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Introduction

One of the most studied equations in mathematics and physics is the following
second order parabolic equation

{g—g(t,x) = Lu(t,z), t>0
(

M) u(0,z) =¢(z), ze€R

where

Z q’L] 837 axj + Z , x € Rd.

5,j=1 1=1

Therewith Q(z) = (¢ij(z)) is a nonnegative definite matrix and G(z) =
(g1(z),...,g4(x)) a vector from R? for each z € RY.

In the mid 1960s Gross [Gr 67] and Daletsky [Dal 66] were the first who
considered this kind of equation in an infinite dimensional Hilbert space H
instead of R?. Introducing Hilbert space-valued Wiener processes and the
stochastic integral in infinite dimensions they presented the possibility to
make use of infinite dimensional stochastic differential equations as an effi-
cient tool to solve the originally deterministic problem (1). In the case of R?
this approach was proposed by Kolmogorov and It6. That is why equation
(1) is called Kolmogorov equation. One of the more recent works where the
above equation is considered in the finite dimensional situation and where it
is handled by purely probabilistic methods is for example [Ku 90, Chapter
6.

But in any case it is not only important to find a solution of the stochastic
equation but it is crucial to analyze its dependence on initial data.

Apart from this application to parabolic equations, stochastic differential
equations are also of independent interest for modeling processes in physics
(e.g. stochastic equations of the free field or the stochastic quantization of
Euclidean quantum fields), economics (e.g. development of the price of a
share) and biology (e.g. population genetics). For a more detailed discussion
we refer to [DaPrZa 92, p.1-p.11; Za 98, p.204-p.206].



Up to now, there are several papers which deal with the problem of existence
of solutions of stochastic equations and their regularity with respect to ini-
tial data (see for example [Dal 67|, [DaPrZa 92|, [DaPrZa 96|, [Ce 98], [Ce
2000|, [DaPrElZa 95], [EILi 93], [MasSei 2000]). But from a strict point of
view there were some questions left open or at least unclear concerning some
of the proofs, as already remarked by C. Ziihlsdorff (see [Zii 95]). Since a
large number of works are based on the corresponding results, it is the aim
of this diploma thesis to provide detailed and complete proofs for these reg-
ularity results, with particularly emphasis on the respective weakest possible
assumptions to be imposed.

At first we now want to present the framework in which we treat this problem
and then we will summarize our main results. We shall follow largely the
set-up in the fundamental monographs [DaPrZa 96] and also [DaPrZa 92|,
and try to stick to the notations therein.

We consider the following type of stochastic differential equations on a sep-
arable (infinite dimensional) Hilbert space H

5 [AX() = [AX(0) + F(X ()] di + BX (1) dW(0), t € [0,7]
® x0) =¢

where W (t), t € [0,T], is a cylindrical Wiener process on a probability space
(Q, F, P) taking values in another Hilbert space U. A is the generator of a
Cy-semigroup S(t), t € [0,T].

Under rather general conditions on the drift term F': H — H and the diffu-
sionterm B: H — L(U,H) := {L : U — H | L is linear and bounded} there
exists a mild solution of problem (2) that is a predictable process X (&)(¢),
t € [0,T], such that

X(€)(t) = S+ / S(t — $)F(X(€)(s)) ds

; / S(t— $)B(X()(s)) dW(s) P-as.

As mentioned above the main part of this work deals with the problem which

respective conditions imposed on the coefficients F' and B and ¢ > p > 2

imply that the mapping & X (£) is once or twice differentiable from L7 to
HP (T, H), where

HP(T,H) :={Y :[0,T] x Q — H|Y is predictable and sup ||Y (¢)||zr < o0},
t€[0,T7]

equipped with the norm given by ||Y[3» := sup,eq[|Y (¢)||z». Since a mild
solution of the stochastic differential equation (2) is defined implicitly by



X (&) =F(& X(&)), where F : Lb x HP(T,H) — HP(T, H) is given by
F(EY)(t) =S(t)¢ —i—/o S(t—s)F(Y(s)) ds

+ /tS(t —$)B(Y(s)) dW(s), te[0,T],

differentiability properties of X can be deduced from properties of the map-
ping F. Questions concerning differentiability of implicit functions, however,
can be treated on the very abstract level of a general contracting mapping
G : A x E — F on arbitrary Banach spaces A and E.

There already is an implicit function theorem [Za 98, Theorem 10.2, p.207;
Theorem 10.4, p.208] which makes statements about first and second order
directional derivatives and which can be applied to the mapping F. But so
far, there has been no version of an abstract implicit function theorem which
provides explicit statements about first and second order Fréchet differentia-
bility and which works with regard to F.

One of the contributions of our work is to present such a version (see Theo-
rem D.8 and Theorem D.13). Using this we are able to give a complete proof
for the first and second order Fréchet differentiability of the mild solution
X : LT — HP(T, H) with respect to the initial condition & which may even be
random. This is our main result (see Theorem 4.3 and Theorem 5.3). There
are several papers which have already used this (see [AIKoR6 95, Theorem 1,
p.107], [DaPrZa 92, Theorem 9.16, p.258], [DaPrZa 96, Theorem 5.4.2, p.71],
[Za 98, Theorem 6.7, p.179]) since, as said before, various versions of such a
result have been stated previously but without complete proofs.

This strong kind of differentiability is of great importance with regard to
the transition semigroup pyp(z) := E(o(X(z)(t))), t € [0,T], correspond-
ing to the mild solution X. In fact, as a consequence we can verify that
pr: C2 — CE, t € [0,T] (see Theorem 6.1). This plays an important role
with respect to the solvability of the Kolmogorov equation (see Theorem 6.4).

Before we describe our main results more precisely, we comment on the his-
tory of the problem trying at the same time to identify the motivation and
contributions of our work, in more detail.

Daletsky and Belopolskaja belong to the first who deal with this question
(see [Dal 67, Theorem 2.1, p.33; Theorem 2.2, p.34] and [BeDal 80, § 2,
p.125-p.129]). They consider the case that A = 0 and claim that X : L% —
H?(T, H) has continuous derivatives of order k = 1, 2 under certain regularity
assumptions on F' and B. But it is not made explicit which kind of differ-
entiability is meant and the proof is not completely presented. Especially,



the exact formulation of the abstract implicit function theorem (as well as
its proof) the authors refer to, is missing.

The problem is taken up again by Da Prato and Zabczyk in [DaPrZa 92].
There, A is no longer equal to zero. But as in [Dal 67] and [BeDal 80] B is
still a mapping from H to the space of all Hilbert-Schmidt operators and not
only to the space L(U, H) of all linear and bounded operators from U to H
as in this diploma thesis.

Da Prato and Zabczyk state that the mild solution is twice differentiable
with respect to a deterministic initial condition under the assumption that
the coefficients F' and B are twice continuously differentiable with bounded
derivatives of order k = 1,2 [DaPrZa 92, Theorem 9.4, p.245]. In this case the
implicit function theorem, which the proof is based on, is presented ([DaPrZa
92, Lemma 9.2, p.244]). But in the form given there it is not adequate if one
is interested in Fréchet differentiability of the mild solution X. From a strict
point of view it turns out that even in the case that one only asks for the
directional derivatives of second order, an application is not possible without
modification, i.e. without adding a further Banach space E, (as done later
in [DaPrZa 96]).

As just mentioned, with regard to the second order directional differentiabil-
ity an adapted version of the implicit function theorem is presented in the
book Ergodicity for Infinite Dimensional Systems by Da Prato and Zabczyk
[DaPrZa 96, Proposition C.1.3, p.319] or in [Za 98, 10.Appendix, p.206-209]
where a very detailed proof is given. By virtue of this theorem it is possible to
get the existence of the directional derivatives of second order (with respect
to deterministic initial conditions) even in the case that only the composition
S(t)B(x), z € H, is a Hilbert-Schmidt operator ([DaPrZa 96, Theorem 5.4.1,
p.69]). For that F' and B : H — L(U, H) are required to have bounded and
continuous Fréchet derivatives of order £ = 1,2 and further assumptions are
made concerning the Lipschitz continuity of S(¢)B and the boundedness of
S(t)D?B in the space of Hilbert-Schmidt operators as functions of .

For us, however, there still remains a problem to apply this version of the
implicit function theorem without making a slightly stronger assumption on
S(t)DB and S(t)D*B [Hypothesis H.1, p.91; Hypothesis H.2, p.111]. From
a strict point of view, despite our stronger conditions, the question on the
Fréchet differentiability (treated in this diploma thesis) of the mild solution
remains open, even concerning the first order. That is, because the implicit
function theorem in [DaPrZa 96] does not make any statement about it.



Now we want to go into the particulars of the structure of our work sum-
marizing the contents and results chapterwise. As said before, our setting is
taken from the book Ergodicity of Infinite Dimensional Systems by Da Prato
and Zabczyk [DaPrZa 96].

In Chapter 1 a detailed introduction to the theory of stochastic integration
on infinite dimensional separable Hilbert spaces is given. In this context the
notion of a (cylindrical) Wiener process is presented. The book Stochastic
Equations in Infinite Dimensions by Da Prato and Zabczyk [DaPrZa 92| is
the work we mainly refer to in this chapter.

In Chapter 2 different kinds of solutions of stochastic differential equations
are compared. In addition to the notion of mild solution which we are in-
terested in, there are at least two other concepts of solutions of stochastic
differential equations called weak and strong solution. They are presented
and the (essentially known) relations between these three different kinds of
solutions are worked out.

In Chapter 3 we are now able to show that Lipschitz assumptions on F' and
S(t)B imply Lipschitz properties of F which by the preparations of Chapter
1 can now be defined. So, we can finally use the first part of the implicit
function theorem (Theorem D.1 (ii)) to get that there is a unique mild so-
lution X of problem (2) which is Lipschitz continuous with respect to the
initial condition.

In Chapter 4 we analyze the first order differentiability of the mapping
& — X () in the case where F': H — H and B : H — L(U, H) are contin-
uously Fréchet differentiable with bounded derivatives. First, we prove the
Gateaux differentiability, i.e. the existence of the directional derivatives as
linear and bounded operators with respect to the directions (see Theorem
4.3 (i)). For the proof one can refer to the version of the implicit function
theorem given by Zabczyk [Za 98, Theorem 10.2, p. 307] (see also Theorem
D.8). But in comparison to Da Prato and Zabczyk [DaPrZa 96, Theorem
5.4.1, p.69] we have to supplement the assumptions by a condition concern-
ing the continuity of S(¢)DB to justify its application.

To get the existence of the Fréchet derivative of £ — X (&) we have to mod-
ify the abstract implicit function theorem by introducing a further Banach
space Ey C E (see Theorem D.8 (ii)) following the idea presented in [DaPrZa
96], to get the second order directional derivatives. That becomes necessary,
since the mapping F is not Fréchet differentiable in the second variable as
a mapping from L§ x HP(T,H) to HP(T, H) but only as a mapping from
L x HY(T,H) to HP(T, H) with ¢ > p. (see Theorem 4.3 (iv))

Chapter 5 is devoted to the question of the second order differentiability of
the mild solution. Analogously to [DaPrZa 96, Theorem 5.4.1 (ii), p.69], we
require ' : H — H and B : H — L(U, H) to be twice continuously Fréchet



differentiable with bounded derivatives of first and second order. In addition,
we also need their assumptions concerning the boundedness of S(¢t)D?B in
the space of all Hilbert-Schmidt operators. But in contrast to [DaPrZa 96,
Theorem 5.4.1 (ii), p.69] we think that, additionally, one has to require the
continuity of S(t)D?B (see Hypothesis H.2, p.111) similar to the change of
the Hypothesis H.1 in Chapter 4.

Since we are interested in the second order Fréchet differentiability, the ab-
stract theorem in the given form [Za 98, Theorem 10.4, p.208] is not sufficient
and has to be supplemented by a second part (Theorem D.13 (ii), (iii)). In
our concrete setting that means that we have to deal with the question under
which conditions F is twice continuously Fréchet differentiable in the second
variable instead of only having second order directional derivatives. To prove
this, one has to consider F as a mapping from L{ x HY(T, H) to H?(T, H)
with ¢ > 2p > 4. At first, by Theorem D.13 (ii) we only obtain the existence
of the Gateaux derivative 0DX in this way. To verify that it is even the
Fréchet derivative D2X the initial condition has to be restricted again such
that the conditions of Theorem D.13 (iii) are fulfilled (see Theorem 5.3 (i),
(if)).

Each of the Chapters 3-5 includes an additional part about the pathwise
continuity of the mild solution X (£)(¢), ¢t € [0, 7], (see [DaPrZa 96, Theorem
5.3.1, p.66]) and its derivatives respectively (see Proposition 4.8 and Proposi-
tion 5.7). The proofs are not based on the implicit function theorem, but on
the well-known factorization formula for stochastic convolution integrals by
Da Prato and Zabczyk (see [DaPrZa 96, Theorem 5.2.5, p.58|). To apply it,
one needs additional assumptions on the function K : [0,7] — [0, co[ which
describes the Lipschitz property of S(t)B (see [DaPrZa 96, Theorem 5.3.1,
p.66]) and on the function K; : [0,7] — [0, 00| respectively, which describes
the boundedness of S(t)D?B in terms of ¢ (see Hypothesis H.2 and Proposi-
tion 5.7).

Chapter 6 is devoted to applications, in particular with regard to the Kol-
mogorov equation (1). In its first subsection we show that the transition
semigroup given by pyp := E(p(X(-)(t))) preserves regularity properties of
@ in z if one makes corresponding regularity assumptions on the mild solution
X with respect to the deterministic initial data z € H (see Theorem 6.1).
For example, Theorem 3.2 provides the conditions which imply the Feller
property of the semigroup py, t € [0,T], and Corollary 5.6 states conditions
under which we prove that

pro € UCE == {f € C? | f has uniformly continuous derivatives},

if ¢ € UC?. This result plays an important role in the second section of
Chapter 6 where we prove that p;p is a strict solution of the Kolmogorov



equation

%(t, z) = str [D?u(t,z)B(z)(B(z))*]
(3) +(Az + F(x), Du(t,z)), t€[0,T],z € D(A)
u(0,z) =¢p(z), z€H

associated to our stochastic equation (2) (see Theorem 6.4 (i)). The proof
also uses the pathwise continuity of the mild solution and its derivatives, espe-
cially these of second order. From our point of view a respective assumption
concerning the second order derivative seems to be missing in [DaPrZa 96,
Theorem 5.4.2, p.71]. In comparison to [DaPrZa 96, Theorem 5.4.2, p.71],
according to our analysis, it seems that a given strict solution is not unique
in general, but only under further assumptions (see Theorem 6.4 (ii)).
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Chapter 1

The Stochastic Integral in
General Hilbert Spaces

We fix two separable Hilbert spaces (U, (, )y) and (H,(, )). The first part
of this chapter is devoted to the construction of the stochastic It6 integral

/tq>(s) aw(s), tel0,T),

where W (t), t € [0,T], is a Wiener process on U and ® is a process with
values that are linear but not necessarily bounded operators from U to H.
For that we first will have to introduce the notation of the standard
Wiener process in infinite dimensions. Then there will be a short section
about martingales in general Hilbert spaces. These two concepts are impor-
tant for the construction of the stochastic integral which will be explained in
the following section.
In the second part of this chapter we will present the It6 formula and the
stochastic Fubini Theorem and establish basic properties of the stochastic
integral, including the Burkholder-Davis-Gundy inequality.
Finally, we will describe how to transmit the definition of the stochastic
integral to the case that W (t), t € [0, 7], is a cylindrical Wiener process.

1.1 Infinite dimensional Wiener processes

Definition 1.1. A probability measure p on (U, B(U)) is called Gaussian
if all bounded linear mappings

v U —>R
u|—><u,v>Ua uelU
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have Gaussian laws, i.e. for all v € U there exist m := m(v) € R and
0 :=o(v) > 0 such that

1 _@=m)’
p(v' € A) = W/Ae 222 dx for all A € B(U)

or

=20, foronewu € U where ¢, is the Dirac measure in u.

Theorem 1.2. A measure p on (U, B(U)) is Gaussian if and only if
iu) = / 0 (dy) = eitmmu—3Quay 4 e

where m € U and @ € L(U) is nonnegative, symmetric, with finite trace (see
Appendiz B.3).

In this case p will be denoted by N(m, Q) where m is called mean and Q is
called covariance. The measure i is uniquely determined by m and Q).

Proof. [DaPrZa 92, p.55] O
The following result can be found for example in [DaPrZa 92, p.54].

Proposition 1.3. Let X be a U-valued Gaussian random variable on a prob-
ability space (Q,F,P), i.e. there exist m € U and Q € L(U) nonnegative,
symmetric, with finite trace such that Po X' = N(m, Q).

