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Chapter 0

Introduction

Stochastic partial differential equations (abbreviated SPDE’s) driven by
Gaussian noise are well studied ( see [Wa 86], [Pe 95], [DaPrZa 92],
[DaPrZa 96] and the references therein) whereas SPDE’s driven by a noise
of jump type are less well understood. But within the last years SPDE’s
driven for example by a compensated Poisson random measure or a Lévy
noise draw more attention, one reason for which may be the prospect of nu-
merous applications: “White noise perturbations, however, are not always
appropriate to interpret real data in a reasonable way. This is the case for
example if the nature of the underlying perturbation process has to model
abrupt pulses or extreme events.” (see [ImPa 04, p.2, 1.9-11])

Already in the 80’s even infinite dimensional SPDE’s perturbed with a
stochastic integral with respect to a compensated Poisson random measure
were used to model the membrane potential of a neuron. In the earliest
models a neuron was represented by a single point. Walsh was one of the
first who considered spatially extended neurons. As proposed by Rall in
[Ra 59], he treated the dendritic tree as an infinitely thin cylinder of length
L (see [Wa 81]). In [KaWo 84] Kallianpur and Wolpert proposed, for the
purpose of more realistic models, other choices of the surface membrane of
a neuron, for example it can be any smooth, compact, d-dimensional ma-
nifold. But already in the simplest spatially extended case the solution of
the corresponding SPDE at time ¢, which describes the membrane potential
at time t, takes values in an infinite dimensional space.

A further class of models, where SPDE’s with noise of jump type are
needed, are the stochastic climate models, for example to explain the so-
called Dansgaard-Oeschger events during a glacial period. “In fact, paleo-
climatic records from the Greenland ice-core show that the climate of the
last glacial period experienced rapid transitions between cold basic glacial
periods and several warmer interstadials ( the so-called Dansgaard -Oeschger



events)” ([ImPa 04, p.2, 1.16-18]). So far, this phenomenon is not completely
understood. There are several suggestions for an explanation, e.g. the con-
cept of stochastic resonance. This concept consists in modelling the pale-
oclimatic temperature process as the solution of an SPDE of the following

type
t
Xe(t)=x— / U'(X%(s))ds +en (for details see [ImPa 04]),
0

where the question arises which noise term is to choose. First in [Di 99a],
[Di 99b] and some years later in [ImPa 04] the authors model the noise by
a Lévy process L.

Finally, we have to mention the class of financial market models. In-
deed, in the area of the stochastic financial markets the Brownian motion,
traditionally, plays a dominant role, but “although very elegant the Black-
Scholes-Merton model has limitations and possible defects that have led
many probabilists to query it. Indeed, empirical studies of stock prices have
found evidence of heavy tails which is incompatible with a Gaussian model.”
([Ap 04, p.1341, 1.50-55]) This is carried out in more detail in [Ap 04]. See
also for example [EbRa 99],[Ra 00].

In this paper we study mild solutions of SPDE’s in infinite dimensions
driven by a compensated Poisson random measure and their dependence on
the initial value. Apart from applications, SPDE’s with Poisson noise are
of independent interest and basic investigations and a better understanding
of stochastic integrals w.r.t. a compensated Poisson random measure and
of SPDE’s with Poisson noise is an important step for the study of SPDE’s
with Lévy noise. There is quite a substantial amount of work that has been
done in this field (see e.g. [IkWa 81|, [AIWuZh 97|, [Mu 98], [ApWu 00],
[ApTa 01], [MaRu 03] and references therein and the discussion below for
their relation with our results).

Let us first introduce our setting, then we will summarize our main re-
sults.
Let (2, F, P) be a complete probability space with a right-continuous fil-
tration F;, t > 0, such that Fy contains all P-nullsets of F. Moreover, let
(U, B,v) be a o-finite measure space and p an (F;)-Poisson point process on
((0,00) x U,B((0,00)) ® B) with intensity measure v ® A where A\ denotes
the Lebesgue measure. Denote by N, the to p associated Poisson random
measure.
Let T' > 0 and consider the following SPDE in a separable Hilbert space

(H,(,))

{dX(t) [AX(t) + F(X(t))] dt + B(X(t),y) q(dt,dy)
X(0) =¢

(1)



where

1.) A: D(A) C H — H is the infinitesimal generator of a Cp-semigroup
S(t), t > 0, of linear, bounded operators on H,

2.) F: H— H is B(H)/B(H)-measurable,

3.) B:HxU— His B(H )®B/B(H)-measurable,

4.) q(t,B) := Ny(t,B) — tv(B) := Np(]0,t] x B) —tv(B), t > 0, B € B,

v(B) < oo, and

5.) € is an H-valued, Fp-measurable random variable.

We are interested in the existence and uniqueness of a mild solution of
(1) in

H2(T,H) :={Y(t),t € [0,T]| Y has an H-predictable version,
Y(t) € LP(Q,F;, P; H) and
Sup E[|[Y ()]°] < oo}.

)

Our main interest is directed towards the analysis of its dependence on the
initial value £. Since a mild solution X (&) is given implicitly by

X(6) = FEX(©) = (S0 + [ S(=9PX(©() ds
<[ /U S(- — ) BOX(E)($). ) a(ds.d)) o

these questions can be treated on the very abstract level of a general con-
tracting mapping G : A x F — FE on arbitrary Banach spaces A and FE.
Existence of an implicit function and its differentiability properties can then
be deduced from properties of the mapping G. For this purpose we con-
sider the Banach space (H2(T, H), || ||42) of equivalence classes of elements
in H2(T, H) with respect to the seminorm

1
1Y [l := sup (E[|[Y(1)]1%])?
t€[0,T]

and for £ € L% = L*(Q,F,P;H) and Y € H*(T,H) we define .7:"(_5,)7)
to be the equivalence class of F(£,Y) w.r.t. || |l32 for arbitrary £ € £ and
arbitrary predictable Y € Y.

Now we summarize our main results.
0.1 Existence and uniqueness of the mild solution in H2?(T, H)

Under Lipschitz assumptions on the coefficients F' and S(¢)B : H —
L*(U,B,v; H), t €]0,T), we show the contraction property of F by the help
of the isometric property of the stochastic integral and we prove the existence



and uniqueness of the mild solution X as a mapping from L? to H*(T, H)
(see theorem 4.4).

Though the above existence and uniqueness in H?(T, H), is of their own
interest, our main interest is the analysis of the dependence on the initial
condition £ € L3. This constitutes the second set of our main results which
we shall desribe now.

0.2 Dependence on the initial condition and analytic consequences

Our first result is the Gateaux differentiability of the mild solution as
a mapping X : L3 — H?(T,H) (see theorem 5.1). As a consequence we
obtain a gradient estimate for the Gateaux derivative 0X of X and for
the resolvent (R,) associated to the mild solution. Under the additional
assumptions that S(t), ¢ > 0, is quasicontractive, v(U) < oo, B is constant
and F' is dissipative we get that

10X (2)h(t)]| < et

for all z,h € H and ¢ > 0. Moreover, for all f € C}(H,R), Rof : H— R is
Gateaux differentiable for all o > 0 and

|0Raf(2)L(mRr) < sugHDf(ac)HL(H) for all @« > wy, v € H
€

o — W g

(see chapter 7).

Before we describe our results more precisely we go into the details of
some results that have been achieved in this field.

In [AIWuZh 97] the authors analyze SPDE’s in R driven by a Poisson
noise. Under Lipschitz assumptions, existence and uniqueness of a mild
solution in L? is proved. This is done by using the method of Banach’s fixed
point theorem, i.e. the mild solution is obtained as L2-limit of an iterating

sequence.
Applebaum and Wu study in [ApWu 00] the following parabolic SPDE in R

2

(% - aaﬂ)u(t,:c) =a(t,z,u(t,z)) + B(t,z,u(t,z))F (2)
where F}; is a so-called Lévy space-time white noise. The authors give a
meaning to (2) as a stochastic integral equation of jump type, where the
jump part is described by a stochastic integral with respect to a compen-
sated Poisson random measure. As in [AIWuZh 97], again under Lipschitz
assumptions on the coefficients, the unique mild solution is constructed by
iteration. In this way the authors get the unique mild solution of their prob-
lem in L2

In [ApTa 01] the authors study stochastic differential equations driven by



infinite dimensional semimartingales with jumps on a finite dimensional
smooth manifold. Existence of a unique maximal solution which has a mo-
dification which is a stochastic flow of local C™-diffeomorphisms is proved.
In [MaRu 03] the authors investigate Banachspace valued stochastic integral
equations of the following type

X(t,w) =¢(t,w) + / F(s,X(s,w),w)ds
;0 (3)
[ ] Bl X (6.0 (N s, dy) ) (s, )

where N (ds, dy) — u(ds, dy) is a compensated Poisson random measure. Un-
der the assumption that the Banach space is separable and of type 2 and
under Lipschitz assumptions on the coefficients, it is proved by Banach’s
fixed point theorem, that there exists an up to stochastic equivalence unique
solution of (3) in L.

Now we go into the particulars of the structure of this work summarizing
the contents and results chapterwise.

In chapter 1 we recall some basic terminology and standard notations
on stochastic processes. Our main references are the books [DaPrZa 92,
[DeMe 82|, [EtKu 86], [IkWa 81] and [Pr 90]. Moreover, we give a brief
insight without proofs into the construction of the stochastic integral w.r.t.
a real-valued local martingale as presented in [Pr 90].

In chapter 2 we give an introduction to the theory of Poisson random
measures and Poisson point processes where we shall follow largely the orga-
nization of [IkWa 81]. In the third section we present the construction of the
stochastic integral of Hilbert space valued integrands w.r.t. a compensated
Poisson random measure. In the style of the definition of the integral w.r.t.
a Wiener process (cf. [DaPrZa 92]) or w.r.t. a square-integrable martingale
(cf. [Me 82]) we define the integral by an L2-isometry, which, in the case
of the Wiener process, is just the classical It6 isometry. Independently, this
was done in [Ru 04].

In chapter 8 we present some useful properties of the stochastic integral,
with detailed proofs.

In chapter / we are now able to treat the question of existence and
uniqueness of a mild solution in H?(T, H). In the first section we prove that
under the assumption that F and S(t)B : H — L*(U,B,v; H), t €]0,T), are
Lipschitz continuous F : L2 x H?(T, H) — H?(T, H) is well defined, which
implies the existence of a predictable version of the stochastic integral and
that F is a contraction in the second variable. Hence, there exists a unique
mild solution X : L3 — H?(T, H), which is Lipschitz (see theorem 4.4).
This existence result as well as the definition of the stochastic integral are



subject of the preprint [Kn 03].

In chapter 5 we analyze the first order differentiability of the mapping
¢ — X(§). Under the assumption that F' and B(-,y) are Gateaux dif-
ferentiable such that OF : H x H — H, S(t)01B(-,y)z : H — H and
St)01B(-,)z : H — L*(U,B,v,H), t €]0,T], are continuous, in the first
section we prove the Géateaux differentiability of X : L2 — H?*(T, H) (see
theorem 5.1).

Chapter 6 is devoted to an analytic consequence. We show that under the
additional conditions that (A, D(A)) is the generator of a quasi-contractive
semigroup, v(U) < oo, B is constant and F' is dissipative, the Gateaux
derivative of X : H — H?(T,H) can be estimated w-wise in the following
way

10X (z)h(t)|| < e*'  P-as. (4)

From (4) we deduce for the resolvent (R, )a>w, associated to the mild solu-
tion that

1
a < D
|ORaf ()|l L) < o EEEH f(@)| L r)

for all @ > wy, z € H and f € CL(H).
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Chapter 1

Fundamentals on Stochastic
Processes

In this chapter we recall some fundamental definitions and results on stochas-
tic processes. Moreover, this chapter includes the definition of the stochas-
tic integral w.r.t. a real-valued local martingale as presented in [Pr 90] and
the well-known Ito-formula in R. For more details we refer to the books
[DaPrZa 92], [DeMe 82|, [EtKu 86], [IkWa 81] and [Pr 90].

1.1 Stochastic processes

Let (E, || ||) be a separable Banach space and (€2, F, P) a complete probabi-
lity space with a right-continuous filtration F;, ¢ > 0, such that Fy contains
all P-nullsets of F.

Definition 1.1. Let X (¢),t € I, and Y (¢), t € I, be two E-valued stochastic
processes with index set I C R. X is called a modification or version of Y
it P(X(t)=Y(t)) =1foralltel.

X and Y are said to be indistinguishable or P-equal if there exists a P-
nullset NV € F such that for all w € N® X (t,w) =Y (t,w) for all t € I.

We say that a process X is defined P-uniquely by certain properties if every
further process fulfilling these properties and the process X are P-equal.

Definition 1.2.

(i) An E-valued process X (t), t > 0, is said to have left (right) limits if
for P-a.e. w € Q the mapping [0,00[— E, t — X (t,w) has left (right)
limits, i.e. the paths of X have P-a.s. left (right) limits.

7



(ii) An E-valued process X (t), t > 0, is called continuous, right-continuous
or left-continuous if for P-a.e. w € Q the mapping [0,00[— FE, t
X (t,w) is continuous, right-continuous or left-continuous, respectively.

(iii) An E-valued right-continuous process X (t), ¢t > 0, with paths having
left limits is called cddldg.

(iv) An E-valued left-continuous process X(t), t > 0, with paths having
right limits is called cdgldd.

Definition 1.3. Let X (t), t > 0, be an E-valued process having left limits.
For ¢ > 0 we define X (t—) := h%lX(S) and AX(t) := X(t) — X(t—) .

s<t
For ¢ = 0 we make the convention X (0—) := 0 and AX(0) := X(0).

Definition 1.4 (Increasing process). An R-valued process A(t), t > 0,
is called increasing process if it is (F;)-adapted and has P-a.s. positive,
increasing, finite and cadlag paths.

Theorem 1.5. Let A be an increasing process. Then there exists a continu-
ous increasing process A¢, a sequence Ty, n € N, of (F;)-stopping times and
a sequence Ay, n € N, of strictly positive constants such that

A(t) = A°(t) + > Anlyr, <iy-

n=1

The process A° is P-unique and is called the path by path continuous part of
A. The process A— A€ is denoted by A% and is called the purely discontinuous
part or jump part of A. If A° =0 then A is called purely discontinuous.

Proof. [DeMe 82, VI.52, p.115] O

Remark 1.6. In the proof of the above theorem the authors define A¢ and
A% in the following way. For allmost every w € € the increasing function
A(-,w) has a unique decomposition into a continuous increasing function
A¢(-,w) and a purely discontinuous increasing function A%(-,w) and more-
over

At w) = Y AA(s,w).

0<s<t

This derivation of A¢ and A% has the consequence that if A and A’ are two
increasing processes which are P-equal then A¢ and (A’)¢ (A% and (A’)¢
respectively) are P-equal.



1.2 Martingales

In this section we give the basic notions of Banachspace-valued martingales
and real-valued submartingales and some of their basic properties.

As in the previous section let (E, || ||) be a separable Banach space and
(Q, F, P) a complete probability space with a right-continuous filtration F,
t > 0, such that Fy contains all P-nullsets of F.

Definition 1.7 (Martingale). An FE-valued stochastic process M with
index set I C Ry is called (F;)-martingale if it is an integrable (F;)-adapted
process such that for all s,t € I with 0 < s <t < o0

E[M(t)|Fs] = M(s) P-as.

Remark 1.8. For the existence and uniqueness of the conditional expecta-
tion we refer to [St 93, 5.1.22 Theorem, p.262].

Definition 1.9 (Submartingale). An R-valued stochastic process M (t),
t € I, with index set I C Ry is called (F;)-submartingale if it is an integrable
(Ft)-adapted process such that for all s,t € [ with 0 < s <t < oo

E[M(t)|Fs] > M(s) P-as.

Proposition 1.10. Let M(t), t € I, be an E-valued (F;)-martingale. Then
|M(t)], t € I, is a real-valued (Ft)-submartingale.

Proof. [DaPrZa 92, Proposition 3.7 (i), p.78] O
Proposition 1.11 (Doob-inequality). Let p €]1,00[ and M(t), t > 0, a
right-continuous Ry -valued (Fy)-submartingale. Then for T > 0

Bl sup M) < (1) BT,

Proof. [EtKu 86, 2.16 Proposition (b), p.63] O

Definition 1.12. An E-valued (F;)-martingale M(t), t > 0, is called L2-
martingale if | M (t)||z2 < oo for all t > 0. We denote by M?(E) the space of
all E-valued cadldg L?-martingales (with respect to the filtration %, t > 0).

An E-valued (F;)-martingale M(t), t > 0, is called square integrable if
sup;>ol| M (t)]|2 < oo. We denote by M2 (E) the space of all E-valued
cadlag, square integrable (F;)-martingales.

Let T > 0. We denote by M2 (E) the space of all E-valued cadlag (F;)-
martingales M (t), t € [0,T], such that sup,co || M (¢)ll2 = [[M(T)|z2 <
0.
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Proposition 1.13. The space M2(E) equipped with the norm

1
M| vz, = tESEéI;]EHIM(t)IIQ]Q

is a Banachspace.

Proof. Clearly, || || Mz, defines a semi-norm on MZ(E). By considering
equivalence classes with respect to || || M2, MZ(E) becomes a normed space.

To prove completeness assume that (M,,),en is a Cauchy sequence in M2 (E),
ie.

sup E[||My(t) — My (t)||2]2 — 0 as n,m — 0.
te[0,T)
Hence, for each ¢t € [0,7] there exists M(t) € L?*(Q,F;, P; E) such that
| M (t) — M (t)||z2 — 0 as n — oo.
Obviously, the process M (t), t € [0,T], has the martingale property. By the
Doob-inequality 1.11 and proposition 1.10 we even know that

E[ sup || My (t) — My (t)]%]2 — 0 as n,m — oo.
t€[0,T]

Hence, we can find a subsequence nyg, k € N, such that

P( sup || My, (t) = My, (8)]| > 27%) <27
t€[0,T)]
and by the lemma of Borel-Cantelli we can conclude that M,, converges
P-a.s. uniformly on [0,7] which implies the existence of an (F;)-adapted
cadlag version of M which we denote again by M.
It remains to check the convergence of M, to M in || || M2

sup EIIM() = Ma(0)]) < BIM(T) = M)
— lim_E[|[Mpn(T) = Mo(T)|]

m—00

— 0asn — oo.
O

Proposition 1.14. (i) Let M € M?*(R). Then there exists an integrable,
increasing, predictable process A(t), t > 0, (i.e. A : [0,00[xQ — R is
measurable w.r.t. the predictable o-field

Pr:=0(g:[0,T] x Q = R,|g is (Fi)-adapted and left-continuous))

such that M(t)? — A(t), t > 0, is an (F;)-martingale. A is uniquely deter-
mined.
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(ii) Let M,N € M?(R). Then there exists a process A(t), t > 0, which
1s expressible as the difference of two predictable, integrable, increasing pro-
cesses such that M (t)N(t)—A(t), t > 0, is an (F;)-martingale. A is uniquely
determined.

A in (i) is denoted by < M > and A in (i) by < M,N >. Then
< M >=< M,M >. < M,N > is called the quadratric variation of M
and N and < M > the quadratric variation of M.

Proof. [IkWa 81, II. Proposition 2.1., p.53] O

Definition 1.15 (Local martingale). An E-valued (F;)-adapted process
M(t), t > 0, is called a local (F;)-martingale if there exists an increasing
sequence of (F;)-stopping times T,,, n € N, such that lim, o T, = 400
P-a.s. and for n € N the process M(t A T,)1y7, >0y, t > 0, is a uniformly
integrable (F;)-martingale for each n € N.

Proposition 1.16. Every E-valued (F;)-martingale M(t), t > 0, is a local
(Fi)-martingale with localizing sequence Ty, :=n, n € N.

Proof. Since | M (t)||, t > 0, is a submartingale the assertion is obvious. [

Definition 1.17. Let X be a stochastic process. A property P is said to
hold locally if there exists a sequence of stopping times Ty, n € N, with
T, T oo P-a.s. as n — oo such that X (¢t ATy)1{7,~0y, t > 0, has property P
for each n € N.



12

In the two following sections we introduce the definition of the stochastic
integral with respect to an R-valued, cddlag local martingale and the notion
of the bracket process of R-valued, cddlag local martingales. The approach
here presented and detailed proofs can be found in [Pr 90, Chapter II, Sec-
tion 4-6] where the author defines the stochastic integral and the bracket
process for a more general class of processes, namely semimartingales. Since
by [Pr 90, III.5 Corollary, p.105] every local martingale is a semimartingale
we may reduce the definitions to the class of local martingales.

1.3 The stochastic integral w.r.t. an L>-mar-
tingale: The real-valued case

Let M(t), t > 0, be a cadlag local real (F;)-martingale.
We define the space S of simple predictable processes in the following way.

Definition 1.18. A real-valued process ® is said to be simple predictable if
it has a representation of the following form:

n—1

® = 10y Po + Z Lr, 10 P
i=1

where 0 < T7 < --- < T, are (F)-stopping times and for each 0 < i < n @, is
an Fr,-measurable real-valued random variable, where for an arbitrary (F;)-
stopping time T', Fr is defined as {A € F|AN{T <t} € F for all t > 0}.
Then the space S of simple predictable processes is a linear space.

For a simple predictable process & € S we define the stochastic integral
process w.r.t. M by

n—1
Intp (®)(t) 1= oM (0) + Y 0y (M(Tis1 At) — M(T; At)), t > 0.
i=1
Int s (P) does not depend on the representation of ® and

Intpr : S - R :={X(¢t),t > 0] X is a (F;)-adapted, cadldg process}

is a linear mapping.
For the extension of Inty; to a more general class of integrands

L:={X(t),t >0|X is an (F;)-adapted, cdglad process}

we need the notion of uniform convergence on compacts in probability.
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Definition 1.19. A sequence of (F;)-adapted processes X,,, n € N, con-
verges to an (F;)-adapted process Xuniformly on compacts in probability
(abbreviated ucp) if for all ¢ > 0 supg< <¢|Xn(s) — X(s)] — 0 in proba-
bility. e

To emphazise that the spaces S, R and L are endowed with the ucp-topology
we denote this spaces by Sycp,Rucp and Lyep

Remark 1.20. The space Ry, endowed with the topology induced by the
uniform convergence on compacts in probability is a metrizable space. A
compatible metric is given by

duep(X,Y) := Y —E[ sup |X(s) = Y(s)| A 1], X,V € Rygp.

The metric space (Ruycp, ducp) is complete.

To extend the mapping Intp; uniquely to £ one has to show that
the linear mapping Intys @ Suep — Rucep is continuous and S, is dense
in Lyep. This is done in [Pr 90, II.4 Theorem 10, p.49; I1.4 Theorem 11,
p.50].

Definition 1.21. The continuous linear mapping Intas : Lyep — Ruep 0b-
tained as the unique extension of Intas : Sycp — Rucp is called the stochastic
integral with respect to M.

The image of X € £ under the mapping Int,; will be denoted by [ X dM and
the random variable of the process [ X dM at time t > 0 by fot X(s)dM(s) =
f[o,t} X (s)dM(s).

To exclude 0 in the integral we write

/ X(s)dM(s) = [ X(s)dM(s) = / 0. (5)X (s) dM(s).
o+ ] 0

07t]

Notice that

X(s)dM(s) = | X(s)dM(s) — X (0)M(0).
10,¢] [0,¢]

Proposition 1.22. Let M(t), t > 0, be a cddlig local martingale with
M(0) =0 P-a.s.
Then Intp(X)(0) =0 P-a.s. for all X € L.

Proof. If X is a simple predictable process the assertion is obvious. If X
is an arbitrary element of £ then there exists a sequence @i, k € N, of
simple predictable processes such that ®;, — X uniformly on compacts in
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probability as £ — oo which implies by the definition of the mapping Intp,
that

Z 2inE[ sup |[Intps(X)(s) — Intar(Pr)(s)| A 1] — 0 as k — oc.

