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Chapter 0

Introduction

In this diploma thesis we will solve a stochastic partial di�erential equation
with Lipschitz coe�cients where the noise is a Hilbert space-valued Lévy
process. Moreover we will apply our results to the Heath-Jarrow-Morton
interest rate model from mathematical �nance.

At �rst we want to present the framework in which we treat the problem:
We consider the following type of stochastic di�erential equation on a sepa-
rable (in�nite dimensional) Hilbert space H

�
df(t) = (Af(t) + a(t; f(t))) dt+ �(t; f(t)) dL(t); t 2 [0; T ]
f(0) = �

(1)

where L(t); t 2 [0; T ]; is a Lévy process taking values in a separable Hilbert
space G. A is the (possibly unbounded) generator of a strongly continu-
ous semigroup S(t); t � 0; of linear operators on H. The drift coe�cient
a : [0; T ] � 
 � H ! H and the noise coe�cient � : [0; T ] � 
 � H !
L2(G;H)(:=space of Hilbert-Schmidt operators from G into H) are measur-
able mappings. � 2 L2(
;F ; P ;H) is a random initial value. We impose the
following condition on L Z

fkxk�1g

kxk2 �(dx) <1; (2)

where � is the corresponding Lévy measure governing the jumps of the Lévy
process. Thereby L(t) is in L2(
;F ; P ;G) at any time 0 � t � T .
A mild solution of problem (1) is a predictable process f(t); t 2 [0; T ], such
that

f(t) = S(t)� +

Z t

0

S(t� s)a(s; f(s)) ds+

Z t

0

S(t� s)�(s; f(s)) dL(s) P -a.s.
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As far as we know there are no results on the equation (1) on in�nite-
dimensional Hilbert spaces with state-dependent noise coe�cient and a gen-
eral Lévy process as integrator. We will prove the existence of a unique mild
solution to this equation under Lipschitz conditions on a and �, which is the
central result of this diploma thesis.

We start with some comments on the history of the problem, while at the
same time trying to motivate our proceedings.

In order to give sense to the mild solution we have to de�ne the stochas-
tic integral with respect to a Hilbert space-valued Lévy process. We apply
the Lévy-Itô decomposition from Albeverio and Rüdiger [AlRü 05]. Then the
de�nition of the integral w.r.t. the Brownian motion part of the Lévy process
is taken from [DaPrZa 92] (cf. Appendix A). The integral w.r.t. to the jump
part is constructed as a stochastic integral w.r.t. a Hilbert space-valued mar-
tingale measure following Applebaum [App]. A martingale measure (called
martingale-valued measure in [App]) is a mapping M : [0; t] � S � 
 ! G
where [0; t] is a time interval, S a Lusin topological space and (
;F ; P ) a
probability space. Basically, it is a Hilbert space-valued martingale in the
time component and a �-�nite measure in the S-component. In the real-
valued case (G = R) this concept was introduced by Walsh [Wal 86] in order
to treat stochastic partial di�erential equations. Our main example is the
Lévy martingale measure formed by the jump part of the Lévy process which
admits many desirable properties.

Métivier [Met 77] de�nes the stochastic integral for a wide class of càdlàg
semimartingales as integrators. In Appendix B we give a detailed review
of his construction in the case of square-integrable martingales. One can as
well use this approach to de�ne the stochastic integrals, but the construction
suggested by Applebaum [App] turns out to be much more useful when we
want to derive existence (and uniqueness) results for equation (1). In both
cases the integrals are de�ned as L2-limits of the integrals of simple processes
approximating the integrands in a suitable L2-space.

A di�erent approach is to de�ne the stochastic integral as a limit in
distribution. This was carried out by Chojnowska-Michalik [C-M 87] for de-
terministic integrands and Lévy processes as integrators.

In the case that L is a Brownian motion equation (1) was examined by
Da Prato and Zabczyk [DaPrZa 92] and solved via a �xed-point argument.
The �rst to consider a Hilbert space-valued Lévy process as integrator was
Chojnowska-Michalik [C-M 87]. For a � 0 and � the identity she constructed
(based on her integration theory) what she termed a mild solution, but what
is in fact even a weak one. Applebaum [App] obtained the same result for a
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constant noise coe�cient using di�erent methods including martingale mea-
sure integration. This was later generalized by S. Stolze [Sto 05] to allow for
a Lipschitz non-linearity. C. Knoche [Kno 03] proved the existence of a mild
solution for a state-dependent noise coe�cient and L a compensated Poisson
random measure.

We will now give an overview of the contents of the di�erent chapters
and point out our contributions. Additional information may be found at
the beginning of every chapter.

In Chapter 1 we will introduce Lévy processes on separable Hilbert spaces.
Refering to Albeverio and Rüdiger [AlRü 05] we de�ne the Poisson random
measure and the compensated Poisson random measure corresponding to a
Lévy process. We also quote the main result from their paper: the Lévy-Itô
decomposition in separable Hilbert spaces (shown by them for separable Ba-
nach spaces). Next we give the de�nition of a Hilbert space-valued martingale
measure taken from [App]. As our main example we use a slight modi�cation
of the Lévy martingale measure discussed in [Sto 05]. Finally we introduce
the stochastic integral with respect to a special class of martingale measures
(the Levy one among them). Basically we carry out the construction from
[App] with some complements from [Sto 05]. We add a slight generalization
by considering as integrands mappings which take values in a certain class of
linear operators from one Hilbert space into another (maybe di�erent) one.

Chapter 2 is devoted to the study of equation (1). As a fundamentally
new result we show the existence of a mild solution using the methods of
[DaPrZa 92] and some complements to their approach worked out by K.
Frieler and C. Knoche [FriKno 01]. Hereby condition (2) on the Lévy process
allows us to treat the jump term of the stochastic integral with basically the
same techniques as the Brownian motion term. The solution is then found
as a �xed-point of the contraction f 7! 
(f) de�ned by


(f)(t) = S(t)� +

Z t

0

S(t� s)a(s; f(s)) ds+

Z t

0

S(t� s)�(s; f(s)) dL(s):

on a suitable Banach space of processes. Existence and uniqueness are a con-
sequence of Banach's �xed-point theorem. This main result of the diploma
thesis is stated in Theorem 2.1, while its proof covers most of Chapter 2.
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In recent years Lévy processes have played an important role in �nance.
While traditionally Brownian motion is used as a source of randomness, many
newer models use Lévy processes to allow for jumps (which may be inter-
preted as external shocks) and get a better �t to empirical data. For an
overview of the numerous applications of Lévy processes to �nance consult
the book of Schoutens [Sch 03] and the references therein.

We will concentrate on the Heath-Jarrow-Morton interest rate model in
Chapter 3. It was introduced by Heath, Jarrow and Morton [HJM 92] to
model the dynamics of bond prices (enabling them to price bond options)
via the evolution of forward interest rates as Itô processes. They stated
the famous HJM drift condition which guarantees an arbitrage-free move-
ment of the bond prices. By a change of parametrization Musiela [Mus 93]
transformed the model to the framework of stochastic evolution equations
on an in�nite-dimensional function space. Filipovi¢ [Fil 01] gives a rigorous
treatment of this approach and generalizes the model to allow for a state-
dependent volatility structure and an in�nite-dimensional driving Brownian
motion. We will present a summary of this development and then make the
transition to Lévy noise. The equation for the forward rates then reads�

dft = ( @
@x
ft + �(t; ft)) dt+ �(t; ft) dL(t)

f0 = f(0; �) 2 H

where H is a suitable Hilbert space of real-valued functions on [0;1]. Among
the �rst to consider non-Gaussian noise are Björk et al. [BDKR 97] who add
a compensated as well as a non-compensated Poisson random measure part.
Eberlein and Raible [EbeRai 99] suggest a model with a (�nite-dimensional)
Lévy process, while Raible [Rai 00] presents strong empirical evidence for
the use of Lévy noise instead of pure Gaussian one. Finally, Jakubowski
and Zabczyk [JaZa 04] and Özkan and Schmidt [ÖzkSch 05] work with HJM
models driven by in�nite-dimensional Lévy processes and develop the corre-
sponding HJM-type drift conditions. We will extend these models by con-
sidering state-dependent volatility coe�cients which give more �exibility in
modeling. Here the results from Chapter 2 are essential in deriving the exis-
tence of an HJM model with Lévy noise in Proposition 3.2.

I wish to thank Prof. Dr. Michael Röckner who led me to the study of
stochastic di�erential equations with Lévy noise. His lectures which I have
attended since my �rst semester were an excellent guide to modern mathe-
matics, especially stochastic calculus. Moreover, I am grateful for support
and helpful proposals in connection with this diploma thesis.

I would also like to thank Dr. Walter Hoh for giving a report on this
thesis. Special thanks go to my brother, Florian Knäble.
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Chapter 1

Lévy Processes and Stochastic

Integration

Lévy processes on a separable Hilbert space G are introduced in section 1.1
as stochastic processes with independent and stationary increments. To a
Lévy process L we can assign the Poisson random measure N(t; dx) which is
for any A 2 B(G� f0g) with 0 =2 �A given by

N(t; A) := jf0 < s � t : �L(s) 2 Agj =
X
0<s�t

1A(�L(s))

with �L(s) the "jump" of the process L at time s. Centralization then
gives the compensated Poisson random measure ~N(t; dx). From [AlRü 05]
we take the Lévy-Itô decomposition which states that any Lévy process can
be written as the sum of a deterministic drift, a Brownian motion, an integral
with respect to the compensated Poisson random measure and an integral
with respect to the Poisson random measure. We show that the last term
may be expressed in the �rst and third one, if the expected number of "big
jumps" decreases su�ciently quickly. In section 1.2 we give the de�nition
of martingale measures in the Hilbert space case developed in [App]. In
the real-valued case this concept is due to [Wal 86]. Basically, a martingale
measure is a G-valued set function depending on a time component, a Borel
set and a random component, which for a �xed set is a martingale and locally
a measure in the set component. Our main example is the Lévy martingale
measure M given by

M(t; A) :=

Z
A�f0g

x ~N(t; dx); t � 0;

for A 2 B(G � f0g) with 0 =2 �A. It is a slight modi�cation of the one men-
tioned in [App] and discussed in [Sto 05]. M is a nuclear martingale measure,
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i.e. its martingale component has a covariance operator which is positive,
self-adjoint and of trace class. Since the third part of the Lévy-Itô decompo-
sition is described by M , we want to construct the stochastic integral with
respect to nuclear martingale measures. This is done in section 1.3 following
the approach of [App], later carried out in detail in [Sto 05]. (There the
integral is called strong stochastic integral.) We make a slight generalization
by considering integrands that take values in the linear operators from one
Hilbert space into another one. As usual the stochastic integral is �rst de-
�ned for simple functions via an isometry. These simple functions are dense
in a space called N 2(T ) to which the integral can be extended by L2-limits.

1.1 Lévy processes in Hilbert spaces

Let be (G; ( ; )G) a separable Hilbert space; (
;F ; P ) a complete probability
space with (Ft); t � 0; a right-continuous �ltration on (
;F ; P ) such that
F0 contains all P -nullsets.

De�nition 1.1 Fix T > 0. A subset A � [0; T ]�
 of the form A =]s; t]�F
where F 2 Fs; 0 � s < t � T , or f0g � F; F 2 F0, is called predictable
rectangle. The family of predictable rectangles is denoted by RT .

Let be PT = �(RT ), the �-algebra generated by RT . PT is called the �-
algebra of the predictable sets; a stochastic process X measurable with respect
to PT is called predictable.

For E a Banach space B(E) denotes the Borel �-algebra on E, i.e. the
�-algebra generated by all open subsets of E.

De�nition 1.2 A G-valued stochastic process L adapted to (Ft); t � 0; is a
Lévy process if

� L(0) = 0

� L has increments independent of the past, i.e. L(t)� L(s) is indepen-
dent of Fs for all 0 � s < t <1

� L has stationary increments, i.e. L(t)�L(s) has the same distribution
as L(t� s) for all 0 � s < t <1

� L is stochastically continuous, i.e. for all t � 0 and � > 0 holds

lim
s!t

P (kL(s)� L(t)kG > �) = 0

� L has strongly càdlàg paths, i.e. the paths of L are right-continuous
and always have left limits w.r.t. the strong topology.
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Examples of Lévy processes are Q-Brownian motion (see App. A), or (for
G = R) the Poisson process and standard Brownian motion.

A �-�nite measure � on G� f0g is called a Lévy measure ifZ
G�f0g

(kxk2 ^ 1) �(dx) <1:

(An alternative convention is to de�ne the Lévy measure on the whole of G
via the assignment �(f0g) = 0.)

Let be �L(s) := L(s) � L(s�); s > 0 the "jump" of L at time t. We say
that a Lévy process has bounded jumps if there exists a constant J > 0 with

sup
t�0

k�L(t)k < J:

De�ne for A 2 B(G� f0g) with 0 =2 �A and t > 0

N(t; A) := jf0 < s � t : �L(s) 2 Agj =
X
0<s�t

1A(�L(s)): (1.1)

N admits the following properties:

Proposition 1.1 1. For A 2 B(G � f0g) with 0 =2 �A �xed the process
(N(t; A)); t � 0; is a Poisson process.

2. For t � 0 and ! 2 
 �xed N(t; �)(!) is a set function from fA 2
B(G� f0g) : 0 =2 �Ag to R+ [ f+1g. For P -a.a. ! 2 
 there exists a
unique �-�nite measure on B(G�f0g) extending this set function. We
denote this measure by N(t; dx).

3. Set ~�(A) := E[N(1; A)] for A 2 B(G� f0g) with 0 =2 �A. Then ~� has a
unique extension to a �-�nite measure � on B(G� f0g). Moreover, �
is a Lévy measure.

Proof.

1. (cf. [AlRü 05] Thm. 2.7, even for G a separable Banach space)

2. (cf. [AlRü 05] Thm. 2.13, Cor. 2.14)

3. (cf. [AlRü 05] Thm. 2.17, Cor. 2.18)

We follow the convention of [AlRü 05] and call N a Poisson random measure.
If ~N denotes the compensated Poisson random measure, i.e. ~N(dt; dx) :=

N(dt; dx)� dt
 �(dx), we have the following result:
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Proposition 1.2 Let f 2 L2(G;B(G); �;G). Then for any t � 0 and A 2
B(G� f0g) the integral Z

A

f(x) ~N(t; dx)

exists and

E[k
Z
A

f(x) ~N(t; dx)k2] = t

Z
A

kf(x)k2 �(dx) <1:

Proof. (cf. [AlRü 05] Thm. 3.25)

Now we can formulate a very important representation for Lévy processes
which is given by the following theorem:

Theorem 1.1 (Lévy-Itô decomposition) For any G-valued Lévy process
L = (L(t))t�0 there exist b 2 G, a Brownian motion (BQ(t))t�0 with covari-
ance operator Q, independent of N(�; A) for any A 2 B(G�f0g) with 0 =2 �A,
such that:

L(t) = tb+BQ(t) +

Z
fkxk<1g

x ~N(t; dx) +

Z
fkxk�1g

x N(t; dx):

Here the Poisson random measure N and the Lévy measure � are de�ned as
in Prop. 1.1.
The triple (b;Q; �) is called the characteristics of the process L.

Proof. (cf. [AlRü 05] Thm. 4.1)
The �rst integral is well-de�ned, since idfkxk<1g 2 L2(G;B(G); �;G) (cf.

Prop. 1.2). Moreover, seen as a process in t it is a square-integrable martin-
gale (see [Sto 05] Lem. 2.4.8).

The càdlàg property of the Lévy process guarantees that for a given ! 2 

on any �nite interval [0; T ] there are only �nitely many jumps with norm � 1.
Otherwise we could �nd an accumulation point �t 2 [0; T ] where t 7! L(t)(!)
would not have a left limit. Hence we can write the second integral just as a
random �nite sum in G:Z

fkxk�1g

x N(t; dx) =
X
0<s�t

�L(s)1fkxk�1g(�L(s)):

Thus this term is of �nite variation on any [0; T ].

Remark 1.1 If we denote the distribution of L(t) by �t, then �t is in�nitely
divisible. The famous Lévy-Khintchine formula gives us the characteristic
function of L(t) as E[exp(i(u; L(t))G] = exp(�t�(u)), where

�(u) := �i(u; b)G+1

2
(Qu; u)G�

Z
G

exp(i(u; x)G)�1�i(u; x)G1fkxk<1g(x) �(dx))
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with (b;Q; �) the characteristics of L from Theorem 1.1.