Then (X, u)y is normal distributed for allu € U and the following statements
hold

e E((X,u)y) = (m,u)y for allueU
e E({X —m,u)yp(X —m,v)y) = {(Qu,v)y for all u,v € U

o E(|X —mllf) =tr @

The following Proposition will lead to a representation of a U-valued
Gaussian random variable by the help of real valued Gaussian random vari-
ables.

Proposition 1.4. If Q € L(U) is nonnegative, symmetric, with finite trace
then there exists an orthonormal basis e, k € N, of U such that

Qer = Mer, M >0, kEN
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Proof. [ReSi 72, Theorem VI.21; Theorem VI.16 (Hilbert-Schmidt theorem)]

Proposition 1.5 (Representation of a Gaussian random variable).
Let m € U and Q € L(U) be nonnegative, symmetric, with tr Q < oco. In
addition, we assume that ex, k € N, is an orthonormal basis of U consisting
of eigenvectors of Q@ with corresponding eigenvalues A\, k € N.

Then a U-valued random variable X on a probability space (2, F, P) is Gaus-
sian with P o X' = N(m, Q) if and only if

X=Z@5k€k+m

keN

where By, k € {n € N | A\, > 0}, are independent real valued random variables
with P o B,~" = N(0,1) for all k € N with A\, > 0. The series converges in
L2(Q, F, P;U).

Proof. 1. Let X be a Gaussian random variable with mean m and covariance
). Without loss of generality we assume that A\, > 0, £ € N.

Then X = ), (X,er)er in U where (X, e;) is normal distributed with
mean (m, e;) and variance )\, k € N, by Proposition 1.3. If we define now

(X, ex) — (m, ex)
VA ’
then we get that Po 8;' = N(0,1) and X = > ken VAeBrer +m. To prove

the independence of 8, £ € N, we take an arbitrary n € N and a; € R,
1 < k < n, and obtain that

B =

k€N,

n n a n ax
Zakﬂk = Z—(X,ek) +c= (X,Z—ek) +c
k=1 i VA — VA

which is normal distributed since X is a Gaussian random variable. Therefore
we have that i, £ € N, are a Gaussian family. Hence, to get the indepen-
dence, we only have to check that the covariance of §; and 3;, 4,7 € N, i # j,
is equal to zero. But this is clear since

1 1
E(BiBj) = ——=E(X —m,e;)(X —m,e;)) = ——(Qe;,e;) =0
for 1 # j.
Besides it is easy to see that the series 22:1 VAxBrer, n € N, converges in
L?(Q, F, P;U) since the space is complete and

E(1Y - VaBrerl”) = D ME(B?) =D M
k=m k=m k=m
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Since ) ..y Ak = tr@Q < oo this expression becomes arbitrarily small for m
and n large enough.

2. Let ex, k € N, be an orthonormal basis of U such that Qe, = e,
k € N, and let 8, £ € N, be a family of independent real valued Gaussian
random variables with mean 0 and variance 1. Then it is clear that the

series Y ¢ vV AxBrer +m, n € N, converges to X := >, v Axfrer +m in
L*(Q,F, P;U) (see 1.). Now we fix u € U and get that

<Z VAkBrer +m,u) = Z VBi(er, w) + (m, u)

is normal distributed for all » € N and the sequence converges in L*(Q), F, P).
This implies that the limit (X, ) is also normal distributed where

E((X,u)) = EQ>_ v/ AxBrler, u) + (m, u))

keN

= lim EQ) v/ eBiler, u)) + (m,u) = (m, u)

n—0o0

and concerning the covariance we obtain that

n—oo

= Z /\k<ek: U) <€k> U)

keN

= (Qex,u){ex, v)

keN

= (er, Qu){er, v) = (Qu,v)

keN

B((X,u)(X,0)) = Tim B(3" v/Neiler, w) D v bilen, )

for all u,v € U. O

By part 2. of this proof we finally get the following existence result.

Corollary 1.6. Let Q) be a nonnegative and symmetric operator in L(U)
with finite trace and let m € U. Then there exists a Gaussian measure
p=N(m,Q) on (U, B(U)).

After these preparations we will give the definition of the standard Q)-Wiener
process. To this end we fix an element ) € L(U), nonnegative, symmetric
and with finite trace and a positive real number 7.
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Definition 1.7. A U-valued stochastic process W (t), t € [0,7T], on a prob-
ability space (2, F, P) is called (standard) @)-Wiener process if

e W({0)=0
e W has P-a.s. continuous trajectories.

e The increments of W are independent, i.e. that the random variables
W(ty), W(ta) = W(t1), ..., W(tn) = W(tn-1)
are independent for all 0 <t¢; <---<t, <T,n €N

e The increments have Gaussian laws, i.e. that
Po(W(t)—W(s))'=N(0,(t—s5)Q) foral 0 < s <t <T.

Similar to the existence of Gaussian measures the existence of a (Q-Wiener
process in U can be traced back to the real valued case. It will be done by
the following Proposition.

Proposition 1.8 (Representation of the Q-Wiener process). Let e,
k € N, be an orthonormal basis of U consisting of eigenvectors of Q) with
corresponding eigenvalues A\, k € N. Then we get that a U-valued stochastic
process W (t), t € [0,T], is a Q-Wiener process if and only if

W(t) =3 vV MBe(t)er, te[0,T],

keN

where B, k € {n € N | X\, > 0}, are independent real valued Brownian mo-
tions on a probability space (Q, F, P). The series converges in L*(Q, F, P;U).

Proof. Without loss of generality we assume that Ay > 0 for all £ € N.
1. Let W(t), t € [0, T], be a @-Wiener process in U.
Since Po W (t)~* = N(0,tQ) we know by Proposition 1.5 that

W(t)=> VMBe(t)er, te0,T],

keN

where P o B;'(t) = N(0,t), k € N, and S4(t), k € N, are independent for
each ¢t € [0, 7.

Now we fix ¥ € N and first we show that Sx(¢), ¢t € [0,T], is a Brownian
motion:

If we take an arbitrary intersection 0 = t, < t; < --- < t, < T, n €N, of
[0,T] we get that
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Br(t1), Br(tz) — B(tr), - -, Br(tn) — Br(tn-1)
are independent for each k£ € N since
1
Ve

Moreover we obtain for the same reason that Po (8, (t)—f8x(s))™! = N(0,t—s)
for0<s<t<T.
In addition

Br(t;) — Be(tj—1) = (W(ty) —W(tj-1),ex), 1<j<m

1
s \/A_k<W(t)’ ex) = Bi(t)
is P-a.s. continuous for all £ € N.
Secondly it remains to prove that (i, k € N, are independent.
We take ki,...,k, € N, n €N, k; # k; if ¢ # j and an arbitrary intersection
0=t0§t1§---§tm§T,m€N.
Then we have to show that

U(/Blm (tl)a s 7/3161 (tm))v cee 70-(6kn(t1)7 SRR /Bkn(tm))

are independent.

We will prove this by induction with respect to m:

If m = 1 it is clear that S, (¢1), - .., Bk, (t1) are independent because of Propo-
sition 1.5. Thus we take now an intersection 0 =ty < t; < -+ <t 1 < T
and assume that

O'(ﬁkl (tl), - ,ﬁkl (tm)), - ,U(ﬂkn(tl), e ,ﬁkn (tm))

are independent. We notice that

0-(/6/6Z (tl)a ey Bkz (tm); Bkl (tm—l—l))
= U(Bkl (tl)a ey ﬂk@(tm)a /Bki(tm—kl) - ﬂki (tm))) 1 S 1 S n,
and that Sy, (tym41) — B, (tm) = ;Ak'(W(th) —W(tm),ex)v, 1 <i<n,are
independent by Proposition 1.5 since W (tii1)— W () is a Gaussian random
variable. If we take 4;; € B(R), 1 <i <mn, 1 <j < m+1, then we get
because of the independence of o(W(s) | s < t,) and o(W (t41) — W (tm))
that

P((Y[ {6k () € Aig}n ﬂ{ﬁki (tmt1) = Br:(tm) € Aijmi1})

i=1j=1
- J ~ o~ = ~ -

e o(W(s)|s<tm) € o(W(tm+1) — W(tn))
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ﬂ ﬂ{ﬁk E A, ,j} ﬂ{ﬁk m—|—1 Bkl (tm) € Ai,m—H})

zlgl

_ (HP ﬂ{ﬁk )€ A1) )(U P (B, (tmsr) — Be(tm) € Ai,mﬂ))

= HP ﬂ{ﬁm € Aij} N {Br; (tms1) — Bri(tm) € Aipny1})

and therefore the assertion follows.

2. If we define
=S VaBe(er, te0,T]

keN

where (i, k € N, are independent real valued continuous Brownian motions
then it is clear that W (¢), t € [0, T, is well defined in L?(Q, F, P; U). Besides
it is obvious that the process W (t), t € [0,T], starts in zero and that
Po(W(t)—W(s))™' = N(0,(t —5)Q), 0 < s < t < T, by Proposition 1.5.
It is also clear that the increments are independent.

Thus it remains to show that the trajectories of W (t), t € [0,T], are P-a.s.
continuous. For this end we set

)= VBt w)ex

for all (t,w) € Qr :=[0,7] x Q and N € N. Then WY N € N, is P-a.s.
continuous and we get that

E( sup [[W"(t) = WY (t)|[%) = E( sup Z kB (t)

te[0,T] te [0,7],= M1

< Z MeE( sup Si(t))

k=M1 t€[0,T

where ¢ = E(sup,¢o 7 57 (t)) < oo because of the maximal inequality for real

valued martingales. As Z)\k =tr ) < oo it follows from the Tchebychev

kEN
inequality that there is an increasing sequence (/NV;,)men such that

1 1
P(sup [[Wht(t) =W (@)llv > o2) < 5 meN,

t€[0,T] A
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Hence the lemma of Borel-Cantelli provides that W= m € N, is P-a.s.
uniformly convergent and this implies that there is a continuous version of
W (t), t € [0,T], i.e. that there exists a continuous process W(t), t € [0, T],
such that P(W(t) = W(t)) = 1 for all t € [0,7)] (see [Za 98, Proposition
2.10, p.128)). 0

Definition 1.9 (Normal filtration). A filtration 7, ¢ € [0,T], on a prob-
ability space (€2, F, P) is called normal if

e F, contains all elements A € F with P(A) = 0 and
o Fi="Fy = )Fforalltel0,T]
s>t

Definition 1.10 (Q-Wiener process with respect to a filtration). A Q-
Wiener process W (t), t € [0,T], is called Q-Wiener process with respect to
a filtration F, t € [0, T, if

e W(t), t €0,T], is adapted to F, t € [0,T], and
e W(t) — W(s) is independent of F, for all 0 < s <t <T.

In fact it is possible to show that any U-valued @-Wiener process W (),
t € [0,T], is a @Q-Wiener process with respect to a normal filtration:
We define

N:={AcF|PA)=0}, F:=cW(s)|s<t)
and F9:=o(FUN)

Then it is clear that

(1.1) Foe=(F2, telo,T],

s>t

is a normal filtration and we get that

Proposition 1.11. Let W(t), t € [0,T], be an arbitrary U-valued Q-Wiener
process on a probability space (U, F, P). Then it is a Q-Wiener process with
respect to the normal filtration Fy, t € [0,T], given by (1.1).

Proof. It is clear that W (¢), t € [0, T}, is adapted to F, ¢t € [0,T]. Hence we
only have to verify that W (t) — W (s) is independent from F;, 0 < s <t < T.
But if we fix 0 < s <t < T it is clear that W(t) — W(s) is independent of
.7:"5 since
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o(W(t1), W(ta),...,W(tn))
=o(W(t1), W(ts) = W(t1),.-.,W(tn) — W(tn-1))
forall 0 < t; <ty < --- < t, < 5. Of course W(t) — W(s) is then also

independent of F0. To prove now that W (t) — W (s) is independent of F, it
is enough to show that

PUW(t) — W(s) € A} N B) = P(W(t) — W(s) € A)P(B)

for any B € F; and any closed subset A C U as £ := {A C U | A closed}
generates B(U) and is stable under finite intersections. We get this result in
the following way

PEW(t)—W(s) € A} N B)
=E(lao (W(t) —W(s))1p)
= JE&E([Q — n dist(W (t) — W(s), A)) v 0] 1B>

— lim lim E([(l —n dist(W(t) — W(s + =), 4)) v 0] 13)

n—00 M—>00 m

— lim lim E((1 - n dist(W(t) - W(s + %), A) v 0)P(B)

n—o0 m—oo

= P(W(t) — W(s) € A)P(B)

since W (t) —W (s+ ) is independent, of .7?50Jr . D F,if mislarge enough. O

1.2 Martingales in general Banach spaces

Analogous to the real-valued case it is possible to define the conditional
expectation of any Bochner integrable random variable with values in an
arbitrary separable Banach space (E, || ||). This result is formulated in the
following Proposition.

Proposition 1.12 (Existence of the conditional expectation). Assume
that E s a separable Banach space. Let X be a Bochner integrable E-valued
random variable defined on a probability space (Q, F, P) and let G be a o-field
contained in F.

Then there exists a unique, up to a set of P-probability zero, integrable E-
valued random variable Z, measurable with respect to G such that

/Xsz/ZdP for all A €qg.
A A

The random variable Z will be denoted as E(X|G) and called the conditional
expectation of X given G.
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Proof. [DaPrZa 92, Proposition 1.10, p.27] O
Later we will need the following result

Proposition 1.13. Let (Ey,&1) and (Es, &) be two measurable spaces and
VU : E; X E3 — R a bounded measurable function. Let X, and X5 be two ran-
dom variables on (0, F, P) with values in (E1,&;) and (Ey, &) respectively,
and let G C F be a fized o-field.

Assume that X, in G-measurable and X, is independent of G, then

A

E(¥(X1,X5)|G) = ¥(X1)

where

A

‘I’(Jfl) = E(\I’(Jfl,Xg)), xr € El.
Proof. [DaPraZa 92, Proposition 1.12, p.29] O

Remark 1.14. The previous Proposition can be easily extended to the case
that the function ¥ is not necessarily bounded but nonnegative.

Proposition 1.12 is the basis for the generalization of the definition of the
martingale:

Definition 1.15. Let M(t), t > 0, be a stochastic process on (2, F, P) with
values in a separable Banach space E. Besides we consider a filtration F;,
t>0,on (Q,F,P).

The process M is called F;-martingale, if

o E(|M(t)]]) <ocoforallt >0

e M(t) is Fi-measurable for all ¢ > 0

o E(M(t)|Fs) = M(s) P-as. forall 0 < s <t < oo
There is the following connection to real valued submartingales.

Proposition 1.16. IfM(t), t > 0, is an E-valued F-martingale then | M (t)]|,
t >0, is a real valued F;-submartingale.

Proof. [DaPrZa 92, Proposition 3.7, p.78| O
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Theorem 1.17 (Maximal inequality). Letp > 1 and let E be a separable
Banach space.
If M(t), t € [0,T], is a continuous E-valued Fy-martingale then

E(sup |[M(©)|P) < (=2=)? sup E(||M(1)|]P)

t€[0,T P—=1" s,

Proof. The inequality is a consequence of the previous Proposition and the
well known maximal inequality for real valued submartingales. O

Now we fix 0 < T < oo and denote by M2(E) the space of all E-valued
continuous, square integrable martingales M(t), t € [0,7]. This space will
play an important role with regard to the definition of the stochastic integral.
We will use especially the following fact.

Proposition 1.18. The space M2 (E) equipped with the norm

1 1
M| s, = supeeor(E([M@)]1%)2 = (E(|M(T)]*))>

1s a Banach space.

Proof. [DaPrZa 92, Proposition 3.9, p.79] O

Lemma 1.19. If M,, n € N, is a sequence in M%(E) which converges to
M in M?% then there is a subsequence ng, k € N, such that M,,, k € N,
converges to M P-a.s. uniformly on [0,T].

Proof. As M, n € N, is a Cauchy sequence in M2 we get by Theorem 1.17
that

E( sup |M,(t) — My, (1)]|*) — 0 asn,m — oo
t€[0,T1]

Hence we can find a subsequence n;, £ € N, such that

P(sup || My,,,(t) = My, (t)]| > 27%) < 27F
te[0,T]

and the assertion follows by the lemma of Borel-Cantelli. O

Proposition 1.20. LetT > 0 and W(t), t € [0,T], be a U-valued Q- Wiener
process with respect to a normal filtration Fy, t € [0,T], on a probability
space (2, F,P). Then W(t), t € [0,T], is a continuous square integrable
martingale, i.e. W € M&4(U).
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Proof. The continuity is clear by definition and for each ¢ € [0,T] we have
that E(||W(t)||%) =t trQ < oo (see Proposition 1.3). Hence let 0 < s < ¢ <
T and A € F,. Then we get by Proposition A.6 that

/W dPuU—/(W W(s), )y dP
— P4 /(W uyy dP = 0

for all u € U as F; is independent of W (t) — W(s) and
E((W(t) —W(s),u)y) =0 for all u € U. Therefore

/W ) dP = /W _W(s)) dP
:/AW(S) dP—i—/AW(t)—W(s) dp
_ /A W(s) dP
for all A € F,. O

1.3 The definition of the stochastic integral

For the whole section we fix a positive real number 7" and a probability space
(Q, F, P) and we define Qp := [0,7] x 2 and Pr := dz @ P where dz is the
Lebesgue measure.