Hence, there exists a subsequence k;, [ € N, such that

[Intar(X)(0) — Intps (P, )(0)] — 0 as [ — oo
which implies that Int;/(X)(0) =0 P-a.s O
Theorem 1.23. Let M € M2 (R) and X € L, P-a.s. bounded, then
Inty(X) € M2, (R).
Proof. [Pr 90, I1.5 Theorem 20, p.56] O

Theorem 1.24. Let X € R or X € L and let I1,, n € N, a sequence of
partitions of [0,00[ given by 0 = t§ < tf < .. <} < oo, n € N, such
that limy, ot} = 00 and supg<;<y, _1|ti 1 — ti'| converges to 0 as n — oo.
Then

kn—1 .
N X (M(Ey A7) — M(EF A ) — / X (s—) dM(s)
i=1 0+

as n — oo uniformly on compacts in probability.

Proof. [Pr 90, I1.5. Theorem 21, p.57] O

1.4 Square bracket

As in 1.3 in this section all processes are real-valued.

Definition 1.25. Let M, N be cadldg local (F;)-martingales. The bracket
process of M, N, also called simply the bracket of M, N, is defined by

t t
(M, N], = M(N(t) — / M{(s—)dN(s) — / N(s—) dM(s).

0 0
[M, M] will be denoted by [M] and called the square bracket of M.

Obviously, the mapping (M, N) — [M, N] is bilinear and symmetric.

Theorem 1.26. Let M be a cddldg local (Fy)-martingale. The square
bracket [M] of M is a cddldg, (F:)-adapted process with P-a.s. increasing
paths such that
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(i) [M]o = M(0)? and A[M] = (AM)? P-a.s.,

(i1) if I, n € N, is a sequence of random partitions 0 < T§F < T < --- <
7, n €N, where T[', 1 < i < ky, are (F)-stopping times, such that

llmn*)oo Tgn — +OO and Suplgzgknfl|j—;n+l — I—ZLTL| njc:o O P-a.S., th@n

kn—1
M0)? + > (M(Thy A = M(TP A ) — [M]. as n — oo
=1
uniformly on compacts in probability.

In particular, [M] is an increasing process in the sense of Definition 1.4.

Proof.  [Pr 90, Theorem 22, p.59] O

Theorem 1.27. Let M, N be cadldg, locally square integrable local (Fy)-
martingales. The bracket [M, N] of M is the P-unique, (F;)-adapted, cddldg
process A(t), t > 0, with paths of finite variation on compacts such that

(i) MN — A is a local (F;)-martingale,

(ii) AA(t) = AM(H)AN(t) for allt >0 P-a.s.

Proof. [Pr 90, 11.6 Corollary 2, p.65] O

Remark 1.28. Let M be a cadlag local martingale and 7" a (F;)-stopping
time. Then [M].Ar = [M(- AT)].

Proof. [M].nr = [M(-AT)] is an obvious consequence of theorem 1.26 which
approximates [M] by sums. O

At this point, we may introduce the notion of a purely discontinuous
local martingale and of the continuous part of a local martingale.

Definition 1.29. Let M be a cddldg local martingale. If [M] is purely
discontinuous then M is called quadratic pure jump.

Theorem 1.30. Let M be a cadldag local martingale. Then M has a P-
unique decomposition as a sum of a continuous local martingale, called the
continuous part of M and denoted by M€ , and a quadratic pure jump local
martingale, called the jump part of M and denoted by M?.

Proof. [DeMe 82, VII1.43 Theorem (a), p.353] O
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To close this section about the bracket process we want to consider the
square bracket of the stochastic integral process [ X dM.

Proposition 1.31. Let M be a real-valued, locally square integrable, cddldg
local (F;)-martingale and X € L, real-valued. Then [ X dM is a locally
square integrable, cddldg local (Fi)-martingale and

[ / X(s)aM(s)y = [ X(s)?d[M],. t>0,
0 [0,1]

where the integral on the right-hand side is a Stieltjes-integral taken for every
w € Q.

Proof. [Pr 90, I11.5 Theorem 20, p.56; I1.6 Theorem 29, p.68] O



Chapter 2

The Stochastic Integral w.r.t.
Poisson Point Processes

In the first two sections of this chapter we present the notions of random
measures and point processes. Our main reference is [IkWa 81, 1.8 and
1.9] and we shall follow the set-up presented therein. In the third section we
define the stochastic integral with respect to a compensated Poisson random
measure.

2.1 Poisson random measures

Let (2, F, P) be a complete probability space and (F,S) a measurable space.
Let M be the space of Z; U {+o00}-valued measures on (F,S) and

By =0o(M > p— u(B)|BeS).

Definition 2.1 (Poisson random measure). A random variable
II: (QF) — (M,By) is called Poisson random measure on (E,S) (and
(Q, F, P)) if the following conditions hold.

(i) For all B € §: II(B) : Q — Z4 U {400} is Poisson distributed with
parameter E[II(B)], i.e.:

P(II(B) = n) = exp( — E[I(B)])E[I(B)]"/n!, n € NU{0}.
If E[II(B)] = 400 then II(B) = +o00 P-a.s.

(ii) If By,...,Bp € S are pairwise disjoint then II(By),...,II(B,,) are
independent.

17
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Remark 2.2. Notice that if IT is a Poisson random measure then the map-
ping Q@ — Z, U {+o0}, w — II(w)(B), B € B, is F-measurable by the
measurability of IT : (2, F) — (M, By1) and the definition of By.

After giving the definition of a Poisson random measure we have to check
the existence of such an object. For this purpose we need the following two
lemmas.

Lemma 2.3. Let m € N and p and v be two probability measures on [0, oo[™.
If for all « = (v, ..., ) € RT

e = [ e i, )
[0,00[” [0,0o[m

= / €™ ZI= %% y(d(y, . .. T)) = / e () y(da)
[0,00[™ [0,00[™

then p = v.

Proof. Denote by H the space of all B(R"")-measurable, bounded functions
f:RT — R such that [ fdp = [gm fdv. Then H is a monotone vector
+ +

space. Moreover, define

m
A:={RT >R,z exp(— Y _ajz;)| o € Qp,1 < j<m}.

j=1
Then A is a class of bounded, measurable functions, which is closed under
multiplication and which is a subset of H by assumption. By the monotone
class theorem it follows that o(A), C H.
Moreover, A as a subset of {f : R — R| f is bounded,B(R’})-measurable}
is countable and separates the points of R’". Thus, we obtain that o(A) =
B(R7') and B(R), C H. In particular, we get for A € B(RT') that u(A) =
v(A). O

Lemma 2.4. Let X be a Poissonian random wvariable on (0, F, P) with
parameter ¢ > 0, i.e. X : Q — Z U {400} such that for all n € NU {0}:
Vel

P(X =n)= exp(—c)%. Then

n

E 6c\zX — ea:pPOXfl dx) = eanefci = exp(c e® — 1
0 n!
n=0

for all a € R.

Theorem 2.5. Given a o-finite measure m on (E,S) there exists a complete
probability space (0, F, P) such that there exists a Poisson random measure
IT on (E,S) and (Q,F,P) with E[II(B)] = m(B) for all B € §. m is
then called the mean measure or intensity measure of the Poisson random
measure I1.
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Proof. [IkWa 81, I. Theorem 8.1, p.42]

Step 1. m(F) < oc.

There exists a complete probability space (2, F, P) such that there exist
the following family of independent random variables: a Poissonian random
variable N with parameter ¢ := m(FE) and a sequence of independent FE-

valued random variables &1, &2, ... with distribution %m, also independent
of N.

Define IT := Y"1, ,. If N =0 then Y"1, 8¢, (B) := 0.

Claim 1. Let B € S. Then II(B) is Poisson distributed with parameter
m(B).

Let o € R4, then

/ e~ P o H(B)il(dl‘) — E[efaH(B)]
[0,00]
N [e's) n
=Elexp(—a ) 0¢,(B))] =E[Y exp(—a > 15(&))1{n=n}]
k=1 n=0 k=1
=Y B[] exp(—als(&) 1 {n=n}]
n=0 k=1

= Z H E[exp(—alB(ék))}P(N =n), since N, &, k € N, are independent,
n=0 k=1

n

= ZE exp(—alp(&))]"e” c—‘, since &, k € N, are i.i.d.,

( (Elexp( 0413(51))] -1))
=exp(c P( 51 eB *+cP(& € BY) —¢))
(™2 B o)

=explc

=exp|c +c(1-

=exp(m (B)(e*a —1)).
By lemma 2.4 and lemma 2.3 the assertion follows.

Claim 2. Let Bjy,..., By, € S pairwise disjoint. Then II(By),...,II(By)
are independent.

Let ay,...,am € Ry, then:

/{0 . exp(— Z ajz;) Po (II(By),...,T(By)) td(z1,. .., 2m)

m
= E[exp(— Z a;II(B
j=1
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=BE[Y exp( =D ;¥ 15,(&)) lin=n)]
n=0 Jj=1 k=1
et St
n=0 k=1 Jj=1
= E[exp(—zaleJ (fl))}ne_ci;
n=0 Jj=1
= exp{c (E [EXp( — Z a;lp (gl))] - 1)}
j=1

:exp{c (E[ 1{§1€U§n:1 Bj}exp( — Z alej (él))

+ HareUrz, 5Pl Zaglg )] -1}

Cs

c(im(fﬂ‘)eajﬂ 3o (B) 1)

=1 7=1

{ j

:exp{c( ip(ﬁl € Bj)e ™ + P(& € (
{
(

M=
E

(Bj)(e™ —1)) = Hexp - 1))

m 0
H/ exp(—ajzj) PoTI(B;) ' (dx;), by lemma 2.4 and claim 1,
j=1"0

/ exp(— Y ajaj) Poll(B1) ™' ®@---@ Poll(By) ™
[0,00[™ j=1 d(x1,. ., o)

Hence, by lemma 2.3, we can conclude that
Po(II(By),...,]I(Bp)) ' =Poll(B) '@ - @ Poll(By)""

which implies the required independence.

Step 2. m is o-finite.

There exist F; € S, i € N, pairwise disjoint such that m(E;) < oo for all
ie€Nand E=J;2, E;. Set m; :==m(-NE;),ieN.

As in step 1 there exists a complete probability space (€2, F, P) such that
there exist the following families of random variables.



21

For each ¢ € N there exists a Poissonian random variable N; with parameter
¢; := m(E;) and a family of independent E;-valued random variables &, &5, ...
with distribution c%mi, also independent of NV;. Moreover, the families of
random variables {N;, & &5, .. .}, i € N, shall be independent.

Let I1; be the Poisson random measure on E; associated with N; and £, &%, . ..
with intensity measure m; as deﬁned in step 1.

Define IT:= > "2 II; := >~°, k: 1 0¢i - Then one has for B € § that

oo N; oo N; oo N;
M(B) =330 (B) =33 15(€) =D > 1pg (&)
i=1 k=1 =1 k=1 1=1 k=1

HZ‘(B N Ez)

M

1

..
I

and

=> m(BNE) ZE /(BN E;)], by step 1, claim 1
= E[II(B)].

Claim 1. Let B € § with E[II(B)] < oo then II(B) is Poisson distributed
with parameter m(B).

Let a € R4, then:

E[efaH(B)]
= lim E[exp(—azﬂi(B NE:)))
i=1

m
= lim HE[exp(—a II;,(B N E;))] , since {N;,&},€5,...}, i €N, are indepen-
m—00

i=1 dent,

= lim Hexp (BN E;)(e”* —1)), by step 1, claim 1
m_>ool 1

=exp(m(B)(e”* —1)).

By lemma 2.4 and lemma 2.3 the assertion follows.

Claim 2. Let B € S with m(B) = E[II(B)] = +o0o. Then II(B) = 400
P-a.s.

P(I(B) = +o0) = P( (| (J{IL(BNE;) > 0})

meNi>m
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since

P(({IL(BNE;) > 0}°) = P(({IL(B N E;) = 0})

>m 1>m
m-+n m-+n
_ m(BNE;)
= lim P( () {L(BNE;) =0}) 1}5201_[
i=m
m+n
= nan;O exp(— Z m(BNE;))=0
=m

it follows that P(U;s,,
PII(B) = +o0) = 1.

{ILi(B N E;) > 0}) =1 for all m € N and therefore

Claim 3. Let By,...,B,, € S pairwise disjoint. Then II(By),...,II(B,)
are independent.

Since II(B) = 400 P-a.s. if m(B) = 400, without loss of generalization
we can assume that E[II(B;)] = m(B;) < oo for all j € {1,...,m} then one
gets for all aq,...,a, € Ry that

E [exp( Zaj
= E[exp( ZZajHl (B; N E;))]

i=1 j=1
n m
= lim FE[exp( Z:Z:Ozjﬂz B; N E;))]
n—oo
=1 j=1

n m
= nlLr{:oH H E[exp( —ojIL;(B; N EZ))}, by step 1, claim 1,
i=1 j—l

J— — Q5 _ .
= nh_%loHl l_Ilexp m(Bj N E;)(e” 1)), by step 1, claim 2,
=1}

= H exp(m(B;)(e”® —1)).
j=1

As in step 1, claim 2, this implies the stated independence.
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2.2 Point processes and Poisson point processes

Let (2, F, P) be a complete probability space and (U, B) a measurable space.

Definition 2.6 (Point function on U). A point function p on U is a
mapping p : D, C (0,00) — U where the domain D), is a countable subset
of (0,00).

p defines a measure Ny (dt, dy) on ([0, 00) x U, B([0, 00)) ® B) in the following
way.

Define p : D, — (0,00) x U, t +— (t,p(t)) and denote by ¢ the counting
measure on (Dp, P(Dy)), i.e. ¢(A) :=#A for all A € P(D)).

For B € B([0,00)) ® B define

Ny(B) := c(p™(B))-
Then, in particular, we have for all A € B([0,00)) and B € B
Ny(A x B) =#{t € Dyt € A,p(t) € B}.
Notation: N,(t, B) := N,(]0,t] x B),t >0, B € S.

Let Py be the space of all point functions on U and
Bp, :=0(Py 2 p— Ny(t,B)|t>0,B € B)

Definition 2.7 (Point process). A point process on U (and (2, F, P)) is
a random variable p : (Q, F) — (Pu, Bp, ).

Remark 2.8. Notice that if p is a point process the mapping 2 — Z U
{+oo}, w = Ny, (t, B) is F-measurable for all £ > 0 and B € B by the
F/Bp,-measurability of p and the definition of Bp,, .

Definition 2.9. Let p be a point process on U and (92, F, P).

(i) p is called stationary if for every ¢ > 0, p and 6;p have the same
probability law, where 6, is given by 6; : (0,00) — (0,00), s — s+t
and 0p is defined by Dy,, := {s € (0,00)|0:(s) = s+t € D,} and
(6p)(5) = p(64(5)) = p(s +£).

(ii) p is called o-finite if there exist U; € B, i € N, such that U; T U as
i — oo and E[Ny(t,U;)] < oo for all t > 0 and i € N.

(iii) p is called Poisson point process if there exists a Poisson random mea-
sure IT on ((0,00) x U, B(0,00) ® B) such that there exists a P-nullset
N € F such that for all w € N¢ and for all B € B(0,00) ® B:

Ny(w)(B) = II(w)(B).
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The next proposition characterizes the stationary Poisson point pro-
cesses.

Proposition 2.10. Let p be a o-finite Poisson point process on U and
(Q,F,P). Then p is stationary if and only if there exists a o-finite measure
v on (U,B) such that

E[Ny(dt, dy)] = A(dt) © v(dy)

where X denotes the Lebesgue-measure on (0,00). In this case v is unique
and called characteristic measure of p.

Proof. “<” Suppose that there exists a o-finite measure v on (U, B) such
that

E[N,(dt,dy)] = A(dt) @ v(dy).

We have to show that p is stationary.
Let ¢t > 0.

Bp, :=0(Py — Z4 U{co},p— Ny(t,B)|t >0,B € B)

:O'( ﬂ{pGPU‘Np(ti,Bi):mi}‘ ti>0,Bi€B,mi€Z+,1§i§n,)
=1 n €N

-~

=£

Since & is stable under intersections it is enough to check that for all A € £
P(pe A) = P(op € A)

If A € £ then there exists m € N such that for all 1 <[ < m there exist
0< 82- < té» < 00, ké € N and CJZ» € B, 1< j <nl such that ]s],té] X CZ
1 < j < n! are pairwise disjoin and such that

A= |J ) V(s th x Ch =K}

1<I<m 1<j<nl

::Al

where A4;, 1 < 1 < m, are pairwise disjoint. To prove that P(p € A) =
P(6yp € A) for all A € £ it suffices to consider the case A = [/ {N.(]s;, t;] ¥
B;) =m;}, 0 <s; <t; < oo, B; € B, such that |s;,t;] X B;, 1 < i < n, are
pairwise disjoint, m; € Z,,1 < ¢ <n Then

P(pe A)

= P([({Np(Jsi,ti] x By) = mi}
=1
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= [[ P(Np(Isi,ts] x Bi) =mi), by Definition 2.1(ii)

=1

= HE[Np(]Sivti] % Bl)]mz eXP( — E[Nz;r(jj“tl] % Bz)])
=1

- H((tl — s;)v(B;))™ eXp(_(tin;!Si)I/(Bz))
=1

)]m, exp( — E[Ny(]si + s,t; + 5] x BZ)])

n
:HE[NP(]si—i—s,ti—l—s] X B; il

= ﬁP(Np(]si +5,t; + 8] X B;) = my)

P(({No,p(Jsi,ti] x B;) = mi}
=1

=P(Osp € A)

“=" Suppose that p is stationary.
Define for fixed B € B a measure on ([0, 00), B([0,0))) by

up(A) = E[N,(A x B)].
Then, for all t > 0 and A € B(]0,00))

up(A) = E[Ny(A x B)] = E[Ng,y(A x B)]
— EIN,(6:(4) x B)] = u(6,(A)),

i.e. pp is translation invariant and hence there exists a unique constant
v(B) > 0 such that up = v(B)A. v defines a measure on (U, B) (the o-
additivity is a consequence of the uniqueness of v(B)).

Moreover, from the o-finiteness of p follows the o-finiteness of v by the fact
that for all B € B, v(B) = E[Ny(1, B)]. O

Theorem 2.11. Given a o-finite measure v on (U, B) there exists a com-
plete probability space (Q, F, P) such that there exists a stationary, o-finite
Poisson point process on U and (2, F, P) with characteristic measure v.

Proof. By theorem 2.5 there exists a complete probability space (2, F, P)

such there exists a Poisson random measure IT on ((0, 00) x U, B(0,0) ® B)

(and (92, F, P)) with intensity measure A ® v. Remember the construction

of IT in the proof of theorem 2.5.

There exist U;, j € N, pairwise disjoint such that U = |J U; and
jEN

c; =v(Uj) < 0.
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For 7,5 € N let

e N;; be a Poissonian random variable with parameter c;,

. g,@j = (t;’j,x;’ﬁ’j), k € N, iid. ]i — 1,i] x Uj-valued random variables
with distribution A(-N]i—1,4]) ® (Ciju(-ﬂUj)), also independent of NN ;.

Moreover, the families of random variables {N; ;,£17,&57,... }i jen, are in-
dependent.
Then
o0 oo (o] Nz 7
]._.[ = E ]._.[7/7] = E E 5 zg 7, Nl
S k WL
3,j=1 1 j=1k=1

is a Poisson random measure on ((0,

00) x U,B(0,00) ® B) with intensity
measure A\ ® v and for B € B(0,00) @ B

=> Y Wi ;(BN(Ji—1,4] x Uy)). (2.1)

i=1 j=1

Then there exists a P-nullset N € F such that for all w € N¢

II(w)({t} x U) =1 or 0 for all t > 0, since

Plw e Q|3t > 0st. I({t} x U) > 1})

[e.e]

=P(| J{weQ|Tt€)i - 1,4] s.t. TI({t} x U) > 1})
=1

P({w € Q| 3t €]i — 1,i] with inm({t} x U;) > 1})
j=1

IN

IngLBNgE

@
Il
,_.

P( [j {w € Q’ 3t G]Z — 1,Z] with Hi,j({t} X Uj) >1

Ph=t Ik ({t} x Uk) 2 1})
3 i P( U{wEQ] 3t €]i — 1,1] Wlthéu ({t}xU)—land
L Sei oy ({8} X Uk) = 1})

IA

s
Il
—

P({w e Q|3t €li — 1,i] with t1 (w) = tiF(w) = t})

WE

@
Il
—
.
o
Il
—_
S

Po (th3 59y~ ({(t, 1) |t €]i — 1,4]})

no’'m

o
hE

@
Il
N
<.
o
Il
—
S
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:ii i AR A{(t,t) |t €)i —1,4]})

If we N¢and t > 0, then there exists ¢ € N such that ¢ €]i — 1,4]. Then
II(w)({t} x U) =1 if and only if

oo Nij(w)
225” () < Uy) ZH” Y{t} x U;)
j=1 k=1
( J({t} x U) , by equation (2.1),
=1,
iLe. I(w)({t} x U) =1if and only if 3!j € N, 3k € {1,..., N; j(w)} such
that t = ¢} (w).

Now we can define
Dy = {t € (0 oo) [ I(w)({t} x U) # 0}
= U U{t Jw) ke f1,...,Nij(w)}}
i=1j=1

and

p(w )(tk’]) a:k ( ), ke{l,...,N;;(w)}, i,5 € N.

By the above considerations p(w) is well defined.
If w € N then define py € Py by D, := {to} C (0,00) and po(to) = z9 € U
and set p(w) = po.

Claim 1. N, =1I P-as.

Since II is a Poisson random measure on (0,00) x U with intensity mea-
sure A ® v we know that E[II(]0,:] x U;)] < oo for all ¢, j € N. Hence there
exists a P-nullset N € F such that for all w € N° II(w)(]0,4] x U;) < oo for
all 4,7 € N.

Let w € (NUN), A€ B(0,00) and B € B then:

II(w)(A x B)

o OONz]

ZZ Z 8(4id 41y (ANNE = L,]) x (BN Tj))

1j=1 k=

ZZ {362_1Z|3€A3k’€{1 i,j(uJ)}SuChthats:tZ’j(w)
= and xk I (w) GBﬂUj}
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= ZZ#{S €li — 1,4 N Dy | s € A, p(w)(s) € BNUj},

i=1 j=1

=D #{s €li— 1,i]n Dy, | s € A, p(w)(s) € B},
=1
=#1{s € Dy |5 € A,p(w)(s) € B}

= Vp(w

Since {Ax B|A € B(0,00), B € B} is a N-stable generator of B(0, c0) ® B and
Np) (10, 1] x Ujy Uj) = I(w)(]0, 1] x Uj—y Uj) < 00 where ]0,4] x Uj_, U 1
(0,00) x U we get that Ny, = [I(w).

Claim 2. For all B € B(0,00) ® B the mapping N,(B) is F-measurable and
E[Ny(dt,dx)] = \(dt) ® v(dx).

Since N,(B) = II(B) P-a.s. the measurability is obvious by remark 2.2
and the completness of (2, 7, P). Now Ein(B)] is well defined and we

obtain that E[N,(B)] = E[II(B)] = A ® v(B), since II is a Poisson random
measure with intensity measure A ® v.

Claim 3. p: Q — Py is F/Bp,-measurable.

Bp, =0(Py — Z4 U{+o0},p— Ny(t,B)|t>0,B € B)
=o({pePu|Npt,B)=m}|t>0,BeBmeZy)

and for t > 0, B € B and m € Z, one gets by claim 2 that

{p € {N.(t, B) = m}} = {N,(t, B) = m} € F.