Remark 1.2 (L(t))t2[0;T ] can be written in the form L(t) = M(t)+V (t) ; t 2
[0; T ], where M is a square-integrable martingale and V is a càdlàg process
with bounded variation. Here

M(t) := BQ(t) +

Z
fkxk<1g

x ~N(t; dx) and

V (t) := tb+

Z
fkxk�1g

x N(t; dx):

Hence L is a semimartingale of the type discussed at the end of Appendix
B. So we could use the construction derived there to de�ne the stochastic
integral of operator-valued stochastic processes w.r.t. to a general Lévy pro-
cess. Unfortunately, the isometry developed in App. B is too general to be
of much help in Chapter 2 where we want to study stochastic equations with
Lévy noise. Therefore we will introduce a construction that makes use of the
special structure of the ~N(t; dx)-term.

We say that a Lévy process ful�lls condition (F) if for the corresponding
Lévy measure holds Z

fkxk�1g

kxk2 �(dx) <1: (1.2)

Note that via the de�nition of Lévy measure (F) actually yields
R
G
kxk2 �(dx) <

1. Bounded jumps of L are su�cient for (F), since then we haveZ
fkxk�1g

kxk2 �(dx) � J2

Z
fkxk�1g

1 �(dx) <1:

Lemma 1.1 If L is a Lévy process with characteristics (b;Q; �) ful�lling (F),
the Lévy-Itô decomposition of L can be written in the following way:

L(t) = tm+BQ(t) +

Z
G

x ~N(t; dx) (1.3)

where m := b+
R
fkxk�1g

x �(dx):

Proof. We haveZ
fkxk�1g

x N(t; dx) =

Z
fkxk�1g

x ~N(t; dx) + t

Z
fkxk�1g

x �(dx):

The integral w.r.t. the compensated Poisson measure exists, since thanks to
(F) idfkxk�1g 2 L2(G;B(G); �;G) (see again Prop. 1.2). (F) also ensures that
m has �nite norm:

kmk � kbk+ k
Z
fkxk�1g

x �(dx)k � kbk+
Z
fkxk�1g

kxk2 �(dx) <1:

2
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1.2 Martingale measures

De�ne S := G; � := B(S); A0 := fA 2 � : 0 =2 �Ag; A := A0 [ fA [ f0g :
A 2 A0g; Sn := fx 2 S : 1

n
� kxkg; �n := B(Sn); then S =

S
n2N Sn.

De�nition 1.3 A martingale measure is a set functionM : R+�A�
! G
with the following properties:
M(0; A) = M(t; ;) = 0 a.s. for all A 2 A; t � 0. For t > 0 M(t; �) is

1. �nitely additive, i.e. M(t; A [ B) = M(t; A) + M(t; B) a.s. for all
A;B 2 A disjoint

2. �-�nite, i.e. supfE[kM(t; A)k2GjA 2 �n] <1g for all n 2 N
3. countably additive on each �n; n 2 N, i.e. for any sequence decreasing

to the the empty set (Aj) � �n we have limj!1E[kM(t; Aj)k2G = 0

For each A 2 A the process (M(t; A))t�0 is a strongly càdlàg square-integrable
martingale. Finally the zero set in 1. is independent of t.

A martingale measureM is called orthogonal if for any disjoint A;B 2 A
and any orthonormal base (en) of G the process

((M(t; A); en)G � (M(t; B); em)G)t�0

is a (real-valued) martingale for all m;n 2 N. In particular the process
((M(t; A);M(t; B))G)t�0 is a martingale.

M has independent increments if M((s; t]; A) is independent of Fs for all
A 2 A; 0 � s < t <1. Here M((s; t]; A) := M(t; A)�M(s; A).

Let T = (TA; A 2 A) be a family of bounded non-negative self-adjoint
operators on G. T is a positive-operator valued (POV) measure on (S;�) if

1. T; = 0

2. TA[B = TA + TB for all A;B 2 A disjoint.

T is trace class if every TA; A 2 A, is trace class.
T is called decomposable if there exist a �-�nite measure � on (S;�) and

a family (Tx; x 2 S) of bounded non-negative self-adjoint operators on G s.t.
x 7! Txy is measurable for all y 2 G and

TAy =

Z
A

Txy �(dx)

10



for all A 2 A and y 2 G.

M is nuclear with (T; �) if for all 0 � s < t <1; A 2 A; x; y 2 G

E[(M((s; t]; A); x)G(M((s; t]; A); y)G] = (x; TAy)G�((s; t])

where T = (TA; A 2 A) is a POV measure which is trace class and � is a
Radon measure on (0;1). If T is decomposable we call M decomposable.

Our key example (and motivation) for these concepts is as follows:

Theorem 1.2 Consider a Lévy process ful�lling (F) with Lévy-Itô decompo-
sition (1.3). Then M de�ned by

M(t; A) :=

Z
A�f0g

x ~N(t; dx); t � 0; A 2 A;

is an orthogonal martingale measure with independent increments. We call
it a Lévy martingale measure

Proof. (cf. [Sto 05] Thm. 2.5.2)

Proposition 1.3 The Lévy martingale measure M is nuclear with (T; dt)
where dt denotes Lebesgue measure on R+ and T = fTA; A 2 Ag with

TAy =

Z
A�f0g

(x; y)Gx �(dx):

In particular T is decomposable with � and

Tx = (x; �)Gx:

Proof. (cf. [Sto 05] Prop. 2.5.4)

In [Sto 05] these results are in fact proved for S = fkxk < 1g instead of
S = G. But the crucial point is to have the inequality

R
S
kxk2 �(dx) < 1,

which we obtain from condition (F)! Of course, for S = fkxk < 1g this is
automatically ful�lled for any Lévy process.

For later use we calculate

kT
1

2
x k2L2(G) = tr(Tx) =

X
n2N

(Txen; en) (1.4)

=
X
n2N

((x; en)x; en) =
X
n2N

(x; en)
2 = kxk2G

where (en); n 2 N, is an orthonormal basis of G.
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1.3 Stochastic integrals

Our aim is to de�ne the stochastic integral
R t
0

R
S
R(s; x)M(ds; dx) for an

operator-valued process R. M is an orthogonal martingale measure with
independent increments, nuclear and decomposable. Keeping in mind the
Lévy martingale measure we take S = G and � = dt Lebesgue measure.
However, note that the construction works for S a Lusin topological space
(i.e. a continuous one-to-one image of a Polish space) and � a Radon measure
on (0;1).

We consider again separable Hilbert spaces G and H with orthonor-
mal bases (en); n 2 N; resp. (fn); n 2 N. Let L(G;H) denote the space
of all linear bounded operators from G to H with operator norm kRk :=
supkgkG�1 kRgkH : Then (L(G;H); k�k) is a Banach space (see [ReSi 80] Thm.
III.2.). Since the norm topology generated by k � k is too strong for our pur-
poses, we consider the strong topology on L(G;H) instead:

Rn
s! R i� Rng ! Rg for all g 2 G:

The corresponding Borel �-algebra L is generated by sets of the form

fR 2 L(G;H);Rg 2 Ag with g 2 G;A 2 B(H):

(cf. [DaPrZa 96], p.24�.).
Moreover we need the space L2(G;H) of Hilbert-Schmidt operators. An
operator R is Hilbert-Schmidt if tr(R�R) < 1: The space L2(G;H) with
inner product (R1; R2)L2 := tr(R�

1R2) and induced norm kRkL2 = tr(R�R)
1

2

is a separable Hilbert space and a two-sided L(G;H)-ideal, i.e. for R 2
L2(G;H); C1 2 L(G); C2 2 L(H) we have

kC2RC1kL2 � kC2kkC1kkRkL2
(cf. [Wei 80] p.138). L2(G;H) is a strongly measurable subset of L(G;H)
(cf. [DaPrZa 96], p.25).

De�nition 1.4 Let be N 2(T ) = N 2(T ; �; dt) the space of all mappings X
on [0; ~T ] � S � 
 taking values in the linear (possibly unbounded) operators
from G into H, such that

1. For any g 2 G the H-valued mapping (t; x) 7! X(t; x)g is P ~T 
 B(S)-
measurable.

2. For any (t; x; !) 2 [0; ~T ]� S �
 X(t; x)(!) � T
1

2
x is a Hilbert-Schmidt

operator and we have

kXkN 2(T ) := (E[

Z ~T

0

Z
S

kX(s; x)T
1

2
x k2L2 �(dx) ds])

1

2 <1:

12



([App] and [Sto 05] treat the case G = H.)

Lemma 1.2 (cf. [Sto 05], Lemma 3.1.1)
The mapping

(X; Y ) 7! E[

Z ~T

0

Z
S

tr(X(t; x)TxY (t; x)�) �(dx) dt]

is an inner product in N 2(T ) and with respect to this inner product N 2(T )
is a Hilbert space.

Proof. Inner product is obvious. Now let (Rn) be a Cauchy sequence in

N 2(T ). By the Riesz-Fischer Theorem (RnT
1

2
x ) converges to some S in the

space L2(([0; ~T ] � 
 � S;P ~T 
 B(S); dt 
 P 
 �); (L2(G;H);B(L2(G;H))).
Hence there exists a subsequence (Rnk) such that

lim
k!1

Rnk(t; !; x)T
1

2
x = S(t; !; x) in k � kL2(G;H) dt
 P 
 �-a.s.

For (t; !; x) �xed choose an orthonormal basis (em) of G with each em either

in ker(T
1

2
x ) or in its orthogonal complement (ker(T

1

2
x ))?: Next we de�ne

R(t; !; x)g :=

(
S(t; !; x)(T

1

2
x )�1g if g 2 T

1

2
x (G)

0 if g 2 (T
1

2
x (G))?

;

where
(T

1

2
x )

�1 : T
1

2
x ((ker(T

1

2
x ))

?) = T
1

2
x (G)! (ker(T

1

2
x ))

?

is the pseudo-inverse of T
1

2
x . To �nish the proof we show that (Rnk(t; !; x)T

1

2
x )

converges to R(t; !; x)T
1

2
x in k � kL2(G;H) dt
P 
 �-a.s. which implies conver-

gence of (Rn) to R in N 2(T ):

k(Rnk(t; !; x)�R(t; !; x))T
1

2
x k2L2(G;H)

=
1X
m=1

k(Rnk(t; !; x)�R(t; !; x))T
1

2
x emk2H

=
1X
m=1

kRnk(t; !; x)T
1

2
x em � S(t; !; x)(T

1

2
x )

�1T
1

2
x emk2H

=
X

em2ker(T
1
2
x ))?

kRnk(t; !; x)T
1

2
x em � S(t; !; x)emk2H

�
1X
m=1

k(Rnk(t; !; x)T
1

2
x � S(t; !; x))emk2H

13



= kRnk(t; !; x)T
1

2
x � S(t; !; x)k2L2(G;H):

2

As usual the construction of the integral is started by considering simple
functions. We denote by S2(T ) := S2(T ; �; dt) the subspace of all R 2 N 2(T )
which have the following form:

R =
MX
i=0

NX
j=0

Rij1(ti;ti+1]1Aj ; (1.5)

where M;N 2 N and 0 = t0 < t1 < : : : < tM+1 = ~T . The A0; : : : ; AN+1 2
A are disjoint sets (having �nite �-measure!) and each Rij is an Fti=L-
measurable random variable with values in L(G;H) (equivalently Rijg is
Fti-measurable for any g 2 G).

Lemma 1.3 (cf. [Sto 05], Lemma 3.1.2)
The subspace S2(T ) is dense in N 2(T ).

Proof. We have to show S2(T )? = f0g (where S2(T )? is the orthogonal
complement of S2(T ) in N 2(T )). Consider for k; l 2 N the operators Skl 2
L(G;H) and Ulk 2 L(H;G) de�ned by

Sklen =

�
fl if n = k
0 if n 6= k

;

Ulkfm =

�
ek if m = l
0 if m 6= l

:

It is easy to see that the adjoint of Skl is S�kl = Ulk. Note that

tr(SklTxUlk) � tr(Tx)

and hence the mapping with constant value Skl is an element of N 2(T ).
Consider the simple function S 2 S2(T ) de�ned by

S(s; !; x) = 1B(s)1F (!)1A(x)Skl;

where B = (t1; t2] with t1; t2 2 [0; ~T ], A 2 A, F 2 Ft1 . Then for arbitrary
R 2 S2(T )? we have (R; S)N 2(T ) = 0: Hence

E[

Z ~T

0

Z
S

tr(R(t; x)TxS(t; x)
�) �(dx) dt]

= E[1F

Z
B

Z
A

1X
n=1

(R(t; x)TxUlkfn; fn)H �(dx) dt]

= E[1F

Z
B

Z
A

(R(t; x)Txek; fl)H �(dx) dt] = 0:

14



Now de�ne a signed measure � on P ~T 
 B(S) by setting

�(G) :=

Z
G

(R(t; x)Txek; fl)H dt dP �(dx):

For any G 2 P ~T 
 B(S) of the type B � F � A we have �(G) = 0. Since
the system of such sets is closed against intersections and generates the
�-algebra P ~T 
 B(S) we can conclude that � = 0 on P ~T 
 B(S). Thus
(R(t; x)Txek; fl)H = 0 dt 
 P 
 �-a.e. for any k; l 2 N and therefore
R(t; x)Tx = 0 dt
 P 
 �-a.e. But then

kRk2N 2(T ) = E[

Z ~T

0

Z
S

kR(t; x)T
1

2
x k2L2 �(dx) dt]

= E[

Z ~T

0

Z
S

tr(R(t; x)TxR(t; x)
�) �(dx) dt] = 0

and we obtain S2(T )? = f0g.
2

For t 2 [0; ~T ] and every simple function R 2 S2(T ) (cf. (1.5)) we de�ne

Jt(R) :=
MX
i=0

NX
j=0

RijM((t ^ ti; t ^ ti+1]; Aj): (1.6)

It is easy to see that Jt(R) does not depend on the representation of R.

Proposition 1.4 (cf. [Sto 05], Prop. 3.1.3/[App], p.11/12)
Jt, given by (1.6) for every R 2 S2(T ), can be extended to an isometry from
N 2(T ; t) to L2(
;F ; P ;H).

Proof. Let R 2 S2(T ) be a simple function as in (1.5). Since

E[kJt(R)k2] = E[k
MX
i=0

NX
j=0

RijM((t ^ ti; t ^ ti+1]; Aj)k2];

we study the individual terms under the sum. By the martingale property
of M(�; Al) we obtain for i < k such that ti; tk < t:

E[(RijM((ti; t ^ ti+1]; Aj); RklM((tk; t ^ tk+1]; Al))H ]

= E[(R�
klRijM((ti; t ^ ti+1]; Aj); E[M((tk; t ^ tk+1]; Al)jFtk ])G]

= 0:

15



Let be j 6= l and Nij := M((ti; t ^ ti+1]; Aj). Then (Nij; en)G(em; Nil)G is a
martingale for every n;m 2 N, because M is orthogonal. Moreover

E[(RijM(ti; t ^ ti+1]; Aj); RklM((tk; t ^ tk+1]; Al))H ]

= E[
1X
n=1

(RijNij; fn)H(fn; RilNil)H ]

= E[
1X
n=1

(Nij; R
�
ijfn)G(R

�
ilfn; Nil)G]

=
1X

n;m;r=1

E[(Nij; em)G(em; R
�
ijfn)G(R

�
ilfn; er)G(er; Nil)G]

=
1X

n;m;r=1

E[em; R
�
ijfn)G(R

�
ilfn; er)GE[(Nij; em)G(er; Nil)GjFti ]]

= 0:

Since M has independent increments and is nuclear we can conclude

E[kRijM(ti; t ^ ti+1]; Aj)k2]

=
1X

n;m;r=1

E[(em; R
�
ijfn)G(R

�
ijfn; er)G]E[(Nij; em)G(er; Nij)G]

=
1X

n;m;r=1

E[(em; R
�
ijfn)G(R

�
ijfn; er)G](er; TAjem)G((t ^ ti+1)� ti)

=
1X
m=1

E[(Rijem; RijTAjem)H ]((t ^ ti+1)� ti)

= E[tr(R�
ijRijTAj)]((t ^ ti+1)� ti):

And for any A 2 A and some operator Q 2 L(G) we have

tr(QTA) =
1X
n=1

(en; QTAen)G

=
1X
n=1

(Q�en;

Z
A

Txen �(dx))G =

Z
A

tr(QTx) �(dx):

16



Finally using the calculations from above we get

E[kJt(R)k2] = E[k
MX
i=0

NX
j=0

RijM(t ^ ti; t ^ ti+1]; Aj)k2]

=
MX
i=0

NX
j=0

E[kRijM(t ^ ti; t ^ ti+1]; Aj)k2]

=
MX
i=0

NX
j=0

E[tr(R�
ijRijTAj)]((t ^ ti+1)� (t ^ ti))

=
MX
i=0

NX
j=0

E[

Z
Aj

tr(R�
ijRijTx)�(dx)]((t ^ ti+1)� (t ^ ti))

= E[

Z ~T

0

Z
S

k1(0;t](s)R(s; x)T
1

2
x k2L2(G;H)�(dx)ds]

= kRj(0;t]�
�Sk2N 2(T ;t):

For general R 2 N 2(T ) we approximate R by a sequence (Rn) � S2(T ) (cf.
Lemma 1.3). Hence

lim
n;m!1

E[kJt(Rn)� Jt(Rm)k2] = lim
n;m!1

k(Rn �Rm)j(0;t]�
�Sk2N 2(T ;t) = 0:

Thus (Jt(Rn)) is a Cauchy sequence in the Hilbert space L2(
;F ; P ;H) and
we can de�ne Jt(R) as the L2-limit of Jt(Rn).