Moreover let @ € L(U) be symmetric, nonnegative and with finite trace and
we consider a Q-Wiener process W (t), t € [0,T], with respect to a normal
filtration F3, t € [0, 7.

1.3.1 Scheme of the construction of the stochastic in-
tegral

Step 1: At first we consider a certain class £ of elementary L(U, H)-valued
processes and define the mapping

Int: £ - MZ%(H) =: M2
(IM—)/ W(s), tel0,T).

Step 2: We prove that there is a certain norm on £ such that

Int:8—>M2T
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is an isometry. Since M2 is a Banach space this implies that Int can be ex-
tended to the abstract completion £ of £. This extension remains isometric
and it is unique.

Step 3: We give an explicit representation of £.

Step 4: We show how the definition of the stochastic integral can be ex-
tended by localization.

1.3.2 The construction of the stochastic integral in de-
tail

Step 1: The class € of all elementary processes is determined by the following
definition.

Definition 1.21 (Elementary process). A L = L(U, H)-valued process
®(t), t € [0,T], on (2, F, P) with normal filtration F;, t € [0,7], is said to
be elementary if there exist 0 =ty < --- <t =T, k € N, such that

k—1

O(t) = Prljp, (), t€[0,T],

m=0
where
e &, :0— L(U,H) is F;,,-measurable, 0 <m < k — 1,

e &, takes only a finite number of values in L(U, H), 1 <m < k — 1.

If we define now
Int(®)(t) := /ttb(s) dW (s) = Z O, (Wt ANt) — W (tm AT)), t €]0,T],

for all ® € £ we have the followin_g important result.

t
Proposition 1.22. Let ® € £. Then the stochastic integml/ O(s) dW (s),

0
t € [0,T], defined in the previous way, is a continuous square integrable
martingale with respect to Fy, t € [0,T], i.e.

Int : £ — M2

Proof. Let ® € £ be given by

k—1

(D(t) = Z (I)ml]tm,tm+1](t): te [OvT]:

m=0
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as in Definition 1.21. Then it is clear that

tis /t B(s) dW (s) = ki By (W (b AE) = W (tm A L))

is P-a.s. continuous because of the continuity of the Wiener process and the
continuity of ¢,,(w) : U - H, 0 < m < k-1, w € Q. In addition, we get
for each summand that

[P (W (tmi1 A L) = W(tm A < NPl [[W (Emia AT) = W (tm At)lw

¢
Since W(t), t € [0,T], is square integrable this implies that / O(s) dW (s)
0

is square integrable for each ¢ € [0, 7.

To prove the martingale property we take 0 < s < ¢ < T and a set A from
Fo. i {Pp(w) |we Q) :={LT,..., L]’ } we obtain by Lemma A.6 and the
martingale property of the Wiener process that

/ § By (Wt A1) — W (o A L)) dP

= Z / Py (W (tmi1 A s) = W(tm A s)) dP

tm41<8

km
+ ) Z/ LW (tms1 At) = W (tm A t)) dP
Aﬂ{@m:Lgn}

0<m<k—1 j=1

s<tm41
- Z / S, (Wt A s) — W(tm A s)) dP
o<m<k—1 VA
tm41<8
km
+ D ZLS”/ W (b At) = W (tw At) dP
0<m<k—1 j=1 AN{®m=L]"}
s<tm41
EFsVim
= > / Bon (W (tp1 A 5) — W (tm A 5)) dP
0<m<k—1 v A
tm41<s
km
+ Z ZLT/ W (tmsr As) — W(tm A s) dP
0<m<k-1 j=1 Aﬂ{@m:L}n}
tm<s<tpm41

_ / %@m(wamﬂ A 8) = W(tm A s)) dP
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O

Step 2: To verify the assertion that there is a norm on &£ such that
Int: £ — M2 is an isometry we have to introduce the following notion.

Definition 1.23 (Hilbert-Schmidt operator). Let e, £ € N, be an or-
thonormal basis of U. An operator A € L(U, H) is called Hilbert-Schmidt
if

Z(Aek, Aeg) < o0

keN

In Appendix B we take a close look at this notion. So here we only summerize
the results which are important for the construction of the stochastic integral.
The definition of Hilbert-Schmidt operator and the number

1Allz, = (Q_llAel®)?

keN

are independent of the choice of the basis (see Remark B.6 (i)). Moreover
the space Lo(U, H) of all Hilbert-Schmidt operators from U to H equipped
with the inner product

(A,B)r, == (Aey, Bey)

keN

is a separable Hilbert space (see Proposition B.7). Later we will use the fact
that ||A||2w,m) = [|A*||2m,v) where A* is the adjoint operator of A (see
Remark B.6 (i)).

Besides we have to note the following fact.

Proposition 1.24. If Q € L(U) is nonnegative and symmetric then there
ezists ezactly one element Q% € L(U) nonnegative and symmetric such that
If, in addition, tr Q < co we have that Q2 € Ly(U) where |Qz ||z, = tr Q
and of course L o Q% € Ly(U,H) for all L € L(U, H).

Proof. [ReSi 72, Theorem VI.9, p.196] O

¢

After these preparations we simply calculate the M2.-norm of / O(s) dW (s),
0

t € [0,7T], and get the following result.
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Proposition 1.25. If & = an_:lo @it i) @5 an elementary L(U, H)-
valued process then

1
1 @6 aw )3, = B[ I9(6) 0 QHIE, d5) = ol

Proof. If we set A, := W(t41) — W(t,,) then we get that

|| / (e
~ (| / B(s) dW (s)|?)

k—1
= E(|) ®nlnl)
m=0

:E(i||c1>mAmll2)+2E( Y (P, PrAL))

m=0 0<m<n<k—-1
Claim 1:
k—1 k—1
EQ N1®mAml®) =D (tmit — tm) E(| @ 0 Q2[3,)
m=0 m=0

To prove this we take an orthonormal basis fy, £ € N, of H and get by the
Parseval identity and Levi’s monotone convergence theorem that

E(|2mAnl®) =) E(@nAm, £)*) =Y E(E(Am, ®},/)°1 7))

leN leN

Taking an orthonormal basis e, k € N, of U we obtain that

Oy fi = D pen(fi; Pmer)er. Since (fi, ®rex) is Fy,,-measurable this implies
that @, f; is F;,,-measurable by Proposition A.3. Using the fact that o(A,,)
is independent of F;  we obtain by Lemma 1.13 that

E((Am, @5, f1)*| F,,) = F (2}, 1)

where F(u) = E((Am, u)?) = (tms1 — tm){Qu, u). Thus the symmetry of Q2
finally provides that

E((|@nAnl®) = D E(E(Am, @5 fi)’[F))

leN

= (tmi1 — tm) > E(Q®}, f1, B1 /1))

leN
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= (tms1 = tm) D E(|Q> 95, i]1*)

leEN
= (tms1 — tm) E(|| (P © Qi)*“%@(H,U))
1
= (tmt1 — tm) E(||Prm 0 Q2 ||%2(U,H))

Hence the first assertion is proved and it only remains to verify the following
claim.
Claim 2:

E(®,A0,9,A,)) =0, 0<m<n<k-1
But this can be proved in a similar way as Claim 1:

E((®nAm, $a2n)) = E(E(@, 8, A)|F,)
— B(F(®,8,Am))

where F(u) = E((u, A,)y) = 0 for all u € U (see Proposition 1.13). Hence
the assertion follows. 0

In this way the right norm on £ is actually found but strictly speaking || ||r is
only a semi norm on £. Therefore we have to consider equivalence classes of
elementary processes with respect to || || to get a norm on £. For simplicity
we will not change the notation but we have to underline the following fact.

Remark 1.26. If two elementary processes ® and ® belong to one equiva-
lence class with respect to || ||z it does not follow that they are equal Pr-a.e.
because their values only have to correspond on Q%(U ) Pr-a.e..

Thus we finally have shown that
Int : (€, ]| lr) = (MZ | llaez)

is an isometric transformation. Since & is dense in the abstract completion £
of £ with respect to || || it is clear that there is a unique isometric extension
of Int to £.

Step 3: To give an explicit representation of £ it is useful, at this mo-
ment, to introduce the subspace U, := Q%(U ) with the inner product given
by (ug,vo)o = <Q_%UO,Q_%U0>U, wup, vo € Uy, where Q=3 is the pseudo in-
verse of Q% in the case that () is not one to one. Then we get by Proposition
C.3 (i) that (U, (, )o) is again a separable Hilbert space.

The separable Hilbert space Ly(Uy, H) is called L3. By Proposition C.3 (ii)
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we know that Q%gk, k € N, is an orthonormal basis of (Up, (, )o) if gx, k € N,
is an orthonormal basis of (Ker Q%)L. This basis can be supplemented to a
basis of U by elements of Ker Q%. Thus we obtain that

ILllzg = |IL 0 Q ||z, for each L € LY.

Since Q2 € Lo(U) it is clear that L(U, H) C LY and that the || ||-norm of
® € £ can be written in the following way

T
1
Il = (B[ 10(5)% o)’
Besides we need the following o-field

Pri=oc({]s,t] x F; |0<s<t<T, F,€ F,} U{{0} x Fy | Fy € Fp})
o(Y : Qr — R | Y is continuous on the left and adapted to
Fi, t €0, T]).

Let H be an arbitrary separable Hilbert space. If Y : Qp — H is Pr/ B(ﬁ )-
measurable it is called (H-)predictable.

If, for example, the process Y itself is continuous on the left and adapted to
F;, t € [0,T], then it is predictable.

So we are now able to characterize &.

Claim: There is an explicit representation of £ and it is given by

NE(0,T; H) :={®:[0,T] x Q — L) | ® is predictable and ||®||7 < oo}

For simplicity we also write N2, (0,T) or N3, instead of N3, (0,T; H).

To prove this claim we first notice the following facts:

1. Since L(U, H) C L3 and since any ® € £ is L3-predictable by construc-
tion we have that £ C N3,

2. Because of the completeness of L we get by Appendix A that
NE = L*(Qr, Pr, Pr; LY) is also complete.

Therefore N, is at least a candidate for a representation of £. Thus finally
there only remains to show that & is even a dense subset of N but this is
formulated in Proposition 1.28. It can be proved by the help of the following
lemma.

Lemma 1.27. There is an orthonormal basis of LY consisting of elements
of L(U, H). This implies especially that L(U, H) is a dense subset of LY.
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Proof. Since () is symmetric, nonnegative and tr () < oo we know by
Lemma 1.4 that there exists an orthonormal basis e, £ € N, of U such that
Qer. = ek, A, > 0, k € N. In this case Q2ey = v Aper, k € N with Az > 0,
is an orthonormal basis of U, (see Proposition C.3 (ii)).

If fr, k € N, is an orthonormal basis of H we set

fj X e := fj(&k, '>U € L(U, H) C Lg
for all 5,k € N. Then we get of course that

1

V%
1
= L

neN

1
fi®er, ——/fi®em)Lg

Vam
Fir F) e, Q7 en)u (em, Q% en)y

{

= j,ldk,m

for all 7,k,l,m € N, with Ag, A\,, > 0. Hence we have found an orthonormal
system. Moreover we get for L € LI that

(fi ®ex, L) g = (fj, LQ%ey)

for all j,k € N. This implies that L = 0 € L} if (f; ® ex, L)rg = 0 for all
J,k € N with A\, > 0 and in this way we get that

1
vV
by [Al 92, 7.4 Lemma, p.213]. O]

span(——=f; ® ex | j,k € N with \; > 0) = L9

Proposition 1.28. If ® is a LS-predictable process such that ||®||r < oo
then there exists a sequence ®,, n € N, of L(U, H)-valued elementary pro-
cesses such that

|® — ®u|lr — 0 asn— oo

Proof. Step 1: If ® € A7, there exists a sequence of simple random vari-
ables ®,, = kM:"l Lilap, A € Prand L} € Ly, n € N, such that

|® — ®,||r — 0 as n — oo.

As LY is a Hilbert space this is a simple consequence of Lemma A.4 and
Lebesgue’s dominated convergence theorem.
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Thus the assertion is reduced to the case that ® = L1, where L € L3 and
A€ Pr.

Step 2: Let A € Pr and L € LS. Then there exists a sequence L,, n € N,
in L(U, H) such that

|L14 — Ly1lallr — 0 asn — oo

This result is obvious by Lemma 1.27 and thus now we only have to consider
the case that ® = L14, L € L(U,H) and A € Pr.

Step 3: If ® = L14, L € L(U,H), A € Pr, then there is a sequence ®,,
n € N, of elementary L(U, H)-valued processes in the sense of Definition 1.21
such that

|IL14 — @)l — 0 asn — o0

To get this result it is sufficient to prove that for any ¢ > 0 there is a finite
N

sum A = U A, of pairwise disjoint predictable rectangles

n=1
Ay €{ls, ] x F, |0<s<t<T, F,e F,JU{{0} x Fy | Fhe Fo} =1 A
such that

Pr((A\NA)U(A\A)) <e

since then we get that Zflv:l L1,4, is an elementary process and

N T N
D14 = Llallr = E(/ IL(La = 1a)llig ds) < el|L|g
n=1 0 n=1

Hence we define

K= {U A; | I is finite and A; € A, i € I, are pairwise disjoint}
i€l

Then I is a m-field which means that K is stable under finite intersections.
Now let G be the family of all A € Pr which can be approximated by ele-
ments of /C in the above sense. Then G is a Dynkin system and therefore

Pr=0(K)=DK)CGas K CGg. N

Step 4: Finally the so called localization procedure provides the possibility
to extend the definition of the stochastic integral even to the linear space
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Nw(0,T; H) := {® : Qr — LI | ® is predictable with
T
P([ 9(s) g ds < o) = 1}

For simplicity we also write Ny (0,T) or Ny instead of Ny (0,7; H) and
Ny is called the class of stochastically integrable processes on [0, T].

The extension is done in the following way:
For ® € Ny we define

—inf{t € [0,7] | /0||<1>(s)||§3 ds > n}

where we make the convention that the inf() := T. Then we get by the
continuity on the right of the filtration F, t € [0, T], that

m<tt= <+ )

meN

-N U / ()2 s> n) €7,

meN gef0,t+ L [NQ
€Fy by the real Fubini theorem

- vl
-~

€F,, 1 and decreasing in m
t+

Therefore 7,,, n € N, is an increasing sequence of stopping times with respect
to Fi, t € [0, 7], such that

B on90(6) g d5) < o0

In addition, the processes 1jg ,,1®, n € N, are still LY-predictable since
10, 7] == {(s,w) € Qr |0 < s < 1 (w)}
- ({(s,w) € QOr | Ta(w) < s < TYU {0} x Q)
= (U 0071 x {m < ah {0} x 9) e Pr

9€Q €F,

- v

-~

EPr

Thus we get that the stochastic integrals

| 1o v, teloT)
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are well defined for all n € N. For arbitrary ¢ € [0, 7] we set

/0 B(s) AW (s) = /0 Lo (5)8(s) AW (s)

where n is an arbitrary natural number such that 7, > ¢. (As the sequence
Tn, N € N, even reaches T' P-a.s. it is also possible to define the integral

/0 ®(s) dW (s) in this way.)

To show that this definition is consistent we have to prove that for arbitrary
natural numbers m < n and ¢ € [0,7T]

/Ol]o,rm](S)(I)(S) dW(s):/O Lio,r1(8)®(s) dW(s) P-a.s.

on {1, >t} C {r, > t}. This result is provided by the following lemma.

Lemma 1.29. Assume that ® € N7, and that T is a F;-stopping time such
that P(r < T) = 1. Then there exists one P-null set N € F independent of
t €[0,T] such that

/0 Lo, (s)®(s) dW (s) = /OT ®(s) dW(s) on N€ for allt € [0,T].

Proof. Since both integrals which appear in the equation are P-a.s. contin-
uous we only have to prove that they correspond P-a.s. at any fixed time
tel[0,7).

Step 1: We first consider the case that ® € £ and that 7 is a simple stopping
time which means that it takes only a finite number of values.

Let 0=ty <t1 < ... <t <T, k€N, and

k—1
= Pmlity i)

m=0

where ®,, :  — L(U, H) is F;, -measurable and takes only a finite number
of values, 0 <m < k — 1.