By claim 1 - 3 it follows that p is a Poisson point process with characteristic
measure v. By proposition 2.10 p is stationary. 0

Definition 2.12. Let F;, t > 0, be a filtration on (2, F) and p a point
process on U and (2, F, P). p is called (F)-adapted if for every ¢ > 0 and
B € B Ny(t, B) is Fi-measurable.

Definition 2.13 ((F;)-Poisson point process). Let F;, t > 0, be a fil-
tration on (€2, F) and p a point process on U and (2, F, P). p is called an
(Ft)-Poisson point process if it is an (F;)-adapted, o-finite Poisson point
process such that {N,(]t,t+h] x B) |h > 0, B € B} is independent of F; for
all t > 0.

Remark 2.14. Let p be a o-finite Poisson point process on U and (92, F, P).
Then there exists a right-continuous filtration F;, ¢ > 0, on (2, F) such that
Fo contains all P-nullsets of F and p is an (F;)-Poisson point process.
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Proof. Define N := {N € F|P(N) =0} and for t > 0

Ay :=0(Ny(s,B)|0<s<t,BeB)VN and F; := m Apte.

e>0

Then (Q2,F, P) is a complete probability space with a right-continuous fil-
tration F;, t > 0, such that Fy contains all P-nullsets of F. Moreover, p is
(F)-adapted.

It remains to show that for all £ > 0 N,(]t,t + h| x B) is independent of F;
for all h > 0 and B € B.

Let B € Band h > 0. For n € N Ny(Jt + 2, ¢ + h] x B) is independent of
AHT}Z for all m > n and therefore also of F;. Since Ny(Jt,t + h] x B) =
sup,en Np(Jt + 2.t + h] x B) it is easy to see that Ny(]t,t + h] x B) is
independent of F;. O

For an arbitrary point process p define the following set

Iy :={B € B|E[N,(t,B)] < oo for all t > 0}.

To motivate the next definition of point processes of class (QL) we want
to recall the Doob-Meyer-decomposition theorem and give an application of
it to the process N,(t, B), t > 0, if B € I',.

Let F;, t > 0, be a right-continuous filtration on (2, F). If p is a o-finite
(Fi)-adapted point process on U then for B € I') Ny(t,B), t > 0, is a
right-continuous (F;)-submartingale with the property that for all a > 0 the
family of random variables

{N,(o,B)| 0o is a (F;)-stopping time, s.t. o < a}

is uniformly integrable. Then by the Doob-Meyer-decomposition theorem
(vgl. [IkWa 81, I. Theorem 6.12, p.36]) there exists an (F;)-martingale M (t),
t >0, and a process A(t), t > 0, with the following properties

(i) Ais (Fi)-adapted,
(i) A(0) =0 and t — A(¢) is right continuous and increasing P-a.s.,

(iii) E[A(t)] < oo for all t > 0,

such that Ny(t, B) = M(t) + A(t) for all t > 0 P-a.s.
Furthermore, A can be chosen natural, i.e. for every bounded, cadlag (F;)-
martingale N (t), ¢t > 0,

E[/O N(s) dA(s)] = E[/O N(s—) dA(s)], t > 0,
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and in this case the decomposition of N,(-, B) is unique in the following
sense.

If M is a further (F;)-martingale and A a further natural process which
fulfills the conditions (i)-(iii) such that N,(t, B) = M(t) + A(t) for all ¢t > 0,
then M(t) = M(t) and A(t) = A(t) for all t > 0 P-a.s.

A continuous process A which fulfills the conditions (i)-(iii) is natural. (vgl.
[IkWa 81, p.35])

Now we give the definition of a point process of class (QL).

Definition 2.15. Let F;, t > 0, be a right-continuous filtration on (2, F, P)
and p a point process on U and (2, F, P). pissaid to be of class (QL) (quasi-
left-continuous) with respect to F, t > 0, if it is (F;)-adapted, o-finite and
there exists for all B € B a process Np(t, B), t > 0, such that

(i) for B € Ty, ]Yp(t,B), t > 0, is a continuous (F;)-adapted increasing
process with N, (0, B) =0 P-a.s.,

(ii) for all t > 0 and P-a.e. w € Q, Ny(w)(t,-) is a o-finite measure on
(U, B),

(iti) for B € Ty, q(t, B) := N,(t, B)—N,(t, B), t > 0, is an (F;)-martingale.

Np is called the compensator of the point process p and g the compensated
Poisson random measure of p.

Proposition 2.16. The compensator of a point process p on U of class
(QL) is unique in the following sense.

If there exists a further process X (t,B), t > 0, B € B, which fulfills the
conditions (i)-(iit) of Definition 2.15 then, for all B € B,

A~

Ny(t,B) = X(t,B) for allt >0 P-a.s.

Proof. Let B € T, then, by the Doob-Meyer-decomposition theorem,

Ny(t,B) = X(t,B) for all t > 0 P-a.s.
Let now be B an arbitrary element of B. Since p is o-finite there exist
U, € 'y, n € N, such that U, T U. Therefore, we get

~

Ny(t,B)
= nILH;o N,(t,BNU,), as N,(t,-) is a measure on B for all t > 0 P-a.s.,
= nILn;O X(t,BNUy) forall t >0 P-as. as BNU, €T,
= X(t,B) for all t > 0 P-a.s.
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The next proposition gives us a criterium to decide if an (F;)-Poisson point
process w.r.t. a right-continuous filtration is of class (QL): the continuity of
0,T] — R,t — E[N,(t,B)], B € T,. In this case N,(t, B) = E[N,(t, B)],
t>0,BebkB.

In fact, as a subset of the set of point processes of class (QL) the (F;)-Poisson
point processes are characterized by the property that their compensator is
a non random o-finite measure on [0,00) x U. (see [IkWa 81, II. Theorem

6.2, p.75]).

Proposition 2.17. Let F;, t > 0, be a right-continuous filtration on (2, F)
and p an (Fy)-Poisson point process. p is of class (QL) if and only if the
mapping [0,T] — R,t — E[Ny(t, B)] is continuous for all B € T'y. And in
this case Np(t, B) = E[N,(t, B)] for allt > 0 P-a.s. for all B € B.

Proof. “<” Suppose that [0,7] — R,t — E[Ny(t, B)] is continuous for all
B eTy.

Define N,(t, B) := E[N,(t,B)] for all + > 0 and B € B. Then the con-
ditions (i) and (ii) of Definition 2.15 are fulfilled. Moreover, for B € I,
q(t, B) := N,(t, B) — Ny(t,B), t > 0, is (¥;)-adapted. It remains to check
that for B € I', ¢(t, B), t > 0, has the martingale property.

For this end let 0 < s <t < 0o and Fy € F,, then

A~

Np(ta B)lFs] - E[Np(tv B)]P(Fs)

Ny(Js,t] x B)1g,] + E[Ny(s, B)1r,] — E[Np(t, B)|P(F)

Ny(t, B)|P(Fs) — E[Ny(s, B)|P(Fs) + E[Ny(s, B)1F,]

— E[N,(t, B)|P(F5), since Ny(]s,t] x B) is independent of F,
[Np(sv B)]'Fs] - E[Np(87 B)]P(Fs)

~

E
= E[(Np(s, B) — Ny(s, B))1,]
E

“=” Suppose now that p is of class (QL). Then E[N,(t, B)] = E[Np(t, B)]
for all t > 0 and B € T, since N,(t,B) — N,(t,B), t > 0, is an (F;)-
martingale which starts in 0.

Since N,,(t, B) is continuous in ¢ for all B € T', and E[N,(t, B)] = E[N,(t, B)]
< oo for all t > 0 we get the desired continuity of E[N,(-, B)] by Lebesgues

dominated convergence theorem. O

As an easy consequence of the previous proposition we obtain the following
corollary which gives us the existence of a point process of class (QL).

Corollary 2.18. Let Fi, t > 0, be a right-continuous filtration on (2, F).
Moreover, let v be a o-finite measure on (U,B) and p a stationary (F;)-
Poisson point process on U with characteristic measure v. Then p is of
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class (QL) w.r.t. Fy, t > 0, with compensator Np(t,B) =tv(B), t > 0,
B e B.

Proposition 2.19. Let p be a point process on U of class (QL) w.r.t. a
right-continuous filtration Fy, t > 0, on (2, F).

For B €T, q(t,B),t >0, is an element of M?(R) and we have for By, Bs €
Iy that

A

<Q('aBl)7Q('7BQ)>(t) = Np(t7Bl N BQ)a t> 0.

In particular, this means that for all B €T,
M(t) == q(t,B)?> — Ny(t,B), t > 0, is an (F;)-martingale which starts in 0
since q(0,B) = 0 = Ny(0, B) P-a.s.

Proof. [IkWa 81, II. Theorem 3.1, p.60] O

2.3 Stochastic integrals with respect to Poisson
point processes

Let (2, F, P) be a complete probability space with a right-continuous filtra-
tion F3, t > 0, such that Fy contains all P-nullsets of F and (U, B) a mea-
surable space. Moreover, let p be an (F;)-Poisson point process on (U, B)
and (9, F, P) of class (QL) with compensator N, (t, B) = E[N,(t, B)], t > 0,
and B € B.

Notation: In the following we will use the following notations.

If B € B([0,00)) ® B we define N,(B) := E[N,(B)]. Then N, is a o-finite
measure on ([0,00) x U, B([0,0)) ® B).

Moreover, we set q(]s, t]x B) := N,(]s,t]x B)—N,(]s,t]x B),0 < s < t < o0,
BeT,.

Remark 2.20. If

B eT), ={B € B| E[Ny(t,B)] < cc for all ¢t > 0}
—={B € B| N,(t,B) < oo for all t > 0}

A

then ¢(s,B) € R for all s > 0 P-a.s. since ¢(s, B) = Np(s, B) — Ny(s, B)
where Ny(s, B) < oo for all s > 0 P-a.s. as E[N,(n,B)] < oo for all n € N.
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If0<s<t<ooand B €T, then

Q(t7 B) - (J(S, B) = Np(ta B) - Np(sv B) - (Np(ta B) - Np(s’ B))
= Np(]Js,t] x B) — E[Np(Js,t] x B)] P-a.s.
= Ny(]s,t] x B) — Np(]s,t] x B)
=q(]s, 1] x B)
Step 1. Definition of the stochastic integral for elementary pro-
cesses )
Let (H,(, )) be a separable Hilbert space with || || = (, )2 and fix T > 0.

The class £ of all elementary processes is determined by the following defi-
nition.

Definition 2.21. An H-valued process ®(t) : Q x U — H, t € [0,T],
on (2 x U, F ® B) is said to be elementary if there exists a partition 0 =
to <tp < -+ <ty ="T0of [0,T] and for m € {0,...,k — 1} there exist
B, .. B}?(Zm) € I, pairwise disjoint, such that

k—1 I(m)

¢ = Z l]tm,tm+1]XBgn
m=0 i=1

where ®" € L*(Q, F;,,, P;H), 1 <i<I(m),0<m<k—1.
£ is a linear space.

For & = ¢~ (m)®m

m= 0
process by

Uty b i) x B € & define the stochastic integral

Int(®

/“/
S Y

y) q(ds, dy) : // (s,9) q(ds, dy)
10,¢]

(s
k—

- <1> erl/\t’B;n)_Q(tm/\thim))v
m=0 =1

t€[0,7T).

Then Int(®) is P-a.s. well-defined and Int is linear in ® € .

Proposition 2. 22

If ® € € then X(t fU q(ds,dy), t € [0,T], is an element of
MZ(H) with X (0 )—OP a.s. (md

t+
(@))% = supyerory 1l /0 [ oGPy e2)

T
= s 2N, (ds =: 2
—E[/O /U 1@ (s, )| Ny (ds, dy)] = | ||%
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Proof. Obviously, Int(®) is a cadlag process.
Claim 1. Int(®) is (F;)-adapted.

Let t € [0,T] then

Int(®)(t)

k—1 I(m) R

= > O (Np(tmsr At B") = Nyltmi1 At, B")
Z:é% = - Np(tmaBz‘m) +Np(tm7Bz‘m>)

which is F;-measurable since p is (F¢)-adapted and ®]" is F;,, /B(H )-measurable
forall 1 <i<1I(m)and 0 <m <k —1 such that ¢,, <t.

Claim 2. For all t € [0, T
E[||nt(®) / / 18 (s, )12 Ny (ds, dy)] <

E[|[mt(2)(t)]|]
—1I(m
?LQ(]tm A tytm—i-l A t] X Bzm)H2]

)

P

1

I(m)

(10t At b A 8] x B2
=1

szjlo:
B[y

m=0
t

tm <
+2 Y <<I>§”A§”,<I>§”AT))

1<i<i<I(m)

2 ¥ S @rareran)
0<m<n<k—1 (ij)e{l,.... ] (m)}
tn<t x{1,....I(n)}

where AL = q(Jty At,tia At x BL), 1<h<I(),0<I<k-1.

1.: For m € {0,...,k — 1} such that t,, <tandie€ {1,...,1(m)}
E[l|97q(tm At tmir At] x BI)|?] = B[I|@]"|P|AT*] < oo
Since ||®1"||? is JF;,,-measurable and |A”|? is independent of JF;,, we get that
B[ 1217 7] = B[P E[IA7 ]

where E[||®7"]|] < co. It remains to show that E[|A7?] < oo.
For this purpose let 0 < s <t <7T and B € I'y, then:

E[q(]s,t] x B)?] = E[(q(t, B) — 4(s, B))?]
= E[Q(t7 B)Q —2 Q(tv B)Q(S’ B) +Q(Sv B)2]
(a) (6)
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(a) By proposition 2.19 it follows for u € [0,7] and B € I, that

Blg(u, BY’] = E[N(u, B)] = E[Ny(u, B)] < .

(b) Since |q(]s,t] x B)| and |q(s, B)| are independent we get that

E[lq(t, B)g(s, B)|] < E[q(s, B)*] + E[lq(]s, 1] x B)q(s, B)|]
= E[lq(Js,t] x B)|]E|lq(s, B)|] + E[q(s, B)?]

< 00.

From (a) and (b) it follows that E[q(]s, ] x B)*] < co. Moreover, we obtain
that

E[q(]s,t] x B)?] (2.3)
=E[q(t, B)*] - 2E[q(t, B)a(s, B)] + E[q(s, B)’]
=E[q(t, B)*] - 2E[q(]s,t] x B)q(s, B)] — Ela(s, B)’]
= E[N,(t, B)] — 2E[q(]s,t] x B)| E[q(s, B)] — E[N,(s, B)]

This will be useful later on.
2.: For m € {0,...,k — 1} such that ¢,, < ¢ and 4,5 € {1,...,I(m)},
<7,
E[{®;" A", @7 AT)]
1 1
<(E[|®7AP(1P)2 (B|®7AP()? < oo,

by 1..
3.: Form,n € {0,...,k—1}, m < n,such that t,, <tandi e {1,...,I(m)},

jed{l,....I(n)},
E[[(@" A", @7 A)]] = E[[{7" A", @F)[|Af]] < o0

Since m < n and ty, < tpmi1 <tn, <t (QTAT, @) is Fy, /B(H)-measurable.
In addition, [A7| is independent of F3,. Therefore, we get that

E[[(@" A7, @7)[|Af]] = E[[(97" A", @) [ E[|A7]]

1 1
< B[l AP B[]0 |72 B[|A}]
< 00, by 1..
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4.: For m € {0,...,k — 1} such that t,,, <t and i,j € {1,...,1(m)}, i < j,
E[(®]", @) AT"AT] =0 :

Since (®]", @7") € LY(Q,F, ,P) and APPAT € LY(Q, F, P) is independent
of Fy,, we get that

E[(®]", ®F") AT AT = E[(@]", @]") | E[AT AT,

Moreover, as B;"™ and Bj" are disjoint if i 7 j, we know that A" and AT
are independent. Therefore

E[AT'AT] = E[AT)E[AT] = 0

and we obtain that
E[(®]", @T)A"AT] =0

5.: Form,n € {0,...,k—1}, m < n,such that ¢, <tandi e {1,...,1(m)},
je{l,....,I(n)},

E[(®]' AT, ®]AT)]
— B[(@]' A7, $7)AY] =0 :

Since (®7*A]", @) € LY, F,, P) and Al e LY(Q, F, P) is independent of
Fi,, we get that

E[(2]" AT, @F)A]]
=E[(2]" A", @F) | B[A]]
=0.

By 1.-5. one gets for all ¢t € [0, 7] that

E[|[Int(®)(t)]]?]
k—1 I(m)
=E[|>_ > ®7q(Jtm Atytmis At] x B
m=0 =1
k-1 I(m)

=B 3 ( D18 a(tm At tia A1) x BP)?

m=0 i=1
tm <t

+2 Y <@?A?,@7A;n>)

1<i<j<I(m)

+2 Y S (@rareran)

0<m<n<k—1 (i,5)e{1,....,I(m)}
tn <t x{1,...,I(n)}
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k—1 I(m)

= E[|®7q(Jtm A t,tmer At] x BI)|?]
m=0 =1
t?ngt
k—1 I(m)

= E[197 1”1 E[q(Jtm: tms1 At] x Bi™)?],
m=0 =1
tm <t

since || "> € LY, F,,, P) and q(Jtm, tmi1 A t] x B™)? € LY(Q, F, P)
is independent of F,.,
k—1 I(m

= ZE (1R 2] N (st A 1] % BI),

m=0 i=1
tn <t

by equation (2.3),

k—1 I(m)
= [ S B e 5:0) N )
m=0 i=1
k—1 I(m) X
= [ B S 10 P e 5o0)] ol )
m=0 i=1
1 I(m)
/ / H Z o/ 1]tm7 tmt1] XB’”(S y) |l ] Ap(dsudy)
=0 =1

// [18(s. )] Ny (ds, dy)
5| / [ 1.l (s, )]

Claim 3. Int(®)(t), t € [0,T], is an (F;)-martingale.

Let 0 <s <t <T and Fy € F, then:

t+
1Fg/ / r,y) q(dr, dy)]
k—

_ /F 3 Z ®7 (q(tms1 At, BI") = q(tm At, B")) dP

s m=0 =1
tm <t

-y Z/ B (q(tms1 Aty BI) — gt A 5, BT)) dP

I(m)
—1 s

s<t;§t
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k—1 I(m)
_ / S (E[q(tmsr Aty B)|FS] — qltm A s, BT)) dP
m=0 i=1 7 TIs
tm<s
k—1 I(m)
" [ @ (Blattnss 6 BYIF,] - attn, BY) aP
m=0 i=1"Fs - ~- :
s<tm <t =0, since ¢(-,B]"") is an (F;)-martingale
and 1, ®MmeLY(Q,F4,, ,P;H)
k—1 I(m)
= 33 [ @ altnin s BP) < gt A5, ) P
m=0 =1 s
tm<s

since q(tmy1 A -, B™) is an (F;)-martingale and 1p,®7 € LY(Q, F,, P; H),

=FE|lp, /S+/ (r,y) q(dr, dy)].

O]

In this way one has found a seminorm || ||z on & such that
Int : (&, |l7) — (MZ(H),| [ pm2.) 1s an isometric transformation. To get a
norm on £ one has to consider equivalence classes of elementary processes
with respect to || ||7. For simplicity, the space of equivalence classes will be
denoted by &, too.

Since £ is dense in the abstract completion EI17 of £ w.r.t. || |7 it is clear
that there is a unique isometric extension of Int to EllllT.

Step 2. Characterization of &/l I
Define the predictable o-field on [0,7] x Q x U by

Pr(U)
=0(g:[0,T] xQxU —R|gis (F; ® B) — adapted and left-continuous)
=o({]s,t] x Fs|0<s<t<T Fye F,@BYU{{0} x Iy | Fy € Fy ® B})
=o0({]s,t] x FsxB|0<s<t<T,Fse€F,;,BecB}
U{{0} x Fy x B|Fy € Fy,B € B})

At this point, we also define the predictable o-field Pr on [0,7] x Q by

Pr:=o0(g:[0,T] x Q@ — R,| g is (F;)-adapted and left-continuous)
=o({Js,t] x Fs |0 < s <t <T,F, € Fs} U{{0} x Fy| Fy € Fo})
=:A

Let H be an arbitrary Hilbert space. If Y : [0,T] x Q — H is Pr/B(H)-
measurable it is called (H-)predictable.
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Remark 2.23. (i) If B € B([0,T]) then B x Q2 x U € Pr(U).
(ii) If A€ Pr and B € B then A x B € Pr(U).
Proposition 2.24. If ® is a Pr(U)/B(H)-measurable process and

T
o
Bl /0 /U 10 (s, ) 12 N, (ds, dy)] < o

then there exists a sequence of elementary processes ®,, n € N, such that
| — @,|l7 — 0 as n — oo.

Proof. There exist Uy, € B, n € N, with N,,(t,U,) = E[N,(t,U,)] < oo for all
t > 0and n € Nsuch that U,, T U asn — oo. Then 1y, ® : [0, 7] x Q2 xU,, —
H is Pr(U)N ([0,T] x Q x Uy,)/B(H)-measurable.

Moreover,

Pr(U)N([0,T] x 2 x Uy) (2.4)
=o({]s,t] x FsxB|0<s<t<T,Fse€ F,,BeBNU,}
U{{O} x Fpy XB|F0 Efo,BGBﬂUn})
=Pr(U,).
Therefore, one gets that 1y, ® : [0,7] x Q x U, — H is Pr(U,)/B(H)-

measurable. Then there exists a sequence ®7, k € N, of simple random
variables of the following form

M
Y @mla,, tm € H, An € Pr(Un), 1 <m < M,

m=1
such that |1y, ® — ®}|| | 0 as k — oo by lemma B.5. Since
Mo, @ — P < |1y, @ — 7| < [[1y, @] + (|87
€ L*([0,T] x Q x U, Pr(Un), P ® Ny(ds, dw, dy)),

where for A € Pp(U) we define P @ N,(A) == E[f [;, 14(s,v) Np(ds, dy)],
one gets by Lebesgue’s dominated convergence theorem that

T
110, (@ — B2) 2 = B / /U 110, (®(s, ) — B2 (s, )12 Ny (ds, dy)]

T
— /0 10,8 (s.) = B (0.0 Ny (s )] — 0.

k—o0

1
Choose for n € N k(n) € N such that ||1y, (¢ — (I)Z(n))HT < —, then
n

1® = 10, Pyl < 19 = 1, @7 + |11, (@ = D)7
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where the first summand converges to 0 by Lebesgue’s dominated conver-

gence theorem and the second summand is smaller than —.

Thus, the assertion of the proposition is reduced to the caTsle ® = 1,4 where
x € H and A € Pr(U,) for some n € N. We have to show that there is a
sequence of elementary processes @y, k € N, such that ||® — $yl|p — 0 as
k — oo.