2

For any R 2 N 2(T ) we de�ne the (strong) stochastic integral of R with
respect to the orthogonal and nuclear martingale measure M byZ t

0

Z
S

R(s; x)M(ds; dx) := Jt(R)

for t 2 [0; ~T ].

Proposition 1.5 (cf. [Sto 05], Thm. 3.1.5)
The process (

R t
0

R
S
R(s; x)M(dx; ds))t�0 is an H-valued strongly càdlàg square-

integrable martingale. Furthermore,

E[

Z t

0

Z
S

kR(s; x)T
1

2
x k2L2(G;H) �(dx) ds] (1.7)

= E[k
Z t

0

Z
S

R(s; x)M(dx; ds)k2H ];

where t 2 [0; ~T ].

17



Proof. Consider a simple function R 2 S2(T ) given by (1.5). Take r � t and
set i0 := maxfi : ti � rg. Without loss of generality we can assume tM < t
and obtain

E[

Z t

0

Z
S

R(s; x)M(ds; dx)jFr]

=
MX
i=0

NX
j=0

E[RijM((ti; t ^ ti+1]; Aj)jFr]

=
MX
i=0

NX
j=0

1X
n=1

E[(RijM((ti; t ^ ti+1]; Aj); fn)HfnjFr]

=
MX
i=0

NX
j=0

1X
n=1

E[(M((ti; t ^ ti+1]; Aj); R
�
ijfn)GjFr]fn

=
NX
j=0

i0�1X
i=0

1X
n=1

(M((ti; ti+1]; Aj); R
�
ijfn)Gfn

+
NX
j=0

1X
n=1

(E[M((ti0 ; t ^ ti0+1]; Aj)jFr]; R
�
i0j
fn)Gfn

+
MX

i=i0+1

NX
j=0

1X
n=1

E[(E[(M((ti; t ^ ti+1]; Aj)jFti ]; R
�
ijfn)GjFr]fn

=
NX
j=0

(
i0�1X
i=0

RijM((ti; ti+1]; Aj) +Ri0jM((ti0 ; r]; Aj))

=

Z r

0

Z
S

R(s; x)M(dx; ds):

Thus we have proved the martingale property for simple functions. As before
the result can be extended to any R 2 N 2(T ) via the isometry from Propo-
sition 1.4: R can be written as the limit of some sequence (Rn) � S2(T ) in
N 2(T ). Hence the corresponding stochastic integral can be expressed as an
L2-limit of martingales which makes it a martingale again.
Proposition 3 in [Kun 70] states that every square-integrable martingale is
automatically strongly càdlàg P -a.s.

2
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Chapter 2

Stochastic Equations with Lévy

Noise

As before let be (G; ( ; )G) and (H; ( ; )H) separable Hilbert spaces. Let
(
;F ; P ) be a complete probability space with (Ft); t � 0; a right-continuous
�ltration on (
;F ; P ) such that F0 contains all P -nullsets.
We �x a G-valued Lévy process L with characteristics (b;Q; �). For T > 0
we consider the following type of stochastic equation with Lévy noise and
state space H�

df(t) = (Af(t) + a(t; f(t))) dt+ �(t; f(t)) dL(t); t 2 [0; T ]
f(0) = �

(2.1)

where

� � 2 L2(
;F0; P;H) is a given (possibly stochastic) initial condition

� A : D(A)! H is the in�nitesimal generator of a C0-semigroup (S(t))t�0

of linear operators on H

� a is a measurable function from ([0; T ] � 
 � H;PT 
 B(H)) into
(H;B(H))

� � is a measurable function from ([0; T ] � 
 � H;PT 
 B(H)) into
(L2(G;H);B(L2(G;H)).

It is well-known (see [Paz 83]) that there exist constants ! � 0 and M � 1
such that kS(t)kL(H) �Me!t; t � 0. Hence we �nd

MT := sup
t2[0;T ]

kS(t)kL(H) <1:
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De�nition 2.1 An H-valued predictable process f(t); t 2 [0; T ]; is called a
mild solution of equation (2.1) if

f(t) = S(t)� +

Z t

0

S(t� s)a(s; f(s)) ds+

Z t

0

S(t� s)�(s; f(s)) dL(s)

P -a.s. for all t 2 [0; T ]:

In this chapter we show existence and uniqueness of the mild solution to
problem (2.1) under Lipschitz conditions on a and � by a �xed-point argu-
ment. In [DaPrZa 92] this is done for L an in�nite dimensional Brownian
motion. In order to use the isometry from Chapter 1, we have to impose the
following condition on the Lévy measure of LZ

fkxk�1g

kxk2 �(dx) <1:

[App] deals with the case that L is an H-valued Lévy process, a(�) � 0 and
�(�) � C 2 L(H). In [Sto 05] this is generalized to allow for a Lipschitz drift.
There the jumps of L are required to ful�ll (see p.70)

sup
t2[0;T ]

k�L(t)k 2 L2+�(
;F ; P ) for some � > 0: (2.2)

Lemma 2.1 (2.2) implies
R
fkxk�1g

kxk2 �(dx) <1:

Proof. Set ~J := supt2[0;T ] k�L(t)k. Then using the de�nition of �(dx) from
Prop. 1.1 and Fubini's theorem we getZ

fkxk�1g

kxk2 �(dx) =

Z
fkxk�1g

kxk2E[N(1; dx)]

= E[

Z
fkxk�1g

kxk2N(1; dx)]

= E[
X

0<s�1

1fkxk�1g(�L(s)) k�L(s)k2]

� E[ ~J2 �N(1; fkxk � 1g)] <1:

Here the last inequality follows from Hölder's inequality, because ~J2 2 L1+ �
2 (P )

for some � > 0 by (2.2), and N(1; fkxk � 1g) is Poisson-distributed with in-
tensity �(fkxk � 1g) and thus in all Lp(P ); 1 � p <1.

2

Moreover, in Appendix C we present an example of a Lévy process ful�lling
our assumption, but not the one stated in [Sto 05]. Hence our condition is a
strictly weaker one! Note that bounded jumps of L are su�cient for (2.2).
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2.1 Existence of the mild solution

To prove the existence (and uniqueness) of a mild solution on [0; T ] we make
the following Assumptions:

� a : [0; T ] � 
 � H ! H is Lipschitz continuous in the third variable,
i.e. there exists a constant Lipa > 0 such that

ka(s; !; h1)� a(s; !; h2)kH � Lipakh1 � h2kH
for all h1; h2 2 H; s 2 [0; T ]; ! 2 
:

� � : [0; T ] � 
 � H ! L2(G;H) is Lipschitz continuous in the third
variable, i.e. there exists a constant Lip� > 0 such that

k�(s; !; h1)� �(s; !; h2)kL2 � Lip�kh1 � h2kH
for all h1; h2 2 H; s 2 [0; T ]; ! 2 
:

� There is a constant C > 0 with

sup
(s;!)

ka(s; !; 0)kH � C and sup
(s;!)

k�(s; !; 0)kL2 � C:

� L ful�lls the condition (F), i.e.Z
fkxk�1g

kxk2 �(dx) <1: (2.3)

We set
R
G
kxk2 �(dx) =: C� <1:

Remark 2.1 (Linear growth)
The Lipschitz constant Lipa can be chosen in such a way that

ka(s; !; h)kH � Lipa(1 + khkH)
for all h 2 H; s 2 [0; T ]; ! 2 
: The same applies to Lip� respectively.

Proof. For all h 2 H

ka(s; !; h)kH � ka(s; !; h)� a(s; !; 0)k+ ka(s; !; 0)k
� Lipakhk+ sup

(s;!)

ka(s; !; 0)k � (Lipa _ Ck) (1 + khk):

And of course we still have for all h1; h2 2 H

ka(s; !; h1)� a(s; !; h2)kH � (Lipa _ Ck) kh1 � h2kH :
The same argument works for Lip�.
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Remark 2.2 The assumption for L gives us (cf. equation (1.4)):Z
G

kT
1

2
x k2L2 �(dx) =

Z
G

kxk2 �(dx) = C� <1:

Next we de�ne the space where we want to �nd the mild solution of the
above stochastic di�erential equation. A process Y : [0; T ]�
! H is called
H-predictable, if it is PT=B(H)-measurable. We set

H2(T;H) := fY (t); t 2 [0; T ]jY is an H-predictable process s.t.

sup
t2[0;T ]

E[kY (t)k2] <1g

and for Y 2 H2(T;H)

kY kH2 := sup
t2[0;T ]

(E[kY (t)k2]) 12 :

Then (H2(T;H); k kH2) is a Banach space.

Theorem 2.1 Assume that a; � and L ful�ll the conditions stated above.
Then for every initial condition � 2 L2(
;F0; P;H) there exists a unique
mild solution f(t); t 2 [0; T ]; of equation (2.1). Moreover, the solution is
continuous as a mapping from [0; T ] to L2(
;F ; P ;H).

The proof of the theorem uses the following lemmas.

Lemma 2.2 If f is a predictable H-valued process and � and S(t); t � 0,
are as above, then the mapping

(s; !) 7! 1(0;t](s)S(t� s)�(f(s; !))

is PT=B(L2(G;H))-measurable for all t 2 [0; T ]:

Proof. (cf. [FrKn 01], Lemma 3.6, p.69)

Lemma 2.3 Let � be a process on (
;F ; P; (Ft)t2[0;T ]) with values in a Ba-
nach space E. If � is adapted to (Ft)t2[0;T ]), and stochastically continuous
then there exists a predictable version of �.

Proof. ([DaPrZa 92], Proposition 3.6 (ii), p.76)
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Lemma 2.4 Let � be a predictable H-valued process which is P -a.s. Bochner
integrable. Then the process given by

(

Z t

0

S(t� s)�(s) ds)t2[0;T ]

is P -a.s. continuous and adapted to (Ft)t2[0;T ]. This especially implies that
it is predictable.

Proof. ([FrKn 01], Lemma 3.9., p.70)

Lemma 2.5 Let (xn;m)m2N; n 2 N, be sequences of real numbers such that
for each n 2 N there exists xn 2 R with

xn;m �! xn as m!1:

If there exists a further sequence (yn)n2N such that jxn;mj � yn 8m 2 N andP
n2N yn <1 then

X
n2N

xn;m �!
X
n2N

xn as m!1:

Proof. The claim follows by Lebesgue's dominated convergence theorem with
respect to the measure � :=

P
n2N �n.

2

Lemma 2.6 Let (
;F) be a measurable space. Let E be a metric space with
metric d and f : 
 ! E strongly measurable. Then there exists a sequence
(fn)n2N of E-valued simple functions (i.e. fn is F=B(E)-measurable and
takes only �nitely many values) such that for arbitrary ! 2 
 the sequence
d(f(!); fn(!)); n 2 N; is monotonely decreasing to zero.

Proof. ([DaPrZa 92], Lemma 1.1)

Proof of Theorem 2.1
Let t 2 [0; T ], � 2 L2(
;F0; P;H) and f 2 H2(T;H). We de�ne


(f)(t) := S(t)� +

Z t

0

S(t� s)a(s; f(s)) ds+

Z t

0

S(t� s)�(s; f(s)) dL(s):
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Thus by De�nition 2.1 a mild solution of problem (2.1) with initial condition
� 2 L2(
;F0; P;H) is an H-predictable process such that 
(f)(t) = f(t) P -
a.s. for all t 2 [0; T ]: Hence we have to look for a �xed-point of 
, i.e. an f
such that 
(f) = f in H2(T;H):
Therefore we show that 
 is a well-de�ned mapping fromH2(T;H) toH2(T;H)
which also is a strict contraction. That means there exists C < 1 such that
for all f1; f2 2 H2(T;H)

k
(f1)� 
(f2)kH2 � Ckf1 � f2kH2 :

Then we get the existence and uniqueness of the mild solution f 2 H2(T;H)
with initial condition � 2 L2(
;F0; P;H) by Banach's �xed-point theorem.

Step 1. The mapping 
 : H2(T;H)! H2(T;H) is well-de�ned.

Let � 2 L2(
;F0; P;H) and f 2 H2(T;H). Then (S(t)�)t2[0;T ] 2 H2(T;H)
(cf. [FrKn 01], Proof of Thm. 3.2, Step 2, p.74).

The process a(s; f(s)); t 2 [0; T ], is P -a.s. Bochner integrable because

E[

Z t

0

ka(s; f(s))k ds)] �
Z t

0

E[Lipa(1 + kf(s)k)] ds)]
� T Lipa(1 + kfkH2(T;H)) <1:

Moreover it is predictable and hence by Lemma 2.4 the processZ t

0

S(t� s)a(s; f(s)) ds; 0 � t � T;

is well-de�ned and admits a predictable version. It is in H2(T;H), since

sup
t2[0;T ]

(E[k
Z t

0

S(t� s)a(s; f(s)) dsk2]) 12

� MTT
1

2 sup
t2[0;T ]

(E[

Z t

0

ka(s; f(s))k2H ds])
1

2

� MTT
1

2Lipa sup
t2[0;T ]

(

Z t

0

E[(1 + kf(s)k)2] ds) 12

� MTT
1

2Lipa sup
t2[0;T ]

(

Z t

0

E[2(1 + kf(s)k2)] ds) 12

� MTT
1

2Lipa
p
2 sup
t2[0;T ]

(

Z t

0

1 + E[kf(s)k2] ds) 12

� MTTLipa
p
2(1 + kfkH2) <1:
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Hence it only remains to prove that the process

(

Z t

0

S(t� s)�(s; f(s)) dL(s))t2[0;T ]

is well-de�ned and admits a version which is an element of H2(T;H). We
use Lemma 1.3 to decompose the Lévy process into

L(t) = tm+BQ(t) +

Z
G

x ~N(t; dx):

Then we de�ne the stochastic integral asZ t

0

S(t� s)�(s; f(s)) dL(s):=

Z t

0

S(t� s)�(s; f(s))mds (2.4)

+

Z t

0

S(t� s)�(s; f(s)) dBQ(s) (2.5)

+

Z t

0

Z
G

S(t� s)�(s; f(s))x ~N(dt; dx) (2.6)

and show the required properties for each summand. First we prove that the
processes are well-de�ned, then that they have �nite H2(T;H)-norm, and
�nally that we can �nd a predictable version.

Claim 1: The integrals are well-de�ned.
1. � is PT=B(L2(G;H))-measurable. Hence �m is PT=B(H)-measurable for
all m 2 G. Moreover

E[

Z T

0

k�(s; f(s))mkH ds] � T Lip�kmk(1 + kfkH2(T;H)) <1:

Therefore �m is predictable and P -a.s. Bochner integrable. By Lemma 2.4
we get that

(

Z t

0

S(t� s)�(s; f(s))mds)t2[0;T ]

exists and has a predictable version.

2. The stochastic integrals
R t
0
S(t� s)�(s; f(s)) dBQ(s); t 2 [0; T ], are well-

de�ned because the processes 1(0;t](s)S(t � s)�(s; f(s)); s 2 [0; t], are in
N 2
B(0; T ) (cf. App. A) for all t 2 [0; T ]:

(i) The mapping

(s; !)! 1(0;t](s)S(t� s)�(s; !; f(s; !))
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is PT=B(L2(G;H))-measurable by Lemma 2.2.
(ii) With respect to the norm we have

E[

Z t

0

kS(t� s)�(s; f(s))Q
1

2k2L2 ds]

� M2
TLip

2
�tr(Q)

Z t

0

E[(1 + kf(s)k)2] ds
� M2

TTLip
2
�tr(Q)2(1 + kfk2H2) <1:

We know from Prop. A.3 that the stochastic integral is again a martingale
and hence is (Ft)-adapted.