If 7 is a simple stopping time there exists a n € N such that

7(Q) = {ao,---,a,} and

n
T = E ajla;
=0
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where 0 < a; < a;41 <T and A; = {r =q,} € Fa;- In this way we get that
1))@ is an elementary process since

T
L

1]T,T](S)(I)(S)

U P NN )

73
LL

|
(]

Ly @on Lty 1100y, 71 ()

m=0 j7=0
k—1 n

= 1Aj(1)m 1]thaj,tm+1Vaj}(8)
m=0 5=0 v

FtmVa j -measurable

and concerning the integral, we are interested in, we obtain that

[ 116 aws

/0 t ®(s) dW (s) — /0 t Li1)(s)®(s) dW (s)

S By (W (tms1 A t) — W (tm A L))

B ki 1 B (W (b V ) A ) — W (v 05) A D))

S By (W (tms1 A t) — W (tm A L))

_ § ; La; @i (W ((tigr VT) A L) = W((tm V T) A )

S By (W (tms1 A t) — W (tm A L))

B (W (kg1 VT) AL) = W ((tn V T) A L))

S o, (I/V(tm+1 At) =W (tm At) — W(gmﬂ VT)AL)+W((tm V1) A Q)

=W (tmar ATAE) — W(tm AT AT)
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Step 2: Now we consider the case that ® is still an elementary process while

T is an arbitrary stopping time with P(7 <T) = 1.
on_1

Then there exists a sequence 7, = Z T(k+ 1)2’”1]Tk2—n7T(k+1)2_n]o7', n €N,

k=0
of simple stopping times such that 7, | 7 as n — oo and because of the

continuity of the stochastic integral we get that

/0 o) avis) — [ B(s) aW(s) Poas.

n—oo 0

Besides we obtain (even for non elementary processes ®) that

T
0,71 @ = 130,127 = E(/O 17,7 ()@ (s)lI7g ds) — 0

which by the definition of the integral implies especially that

E( / 10,0 (5)B(s) AW (s) — / 10.1(3)®(s) AW (5)[[?) —> 0

n—oo

for all ¢ € [0,7]. As by Step 1

/0 10,1 (5)®(s) AW (5) = /0 " B(s) dW(s), neN te[o,T],

the assertion follows.

Step 3: Finally we generalize the statement to arbitrary ® € N3, (0,7):

If ® € N3 (0,T) then there exists a sequence of elementary processes
®,, n € N, such that

|, — @||r — 0
n—00

By the definition of the stochastic integral that means that

/ B (s) dW(s) —> | B(s) dV(s) in M.
0 n—oQ 0

Hence it follows from Lemma 1.19 that there is one subsequence ny, k € N,
and one P-null set N € F independent of ¢ € [0, 7] such that

t

/0 "8, (5) W(s) — [ B(s) dW(s) on N*

k—00 0
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for all ¢ € [0, T] and therefore we get for all ¢ € [0,T] that

/0 Mo, () aw(s) — [ ®(s) dW(s) Pas.

k—o0 0

In addition, it is clear that
130,71®n = Lo,7 @l — 0

which implies that

t

[ @, W) = [ 1000 aw )

n—oo 0

As by Step 2

/0 10.11(5)®n, () AV (s) = /0 ", (s) AW (s) P-as.

for all k¥ € N the assertion follows. O

Therefore it is clear that for m < n on {1, >t} C {r, >t}
t Tm AL
/0 1oy(5)B(s) AWV (s) = / 1o (5)B(s) AW (5)
t
— / 1o (5) 1oy (5) B (5) AT (s)

_ /0 1o, (5)B(s) AW (s) P-as.

and the definition is consistent.

Remark 1.30. In fact it is easy to see that the definition of the stochastic
integral does not depend on the choice of 7,,, n € N. If g,,, n € N, is another
sequence of stopping times such that o, 1 T as n — oo and 1), P € NE,
for all n € N we also get that

t

/tq)(s) dW(s) = lim [ 1j0,,(s)®(s) dW(s) P-as. forallte [0,T]

n—oo 0

Proof. Let t € [0,T]. Then we get that on the set {7, > t}

/0 B(s) dV(s) = /0 Lo (5)8(s) AW (s)
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tAon

= lim Lo,r,a1(8)®(s) dW (s)

n—oo J
tATm

= lim Lo,0] ()@ (5) dW (s)

n—o0 0

= lim [ lLjg,,1(5)®(s) dW(s) P-as.

n—oo 0

1.4 Properties of the stochastic integral

Let T be a positive real number and W (t), t € [0, T], a Q-Wiener process as
described at the beginning of the previous section.

Lemma 1.31. Let ® be a L3-valued stochastically integrable process, H, I l7)
a further separable Hilbert space and L € L(H, H). )
Then the process L(®(t)), t € [0,T), is an element of Nw(0,T; H) and

L /0 B(t) dW (£)) = /0 L(®(t) dW(t) P-us.

Proof. Since ® is a stochastically integrable process and
L@@ oo,y < NNl g,y [ (@) g it is obvious that L(®(?)), t € [0,T1,
is Lo(Uy, H)-predictable and

P / V(@) |y dt < 00) =1

Step 1: As first step we consider the case that ® is an elementary process,
ie.
k—1
O(t) = Puli, tmi(t), t €[0,7],

m=0
where 0 = tp <t < ... <ty =T, &, : Q — L(U, H) F;, -measurable with
|D,,(2)] < oo for 0 < m < k. Then

k-1

I /O () dW () = L(Y B (W (tms1) — W (1))

m=0
1

N

L@ (W (tns1) = W(tn)))

=0

3
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- /0 " L) aw ()

Step 2: Now let ® € N3, (0,T). Then there exists a sequence @,,, n € N, of
elementary processes such that

1

[0 = ol = (B[ lloatt) ~ 003y ) — 0

Then ~L(<I>n), n € N, is a sequence of elementary processes with values in
L(U,H) and

|L(®n) — L(®)|l7 < [ LIl (1, )| P — @7 e 0

By the definition of the stochastic integral, Step 1 and the continuity of L
we get that there is a subsequence ny, k£ € N, such that

T

/ TL((I)(t)) dW(t) = lim [ L(®n,(t)) dW(t)

k—00 0

k—o00

= lim L(/T D, (t) dW (1))
~ L(lim /T B, (1) AW (1))

_ L /0 "o aw() Pas

Step 3: Finally let ® € Ny (0,7).
Let 7,,, n € N, be a sequence of stopping times such that 7, 17 as n — oo
and 1j9,,1® € N (0,T). Then 1y, 1L(®) € N (0,T) for all n € N and we
obtain by Remark 1.30 and Step 2:

T

/0 L(®() dW () = lim [ 1., (0)L((0)) dW (1)

n—oo 0

— lim L( /0 Low (03 (t) dW (2))

=L(lim [ 1., (0)@(t) dW(t))

n—oo 0

= L(/OT ®(t) dW(t)) P-as.
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Lemma 1.32. Let ® € Ny (0,T) and (,, n €N, a sequence in C([0,T], H)
which converges uniformly to . Then there exists a subsequence (,,, k € N,
such that

T

T
[ @ avo — [ @0 ave s
Proof. Step 1: Let ® € N32,(0,7).

Then we get that

{®, ¢n) = (2, Ollr < supTIICn(t) — Ol 1@z

t€[0,T]

and therefore we get by the isometry that

T

T
| eo.co are = [ @o.coavo

in L?(Q, F, P; H) which implies that there is a subsequence ny, k € N, such

that

T

T
| @0.co avre = [ @o.coave Pas
Step 2: Let ® € Ny (0,7).

As in Step 4 of the definition of the stochastic integral we define the stopping
times

¢
Tm = inf{t € [0, 7] | / ||(I>(s)||%2 ds > m}
0

where inf() :=T.

Then the processes (1j,5,,1(t)®(¢), ¢a(t)) and (1j0,,.1(t)®(2),((2)), t € [0,T],
are in N3 (0,T;R) for all n,m € N. By Step 1 and the diagonalization
procedure we get the existence of one subsequence ny, k£ € N, such that

| 5009060 V() = [ (o090 c) aW () P-as

k—00 0

for all m € N. Hence, by the definition of the stochastic integral, we obtain
that



(@(1),¢(2)) dW (2)

S
3

Lo <<} / (Lo (D (2), C(1)) W (2)

I
[M]8

1

3
l

I
K

T
Yoy <<y im [ (Lo, () 2(2), Gy (£)) AW (2)
k—oo [

m=1
oo T
= Jim 3" 1 rcrcnn [ (OB 6 0) W)
m=1
= klim T((D(t),gnk(t)) dW(t) P-as.
—00 0

1.4.1 The Ito formula

We assume that

e dc Nw(0,T;H)

37

e ¢ :Qr — H is a predictable and P-a.s. Bochner integrable process on

[0, 71
e X(0):Q — H is Fy-measurable
e F:[0,T] x H— R is Fréchet differentiable with derivatives

oF
E:DlF[O,T]XH—)R

DF := D,F : [0,T] x H— L(H,R="H
D*F := D3F :[0,T] x H— L(H),

which are uniformly continuous on bounded subsets of [0, 7] x H.

Under these assumptions the process

X(t) :X(O)—i—/ot(p(s) ds—l—/ot(I)(s) dw(s), telo,T],

is well defined and we get the following result.
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Theorem 1.33 (It6 formula). There exists a P-null set N € F, indepen-
dent of t € [0,T)], such that the following formula is fulfilled on N€ for all
tel0,7]:

F(t, X (1)) = F(0, X(0)) + / (DF(s, X (s)), ®(5)) dW (s)
/&sx +{DF(s, X(5)), 9(5)
)(2(5)Q2)] ds

N

45 1 [DF(s, X (3))(8()Q

Proof. [DaPrZa 92, Theorem 4.17, p.105] O

1.4.2 The Burkholder-Davis-Gundy inequality

Theorem 1.34 (Burkholder-Davis-Gundy inequality). Let p > 2 and
® € Nw(0,T; H). Then

sup B([l | (s)11P)
te[0,T7]

g@(—m(ﬂ(mﬂm@ﬁmy

t
Remark 1.35. If ® € N2 (0,7) we get that / ®(s) dW(s), t € [0,T], is a
0

martingale and therefore

o B[ 0t aw (1) = E01 [ 0(6) aw )

t€[0,T]

T
Proof of Theorem 1.34. We can assume that E(/ ||¢>(t)||ig dt) < oo

0
because otherwise the assertion follows immediately since

B([ NowlEy o < [ (B(I00I)? d

Then, in the case that p = 2, we already know by the definition of the
stochastic integral that the Burkholder-Davis-Gundy inequality is true. It is
even an equality.

SIS
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If p > 2 we want to apply the It6 formula to
e d:Qr > LY
e v:Qr >R (t,w)—0
e X(0): Q>R w0
e [F:[0,T| x H—TR, (t,z) — ||z|P
The derivatives of F' exist and by calculation we get

oF

DF(t,z) = pll| *x

D@@@:{m@—mmvﬁ®mwmwwﬂim¢o
’ if x=0

where £ @ y := z(y, ).

Then F, %—f,DF and D?F are uniformly continuous on bounded subsets of

[0,T] x H and if we define

X(t) := /th)(s) dW (s), t € [0,T],

we get by the It6 formula that for all ¢ € [0, T]

02 IX@I = [ PN, 006 V()
+ [ 3 DG X )@@ 6! ds
outside a P-null set independent of ¢ € [0, T]. Tf we set
Y(t) = pIX@IP2X (), 80, ¢ € [0,T],
then we have that
Y € Niw(0,T;R)

Now we define 7, := inf{t € [0,T]|[|X(¢)|| > n},n € N, where inf() := T.
Then

1. 7., n € N, are stopping times with respect to F, t € [0, 7]
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2. 7, 1 T P-a.s. as n — oo since the process X(t), t € [0,7T], is P-a.s.
continuous and therefore we have that ¢ — X (¢) is P-a.s. bounded on
[0, 7.

3. Ljo,Y € N3 (0,T;R) since:
1j0,7,)Y is predictable and

T
E([ 10 OY Ol 10, 1)
T
< B([ o ORIXOI 2202 dt)

T
< 2B ([ [0l ) < o0

If we stop the process || X ||? by the stopping times 7,, n € N, we get by (1.2)
that

IX(T Am)P = / "y () aw (1)

1

+ /0 Mn%tr (D2F(t, X (1) (®(1)QF)(B(1)Q?)7] dt  P-as.

Taking the expectation on both sides and using Proposition 1.29 we obtain
T
BXTATIP) = B[ Toma®Y() W (1)
TATn, 1 L L
sB([ 5w DR X0)(#0@3) (®(0)Q5)] d)
0

—B([ 5w PP XO)E0QN) 0} d)

t
since 1jo,,1Y € N (0, T; R) and therefore / Lo, (8)Y (s) dW (s), t € [0,T],

0
is a (F;)iepo,rj-martingale which starts in zero. Substituting D?F by its rep-
resentation we obtain that

1

tr [D?F(t, X (1)(@()Q})(@(1)Q%)"]
= (205 - DIXO I~ & [(X () © X (1) (@(OQF)(@(HQ

+RIX O tr [(@(HQ) (@()QF) ) Lixw oy

o=

)’]
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Since ®(t)Q2 € Ly(U, H) and X (t) ® X (t) € L(H) we have that
(X(t) ® X(1))®(t)Q2 € Ly(U, H) and, by Remark B.6, that
||<I>(t)Q% Iz, = ||(®(t)Q2)*||1,- By Proposition B.8 we therefore obtain that

tr [(X (1) ® X (1) (2(H)Q7)(B(£)Q?)"]

< (X (1) © X(#) () Q% |11, |8(1) Q2 |1,
<X (1) ® X(@)lloim 1912 < IX @192

N[

N~

and

tr [(2(H)Q?)(@()Q?)] = |B(1)]2,

So finally we get that

1

tr [D2F (1, X (1)) (2(1)Q7) (2(1)Q?)']
< 2p(g — DIX@OIPHIX O N7y + pIX @127
=plp = DIXOI [ 2()lIzg
Therefore we have for all n € N the following estimation for E(||X (T A 7,)|[P):

E([X(T Am)P)

<P 1)B( / CIX @10 12 d)

p

>

P np([ I AT IR0l 4)

2 0 :
<2 —1)5( / 1X (¢ A ) [P2]12 () 125 )
_b
2

=1 [ BOIXEAIP1#01Ey) i

(real Fubini theorem)

<21 [ (Bx@AmIn) " (B(oy)" d
b

)
p—2

2

<21 [ (X Am) ™ ((lo0lEy))”

(|IX (A T)|P, t €]0,T], is a submartingale)

p—2

(Holder inequality for g and
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Dividing both sides of the above inequality by E(||X (T A Tn)”p) 7 < oo we
get that

2

(BUX(T Am)IP)” <

2

-1 [ (Elloly)” d
for all n € N. ,

Since 7, 1T and t — X(t) = / ®(s) dW(s) is P-a.s. continuous we finally

wl“@

0
obtain by Fatou’s lemma that

s (B / ©IM)” = (£ / W)’
= (E(IX (T >||”))

= (E(liy{gglfHX(T/\Tn)“p))

A

< 1i£gf(E(llX(T/\ Tn)||p))E
2

<2o-1 [ (B(oey)"

O

Remark 1.36. The main part of the proof of the Burkholder-Davis-Gundy
inequality can be found in [DaPrZa 92, Lemma 7.7, p.194], but we think
that in this proof it is not taken into consideration that it could happen that
E(||X(T)||P) = co. Therefore it could be impossible to divide by this term
in the last step without introducing stopping times.

1.4.3 Stochastic Fubini theorem
We assume that

1. (E,&, p) is a measure space where p is finite,

2. 9:Qr x E— LY, (t,w,z) — ®(t,w,x) is Pr ® £/B(LY)-measurable,
thus in particular ®(-,-,z) is a predictable L3-valued process for all
x € FE.

Theorem 1.37 (Stochastic Fubini theorem). Assume 1., 2. and that

J 10t utan) = [ (5] 100l @) ww) <
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Then
/E [ /0 B(t,z) AW (1)] pldz) = /0 [ [E B(t,z) p(dz)] AW () P-as.
Proof. [DaPrZa 92, Theorem 4.18, p.109] O

1.5 The stochastic integral for cylindrical
Wiener processes

Until now we have considered the case that W (t), t € [0,T], was a standard
(Q-Wiener process where Q € L(U) was nonnegative, symmetric and with
finite trace. We could integrate processes in

Nw == {®: Qp — LQ(Q%(U), H) | @ is predictable and
T
P([ 12(5)g ds < o) = 1)
0

In fact it is possible to extend the definition of the stochastic integral to the
case that () is not necessarily of finite trace. To this end we first have to
introduce the concept of cylindrical Wiener processes.