To get this result it is sufficient to prove that for any € > 0 there is a finite
sum A = Ufil A; of predictable rectangles

Aie Ay, ={]s,t] x Fsx B|Fs € F,,0<s<t<T,BeBnU,}
U{{O}XF@XB|F[)€.7:07B€BQU”},1§i§N,

such that P ® N,(AA A) < ¢, since then one obtains that Zi\il xly, is an
elementary process, as xl4,, 1 <i < N, are elementary processes and & is
a linear space, and

N T N
A 1
lota =3 atallr = BU [ [ flola = 3 1) di )
i=1 0 JU k=1
< 2P ® Ny(ALA) < [z

Hence define K := {{J,;c; Ai | || < 00, A; € Ay, i € I} then K is stable under
finite intersections. Now let G be the family of all A € Pp(U,,) which can
be approximated by elements of I in the above sense. Then G is a Dynkin
system and therefore Pr(U,) = o(K) =D(K) C G as K C G. O

Define
Nq2(T, UH):={®:[0,T] x Qx U — H|® is Pp(U)/B(H)-measurable
o o = B[ [ [0, 0)? Wy, ) < oo}
Then & C NZ(T,U, H) and
NA(T,U,H) = L*([0,T] x Q@ x U, Pr(U), P @ N,; H)

is complete w.r.t. | ||z since (H,| [|) is complete. Therefore, Elllr
/\/Z(T, U, H) and by the previous proposition it follows that £l I7 > Nq2(T, UH).
So finally, one gets that £l I = N2(T, U, H)

Example 2.25. If v is a o-finite measure on (U, B) and p a stationary (F)-
Poisson point process with characteristic measure v. Then by corollary 2.18
p is of class (QL) with compensator N, (t, B) = tv(B), t > 0, B € B. Then
the class of processes which are integrable with respect to q(ds, dy) is



41

NZ(T, U H)={®:[0,T] x 2 x U — H | ® is Pp(U)/B(H)-measurable
T
wwwm:E%L@@@memxmm<w}

and we have by theorem 2.22 the following isometric formula for ® € N q? (T,U,H)

t+
@), = s Bl /syw@m

T
= S 2V S| = .
—E%Lémmwn<MM] T

(2.5)
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Chapter 3

Properties of the Stochastic
Integral and of the Integral
w.r.t. N,

Let (U, B) be a measurable space and (2, F, P) a complete probability space

with a right-continuous filtration F;, ¢ > 0, such that Fy contains all P-

nullsets of F. Moreover, let p be an (F;)-Poisson point process of class (QL)
n (U,B) and (2, F, P).

Proposition 3.1. Let & : [0,7] x Q@ x U — H Pr(U)/B(H)-measurable.
Then, for all t € [0,T]

//n@synN (ds, dy)] / Lol Nl 6

where f

0.4 Jl1®(s, y)|| Np(ds, dy) is defined w-wise as R-valued Lebesgues
integral.

Proof. Define

={®:[0,7] x Q2 x U — R4 | ® is Pr(U)-measurable, bounded and

// (s, 1) N,(ds, dy)] /o,:/ (8,y) Np(ds, dy)]

for all t € [0,T]}.

Then H is a monotone vector space.

43
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Besides, define

K-1

(> @l Dyt gxme + 2lalioyep |0 <t < - <tg < T,
k=0

g, € Ry, By, Be B, Ay e F,,1<k< K Aec Fy, K € N}.

Then A is closed under multiplication and A C 'H, since for ¢ € [0, T]

E[/O ]/UZLUklAkl]tk,thd]XBk(S y) +1‘1A1{0}><B(8 y) p(ds’dy)]
17U k=

= Z B 1,4,C tk7tk+1 A t] X Bk)]

tk<t independent of ]—'tk

— Z i P(AR)E[Np(|tk, tip1 A t] X By)]

tk<t

K
= > ek P(AR) Ny (Jte, trsr At] X By)

th<t

—E/ /szklAk Jewstria]xBi (5:¥) + 21alio1x (8, Y) N, (ds, dy)].
k=0

Then by a monotone class argument we get that o(A), C H. Moreover,

Pr(U)=c({]s,t] x Fs x B|0<s<t<T,B¢€B,Fs e Fs}
U{{0} x Fo x B|B € B, Fy € F)
Co(A) C Pr(U).

Hence we get that all ® : [0,7] x 2 x U — R, which are Pp(U)-measurable
and bounded are elements of H.

Finally, by the monotone convergence theorem (B.Levi), we obtain that
equation (3.1) holds for all ® : [0,7] x Q x U — R4 which are Pr(U)-
measurable. O

Proposition 3.2. Let ®: [0,T] x Q x U — R Pr(U)-measurable such that
EU]QT} fU\Cb(s,y)\ Np(ds, dy)] < oo, then

A)’t]/,fp(s’y) Np(ds, dy) = Z D(s,p(s)) for allt € [0,T] (3.2)

s€Dyp
s<t

P-a.s. where fm 1 Jor (s, ) Nyp(ds, dy) is defined w-wise as R-valued Lebesgues
integral.
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Proof. Since E[f}o 7] J1®(s,y)| Np(ds,dy)] < oo there exists a P-nullset
N € F such that for all w € N¢

/ /]‘I)swy| p(w)(ds, dy) < ooVt €0,T].
10,4

We fix w € N° The mapping ®(-,w,-) : [0,7] x U — R is B([0,T]) ® B-
measurable.

Suppose that ® is non-negativ, then there exists a sequence of simple pro-
cesses ®,,, n € N, of the following form

0= > allag, @l 20, AL € B(0,T)) © B, 1 <k < K(n), n €N,
k=1

such that ®,, T ®(-,w,-). Then

/ / 5,w,Y) Np(w)(ds,dy) = lim / / (5,9) Np(w)(ds, dy)
0,t] =00 J10,¢]

K(n)
= lim Zxk () (AR N (J0,2] x U))
K(n)
= 1im 3 (s € Dyls < 1, (5,p(w)(s) € Af}
k=1
K(n)
:nlggoz xy Z Lan(s,p(w —nlLrgo Z ZxklAnsp )(s))
k=1 SEDp(w) SEDp(w) k=1
s<t s<t
=l ST Bu(sp@)s) = Y lim Balsp(w)(s)
$€Dp(w) $€Dp(w)
s<t s<t
= Y sw,pw)(s)
$€Dp(w)
s<t

If ® is not necessarily non-negativ then equality (3.2) can be shown by
splitting ® up into its positiv and its negativ part. ]

Proposition 3.3. Let @ : [0,7] x Q x U — R Pr(U)-measurable such that
E[f]&T] fU|q)(5a y)| Np(dsa dy)] < 0, then

A/ / ®(s,y) Np(ds,dy) = o(t,p(t)) ,ifte l?p7
o u 0 , otherwise.

for allt € [0,T] P-a.s.
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Proof. Since E[jio 7] J1®(s,y)| Np(ds,dy)] < oo there exists a P-nullset
N € F such that for all w € N¢ and all t € [0, 7]

/ /1{t} ) B(s,w, )| Ny (ds, dy) < //\cbswy)uv \(ds, dy)
10,7] 0,t

/ /!‘Pswyl () (ds, dy) <
10,7

We fix w € N€. Then, for all t € [0,T]

A/ / $,w,Y) Npw)(ds, dy)

10,¢]

= lim ( / / $,w,Y) Ny (ds, dy) — / / $,w,Y) Npw)(ds, dy))
1t " J1o,1) 10,7]

= 1im/ / Ly (s) (s, w,y) Np(o) (ds, dy)
1t Jjo,1) JU

—/]()T]/Ul{t}@) 5,0,9) Ny (ds, dy),

by Lebesgue’s dominated convergence theorem since

A)t]/U’(I)(S’w’y”Np(w)(ds’dy)<oo

By proposition 3.2 and the definition of N we know that for w € N¢

/]oT]/Ul“}<S) (5,0,9) Ny (ds,dy) = > 1y (5) (5., p(w)(5))

SEDp(w)
s<t

_ {q)(t,wjp(w)(t)) Lif t € Dy,

0 , otherwise.

O]

As an easy consequence of the previous two propositions we obtain the
following corollary.

Corollary 3.4. Let ® : [0,7] x Q2 x U — R Pr(U)-measurable such that
E[f]o,T} fU|(I)(s7y)‘ Np(d5>dy)] < o0, then

(s,y) Np(ds,dy) = A/ / (s,y) Np(ds,dy
/Ot]/ Z 10,5] :

s€Dy
s<t

for allt € [0,T] P-a.s.
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In particular, if ® is non-negativ then

_ / / B(s,y) N, (ds, dy), t € [0,T),
10,6 JU

18 an increasing process in the sense of definition 1.4 with A€ = 0.

Proposition 3.5. Assume that ® € NZ(T,U,H) and that 7 is an (F;)-
stopping time such that P(t1 <T) = 1. Then 1jo 1® € N}(T,U, H) and

/OH/U1}0771(3)‘1’(87y)q(d87dy) —/O(tAT)+/[]<I>(87y)Q(ds,dy)

for allt € 0,T] P-a.s.

Proof.

Step 1. Let ® be an elementary process, i.e.

k=1 I( )
¢ = 1]tm,tm+1]><Bz?" €&,
1

3

m=0 ¢

and 7 a simple stopping time, i.e.
n
7(Q) ={ao,...,an} and 7= Zalej
j=0
where 0 < a; < ajp1 <T and A; = {1 =a;} € Fa;- Then

k—11I(m) n

ne=Y Y Zcb 14, LtV o1 vag)x BI

m=0 i=1 j=0

is an elementary process since ®;"14; is F¢,,va; /B(H )-measurable. Concern-
ing the integral of 1)y 1® one then obtains for ¢ € [0, 7] that

/ " [ v ) atas.
_ /O” [ ts)atas.an) - [ - [ 1m0 atds.dy

k—1 I(m)
=) @ (qltmr1 At, B*) = q(tm At, B"))
m=0 i=

1
k=1 I(m) n
- 714, (q((tm1 V aj) At BIY) = q((tm V aj) AL, B"))

7
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k-1 I(m)
= O (q(ty1 AN, B") — q(tm A E, B™))
m=0 i=1
k—1I(m) n
-y "4, (q((tms1 V 7) AL, BI) = q((tm V 7) At BI™))
m=0 i=1 j=0
k=1 I(m)
= 3 S O (gltmr Ay B — qltm AL B)
m=0 i=1
k-1 I(m)
=SS O (q(tsa V) AL B — (i V T) AL BI))
m=0 i=1
k—11(m)
= 7" (q(tmi1 At B") = q(tm A t, B")
m=0i=l1 — q((tmsr VT) AL, B™) + q((tn V T) AL, BI™))
k—1 I(m)

= Z Z O (q(tmi1 AT AL B) = q(tm AT AL, B))

/ )f/ D (s, y) g(ds, dy)

Step 2. Now we consider the case that @ is still an elementary process while
T is an arbitrary stopping time with P(7 < T') = 1. Then there exists a
sequence T, = ZZZBI T(k + 1)27"Yyppo—n 1(kt1)2-7] © T, 7 € N, of simple
stopping times such that 7, | 7 as n — oo.

By the right-continuity of the stochastic integral we get that

(tATR)+ (tAT)+
/ / B(s,y) q(ds, dy) — / B(s,y) q(ds, dy)
0 U n—oo Jo U

for all t € [0,T] P-a.s.
Besides we obtain (even for non-elementary processes ®) that

T
I1i000® =~ 0@l = 2 [ [ 106000 Ny(ds. )] — 0

which, by the definition of the integral and proposition 1.11, implies that

t+
sup || / 10,701 ()@ (5, 9) q(ds, dy)
te[o T]
t+
- /0 [ i@t atis ) = o
As by step 1

/OH/U1]O,Tn}(s)<1>(s,y)Q(ds,dy):/O(MT"H/U‘I)(s,y)Q(dsvdy)

for all n € N the assertion follows.
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Step 3. Let now ® € N2(T,U, H), then 1} ,® € NX(T,U, H).

There exists a sequence of elementary processes ®,, n € N, such that
[®s, — @[|7 — 0 asn — oc. Then it is clear that [|1)9 /Pn — )9 @[l — 0
as n — 0o. By the definition of the stochastic integral and proposition 1.11
it follows that

t+ t+
sup I / (s,y)q(ds,dy) — / / s,y) q(ds,dy)|| ]
teOT]

t+
+ E[ sup || /1]01- q(ds, dy)
tGOT] t+
/ / 110.71(5)®(5, ) a(ds, dy) |?]

This implies the existence of a subsequence ng, k € N, such that P-a.s.

t+ t+
/ / ne (S, Y)q dsdyk / (s,y) q(ds,dy)
t+ t+
/ / Lo.7](8)®ny (s, 9) a(ds, dy) — / 10,7 (8)®(s,9) q(ds, dy)

for all t € [0,7T]. In particular,

(tAT)+ (tAT)+
[ [ entwaasay — [ [ eyatsd)
0 U k—oo Jo U

for all t € [0,7T] P-a.s.
Then by step 2 we get that

/OH/U1]0771<8><I><s,y>q<ds,dy>: / o | (s atas.ay)

for all t € [0,T] P-a.s.

— 0.
n—oo

O

Proposition 3.6. Let ® € NZ(T,U, H) and define X (t fU q(ds, dy),
t €10, T]. Then X is cddldg andX( )= X(t—) P-a.s. for alltE [0, T]

Proof. Let t € [0,T] and t,, n € N, a sequence in [0,¢[ such that ¢, T ¢.
Define

T+
Yo = / /Ul]tn,t]<3)q)(37y) q(ds, dy)
0
t+ tnt
= / / D(s,y) — / / ®(s,y) P-a.s., n € N,, by proposition 3.5,
o Ju 0 U
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Y = X(t) — X(t-).

Then Y,, — Y P-a.s. and the sequence Y,, n € N, is uniformly integrable

. n— o0
since

sup B[, %] < [|9[jF < oo.
neN

Therefore Y;, — Y in L'(, F, P) and

n—oo

. . 1
E(Y[]) = lim_ B[[Y, ] < limsup B[] Y}

n—oo

n—oo

T+
:limsupE[H/O /U1]tn,t](3)q)(3ay)Q(dsvdy)HQ]é

T 1
= limsupE[/(; /U1],%“,5}(3)H(I)(37y)H2 v(dy) ds] 2 =0,

n—oo

by Lebesgue’s dominated convergence theorem since ||[®|7 < oo. Hence,
Y =0 P-as., ie X(t)=X(t—) P-as. O

Proposition 3.7. Let ® € NZ(T,U, H), (H,{,)z) a further Hilbert space
and L € L(H,H). Then L(®) € N2(T,U,H) and

([ ] atatisan) = [ [ e atis.an)

for allt € [0,T] P-a.s.

Proof. Since ® € NZ(T,U, H) and || L(®(s,w,y))| 5 < LI a7, ) |2 (55w, )|
for all (s,w,y) € [0,T] x Q x U it is obvious that L(®) € NZ(T, U, H).

Step 1. Let ® be an elementary process, i.e.

k—1 I(m)
o = q);n]‘]tmytm-ﬁ-l}XB;n = g
m=0 i=1
Then
k—1 I(m)
L(@) = L(q)'?’b)l]tmatm+1]><B;m € £
m=0 i=1

and
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t+
L(/ / q’(s,y)fJ(ds,dy))
0 U
k—1 I(m)
:L( DT (q(tms1 N t, BI™) — q(tm At Bm))
m=0 i=1
k—1 I(m)
= L(®)(q(tmsr At BI") = q(tm At, Bi"))
m=0 i=1
+
/ (s,y)) q(ds,dy) for all ¢t € [0,T].

Step 2. Let ® € ./\/'(12(T, U, H). Then there exists a sequence of elementary
processes ®,, n € N, such that [|®, — ®|[7 — 0 as n — oo. Then L(®,),
n € N, is a sequence of elementary processes with values in H and

[L(®n) — L(®) 7 < HLHL(Hﬁ)H‘I)n — ®|lp — 0 as n — oo.

By the definition of the stochastic integral and proposition 1.11 we get the
existence of a subsequence ng, k € N, such that P-a.s. for all ¢ € [0, 7

/t+/ q(ds, dy)
t+

= lim / Py, (5,y)) q(ds, dy)

k—oo

t+
= 1imL / / nk (5, y) q(ds dy)) by step 1,

k—o00

t+
:L lim / n. (S, y) q(ds, dy)) by the continuity of L,

k—>oo

=L /OH/U@(&Z/)Q(dSady))-

Proposition 3.8. Let B € I', then ([q(-, B)]t)i>0 = (Np(t, B))e>0-

Proof. By theorem 1.27 ([q(-, B)]¢)t>0 is the P-unique (F;)-adapted, cddlag
process of finite variation on compacts with the following properties:

(i) q(t,B)? —[q(-, B)];, t > 0, is a local (F;)-martingale,

(i) Alg(-, B))s = (Aq(t, B))? for all £ > 0 P-a.s.
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Since Ny (- x B) is a measure on ([0, c0), B([0, 00)) such that N,(]0,t] x B) <
oo for all t > 0 P-a.s. the process Ny(t, B) = Ny(]0,t] x B), t > 0, is cadlag
and increasing thus, in particular, of finite variation on compacts.
Moreover,

ANy(t, B) = Ny(t, B) = limn Ny (s, B)

= Np(t, B) — Ny(t, B) — lim (N, (s, B) — N,(t, B)) = Aq(t, B)

sTt
for all t > 0 P-a.s. Since

0 ,if p(t) ¢ B,

AN, (t,B) =
»(t, B) {1 ,if p(t) € B,

we get that AN,(t, B) = AN,(t,B)* = Aq(t,B)? for all t > 0 P-a.s. and
N,(0,B) =0 = ¢(0, B)2.
It remains to check that q(t, B)?2— N, (¢, B), t > 0, is a local (F;)-martingale.
Since B € '), q(t, B)*> — N,(t, B) is integrable for all ¢ > 0:
E“(Q(tv B)Q - Np(t7 B)H < E[Q(tﬂ B)2] + E[Np(t7 B)]
:E[Np(t, B)| + E[N,(t, B)], by proposition 2.19,
=2FE[N,(t,B)] < 00

To show the martingale property let 0 < s <t < T and A € F, then, again
by proposition 2.19, we get that

E[1a(a(t, B)* = Ny(t, B))]
= E[La(q(t. B)® = Ny(t, B))] + P(A)Ny(t, B) = E[1aNy(s, B)]
— E[14(N,(t, B) — Ny(s, B))]
= E[La(a(s, B)? = Ny(s, B))] + P(A)Ny(t, B) — E[1aNy(s, B)]
P(A)( N,(t, B) — Ny(s, B)), since Ny(]s,t] x B) is independent of F,
—E[lA( (5, B)* = Ny(s, B))].
By proposition 1.16 ¢(t, B)? —[q(-, B)]s, t > 0, is a local (F;)-martingale. [

Proposition 3.9. Let ® € NZ2(T,U,R). Then

(tAT)+
X t))tzo = (/0 /U@(s,y) q(ds,dy))t20 € M*(R) and

/ o | @t atds.an) - /0 - [ 196 Nyt



53

Proof.
Step 1. Let @ = > 5\ S/ @y, g € €.

(2

Then

[ et atds.dy)

10,.AT] JU

k—1 I(m)
= [Z Z (I);H(Q(tm-‘rl ARR Bzm) - Q(tm AR Bzm))]

m=0 =1

k-1 I(m)
=3 (Y@ (altmer A+ BI) = altm A BY))]

m=0 =1

ST o (gt A B = ot A BY)))
O<mn kot ()EMaT () @ (qltms1 A BY) = altm A BJ))

% {1, I (n)}

Claim 1. Let 0 <m <k —1and 1 <i < I(m) then

= [7"*(Np(tm+1 A -, B") = Np(tm A -, B")).

By  theorem 1.27  the square  bracket of the  process
Y (t) := " (q(tmsr A+ B™) — q(tm A -, B™)), t > 0, is defined as the P-
unique (Fy)-adapted, cadldg process A of finite variation on compacts with
the following properties:

(i) Y(t)®2 — A(t), t > 0, is a right-continuous, local (F;)-martingale,

(i) AA() = (AY (£))® for all £ > 0.

A(t) == || (Np(tmg1 At, B™) — Np(tm At,B™), t > 0, is a cadldg (Fy)-
adapted process. Moreover, it is increasing in ¢ what can be shown by
considering A on the intervalls [0, ¢,,], |tm, tm+1] and |tm41, 00[. As increas-
ing process it is of finite variation on compacts.

As next step we check property (2), i.e. we show that AA(t) = (AY(t))2
for all t > 0 P-a.s.

If t = 0 then Y/(0)? = 0 = A(0).

If 0 < ¢ < ty, then Y(t) = 0 = A(t) and thus (AY (t))* = 0 = A(¢).

If ty, < t <ty then Y(¢) = O(q(t, B™) — q(tm, B/™)) and A(t) =
|72 (Np(t, B™) — Np(tm, BI™)). Hence, by proposition 3.8,
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(av(1)*
— @7 2(Aq(t, B!))? = | B2 AN, (t, BI), for all t €]ty, tym 1] P-aus.,
= AA(t).

If typ1 < t < oo then Y (t) = 7 (q(tms1, B") — q(tm, B™)) and A(t) =

]<I>§”]2(Np(tm+1,Br) — Np(tm, BZ”)) Thus (AY(t))2 =0=AA().
It remains to check that

(®F (qtm1 A1, B = altw A1, BY)))’
— |72 (Np(tms1 A t, BI") — Np(tm At, BI"), t >0,
is a local (F;)-martingale. For this purpose let 0 < s <t < oo and B € Fg.
We show the martingale property by differentiating between four cases.
Case 1. Let 0 < s < t < t,,, then Y(¢)2 — A(t) = 0 = Y(s)? — A(s) and
therefore
E[1p(Y(t)* — A®)] = E[1(Y(s)* — A(s))].

Case 2. Let 0 <s<t, <t

E[1p]@7"*(q(Jtm At tmsr At] x B")?
— Np(Jtm At tmi1 At] x Bi"))]
= E[15/@7"P] (E[(ltm tms1 A1) x BI)?] = E[Ny(Jtmstms1 A1) x BP)] )
since q(Jtm, tmi1 A t] X B2 Ny(Jtm, tme1 A t] x BI) are in-
dependent of F;, and 1p|®"* € LY(Q, F,,, P),
=0, by equation 2.3,
=E[15|®"*(q(tm A 8, tm+1 A 8] x BI")?
— Np(Jtm A s, tmg1 A s] Blm))]
Case 3. Let 0 <t, <s<tand s <tpmy1-
E[15]97"*(q(tm At tmis A ] x BJ")?
— Np(Jtm At tme1 At] x B"))]
= E[15|®}"*(a(Jtm. 5] x B{")* = Ny(ltm, s] x B"))]
+E[15@"? (¢(]s, tm1 A t] x B")? — Np(]8,tmi1 At] x B™))]
+E (159" 2q(Jtm, 5] x B")q(Js, tm+1 A t] x Bi")]

where
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E[15(97 % (q(]s, tms1 A 1] X Bf")? = Np(s, tms1 A 1] x BI))]
= B[15197" 2] (Ela(ls, tms1 At] x B")?] = B[Ny(s, tms1 A 1] x B")])
=0
since q(]s,tm41 A t] X BM)2 — Np(]s, tm+1 A t] x B") is independent of F
and 15|92 € LY(Q, Fs, P) and
E[1p|®"*2q(Jtm, s] x B")q(]s, tmi1 At] x B")]
E[15]@7 1 2q(tm, 5] x B/ E[q(]s, tmi1 At] x B™)]
=0
since q(]s,tm+1 At] x B") is independent of Fs and 15|22 q(Jtm, s| x
B™) € LY(Q, F,, P).
Case 4. Let 0 <t <tmy1 < s <t.
E[1p]@7"*(q(Jtm At tmsr At] x B)?
— Np(Jtm At tme1 At] x B"))]
=E[15|97"*(¢(Jtm, tm+1] x Bf*)”
— Np(Jtm, tm1] X Bm))]
=E[15|27"*(q(Jtm A s, tms1 A 8] x B™)?
— Np(Jtm A 8, tmg1 A s] x B))]

Hence

(®7(q(tms1 At, BIY) — q(tm At, B™)))
— [@? (Np(tms1 At, BI™) — Np(tm At,B)), t >0,

is an (F;)-martingale and therefore, by proposition 1.16 a local (F;)-martingale.

Claim 2. Let 0 <m <k—1land 1 <i<j<I(m), then

(@7 q(Jtm A -y tmg1 A ] x B,
7 q(Jtm A - tmgr A-] x BI] =0

Claim 3. Let 0 <m<n<k—-1,1<i<I(m)and 1< j<I(n) then
(@7 q(Jtm A 5 tmi1 A -] X BIY),

®%q(Jtn Ay tar1 A-] x B =0.