3. De�ne a Lévy martingale measure by

M(t; A) :=

Z
A�f0g

x ~N(t; dx); A 2 A:

Then we now from Chapter 2 that M is an orthogonal martingale measure
with independent increments which is nuclear and decomposable (see Thm.
1.2, Prop. 1.3). Thus we can de�ne the stochastic integrals with respect to
a Lévy martingale measure byZ t

0

Z
G

S(t� s)�(s; f(s))x ~N(dt; dx)) :=

Z t

0

Z
G

S(t� s)�(s; f(s))M(ds; dx):

They are well-de�ned because the processes 1(0;t](s)S(t � s)�(s; f(s)); s 2
[0; t], are in N 2(T ; �; dt) (cf. Def. ??) for all t 2 [0; T ]:
(i) The mapping

(s; !)! 1(0;t](s)S(t� s)�(s; !; f(s; !))

is PT=B(L2(G;H))-measurable by Lemma 2.2. Hence

(s; !)! 1(0;t](s)S(t� s)�(s; !; f(s; !))g

is PT=B(H))-measurable for all g 2 G. (Note that � does not depend on
x 2 G!)
(ii) For the norm we obtain with Tx = (x; �)Gx

E[

Z t

0

Z
S

kS(t� s)�(s; f(s))T
1

2
x k2L2 �(dx)ds]

�
Z t

0

E[kS(t� s)k2L(H)k�(s; f(s))k2L2 ]
Z
G

kT
1

2
x k2L2(G) �(dx) ds

� M2
TLip

2
�

Z t

0

E[(1 + kf(s)k)2]C� ds

� M2
TTLip

2
�2C�(1 + kfk2H2) <1:
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Again the stochastic integral is a martingale and therefore (Ft)-adapted (cf.
Prop. 1.5).

Claim 2: The three expressions (2.4), (2.5)and (2.6) have �nite H2(T;H)-
norm.
1. Similar to the calculations for the term involving a(�) we can conclude:

sup
t2[0;T ]

(E[k
Z t

0

S(t� s)�(s; f(s))mdsk2]) 12

� MTT
1

2kmk sup
t2[0;T ]

(E[

Z t

0

k�(s; f(s))k2L2 ds])
1

2

� MTT
1

2kmkLip� sup
t2[0;T ]

(

Z t

0

E[(1 + kf(s)k)2] ds) 12

� MTT
1

2kmkLip�
p
2 sup
t2[0;T ]

(

Z t

0

1 + E[kf(s)k2] ds) 12

� MTTkmkLip�
p
2(1 + kfkH2) <1:

2. For (2.5) we get:

sup
t2[0;T ]

(E[k
Z t

0

S(t� s)�(s; f(s)) dBQ(s)k2]) 12

= sup
t2[0;T ]

(E[

Z t

0

kS(t� s)�(s; f(s))Q
1

2k2L2 ds])
1

2

� MTLip�tr(Q)
1

2 sup
t2[0;T ]

(

Z t

0

E[(1 + kf(s)k)2] ds) 12

� MTT
1

2Lip�tr(Q)
1

2

p
2(1 + kfkH2) <1:

3. Finally for (2.6) we obtain:

sup
t2[0;T ]

(E[k
Z t

0

Z
G

S(t� s)�(s; f(s))M(ds; dx)k2]) 12

= sup
t2[0;T ]

(E[

Z t

0

Z
G

kS(t� s)�(s; f(s))T
1

2
x k2L2 �(dx)ds])

1

2

� sup
t2[0;T ]

(

Z t

0

E[kS(t� s)k2k�(s; f(s))k2L2 ]
Z
G

kT
1

2
x k2L2(G) �(dx) ds)

1

2

� MTLip� sup
t2[0;T ]

(

Z t

0

E[(1 + kf(s)k)2]C� ds)
1

2

� MTT
1

2Lip�
p
2C

1

2
� (1 + kfkH2) <1:
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Claim 3: For each process there is a predictable version.

To prove this claim we will use Lemma 2.3. Hence we have to show that the
processes are adapted and stochastically continuous.

1. The existence of a predictable version was already proved in Claim 1, 1.

2. The following argument goes back to [FriKno 01] and [Kno 03].
As seen in the proof of Claim 1, 2.

Z(t) :=

Z t

0

S(t� s)�(s; f(s)) dBQ(s); t 2 [0; T ];

is (Ft)-adapted. In addition we show that it is continuous in the mean square
and therefore stochastically continuous:

For � > 1 the process Z�(t) :=
R t=�
0

S(t� s)�(s; f(s)) dBQ(s); t 2 [0; T ];
is mean-square continuous.
To prove this claim we �rst use the semigroup property and get that

Z t=�

0

S(t� s)�(s; f(s)) dBQ(s)

=

Z t=�

0

S(t� �s)S((�� 1)s)�(s; f(s)) dBQ(s); t 2 [0; T ];

where we set ��(s) := 1(0;T ](s)S((�� 1)s)�(s; f(s)); s 2 [0; T ]:
Then it is clear that ��(t); t 2 [0; T ]; is an element of N 2

B(0; T ). Hence we
have to show now that the process

~Z(t) :=

Z t=�

0

S(t� �s)~�(s) dBQ(s); t 2 [0; T ];

is continuous for each � > 1 and ~� 2 N 2
B(0; T ).

(a) In the �rst step let ~� be a simple process of the form

~� =
mX
i=1

ui1Ai (2.7)
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where m 2 N; ui 2 L2(G;H) and Ai 2 PT ; 1 � i � m: We take arbitrary
0 � r < t � T and get

(E[k
Z t=�

0

S(t� �s)~�(s) dBQ(s)�
Z r=�

0

S(r � �s)~�(s) dBQ(s)k2]) 12

� (E[k
Z r=�

0

[S(t� �s)� S(r � �s)]~�(s) dBQ(s)k2]) 12

+ (E[k
Z t=�

r=�

S(t� �s)~�(s) dBQ(s)k2]) 12

� (E[

Z r=�

0

k[S(t� �s)� S(r � �s)]~�(s)Q
1

2k2L2 ds])
1

2

+ (E[

Z t=�

r=�

kS(t� �s)~�(s)Q
1

2k2L2 ds])
1

2

�
mX
i=1

(E[

Z r=�

0

1Ai(s; �)k[S(t� �s)� S(r � �s)]uiQ
1

2k2L2 ds])
1

2

+
mX
i=1

(E[

Z t=�

r=�

1Ai(s; �)kS(t� �s)uiQ
1

2k2L2 ds])
1

2

� tr(Q)
1

2 �
mX
i=1

(

Z r=�

0

k[S(t� �s)� S(r � �s)]uik2L2 ds)
1

2 (2.8)

+ tr(Q)
1

2 �
mX
i=1

(

Z t=�

r=�

kS(t� �s)uik2L2 ds)
1

2 : (2.9)

The second summand (2.9) converges to zero because for any 1 � i � mZ t=�

r=�

kS(t� �s)uik2L2 ds �
t� r

�
M2

Tkuik2L2 �! 0 as r " t or t # r:

The same is true for the �rst summand (2.8) for the following reason:
Let be en; n 2 N, an orthonormal basis of G. Then for any s 2 [0; T ] and
1 � i � m we have that

1[0;r=�)(s)k[S(t� �s)� S(r � �s)]uik2L2
=
X
n2N

1[0;r=�)(s)k[S(t� �s)� S(r � �s)]uienk2H

where

1[0;r=�)(s)k[S(t� �s)� S(r � �s)]uienk2 �! 0 as r " t or t # r
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by the strong continuity of the semigroup S(t). Combined with the inequality

1[0;r=�)(s)k[S(t� �s)� S(r � �s)]uienk2 � 4M2
Tkuienk2

for all n 2 N; 1 � i � m, we get the pointwise convergence

1[0;r=�)(s)k[S(t� �s)� S(r � �s)]uik2L2 �! 0 as r " t or t # r

by Lemma 2.5. Finally, the following integrable upper bound

1[0;r=�)(s)k[S(t� �s)� S(r � �s)]uik2L2 � 4M2
Tkuik2L2 2 L1([0; T ]; dx)

for all s 2 [0; T ]; 0 � r < t � T , allows us to use Lebesgue's dominated
convergence theorem. Thus we obtain the convergence of the integrals

Z r=�

0

k[S(t� �s)� S(r � �s)]uik2L2 ds; 1 � i � m;

we were looking for.
Hence we have proved the continuity of

Z t=�

0

S(t� �s)~�(s) dBQ(s); t 2 [0; T ];

in the case that � is a simple process.

(b) Now consider an arbitrary ~� from N 2
B(0; T ):

There exists a sequence (~�n)n2N of simple processes considered in (a) such
that (see Lemma 2.6)

E[

Z T

0

k�(s)� �n(s)k2L2 ds]
n!1���! 0:

By step (a) we know that for each n 2 N

~Zn(t) :=

Z t=�

0

S(t� �s)~�n(s) dBQ(s); t 2 [0; T ];

is continuous. To show the continuity of

~Z(t) =

Z t=�

0

S(t� �s)~�(s) dBQ(s); t 2 [0; T ];
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we prove that ~Zn converges to ~Z uniformly in t 2 [0; T ]:

sup
t�T

E[k ~Zn(t)� ~Z(t)k2H ]

= sup
t�T

E[k
Z t=�

0

S(t� �s)(~�n(s)� ~�(s)) dBQ(s)k2]

= sup
t�T

E[

Z t=�

0

kS(t� �s)(~�n(s)� ~�(s))Q
1

2k2L2 ds]

� M2
T tr(Q)E[

Z T

0

k(~�n(s)� ~�(s))k2L2 ds]
n!1���! 0:

Taking ~� = �� we thus obtain the continuity of

Z�(t) =

Z t=�

0

S(t� �s)��(s) dBQ(s) =

Z t=�

0

S(t� s)�(s; f(s)) dBQ(s):

for � > 1. With this result we can prove the assertion we are interested in.

(c) To establish the mean-square continuity of

Z(t) =

Z t

0

S(t� s)�(s; f(s)) dBQ(s); t 2 [0; T ];

we proceed as in (b) and show that Z�n converges to Z uniformly in t 2 [0; T ]
for (�n)n2N any sequence of real numbers such that �n # 1 as n!1:

sup
t�T

E[kZ�n(t)� Z(t)k2H ]

= sup
t�T

E[k
Z t=�n

0

S(t� s)�(s; f(s)) dBQ(s)�
Z t

0

S(t� s)�(s; f(s)) dBQ(s)k2]

= sup
t�T

E[k
Z T

0

1( t
�n

;t](s)S(t� s)�(s; f(s)) dBQ(s)k2]

� M2
T tr(Q)Lip2� sup

t�T
E[

Z T

0

1( t
�n

;t](s)(1 + kf(s)k)2 ds]

� M2
T tr(Q)Lip2�2(1 + kfkH2) sup

t�T
(t� t

�n
)

� M2
T tr(Q)Lip2�2(1 + kfkH2)T

�n � 1

�n
n!1���! 0:
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Thus Z is adapted and continuous in the mean square, and the application
of Lemma 2.3 �nally gives the existence of a predictable version.

3. The proof is basically the same as the previous one: The fact that

Y (t) :=

Z t

0

Z
G

S(t� s)�(s; f(s))M(ds; dx); t 2 [0; T ];

is (Ft)-adapted again follows from the martingale property as already men-
tioned in the proof of Claim 1, 3.
For � > 1 we de�ne Y �(t) :=

R t=�
0

R
G
S(t� s)�(s; f(s))M(ds; dx); t 2 [0; T ].

Remember that ��(s) = 1(0;T ](s)S((�� 1)s)�(s; f(s)); s 2 [0; T ]:
Then ��(t); t 2 [0; T ]; is also an element of N 2(T ; �; dt), and we show as in
2. that the process

~Y (t) :=

Z t=�

0

Z
G

S(t� �s)~�(s)M(ds; dx); t 2 [0; T ];

is mean-square continuous for each � > 1 and ~� 2 N 2(T ; �; dt).

(a) To show continuity in the case that ~� is a simple process of the form
de�ned above in (2.7) we use the following estimate (analogously to that in
2.):

(E[k
Z t=�

0

Z
G

S(t� �s)~�(s)M(ds; dx)

�
Z r=�

0

Z
G

S(r � �s)~�(s)M(ds; dx)k2]) 12

� (E[k
Z r=�

0

Z
G

[S(t� �s)� S(r � �s)]~�(s)M(ds; dx)k2]) 12

+ (E[k
Z t=�

r=�

Z
G

S(t� �s)~�(s)M(ds; dx)k2]) 12

� (E[

Z r=�

0

Z
G

k[S(t� �s)� S(r � �s)]~�(s)T
1

2
x k2L2 �(dx) ds])

1

2

+ (E[

Z t=�

r=�

Z
G

kS(t� �s)~�(s)T
1

2
x k2L2 �(dx) ds])

1

2

� C
1

2
� �

mX
i=1

(

Z r=�

0

k[S(t� �s)� S(r � �s)]uik2L2 ds)
1

2

+ C
1

2
� �

mX
i=1

(

Z t=�

r=�

kS(t� �s)uik2L2 ds)
1

2 :
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The two summands converge to zero by the same arguments as in 2. and
thus we have proved thatZ t=�

0

Z
G

S(t� s)~�(s)M(ds; dx); t 2 [0; T ];

is continuous for ~� a simple process.

(b) For arbitrary ~� from N 2(T ; �; dt), which does not depend on x 2 G,
we again have the sequence of approximating simple processes (~�n)n2N (see
Lemma 2.6). We proceed exactly as in the previous proof and show that

~Y n(t) :=

Z t=�

0

Z
S

S(t� �s)~�n(s)M(ds; dx); t 2 [0; T ];

converges uniformly in t 2 [0; T ] to

~Y (t) =

Z t=�

0

Z
S

S(t� �s)~�(s)M(ds; dx); t 2 [0; T ]:

Hence:

sup
t�T

E[k ~Y n(t)� ~Y (t)k2H ]

= sup
t�T

E[k
Z t=�

0

Z
S

S(t� �s)(~�n(s)� ~�(s))M(ds; dx)k2]

= sup
t�T

E[

Z t=�

0

Z
S

kS(t� �s)(~�n(s)� ~�(s))T
1

2
x k2L2 �(dx)ds]

� M2
TC�E[

Z T

0

k(~�n(s)� ~�(s))k2L2 ds]
n!1���! 0:

Taking ~� = �� we get for any � > 1 the continuity of

Y �(t) =

Z t=�

0

Z
S

S(t��s)��(s)M(ds; dx) =

Z t=�

0

Z
S

S(t�s)�(s; f(s))M(ds; dx):

(c) Finally, to prove the mean-square continuity of

Y (t) =

Z t

0

Z
S

S(t� s)�(s; f(s))M(ds; dx); t 2 [0; T ];
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we proceed as before and show the uniform convergence of Y �n to Y where
(�n)n2N is any sequence of real numbers with �n # 1 as n!1:

sup
t�T

E[kY �n(t)� Y (t)k2H ]

= sup
t�T

E[k
Z T

0

Z
S

1( t
�n

;t](s)S(t� s)�(s; f(s))M(ds; dx)k2]

� M2
TC�Lip

2
� sup
t�T

E[

Z T

0

1( t
�n

;t](s)(1 + kf(s)k)2 ds]

� M2
TC�Lip

2
�2(1 + kfkH2) sup

t�T
(t� t

�n
)

� M2
TC�Lip

2
�2(1 + kfkH2)T

�n � 1

�n
n!1���! 0:

So Y is adapted and continuous in the mean square. Thus Lemma 2.3 again
yields the existence of a predictable version.

Step 2. The mapping 
 : H2(T;H)! H2(T;H) is a strict contraction.