1.5.1 Cylindrical Wiener processes

Let @ € L(U) be nonnegative and symmetric. Remember that in the case
that @ is of finite trace the ()-Wiener process has the following representation

W)=Y Bider, t€[0,T)

keN

where e, k € N, is an orthonormal basis of Q%(U) =Uyand B, k€N, isa
family of independent real valued Brownian motions. The series converges in
L*(Q, F, P;U). In the case that @ is no longer of finite trace one loses this
convergence. Nevertheless it is possible to define the Wiener process under
the following assumption:

There is a further Hilbert space (Uy,{, )1) such that there exists a Hilbert-
Schmidt embedding

J: (U(), < ; )0) — (UI: < ) )1)

Then the process given by the following Proposition is called cylindrical Q-
Wiener process in U.



44

Proposition 1.38. If e, k € N, is an orthonormal basis of Uy = Q%(U)
and By, k € N, is a family of independent real valued Brownian motions then
there exists Q1 € L(U;) nonnegative, symmetric and with finite trace such
that the series

Zﬁk ek te [O,T]a

keN

converges in M2(U,) and defines a Q,-Wiener process on U;. Moreover we
have that Im Q2 = J(Uy) and for all ug € Uy we get that

_1
lluollo = [|Qy * J (uo) |1

Proof. Step 1: We prove that W(t), t € [0, 7], describes a Q;-Wiener pro-
cess in Uy, where @y = JJ* € L(Uy):

If we set &(t) := B,(t)J(ej), 7 € N, we obtain that &;(t), t € [0,T],
is a continuous martingale with respect to G; = o(U;cn0(B5(s)ls < 1)),
t € [0, 7], since

E(8;(t) | G,) = E(5,(1) | o(B;(w)lu < 5)) = By(s) forall0< s <t <T

as o(o(Bj(u)|lu < s) U a(B;(t))) is independent of O'(U o(Br(u)|u < s)).

keN
kg
Then it is clear that

0= B1J(e). telT)

is also a continuous martingale with respect to G;, t € [0,7]. In addition, we
obtain that

IIZ@ IR =t IR m>n>1,

j=n

where Z||J(ej)||f = ||J||Lowo,vn) < 00. Therefore we get the convergence of
jEN

Wo(t), t € [0,T], in M2(U;). This implies especially that the limit W (%),

t € [0,T], is P-a.s. continuous.

Now we want to show that P o (W (t) — W(s))™' = N(0, (¢t — s)JJ*). Anal-

ogously to the second part of the proof of Proposition 1.5 we get that

(W (t) — W(s),u1); is normal distributed for all 0 < s <t <7 and u; € Uj.
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It is easy to see that the mean is equal to zero and concerning the covariance
of (W (t) —W(s),u1); and (W (t) — W(s),v1)1, u1,v; € Uy, we obtain that

E(W(t) = W(s),u)(W(t) — W(s),vi)1)
= Z(t — s){(Jeg, u1)1{Jeg, v1)1

keEN
= (t—s) ) (ex J"ur)oler, J v1)o
keN
= (t — S)(J*’Uq, J*Ul)o = (t - 8)<JJ*U1, U1>1

In this way Q1 is completely determined and thus we obtain that Q)1 = JJ*.
Thus there only remains to show that the increments of W (t), t € [0,T],
are independent but this can be done in the same way as in the proof of
Proposition 1.8.

Step 2: We prove that Im Q7 = J(U,) and that ||ug|lo = ||Q; 2 Juol|1 for all
Ug € U()i
Since )1 = JJ* we obtain for all u; € U; that

1
1Q¢urll} = (J T ur, ur)r = || w13

1
Because of Corollary C.6 this result already implies that Im Q2 = J(Up) and
_1
that ||Q; 2ui|li = ||J  uillo for all uy € J(Up). If we replace uy by J(u),
ug € Up, we finally get the last assertion because J : Uy — U; is one to
one. 0

1.5.2 The definition of the stochastic integral for cylin-
drical Wiener processes

We fix @) € L(U) nonnegative, symmetric but not necessarily of finite trace.
After the preparations of the previous section we are now able to define
the stochastic integral with respect to a cylindrical @Q-Wiener process W (t),
t € 0,7

Basically we integrate with respect to the standard U;-valued (;-Wiener
process given by Proposition 1.38. In this sense we first get that a process
O(t), t € [0, T, is integrable with respect to W(t), t € [0, 7], if it takes values

in Ly(Q?(U1), H), is predictable and if

T
P(/ B2 . ds<oo)=1.
0 La(Qf (Ur),H)
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But in addition, we have by Proposition 1.38 that Q%(Ul) = J(Up) and that

1 1
) = (Q; > Juo, Q, > Juo)1 = (uo, Vo)o = <Q7%u07Q7%UO>U

for all ug, vg € Uy. That means especially that Jeg, k£ € N, is an orthonormal
1

basis of Q7 (Uy) if ek, k € N, is an orthonormal basis of Uy and in this way
we get that

e L0 = Ly(QF(U), H) <= ®oJ ' € Ly(Q: (U), H)
since

||‘I)||%g = Z(‘Dek,‘l’@k)

keN
=D (@0 M (Jep), 0o I (Jen)) = [ R0 T
keN L(Qf (Uh),H)

If we set now

/o O (s) dW (s) ::/0 d(s)o (J 1) aw(s), te]lo,T],

1
|QE (Uh)

the class of all integrable processes is given by
T
Nw ={® : Qr — L | ® predictable and P(/ ||<I>(s)||ig ds < 00) =1}
0

as in the case that W (t), t € [0,7], is a standard Wiener process in U.
Especially we notice that the space Ny (0,T) does not depend on the em-
bedding J : Uy — U;.

Remark 1.39. (i) If @ € L(U) is nonnegative, symmetric and with finite
trace the standard ()-Wiener process can also be considered as a cylindrical
@-Wiener process by setting J = I : Uy — U where [ is the identity function.
In this case both definitions of the stochastic integral correspond.

(ii) We are especially interested in the case where ) =1 : U — U. Then it is
clear that () is not of finite trace but if we introduce weights Ay > 0, £ € N,
such that Z A} < oo and define

keN

J:Uy=U—=U

U = E Qpep E /\kakek

keN keN
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where e, k € N, is an orthonormal basis of U, then J is in fact a Hilbert-
Schmidt embedding. Thus we are in the setting of cylindrical Wiener pro-
cesses and it is possible to define the stochastic integral for all processes

T
{®:Qr — Ly(U, H) | ® predictable and P(/0 |®(s)|7, ds < o) = 1}
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Chapter 2

Strong, Mild and Weak
Solutions

As in the previous chapter let (U, || ||z) and (H,||||) be separable Hilbert
spaces. We take () = Iy and fix a cylindrical Q-Wiener process W (t),
t > 0, in U on a probability space (2, F,P) with a normal filtration F,
t > 0. Moreover we fix T" > 0 and consider the following type of stochastic
differential equations in H

21) dX(t) =[AX(t)+ F(X(t)]dt+ B(X(t)dW(t), tel0,T]
' X(0) =¢
where

e A: D(A) — H is the infinitesimal generator of a Cp-semigroup S(t),
t > 0, of linear operators on H,

e F': H— H is B(H)/B(H)-measurable,
e B:H— L(U,H),
e ¢ is a H-valued, Fy-measurable random variable.

Definition 2.1 (Strong solution). A D(A)-valued predictable process X (t),
t €[0,7T], (i. e. (s,w) — X(s,w) is Pr/B(H)-measurable) is called a strong
solution of problem (2.1) if

(22) X(t) =€+ /0 CAX(s) + F(X(5)) ds + /0 "B(X(5) dW(s) P-as.

for each ¢ € [0,7]. In particular, the integrals on the right hand side have
to be well defined, i.e. that AX(t), F(X(t)), t € [0,T], are P-a.s. Bochner
integrable and that B(X (t)), t € [0, 7], is stochastically integrable.
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Definition 2.2 (Mild solution). A H-valued predictable process X (%),
t € [0,7], is called a mild solution of problem (2.1) if

X(t)=S@)E+ /tS(t —5)F(X(s)) ds
(23) 0
+/0 S(t—s)B(X(s)) dW(s) P-as.

for each t € [0, T]. In particular, as in Definition 2.1, the appearing integrals
have to be well defined.

Remark 2.3. While the strong solution has to take values in D(A) the mild
solution X (t), t € [0,T], has only to be H-valued.

Besides, for the definition of a mild solution, it suffices that the process
Liou(s)S(t — s)B(X(s)), s € [0,T], is Lo(U, H)-valued for each t € [0, T].
For the definition of the strong solution we have to claim that the process
B(X(s)), s € [0,T], itself is Lo (U, H)-valued.

Remark 2.4. Let ® € Ny. Then the process of the stochastic integrals
fot ®(s) dW(s), t € [0,T], is well defined outside one P-null set N inde-
pendent of ¢t € [0,7] so that, in this context, it is possible to consider the
trajectories

/t@(s) AW (s)(w), t € [0,T], for w € N°.

If we consider different processes ®;(s), s € [0,T], t € [0,T], the stochastic
integrals

/Ou By(s) dW (s), u € [0,T],

have well defined trajectories outside P-null sets N(t), t € [0,7], but there
is no pathwise definition of

¢
[ @) awts), te 0.1,
0
outside one P-null set N independent of ¢ € [0,T]. Since
t
/ S(t— $)B(X(s)) dW(s), t € [0,T],
0

is a process of this type one has problems to analyze pathwise properties of
mild solutions without introducing the following notion.
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Definition 2.5. Let X (), t € [0,T], be a H-valued stochastic process on
(Q, F, P). Another H-valued process X (t), t € [0,T], is called version of X
if

P(X(t)=X(t))=1 forallte0,T].

Definition 2.6 (Weak solution). A H-valued predictable process X (%),
t € [0,T], is called a weak solution of problem (2.1) if

(X0, = (6.0 + [ (X(,4°0) + (FX(5)), s
(2.4) 0

+ /0 (B(X(5)),C) dW(s) P-as.

for each ¢t € [0,T] and ¢ € D(A*%).
In particular, as in Definition 2.1, the appearing integrals have to be well-
defined.

Remark 2.7. Without any additional assumptions, the process (B(X (t)), z),
t € [0,T], takes values in Ly (U, R) for each x € H even if the original process
B(X(t)), t €[0,T], is only L(U, H)-valued.

Proof. Let e;, k € N, be an orthonormal basis of the Hilbert space U and
L € L(U,H). Then we get by the Parseval identity and the fact that

| Ll v,y = ||L*[| vy that

KLy )17 sy = D _(Lens WG = Y _{ews LR)g = IL°hllg < |IL7 |3 a0 117
keN keN

= |ILI|Lw,m 1] < oo
U
Lemma 2.8. Let X(t), t € [0,T], be a stochastic process with values in H.

(i) If X(t), t € [0,T], is Pr/B(H)-measurable and D(A)-valued. Then
AX(t), t €[0,T), is also Pr/B(H)-measurable.

(i) If B(X(t)), t € [0,T], takes values in Ly(U, H) and if (B(X(t)), (),
t € [0,T], is Pr/B(Ly(U,R))-measurable for all { € D(A*) then
B(X(t)), t € [0,T], itself is Lo(U, H)-predictable.
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Proof. (i): Let ( € D(A*). Then the mapping
(t,w) = (AX (t,w), () = (X(t,w), A*C) is Pr-measurable.

Since D(A*) is dense in H (see [Pa 83, Corollary 2.5, p.5; Lemma 10.5, p.40])
we get, the assertion.

(ii): Let eg, £k € N, be an orthonormal basis of U and fi, ¥ € N, be an
orthonormal basis of H. Then f; ® e; = fi(ej,-) is an orthonormal basis of
Ly(U, H) (see Proposition B.7).

Since D(A*) is dense in H (see [Pa 83, Corollary 2.5, p.5; Lemma 10.5, p.40])
we get that (B(X(t)),z), t € [0,T], is Pr/B(Lz(U, R))-measurable for each
x € H. Therefore we can conclude that

<B(X(t)))fk®e]>L2 = <B(X(t))€]7fk>a te [O:T]a
is Pr/B(R)-measurable for all j, k € N and the assertion follows. O

Proposition 2.9. (i) Every strong solution of problem (2.1) is also a weak
solution.

(ii) Let X(t), t € [0,T], be a weak solution of problem (2.1) with values
in D(A) such that B(X(t)) takes values in Lo(U, H) for all t € [0,T].
Besides we assume that

P(/O JAX (1)) de < o0) = 1
P([ NP de < o) =1

P([ IBEO)IE, dt < ) = 1.

Then the process is also a strong solution.

Proof. (i): Follows immediately from Lemma A.6 and Lemma 1.31.

(ii): Let X (¢), t € [0,T], be a weak solution of problem (2.1) with the required
properties.

Then we get by Lemma 2.8 and the assumptions that we can apply Lemma
A.6 and Lemma 1.31 to get for all ¢ € [0,7] and for all { € D(A*) that

<mmo=@@+llwwmo+wu@»0%

+Au%wm¢wW@
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= (+ [ AXG)+ FOX@) ds+ [ B aw(e).0) Pas

Since D(A*) is a dense subset of H (see [Pa 83, Corollary 2.5, p.5; Lemma
10.5, p.40]) there exists for each ¢t € [0,7] and each z € H a P-null set
N(t,x) € F such that the equation

(X(t),z) = (¢ —|—/0 AX(s)+ F(X(s)) ds —|—/0 B(X(s)) dW(s), x)

holds outside N(¢, z).
As H is separable we can choose the P-null set N(¢,2) = N(t) independent
of x for each t € [0,T] and therefore the assertion follows. O

Proposition 2.10. (i) Let X(t), t € [0,T], be a weak solution of problem
(2.1) such that B(X(t)) takes values in Lo(U, H) for all t € [0,T].

Besides we assume that

P([ X ] dt < 00) =1
P([ IIFCX(0)]ldt < o0) =1
P IBXO)IE, dt < 00) = 1.

Then the process is also a mild solution.
(1) Let X(t), t € [0,T], be a mild solution of problem (2.1) such that the
mappings

(t,w) /O S(t— $)F(X(s,w)) ds

(t,w) > /O S(t— $)B(X(s)) dW(s)(w)

have predictable versions. In addition, we require that

P i IF(X @) dt < o0) =1

for all € D(A*).
Then the process is also a weak solution.
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For the proof we need some preparations. At first we introduce the following
notations.
Let (E,|| ||g) be an arbitrary Banach space and k € NU {0}. If we define

C*(0,T),E) :={f :]0,T] = E | f is k-times differentiable with

continuous derivatives f0), 0 < j < k},

k
I fllckor.z) = tsBpT]an(j)(t)nE, f € C*0,T), E)
€l0,7] ;=

then (C*([0,T], E),|l |lckqom,m) is & Banach space. If E = R we set
C*([0,T],R) = C*([0, T7).

Lemma 2.11. The space span (f -z | f € C*([0,T]), = € E) is dense in
(€0, 7], E). [l llevom,5))-

Proof. Claim 1: It is enough to show that span (f-z | f € C([0,T]),z € E)
is dense in (C([0,T7], E), || ||cqo,1,)):

We assume that span(f -z | f € C([0,7]), € E) is dense in
(C([0,T), E), || llco,ry,E)) and take an arbitrary g € C*([0,T7, E).