Claim 2 and claim 3 can be shown analoguously to claim 1.
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Step 2. Let ® € NZ(T,U,R).
Define A(t) := f]o Al Ju|®(s,y) > Np(ds, dy), t > 0.

Then A is an increasing process. Moreover it is cddlag, which can be shown
by Lebesgue’s dominated convergence theorem since, by proposition 3.1,

jiOT Jpy ®%(s y) »(ds, dy)] fo Jiy ®%(s,y) Ny(ds, dy)] < oo and there-
fore f]OT [y @2 Np(ds, dy) < oo P-as.

Since ® € NqZ(T, U,R) there exists a sequence ®,,, n € N, in &, such that

BU[ [ 18(s.0) ~ als, ) Ny(ds,dy)

10,17 JU

:E[/ / |®(s,) — ®n(s,y)||? Ny(ds, dy)], by proposition 3.1,
0,1 JU

=||® - ®,|[r — 0.
n—00

By the definition of the intergal with respect to ¢ we obtain that

+ N
H/O /Ucb(s,y)q(ds,dy)—/o /U@n(s,y)q(ds,dy)HMzT — 0. (33)

Hence, we get the existence of a subsequence ng, k € N, such that

t+ t+
sup | /@mewwm@w/'/¢emwm@n (3.4)
0<t<T JO U 0 U

— 0 P-as.
k—oo

/ /(@nk(s,y) — ®(s,y))? Np(ds, dy) P 0 for all t € [0,7] P-a.s.
0,t] JU
Then

2 3
|(/]0,t]/Ul{t}cI)nk(37y) Np(ds,dy)) (3.5)
_ 2( s du))?
(/Ot]/ 1y ®%(s, y) Ny(ds, dy))?|

— 0 for all t € [0,T] P-a.s.

k—oo

/ / »(ds, dy)) %— / /<I>QSy (ds dy))%\
10,4 0,1]

— O for all t € [0,T]

k—o0
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which, in particular implies for all ¢ € [0,7] the F;-measurability of

Jog iy ©2(s. ) Ny(ds. dy).
Moreover for all te[0,T]
st -of [
// dsdyé_E//cp?sy W(ds, dy))? |
B [ (uuto) = 00607 By s, ]

ie. for all t € [0,T]

/ / »(ds, dy) / / ®?%(s,y) Ny(ds,dy) P-a.s. and
10, —_ 10,4
2(
E/ / »(ds, dy)] / /@ s,y) Np(ds,dy)].
10,4 e 10,4]

Thus, we can conclude that for all t € [0, 7]

/ / »(ds, dy) / / % (s,y) Np(ds, dy) (3.6)
0,t] k=00 J10,4]

in L1(Q, F, P). Now we show that (fo Jr @(s, ) q(ds dy)) — A has the
martingale property. For this purpose let 0 < r < t S T and B € F,.
By (3.3) and (3.6) and step 1 we get that

Bls(([ [ @) atds )2 - aw)]

: K 2 2 S S

Jim 15[ [ @) atds.d) /]O’t] [ 959 N (s, )]
= hm E[1p / / e (8,9) q(ds, dy))? / ]/(]q)ik(s,y)]\fp(ds,dy))]
~ENa(([ [ @ atds.an)? - Am)]

It remains to check that

M\H
[V

N

t 2
AA(t) = <A/O /U@(s,y) q(ds,dy)) forall 0 <t <T P-as.

If t =0 then

AA(0) =A(0)=0= (A /OO/UQ(s,y) q(ds,dy))Q.
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We already showed in the proof of proposition 3.3 that

A/ /<I>2(sjy) Ny(ds,dy)
104 Ju

= / / L (s) D% (s,y) Np(ds,dy) for all t €]0,T] P-a.s.
01)JU

A/Ot]/ L (ds, dy)

= / / iy (s) @7, (s,y) Np(ds, dy) for all t €]0,T],k € N P-a.s.
0.7)

and

Hence, by (3.5) and step 1 we obtain that

2 _ < 9 . )
AAM]/U‘I) (s,y) Np(ds, dy) _A),T]/ Ly (s) @%(s,y) Nyp(ds, dy)

= lim / / Lin(s) @?Lk( y) Np(ds,dy) = hm A / »(ds, dy)
k—oo J10,11 JU 10,7)
t+ 2
= klim (A/ / o, (s,v) q(ds,dy)) for all t €]0,T] P-a.s.

Since by (3.4) g+ fU ®,,, (s,v) q(ds, dy) converges to fg+ fU D(s,y)q(ds, dy)
P-a.s. uniformly in ¢t € [0,T] we get that

|A/Ot+/U<I>(s,y)q(ds,dy) —A/(]H/Ufbnk(s,y)q(ds,dy)]
i ( t+/ @(s,y)q(ds,dy)—/T+/ B(s,y) q(ds, dy))
~lim t+/ o (s,y) alds, dy) — /+/ o (5,9) ads, dy)|
:1}g1]/t+/ (s,9) a(ds, dy) — /H/ (51 a(ds, dy)
([ [ atatisan - [ [ wuisatas. )
o

t+
<2 swp | [ [ ats)ads.an) ~ [ [ (s, atds.dy)
0<t<T JO U 0 U

— 0 for all t €]0,T] P-a.s. as k — oc.
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Finally, we obtain that

A/ /@2(5,3/) Ny(ds,dy)
10,4 JU
t+ 2
= lim (A/ /%k(s,y) Q(ds,dy))
o0 0 U

t+ 2
= (A/ / D(s,y)q(ds, dy)) for all ¢ €]0,T] P-a.s.
o Ju

O

Proposition 3.10. Let ® € N2(T U,R). Denote by X the integral process

)0 = / / s,9) q(ds dy))t>0€/\/l (R).

Moreover, letY be an (Fi)-adapted, left continuous, bounded process (|Y (t,w)| <
K < oo forallt>0 andw € Q).
Then

(i) Y € Luep and Y& € NZ(T,U,R),

(i)
t+
/ / /Y q(ds,dy) for allt € [0,T] P-a.s.
10,¢]
Proof. Let 11, n € N, a sequence of partitions of [0, 0] given by 0 =
tg <t < --- < t" < 00, n € N, such that hmn_mtk = oo and

SUPg<j<k,—1|tip1 — 17 | converges to 0 as n — oo. Then we obtain by Lebesgue’s
dominated convergence theorem that

k(n)—1

/ /’ Z Linatyen, AT (s )Y(t?)fb(s,y)—Y(s)CD(s,y)|2 v(dy)ds] — 0

as n — oo since ¢ € qu(T ,U,R) and Y is left continuous and bounded. By
the definition of the stochastic integral we get that

t+
sup E|] / Z Honntas o ()Y () 0(s. ) q(ds, dy)

0<t<T

t+
/ /Y ) q(ds,dy)|’] — 0 as n — oo.
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In particular, we obtain for ¢ € [0,T] that
t+
/ / Z Yoty o ()Y () 0(s. ) q(ds, dy)

—>/t+/y ) q(ds, dy)

P-stochastically as n — oo.
Moreover, for t € [0,T],

k(n) 1

t+
/ / > g (6)Y ()006.0) alds, )

k(n)—1
V() (X (7 A L) — X (25 A1)
=0
since
k(n)—1
V() (X (] At) — X(t5 At))
7=0
k(n)—1 (7 A+ (t7 AE)+
= Y(t?)(/ /fb(s,y)Q(ds,dy)—/ /‘P(s,y)Q(ds,dy))
=0 0 U 0 U
k(n)—1

t+
= V) [ [ tgarg, ()90 atds.dy) Pas.

Q

by proposmon 3.5,
t+
/ [ g @Y () 95, s, ).

To show the last equality assume first that ® € £. Then l]t? AT /\T}Y(t;?) (NS

& and the stated equality holds obviously. If ® € N(]Q(T, U,R) then there
exists a sequence ®,, € £, m € N, such that ||® — ©,,||7 — 0 as m — oo.
Then

[ Lenaren Am® = Lygnparen a7 Pmllr — 0 and
J Jj+1 j j+1
My nn, aryY (87) @ = Lynaqn amY (£7) @7 — 0.
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Hence there exist a subsequence my, k € N, such that

v () /t+ | g () s, s )

i+l

k—oo i+l

t+
= lim Y tn / / t”/\Tt" AT ( )@mk(s,y) Q(dsvdy)

t+
~ lim / on o, w71(5)Y (£2) @ (5,1) q(ds, dy)

k—oo

t+
- / oy aa)(9)Y (6) ®(s.9) q(ds.dy)  P-as.

t
By theorem 1.24 / Y (s) dX(s) can be approximated by the sums

k(n)—1

> YN (X (AT At — X (L AL))
j=0

P-stochastically. Hence, since limits in probability are P-a.s. unique we
obtain for all ¢t € [0, 7] that

t+
/ / Y(s ) q(ds, dy) P-a.s.
]07t]

By the right-continuity of both sides of the above equation the assertion
follows. o
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Chapter 4

Existence of the Mild
Solution

As in the previous chapter let (H, (, )) be a separable Hilbert space, (U, B, v)
a o-finite measure space and (2, F, P) a complete probability space with a
right-continuous filtration F, t > 0, such that Fy contains all P-nullsets of
F.

Moreover, let p be a stationary (F;)-Poisson point process on U and ({2, F, P)
with characteristic measure v. Let T' > 0 and consider the following type of
stochastic differential equation in H

{dX(t) =[AX(t) + F(X(t))] dt + B(X(t),y) q(dt,dy)

X(0) —¢ (4.1)

where we always assume that

e A: D(A) C H — H is the infinitesimal generator of a Cpy-semigroup
S(t), t > 0, of linear, bounded operators on H.

o F': H— H is B(H)/B(H)-measurable.
e B:HxU — H is B(H)® B/B(H)-measurable.
q(t,B) = Np(t,B) —tv(B),t >0, BeT).

e ¢ is an H-valued, Fp-measurable random variable.

Remark 4.1. If we set My := sup;c(o7 [|S(t)| L) then Mr < oco.
Proof. By [Pa 83, Theorem 2.2, p.4] there exist constants w > 0 and M > 1

such that
1S Ly < Me*t for all t > 0.

63
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We interpret (4.1) as an integral equation and search for a mild solution.

Definition 4.2 (Mild solution). An H-valued predictable process X (t),
t € (0,7, is called a mild solution of equation (4.1) if

X(t) = S(t)¢ —i—/o S(t—s)F(X(s)) ds
(4.2)

t+
+/0 /Us(t_S)B(X(S),y) q(ds,dy) P-as.

for all t € [0,7]. In particular, the appearing integrals have to be well
defined.

The idea to interpret (4.1) by (4.2) can be justified by the following
proposition.

Proposition 4.3. Let X(t), t € [0,T], be a mild solution of (4.1).
Assume that
fot S(t —s)F(X(s)) ds and f0T+ Jo Lo, (8)S(t — 5)B(X(s),y) q(ds,dy), t €
[0,T], have predictable versions and that for all ¢ € D(A*)
T
/ |F(X(s))]| ds < oo and
0
T t
| B[ 186 - 9B, AP uldy) ds) di < o
0 0o Ju
then X is a weak solution, i.e.
t
(X(0.0) = (6.0 + [ (X(6).AQ + (FX()),0) ds
t
+ [(BEX).0). ¢ atds.dy) Pras
0

for all t € [0,T]and ¢ € D(A*).

Proof. Since fOT+ Ju Ljo,q(8)S(t — s)B(X(s),y) q(ds,dy), t € [0,T], has a
predictable version we know by proposition 3.7 that for all ¢ € D(A*)

T+
/0 /U<1]o,t](8)5(t—S)B(X(S),y),A*O q(ds, dy), t € [0,T],

has a predictable version. By the notations
¢
/ S(t— $)F(X(s)) ds, t € [0,T],
0

T+
/0 /U (Lo (5)S(t — $)B(X(s).,), A°C) q(ds. dy), t € [0,T], ¢ € D(A"),
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we understand the predictable versions of the respective processes.
For all ( € D(A*)

T
/]/St—sFXs yAC) ds| dt
/ /St—s ) ds, A*C)| dt

<M%m@/Jhw DIl ds dt
§||A*(|MTT/ IF(X(s)| ds < 00 P-as.
0

By the isometry for stochastic integrals we have that

/ |/T+/ (L10,0(5)S(t = 5)B(X(s),y), A*C) q(ds, dy)| dt]
<ri([ /’/ o t—s(X@wxmo«@@wﬂﬁ)
/ //y (t = ) B(X(s),9), A"Q)[* v(dy) ds] dt)* < oo

¢
for all ( € D(A*). Therefore the processes / (S(t—s)F(X(s)),A"C) ds
0

N

l\.’:\»—‘
-

T

T
and / +/ 10, (8)S(t — 8)B(X(s),y), A*¢) q(ds,dy), t € [0,T], are P-a.s.

Bochner 1ntegrable and we obtain that
t t
EH/<()NQ%—A<@KATMS

// (s — u)F(X (u)), A*¢) duds
//T+/ Lo, () S(s — w) B(X (u), y), A*C) q(du, dy) ds] |

g/EU (5), A%C) — (S(5)€, A*C)
/Ss—u duA*Q

T+
/ / 0,6 (W)S(s —u) B(X (), ), AC) q(du, dy)|] ds

where for each s € [0,T] by proposition 3.7 and proposition 3.5
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E[[{X(s), A*C) — (S(s)§, A™C)
/ S(s —u)F ) du, A*C)

T+
/ / 1]03 S—’LL ( ( )vy)7A*C> Q(du’dy)”

sf—/SS—u (X (u))du

/H/Ss—u ) a(du, dy), A*C)|]

since X (t), t € [0,7T], is a mild solution. Thus we get for all ( € D(A*) and
t€[0,T]

[ ox vy as

/ ()¢, A*() d3+// (s — w)F(X (w)), A*C) du ds
//T+/ Ljo,s) () S(s — u) B(X (u),y), A*C) q(du, dy) ds P-as.

By [Pa 83, Corollary 10.6, p.41] S*(t), t € [0,T], is a Cp-semigroup with
infinitesimal generator A*. Then by proposition C.1 we get that S*(¢)¢ €
D(A*) for all t € [0,T] and %S*(t)c = A*S*(t)¢ = S*(t)A*¢ for all ¢ €
D(A").

Thus we can conclude by the fundamental theorem for Bochner integrals
B.8 that

[ siga70) ds = [ e.5°()4°¢) ds
0 0
— (6,57 ()¢ — ¢) = (S(E.C) — (£.0)

// (s —u)F(X(u)), A*C) du ds
//1[OS] ), S™(s —u)A*C) du ds
/ / (s —u)() ds du

—/St—s ) ds, ¢) — /0t<F(X(s)),C> ds.

and
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To calculate

//ﬂ/ Lio,s) (w)S(s — u) B(X (u),y), A*C) q(du, dy) ds

we need a stochastic Fubini theorem. For an adequate version we refer to
[Ap 05, Theorem 5]. Then we get that

//ﬂ/ 10,5](w)S(s = u) B(X (u), ), A*¢) q(du, dy) ds

T+
/ // 10,4 (u ,Y), S™ (s —u)A*C) ds q(du, dy)
T+
:/ /10t u/ (B(X(u),y), 5" (s — w)A*C) ds q(du, dy)
0 U
T+
/ /10,: L) S*(t — u)¢ — ¢) q(du, dy)
0 U
T+
/ /ut S(t — $)B(X(s),y) a(ds. dy), ()
0 U
T+
- /0 /U 1oy (5) (B(X(5),), C) a(ds, dy) P-a.s.

where in the last step we used proposition 3.7.
Hence the mild solution X (¢), t € [0, T, fulfills the following equation P-a.s.:

/t< (s), 4°¢) ds
(H€.¢) + /St—s ) ds, C)
/ﬂ/lm S(t — 5)B(X(s),) a(ds,dy),C)

(60 - / ) ds — / v /o) ).C) qlds, dy)
—(X(8),0) — (60— / ds—/H/ a(ds, dy)

P-a.s., where in the last step we used proposition 3.7 and 3.5 and the fact
that X is a mild solution. Finally, we get that for all¢ € [0,7] and ( € D(A*)

(X(t),¢) = (5O + /< (s), A7C) + (F(X(s)), ) ds

t+
/ / q(ds,dy) P-a.s.
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Before stating the theorems about existence and uniqueness of a mild
solution we give some notations and present the idea of the proof, where for
the details we refer to the proofs of the theorems 4.4.

First, we introduce the spaces where we want to find the mild solution of
the above problem. For p > 2 we define

H2(T,H) := {Y(t),t € [0,T]| Y has an H-predictable version,
Y(t) € L*(Q, F;, P; H) and
sup B[[|Y (#)[|*] < oo}

te[0,7

and for Y € H?(T, H) define a seminorm on H?(T, H) by

1Y [y o= sup (E[|Y (1)]2)2.

te[0,7)

For technical reasons we also consider the seminorms || [|2x7, A > 0, on
H2(T, H) given by

1
1Yz 1 == S e M (E[Y (1)]1P) >

)

Then || [[2 = || ||2,0r and all seminorms || ||2x 7, A > 0, are equivalent.
Let ¢ € L2 := L2(Q, Fo, P;H) and Z € H?(T, H). Then Z has at least one
predictable version which we denote again by Z. Define

F(.2) = (Sc+ [ St=-9r(z(s) ds
(4.3)

N /0 v /U S(t = $)B(Z(5), ) a(ds, dy))

te[o,1]

Later we will prove that under certain conditions on F' and B the appearing
integrals are well-defined and the processes on the right hand side of (4.3)
are elements of H?(T, H). Moreover, under the assumption that all integrals
are well-defined, F is well-defined in the sense of version, i.e. taking another
CN such that 5 = ( P-a.s. and another predictable version Z of Z , then
F(¢, Z) is a version of F(C, Z) since we have that

(Bl HS(t)g+/0 S(t = s)F(Z(s)) ds
t+
+ / /U S(t = $)B(Z(s).y) q(ds, dy)
_S@)E+ / S(t — $)F(Z(s)) ds

[ st- 9B atdsan))’
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<(ElIse - iP)*

+ My T (E| /OTHF<Z<s>> ~ F(Z(s)| ds)’

N

+ (/Ot/UE[HS(t — $)B(Z(s),y) — S(t — s)B(Z(s),y)||*] v(dy) ds)
<atr (B[ - &)

1

1 T ~ 3
carTH( [ EIIP(Z() = PP ds)

n MT(/OT | BUB(E().9) - BEG). 9P ) ds)
=0

A mild solution of problem (4.1) with initial condition ¢ € £2 is by definition
4.2 an H-predictable process X (§) such that F(&, X (§)) = X (§) in the sense
of versions.

Thus, we have to search for an implicit function X : £3 — H?(T, H) such
that F(&, X(€)) = X (&) in H*(T, H) for all £ € L3.

The idea to prove this is to use Banach’s fixed point theorem. This approach
requires that H2(7T, H) is a Banach space. For this purpose we consider
equivalence classes in H2(T, H) w.r.t. || |27, A > 0. We denote the space
of equivalence classes by H*(T, H). (H*(T, H), | llaar), A > 0, are Banach
spaces.

For simplicity we use the following notations

HX(T,H) := (H*(T, H), || )

and
H2’>\(T7 H) = (H2(Ta H)’ H ||2,)\,T)7 A > 0.

Now we define for ¢ € L2 := L?(Q, Fo, P;H) and Y € H*(T,H), F(£,Y)
as the equivalence class of F({, Z) w.r.t. |52 for an arbitrary ¢ € £ and an
arbitrary predictable representative Z € Y. By the above considerations, in
H2(T, H), (¢, Z) is independent of the representatives ¢ and Z.

Now, we search for an implicit function X : L — H?(T, H) such that
F(6,X(€)) = X (&) in H*(T, H) for all ¢ € L3.

For this purpose we prove that F as a mapping from L3 x H*(T,H) to
H?(T, H) is well-defined and we show that there exists A1 =: A > 0 such
that

F:L3x HXNT,H) — H*NT,H)
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is a contraction in the second variable, i.e. that there exists Ly < 1 such
that for all ¢ € LZ and Y,Y € H>NT, H)

"ﬁ(§7y) - ﬁ(ﬁa Y)HQ,)\,T < LT,)\

Then the existence and uniqueness of the mild solution X (&) € H>NT, H)
of (4.1) with initial condition ¢ € L3 follows by Banach’s fixed point theo-
rem.

Since the norms || [[2x,7, A > 0, are equivalent we may consider X (&) then
as an element of H?(T, H) and get the existence of the implicit function
X : L3 — H*(T, H) such that F(&, X (£)) = X (€).

Y — Y27

To get the existence of a mild solution on [0,T] in H*(T, H) we make the
following assumptions.

Hypothesis H.0

e F': H — H is Lipschitz-continuous, i.e. there exists a constant C' > 0
such that

1F(z) = F(y)l < Cllz -yl
|F(2)|| < C(+||) forall z,ye H.

e There exists an integrable mapping K : [0,7] — [0, 00| such that for
all t €]0, 7] and for all z,z € H

/UHS(t)(B(x,y) = B(z,y))|” v(dy) < K1)z — 2|

/UIIS(L‘)B(%‘,y)ll2 v(dy) < K(t)(1+||z])*.

Theorem 4.4. Assume that the coefficients A, F' and B fulfill the conditions
of hypothesis H.0 then for every initial condition & € Lg there exists a unique
mild solution X (€)(t), t € [0,T), of equation (4.1) in H*(T,H).

In addition, we even obtain that the mapping

X:L3— H*T,H)

is Lipschitz continuous.

For the proof of the theorem we need the following lemmas.

Lemma 4.5. If Y : [0,T] x Q x U — H is Pr(U)/B(H)-measurable then
the mapping

[0, T]x QxU — H, (s,w,y) — Lj0.4(s)S(t — s)Y (s,w,y)
is Pr(U)/B(H)-measurable for all t € [0,T].
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Proof. Let t € [0,T].

Step 1. Consider the case that Y is a simple process given by

n
Y =) aila,
k=1

where z, € H, 1 <k <n,and A, € Pr(U), 1 < k < n, is a disjoint covering
of [0,T] x © x U. Then we obtain that
Y:[0,T]xQxU—H
(s,w,y) = 1o g(s)S(t — )Y (s,w,y)

n

= 1}0,t} (S) Z S(t - S)JfklAk (87 w, y)
k=1

is Pr(U)/B(H)-measurable since for B € B(H) we get that

U {s €[0,T]|10,4(5)S(t — s)zx € B} x Q@ x U) N Ay,

where {s € [0,T][1)94(s)S(t — s)zx € B} € B([0,T]) by the strong conti-
nuity of the semigroup S(t), t € [0,T]. By remark 2.23 (i) we can conclude
that Y~1(B) € Pr(U).

Step 2. Let Y be an arbitrary Pr(U)/B(H )-measurable process.

Then there exists a sequence Yy, n € N, of simple Pr(U)/B(H)-measurable
random variables such that Y, — Y pointwise as n — oo by lemma B.5.
Since S(t) € L(H) for all t € [0,T] the assertion follows.

O]

Lemma 4.6. Let Y(t), t > 0, be a process on (Q,F, P) with values in a
separable Banach space E. If Y is adapted to Fi, t € [0,T], and stochasti-
cally continuous then there exists a predictable version of Y.

In particular, if Y is adapted to Fy, t € [0,T], and continuous in the square
mean then there exists a predictable version of Y.

Proof. [DaPrZa 92, Proposition 3.6 (ii), p.76] O

Proof of theorem 4.4:
To prove the first statement of theorem 4.4 we show that there exists Ay o =:
A > 0 such that

F:Lix H*NT,H) — H*NT, H)

is well-defined and a contraction in the second variable.
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Step 1. We show that the mapping F : £3 x H*(T,H) — H*(T,H) is
well-defined.