Let f1; f2 2 H2(T;H); � 2 L2(
;F0; P;H): Then we get

k
(f1)� 
(f2)kH2 = k(
Z t

0

S(t� s)(a(f1(s))� a(f2(s))) ds

+

Z t

0

S(t� s)(�(f1(s))� �(f2(s))) dL(s))t2[0;T ]kH2

� sup
t2[0;T ]

(E[k
Z t

0

S(t� s)(a(f1(s))� a(f2(s))) dsk2]) 12

+ sup
t2[0;T ]

(E[k
Z t

0

S(t� s)(�(f1(s))� �(f2(s))) dL(s)k2]) 12 :

The �rst summand can be estimated by

� T
1

2 sup
t2[0;T ]

(E[

Z t

0

kS(t� s)(a(f1(s))� a(f2(s)))k2 ds]) 12

� MTLipaT
1

2 sup
t2[0;T ]

(

Z t

0

E[k(f1(s))� f2(s))k2] ds) 12

� MTLipaTkf1 � f2kH2 :
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As in Step 1 we decompose our Lévy process according to Lemma 1.3 and
obtain the following upper bound for the second summand:

sup
t2[0;T ]

(E[k
Z t

0

S(t� s)(�(f1(s))� �(f2(s)))mdsk2]) 12 (2.10)

+ sup
t2[0;T ]

(E[k
Z t

0

S(t� s)(�(f1(s))� �(f2(s))) dBQ(s)k2]) 12 (2.11)

+ sup
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(E[k
Z t

0

Z
G

S(t� s)(�(f1(s))� �(f2(s)))x ~N(dt; dx))k2]) 12 (2.12)

1. It is easy to see that (2.10)

� T
1

2 sup
t2[0;T ]
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(

Z t

0

E[kf1(s)� f2(s)k2] ds) 12

� MTLip�kmkTkf1 � f2kH2 :

2. We get that (2.11)

= sup
t2[0;T ]

(E[

Z t

0

kS(t� s)(�(f1(s))� �(f2(s)))Q
1

2k2L2 ds])
1

2

� MTLip�tr(Q)
1

2 sup
t2[0;T ]

(E[

Z t

0

kf1(s)� f2(s)k2 ds]) 12

� MTLip�tr(Q)
1

2T
1

2kf1 � f2kH2 :

3. Finally we conclude that (2.12)

= sup
t2[0;T ]

(E[k
Z t

0

Z
G

S(t� s)(�(f1(s))� �(f2(s)))M(ds; dx))k2]) 12

= sup
t2[0;T ]

(E[

Z t

0

Z
G

kS(t� s)(�(f1(s))� �(f2(s)))T
1

2
x k2L2 �(dx)ds])

1

2

� sup
t2[0;T ]

(E[

Z t

0

kS(t� s)k2L(H)k�(f1(s))� �(f2(s))k2L2
Z
G

kT
1

2
x k2L2 �(dx)ds])

1

2

� MTLip� sup
t2[0;T ]

(E[

Z t

0

kf1(s)� f2(s)k2C� ds])
1

2

� MTLip�T
1

2C
1

2
� kf1 � f2kH2 :
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Hence by taking T = T1 su�ciently small we can �nd C < 1 such that

k
(f1)� 
(f2)kH2(T1;H) � Ckf1 � f2kH2(T1;H)

for all � 2 L2(
;F0; P;H); f1; f2 2 H2(T1; H). Thus we have established the
existence of a unique mild solution on [0; T1].

For general T we start with the unique mild solution f on [0; T1]. Then we
solve again for the new initial condition f(T1). Since the constants involved,
MT ; Lipa; Lip�; C� ; tr(Q); kmk, only depend on T (if at all) we can proceed
exactly as before and get a unique mild solution on [T1; 2T1]. To be precise,
set ~Ft := Ft+T1 ; ~a(t; �) := a(t + T1; �); ~�(t; �) := �(t + T1; �) and ~L(t) :=
L(t+ T1)� L(T1); t 2 [0; T � T1]. We consider the equation

�
d ~f(t) = (A ~f(t) + ~a(t; ~f(t))) dt+ ~�(t; ~f(t)) d~L(t)
~f(0) = f(T1) 2 L2(
; ~F0; P;H):

Guaranteed a unique mild solution ~f on [0; T1 ^ (T � T1)] we de�ne

f(t) :=

�
f(t) ; t 2 [0; T1]
~f(t� T1) ; t 2 (T1; 2T1 ^ T ];

thus extending the solution to [0; 2T1 ^ T ]
We continue this procedure until we have constructed the solution f on the
whole interval [0; T ].

Step 3. The mild solution f : [0; T ]! L2(
;F ; P ;H) is continuous.

For 0 � s � t � T we can conclude

E[kS(t)� � S(s)�k2] � E[kS(t)� S(s)k2L(H)k�k2] � 4M2
TE[k�k2] <1:

Due to the strong continuity of S(t); t � 0, we get the pointwise convergence

k[S(t)� S(s)]�kH �! 0 as s " t or t # s:

Hence the application of Lebesgue's dominated convergence theorem yields
the L2-continuity of (S(t)�)t2[0;T ].
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The proof for (
R t
0
S(t�s)a(s; f(s)) ds)t2[0;T ] makes use of the same argument:

We take arbitrary 0 � r < t � T and get

(E[k
Z t

0

S(t� s)a(s; f(s)) ds�
Z r

0

S(r � s)a(s; f(s)) dsk2]) 12

� (E[k
Z r

0

[S(t� s)� S(r � s)]a(s; f(s)) dsk2]) 12 (2.13)

+ (E[k
Z t

r

S(t� s)a(s; f(s)) dsk2]) 12 : (2.14)

Again by using Lebesgue's theorem we show that (2.13) tends to zero:

E[k
Z r

0

[S(t� s)� S(r � s)]a(s; f(s)) dsk2]

� rE[

Z r

0

k[S(t� s)� S(r � s)]a(s; f(s))k2 ds]
� 4M2

T r
2Lip2a2(1 + kfk2H2) <1:

Moreover by the strong continuity of S(t); t � 0, we have for all (s; !)

k[S(t� s)� S(r � s)]a(s; f(s))kH �! 0 as r " t or t # r:

And (2.14) converges to zero because

E[k
Z t

r

S(t� s)a(s; f(s)) dsk2] � (t� r)E[

Z t

r

kS(t� s)a(s; f(s))k2 ds]
� (t� r)2M2

TLip
2
a2(1 + kfk2H2)

�! 0 as r " t or t # r:

The continuity of (
R t
0
S(t�s)�(s; f(s)) dL(s))t2[0;T ] follows (cf. (2.4) �.) from

the continuity of
R t
0
S(t� s)�(s; f(s))mds;

R t
0
S(t� s)�(s; f(s)) dBQ(s) andR t

0

R
G
S(t� s)�(s; f(s))M(dt; dx).

For the second and third term this property has already been shown in Step
1, Claim 3, 2. & 3. The proof for the �rst term is completely analogous to
that for (

R t
0
S(t� s)a(s; f(s)) ds)t2[0;T ] and so we are �nally done.

2
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Chapter 3

Application to

Heath-Jarrow-Morton Interest

Rate Models

In this �nal chapter we want to apply our results from Chapter 2 to modeling
bond prices via Heath-Jarrow-Morton interest rate models.
Section 3.1 states some basic concepts and de�nitions from general interest
rate theory. In section 3.2 we introduce the classical Heath-Jarrow-Morton
model put forward in [HJM 92]. It attempts to capture the movement of
bond prices by modeling forward rates ("expected future interest rates")
with stochastic equations driven by Brownian motion. Similar to [Fil 01] we
show how to reformulate the original approach in the framework of stochastic
evolution equations. Motivated by empirical �ndings we then switch from
Gaussian noise to the more general Lévy noise in the underlying equation in
section 3.3. Following [ÖzkSch 05] we develop an HJM-type condition for the
drift coe�cient to guarantee the absence of arbitrage in our model. Finally,
we use our existence and uniqueness theorem from section 2.1 to prove the
existence of an HJM model with Lévy noise (conditional upon an assumption
on the drift).

3.1 General interest rate theory

As before let (
;F ; P ) be a complete probability space with (Ft); t � 0; a
right-continuous �ltration on (
;F ; P ) such that F0 contains all P -nullsets.We
�x a time horizon �T > 0.

A zero-coupon bond (ZCB) of maturity T is a �nancial security paying
to its holder one unit of cash at the prespeci�ed date T in the future. I.e.
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the bond's face value is one unit of currency (normalized for convenience).
We assume throughout the whole chapter that the bonds have no risk of

default.
By B(t; T ) we denote the price of a zero-coupon bond of maturity T at

any instant t � T . B(t; T ) � 1, because the interest earned on this bond
appears as a discount to the face value. Clearly B(T; T ) = 1 for any T � �T .
We assume that B(�; T ) follows a strictly positive and adapted process on
(
;F ; P ).

Since the interest received depends on the time to maturity, interest rates
are not a one-dimensional object. Thus modeling them requires a vector- or
function-valued process. We assume the existence of a complete set of zero-
coupon bonds for all maturities T 2 [0; �T ]. (In reality bonds with a �nite
number of maturities between 0 and at least 30 years are traded.)

The term structure of interest rates (at time t) is the set of yields-to-
maturity (Y (t; T )); t < T � �T , where

Y (t; T ) = � 1

T � t
lnB(t; T ); t < T � �T :

This is derived from the discount equation (using continuous compounding)

B(t; T ) = exp(�Y (t; T )(T � t)); t < T � �T :

(Y (t; T )); t � T � �T , is known as the yield curve at time t.

The Short Rate
The short rate r(t) = Y (t; t) := limT#t Y (t; T ) is the rate for instantaneous
borrowing or lending at date t. Since the short rate can �uctuate over time,
we consider the process (r(t)); t � 0: (Note that the short rate is a theoret-
ical construction which cannot be directly observed in real life. It may be
approximated by the overnight, one-week or one-month interest rate.)

The money-market account is one unit of cash invested in the short rate
and continuously "rolled over", i.e. instantaneously reinvested. At time t its
value is

D(t) = exp(

Z t

0

r(s) ds):

Originally, the short rate was modeled as a (one-dimensional) stochastic
process to calculate prices of bonds and bond options. For an account of the
most popular models see e.g. [Shr 04], 6.5 and 10.2. The primary shortcoming
of these so-called short rate models is that they cannot capture complicated
yield curve behavior as changes in slope or curvature.
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3.2 The classical Heath-Jarrow-Morton model

Instead of using only the short rate as a state variable, Heath, Jarrow and
Morton (HJM) proposed in their seminal paper ([HJM 92]) to use the entire
forward rate curve as the (in�nite-dimensional) state variable. In the HJM
model an entire forward curve evolves simultaneously. Moreover, the HJM
model uses all the information available in the initial term structure of in-
terest rates.

Forward Interest Rates
We call f(t; T ) the forward (interest) rate at date t � T for instantaneous
riskfree borrowing or lending at date T . One should think of f(t; T ) as the
interest rate over the in�nitesimal time interval [T; T + dt] as seen from time
t. Hence the short rate is given by r(t) = f(t; t).

If we specify a family of forward rates f(t; T ); 0 � t � T � �T , then we
can express the bond price as

B(t; T ) = exp(�
Z T

t

f(t; u) du):

If we assume that the family of bond prices B(t; T ) is su�ciently smooth
with respect to the maturity T , we may formally de�ne

f(t; T ) := �@ lnB(t; T )

@T
; 0 � t � T � �T : (3.1)

Thus we can calculate zero-coupon bond prices from forward rates and vice
versa; the two concepts contain equivalent information. (However, note that
forward rates are a mathematical idealization, not directly observable.)

The Heath-Jarrow-Morton Model
Assume that f(0; T ); 0 � T � �T , is known at time 0. We call this the initial
forward rate curve. In the HJM model the forward rate at later times t for
investing at still later times T is given by

f(t; T ) = f(0; T ) +

Z t

0

�(s; T ) ds+

Z t

0

�(s; T ) � dW (s):

Or written in di�erential form:

df(t; T ) = �(t; T ) dt+ �(t; T ) � dW (t); 0 � t � T: (3.2)

Here the variable T is held constant. W is a d-dimensional standard Brownian
motion. The coe�cient functions � : �2 � 
! R and � : �2 � 
! R

d are
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adapted processes in the t variable for each �xed T , where �2 := f(t; T ) 2
R

2 : 0 � t � T � �Tg is a triangle set.
The dynamics of the forward rates can be used to gain that of the bond

prices (cf. [Shr 04], 10.3 for details), given by

dB(t; T ) = B(t; T ) (m(t; T ) dt+
dX

j=1

��j (t; T ) dW
j(t))

where

m(t; T ) = f(t; t)�
Z T

t

�(t; u) du+
1

2

dX
j=1

(

Z T

t

�j(t; u) du)
2;

��j (t; T ) = �
Z T

t

�j(t; u) du:

From (3.2) we get the dynamics of the short rate under this model as

r(t) = f(0; t) +

Z t

0

�(s; t) ds+

Z t

0

�(s; t) � dW (s):

The HJM model includes zero-coupon bonds with maturity T for each
T 2 [0; �T ]. To rule out the possibility of arbitrage by trading in these bonds
we have to guarantee that each discounted bond price process

D(t)�1B(t; T ) = exp(�
Z t

0

r(s) ds)B(t; T ); 0 � t � T

is a (local) martingale ("First fundamental theorem of asset pricing"; cf.
[DelSch 94]). We use a standard approach and work under a risk-neutral
setting, i.e. we assume that risk-adjustments have already been made with
the measure P and thus prices can be derived as if all traders were risk-
neutral. Then we give conditions on � ensuring that the price processes
are martingales under P . Such P is then called a risk-neutral measure or
martingale measure (We will prefer the former name, because the latter has
nothing to do with our notion of martingale measure from section 1.2).

This leads to the HJM no-arbitrage condition (cf. [HJM 92] Prop.3 (18))
relating forward drifts and volatilities:

�(t; T ) =
dX

j=1

�j(t; T )

Z T

t

�j(t; u) du; 0 � t � T � �T : (3.3)
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In terms of bond prices this results in replacing the drift coe�cient m(t; T )
by the short rate r(t). Thus under a risk-neutral setting in the HJM model
the bond price dynamics are given by

dB(t; T ) = B(t; T ) (r(t) dt+
dX

j=1

��j (t; T ) dW
j(t)): (3.4)

The solution of (3.4) can be written as

B(t; T ) = B(0; T )D(t) exp(
dX

j=1

(

Z t

0

��j (s; T ) dW
j(s)� 1

2

Z t

0

��j (s; T )
2 ds)):

(3.5)

The HJM model was later extended to allow for an in�nite number of
driving Brownian motions, i.e. an in�nite number of factors in�uencing the
forward rate movement. For example, Filipovic ([Fil 01]) considered the
approach

f(t; T ) = f(0; T ) +

Z t

0

�(s; T ) ds+
X
j2N

Z t

0

�j(s; T ) d�j(s) (3.6)

where again T is held constant, 0 � t � T , �j : �2 � 
 ! R; j 2 N, and
the �j; j 2 N, form a sequence of independent standard Brownian motions.
Then for (gj); j 2 N, the standard orthonormal basis in `2, the series BQ :=P

j2N �
jgj de�nes a Q-Brownian motion in the weighted sequence Hilbert

space `2�. Here `
2
� := f(vj)j2N 2 RNj

P
j2N �jv

2
j <1g where � = (�j)j2N is a

sequence of strictly positive numbers with
P

j2N �j < 1 (cf. [Fil 01], Prop.
2.1.1.).

Thus in the HJM framework the dynamics of the forward rate are given
by a system of in�nitely many stochastic di�erential equations indexed by T .

Musiela Parametrization
Naturally this led to the idea to treat the whole system as one in�nite dimen-
sional process. I.e. transforming (3.6) into a Hilbert space-valued stochastic
evolution equation, thus entering the �eld of stochastic partial di�erential
equations.

To avoid problems with a varying state space depending on t we switch
to a parametrization proposed by Musiela (see [Mus 93]): For x � 0 set
T = x+ t. Denote by (S(t))t�0 the semigroup of right shifts, i.e.

S(t)g(x) := g(x+ t); t � 0; g : R+ ! R:
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Applying these de�nitions we can rewrite (3.6) as

f(t; x+ t) = S(t)f(0; x) +

Z t

0

S(t� s)�(s; x+ s) ds

+
X
j2N

Z t

0

S(t� s)�j(s; x+ s) d�j(s): (3.7)

Now we consider ft(�) := f(t; �+ t); t � 0, as a stochastic process with state
space H, where H is a suitable separable Hilbert space of functions from R+

to R. We call H the space of forward curves.
Possible choices of H are thoroughly discussed in [Fil 01]. He proposed a

family of weighted Sobolev spaces (Hw) de�ned as follows:

De�nition 3.1 (State space for the HJM model)

Hw := ff : R+ ! R : f is absolutely continuous;

Z 1

0

f 0(x)2w(x) dx <1g;

where w : R+ ! [1;1) is a non-decreasing C1-function s.t.
R1
0
w(x)�

1

3 dx <
1 and f 0 denotes the weak derivative of f .

Then for a �xed weight function w the space Hw is a separable Hilbert space
w.r.t. the inner product

(f; g)Hw
:= f(0)g(0) +

Z 1

0

f 0(x)g0(x)w(x) dx; f; g 2 Hw:

Moreover, the shift semigroup (S(t))t�0 is strongly continuous on Hw with
in�nitesimal generator A = @

@x
. There exists a constant C such that for any

f 2 Hw we have kfkL1(R+) � CkfkHw
. (cf. [Fil 01], Thm. 5.1.1.)