Then ¢' € C([0,T],E). Therefore by assumption there exists a sequence
Gn = foZn, n € N, in span(f -z | f € C([0,T]), z € FE) such that
9" = Gullcqo,m,p) — 0 as n — oo.

t
If we define g,, n € N, by g,(t) := xn/ fn(s) ds+ ¢g(0), t € [0,T], then g,

0
is an element of span(f -z | f € C'([0,T]), = € F) with g/, = §,, and by the
fundamental Theorem for Bochner integrals A.7 and the Bochner inequality
A.5 we get that

19 = gnllcr(o,m,m)
= sup (lg(t) — ga®)|l& + 119’ ®) — 3u(t)|| )

t€[0,T]
t
= sup (II/ 9'(8) = Gn(s) dsllz + g’ (t) — Gn(t)ll )
t€[0,T] 0
< T sup ||g'(t) = Gn(t)|lz + sup [|g'(t) = Gu(t)lz — O
te[0,T] te[0,T7] n—oo

Claim 2: The space span(f -z | f € C([0,T]), x € E) is dense in
(C([0, T, E), || leqo,m,E)):

Let f be an element of C([0,7],E). Then f is uniformly continuous, i.e.
that for all € > 0 there exists a n = n(e) € N such that |[f(t) — f(s)||lz < 5



for all s,t € [0, T] with |s — ¢| < I If we set

=~ , kT
fo = fO)1g0) + sz(?)l]w,%
=1

then
sup [|fn(t) — f(O)e <

te[0,7)

l\DI(*)

For 0 < m < n we define f,,, : [0,7] — [0,1] by

0 if ¢ € (DT i Te A [, 7]
Fam(®) 1= { (= 2=T) ity (207

—n (¢ — Ty f g g [mT <m+1>T] N[0, 7]

Then f, ., € C([0,T], E) for all 0 < m < n. Therefore

= anmf(mTT) € span{f -z|f € C([0,T)), z € E}
m=0

and the following holds:

L1 £2(0) = fa(0)ll2 = [| £,0(0) £ (0) — f(0)[|z = 0

)

2. For ¢ €]0, T] there exists m € {1,...,n}, such that ¢ €] (m ;I)T, ";T].
Then we can conclude that
TR
O @) = 1D
= W O (D) g 05 e
larar O F D) 4 a0 — ()
om0l UL T,
(=g~ %T> +pe= D0 1) - ()
(m—1)T T
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So finally

sup | fu(t) = fF(O)lls < sup 1fu(t) = fu®)llz+ sup [1£a(t) — f(O)lz < €

t€[0,T] te€[0,T] te€[0,T]
and the assertion is proved. O

The following Proposition can be proved in a similar way as [DaPrZa 92,
Lemma 5.5, p.122] where F' = 0 and B(z) = B € Ly(U, H) for all
x € H. The appearing space D(A*) is equipped with the graphnorm given
by [|z]|pay == ||z|| + [|A*z|| for all z € D(A*).

Proposition 2.12. Let X(t), t € [0,7], be a weak solution of problem (2.1)

such that B(X(t)) takes values in Lo(U, H) for all t € [0,T]. Besides we
assume that

T
P(/ X (0)]] dt < 00) = 1
OT
P([ IFG@O) dt < 00) =1
T
P([ IB O, e < o0) = 1.
Then for arbitrary ¢ € C*([0,T], D(A*)) the following equation holds P-a.s.

(X(D),6() = (€. CO)
29 + [ sy, coy awy

n /0 (X(t), A*C(t) + C'()) + (F(X (1)), C(1)) dt

Proof. Step 1: We first prove the assertion for functions ( of the form
C(t)=nf(t), t €]0,T], where f € C*([0,T]) and n € D(A*).
To this end we set for ¢ € [0, 7]

Y(t) = (X(8)m) = (€.7m) + / (B(X(s)),m) dW (s)
n / (X(s), An) + (F(X(s)) ) ds

Then Y(0) is a R-valued XFj-measurable random variable and
O(t) :== (B(X(t)),n), t €[0,T],is a Ly(U, R)-valued stochastically integrable



o7

process on [0, T]. Besides ¢(t) := (X (¢), A*n)+(F(X(t)),n),t € [0,T],isaR-
valued predictable process, as X (t), t € [0,7], is predictable and F': H — H

B(H)/B(H)-measurable by assumption. In addition ¢(t), t € [0,7], is
P-a.s. Bochner integrable.

We consider the mapping G:[0,7] x R - R

(t,z) — f(t)z.

Then the partial derivatives 2¢(t, ) = f'(t)z, DG(t,z) = f(t),
D?>G(t,r) = 0 exist for each (t,z) € [0,T] x R and they are uniformly
continuous on bounded subsets of [0, 7] x R. Therefore we can apply the It6
formula 1.33 and we get that

(X(T), (1)) = G(T,Y(T))

— G0, Y(0 /DGtY B(t) AW (1)

—|—/ a—(t,Y(t)) + DG(t,Y(t))p(t) + %tr [D*G(t,Y (t))®(t)®*(t)] dt

/ £(t) ) dW (1)
/ SO, 1) + FOEX @), A+ (FX(0), 7)) dt
/ (B(X(1),C(t)) dW (1)

+/0 (X(2),¢'(1) + (X (1), A*C(2)) + (F(X (1)), (1)) dt - P-as.

Step 2. Because of the linearity of the inner product, the integrals, the
mapping ¢ — ¢’ and A*, all ¢ € span (f -n| f € C'([0,T]),n € D(A*)) fulfill
equation (2.5).

Step 3. Now let ¢ € C'([0,T], D(A*)).

Since D(A*) is a Banach space (see [Pa 83, Corollary 2.5, p.5, Lemma 10.6,
p.41]) with respect to the graphnorm we can apply Lemma 2.11 to get the
existence of a sequence (,, n € N, in span(f -n|f € C'([0,T]),n € D(A*))
such that ||C — Cn“Cl([O,T},D(A*)) — 0 as n — oco. Then:

1. By Lemma 1.32 we can find a subsequence ny, k € N, such that

T

/0 (B(X(1),Cn, (1)) dW(t) — | (B(X(t)),((t)) dW(t) P-as.

k—00 0
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2. /0 (X (1), G (1)) + (X (1), A"Cu(t)) + (F(X (1)), Cu(1)) dt

— [ (X(1),¢'(1)) + (X (1), A"C(1)) + (F(X(1)),((1)) dt  P-as.

n—o0 0

because of the following estimation:

T
Let w € Q with / X (£, w)|| dt < o0 and / IF(X(t,w))|| dt < o0, then
0

[ 009,60 ~ ) + X, 4°(al) — SO
T (PX(9)), Galt) — (1) d]

/ (X (1 w), Col6) = C'(0) + (X (), A*(Calt) — <))
(PX(10)), Galt) — C(0))] at

||X )I || (@) = @I+ 1A (G () = <)
+F(X ||||Cn()— C@)l at

< 160~ Cllestomoen [ IX()l+ IPCXE ) de = 0
0 n—oe

0

Therefore by Step 2 we finally get the existence of a subsequence ng, £ € N,
such that

(X(T),¢(T)) = lim (X(T), (u, (T)

k—o00

= Jim (6.6 (0) + [ (BOX0). G (0) dW (D)
[ XA 0) + (X0, 0) + (FCED), 1) )
= (.00 + [ (BIK).¢0) aw ()

+/0 (X (1), AC(2)) + (X (1), (1)) + (F(X(2)),C(2)) dt

O

Now we want to prove Proposition 2.10. The original idea for the proof of
(1) was to apply Proposition 2.12 to the functions given by ((s) = S*(t —s)n,
s € [0,t], n € D(A*) (see [DaPrZa 92, Proposition 6.3, p.153]). Since these
functions theirselves are not in C*([0, t], D(A*)) but only in
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C([0,t], D(A*)) N C([0,t], H) we have to introduce the resolvent of A*.
The main part of the proof of (ii) can be found in [DaPrZa 92, Proposition
6.4 (i), p.154].

Proof of 2.10. Proof of (i): We fix ¢ € [0, T]. Since Pr N ([0,t] x Q) = P,
we have that X(s), s € [0,], is a weak solution of problem (2.1) on [0, t].
As S*(t), t € [0,T], is a Cy-semigroup with generator A* (see [Pa 83,
Corollary 10.6, p.41]) there exist constants w > 0 and M > 1 such that
|S* ()| oy < Me®* for 0 < ¢ < T. By [Pa 83, Theorem 5.3, p.20] we get
that the resolvent set p(A*) of A* contains the ray |w, ool.

That means that we can define the resolvent R’ : H — D(A*), a > w, by
Rix = [al — A 'z = [ e ®S*(t)a dt with ||R%|| ) < 2= (see [Pa 83,
Theorem 5.3, p.20]).

Then the functions ¢ : [0,¢] — D(A*) given by ((s) = S*(t — s)nRin, n > w
and n € D(A*), are in C'([0,t], D(A*)) since A*S*(t)nRn = S*(t)A*nR:n
= S*(t)nR: A*n (see [Pa 83, Theorem 2.4 (c), p.4] and the proof of [MaR6 92,
Proposition 1.10, p.10]). Hence we can apply Proposition 2.12 and obtain
that the following equation holds P-a.s.:

(X(0), ) = (X(0), 5°(¢ — )
= (6.5~ i) + [ (BOC), 7 = s)on) W (e
+ /0 (X(5), ATS"(t — $)nRim) + (X (), —A"S*(t — s)nRe) ds
+ /Ot(F(X(s)), S*(t — s)nRyn) ds
= (S0 + [ S = )BOKE) W)+ [ (0= 5)FIX () dos i
Since for all n > w and 7 € D(A?)
InRn = all = 1Ry — (0] = A))] = [ Ry A'gll € ——|4*3l) —> 0

we get P-a.s. that

E+/ S(t—s)B(X(s)) dW(s) +/ S(t— s)F(X(s)) ds,n)

for each n € D(A*). As D(A*) is dense in H (see e. g. [Pa 83, Corollary 2.5,
p.5, Lemma 10.5, p.40]) and H is separable the assertion follows.
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Proof of (ii): By the notations

/OS(t—s)F(X(s))ds and /OS(t—s)B(X(s))dW(s), te 0,7

we understand predictable versions of the respective processes.
By the Cauchy-Schwarz inequality and the Bochner inequality we get for all
¢ € D(A*) that

/OT|</0tS(t — $)F(X(s)) ds, A*¢)| dt
< [|A¢|| /T /t||S(t — $)F(X(s))|| ds dt
<||A*<||MT/ /||F M| ds dt
< IIA*CHMTT/0 |F(X(s))] ds < 0o P-as..

Using Lemma 1.31, the Holder inequality and the isometry for stochastic
integrals we have in addition that

B[ st 9BOc) awts), a0l an

- / [ (st - 9BOX), 40 aw o)

(e[ 1 [ (st - 9mxn. a0 aw) an)’
r([ e [ - sm ()>,A*<>dw<s>\2>dt)5

T ([ B[ 150~ 9BOC) A Ol ey ) ) < o0

for all ¢ € D(A*). Therefore the processes

lul»—t

||
wl»—

||
wl»—-

(/0 S(t— s)F(X(s)) ds, A*¢) and / S(t—s)B(X(s)) dW (s), A*(),

t € [0,T], are P-a.s. Bochner integrable and we obtain by the real Fubini

Theorem that
t
), A%y ds— [ (S(s)€, A"¢) d
B(| [ ¥ a) ds - [[(st)e, ) as
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_ /0t</05 S(s —u)F(X(u)) du, A*¢) ds
_ / ' / (s - wB(X (w) dWW (u), A°C) ds])

<E /|<X s)ﬁ—/sS(s—u)F(X(u)) du

/0 S(s — u)B(X (u)) dW (u Ag>\ds)

:/ (1(X() ~ S(s)e - /Ss—u

/Ss—u ) dW (u Ag>\)ds_o

since X (t), t € [0,7], is a mild solution. Thus we get for all ( € D(A*) and
t € [0, 7] that the following equation holds P-a.s.:

/0t<X(s),A*C> ds
-/ (S()E, A%C) ds

/ /Ss—u ) du, A*C) ds

+/0 (/ S(s —u)B(X (u)) dW (u), A*C) ds

0

By [Pa 83, Corollary 10.6, p.41] S*(t), t € [0,T], is a Cy-semigroup with
infinitesimal generator A*. Then by [Pa 83, Theorem 2.4 ¢, p.4] we get that
S*(t)¢ € D(A*) for all t € [0,T] and %S*(t){ = A*S*(t)¢ = S*(t)A*C for all
¢ € D(AY).

That is why we can conclude by the fundamental Theorem for Bochner in-
tegrals A.7 that the following equations hold P-a.s.:

1. /0 (S()6, A°C) ds

-/ (6, 5%(5)A4%C) ds

- [e 550 as
= (6,5°()C - O = (S(E.Q) - (6:)
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). /t(/sS(s—u)F( (u)) du, A*C) ds

// S*(s — W) A*C) du ds

(see Lemma A. 6)

/t/t S*(s —u)C) ds du

(real Fubini Theorem)

/ (POX(W), S°(t - u)) — (F(X (1)), ) du
/St—s ) ds, ¢) — /0t<F(X(s)),C) ds
(see Lemma A.6)

3, / /Ss—u )) dWV (u), A%C) ds
// ol S*(s — w)A*C) dW (u) ds

(see Lemma 1.31)

// S*(s — ) A*C) ds dW (u)

(stochastic Fubini Theorem 1.37)
/t /t (s — u)C) ds dW (u)
/0 (X (), S*(t = u)C — ) dW (u)
= ([t - 9BOCEN aW(s1.0) = [ BEE.0 W)

(see Lemma 1.31)

In this way we have proved that the mild solution X (¢), ¢ € [0, T, fulfills the
following equation P-a.s..

[0 as

= (S()E, () + (/0 S(t = s)F(X(s)) ds,¢) + (/0 S(t = s)B(X(s)) AW (s), )
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—<§,C)—/0 (F(X(s)),<) ds—/o (B(X(s)),¢) dW(s)
= (X(®),0) - (&C)—/O (F(X(s)), Q) ds—/o (B(X(s)),¢) dW (s)
and therefore we finally get that for all ¢ € [0, 7] and ( € D(A*)
(X(#),¢) =(§,<)+/0 (X(s), A"¢) + (F(X(s)), ¢) ds

+ /0 (B(X(5)),¢) dW(s) P-as.
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Chapter 3

Existence, Uniqueness and
Continuity of the Mild Solution

3.1 Existence, uniqueness and continuity with
respect to the initial data

We consider the stochastic equation (2.1) of the previous chapter

{dX(t) = [AX(t) + F(X(1))] dt + B(X(t)) dW (t)
X0) =¢

To get the existence of a mild solution on [0, 7] we make the following usual
assumptions (see [DaPrZa 96, Hypothesis 5.1, p.65]).

Hypothesis H.0

e A: D(A) — H is the infinitesimal generator of a Cy-semigroup S(t),
t>0.

e I': H — H is Lipschitz continuous, i.e. that there exists a constant
C > 0 such that

|F(z) — F) < Clla—l| for all 2,y € A.
e B: H — L(U, H) is strongly continuous, i.e. that the mapping
z — B(z)u

is continuous from H to H for each v € U.
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e For all £ €]0,7] and = € H we have that

S(t)B(z) € Ly(U, H).

e There is a square integrable mapping K : [0,T] — [0, oo[ such that

[S@)(B(z) — B(y))llz. < K®)llz — yl|
and
[15@)B(2)||. < K(#)(1+ =]

for all t €]0,7] and z,y € H.

Remark 3.1. (i) If we call My := sup;epo ) [1S(?)||zary then Mr < oo,
(ii) To get the last assumption it is even enough to verify that there exists
an € €]0,7] such that the inequalities hold for 0 < ¢ < ¢ and

/ K?(s) ds < oo.
0

(iii) The Lipschitz constant of F' in Hypothesis H.0 can be chosen in such a
way that we also have

|1F(z)] < CA+|z|]) forallze H.

Proof. (i): For example by [Pa 83, Theorem 2.2, p.4] there exist constants
w >0 and M > 1 such that

1S(@)|| ey < Me** for all ¢ >0
(ii): Let K : [0,€] — [0, co] be square integrable with

15()(B(x) = By))llz, < K(8)l|lz — yl|
and
IS(#)B(@)ll, < K(#)(1 + [|=[)

for all ¢ €]0,T] and z,y € H. Then we choose N € N such that & < ¢ and
set

K(t) = MTK(%) for ¢ € [0, ]

where Mr = supsepor [|[S(¢)||zcr)- Then it is clear that K : [0,T] — [0, 0]
is square integrable and for all z,y € H, t €]0,T] we get by the semigroup
property that
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IS(1)(B() ~ Bz, = 1S5 DS () (B@) ~ Bl

< Mr|IS()(B(z) — Bz,

.t
< MrK()llz —yll = K@)z -y
and
t
IS@B@)llz, < Mrl|S(55)B(2)],
~ 1
< MrK ()L + lzl)) = K@)1 + l])
(iii): For all x € H we have that

I1F @)l < [[F(z) = FO)| + [[FO)]
< Cllzll + [[1F©O)]
<(CVIFOID O+ [l=[)

and of course we still have that
[F(z) = Fy)ll < (CVIFO)) |z —yl| forallz,y e H

O

Now we introduce the spaces where we want to find the mild solution of the
above problem:

For each T > 0 and p > 2 we define HP(T, H) to be the space of all H-valued
predictable processes Y with

1
IV |l3 == sup (E([Y (t)|I"))* < oo
t€[0,T]
Then (H?(T, H), || ||n») is a Banach space.

For technical reasons we also consider the norms || ||, 7, A > 0, on H?(T, H)
given by

oz = sup e M (E(|Y (1))

t€[0,T]

1Y

Then || ||3r = || |lpor and for all A > 0, Y € HP(T, H) we get that

Y llpaz < 1Y [l < MY [lpaz
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which means that all norms || ||,.» 7, A > 0, are equivalent. For simplicity we
introduce the following notations

'HP(T, H) = ('HP(T, H)a ” ”’Hl’)
and
HPANT, H) := (HP(T, H), | loar)

Theorem 3.2. Under Hypothesis H.0 there exists a unique mild solution
X (&) € HP(T, H) of problem (2.1) with initial condition
£eLP(Q,F, P;H)=: L.
In addition we even obtain that the mapping
X :L§ — H(T, H)
£ X(8)

is Lipschitz continuous with Lipschitz constant L.