Let ¢ € £3 and Y € H?(T, H), predictable, then, by theorem D.3 (i),
(S)E)repor) € H*(T, H), 114 (-)S(t —-)F(Y(-)) is P-a.s. Bochner inte-
grable on [0, 7] and the process

/ S(t—s)F(Y(s)) dS)tG[O,T]

has a version which is an element of H?(T, H).
Therefore it remains to prove that
(L0, (8)S(t — s)B(Y (), ))sefo,r) € ./\/'qz(T, U, H) for all t € [0,T] and that

/H/ S(t = 5)B(Y (5).y) alds,dy)) e o

is an element of H?(T, H).
Claim 1. If Y € H?(T, H), predictable, then
@ = (Log(s)S(t — 5)B(Y(s),")) . cfor] € NZ(T,U,H) for all t € [0, T].

Let ¢t € [0,T]. First, we prove that the mapping
[07 T] xQxU— H, (S,Ld,y) = 1}0,15}(3)‘9@ - S>B(Y(87w)7 y)

is Pr(U)/B(H)-measurable. By lemma 4.5 we have to check if the mapping
(s,w,y) — B(Y(s,w),y) is Pr(U)/B(H)-measurable.

The mapping G : [0,T] x Q@ x U — H x U, (s,w,y) — (Y(s,w),y) is
Pr(U)/B(H) ® B-measurable since for A € B(H) and C € B we have that

G HA X C) =Y HA)xC € Pr(U) by lemma 2.23 (ii).
P,
€Pr

Moreover, B is B(H) ® B/B(H)-measurable by assumption.
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With respect to the norm || ||z of & we obtain

|3 = E / / 10,0 (5)S( — $)B(Y (), 9)II* v(dy) ds]
< B / K(t— )1+ |V (s)ll) ds]
< [ K 52004 BIY ()17 ds
0

T
g2(1+||Y\\;2)/ K(s)ds
0
< 0.

Claim 2. If Y € H%(T, H), predictable, then there is a predictable version
of

t+
(Z tE[O T] / / S t— S )7 y) q(dS, dy))tE[O,T]
which is an element of H?(T, H).

To prove the existence of a predictable version of Z we want to apply
lemma 4.6. For this reason we will show that the process Z is adapted to
Fi, t €]0,T], and continuous as a mapping from [0, T to L?*(Q, F, P; H).
Let 1 < a < 2 and define for ¢ € [0, 7]

(LH+
_ / / S(t — 5)B(Y (s),y) q(ds, dy)
0 U

(H)+
_ / / S(t— as)S((a — 1)s)B(Y (s), y) q(ds, dy),
0 U

where we used the semigroup property of S(t), t > 0.

Set ®*(s,w,y) := S((a — 1)s)B(Y (s,w),y) then one can show analogously
to the proof of the Pr(U)/B(H)-measurability of the mapping

(5,w,y) = L (s)S(t—5)B(Y (s,w),y) that @ is Pr(U)/B(H )-measurable.

Moreover,
T
B[ [ 19l vidy)as
T
— /O /U 15((e — 1)8) BV (s), )| v(dy) ds]

T
<21+ |V]2,) /0 K((o—1)s)ds

9 1 (a—1)T
“ WV = [ Kl

< 0.
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Now we show that the mapping Z¢ : [0,T] — L*(Q, F, P; H) is contin-
uous for all o > 1. For this reason let 0 <u <t <T.

(5)+
Bl [ [ 8- a9 (s atds. )
(%)+ 1
-/ / S~ )8 (s,9) a(ds, dy)[?]) .
T+
(B[ [ 1080 = 09)97(5.9) = 1 (95 = 05)9°(5.1)

a(ds, dy)| ])é
H/ﬂ/ Lo ()(8(t — as) = Slu—as)@(s0)
1 11()S(t — 05)@° (5, ) (ds, dy) ] ) *
(1) / o ] o198 = 15) = S(u = 23))2° (s 9) (s, ay))’
(501 [ / Ly (5)S(t - a5)8(s, ) a(ds. dy)|*] )

= ([ / [ o (S (¢ = as) = S(u = as) 8 s, () ds] )

=

/ /1]u (3 [S(E — as)B (s, )] (dy)ds])é by (2.5).

The first summand converges to 0 as w T t or ¢t | u by Lebesgue’s dominated
convergence theorem since the integrand converges pointwisely to 0 as u T ¢
or t | u by the strong continuity of the semigroup and can be estimated
independently of u and t by 4MZ|®%(s,w,y)|?, (s,w,y) € [0,T] x Q@ x U,
where E[fOT fU||(I)°‘(s,y)||2 v(dy) ds} < 00.
The second summand can be estimated by

T 1
B[ [ ya@asdians, )l vid) ds])

and therefore converges to 0 by Lebesgue’s dominated convergence theorem
asu Ttort] u.

To obtain the continuity of Z : [0, T] — L?(§2, F, P; H) we prove the uniform
convergence of Z%, n € N, to Z in L?*(Q, F, P; H) for an arbitrary sequence
ap, n €N, with o, | 1 as n — oc.
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1Z(t) -z (ﬂ”%?(gz,f,P;H)

t+
— 5| /0 /U S(t — $)B(Y (s). ) a(ds. dy)

o8
=[] st aus) () atis, ) )

T+
<[l [ [ tna(s)S( = 9B (3).9) = 1y 2 (95 = 9B (9).0)
a(ds dym

T+
=l [ [ 10 (5= 9B (). 9) atds,a)

— — 8 S 21/ S
g / /U 1S(t = $)B(Y (),9)|* v(dy) ds]

t
<2(1+|Y]3.) /t K(t—s)ds

&nflT

§2(1+HY\${2)/0 K (s)ds

an—lT

where [ " K(s)ds — 0 as n — o0.

0
Moreover, we know for all ¢ € [0,7] that

u+
([ ] 1008 = 9B (9. 9) alds. ),y 1y € M)

since (1),4(s)S(t — s)B(Y (s),-))sepo.r] € NZ(T,U, H). In particular, this
means that the process

t+
— /0 /US(t —3)B(Y(s),y)q(ds,dy), t € [0,T], is (F;)-adapted.

Together with the continuity of Z : [0,7] — L?(Q,F, P; H), by lemma 4.6,
this implies the existence of a predictable version of Z(t), ¢t € [0,T], which
we denote by

/ | nas)3(¢ =B (5).0) alds,d9) gy
Altogether, we proved that
F:Lix HYT,H) — H*T,H)

is well defined.
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Step 2. We show that there exists Ay 2 =: A > 0 such that for all £ € L%
F(&-): H¥NT,H) — H*)NT, H)

is a contraction where the contraction constant does not depend on &.

Let V)Y € H2(T, H), predictable, and ¢ € £L2. Then we get for A > 0 that

sup e M|[(F(E,Y) = F(EY)) (1) 2

te[0,T]

< sup eV / S(t — $)[F(Y (s)) — F(V(s))] ds] 12

t€[0,T]

©osup e / / S(t — $)[B(Y(5),y) — BV (s),4)] a(ds, dy)|| .

t€[0,T]

By theorem D.3 (ii) the first summand can be estimated by

MTCT2( )2HY— Y {|o7-
%,_/
—0 as A—oo

By the isometric formula (2.5) we get the following estimation for the second
summand:

t+ .
Bl [ [ 8¢ 5)(BI).0) - BE).0) dds,dy)|P]
0 U
= — S S — % S 21/ S
—E[/O /Uus<t V(BY(3),9) — BV (5),9))|1> v(dy) ds]
B /0 K(t - 8)[[Y(s) — V()] ds]
:E[/O MK (t — s)e Y (s) — V(s)|2 ds]
< /0 K (t - s)ds|Y — V2

T
0

Therefore we obtain that

sup e M| / / S(t— ) (B(Y(5),9) — B(V(s).)) alds, dy)||

t€[0,T]

< ([ e wa) 1 - Pl

—0 as A—oo
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Thus, we have finally proved that there exists A7 2 =: A > 0 such that there
exists L7\ < 1 with

IFEY) = FE&Y ) arr < LrallY —Yanr

for all Y)Y € H 2MT,H) and ¢ € L3. Hence the existence of a unique
implicit function

X : L — H*(T,H)
£ X(§) =F(X(9)

is verified.

Step 3. We show that the mapping X : L — H?(T, H) is Lipschitz con-
tinuous.

By theorem A.1 (ii) and the equivalence of the norms || |27, A > 0, we
only have to check that for all Y € H?(T, H) the mapping

F(,Y): L3 — H*T,H)

is Lipschitz continuous where the Lipschitz constant does not depend on Y.
But this assertion is true as for all £, ¢ € £3 and Y € H?(T, H), predictable,

IF(&Y) = F(EY) e = [1SCHE = Ollne < Mrf|€ = Cll 2
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Chapter 5

First Order Differentiability
of the Mild Solution

The principal object of this chapter is the analysis of the first order dif-
ferentiability of the mild solution with respect to the initial condition. We
consider the mild solution as a mapping from L(Q) to H?(T,H) and prove
Gateaux differentiability (see theorem 5.1). To this end we make the follow-
ing assumptions.

Hypothesis H.1

e [ is Gateaux differentiable and
OF :Hx H—H
is continuous.

e For all y € U B(-,y) : H — H is Gateaux differentiable and for all
yeU,ze€ Hand t€]0,T]

S(t)hB(,y)z: H—H
is continuous.
e For all t €]0,7] and z € H the mapping

S(t)01B(-,-)z: H — L*(U,B,v; H)
x— S(t)01B(x,-)z

is continuous.

Theorem 5.1. Assume that the coefficients A, F' and B fulfill the conditions
of hypothesis H.0 and H.1. Then the following statements hold.
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()

(ii)

(iii)

The mild solution of (4.1)

X : L — H*(T,H)
§— X(§)

1s Gateaux differentiable and the mapping
0X : L2 x Lt — H*(T,H)
18 continuous.

For all £,( € L% the Gateauz derivative of X fulfills the following
equation

OX@C=(SW3+ [ St - FCC@ENIXEOs) ds

t+ _ _
+ [ [ 8= 9B E©6).00X @) alas.an)

te[0,7
in H2(T, H) where the right-hand side is defined as the equivalence
class of

(S(t)<+ /0 S(t — $)OF(Y (5))Z(s) ds

+ /O v /U S(t — $)0B(Y (s),y)Z(s) q(ds,dy))

te[0,7

w.r.t. |[|[32 for arbitrary ¢ € ¢ and arbitrary predictable Y € X (€),
Z € X (£)C.

In addition, the following estimate is true

10X (€)Cl2e < Kr2([C]l 2

for oll £,C € L% where Ko denotes the Lipschitz constant of the
mapping X : L3 — H*(T, H).

For the proof of the above theorem we need the following lemmas.

Lemma 5.2. (i) If F satisfies H.0 and H.1 we obtain that |0F ()| ) <

(ii)

C forallz e H.

If we assume that B : H x U — H satisfies hypothesis H.0 and is
Gateauz differentiable in the first variable then we get for all t €0, T
and x € H that H > z — S(t)01B(x, )z € L(H, L>(U, B,v; H)) with

1S@)01B(z, ) n(a, 2B,y < VE(F).
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In particular, we obtain for all t € [0,T] and for all predictable Y, Z €
H2(T, H) that the mapping

Gy :[0,T)|xQxU—H
(s,w,9) = 11o,(s)S(t — 5)O1B(Y (s,w),y)Z(s,w)

is an element of NZ(T,U, H).
Proof. (ii) Let z,z € H and t €]0,T] then
IS B va)
— [ timint 251S@ B +hz.9) - S0 BG)IP vldy

1
<timint 1 [ [S@B( + hzy) - SO By vidy
- U
<K (1)]2].
Since, by remark 2.23(ii), ¥ and Z as mappings from [0,7] x Q x U to
H are Pr(U)/B(H)-measurable and B : H x U — H is B(H) ® B/B(H)-
measurable, we get that 01 B(Y,-)Z : [0,T] x Q x U — H is Pp(U)/B(H)-

measurable. Then, by lemma 4.5, the mapping G is Pr(U)/B(H )-measurable.
Moreover,

r t
2 2
E[/O /UHGt(S,?/)H v(dy) ds] gE[/O K(t — s)||Z(s)|* ds]
T
< [ K asl 2] < .

O

Lemma 5.3. Assume that the mapping B satisfies the conditions of H.0
and H.1. Then for allt €]0,T] and z,z € H

1
I (SOB + he.e) — SO B, ) — S0 B, s
1 h
< / IS0 Bz +52,2)2 — SO B(@, V2|2 w0 45
0

and therefore, in particular, one has that for all t €]0,T]

S(t)B(x + hz,-) — S(t)B(x,-)
- o S(t)o1B(x, )z

in L*(U,B,v; H).
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Proof. Let t €]0,T]. Since S(t)01B(-,y)z : H — H is continuous we obtain
by the fundamental theorem for Bochner integrals B.8 that

/U H%(S(t)B(m + hz,y) — S(1)B(x,y)) — S0 B, y)z||? v(dy)
- [ix ] S0 Bw -+ s2,)2 — SO B(w,v)e ds|” v(dy)
< /U};(/Ohusa)alB(x +s52,9)z — SO B(w,y)2| ds)? v(dy)
< /U}IL/OhHS(t)@lB(:E +52,9)z — S()01 B(x,y)z||? ds v(dy)
- % /Oh IS()01 B(x + s2,-)z = S B2, )zl|72(0 5,011y d5-

Since

S(t)0yB(x + -z,-)z:[0,1] — L*(U,B,v; H)
s— S(t)01B(x + sz,-)z
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is uniformly continuous by hypothesis H.1 the second part of the assertion
follows. O

Lemma 5.4. Let (Q,F,u) be a finite measure space and let (E,d) be a
polish space.
Moreover, let Y,Y,,n € N, be E-valued random variables on (2, F, u) such
that

Y, — Y in measure as n — oo.

Let (E,d) be an arbitrary metric space and f : (E,d) — (E,d) a continuous
mapping. Then

foY,— foY in measure as n — oo.
Proof. [FrKn 02, Lemma 4.6, p.95] O

Proof of theorem 5.1:

In order to prove the stated differentiability of the mild solution X we ap-
ply theorem A.6 (i) to the spaces A = L% and E = H>NT,H) and to
the mapping G = F, where A > 0 is such that F : L3 x H*)(T,H) —
H?T, H) is a contraction in the second variable. In this way we obtain
that X : L2 — H?>*(T, H) is Gateaux differentiable. By the equivalence of
the norms || ||2x7, A > 0, we then also get the Gateaux differentiability of
X as a mapping from L3 to H?*(T, H).

For simplicity, we check that F : L3 x H*(T, H) — H?(T, H) fulfills the con-
ditions of theorem A.6 which implies, again by the equivalence of the norms
| llaaz, A >0, that F: L2 x H2NT, H) — H*(T, H) satisfies them, too.

Proof of (i):

Step 1. We show the existence of the directional derivatives of F. For this
purpose let £, € L and Y, Z € H?(T,H). We show that there exist the
directional derivatives 9, F(€,Y;¢) and 02F(€,Y; Z) in H2(T, H) for £ € €,
Cel,YeY and Z € Z, where Y and Z are predictable. Then there exist
the directional derivatives of F as the respective equivalence classes w.r.t.

I 2

(a) It is obvious that 91 F(€,Y;¢) = S(-)¢ € H*(T, H).
(b) The integrals

/tS(t — 8)OF(Y(s))Z(s) ds, t € [0,T], and
0

t+
/0 /U 1o ()S(t — )01 B(Y (s),4)Z(s) q(ds. dy), t € [0,T),
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are well defined by H.0, H.1 theorem D.4 (i) and lemma 5.2 (ii). In the
following we show that

OF(EY: 7) = /St—saF VZ(s) ds
t+
/ /St—s@lB W)Z(s) (d,dy))te[OT]
e H*(T,H)

Let t € [0,T] and h # 0. Then we get that

H (5Y+hz /St—saF 1Z(s) ds
/+/5t_8313 (5),)2(5) alds, d)l 203
<||/ S(t - s)( +hZ§j)) FYO) _ gy (s))2(s)) dslly
= —S S) +hZ(S)7y) _B(Y(S)7y)
+!/O /USt h

—01B(Y (s),9)Z(s)) a(ds,dy)| 2

The first summand can be estimated independently of t € [0,T] by

My T E /|| +hZ D=FYE) _ op(y(s)) z(s)|? ds]?

and converges to 0 as h — 0 by Lebesgue’s dominated convergence theorem
(see theorem D.4 (ii)).

To get the convergence to 0 of the second summand as h — 0 we first fix
a > 1 and get by the isometric formula (2.5)

(el [ [ st BYOZ0 - B0

— OB(Y(5),9)2(s)) q(ds, dy)[*])?
= E[/Oa /U I1S(t — as)S((c — 1)s)( B(Y(s) + hZ(s);Ly) — B(Y(s),y)
~ iB(Y (5),1)Z(5))|1> v(dy) ds]
)

//HSt—s )+ h2(s)) = B (2.

—0uB(Y (9),)2(5)) |2 vldy) ds])
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where we used the semigroup property of S(t), t > 0.
The first integral can be estimated by

T S S — S

— OB(Y (5),9)Z(3))|I? v(dy) ds].

If we fix s €]0,7] we know by lemma 5.3 that

II%(S((Q —1)s)B(Y () +hZ(s),) — S((e = 1)) B(Y (s),"))
- S((a - 1)5)81B(Y(8)7 ')Z(S)||2L2(U,B,V;H)

—0 ash—0.

Since, by lemma 5.2 (ii), the above sequence can be estimated by the map-
ping

[0,7] x Q = R, (s,w) — 4K ((a — 1)s)|| Z(s,w)]?,

which is an element of L ([0, T|x €2, B([0, T])®F, A® P), we get by Lebesgue’s
dominated convergence theorem that

T S S - S

— O B(Y(s),y)Z(s))|I” v(dy) ds].

—0 ash—0.

Again by lemma 5.2 (ii), the second integral can be estimated independently
of h # 0 and ¢ € [0,7] in the following way

: oy BOs) +hZ(s).y) — BY(5),9)
mé[ﬂw )

h
— O1B(Y (5),9)Z(s))|I” v(dy) ds]

sﬁﬂm—ﬁww@ﬁﬁ

@
(a—1)T

34/ T K(s) ds| 2|2,
0

(a—1)T

where || Z||32 < oo and / ) K(s)ds— 0asa ] 1since K € L'([0,T7)).

Altogether, we have an estimation of the second summand which is inde-
pendent of ¢ € [0,7] and we get the desired convergence in H?(T, H):
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t+ _
sup | / S(t— s) (Y(s) + hZ(S)};y) B(Y(s),y)
t€[0,T]

—313Y8 (s)) a(ds, dy)| 2.7, p;m)

T <Y<s>+hz<s>> B(Y(s).9)
B[] 1=
— uB(Y (5).9)Z(s)) > v(dy) ds|

fe=)T 1
- 4/0 " OK(s) ds| 21 )
where the right hand side tends to zero if @ | 1 and h — 0.
Step 2. We show that the directional derivatives
OF : Lix H¥T,H) x L} — H*(T,H)
OoF : L2 x H¥(T,H) x H*(T,H) — H*(T, H)

are continuous.

(a) The continuity of 9;.F is obvious.

(b) To analyze the continuity of 9o F let Y,Y,,, Z, Z, € H*(T,H), n € N,
and &,&, € L3, n € N, such that V,, — Y and Z, — Z in H*(T, H) and
&, — € in LE as n — oo. Then we have for all ¢ € [0, 7] that

HaZf(fnaYnQZn) _82F(£7Y§Z)HH2
t

< sup || [ S(t—s)(OF(Yn(s))Zn(s) — OF(Y(s))Z(s)) ds| L2
tefo,r] Jo

t+
o | [ S= @B )0 Z0(0)
te[0.7] — 1 B(Y (s5),9)Z(s)) q(ds,dy)| z2-

The first summand converges to 0 as n — oo (see theorem D.4 (iii)).
In order to estimate the second summand we fix a > 1 and use the isometric
formula (2.5) to get that

t+
H / / S(t — ) (O1B(Ya(5),4) Zn(s) — 01 B(Y(5),9)Z(5)) a(ds, dy)| 12

/ / IS0 = 5)OUB(¥a(8),)7a(5) ~ HBY () 1) 26D
v(dy) ds])

2
E[/O /UHS(t — 8)01B(Yn(5),y)(Zn(s) — Z(s))|I* v(dy) ds])

[V

NI

B / / 1S(t — )(81 B(Ya(s), ) — 01 B(Y (5), ) Z(5)| v(dy) ds])
0 U
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N

, by lemma 5.2(ii),

< (8L [ K= 5)17a(s) - 2 )
E[/Oa /UHS(t—S)(alB(Yn(S),y) _8lB(Y(5),y))Z(s)H2 V(dy) ds]

=

+ E[/f/UHS(t — 8)(01B(Yn(s),y) — W B(Y (s),y)Z(s)|* v(dy) ds]) :
< (/tK(s) ds)éyzn — Zpe

+ (a3 / [ 150 = 19@uB Y, 5).) = 0BV (9.9 25
v(dy) ds]|

+E[/t 4K (- 9)|2(s)|? ds] )

@

<( [ Kt a5) 10 2l

+( //HS ()):1_5}1) $)(01B(Yn(s),y) — 1B(Y (s),y)) Z(s)|?
(e=1)T

1
+4/ K(s) ds|| Z 1 ) .
0

(a—=1)T

|Zn — Z||3z — 0 as n — oo by assumption and K(s) ds — 0 as

a | 1 by Lebesgue’s theorem since K € L([0, T]).
To show the convergence of the third term to 0 as n — oo we use lemma

5.4.
For fixed s €]0,T] the sequence of random variables (Y;,(s), Z(s)), n € N,
converges in probability to (Y'(s), Z(s)). Moreover, the mapping
f:HxH— L*(U,B,v;H)
(z,2) — S((a — 1)s)01 B(z, )z

is continuous. Hence, by lemma 5.4 it follows that

1S((e = 1)8)(1 B(Ya(s), ) = B B(Y(5), ) Z ()| 2208011y —.0

n—oo

in probability. In addition, this sequence is bounded by 4K ((a—1)s)||Z(s)||* €
LY(Q, F, P) which implies the uniform integrability. Therefore we get that

E[|S((a = 1)s)(01B(Ya(s), ) = nBY (s), ) Z() 22 5,mm)) —0-

n—oo
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Since the above expectation is bounded by 4K((a — 1)s)||Z||5,. where
4K ((a = 1))|1Z]l3,2 € L'([0,T]) we finally obtain that

T
/ B / 1S((c = 1)) (@1 B(Ya(s), 1) — HB(Y (), 9) Z(3)|2 v(dy)] ds
0 U

— 0.
n—oo

Proof of (ii): Let &, ¢ € L2. Then by theorem A.6 (i) we have the following
representation of the Gateaux derivative of X:

OX(E)C = [I — BF(E,X(6)] O F(E, X ()¢

and therefore we have that
X (E)C = 1 F (&, X(£))C + (€, X (£))0X (£)C.

By (i) the assertion follows.

Proof of (iii): By theorem 4.4 the mild solution X : L} — H*(T,H)
is Lipschitz continuous. We denote the Lipschitz constant of X by K.
Hence, we get that

10X (€)C|lnz < Krpll¢llp2 for all ¢, ¢ € L}



Chapter 6

Gradient Estimates for the

Resolvent Corresponding
with the Mild Solution

As in the previous chapters let (H,(, )) be a separable Hilbert space,
(U, B,v) a o-finite measure space and (2, F, P) a complete probability space
with right-continuous filtration F;, ¢ > 0, such that F( contains all P-nullsets
of F. Moreover, let p be a stationary (F;)-Poisson point process on U with
characteristic measure v. We denote as in the previous chapters with ¢ the
compensated Poisson random measure of p.