Introducing the notation �t := �(t; �+t), �jt := �j(t; �+t) and f0 := f(0; �)
equation (3.7) transforms into

ft = S(t)f0 +

Z t

0

S(t� s)�s ds+
X
j2N

Z t

0

S(t� s)�js d�
j(s)

Thus f looks like a a mild solution to the stochastic evolution equation�
dft = ( @

@x
ft + �t) dt+

P
j2N �

j
t d�

j(t)

f0 = f(0; �) (3.8)

Finally allowing state-dependent coe�cients (we could have done this
before) we arrive at the following stochastic equation for the forward rates:�

dft = ( @
@x
ft + �(t; ft)) dt+ �(t; ft) dBQ(t)

f0 = f(0; �) (3.9)

where
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� f(0; �) 2 H is the (deterministic) initial forward curve

� � is a measurable function from ([0; T ] � 
 � H;PT 
 B(H)) into
(H;B(H))

� � is a measurable function from ([0; T ] � 
 � H;PT 
 B(H)) into
(L2(G;H);B(L2(G;H))

� BQ is the Q-Brownian motion on G := `2�.

Hence (3.9) is just a special case of our setup from Chapter 2, with A = @
@x

and L = BQ.

3.3 HJM models with Lévy noise

The log return between times t and t+�t on a zero-coupon bond maturing
at T is de�ned as ln(B(t + �t; T )) � ln(B(t; T )). It can be shown that log
bond returns resulting from Gaussian HJM models approximately follow a
Normal distribution.

But as in the case of stock prices, empirical studies (see [Rai 00] for a de-
tailed study concerning German government bonds) show that this normality
assumption is not really true in reality. Log returns of bonds calculated from
historical data turn out to follow a leptokurtic distribution. I.e. very small
and very large price movements occur more often than predicted by a Gaus-
sian law. Hence it seems reasonable to replace the Normal distribution by a
more �exible one to obtain a more realistic model. That means switching to
the much wider class of Lévy processes, with the driving Brownian motion
from the classical HJM model as just one prominent example.

Instead of starting with the driving SDE Eberlein and Raible [EbRai 99]
suggest to use the explicit bond price formula in the Gaussian framework
(3.5) and replace the Brownian motion with a Lévy process. They study the
one-dimensional case, while in [Rai 00] the multi-dimensional setting with d
independent Lévy processes (Lj(t)); j = 1; : : : d, is considered. The derived
bond price process is of the form

B(t; T ) = B(0; T )D(t)
exp(

Pd
j=1

R t
0
��j (s; T ) dL

j(s))

exp(
Pd

j=1

R t
0
�j(��j (s; T )) ds)

(3.10)

where �j(u) := ln(E[exp(uLj(1))]) is the logarithm of the moment-generating
function of the jth Lévy process at time 1. In the classical HJM model we
choose Lj = W j; j = 1; : : : d and �j(u) = u2=2 and get back formula (3.5).
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It is shown that the approach (3.10) also yields the martingale property
for each discounted bond price process

D(t)�1B(t; T ) = exp(�
Z t

0

r(s)ds)B(t; T ); 0 � t � T;

thus ruling out arbitrage. ([Rai 00], Col.7.10, with integrability conditions
on L and �.)

HJM equation with Lévy noise
We will explore another approach, i.e. we begin with the driving SDE and
replace the Q-Brownian motion in (3.9) by an in�nite-dimensional Lévy pro-
cess.
Concerning the two di�erent approaches we refer to [App 04], p.273, l.18-24,
where a similar topic is discussed in the context of modeling a stock price by
a simple one-dimensional linear stochastic equation:

The use of Lévy processes in �nance is at a relatively early stage
of development and there seems to be some disagreement in the
literature as to whether it is best to employ a stochastic exponen-
tial to model stock prices, (...), or to use geometric Lévy motion,
S(t) = eX(t) (the reader can check that these are, more or less,
equivalent when X is Gaussian). Indications are that the former
is of greater theoretical interest while the latter may be more
realistic in practical models.

Starting with the dynamics leads to the equation�
dft = ( @

@x
ft + �(t; ft)) dt+ �(t; ft) dL(t)

f0 = f(0; �) : (3.11)

Then a mild solution to this equation has to satisfy

ft = S(t)f0 +

Z t

0

S(t� s)�(s; fs) ds+

Z t

0

S(t� s)�(s; fs) dL(s): (3.12)

Working with the Musiela parametrization the short rate is given by r(t) =
ft(0) and the discounting process by D(t)�1 = exp(� R t

0
fs(0) ds).

We take H = G = Hw for a �xed weight function w. (For the de�nition
and properties of the state space Hw see Def. 3.1.) We will loosely follow
the setting of [ÖzkSch 05], section 3, and assume that our Lévy process L is
a martingale, more precisely that L ful�lls condition (F) and can be written
as

L(t) = BQ(t) +

Z
H

x ~N(t; dx): (3.13)
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Such L have second moments in the following sense

E[kL(t)k2] = E[kBQ(t) +

Z
H

x ~N(t; dx)k2]

� 2(E[kBQ(t)k2] + E[k
Z
H

x ~N(t; dx)k2])

= 2(t tr(Q) + t

Z
H

kxk2 �(dx)) <1; t 2 [0; �T ]:

Here the last equality results from Prop. A.2 and Prop. 1.2. For Lévy
processes with second moments we have the following useful representation

Proposition 3.1 ([ÖzkSch 05], Prop. 2.1.)
Consider a Lévy process (L(t))t2[0; �T ] with values in H and E[kL(t)k2] < 1
for all t 2 [0; �T ]. Then for (ek); k 2 N, an arbitrary orthonormal basis of H
we have the following decomposition

L(t) =
1X
k=1

(L(t); ek)Hek;

where the series converges in L2. Moreover, the process (lk(t))t2[0; �T ] de�ned
by lk(t) := (L(t); ek)H is a real-valued Lévy process for any k 2 N.

Proof. Consider t 2 [0; �T ] �xed. Then by the Bessel inequality we have for
any m 2 N

E[k
mX
k=1

(L(t); ek)Hekk2] =
mX

k;j=1

E[(L(t); ek)(L(t); ej)](ek; ej)

=
mX
k=1

E[(L(t); ek)
2] � E[kL(t)k2]:

Hence the series converges in L2. The fact that the processes lk are real-
valued Lévy processes is clear by the de�nition.

2

To ensure the existence of exponential moments for L needed later, we impose
the following condition on �Z

kxk�1

exp((c; x)H) �(dx) <1; 8 c 2 H: (3.14)

47



Unlike [ÖzkSch 05] we allow the coe�cients to explicitly depend on the
state ft. As before � is a measurable function from [0; T ]�
�H into L2(H)
and � is a measurable function from [0; T ]�
�H into H. We require � to
be Lipschitz continuous in the third variable and uniformly bounded. The
process �(�; f�) is assumed to be P -a.s. Bochner integrable on [0; �T ].

To shorten notation we de�ne ��(s; fs)(T ) :=
R T�s
0

�(s; fs)(u) du and also

��k(s; fs)(T ) :=
R T�s
0

[�(s; fs)ek](u) du.
As outlined in section 3.2, to guarantee the absence of arbitrage we have

to make sure that all discounted bond prices follow local martingales under
the risk-neutral measure P . This is done in the next theorem which states a
HJM-type condition relating forward drifts and volatilities (compare formula
(3.3))

Theorem 3.1 (cf. [ÖzkSch 05], Thm. 3.1.)
All discounted bond prices are local martingales, if for all 0 � t � T � �T the
following condition holds P -a.s.:

0 = ���(t; ft)(T ) + 1

2

1X
k=1

�k[�
�
k(t; ft)(T )]

2 (3.15)

+

Z
H

[exp(

Z T�t

0

[�(t; ft)x](u) du)� 1�
Z T�t

0

[�(t; ft)x](u) du] �(dx):

In the proof we make use of the following Itô formula for Lévy processes
obtained from [Kun 70]:

Theorem 3.2 Let (L(t))t2[0; �T ] be a Lévy process with values in the separable
Hilbert space H. Moreover, let (�(t))t2[0; �T ] be a predictable L(H)-valued pro-

cess which is bounded and set X(t) :=
R t
0
�(s) dL(s) for all t 2 [0; �T ]. Denote

by �k and ek; k 2 N, the eigenvalues resp. eigenvectors of Q. For an open
subset A � H and a twice di�erentiable function F : A! H with uniformly
continuous second derivatives on bounded subsets of H it holds, that

F (X(t)) = F (X(0)) +

Z t

0

DF (X(s�)) dX(s)

+
1

2

Z t

0

1X
k=1

�kD
2F (X(s�)) (�(s)ek; �(s)ek) ds

+
X
s�t

[�(F (X))(s)�DF (X(s�))�X(s)]:

Note that the second derivative D2F (�) is a bilinear mapping, and we just
write D2F (�) (g; h) for this mapping evaluated at g and h.

48



Proof of Thm. 3.1. De�ne

y(t; T ) := �
Z T�t

0

ft(u) du:

Then B(t; T ) = exp(y(t; T )) and we �rst derive the dynamics of the process
(y(t; T ))t�0. From (3.12) we get

y(t; T ) = �
Z T�t

0

[f0(u+ t) +

Z t

0

�(s; fs)(u+ t� s) ds

+ (

Z t

0

S(t� s)�(s; fs) dL(s))(u)] du: (3.16)

Setting t = 0 yields

�
Z T�t

0

f0(u+ t) du = y(0; T ) +

Z T

0

f0(u) du�
Z T�t

0

f0(u+ t) du

= y(0; T ) +

Z t

0

f0(u) du: (3.17)

Since we have to consider the discounted bond prices, it is convenient to have
the short rate explicitly appear in the dynamics of y. Again from (3.12) we
concludeZ t

0

fu(0) du =

Z t

0

f0(u) du+

Z t

0

Z u

0

�(s; fs)(u� s) ds du

+

Z t

0

(

Z u

0

S(u� s)�(s; fs) dL(s))(0) du: (3.18)

Inserting (3.17) and (3.18) into (3.16) we obtain

y(t; T ) = y(0; T ) +

Z t

0

fu(0) du

�
Z t

0

Z u

0

�(s; fs)(u� s) ds du�
Z T

0

Z t

0

�(s; fs)(u� s) ds du

�
Z T�t

0

(

Z t

0

S(t� s)�(s; fs) dL(s))(u) du

�
Z t

0

(

Z u

0

S(u� s)�(s; fs) dL(s))(0) du: (3.19)

Now we can interchange the order of the �-integrals by using Fubini's theo-
rem. This gives us the following expression for the sum of the �-integrals

�
Z t

0

Z T

s

�(s; fs)(u� s) du ds:
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We apply the decomposition of L from Prop. 3.1 to get

(

Z t

0

S(t� s)�(s; fs) dL(s))(u) =
1X
k=1

Z t

0

[�(s; fs)ek](u+ t� s) dlk(s)

=
1X
k=1

Z t

0

�k(s; fs)(u+ t� s) dlk(s);

where �k(s; fs)(u) := [�(s; fs)ek](u). Note that �, and thus �k for any k 2 N,
is uniformly bounded.

This property also allows us to use the stochastic Fubini theorem (cf.
[Sto 05], Thm. 3.3.4; [DaPrZa 92], Thm. 4.18) to interchange the order of
integration in the last two terms of (3.19). Hence we obtain

Z T�t

0

(

Z t

0

S(t� s)�(s; fs) dL(s))(u) du

=

Z T�t

0

1X
k=1

Z t

0

�k(s; fs)(u+ t� s) dlk(s) du

=
1X
k=1

Z t

0

Z T

t

�k(s; fs)(u� s) du dlk(s)

as well asZ t

0

(

Z u

0

S(u� s)�(s; fs) dL(s))(0) du =
1X
k=1

Z t

0

Z t

s

�k(s; fs)(u� s) du dlk(s):

Combining these calculations leads to the following formulation of y:

y(t; T ) = y(0; T ) +

Z t

0

fu(0) du�
Z t

0

Z T

s

�(s; fs)(u� s) ds

�
1X
k=1

Z t

0

Z T

s

�k(s; fs)(u� s) du dlk(s):

Finally we use the abbreviations ��(s; fs)(T ) and ��k(s; fs)(T ) introduced
above and obtain the dynamics of y:

y(t; T ) = y(0; T ) +

Z t

0

fu(0) du�
Z t

0

��(s; fs)(T ) du ds

�
1X
k=1

Z t

0

��k(s; fs)(T ) dlk(s): (3.20)
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Again, note that the ��k are bounded. In order to apply the Itô formula from
3.2 we need a more functional analytic representation of the equation for y.
So we de�ne � : [0; �T ]� 
! L(H) by

[�(s)g](�) :=
Z �

s

[�(s; fs)g](u� s) ds; g 2 H:

Then Z t

0

[�(s) dL(s)](T ) =
X
k

Z t

0

[�(s)ek](T ) dlk(s)

=
X
k

Z t

0

Z T

s

[�(s; fs)ek](u� s) ds dlk(s)

=
X
k

Z t

0

��k(s; fs)(T ) du dlk(s):

Setting m(s; fs)(�) := fs(0)� ��(s; fs)(�) we get

y(t) = y(0) +

Z t

0

m(s; fs) ds�
Z t

0

�(s) dL(s): (3.21)

Since B(t; T ) = exp(y(t; T )), we de�ne

F : H ! H; g(�) 7! exp(g(�));
where exp(g(�)) is the function h such that h(x) = exp(g(x)); x � 0. Then
B(t; �) = F (y(t; �)). For two real-valued functions functions g; h we set (g �
h)(�) := g(�)h(�). It is easy to show that DF (�) = F (�) � id and D2F (�) =
F (�)� id� id. Hence the application of Theorem 3.2 yields

B(t) = B(0) +

Z t

0

DF (y(s�)) (m(s; fs) ds� �(s) dL(s))

+
1

2

Z t

0

1X
k=1

�kD
2F (y(s�)) (�(s)ek;�(s)ek) ds

+
X
s�t

[F (y(s))� F (y(s�))�DF (y(s�)) �(s)�L(s)]:

Inserting the derivatives of F we conclude

B(t) = B(0) +

Z t

0

B(s�)� (m(s; fs) ds�
Z t

0

B(s�)� �(s) dL(s))

+
1

2

Z t

0

1X
k=1

�kB(s�)� (�(s)ek)� (�(s)ek) ds

+
X
s�t

[�B(s)�B(s�)� (�(s)�L(s))]:
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By evaluating B(t; T ) at maturity T we can deduce

B(t; T ) = B(0; T ) +

Z t

0

B(s�; T )[fs(0)� ��(s; fs)(T )] ds

�
X
k

Z t

0

B(s�; T )��k(s; fs)(T ) dlk(s)

+
1

2

Z t

0

B(s�; T )
1X
k=1

�k[�
�
k(s; fs)(T )]

2 ds

+
X
s�t

[�B(s; T )�B(s�; T )(�(s)�L(s))(T )]:

Since B(s) = F (y(s)) we get B(s)=B(s�) = exp(�(s)�L(s)) and thus obtain

�B(s; T ) = B(s�; T )( B(s; T )

B(s�; T ) � 1)

= B(s�; T )(exp([�(s)�L(s)](T ))� 1):

This leads to

X
s�t

[�B(s; T )�B(s�; T )(�(s)�L(s))(T )]

=
X
s�t

B(s�; T )[exp((�(s)�L(s))(T ))� 1� (�(s)�L(s))(T )]:

And this expression can also be written as

Z t

0

Z
H

B(s�; T )[exp((�(s)x)(T ))� 1� (�(s)x)(T )]N(ds; dx):

Since D(t)�1 is real-valued and of �nite variation, applying Itô's product rule
yields

d[D(t)�1B(t; T )] = (�ft�(0))D(t�)�1B(t�; T ) dt+D(t�)�1 dB(t; T )
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and therefore the discounted bond price process ful�lls:

D(t)�1B(t; T ) (3.22)

= D(0)�1B(0; T )�
Z t

0

D(s)�1B(s�; T )��(s; fs)(T ) ds

�
X
k

Z t

0

D(s)�1B(s�; T )��k(s; fs)(T ) dlk(s)

+
1

2

Z t

0

D(s)�1B(s�; T )
1X
k=1

�k[�
�
k(s; fs)(T )]

2 ds

+

Z t

0

Z
H

D(s)�1B(s�; T )[exp((�(s)x)(T ))� 1� (�(s)x)(T )] ~N(ds; dx)

+

Z t

0

Z
H

D(s)�1B(s�; T )[exp((�(s)x)(T ))� 1� (�(s)x)(T )] �(dx) ds:

The term D(0)�1B(0; T ) is just a constant. The Lévy processes lk are
martingales by assumption. The same holds for

R
H
x ~N(�; dx). Hence the

stochastic integrals w.r.t. them are local martingales. Remembering, that
(�(s)x)(T ) =

R T�s
0

[�(s; fs)x](u) du, we conclude.