Remark 3.3. The above result can be found in [DaPrZa 96, Theorem 5.3.1,
p.66]. In order to make the Lipschitz property explicit we added part (ii) to
the abstract implicit function Theorem D.1 which is the basis for the proof
of Theorem 3.2.

Checking that we are in the setting of the abstract implicit function Theorem
D.1 there appears especially the problem to verify that there is a predictable
version of

/OtS(t —s)B(Y(s)) dW(s), te]l0,T],

forallY € HP(T, H). In [DaPrZa 96, Proposition 6.2, p.153] this is solved in
the case that B(Y) € Ny. As we do not demand that B itself takes values
in Ly(U, H) we have to modify the proof.

Remark 3.4. It follows from the Lipschitz continuity of X that there exists
a constant Cr, independent of £ € L§ such that

IX ()l < Crp(1+ 1€]l )
Before giving the proof of the theorem we need the following lemmas.
Lemma 3.5. IfY : Qr — H is Pr-measurable then the mapping
Y: Qr—H
(5,w) = Lpy(s)S(t — s)Y (s,w)

is also Pr-measurable for each fized t € [0,T].
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Proof. Step 1: We prove the assertion for simple processes Y given by

n
Y = ZxklAk
k=1

where n € N, 2 € H, 1 < k < n, and Ay € Pr, 1 < k < n, is a disjoint
covering of {27. Then we get that

}7 : QT — H
(5,w) = L (s)S(t = s)Y (s,w) = 1pog(s) Y St — s)zrla,(s,w)
k=1

is Pr-measurable since for each B € B(H)

LnJ {8 S [0 T |1Ot( )S(t—s)xk S BlXQ)ﬂAk
o e B([0, T)) )}

€ Pr

because of the strong continuity of the semigroup.

Step 2: We prove the assertion for an arbitrary predictable process Y.
IfY : Qr — H is Pr-measurable there exists a sequence Y,, n € N, of
simple predictable processes such that Y, (s,w) — Y (s,w) as n — oo for all
(s,w) € Qr (see Lemma A.4). Since S(t) € L(H) for all ¢t € [0, T] we obtain
that

Y(s,w) :=1jg4(s)S(t — )Y (s,w) = lim 1pg(s)S(t — s)Yn(s,w)

N— 00 \G i

-~

~n(s, w)

By Step 1 ffn, n € N, are predictable and therefore Proposition A.3 implies
that Y is also predictable. O

Lemma 3.6. If Y is a predictable H-valued process and Hypothesis H.0 is
fulfilled then the mapping

(5,w) = Ly y(s)S(t — s)B(Y (s, w))
is Pr/B(Ly)-measurable.

Proof. Let fy, £ € N, be an orthonormal basis of H and e, k¥ € N, an
orthonormal basis of U. Then f,®e; = fi(e;,)v, k,j € N, is an orthonormal
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basis of Ly(U, H) (see Proposition B.7). Because of the strong continuity of
B we obtain that

(s,w) = B(Y(s,w))e;
is predictable for all j € N. Hence the previous lemma provides that
(5,w) —=(fx ®ej, 110,4(5)S(t — 5)B(Y(5,w))) L,
= (fi> Lo(8)S(t — 5) B(Y (5,w))e;)
is predictable for all j, £ € N. This is enough to conclude that
(s,w) = Lp(s)S(t — s)B(Y(s,w))
is predictable. O

Lemma 3.7. If a mapping g : Qr — R is Pr/B(R)-measurable then the
mapping

Y : QT — R
(Sa Ld) = 1[0,1:[(5)9(5, (.d)
is B([0,T]) ® F/B(R)-measurable for each t € [0,T].

Proof. We have to show that ([0,¢[xQ) NPy C B([0,T]) ® F;.
Let ¢t € [0, T]. If we set

A:={AcPp| An([0,t[xQ) € B([0,T)) ® F:}

it is clear that A is o-field which contains the predictable rectangles |s, u| x Fs,
F, e F,,0<s<u<Tand {0} x Fy, Fy € Fy. Therefore A = Pr. O

Lemma 3.8. If a process ® is adapted to Fy, t € [0,T], and stochastically
continuous with values in a Banach space E then there exists a predictable
version of ®.

Proof. [DaPrZa 92, Proposition 3.6 (ii), p.76] O

Lemma 3.9. Let ® be a predictable H -valued process which s P-a.s. Bochner
integrable. Then the process given by

/tS(t _$)®(s) ds, te0,T],

is P-a.s. continuous and adapted to Fy, t € [0,T]. This especially implies
that it is predictable.
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Proof. By Lemma 3.5 the inner process 1jo(s)S(t — s)®(s), s € [0,T], is
predictable and in addition |[14(s)S(t — s)®(s)|| < Mr||®(s)|, s € [0,T].
t
Hence the integrals / S(t— s)®(s) ds, t € [0, T], are well defined.

0
First we want to prove the continuity. To this end let 0 < s <t < T. Then
we get that

||/ (5 — u)® du—/o S(t — u)®(u) dul

<1 [ 156 =) = S(e = o) dull + 1 [ 5(¢ =)o) du
< [t =) = 8¢~ we) du+ [ (¢ - w)e)) du

where the first summand converges to zero as s T t or t | s because of
Lebesgue’s dominated convergence theorem:

I110,s[(u)[S(s —u) = S(t —u)]®(u)|| =0 assfttortls

for all u € [0,T] because of the strong continuity of the semigroup S(u),
u € [0,T]. Moreover

1 L0,5{(w)[S (s — u) = S(t — u)]®(u)]]
< Lpo,si(w)([[S(s = Wllniy + 1S — W) oen) [ (w)]|
< 2Mr||®(u)|

where ||®|| € L*([0,T],dz) := L'([0, T}, B([0, T]), dz; R) P-a.s..
Concerning the second summand we get the same result since

/||St—u W) du

S/MT||<I>(u)||du—>O assTtortl]s

P-a.s. by Lebesgues’s dominated convergence theorem.
In order to prove that the process of the integrals is adapted we fix ¢ € [0, T].
By Lemma 3.7 the mapping

(5,w) = L y(s)S(t — 5)P(s,w)

is B([0,7]) ® F;-measurable. Hence, by Proposition A.6, we get for each
x € H that the mapping
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w |—>(/0 S(t— s)®(s,w) ds, x)
=/0(S(t—s)<l>(s,w),a:> ds
_ /0 (Lo.(5)S(t — 5)®(s,w),z) ds

is Fi-measurable by the real Fubini theorem and therefore the integral itself
is F;-measurable. O

Lemma 3.10. Let (zy,m)men, n € N, be sequences of real numbers such that
for each n € N there exists x,, € R with

Tpm — Ty S M — O0.

If there exists a further sequence y,, n € N, such that |Tpm| < yn for all
m €N and ) yn < 00 then

E xn,m_>2 Ty GS T — OQ.
neN neN

Proof. The assertion is a simple consequence of Lebesgue’s dominated con-
vergence theorem with respect to the measure p:= )" 6, where §, is the
Dirac measure in n. U

Proof of Theorem 3.2:
Idea: Let p > 2. Fort € [0,7), £ € L and Y € HP(T, H) we define

FEV)() = S()E + /0 S(t— $)F(Y(s)) ds + /0 S(t— $)B(Y(s)) dW(s)
and prove that
F: Ly xHP(T,H) — H"(T, H)

Since X (§) € HP(T,H) is a mild solution of problem (2.1) if and only if
F(&,X(€) = X (&) we have to search for an implicit function

X : L§ — HP(T,H) such that the previous equation holds for arbitrary
¢ € LY. For this end we show that there exists a A = A(p) > such that

F: L8 x HPM (T, H) — HPM (T, H)

is a contraction with respect to the second variable, i.e. that there exists
a(p) < 1 such that for all £ € LE and YV, Y € HP(T, H)

1F(&Y) = FEV)lpaz < a®Y =Y paz-
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Setting G := F, A := L§ and E := H?(T, H) we are hence in the situation
described at the beginning of Appendix D. Therefore it is clear that the
implicit function X = ¢ exists and that it is unique.

To get the Lipschitz continuity of the mapping X : L§ — HP(T, H) we verify
that the condition of Theorem D.1 (ii) is fulfilled. Because of the equivalence
of the norms || ||, »7 and || || that means that we check the existence of a
constant Lr, > 0 such that

IF(EY) = FEY)llur < Lrpllé = €z

forall £, £ € L and Y € HP(T, H).
Step 1: We prove that the mapping F is well defined.
Let £ € Ljand Y € HP(T,H).
t
1. The Bochner integral / S(t—s)F(Y(s))ds, t €[0,T], is well defined by
0

Lemma 3.9:

(i) Because of the continuity of F': H — H it is clear that F (Y (¢)), t € [0,T],
is predictable.

(ii) In addition the process F(Y(t)), t € [0,7T], is P-a.s. Bochner integrable
since

E(/O I1EY (s)l ds) < /0 ECA+[Y(s)I)) ds < CT(1 +[]Y [lar) < o0

t
2. The stochastic integrals / S(t—s)B(Y(s)) dW(s), t € [0,T], are well

0
defined since the processes 1o 4(s)S(t—s)B(Y (s)), s € [0, T}, are in N3,(0,T')
for all t € [0,T7:
(i) The mapping
(5,6) > Lo (5)S(t = 5)B(Y (s,)

is Pr/B(Ls(U, H))-measurable by Lemma 3.6.
(ii) With respect to the norm we obtain that

I0uS(t — VB = B / IS(t = 5)B(Y (5))|2, ds)
- / E(IS(t - $)B(Y(5))|2,) ds
< / K2(t — 5)B((1+ |V (5)|])?) ds
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<2 / K2t — $)E(1L+ Y (5)[?) ds

<2(14 sup E(||[Y(s)]|*) /K%—s

s€(0,T]
2(1+ ||Y||;p)/ K2(s) ds < 00
0
Step 2: We prove that F(£,Y) € HP(T,H) forall ¢ € L and Y € HP(T, H).
Let € € L2 and Y € H?(T, H).
1. The first summand S(t)¢, t € [0,7], is an element of HP (T, H):

(i) The mapping
(s,w) = S(t)¢(w)
is predictable since for fixed w € Q)
t— S(t)é(w)
is a continuous mapping from [0,7] to H and for fixed t € [0, T]
w i S(t)E(w)

is not only F;- but even Fy-measurable.

(ii) With respect to the norm we obtain that

ISC)Ellw = sup (B(IS@ENP))? < Mrl|€]lzr < o0

t€[0,T]

t
2. There is a version of the second summand [ S(t — s)F(Y(s)) ds,

t € [0, 7], which is an element of H? (T, H):

(i) First we notice that the mapping

(5,0) > /0 S(t— $)F(Y (5,w)) ds

has a predictable version because the assumptions of Lemma 3.9 are fulfilled
(see Step 1, 1.).
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(ii) Concerning the norm we prove that
II/ S(- =) F(Y(s)) ds|lue < CTMp(1+ [[Y [|3).
0
To verify the assertion we take ¢ from [0,7] and show that the LP-norm of
¢
||/ S(t—s)F(Y(s)) ds|| can be estimated independently of ¢ € [0, T:
0
¢ ¢
||/ S(t—s)F(Y(s)) ds||? < Cpr_lMg/ (I+||Y(s)]))? ds P-as..
0 0
Taking the expectation we get that

(B(| / S(t — s)F(Y(s)) ds|]”))

S =

< CT"% My (E( / L+ V()P ds)?

< O My [(B( / 1 ds))? + ( / (Y ()[) ds)?]
< CTMp(1+||Y ||) < o0

In this way the inequality is proved.

t

3. There is a version of / S(t—s)B(Y(s)) dW(s), t € [0,T], which is
0

in HP(T, H):

(i) First we show that there is a predictable version of the process. To
do so we proceed in several steps.
t

Claim 1: If o > 1 the process /a S(t—s)B(Y(s)) dW(s), t € [0,T], has a
0
predictable version.

To prove this we first use the semigroup property and get that

/OE S(t— $)B(Y(s)) dW (s)

Qe+

_ /0 S(t — as)S((a — 1)s)B(Y (s)) dW(s), te[0,T],

where we set

Lo (s)S((a—1)s)B(Y (s)) =: ®*(s)
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Then it is clear that ®*(t), t € [0, 7], is an element of N3 (0,7) :
The fact that there is a predictable version of

(5,w) = Ljo,r(s)S((a = 1)s)B(Y (s,w))
can be proved in the same way as Lemma 3.6 and of course
B([ 18— 198 ()], ds)
< [ BE(@= D90+ VIR ds
< 2/ K*((a—1)s)(1+ sup E(|[Y(s)[*)) ds
0 $€[0,T]

1
a_

(a—1)T
= 91+ VP /

Therefore we have to prove now that the process

1K2(s) ds < 00

t
/" S(t — as)®(s) dW(s), te[0,T],
0
has a predictable version for each o > 1 and ® € N2 (0,7).

(a) We first consider the case that ®(t), t € [0,T], is a simple process of
the form

é = ZLklAk
k=1

where m € N, Ly € Ly(U,H) and Ay, € Pr, 1 < k < m. To get the required
measurability we check the conditions of Lemma 3.8.
At first it is clear that

t
/ " St — as)d(s) AW (s)
0
is F¢- and therefore also F;-measurable for each ¢ € [0, T] since the process
Lo, 1((5)S(t — as)®(s), s €[0,T],

lies in V3, (0,T) (see the proof of Lemma 3.6) and therefore the process

/Ou 1[0,3[(8)5(15 — as)®(s) dW(s), wu€l0,T],
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is a H-valued martingale with respect to F,, u € [0,7T]. Besides we show
now that

tﬁﬂ/ S(t — as)B(s) dW (s)

is continuous in the mean square and therefore stochastically continuous.
To this end we take arbitrary 0 <t < u < T and get that

t

“/ (1= as)b() W(s) = [ S(t = as)b(s) W (s))?

0

Em/”ww—a@—su—a@@(> W)
n/“ e o((9)S(u - as)d(s) AW (s)]?))*

IA
Pﬂﬁ
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31 < 30 (TSt - a5) = St = as)al, ds)’
(32) -¥§:(/?H50w—aQLHﬁ2dﬂ%

where the first summand (3.1) converges to zero as t 1 u or u | ¢ for the
following reason:

Let e,, n € N, be an orthonormal basis of U. Then we get for each s € [0, T
and 1 < k < m that

Lo, (S)I[S(u — as) — S(t — as)|Lellz,
= Y 1o ()[S(u—as) = S(t — as)]Lye,||?

neN

where

Lo t(($)I[S(u — as) — S(t - as)|Lyeq|* — 0 asttuorult
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and at the same time
Lo, £((s)I[S(u — as) — S(t — as)]Lyen||* < AMF|| Len]|?

foralln € N, 1 < k < m. By Lemma 3.10 this result implies the pointwise
convergence

1[0%[(8)||[S(U —as) — S(t—as)]Lyl|;, — 0 asttuorult.
Since there is the following upper bound
Lo, ($)I[S(u — as) = S(t — as)|Le||z, < AMz||Li|lZ, € L'([0, T}, dx)
for all s € [P,T], 0 <t<u<T, we get the required convergence of the
integrals /a||[S(u —as) — S(t — as)|Li||7, ds, 1 < k < m, by Lebesgue’s

0
dominated convergence theorem.

The second summand (3.2) of the above equation also converges to zero since
foreach1<k<m

o —t
/ IS(u— as) Ll ds < " ML, — 0 asultorttu
t

Hence Lemma 3.8 implies that there is a predictable version of

t

[ st =a9dis) aw ). te o)
0
if @ is elementary.