In the first part of this chapter we make the following assumptions on the
coefficients A, F' and B.

Hypothesis H.2

e (A, D(A)) is the generator of a quasi-contractive Cp-semigroup S(t),
t >0, on H, ie. there exists wy > 0 such that ||S(t)| ) < e for
allt > 0.

e [ is Lipschitz continuous and Géateaux differentiable such that
OF :HxH—H
is continuous.
e [ is dissipativ, i.e. (OF(z)y,y) <0 for all z,y € H.
e B: H xU — H such that

— forally € U B(-,y) : H— H is constant,

89



90

— there exists an integrable mapping K : [0,7] — [0, co[ such that
for all ¢ €]0, 7] and « € H holds

/U 1S B, )| v(dy) < K @)1+ 2]])°.

It is easy to check that, on condition that the assumptions of hypothesis H.2
are fulfilled,the coefficients A, F' and B satisfy H.0 and H.1.

Under the assumptions of hypothesis H.2 we already proved in theorem
4.4 the existence of a mild solution of the following stochastic differential
equation

(6.1)

dX(t) =[AX(t) + F(X(t))] dt + B(X(t),y) q(dt,dy)
X(0) =z€H.

Moreover, the mild solution X : H — H?*(T, H) is Gateaux differentiable by
theorem 5.1(i).

Notation: In the following we denote by X (x) and 0X (x)h predictable rep-
resentatives in H2(T, H) of the respective equivalence classes in H?(T, H).

The Gateaux derivative 0X (z)h of X in x € H in direction h € H ful-
fills the following equation:

OX (x)h(t) = S(t)h + /0 S(t—s)0F (X (z)(s))0X (x)h(s)ds P-as.

for all t € [0, 7] (see theorem 5.1(ii)).
Proposition 6.1. There erists a continuous version Y € H*(T,H) of
0X(z)h, x,h € H, such that
t
Y(t)=S(t)h —|—/ S(t— s)OF (X(z)(s))Y (s)ds for all t € [0,T]
0

P-a.s.

Proof. Let h € H and Y € H?(T, H). Then Y has at least one predictable
version which we denote again by Y. Define

G(h.Y) = (S(t)h + /0 S(t — $)OF (X (2)(s)) ¥ (5) ds) (6.2)

te[0,T]
Then the appearing integral is well defined and an element of H?(T, H).
Moreover, G is Well~ defined in the sense of version, i.e. tz}king another
predictable version Y of Y, then G(h,Y) is a version of G(h,Y").
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Define for h € H and Y € H*(T,H), G(h,Y) as the equivalence class of
G(h,Z) w.rt. | |n2 for an arbitrary predictable representative Z € Y.
By the above considerations, in H?(T, H), G(h, Z) is independent of the
representative Z, i.e. G is well defined. Moreover, there exists Az > 0 such
that G : H x HfT (T,H) — HfT (T, H) is a contraction in the second variable.
By Banach’s fixed point theorem we get the existence and uniqueness of an
equivalence class Z € H%\T (T, H) such that for all Y € Z

Y () :S(t)h+/0 S(t—s)OF (X(x)(s))Y(s)ds P-as.

for all t € [0,7]. In particular, X (z)h € Z.
Define now

Y(t):=S(t)h+ /0 S(t — s)OF (X (x)(s))0X (z)h(s)ds, t € [0,T).

Obviously, Y is a version of 0X (x)h and by the previous considerations we
know that

Y(t) = S(t)h +/0 S(t — $)OF (X (z)(s))Y (s) ds P-a.s.

for all t € [0,T].
Moreover, both Y and the process ( h—l—fo (t—s)OF (X (z)(s))Y (s) ds

are continuous. To show this let Z € H2(T, H).
Since

)te[O,T]

E[/OTHZ(S)H ds| < T||Z[32 < o0
we get that
/Ot||Z(s)H ds < oo for all £ € [0,T] P-as.
Let now u, t € [0,T] with u < t then
IS + /tS(t — OF(X(2)(s))Z(s) ds — S(u)h

/Su—saF X(@)(s))Z(s) ds|
< ISk — S(u)h]

1 / S(t — 5) — S(s — ) AF (X (2)(s))Z(s) ds]
+ \/ S(t—s)OF (X (z)(s))Z(s)ds||.
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The first summand converges to 0 as u T t or ¢ | u by the strong continuity
of the semigroup.

As || Z(+)|| € L'([0,T]) P-a.s. the second and third summand converge to 0
asu T tort | u by Lebesgue’s dominated convergence theorem where the
P-nullset does not depend on t and w.

Thus, we proved the existence of a continuous version Y of 0.X (z)h such
that

Y(t) = S(t)h + /O S(t - $)IF (X (2)(s))Y (s) ds P-as.

for all ¢ € [0,7T] where by the above considerations also the right-hand side
is continuous. By the continuity of both sides we get that

Y1) = S(t)h + /0 S(t — $)OF (X (2)(s))Y (s) ds
for all t € [0,T] P-a.s. O

In the following we have to distinguish between the case A € L(H) and the
case of an arbitrary, possibly unbounded generator (A, D(A)).

6.1 First Case: Ac L(H)

Proposition 6.2. Let Y € H*(T,H) be a continuous version of 0X (z)h
such that

Y (t) = S(t)h + /t S(t— s)OF (X (x)(s))Y (s)ds for all t € [0,T]
0
P-a.s. Then

Y(t)=h+ /Ot AY (s)ds + /Ot OF (X (z)(s))Y (s)ds for all t € [0,T)

Proof. Since
T
Bl /0 1V (s)]| ds] < TV |lye < o0
we get that

t
/ Y (s)||ds < oo for all t € [0,T] P-a.s.
0
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and therefore we have that P-a.s.
S(t—)OF (X (2)(-))Y () € L*([0,1]) for all t € [0, T7. (6.3)

Then we obtain that P-a.s. for all ¢t € [0,T] that

/Ot AY (s)ds

= /0 AS(s)hds —|—/0 A(/OS S(s —u)OF (X (z)(v))Y (u) du) ds

t t s
= / AS(s)hds+/ / AS(s — w)OF (X (z)(w))Y (uv) duds,
0 0o Jo
by proposition B.7, the fact that A € L(H) and (6.3),

/ hds+//53—u F(X ()(w))Y () ds du,

by proposition C.1,

=S(t)h — h—i—/ S(t —u)OF (X (z)(u))Y (u) du
/ 8F Y(u) du, by proposition B.10,

_/0 OF (X (z)(u))Y (u) du.

Finally, we get that
t t
=h —|—/ AY (s)ds —|—/ OF (X (x)(s))Y (s)ds for all t € [0,T]
0 0
P-a.s. O

Let now Y € H?(T,H) be a version of X (z)h such that there exists a
P-nullset N € F such that for all w € N¢ and t € [0, T

(i) Y(-,w) is continuous and Y (0,w) = h

(ii) /0 |Y (s,w)| ds < oo and
(iii) Y(t,w) = h —I—/O AY (s,w)ds + ; OF (X (z)(s,w))Y (s,w)ds (6.4)

Then, using proposition B.10 and differentiating both sides of (6.4) we obtain
that for all w € N¢:

Y'(t,w) = AY (t,w) + OF (X (z)(t,w))Y (t,w) for A\-a.e. t € [0,T]
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= Dy ) = v (kw) Y (w) (6.5)
= (AY (t,w) + OF (X (x)(t,w))Y (t,w), Y (t,w))
for M-a.e. t € [0,T]. (6.6)

Proposition 6.3. For allw € N¢ and t € [0,T]
2 2 td 2
Y (6P = 1Y) = [ Y (s, ds.
0 S

Proof. Let w € N¢ and t € [0,T]. By proposition B.12 we have the show
that the mapping f : [0,¢] — R, s — ||Y(s,w)||? is absolutely continuous.
As first step we prove that g : [0,t] — R,s — ||Y(s,w)| is absolutely
continuous, i.e. we show that given € > 0 there exists § > 0 such that
Yoiilg(ti) — g(si)| < e whenever Y 7" | |t; — s;| < 0 for any finite set of dis-
joint intervals such that |s;, t;[C [0, ] for each .

Let £ > 0. For any set of disjoint intervals such that |s;, t;[C [0, ] for each i
we have

n

> lg(t) = glsi)l = Y _IIY (ti,w)| = 1Y (si, W)l
i=1

=1

< SI¥ (1) — Y (siow)|
=1

< Z_; /S'iHAY(s,w) +OF (X (2)(s,w))Y (s,w)| ds
:/u LAY (i) 0P @) s )Y (s s

Since [|AY (+,w) + OF (X (x)(-,w))Y (-,w)| € L*([0,T],d\) there exists § > 0
such that

/w ] _t'[||AY(w,s)—|—8F(X(x)(w,5))y(w,5)”d8 <

provided Y " [t — si| = MU ]si, ti]) < 0.

Now we use the fact that the product of two functions which are abso-
lutely continuous on a finite interval [a,b] is again absolutely continuous
(see [deBa 81, 9.3 Example 7, p.161]) and obtain that

1Y (-, w)||? = Y (-,w)||[|]Y (-,w)| is absolutely continuous on [0,t]. Now, the
assertion follows by proposition B.12. ]

Integrating both sides of equation (6.5), using the previous proposition and
taking into account the dissipativity of F' we obtain for all w € N¢ and
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t € [0,T] that
Y = YOI = [ LY (0P ds
- 2/(:<AY(s,w) +OF(X(2)(s,w))Y (s5,w), Y (s,w)) ds

§2/0 (AY (s,w), Y (s,w)) ds.

Since A is the generator of the quasi-contractive Cp-semigroup S(t), t > 0,
we get by the following calculation that (Ax,z) < wpl|z||? for all x € H:

1 1 ,
= — j— < — _
(Az,z) = lim 1 (S(O)z — 2,2) < lim 2(IS(®)z o] 2]

1 d
< lim (e = lfel[? = (Ze™") oo ol = ol

Consequently,
2 2 2 2 ! 2
1Y (&, )7 = [IRl]7 = 1Y (&, w) 7 = [[Y (0, w)]] S2/0 wollY (s, w)||” ds.

Using Gronwall’s lemma (see [HaTh 94, Lemma 6.12]) we can conclude that
Y (#)]|? < e*0t||h||? for all t € [0,T] P-a.s. Since Y is a version of X (x)h,
finally, we have an exponentially estimation for ||0X (z)h(t)|[, t € [0,T):

10X ()h(t)|| < e0t||h|| P-ass. for all ¢ € [0, T].

6.2 Second case: (A, D(A)) is a (possibly) unbounded
operator

In this section we need stronger assumptions on the measure v and the co-
efficient B.

For the second part of this chapter we make the following assumptions on
the coefficients A, F' and B and the measure v.

Hypothesis H.2’

e (A, D(A)) is the generator of a quasi-contractive Cyp-semigroup S(t),
t >0, on H, ie. there exists wy > 0 such that ||S(t) ;) < e for
allt > 0.

e [ is Lipschitz continuous and Gateaux differentiable such that
OF :HxH —H

1S continuous.
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e F is dissipativ, i.e. (OF(z)y,y) <0 for all z,y € H.
o v(U) < o0.

e B:HxU — H, (x,y) — z is constant.

If v and B satisfy hypothesis H.2’ then we obtain for every Cp-semigroup
T(t),t >0, on H that

/IIT(t)B(:v,y)H%(dy) < sup [T )l 2Pv(O)(1 + [|]])?
U te[0,T)

for all t € [0,T) and z € H, i.e T(t)B, t € [0, T], satisfies hypothesis H.2.

Since (A, D(A)) is the generator of a quasi-contractive Cp-semigroup S(t),
t >0, there is a constant wy > 0 such that [|S(t)|| gy < o' for all ¢ > 0.
By C.3 A can be approximated by the Yosida-approximation A,, n € N,
n > wp. Each A,, n > wp, is an element of L(H) and, by proposition C.4,
again the infinitesimal generator of a quasi-contractive Cp-semigroup Sy, (1),
t>0,n €N, n>wp, such that

wont
n — wo

150 ()| Lry < exp( ) forall t >0, n > wy.

Thus, we get that the coefficients A,, F and B, n € N, n > wy, fulfill the
assumptions of H.2. and so those of H.0 and H.1.

Now, we can derive for n > wy the existence of a unique mild solution X, (x)
of the following stochastic differential equation

dX(t) =[AX(t)+ F(X(t))] dt + z q(dt,dy) 6.7)
X(0) =zeH '

which is Gateaux differentiable as a mapping from H to H(T, H).

We define F, and F,, : H x H>*(T, H) — H>*(T, H), n > wy, as in chapter
5, section 1 for the coefficients A,, n > wg, F' and B. Since A,, n > wgy, F
and B fulfill H.O and H.1 we get by theorem 4.4 the existence of a unique
mild solution X,, : H — H?(T, H) of (6.7) as the implicit function of 7, i.e.
Fulz, Xn(X)) = X(2) in H*(T, H). By theorem 5.1 X,, : H — H?*(T, H),
n > wy, is Gateaux differentiable.

Notation: In the following we denote by X, (x) and 0X,(z)H, n > wo,
x,h € H, predictable representatives in H?(T, H) of the respective equiva-
lence classes in H*(T, H).
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Since Ay, € L(H) for all n € N, n > wy, we already know by section 6.1 that
for all x,h € H, t € [0,T] and n > wy holds

10X (2)R(t)|| < e*nt||h]| P-as. (6.8)

won

where w,, := )
n — wy

Our next aim is to show that X (x) and X (z)h are the limits in H?(T, H)
of (X0 (2))neNn>w, and (0Xn(2)h)neN n>w,, respectively. For this purpose
we use theorem A.8.

We have to check that the mappings F,F,, n € N, fulfill the conditions
of theorem A.8 if we set A := H and F := Hfo (T, H) for an appropriate
Ao > 0.

Proposition 6.4. There exists \g > 0 and « € [0, 1] such that for alln > wy
and predictable Y, Z € H?*(T, H)

|Fn(,Y) = Ful, Z)|l2por < allY — Zl2aer  and
|F(2,Y) = F(z, Z)ll2n0r < allY = Zll2. 00,7

Proof. By the proof of theorem 4.4 we know that for all z € H and pre-
dictable Y, Z € H?*(T, H),

T.1
||f(l',Y) - f(IL‘, Z)‘|27)\7T S MTc(ﬁ) 2 HY — Z| 2\T and

T.1
| Fu(z,Y) = Fr(x, Z)|2 a1 < MT,nC(ﬁ) 2|lY = Zljg a1, n €N,

where

My = sup ||S®#)|lrm) < o and
te[0,7T

wonT
My := sup ||Sn(t)l| L) < exp( ), n €N, n>wp.
te[0,7] n—wo

As the sequence exp(zﬂzz), n € N, n > wy, is convergent with limit e

is bounded from above by a constant K > 0. If we choose A\g > 0 such that

woT it

N

o= (K V Mﬂc(?fg)

then the assertion follows. O

€[0,1]

Proposition 6.5. For all x,y € H, Z € H*(T, H), predictable, and X > 0
the mappings

O1Fn(, )y : HA(T, H) — H*(T, H)
QoFn(x,)Z : HX(T, H) — H*(T, H)

are continuous uniformly in n € N, n > wy.
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Proof. Since for z,y € H and Z € H*(T, H), predictable, 01F,(z,Z)y =
(Sn(t)y)icio,r) the continuity of 91 F,(z, )y uniformly in n € N, n > wp, is
obvious.

We have to show the continuity of

0o Fp(z, ) ZH*(T,H) — H*(T, H)

v ( /0 S (t— $)OF(Y () 2(5) ds)

te[0,T]

Let x € H and Y, Y}, Z € H?(T, H), predictable, k € N, such that Y = Y
— 00
in H?(T, H). Then we get for all n > wp that

102, Y) Z = 00 Fn(, Vi) Z e
T
<My TSE( [ [OF(Y(5)2(s) - OF (V) Z(s)| ds]
0
T
<KT:E| / |OF (Y (5)) Z(s) — OF (Yi(s)) Z(s)||* ds] 2.
0

(For the definition of Mr, and K see the proof of proposition 6.4.)
Since 9F : H x H — H is continuous we obtain by lemma 5.4 that

|0F(Y)Z — OF (Yy)Z|| P 0 in Ajjo,r) ® P-measure.

Moreover,
l0F(Y)Z — OF (Vi) Z||* < 4C%|| Z|* € L'([0,T] x ©, Ao, ® P).

Hence we obtain that

T
E[/O IOF (Y (s))Z(s) — OF (Yi(s))Z(s)|>ds] — 0 as k — oo

Proposition 6.6. For all z,y € H and predictbale Y, Z € H*(T, H)

(i) Fo(z,Y) — F(z,Y) as n — 00, n > wy,
(i) "Fn(z,Y)y — O F(2,Y)y as n — 0o, n > wp,

(i11) OoF (2, Y)Z — 0o F (2, Y)Z as n — 0o, n > wy,

in H*(T, H).
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Proof.
(i) Let z € H and Y € H?(T, H), predictable, then

(Emfn(x, Y)(t) - Fa, V)0)2)}
< (B[1Su(t)z — S(t)z]])?
+ (&l / Sult = )F(Y(5)) = S(t - $)F(Y (s)) ds]?)

t+ 1
H/ /s (t — 8)z — S(t — 5)zqlds,dy) ) ?

< sup [|Sy(t)x — S(t)z|
te[0,T]

T
+ (E[T/ sup 11g(5)[[Sn(t — s)F(Y (5)) = S(t — s)F(Y (s))||* ds])
0 t€[0,T)

[N

v (E[/0 /UHSn(t $)z — S(t — 5)z|2 v(dy) ds]) ?

< sup [|Su(t)e — S(t)=|
t€[0,T

1 T 1
+ 712 (E[/0 o Lo (8)|Sa(t = 5)F(Y (5)) = S(t — s)F(Y (5))|* ds]) 2

V(U)%(/OT sup 110.4(5)]1Sn (t—s)z—S(t—s)zHst)%.

t€[0,T]

supyeo,r) | Sn(t)z — S(t)z| — 0 as n — oo for all x € H by proposition C.4.
Again by proposition C.4, for fixed s € [0, 7]

sup iy (s)[|Sn(t — 8)F(Y(s)) = S(t = s)F(Y(s))[| — 0 (1)

te[0,7] o
and sup 1y 4(s)[|Sn(t —s)z — S(t —s)z|| — 0 (2).
t€[0,T] n—0eo

Moreover, the first sequence (1) of mappings from [0, 7] X Q to R is bounded
by (K + Mp)C(1+ |[Y]) € L*([0,T] x Q, Xjjo.1] ® P).
Hence, by Lebesgue’s dominated convergence theorem we get that

T
B[ / sup Lo, ()|Su(t = $)F(Y(s)) = S(t — ) F(Y (s))[>ds] — 0
0 tef0,T]

as n — 00, N > wy.
The second sequence (2): sup;eio7) Lo, ()Sn(t — )z = St —)z[l, n € N,
n > wp, is bounded by (K + My)| z|| € L*([0,T]), thus, we obtain again by

Lebesgue’s theorem that fo sUPseio,7] Lo, (8)|Sn(t — 8)z — S(t — 5)2 1% ds —
0asn— oo, n > wp.

The proof of (ii) and (iii) can be done analoguously. O
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By proposition 6.5 and proposition 6.6 we justified that the mappings

FotHx H} (T,H) — H} (T,H), n € N, n > wp, and
F:HxH; (T,H) — H} (T, H)

fulfill the conditions of theorem A.8 and, finally, we obtain that for all z, h €
H

Xn(z) — X(z) and 0X,(z)h — 0X(z)h in H?\O(T, H) as n — oo.

In particular, we get for each ¢ € [0,7] the existence of a subsequence
(nk(t))ken such that

OXp, @ (@)h(t)  —  OX(x)h(t) P-as.
ne(®)>wo

Thus, by (6.8), it follows that for all ¢ € [0, 7]

. . wong(t

X (@A = Jim 10X, @A) < Jim con(EEDpn)
ng(t)>wo ng(t)>wo k 0

(6.9)

= “o!|h]|  P-a.s.

6.3 Gradient estimates for the resolvent

We define the transition kernels and the “resolvent” corresponding with the
mild solution X (x), z € H, in the following way.
Let f: (H,B(H)) — (R,B(R)), bounded. Define

pef(x) = E[f(X(x)(t)], t € [0,T], z € H, and
R.f(x) := /OO e pyf(x)dt, a > 0.
0
Proposition 6.7. If f € C}(H,R) where

Cl} :={g: H— R g is continuously Fréchet differentiable such that
sup | Dg(@)||L(mr) < 00}
zeH

then Rof : H — R is Gateaux differentiable for all o > 0 and for all
x,he H and a > 0

ORof(2)h = /O T e BDF(X (2)(1))0X (2)h(1)] dt.
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Proof. Let a >0, x,h € H and € > 0 then we get that

Bl (ot 5;;) — Rof(z) / e B(D (X () (£)0X (2)h(8)) dt|
0

< /°° oot g {E @ HER)) = FX@)(D)
0

3

— Df(X(2)(t)0X ()h(t)]] dt,
where by proposition B.8
f(X(z +eh)(t) — f(X()(F))

€

Ef| — Df(X(2)(t))0X (x)h(t)]]

1
= B[ [ DIX@O - o(X(a +h)t) = X(@)(1)
(FEEDO =X, b (x(a) 1))0 () (1) dof]

1
<[ [ 1DAXE)0 - a(X (o + )0 - X)) L
— 0X (2)h(t)]] do]

/ IDF(X(@)(8) — o(X (@ + eh)(t) — X(x)(1)))
_Df(X x)(t))HL(HR)uaX(x)h(>|rda]
X(x +¢eh) — ($)_
g

< supHDf(x)HL HR)ll X(x)h]l3e

/ IDf (X X + eh)(t) — X(2)(1))
f(X( >< >>HLHR> do]) 210X (2) |32
Thus, we get that

Rof(z +eh) —
9

Rof(z) /0 " e B[D £(X (&) (0)9X (2)h(1)] df|

< ., X(r+eh)—X(z
< [ et suplpf )| ox(@hle

/ /||Df X+ h)(t) - X(2)(1)))
f(X( >< ))HLHR) do))? dt [9X (x)h]lre.

The first summand converges to 0 as ¢ — 0 as X : H — H*(T,H) is
Gateaux-differentiable.

To prove the convergence to 0 of the second summand we use lemma 5.4.
Since X(¢) : H — L*(Q,F;, P; H) is continuous we can conclude that for
fixed o € [0, 1]

X(z)(t) —o(X(x+eh)(t) — X(x)(t)) — X(x)(t) in P-measure.

e—0
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Moreover, Df : H — L(H,R) is continuous and we obtain by lemma 5.4
that

IDF(X (2)(t) = o(X (x +eh)(t) = X(2)(1))) = DAX (@) () z1r) — O

e—0
in  P-measure. As  this  sequence is  bounded by
4supx€H||Df(:c)||%(H Ry < 00 it follows that
E[|Df(X(2)(t) = o(X (2 +eh)(t) = X (2)(t))) = Df(X ()0 (11,)]

— 0.
e—0

Since this expectation is bounded by 4supx€HHDf(x)H2L(H R) < 00 we get
by Lebesgue’s dominated convergence theorem that

1
/0 E[IDf(X(2)(t) = o(X (2 +eh)(t) = X(2)(t))) — DF(X (@) ()| z10)] do

— 0.
e—0

Finally, again by Lebesgue’s theorem, we obtain that

00 1
/O eatE[/O IDf(X(2)(t) = o(X(z +eh)(t) = X(x)(1)))
= DX (@) ()L 11.z) do]* dt [0X (2)h]|2q:

N

—0ase—0.