2

Note that if the forward rates are positive (a suitable property indeed), the
discounted bond prices will also be true martingales as they are bounded by 1.

Writing out the abbreviations (3.15) reads

0 = �
Z T�t

0

�(t; ft)(u) du+
1

2

1X
k=1

�k(

Z T�t

0

[�(t; ft)ek](u) du)
2

+

Z
H

[exp(

Z T�t

0

[�(t; ft)x](u) du)� 1�
Z T�t

0

[�(t; ft)x](u) du] �(dx):

Taking derivatives on both sides we get

�(t; ft)(T � t) =
1X
k=1

�k[�(t; ft)ek](T � t)

Z T�t

0

[�(t; ft)ek](u) du (3.23)

+

Z
H

[�(t; ft)x](T � t)(exp(

Z T�t

0

[�(t; ft)x](u) du)� 1) �(dx):

Here interchanging di�erentiation and summation is justi�ed by [Fil 01] Lem.
4.3.2. (uniform convergence on compacts); interchanging di�erentiation and
integration by Lebesgue's dominated convergence theorem and (3.14).
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We can now state the following (conditional) proposition on the existence
of an HJM model with Lévy noise and state-dependent coe�cients:

Proposition 3.2 Let be � : ([0; T ]�
�H;PT
B(H))! (L2(H);B(L2(H)))
measurable, uniformly bounded and Lipschitz continuous in the third variable.
Moreover let L be a Lévy process satisfying (3.13) and (3.14). De�ne the drift
coe�cient � by formula (3.23).
If then � : ([0; T ] � 
 � H;PT 
 B(H)) ! (H;B(H)) is measurable and
Lipschitz continuous in the third variable with sup(s;!) ka(s; !; 0)kH � C,
we get an HJM model with Lévy noise. I.e., for any initial forward curve
f0 2 H equation (3.11) has a unique mild solution, describing the forward
rate dynamics and thus the arbitrage-free movement of the discounted bond
prices.

Proof. Existence (and uniqueness) of the mild solution is just an application
of Theorem 2.1. Absence of arbitrage is due to the special form of � derived
in Theorem 3.1.

2

Of course, it would be desirable to give explicit (additional) conditions on �
and L which would ensure that � has the required properties.

In the case of L = BQ (hence � � 0) this is done in [Fil 01]:
De�ne H0 as a closed subspace of H by

H0 := H0
w := ff 2 Hw : f(1) = 0g:

Assume that BQ takes values in H0. If � is a measurable, Lipschitz continu-
ous (in f) and uniformly bounded mapping from ([0; T ]�
�H;PT 
B(H))
into (L2(H

0);B(L2(H
0))), � is a mapping from ([0; T ]�
�H;PT 
B(H))

into (H;B(H)) with the same properties.
Proof. (cf. [Fil 01] Lem. 5.2.1., Lem. 5.2.2. ii))

In the case of general L �nding explicit conditions for the moment remains
an open problem. While the �rst term of � is covered by Filipovic's results,
there seems to be no straightforward approach for the second one. One might
think of strengthening the requirements on the state space or a special form
of �. Another idea to get the Lipschitz continuity of � could be to assume
the Frechét di�erentiability of � and then �nd conditions under which this
would give the Frechet di�erentiability of � with bounded derivative.
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Appendix A

Q-Brownian Motion and

Stochastic Integration

Let be (G; ( ; )G) and (H; ( ; )H) separable Hilbert spaces; (
;F ; P ) a com-
plete probability space with (Ft); t � 0; a right-continuous �ltration on
(
;F ; P ) such that F0 contains all P -nullsets.

De�nition A.1 An operator T 2 L(G;H) is called nuclear if there exist
sequences (aj)j2N in H and (bj)j2N in G such that

Tx =
X
j2N

aj(bj; x)G for all x 2 G

and X
j2N

kajkHkbjkG <1:

The space of nuclear operators from G to H is denoted by L1(G;H).

Proposition A.1 The space L1(G;H) endowed with the norm

kTkL1(G;H) := inff
X
j

kajkHkbjkG : Tx =
X
j2N

aj(bj; x)G for all x 2 Gg

is a Banach space.

Proof. ([MeVo 92], 16.25 Cor.)

De�nition A.2 For T 2 L(G) and (en); n 2 N, an orthonormal basis of G
we de�ne the trace of T as

tr(T ) :=
X
n2N

(Ten; en)G

if the series converges.
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This expression is well-de�ned independently of the choice of (en); n 2 N (cf.
[ReSi 80, Thm. VI.18]). Moreover, for T 2 L1(G) we have that jtr(T )j �
kTkL1(G).

If T � is the adjoint operator of T , then T �T is non-negative. By the
square-root lemma ([ReSi 80], Thm. VI.9) for every non-negative bounded
linear operator Q on G the square-root Q

1

2 exists, i.e. a unique non-negative
bounded linear operator with Q

1

2Q
1

2 = Q. Hence for any T 2 L(G) we can
de�ne jT j := (T �T )

1

2 . T is called trace class if trjT j < 1. We have that
L1(G) is the space of trace class operators and trjT j = kTkL1(G).

De�nition A.3 A G-valued stochastic process BQ adapted to (Ft); t � 0; is
a Q-Brownian motion if

� BQ(0) = 0

� BQ has increments independent of the past, i.e. BQ(t) � BQ(s) is in-
dependent of Fs for all 0 � s < t <1

� BQ has stationary Gaussian increments, i.e. P � (BQ(t)�BQ(s))
�1 =

N (0; (t� s)Q) for all 0 � s < t <1
� BQ has P -a.s. continuous trajectories

Here N (0; Q) denotes a Gaussian probability measure on G with mean 0 and
covariance operator Q. Q is a non-negative, symmetric trace class operator
(cf. [FriKno 01], Section 1.1).

De�nition A.4 Let M be a stochastic process with values in a separable
Banach space E. The process M is called an Ft-martingale, if

� E[kM(t)k] <1 for all 0 � t <1
� M(t) is Ft-measurable for all 0 � t <1
� E[M(t)jFs] = M(s) P -a.s. for all 0 � s � t <1

Proposition A.2 A Q-Brownian motion BQ(t); t 2 [0; T ]; is a continuous
square-integrable martingale. Moreover, E[kBQ(t)k2] = t � tr(Q) <1.

Proof. ([FriKno 01], Prop. 1.20 & Prop. 1.3).

De�nition A.5 Set G0 := Q
1

2 (G). Let be N 2
B(0; T ) the space of all mappings

X on [0; T ]� 
 taking values in L2(G0; H), such that
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1. X is predictable, i.e. PT=B(L2(G0; H))-measurable.

2. For any (t; !) 2 [0; T ]� 
 X(t; !) �Q 1

2 is a Hilbert-Schmidt operator
and we have

kXkT := (E[

Z T

0

kX(s)Q
1

2k2L2 ds])
1

2 <1:

Proposition A.3 For X 2 N 2
B(0; T ) the stochastic integralsZ t

0

X(s) dBQ(s); t 2 [0; T ];

are well-de�ned and we have

E[k
Z t

0

X(s) dBQ(s)k2] = E[

Z t

0

kX(s)Q
1

2k2L2 ds]; t 2 [0; T ]: (A.1)

Moreover the process (
R t
0
X(s) dBQ(s))t2[0;T ] is a continuous square-integrable

martingale with respect to Ft; t 2 [0; T ].

These results are taken from Section 1.3 of [FriKno 01] which is based on
[DaPrZa 92]. There a detailed construction of the stochastic integral with
respect to a Q-Brownian motion is carried out (including more general inte-
grands and further properties of the integral).
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Appendix B

The Stochastic Integral in Hilbert

Spaces with respect to General

Martingales

Let be (
;F ; P ) a complete probability space. Let (Ft); t � 0; be a right-
continuous �ltration on (
;F ; P ) such that F0 contains all P -nullsets.
(H; ( ; )H) and (G; ( ; )G) are (in�nite-dimensional) separable Hilbert spaces.
Fix T > 0. A G-valued martingaleM = (Mt)t2[0;T ] is called square-integrable
martingale, if for any t 2 [0; T ] holds E(kMtk2) <1.
Following Métivier [Met 77], our aim is to de�ne the stochastic integral
\
R
X dM " for M a square-integrable martingale and X from a wide class of

stochastic processes taking values in the linear (possibly unbounded) opera-
tors from G to H.

First we recall some basic facts about tensor products in Hilbert spaces used
in the following sections (cf. [Tre 67]):

B.1 Tensor products in Hilbert spaces

Let (H; ( ; )H) and (G; ( ; )G) be separable Hilbert spaces.

De�nition B.1 The algebraic tensor product H 
G of H and G is de�ned
as the (smallest) vector space such that

1. there exists a bilinear mapping � from H�G := f(h; g)jh 2 H; g 2 G)g
into H 
G

2. any bilinear mapping b : H � G ! K, K any Hilbert space, can be
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written in the form b = ub �� where ub is a uniquely de�ned linear map
from H 
G into K (depending on b).

For existence and uniqueness (up to isomorphism) of the tensor product see
e.g. ([Tre 67], Theorem 39.1, p.404).

Proposition B.1 On H 
 G there exists a unique norm such that for any
continuous b the corresponding map ub is also continuous, and moreover
kbkB(H�G;K) = kubkL(H
G;K):

Proof. ([Tre 67], Proposition 43.4, p.438 & Proposition 43.12(b), p.443).

De�nition B.2 The norm from B.1 is called trace norm and is denoted by
k � k1. The completion of the space H 
G w.r.t. k � k1 is called the projective
tensor product of the spaces H and G, denoted by H
̂1G.

For K = R and b = ( ; )G the linear mapping ub in the factorization b = ub��
is called the trace on G
̂1G and we write ub = tr. Thus tr is the unique
linear continuous extension of the mapping

g 
 g0 7! (g; g0)G:

On H 
 G we can introduce an inner product which is the unique linear
continuous extension of the mapping

< h
 g; h0 
 g0 > 7! (h; h0)H � (g; g0)G:
We can assign to h
g the linear mapping (h; �)Hg. TherebyH
G is uniquely
embedded into L(H;G). For H
̂1G we have the following characterization:

Proposition B.2 H
̂1G is (canonically) isomorphic to the space of nuclear
(or trace class) operators from H to G, i.e. L1(H;G).

Proof. ([Tre 67], p.495 �.).

To the element Q 2 H
̂1G we assign the operator ~Q 2 L1(H;G) given by
the following equation:

( ~Qh; g)G =< Q; h
 g >; h 2 H; g 2 G:

Then kQk1 = k ~QkL1(H;G).

Proposition B.3 H
̂1G has the properties of the dual space of a separable
Banach space.
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Proof. ([Tre 67], Theorem 48.5', p.498).

For u 2 L(G;H) we denote by u
 u the unique linear continuous extension
of the mapping

u
 u(g 
 g0) 7! u(g)
 u(g0)

from G
G to H 
H.

B.2 Doleans measures

De�nition B.3 A subset A � [0; T ] � 
 of the form A =]s; t] � F where
F 2 Fs; 0 � s < t � T , or f0g � F; F 2 F0, is called predictable rectangle.
The family of predictable rectangles is denoted by RT .

Let be PT = �(RT ), the �-algebra generated by RT . PT is called the �-
algebra of the predictable sets; a stochastic process X measurable with respect
to PT is called predictable.

De�nition B.4 (cf. [Met 77], 2.3/2.4, p.6/7)
Let be (Zt)t2[0;T ] a real-valued process adapted to (Ft)t�0 with E(jZtj) < 1
for all t 2 [0; T ]. The real-valued function �Z is de�ned on RT by setting

�Z(]s; t]� F ) = E(1F � (Zt � Zs)) ; �Z(f0g � F ) = 0:

�Z is additive and therefore can be extended to a content on AT , the ring
generated by RT.

If �Z has a �-additive extension from RT to PT , also denoted by �Z, this
�-additive measure on ([0; T ] � 
;PT ) is called the Doleans measure of the
process Z.

Remark B.1 It is easy to show that the process Z is a martingale (sub-
martingale = supermartingale), if and only if �Z is identically zero (positive
= negative).

Proposition B.4 1. If Mt; t 2 [0; T ]; is a G-valued Ft-martingale then
kMtk2; t 2 [0; T ]; is a positive real-valued Ft-submartingale.

2. If additionally M has right-continuous paths, then the process kMtk2; t 2
[0; T ]; admits a Doleans measure.

Proof.
1. ([DaPrZa 92], Proposition 3.7, p.78)
2. ([Met 77], Prop. 2.6, p.�I.9� & Prop. 20.1, p.�III.20�)
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2

The positive Doleans measure of kMtk2 from Proposition B.4 will be denoted
by �M . From [Kun 70] we know that every square-integrable martingale ad-
mits a strongly càdlàg version. In the following we only consider this càdlàg
version.

The measure aM(cf. [Met 77], p.-I.83-)
For a square-integrable martingale M we have kMt
Mtk1 = kMtk2G. Hence
the Banach space-valued random variable Mt
Mt (taking values in G
̂1G)
is integrable. For any predictable rectangle ]s; t]� F we de�ne

aM(]s; t]� F ) := E(1F � (Mt �Ms)

2) (B.1)

The equation

E(1F � (Mt �Ms)

2) = E(1F � (M
2

t �M
2
s ))

� E(1F �Ms 
 (Mt �Ms))� E(1F � (Mt �Ms)
Ms)

combined with the martingale property gives

aM(]s; t]� F ) = E(1F � (M
2
t �M
2

s )):

Therefore it is clear that aM is additive and that it is possible to extend aM
to an additive function on AT , the ring generated by RT .

For the proof of the next proposition we need the following abstract the-
orem from the theory of linear operators:

Theorem B.1 Let (S;�; �) be a �-�nite positive measure space and let T be
a continuous linear map of L1(S;�; �) into the dual space B� of a separable
Banach space B. Then there is a �-essentially unique function b�(�) on S to
B� such that b�(�)b is �-essentially bounded for each b 2 B and

(Tf)b =

Z
S

b�(s)bf(s)�(ds); f 2 L1(S;�; �); b 2 B: (B.2)

Moreover, kTk = ess sups2S kb�(s)k. Conversely, if b�(�) is any function on
S to B� such that b��)b is measurable for each b 2 B, and such that

ess sup
s2S

kb�(s)k = M <1;

then equation (B.2) de�nes a continuous linear map T of L1(S;�; �) into B�

whose norm is M .
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Proof. ([DunSch 57], VI.8.6, 6Theorem, p.508).

Proposition B.5 (cf. [Met 77], p.-I.84-)
There exists a unique (up to �M -equivalence) predictable process QM with
values in G
̂1G such that

8' 2 L1([0; T ]� 
;PT ; �M) :

Z
' daM =

Z
' QM d�M :

Proof.
From (B.1) follows

kaM(]s; t]� F )k1 � E(1F � k(Mt �Ms)

2k1)

= E(1F � kMt �Msk2G) = E(1F � (kMtk2G � kMsk2G)) (B.3)

= �M(]s; t]� F )

For any real-valued process X of the form

X =
nX
i=1


i � 1]si;ti]�Fi ; ]si; ti]� Fi 2 RT 8 i;

we set Z
X daM :=

nX
i=1


i � aM(]si; ti]� Fi):

By inequality (B.3) we get

k
Z

X daMk1 �
nX
i=1

k
i � 1]si;ti]�Fik1

=
nX
i=1

j
ij � �M(]si; ti]� Fi) =

Z
jXj d�M = kXkL1(�M )

Therefore the mapping X 7! R X daM has a unique linear, continuous exten-
sion to a contraction from L1([0; T ] � 
;PT ; �M) into G
̂1G; also denoted
by X 7! R X daM .
By Prop. B.3 G
̂1G is the dual space of a separable Banach space. Hence
the application of the �rst part of Theorem B.1 completes the proof.

