0

=00 J10,T)xQ

and the proposition is proved.

Remark B.3 ([Met 77|, 32.5, p.-V.12-, presenting a counterexample)
The space of processes which have properties 1.-3. of Proposition B.7 is
generally not closed in L*(G, H; Py, M).

Finally, we define the stochastic integral for simple processes and prove the
isometry:
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Proposition B.8 ([Met 77/, 32.6, p.-V.14-)

Let be M € M2(G) and X € L*(G, H;Pr, M). Then there exists a unique
isometric mapping from L2(G, H; Py, M) into M2.(H) such that the process
(1p - (u(Msat) — U(Mr/\t)))te[oﬂ is the image of the process X = 1y, qxp - u
forany0<r<s<T,FeF, uelL(G H).

Proof.

Claim 1. 7 = (3211, (15 (ui( My ne) —ui(Myn1)))sepo.m 3 an (Fi)-martingale.
Adapted is clear from the construction, and integrability follows from Claim
2. Hence we only have to show the martingale property.

For 0 < s <t < T consider an arbitrary set A € F,. Then we obtain by
Prop. E.11 from [Coh 80|, F; € F,, Vi, and the martingale property of M:

/AZ(t) dP = /AZ (Lr, - (ui(Msae) — ui( Myae))) dP

= ) / ui( My ne) = ui(My,ne) dP
=1 ANF;

= D ui(|  Myn— My dP)
. ANF;

=1
- Zuz(/ Msi/\s - Mm/\s dP)
i=1 ANF;

=[S M)~ M) @ = [ 705 ap
A A
Claim 2. The mapping
X — Z 1]7‘¢,$¢}><F1' * Uy — Z (]-Fl * (ui(Msi/\t) - ui(MTi/\t)))tZ[)
i=1 i=1

is an isometry from £(G, H) into M2 (H).
W.lo.g. we can assume that the sets |r;, s;] X F; are mutually disjoint (other-
wise we could take a finer partition). Hence the following chain of equations
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gives the assertion:

||Z1F (us(Ms,) = wi(M,,))[[5)
- E(Z 117 - wi( My, — M)|IF)

— E(Z 1Fl : tr[ui & ui(MSi - Mri)®2])

i=1

= t?“[z Uu; @ u; E(lFi : (Msi - Mri)®2)]

= Ztr[ui & u; / Qur dpin]
i—1

}1"7;,81'} ><F7;

n
= Z/ tr[u; o Qar o ul] dpuag
i=1 ]Ti,si]XFi

— / tr[X o Qa0 X*] dpps = || X|
0,77x9

L*(G7H;PT7M)'

By the isometry and because ./\/l2T~ (H) is complete everything can be extended
to the closure of £(G, H), i.e. L?*(G,H;Py, M). Hence the Proposition is
proved.

|
Definition B.8 (cf. [Met 77], 32.7, p.-V.15-)
Let be M € M2(G) and X € L*(G,H; Py, M). The image of X under the
isometry of Proposition B.8 is called the L*-stochastic integral of X w.r.t.

M, and is denoted by [ X dM.
The value of the martingale fX dM at time 0 < t < T s denoted by

fy X dM.

Example B.1 (Q-Brownian motion) For M a Q-Brownian motion the
isometry from Prop. B.§

ol / X (s) dM(s) 2] = /[ M||X<s,w>@%w<s,w>||%2 dyiae(s,0), £ € 0,T],

simply reads (compare formula (A.1))

Il [ X()aBo)) /HX

ds], t € [0,T].



In this case the "covariance structure” of the martingale is very easy with

Qs,w) = % and py = tr(Q) dt ® P where dt denotes Lebesque measure
on [0,T7].

Remark B.4 Consider a semimartingale (Z;)icjor) of the form Z = M +V,
where M € M3(G) and (Vi) is a G-valued, (F;)-adapted process with
bounded variation and cadlag paths.

For X € L*(G, H;Pr, M) we can define

/OX(s)dZ(s) ::/0 X(s)dM(s)+/0 X(s)dV(s), te€0,T]

where the first integral on the right-hand side is an L2-stochastic integral
constructed above and the second one is understood pathwise for any w €
as a Riemann-Stieltjes integral.
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Appendix C

Example from Chapter 2

We give an example of a (real-valued) Lévy process which fulfills condition
(F), but does not meet the requirement from [Sto 05|, (2.2). That means

/ lz|l? v(da) < oo,
{l|z||>1}

while
up ||AL(t)|| ¢ L*T(2, F, P) for any € > 0.
7T}

S
tefo

Let be Py(t), t > 0, a Poisson process with parameter A and P, (t) := Py(t) —
At, t > 0, the corresponding compensated Poisson process. Then P(Py(1) =
0) = exp(—A) and P(Py(1) > 0) =1 — exp(—A).

Set v(k) := m for k > 2. Clearly > 2, v(k) < co. If for independent

processes Py, k > 2, we define L(t) := 3232, k P, (t), then L is a real-
valued Lévy process with corresponding Lévy measure v = Y o, v(k) 1y
and

2V xI) = N 21/ = N 1 o0
/{|$|>1}H$H (d) ,;k (k) Zk(lnk)2< :

k=2
The convergence of the sum is a consequence of

li ——— dr = i —dy=lm(——+—)=—.
N3 5 x(Inz)? R e ma Y2 Y Nl_rgo( lnN+ln2) In 2

For simplicity we consider 7' = 1. Then we get for any ¢ > 0 with C' > 0 a
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varying constant

tc[0,1] t€[0,1]

E[sup [AL(®H)|*] = Y kK P(sup [|AL(t)]| = k)

o

— Z E*T (1 — exp(—v(k))) H exp(—v(n))

= Y k(1 - exp(—v(k))) exp(— Y v(n)

k=2 n>k

O3 R (1~ exp(-v(k)

_ C’Zk2+€ (1- Z (_Vl(!k)) )

=0

v

v

CY K (wk) — v(k)?)

v

o6} kE
oS
2 T
k=2
ke <1
> _r L
= Ozk(lnk)2+0 > o
k=2 k=K (c)+1

Hence we have shown that (F) does not imply the condition from [Sto 05].
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