We proved the existence of the directional derivatives OR, f(z,;h), x,h €
H. Obviously, OR,f(x,;h) € L(H,R) and therefore the assertion of the
proposition follows. O

Using the gradient estimate (6.9) for the mild solution and the representation
of OR, f(z)h we get, if f € CL(H,R) and a > wy, that

|0Raf (@) = | / e B[D (X (2)(£)0X ()h(t)) df|
< / " e Blsup| Df () Lz |0X (2)h(1) ] dt
0 xeH

< / e~ sup || Df ()| L mye“t || B dt
0 ceH

1
_ D
oo SIIDS @) e 12l

Finally, we have

1
1ORaf (@)l rrr) < —— o SUB||Df($)||L(H,R) for all & > wp and f € Cy(H,R).
e



Appendix A

Existence, Continuity and
Differentiability of Implicit
Functions

Let (E,|| ||) and (A,]| ||]a) be two Banach spaces. In the whole chapter we
consider a mapping G : A x F — FE which is a contraction in the second
variable, i.e. there exists an a € [0, 1] such that

G\ z) =GNyl < allz —y| forall A€ A, 2,y € E. (A1)

Then, by Banach’s fixed point theorem, we get the existence of a unique
implicit function ¢ : A — E| i.e.

©(A) = G(A, p(N)) for all A € A.

A.1 Continuity of the implicit function

Theorem A.1 (Continuity of the implicit function). (i) If for allx €
E the mapping G(-,x) : A — E is continuous then ¢ : A — E is con-
tinuous.

(ii) If there exists a constant L > 0 such that
G\, z) — GO\ z)||g < LA = N|a forallz € E
then ¢ : A — FE is Lipschitz continuous.

Proof. [FrKn 2002, Theorem D.1, p.164] O
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A.2 Different concepts of differentiability in gen-
eral Banach spaces

Let (E1, || ||g,) and (Ea, || ||g,) be two real Banach spaces and let H : B} —
Es.

Definition A.2. L(E;, E3) is defined as the space of all bounded, linear
operators from E; to Ey. If Ey = Fy we write L(E;) := L(E1, E).

Definition A.3 (Directional derivatives). H is said to be differentiable
i xg € E1 and in the direction y € Fq if there exists

i H(xo + hy) — H(x)

=: 0H (xzq; Es.
h oo h 8 ($07y) € 2

OH (x0;y) is called the directional derivative of H (in xo and direction y ).

Definition A.4 (Gateaux differentiability). H is said to be Gdteauz
differentiable in xy € Fj if there exist all directional derivatives 0H (zo;y),
y € Fy, and if 0H(xo;-) € L(E1, E2). Then we write 0H (xo)y instead of
O0H(x0;y), y € Eq, and 0H (z9) is called Gateaur derivative of H in xo.

If H: Ey — FE5 is Gateaux differentiable in all x € Eq we call H Gateaux
differentiable.

Lemma A.5. (i) If H : E1 — E5 is differentiable in zo € Ey and in
direction y € Ey then there exist all directional derivatives OH (xo; \y),
A€ER, and

OH (z0; \y) = A\OH (x0;y)

(i1) If there exist all directional derivatives OH (z;y), x,y € E1, such that
the mapping x — OH (x;y) is continuous from Ey to Ey for each y €
Ey then OH(x;+) is additive for all x € Ey, i.e.

OH (z3y1 +y2) = OH (x;91) + OH (2;92)  for all x,y1,y2 € By

Proof. [FrKn 2002,Lemma D.4, p.165] O

Theorem A.6 (First order differentiability). We assume that the
mapping G : A x E — E fulfills the following conditions.

1. G(-,x) : A — E is continuous for all x € E,

2. for all A\, € A and oll z,y € E there exist the directional derivatives

WG i) = B — lim CATA2) = G 2)
h—o00 h
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G\, z;y) = E — lim
and 1G: A X ExXxA— FE and 909G : A x E x E — E are continuous.

Then the implicit function ¢ : A — E is Gateauz differentiable such that the
mapping A X A — E, (A, p) — Op(N)p is continuous and

(N = [I = G (X, o(N)] OGN, p (V) (A.2)

for all A\, u € A.

Proof. [FrKn 2002, Theorem D.8, p.168] O

Corollary A.7. If the assumptions of theorem A.6 are fulfilled and if there
exists C > 0 such that ||01G(A\, 2)|pa,p) < C for all X € A and x € E then
0p: A — L(AE) is also bounded.

Proof. [FrKn 2002, Corollary D.11, p.173] O
Theorem A.8. Let G, : A X E — E, n €N, such that

IGrn(A, z) — G\, y)|| < allz —yl| for all A € A and all
z,y € E andn € N.

Moreover, assume that the mappings G and G, n € N, fulfill the following
conditions.

1. G(-,xz) and Gn(-,x), n € N, are continuous for all x € F,
2. G,Gn, n € N, are Gateaux differentiable such that

WG AXxExA—FEand G AXxExXxE—FE
011G : AXEXxAN—FE and G, : Ax ExE — E, neN,

are continuous,

3. NG\, )p and RGr(N, )z, \,u € A, x € E, are continuous uni-
formly in n € N,

4. Gp — G, WGy — 01G and 0oG, — 01G pointwisely as n — oo.
Then there exist unique implicit functions ¢, o, : A — E, n € N, such that
G\, o(N) = o(A) and Gp(\, (M) = pn(N), n €N, for all X € A.
© and pp, n € N, are Gateaux differentiable.

Moreover, (X)) — p(N) and Opn (N — Op(N)p asn — oo for all X\, € A.
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Proof. For all A € A we have that

[en(A) = eVl = [|Gn(X; @n(A) = GA, (V)]
<G en(A) = Gu(X, I+ 1GR (A, 0 (A) = GA w(A) ]
<allen(A) = oW + [[Gr(X; (V) = GX, (V)]

Subtracting on both sides of the above equation «|/¢,(A) — ¢(M)]| and di-
viding by (1 — ) we get that

[ion () = I < T2 l1Gal, 6(N) ~ GO )| — 0

by assumption.

By theorem A.6 (i) ¢ and ¢,, n € N, are Gateaux differentiable. Using the
representation (A.2) of the Gateaux derivatives of ¢, n € N, and ¢ we can
estimate [0, (A\)p — dp(AN)ul|, A, € A, in the following way:

[Onp (N — Op(A) |
<N2Gn (A, (M) 0pn (N — D2G (A, (X)) 0p(A) |
+H@1G( en( M) — G, (V) pll
<[|02Gr(A, @ n(A))&Pn(A)u — 902G (A, on(N)0p (M) |

+ Tsnlé%llﬁsz(A, ©n(A)0p(N)pt — G (A, (X)) 0o (N |

+ [102Gn (X, 9(A)0p(A) . — B2G (A, (X)) Do (M) |

+ Su%llale(A, Pn(A)p = 1Gm (A, o (N)) |
me

F[101Gn (A, (X)) — 01G (A, () )|

Since

102G (A, @n(N)00n( AN — 02GR(X, @n(N) 0Nl < afOne (N — (N p|
we obtain that

10np (N — dp(N) ]
< T (5D 0aGon (e (N)OP(N)t = 02 A, ()0 Nt

+ 102Gn (A, 9(A)0p(A) = B2G (A, p(X))dp(A) |

+§;§I§]H81Gm(>‘v¢n( Nt = 01Gm (A, o(N)) |

+ 101G (A, o(A)) 1t — D1G (N, o(N)) )

— 0
n—o0

since () — @(A) as n — oo and by the assumptions on the mappings
Gn,n €N, and G. O



Appendix B

The Bochner Integral

Let (X, | ||) be a Banach space, B(X) the Borel o-field of X and (2, F, u)
a measure space with finite measure p.

B.1 Definition of the Bochner integral

Step 1:
As first step we want to define the integral for simple functions which are
defined as follows. Set

E={f: Q> X|f=) apla, 2p € X, A€ F,1<k<n,neN}
k=1

and define a semi-norm || ||¢ on the vector space £ by

I£lle == [17)du £ < €.
To get that (£, || ||¢) is a normed vector space we consider equivalence classes

with respect to || ||¢. For simplicity we will not change the notations.
For f € £ we define now the Bochner integral to be

/fdu = wru(Ar).
P

In this way we get a mapping

int : (&, le) — (X, 111
H/fdu
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which is linear and uniformly continuous since || [ f du|| < [|f]| dp for all
feé.

Therefore we can extend the mapping int to the abstract completion of &€
with respect to || ||¢ which we denote by &.

Step 2: We give an explicit representation of £.

Definition B.1. A function f : Q — X is called strongly measurable if it
is Borel measurable and f(£2) C X is separable.

Definition B.2. Let 1 < p < co. Then we define

LP(QF, pu; X):={f:Q— X | f is strongly measurable with

respect to F and /Hpr dp < oo}

1

and the semi-norm || f||zr := (/Hf”p d,u)g, feLr(Q,F,u; X). The space

of all equivalence classes in LP(2, F, u; X) with respect to || ||zr is denoted
by LP(Q,F,u; X) . The elements of LP(Q, F, u; X) are called p-integrable
or just integrable if p = 1.

Notation B.3. Let 1 < p < co. We use the following notations:
LP(Q, F,p) = LP(Q,F,;R) and if confusion is impossible LP(£2)
= LP(Qp) = LP(Q, F, ).

Claim: L'(Q,F,;; X) = E.

Step 1: (L'(, F,11; X), || ||51) is complete.

The proof is just a modification of the proof of the Fischer-Riesz theorem
by the help of the following proposition.

Proposition B.4. Let (2, F) be a measurable space and let X be a Banach
space. Then

(i) the set of Borel measurable functions from 2 to X is closed under the
formation of pointwise limits, and

(ii) the set of strongly measurable functions from Q to X is closed under
the formation of pointwise limits.

Proof. [Co 80, Proposition E.1., p.350] O

Step 2: € is a dense subset of L*(, F, u; X) with respect to || ||z1.
This can be shown by the help of the following lemma.
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Lemma B.5. Let E be a metric space with metric d and let f : Q@ — FE
be strongly measurable. Then there exists a sequence f,, n € N, of simple
E-valued functions (i.e. f, is F/B(E)-measurable and takes only a finite
number of values) such that for arbitrary w € §) the sequence d( fn(w), f(w)),
n € N, is monotonely decreasing to zero.

Proof. [DaPrZa 92, Lemma 1.1, p.16] O

Let now f € LY(Q, F,u; X). By the above lemma B.5 we get the exis-
tence of a sequence of simple functions f,, n € N, such that

| frn(w) = f(w)]] 1 0 forallw e Q asn — oo

Hence f,, — fin || ||z1 by Lebesgue’s dominated convergence theorem.
n—oo

B.2 Properties of the Bochner integral

Proposition B.6. Let f € LY(Q, F,u; X). Then
/wfdu:«ﬁ(/fdu)
holds for all p € X* = L(X,R).

Proof. [Co 80, Proposition E.11, p.356] O

Proposition B.7. Let Y be a further Banach space, ¢ € L(X,Y) and
f e LY(Q,F,u; X) such that po f is strongly measurable. Then

/sOOfdu:sO(/fdu)-

Proof. [DaPrZa 92, Proposition 1.6, p.21] O

Proposition B.8 (Fundamental theorem). Let —o0o < a < b < o0 and
f € CY([a,b]; X). Then

for all s,t € |a,b] where du denotes the Lebesque measure on B(R).

Proof. [FrKn 02, Proposition A.7, p.152] O
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Proposition B.9. Let [a,b] be a finite interval and f € L([a,b], B([a, b]), \; R),
where A denotes the Lebesgue measure. Then the mapping F : [a,b] — R,

s [ f(t)dt, is differentiable X-a.e. on [a,b] and F'(s) = f(s) for A-a.e.

s € [a,b[.

Proof. [deBa 81, Chapter 4, Theorem 12, p.89] O

Proposition B.10. Let [a,b] be a finite interval and let
f € LY([a,b],B([a,b]), \; X), where X\ denotes the Lebesgue measure. Then
the mapping F : [a,b] — X, s — [” f(t)dt, is differentiable X-a.e. on [a,b]
and F'(s) = f(s) for A-a.e. s € [a,b].

Proof. Since f([a,b]) is separable there exist z,, n € N, such that {z, |n €
N} is a dense subset of f([a,b]). Then ||f — z,| € L*([a,b],\) for all n €
N. Consequently, by proposition B.9 the mappings F, : [a,b] — R, s —
2N f(t) —an||dt, n € N, are differentiable A-a.e. on [a,b] and F,(s) =
| f(s) — x| for all n € N and for A-a.e. s € [a,b].

Then we get for A-a.e. s € [a,b| that

s+h s
limsupH}lL(/ f(t)dt—/ f(t)dt) = f(s)ll

—

s+h
= limsupH}ll/ (f(t) = f(s)dt]

h—0

s+h
gnmwp;/ 1£(6) = F(s)] dt

—0

s+h
gh?%pil+”ﬂﬂ—%ﬂﬁ—nﬂ@—$ﬁ
2] £(s) — .

Choosing a subsequence z,,, k € N, such that || f(s) — zp,|| — 0 as k — o0
we obtain that for A-a.e. s € [a, b[ holds

s+h s
([ r@ar= [ pwa) - 1)1~ 0 ash—o.
[

Definition B.11 (Absolut continuity). Let —oco < a < b < oc0. A
function f : [a,b] — R is absolutely continuous (on [a,b]) if for every
e > 0 there exists § > 0 such that > . ,|f(x;) — f(yi)] < ¢ whenever
o]z — yi| < 6 for any set of disjoint intervals such that (z;,y;) C [a, b]
for each i € {1,...,n}.
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Proposition B.12. Let [a,b] be a finite interval and f : [a,b] — R absolutely
continuous, then if x € [a,b]

f(2) — fla) = / oy

Proof. [deBa 81, Chapter 9, Corollary 3, p.162] O
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Appendix C

The Theorem of Hille-Yosida

Let (E,||||) be a separable Banach space.

Proposition C.1. Let S(t), t > 0 be a Cy-semigroup on E and let (A, D(A))
be its infinitesimal generator. If x € D(A) then S(t)x € D(A) and

%S(t)l‘ = AS(t)x = S(t)Ax for all t > 0.

Proof. [Pa 83, I. Theorem 2.4, p.4/5] O

Proposition C.2 (Hille-Yosida). Let (A, D(A)) be a linear operator on
E. Then the following statements are equivalent.

(i) A is the infinitesimal generator of a Cy-semigroup S(t), t > 0, such that
there exist constants M > 1 and w > 0 such that ||S(t)|| gy < Me“* for all
t>0.

(ii) A is closed and D(A) is dense in E, the resolvent set p(A) contains the
interval Jw, oo| and the following estimates for the resolvent Gy = (a—A)~L,
a € p(A), associated to A hold

M

m,kEN,Oz>w

|GE | Ly <

O

Proof. [Pa 83, 1. Theorem 5.3, p.20]

Let (A, D(A)) be the infinitesimal generator of a Cp-semigroup S(t), t >
0, such that there exist constants M > 1 and w > 0 such that ||S(t)[|1(g) <
Me*t for all t > 0. We define now the Yosida-approximation of A. For
n € N, n > w, define

A, :=nAG, = nG,A.
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Proposition C.3. Let (A, D(A)) be the infinitesimal generator of a Cy-
semigroup S(t), t > 0, such that there exist constants M > 1 and w > 0
such that ||S(t)|| gy < Me** for all t > 0. Then

lim A,z = Az for all x € D(A).

Proof. Let x € D(A) and n > w, then

InGpz — z||p = ||Gn(ne — Az) + G, Ax — z||g

= |GuAz]p < ——[|Az]p — 0.

n—w n—oo

But, by proposition C.2, D(A) is dense in £ and |[nGpz||1(g) < %’ where
the sequence %, n > w, is convergent and therefore bounded. Hence we
get for arbitrary x € E that |[nGn,x — x| g — 0.
In particular, we obtain for all x € D(A) that

Apr =nGAx — Ax.

n—oo

O

Proposition C.4. Let (A, D(A)) be the infinitesimal generator of a strongly
continuous semigroup S(t), t > 0, such that there exist constants M > 1 and
w >0 such that ||S(t)|| gy < Me*" for all t > 0. Moreover, let Ap, n € N,
n > w, be the Yosida-approximation of A. Then

S(t)x = lim S,(t)x locally uniformly int >0 for allx € E

where Sy (t) := e, t >0, and the following estimate holds

wnt
S, (t < Meaxp(—22 0t 0, .
192 (O)ll(m) < Mexp(-———) for allt >0, n>w

Proof. [Pa 83, I. Theorem 5.5, p.21] O



Appendix D

Complements

In this chapter we present some results, needed in the theorems 4.4, 4.4 and
5.1, for the drift part fot S(t —s)F(X(s))ds, t € [0,T], of equation (4.1).
They can also be found in [FrKn 2002].

Lemma D.1. If a mapping g : [0,T] x Q@ — R is Pr/B(R)-measurable then
the mapping

Y/ . QT — R
(Sa w) = 1]0,t] (S)g(S, w)

is B([0,T]) ® F;/B(R)-measurable for each t € [0,T].

Proof. We have to show that (]0,¢] x Q) NPpr C B([0,T]) ® F;.
Let t € [0,T7]. If we set

A:={AecPr[AN(0,t] x Q) € B([0,T]) @ Fi}

it is clear that A is a o-field which contains the predictable rectangles |s, u] x
Fs, Fs€ Fs, 0 < s <u<T and {0} x Fy, Fy € Fy. Therefore A =Pp. O

Lemma D.2. Let ® be a predictable H-valued process which is P-a.s. Bochner
integrable. Then the process given by

/t S(t— s)®(s) ds, € [0,T],
0

is P-a.s. continuous and adapted to Fy, t € [0,T]. This especially implies
that it is predictable.

Proof. [FrKn 02, Lemma 3.9, p.70] O
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Theorem D.3. Assume that F fulfills hypothesis H.0. Moreover, let § € L3
and Y,Y € H*3(T,H), predictable, then

(i) (S(t)f)te[o,T] € H3(T,H), 1[0715}(-)5(75 — )F(Y(:)) is P-a.s. Bochner
integrable on [0,T] and the process

(/0 S(t—s)F(Y(s)) ds)te[o,T]

is an element of H*(T, H),
(i) for A >0

1

1 ~
2|V - Y .
)\2)2 l ||2,)\,T

HAS($@U@DFW@mdﬂu1§AhGﬁ(

Proof. (i)
Claim 1. S(t)¢, t € [0,T], is an element of H2(T, H).
The mapping
(s,w) = S(t)§(w)
is predictable since for fixed w € Q)
t = S(t)E(w)
is a continuous mapping from [0,7] to H and for fixed t € [0, T]
w = S(t)E(w)

is not only JF;- but even Fp-measurable.
With respect to the norm we obtain that

IS()ellpz = sup B[IS@E)2 < Mr|jg] 12 < oo
te[0,7

t
Claim 2. The Bochner integral / S(t—s)F(Y(s))ds, t € [0,T], is well
0

defined and has a version which is an element of H?(T, H).

Because of the measurability of F' : H — H it is clear that F(Y (t)), t €
[0, 77, is predictable and the process F(Y(t)), t € [0,T], is P-a.s. Bochner
integrable since

ﬂ/wwmes/Ewuwwwmwsmm+WMﬂ<m
0 0
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Hence, by lemma D.2 the Bochner-integral is well-defined and has a pre-
dictabel version.
Concerning the norm we obtain that

||/ S(t - $)F(Y (s)) ds|)?
< BCT' M2 / (1+ [V (s))? ds]?
0
SCT%MT(E[/ 1ds]z + / E[[[Y (s)]*] dS)%)
< CTMp(1 4 ||Y]32) < oo,

Thus, || [y S(- = s)F(Y(s)) ds|l32 < CTMp(1+ [[Y]j32) < oo.

(ii) For t € [0, T]

i ~
H/ S(t—$)[F(Y(s)) = F(Y(s))] ds|® < M%CQT/O 1Y (s) = Y (s)|* ds

This implies that

1

E[II/O S(t = s)[F(Y(s)) = F(Y(5))] ds||*)2

= MTCT% M e A28V (s) — Y (9)||22 ds 3
) L
<Y - ?H%,)\,T

¢
< MTCTé(/ 2 ds)2||Y = Vaar

0

1o Lyt Y

= MTCT26 (E)Q ||Y — YH27)\’T
Dividing by e provides that
||/0 S(- = 9)[F(Y(s)) = F(Y(s))] ds|la a1 < MTCTQ()\ )2 Y = Y onr
—— ——

—0 as A—oo

Theorem D.4. Assume that F fulfills hypotheses H.0 and H.1.

(i) LetY,Z € H*(T, H), predictable. Then i (-)S(t—-)OF (Y (-))Z(:) is
P-a.s. Bochner integrable on [0,T].
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(ii) Let Y, Z € H*(T, H), predictable. Then

sup | [ 80— o)(PEHIEODZFXED iy () 2(9)) as
te[0,7) 0
1 T S S — S 1
SMTTzE[/O HF(Y( )+hZ§l)) F(Y(s)) _OF(Y(s))2(s)|? ds]?
}:; 0.

(iii) Let Y,Yn, Z, Z, € H*(T, H), predictable, n € N, such that Y,, — Y
and Z,, — Z in H*(T, H). Then
t

sup || | S(t— s)(OF (Yu(s)) Zn(s) — OF (Y (5))Z(s)) ds| 2
t€[0,T] 0
— 0.

n—oo

Proof. (i) Since Y is predictable and F' is B(H)/B(H )-measurable the pro-
cess OF (Y (-))Z(-) is predictable. Moreover, ||0F(Y)Z| < C||Z|| € LY(Q x
[0,T],P® ). Hence, OF (Y (-))Z(-) is P-a.s. Bochner integrable.

(ii) The estimate is an easy calculation. Then by Lebesgue’s dominated
convergence theorem the convergence to 0 follows (see also [FrKn 02, Proof
of Theorem 4.3.(i), Step 1, (b), (1.), p.97]).

(iii)
sup || [ S(t = s)(OF (Yn(s))Zn(s) — OF(Y(s))Z(s)) ds||zr
t€[0,T] 0

can be estimated by

-1
MT"5 [CT?)| 2, = Zllpo

S

T
(B[ 1 (a()2(5) ~ 0P (Y () 205" ds))

B
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| Zn, — Z||1» — 0 as n — oo by assumption. The second summand converges
to 0 as n — oo, by the continuity of JF, lemma 5.4 and the fact that

|0F (Ya(s)) Z(s) = IF(Y () Z(s)||P < 2°CP || Z|PP € L} (2 x [0,T], P, P x A)

(see also [FrKn 02, Proof of Theorem 4.3.(i), Step 2, (b), (1.), p.100/101]).
O
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X(t—)
AX (1)

Ae, Ad

M*(E), M2, (E), M7(E)
<M,N> <M>
Sucpa Rucpa Eucp
ducep(+, ")

Intp (X) = [ X dM
[M, N], [M]

MC, Md

II

Ny(dt,dy)

Ty

N,(B)

q(]s,t] x B)

£

[Nl

Pr(U), Pr
NZ(T,U,H)

Mr

MT,n

HP(T, H)

1Y {342

1Y[2n7

H*(T,H)

H?>MNT, H)

L(Ey, E»)

L(Ey)

OF (z;y)

oF
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p-8

p.8

p-8

p.-9
p-11
p-12
p-13
p-13
p-14
p-15
p-17
p-23
p-29
p-30
p-32
p-33
p-33
p-38
p-40
p-63
p-97
p-68
p-68
p-68
p-69
p-69

p. 104
p. 104
p.104
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