2

Remark B.2 The equation aM(A) :=
R
1A daM ; A 2 PT , de�nes a �-

additive measure on PT .
The process QM turns out as the "density function" of the G
̂1G-valued
measure aM w.r.t. the real-valued measure �M , and the measure aM as the
Doleans measure of the G
̂1G-valued process M 
M .
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QM can be chosen in such a way that for any (t; !) 2 [0; T ]� 
 Q(t; !) is a
positive element of G
̂1G. I.e., < QM ; g 
 g >� 0 for all g 2 G:
For any g 2 G and A =]s; t]� F 2 RT holds

< aM(A); g 
 g > = < E(1F � (Mt �Ms)

2); g 
 g >

= E(1F (Mt �Ms; g)
2
G) � 0:

Hence the real-valued measure A 7! < aM(A); g 
 g > is positive, and
because of

< aM(A); g 
 g >=

Z
A

< Q(t; !); g 
 g > d�M(t; !)

the function < Q(t; !); g 
 g > is �M -a.e. positive. Since G is separable, it
is possible to choose a version of QM which ful�lls < QM(t; !); g 
 g >� 0
for all g 2 G and all (t; !) 2 [0; T ]� 
. (cf. [Met 77], 11.7, p.-I.85-)

To the process QM we assign the process ~QM taking values in L1(G) and
given by the following equation:

( ~QMg; g
0)G =< QM ; g 
 g0 >; g; g0 2 G:

Since QM(�) is positive, the same holds for ~QM(�) and therefore ~Q
1

2

M(�) is well-
de�ned. In fact, ~QM(�) is also symmetric and thus ~Q

1

2

M(�) a Hilbert-Schmidt
operator.

B.3 Stochastic integrals with respect to general

martingales

Similar to the Brownian motion or the martingale measure case (see section
1.3), in the �rst step the stochastic integral is de�ned for so-called simple
processes. In the second step the construction is then extended (via an L2-
isometry) to the closure of such processes in a suitable Hilbert space.

De�nition B.5 M2
T (G) is the vector space of square-integrable càdlàg G-

martingales with the inner product (M;N) := E((MT ; NT )G). M2
T (G) is a

Hilbert space isomorphic to L2(
;FT ; P;G).

De�nition B.6 (cf. [Met 77], 32.1, p.-V.7-)
Let be L�(G;H;PT ;M) the space of processes X taking values in the lin-
ear (possibly unbounded) operators from G into H, which have the following
properties

64



1. The domain of X(t; !) contains ~Q
1

2

M(t; !)(G) � G; (t; !) 2 [0; T ]� 
.

2. For any g 2 G the H-valued process X � ~Q
1

2

M(g) is predictable.

3. For any (t; !) 2 [0; T ] � 
 X(t; !) � ~Q
1

2

M(t; !)is a Hilbert-Schmidt
operator and we haveZ

[0;T ]�


kX � ~Q
1

2

Mk2L2 d�M < 1:

Proposition B.6 ([Met 77], 32.2, p.-V.8-)
For any X; Y 2 L�(G;H;PT ;M) the process tr(X � ~QM � Y �) is predictable
and �M -integrable. The mapping

(X; Y ) 7!
Z
[0;T ]�


tr(X � ~QM � Y �) d�M

is an inner product on L�(G;H;PT ;M) and with respect to this inner product
L�(G;H;PT ;M) is complete; i.e. a Hilbert space.

Proof.
Claim 1. tr(X � ~QM � Y �) is a predictable real-valued process.
Because of the polarization identity

tr(X � ~QM � Y �) = tr(Y � ~QM �X�)

=
1

4
(tr((Y +X) � ~QM � (Y � +X�))� tr((Y �X) � ~QM � (Y � �X�)))

it is enough to show that for any X 2 L�(G;H;PT ;M) tr(X � ~QM �X�) is
a predictable process.
Let be (en) an orthonormal basis of G. By

tr(X � ~QM �X�) = kX � ~Q
1

2

Mk2L2 =
X
n

kX � ~Q
1

2

M(en)k2H

and property 2. we can conclude that the process tr(X � ~QM �X�) is indeed
predictable.
Claim 2. The mapping given above de�nes an inner product on L�(G;H;PT ;M).
We have

tr(X � ~QM � Y �) � kX � ~Q
1

2

MkL2 � kY � ~Q
1

2

MkL2 :
Applying Hölder's inequality and property 3. givesZ

[0;T ]�


tr(X � ~QM � Y �) d�M �
Z
[0;T ]�


kX � ~Q
1

2

MkL2 � kY � ~Q
1

2

MkL2 d�M
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� (

Z
[0;T ]�


kX � ~Q
1

2

Mk2L2 d�M)
1

2 � (
Z
[0;T ]�


kY � ~Q
1

2

Mk2L2 d�M)
1

2 < 1:

Hence the mapping de�nes a positive de�nite, symmetric, continuous bilinear
form on L�(G;H;PT ;M).
Claim 3. L�(G;H;PT ;M) is complete for this inner product.
Let be (Xn) a Cauchy sequence in L�(G;H;PT ;M), i.e.

lim
n;m!1

Z
[0;T ]�


k(Xn �Xm) � ~Q
1

2

Mk2L2 d�M = 0:

By the Riesz-Fischer Theorem (Xn � ~Q
1

2

M) converges to some Y in the space
L2([0; T ]�
;PT ; �M ;L2(G;H)). Hence there exists a subsequence (Xnk)k2N
such that

lim
k!1

Xnk � ~Q
1

2

M(t; !) = Y (t; !) �M -a.e.

Since ~Q
1

2

M(t; !)f = 0 implies Y (t; !)f = 0, Y (t; !) can be written in the
form (cf. the proof of Lemma 1.2)

Y (t; !) = X(t; !) � ~Q
1

2

M

where X(t; !) is a linear mapping from ~Q
1

2

M(G) into H. Obviously X has the
required properties 1.�3., hence belongs to L�(G;H;PT ;M).

2

Now we introduce the space of simple processes:

De�nition B.7 ([Met 77], 32.3, p.-V.10-)
E(G;H) denotes the vector space of processes of the form

X =
nX
i=1

1Ai � ui

where Ai 2 RT and ui 2 L(G;H) for any i. Such processes are called simple
processes.
~L2(G;H;PT ;M) is de�ned as the closure of E(G;H)in L�(G;H;PT ;M).

Unfortunately we get no explicit characterization of ~L2(G;H;PT ;M) and
have to content ourselves with the following result:

Proposition B.7 ([Met 77], 32.4, p.-V.10-)
The space ~L2(G;H;PT ;M) contains all processes X with the following prop-
erties
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1. 8 (t; !) 2 [0; T ]� 
 we have X(t; !) 2 L(G;H).

2. 8 g 2 G the H-valued process Xg is predictable.

3.
R
[0;T ]�


tr(X � ~QM �X�) d�M < 1:

Proof.
Claim 1. It is enough to show that any process X with properties 1.�3. and
supt;! kX(t; !)k � K for some constant K belongs to ~L2(G;H;PT ;M).
Let be X a process ful�lling 1.�3., (gn)n2N a countable dense subset of the
unit ball in G. Then we have

kX(s; !)k = sup
n
kX(t; !)gnkH

and therefore the process kXk is predictable. Thus the process 1fkXk�ngX
has properties 1.�3. and is, of course, bounded by n.
For any (s; !) 2 [0; T ]� 
 we get

lim
n!1

k1fkXk�ngX(s; !)�X(s; !)k = 0:

Hence we have for all (s; !) 2 [0; T ]� 
:

lim
n!1

k(1fkXk�ngX(s; !)�X(s; !)) � ~Q
1

2

M(s; !)kL2 = 0:

Since
k(1fkXk�ngX(s; !)�X(s; !)) � ~Q

1

2

M(s; !)k2L2 =
1fkXk�ngkX(s; !) � ~Q

1

2

M(s; !)k2L2 � kX(s; !) � ~Q
1

2

M(s; !)k2L2
we can conclude by Lebesgue's dominated convergence theorem that

lim
n!1

Z
[0;T ]�


k(1fkXk�ngX(s; !)�X(s; !)) � ~Q
1

2

M(s; !)k2L2 d�M = 0:

Claim 2. Any process X with properties 1.�3. and kXk � K for some K is
in ~L2(G;H;PT ;M).
Let be Y a mapping from [0; T ] � 
 into the Banach space L(G;H) with
kY k � K which is strongly measurable with respect to PT . Then by Lemma
2.6 there exists a sequence (Yn) in E(G;H) converging to Y (t; !) in L(G;H)
for all (t; !) 2 [0; T ]� 
. For such a sequence we have

lim
n!1

Z
[0;T ]�


k(Y � Yn) � ~Q
1

2

Mk2L2 d�M = 0:
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Now consider a process X from Claim 2. We show that such an X can
be approximated in L�(G;H;PT ;M) by a sequence of strongly measurable
processes of the type discussed above. Then it is clear that X belongs to
~L2(G;H;PT ;M).
Let be (fi) resp. (ei) an orthonormal basis of H resp. G. Denote by �nH resp.
�nG the orthogonal projection from H resp. G onto the subspace generated
by ff1; : : : ; fng resp. fe1; : : : ; eng. Set Xn := �nH � X � �nG. Then for any n
we have that Xn([0; T ]� 
) is separable and that Xng is predictable for all
g 2 G. This gives us the strong measurability of Xn.
For any i we get:

lim
n!1

k(�nH �X � �nG �X) � ~Q
1

2

Meik2H = 0 (B.4)

k(�nH �X � �nG �X) � ~Q
1

2

Meik2H � 4K2k ~Q
1

2

Meik2G (B.5)

1X
i=1

k ~Q
1

2

Meik2G = k ~Q
1

2

Mk2L2 < 1: (B.6)

It follows for all (t; !) by (B.4) � (B.6) that

lim
n!1

k(Xn �X) � ~Q
1

2

Mk2L2 = lim
n!1

X
i

k(�nH �X � �nG �X) � ~Q
1

2

Meik2H = 0

with
k(Xn �X) � ~Q

1

2

Mk2L2 � 4kX � ~Q
1

2

Mk2L2 :
Hence again by Lebesgue's dominated convergence theorem we can �nally
conclude

lim
n!1

Z
[0;T ]�


k(X �Xn) � ~Q
1

2

Mk2L2 d�M = 0

and the proposition is proved.

2

Remark B.3 ([Met 77], 32.5, p.-V.12-, presenting a counterexample)
The space of processes which have properties 1.�3. of Proposition B.7 is
generally not closed in ~L2(G;H;PT ;M).

Finally, we de�ne the stochastic integral for simple processes and prove the
isometry:
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Proposition B.8 ([Met 77], 32.6, p.-V.14-)
Let be M 2 M2

T (G) and X 2 ~L2(G;H;PT ;M). Then there exists a unique
isometric mapping from ~L2(G;H;PT ;M) into M2

T (H) such that the process
(1F � (u(Ms^t) � u(Mr^t)))t2[0;T ] is the image of the process X = 1]r;s]�F � u
for any 0 � r < s � T , F 2 Fr; u 2 L(G;H).

Proof.
Claim 1. Z = (

Pn
i=1 (1Fi �(ui(Msi^t)�ui(Mri^t)))t2[0;T ] is an (Ft)-martingale.

Adapted is clear from the construction, and integrability follows from Claim
2. Hence we only have to show the martingale property.
For 0 � s < t � T consider an arbitrary set A 2 Fs. Then we obtain by
Prop. E.11 from [Coh 80], Fi 2 Fri 8i, and the martingale property of M :

Z
A

Z(t) dP =

Z
A

nX
i=1

(1Fi � (ui(Msi^t)� ui(Mri^t))) dP

=
nX
i=1

Z
A\Fi

ui(Msi^t)� ui(Mri^t) dP

=
nX
i=1

ui(

Z
A\Fi

Msi^t �Mri^t dP )

=
nX
i=1

ui(

Z
A\Fi

Msi^s �Mri^s dP )

=

Z
A

nX
i=1

(1Fi � (ui(Msi^s)� ui(Mri^s))) dP =

Z
A

Z(s) dP:

Claim 2. The mapping

X =
nX
i=1

1]ri;si]�Fi � ui 7!
nX
i=1

(1Fi � (ui(Msi^t)� ui(Mri^t)))t�0

is an isometry from E(G;H) into M2
T (H).

W.l.o.g. we can assume that the sets ]ri; si]�Fi are mutually disjoint (other-
wise we could take a �ner partition). Hence the following chain of equations
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gives the assertion:

E(k
nX
i=1

1Fi � (ui(Msi)� ui(Mri))k2H)

= E(
nX
i=1

k1Fi � ui(Msi �Mri)k2H)

= E(
nX
i=1

1Fi � tr[ui 
 ui(Msi �Mri)

2])

= tr[
nX
i=1

ui 
 ui E(1Fi � (Msi �Mri)

2)]

=
nX
i=1

tr[ui 
 ui

Z
]ri;si]�Fi

QM d�M ]

=
nX
i=1

Z
]ri;si]�Fi

tr[ui � ~QM � u�i ] d�M

=

Z
[0;T ]�


tr[X � ~QM �X�] d�M = kXkL�(G;H;PT ;M):

By the isometry and becauseM2
T (H) is complete everything can be extended

to the closure of E(G;H), i.e. ~L2(G;H;PT ;M). Hence the Proposition is
proved.

2

De�nition B.8 (cf. [Met 77], 32.7, p.-V.15-)
Let be M 2 M2

T (G) and X 2 ~L2(G;H;PT ;M). The image of X under the
isometry of Proposition B.8 is called the L2-stochastic integral of X w.r.t.
M , and is denoted by

R
X dM .

The value of the martingale
R
X dM at time 0 � t � T is denoted byR t

0
X dM .

Example B.1 (Q-Brownian motion) For M a Q-Brownian motion the
isometry from Prop. B.8

E[k
Z t

0

X(s) dM(s)k2] =
Z
[0;t]�


kX(s; !) ~Q
1

2

M(s; !)k2L2 d�M(s; !); t 2 [0; T ];

simply reads (compare formula (A.1))

E[k
Z t

0

X(s) dBQ(s)k2] = E[

Z t

0

kX(s)Q
1

2k2L2 ds]; t 2 [0; T ]:
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In this case the "covariance structure" of the martingale is very easy with
~Q(s; !) � Q

tr(Q)
and �M = tr(Q) dt 
 P where dt denotes Lebesgue measure

on [0; T ].

Remark B.4 Consider a semimartingale (Zt)t2[0;T ] of the form Z = M+V ,
where M 2 M2

T (G) and (Vt)t2[0;T ] is a G-valued, (Ft)-adapted process with
bounded variation and càdlàg paths.
For X 2 ~L2(G;H;PT ;M) we can de�neZ t

0

X(s) dZ(s) :=

Z t

0

X(s) dM(s) +

Z t

0

X(s) dV (s); t 2 [0; T ]

where the �rst integral on the right-hand side is an L2-stochastic integral
constructed above and the second one is understood pathwise for any ! 2 

as a Riemann-Stieltjes integral.
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Appendix C

Example from Chapter 2

We give an example of a (real-valued) Lévy process which ful�lls condition
(F), but does not meet the requirement from [Sto 05], (2.2). That means

Z
fkxk�1g

kxk2 �(dx) <1;

while

sup
t2[0;T ]

k�L(t)k =2 L2+�(
;F ; P ) for any � > 0:

Let be P�(t); t � 0; a Poisson process with parameter � and ~P�(t) := P�(t)�
�t; t � 0; the corresponding compensated Poisson process. Then P (P�(1) =
0) = exp(��) and P (P�(1) > 0) = 1� exp(��).

Set �(k) := 1
k3(ln k)2

for k � 2. Clearly
P1

k=2 �(k) <1. If for independent

processes ~P�(k); k � 2, we de�ne L(t) :=
P1

k=2 k
~P�(k)(t), then L is a real-

valued Lévy process with corresponding Lévy measure � =
P1

k=2 �(k) 1fkg
and Z

fkxk�1g

kxk2 �(dx) =
1X
k=2

k2 �(k) =
1X
k=2

1

k (ln k)2
<1:

The convergence of the sum is a consequence of

lim
N!1

Z N

2

1

x (lnx)2
dx = lim

N!1

Z lnN

ln 2

1

y2
dy = lim

N!1
(� 1

lnN
+

1

ln 2
) =

1

ln 2
:

For simplicity we consider T = 1. Then we get for any � > 0 with C > 0 a
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varying constant

E[ sup
t2[0;1]

k�L(t)k2+�] =
1X
k=2

k2+� P ( sup
t2[0;1]

k�L(t)k = k)

=
1X
k=2

k2+� (1� exp(��(k)))
Y
n>k

exp(��(n))

=
1X
k=2

k2+� (1� exp(��(k))) exp(�
X
n>k

�(n))

� C
1X
k=2

k2+� (1� exp(��(k)))

= C
1X
k=2

k2+� (1�
1X
l=0

(��(k))l
l!

)

� C
1X
k=2

k2+� (�(k)� �(k)2)

� C
1X
k=2

k�

k (ln k)2

� C

K(�)X
k=2

k�

k (ln k)2
+ C

1X
k=K(�)+1

1

k
=1:

Hence we have shown that (F) does not imply the condition from [Sto 05].
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