(b) Now we generalize this result to arbitrary e N
If @ is an arbitrary process in N3 (0,T) there exists a sequence ®,, n € N of
simple processes of the form we considered in (a) such that

B 186~ B0l ) 0

(see Lemma A.4). Hence let ¥, (t), t € [0,T], n € N, be a predictable version
of
t

/a S(t — as)®n(s) dW(s), t € [0,T], n € N, which exists by step (a). To
0

Q|+

get the measurability of / S(t — as)®(s) dW (s) we prove that there is a

0
subsequence ng, k € N, such that

t

v, (1) — S(t — as)®(s) dW(s) P-as. for all t € [0, 7).

k—00 0



To this end we take ¢ > 0, t € [0, 7] and obtain that
||/ (t — as)(5) AW (s) ~ T (D) > o)
< S / " S(t— as)[b(s) — Ba(s)] AW (s)]P)
- iE( [F1ste - asie) - cms)]n%z ds)

YE ([ 1600 - o, ) < ([ 1306) - Gu(01E, 09

As this upper bound is independent of ¢ € [0, 7] this implies that

sup P( || S(t— as)®(s) dW(s) — ¥, (t)|| > ¢)

t€[0,T]

<M e[ 186 - B0, 49 3 0

oo

Therefore we get that there is one sequence ng, k£ € N, such that
t
P(||/ S(t — as)®(s) dW(s) — Ty, || > 2F) < 2°*
0
for all t € [0,T], k € N. By the lemma of Borel-Cantelli it follows that

U, (t —)/ S(t — as)®(s) dW(s) P-as. as k — oo

for all t € [0, T]. If we set now
A:={(t,w) € Qr | (¥,, (t,w))ken is convergent in H}
then A € Pr and the process defined by

Ut w) limg o0 Uy, (8, w) if ((w) € A
) w :: .
0 otherwise

i

is a predictable version of /a S(t — as)®(s) dW (s), t € [0,T).
. 0
Taking & = & we hence obtain that

/St—as)fb" ) I (s /St—s Y(s)) dW(s), te 0],
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has a predictable version. By the help of this result we can prove the asser-
tion we are interested in.

t
Claim 2: The process / S(t—s)B(Y(s)) dW(s), t € [0,T], has a pre-
0

dictable version.
Let (an)nen be a sequence of real numbers such that o, | 1 as n — co. By
Claim 1 there is a predictable version ¥, (t), t € [0,7], of

t

/ " St $)B(Y(s)) dW(s), t € [0,T], n € N. If we define

B :={(t,w) € Qr | (Y, (t,w))nen is convergent }

it is clear that B € Pr and the process given by

U(t,w) = limy, 00 Yo, (t,w) if (t,w) € B
B otherwise

is predictable. Besides we get that for each ¢ € [0, 7]
t
U(t) = / S(t—s)B(Y(s)) dW(s) P-as.
0
since

¢ t

U, (1) = /0 " S(t = $)B(Y(s) dW(s) — [ S(t—s)B(Y(s)) dW (s)

n—oo 0

P-a.s. because of the continuity of the stochastic integrals
/ Lou((s)S(t — $)B(Y () dW(s), u e [0,T).
0
Therefore the predictable version is found.

(ii) Concerning the norm we get that
1] 6= 9B () W (s) o
([ 52 ds) 0+ 17 o)

N[ =

<(E(p-1)

since we obtain by the help of the Burkholder-Davis-Gundy inequality that
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t 1

K2(t = s)(1+ Y (8)|20)? ds) ’

<Ep-1):( | K(s)ds) (1 +]|V])
2 0

Therefore we have finally proved that
F:LE x HP(T,H) — HP(T, H).
Step 3: For each p > 2 there is a A(p) =: A such that
F(& ) : HPNT,H) — H"(T, H)

is a contraction for all £ € L5 where the contraction constant «(A) < 1 does
not depend on ¢&:
Let Y, Y € HP(T,H), £ € L} and t € [0,T]. Then we get that

IFEY) — FEVO) 1
<n/ (t— )| _ F(V(s))] dsl|ur

+ ||/0 (t — s)[B(Y(s)) — B(Y(s))] dW (s)]| L

where the first summand can be estimated in the following way:
II/ S(t— s)[F(Y F(Y(s))] ds||” < MECPT?" 1/ 1Y (s) — V(s)|? ds
This implies that
(G [ 8= s)F 0 () = FF ) dslP)
<07 ([ BV ) - PP ds)

-1 ¢ ~ 1
= My OT' ([ BV (5) = T (5)17) )
<|Y - ?Ilﬁ,m
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— t ~
< MpOT™ / v ds)H|Y — Vlpar
0

< MyCT"v e At(/\p) 1Y = Y|z

Dividing by e* provides the following result

1] S6= () = PTG dsllpar < MiCTF ()3 IV =Vl

- v

—0 as A\ —> @

By the Burkholder-Davis-Gundy inequality we get the following estimate for
the second summand:

S =

(B0 [ stt— 9B () - BEG av ()
g(g(p—m ([ st~ 90 - BE NI )

1

([ K= 1Y) - V)1 ds)
([ K= e V) VGl )

o=

w\*—‘

-

<Y - Y”Q,)\,T
% / K2 QAS ds) 2 ||Y — )7||p7)\,T
1
< (§(p 1)k / KHE)e ™ da) Y =l

As for the first summand this implies that

II/S = 5)[B(Y(5)) = B(Y(5))] dW (5)llpaz

/K2 _2’\3ds> 1Y = Vpar

—0 asA—)oo

MM—A

< (5(27— 1))

Therefore we have finally proved that there is a A = A(p) such that there
exists an a(\) < 1 with

IF(EY) = FE V) lpaz < WY — Y]

pAT
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forall £ € LB Y, Y € #P*(T, H). Thus the existence of a unique implicit
function

X : IP — HP(T, H)
£~ X(£) = F(& X(8))
is verified.
Step 4: We prove the Lipschitz continuity of X : L§ — H?(T, H).

By Theorem D.1 (ii) and the equivalence of the norms || ||#» and || ||, 7 we
only have to check that the mappings

F(-,Y): Ly — HP(T,H)

are Lipschitz continuous for all Y € HP(T, H) where the Lipschitz constant
does not depend on Y.
But this assertion holds as for all £, ¢ € L and Y € H?(T, H)

[F(&Y) = F(GY)lwe = [ISC)E = Ollar < Mel|€ =l

3.2 Smoothing property of the semigroup:
Pathwise continuity of the mild solution

Let X (£) be the mild solution of problem (2.1) with initial condition £ € L.
The aim of this section is to prove that the mapping ¢ — X (£)(¢) has a
continuous version. Because of Lemma 3.9 we already know that the process
of the Bochner integrals

/OtS(t L SF(X(6)(s)) ds, t€0T],

is P-a.s. continuous. Hence it only remains to show that the process

/0 S(t — 5)B(X(€)(s)) AW (s), t€[0,T],

has a continuous version. To this end we use the method which is presented
in [DaPrZa 96, Theorem 5.2.6, p.59; Proposition A.1.1, p.307]. In contrast to
[DaPrZa 96] we do not demand that the semigroup is analytic and therefore
we only get continuity instead of Holder continuity as [DaPrZa 96].

First we have to introduce the general concept of the stochastic convolution.
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Definition 3.11 (Stochastic convolution). If ®(¢),t € [0,T],isa L(U, H)-
valued predictable process such that the stochastic integrals

W) = /OtS(t — $)®(s) dW (s), t € [0,T],

are well defined, then the process W$(t), ¢ € [0,7], is called stochastic
convolution.

The following result (see [DaPrZa 96, Theorem 5.2.5, p.58]) is a corollary of
the stochastic Fubini Theorem 1.37.

Theorem 3.12 (Factorization formula). Let o €]0,1[ and ® be a L(U, H)-
valued predictable process. Assume that

1. S(t — s)®(s) is Lo(U, H)-valued for all s € [0,t[, t € [0,T],

2. /t(t —s)*t [/s(s —u)**E(||S(s — uw)@(v)||7,) du]% ds < oo for all
repT.

Then there is the following representation of the stochastic convolution.

sin am

(3.3) / S(t—s)®(s) dW(s) = /0 (t—8)* 1St —s)Y2(s) ds

™

P-a.s. for all t € [0,T], where Y2(s), s € [0,T], is a Fr ® B([0,T])-
measurable version of

(3.4) /0 (5= u)2S(s — u)®(u) dW (), s € [0, ).

S

Proof. First we check that / (s —u)™*S(s — u)®(u) dW(u), s € [0,T7], is

0
well defined and that there is a Fr ® B(]0, T])-measurable version. But this
is true since first we have that the mapping

¢ (u,w,s) = 1p(u)(s —u)~*S(s — u)®(u), u € [0,T],

is Pr®B([0, T])/B(Ly)-measurable by assumption 1. (The proof can be done
in a similar way as the proof of Lemma 3.5 and the proof of Lemma 3.6).
Secondly, by assumption 2., we obtain that

/ / 1 1[0,51(w) (s — w)~*S(s — u)®(u)||7, du)} ds

=
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1

_ /OT [/Os(s—u)_2°‘E(||S(3—u)@(u)”%z) du]” < 0.

Therefore the mapping ¢ : Q7 x [0,T] — Lo(U, H) fulfills the conditions of
the stochastic Fubini Theorem 1.37 and thus the process of the integrals is
well defined and has a product measurable version Y,® (see proof of [DaPrZa
92, Theorem 4.18, p.109)).

Besides the mapping ¢; given by

0 Qp x [0,T] = Ly(U, H)
(u,w, 8) = Lo g(s)(t — 8)* Mpsp(u) (s — u) ™S (t — u)@(u, w)

also fulfills the conditions of the stochastic Fubini Theorem 1.37 for the fol-
lowing reasons:
For all ¢ € [0,7] we have that the mapping

©y - QT X [O,T] — LQ(U, H)

is Pr ® B([0,T])/B(Ly)-measurable. Moreover we get by assumption 2. that

/OT (E (/OT 1[0,,5[(5)1[0,5[(“) (t— 5)2(a—1)(8 B u)‘m

1

1S(t = wa(u)|3, du))” ds

= /OT Lo.(s)(t = 5)*™ (/OT Lpo,s((w)(s — u) ™
E(IS(t—w)e()3,) du)” ds
(by the real Fubini theorem)
<y [ o)t - 5 / " L) — w7
E(|1S(s — u)®(u)|2,) du)% ds < 0o

-

(by the semigroup property)

Therefore there exists a product measurable version of
/ Lo,(s)(t — $)* (s —u) *S(t —u)®(u) dW(u), se€]0,T],
0

and for this version we get that
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5 /Ot(t _ 5)oLS(t — 5)V(s) ds
-/ ' [ toa®e = 517 s = ) (0 - ww) W (w) ds]) =

Now can use the stochastic Fubini Theorem 1.37 to exchange the integration
and thus we finally obtain that

/0 (= )9 18 (t — 5)Y2(s) ds
_ /0 t /O "t — )51 (s — u) =S (t — w)B(u) AW (u) ds
_ /Ot /ut(t — ) (s — w) S (t — u)®(u) ds AW (u)
_ /0 t( / (= ) (s — ) @ ds) S(t - u)(u) W (u)

¢
m
= St —u)®(u) dW P-as.
e [ St—wow avt) Pas
t X -
i t—8)% (s — u)~® ds = 0
smce/u( $)* (s —u)"%ds pr—

Using this representation of the stochastic convolution we are now able to
prove the demanded pathwise continuity. To this end we first consider the
following case:

Let o €]0,1] and p >
For ¢ € LP([0,T]; H) :

> 1
a’

L?r([0, 7], B([0,T]),dx; H) we define

Roo(t) = /0 (t = $)*1S(t — 8)o(s) ds, ¢ € [0, T].

Then R, is well defined since

t
/|| )18 (t — s)p(s)]| ds < (/ @032 4s) 5 Mylglle < oo
0

since @ > > and therefore (o —1)-2y > —1.
Proposition 3.13.

R, : L?([0,T]; H) — C(([0, T]; H)
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Remark 3.14. If one assumes that the semigroup S(t), ¢t € [0,T], is analytic
one even gets that R, is Holder continuous for all ¢ € LP([0,T]; H) (see
[DaPrZa 96, Proposition A.1.1, p.307]).

Proof of 3.13. Let ¢ € L*([0,T]; H), t € [0,T], and t,, n € N, a sequence
in [0, 7] such that ¢, — t. Then

n—o0

[Rap(tn) = Rap(t)]

_ ||/ (b — 5)91S (b, — 8)io(s) ds —/0 (t— $)°LS(t — 8)(s) ds|
< /0 110,40 1(8)(tn — )% 1S (tn — 8)p(s) — Liog(s) (¢ — $)* ' S(t — s)p(s)|| ds

Concerning the inner term we obtain that

10,6,((8) (tn — 8)* St — 8)p(s) — Lpi(s)(t — 5)* ' S(t = s)e(s)[| — 0

n—o0

for dz-a.e. s € [0,T]. Moreover the family
(Iomi(tn = V7S (tn = () = Lot = )*7'S(t =)o ())nen

is uniformly integrable :
For ¢t € [0,T] we set

Fy(s) = 1pg(s)(t = 8)* 7 [[S(t = s)(s)ll, s € [0,T].
Since (a — 1) > —1, there exists £ > 0 such that

b
—1)(1 ———— > —1and
(= 1)( +€)p—1—5 and 7= —

then
T t p—1—
/ Ftl—l—s(s) ds < (/ (t — S)(ocfl)(l—}-s)p i—e ds) » MH'S”go”H_E
0 0

T
< (/ S(a—l)(1+5)p,+,s dS) MH_EHQDHI_'—E
0

T

Therefore sup / F!"¢(s) ds < oo and hence Fy, t € [0,7], is uniformly
tefo,7] Jo

integrable. Since

1 L0.001(5) (tn — 5)° 7" S (t — 5)2(5) — Lp(s)(t — 5)*7'S(t — s)p(s)
< B, (s) + Fi(s)

for all s € [0, 7] the assertion follows. O
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In this way we have found an instrument to check if the process

/0 S(t — $)B(X(€)(s)) dW(s), te[0,T],

has a P-a.s. continuous version. Altogether we can make the following
statement concerning the mild solution of problem (2.1).

Proposition 3.15. Assume that the mappings A, F and B satisfy Hypoth-
esis H.0.
If there ezists o €]0, 5[ such that

T
/ s 2*K?%(s) ds < o0
0

then the mild solution X (€) of problem (2.1) has a continuous version for all
initial conditions £ € L§, p > <.

Proof. S(-)¢ is P-a.s. continuous because of the strong continuity of the
semigroup.

In Step 2, 2. (i) of the proof of Theorem 3.2 we already have shown that the
process of the Bochner integrals

/0 S(t— )F(X(€)(s) ds, t € [0,T],

has P-a.s. continuous trajectories.
Thus, in fact, it only remains to prove that the process

/0 S(t — $)B(X(€)(s)) dW(s), te[0,T],

has a continuous version:
Since

/0 (t— )] / (s — u) B (IS(s — wBX(E)(w)|2,) du]® ds
< / (t— ) / (5 — u) K (s — w)E((1+ | X(©)@))?) dul

o=

ds

o=

<@+ IX@he) [ =0 [ 6= K26 - ) ] ds

T

< Ix@he)( [ v i) [ as < oo

0
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we have by Theorem 3.12 (factorization formula) that

/0 S(t — 5)B(X(€)(s)) AWV (s)

sin o

_ /O (t— )% 'S(t - s) /Os(s ) ®S(s — u)B(X(€)(w)) dW () ds

™

_ sinﬁawRa(/O'(, —u)eS(-

-~

—u)B(X(&)(w)) dW(u) )(t) P-as.
=Y, i
Since the mapping ¢ : Qr x [0,T] — Ly(U, H) given by
p(u,w, s) == Liosf(u)(s — u) *S(s — u) B(X(§)(u,w))

fulfills the conditions of the stochastic Fubini Theorem 1.37 the process Y,
can be understood as a B([0,7]) ® F-measurable version of

t

/ (t—u)*S(t —u)B(X(&)(u)) dW (u), t € [0,T] (see proof of [DaPrZa 92,
0

Theorem 4.18, p.109]).

To get the P-a.s. continuity of the stochastic integral we have to show that

1
Y, € LP([0,T); H) P-as. forp > —.
o

By the Burkholder-Davis-Gundy inequality we can estimate E (]|Y,(¢)||?) in-
dependently of ¢ € [0, 7] in the following way

E(|[Ya(®)IIP)

< Go—0)H([ =5 (EUSE - )BXOE)IE)

(AN
S}

ds) ’
»

(
< G- 0)5 ([ (- o)k - ) B0+ IXO @I ds)°
([ =) K= 0+ X (@l d5)’

P

T 2
A+ X @l ([ 5K ) ds)” < oc
0
Finally we obtain by the real Fubini theorem that
T
0

B[ Mool i) = [ B(Va(0IP) di < .
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Chapter 4

Differentiable Dependence on
Initial Data for the Mild
Solution

In this chapter we analyze the first order differentiability of the mapping
X:LE—-HP(T,H), p>2,

where X (£) is still the mild solution of problem (2.1) with initial condition
¢ € L. (For details about the different concepts of differentiability see Ap-
pendix D.) To this end we make the following assumptions

Hypothesis H.1

e F' and B are Fréchet differentiable where the derivatives

DF : H — L(H)
DB:H — L(H,L(U,H)) are continuous.

e For all ¢ €]0,T] the mapping
S(t)DB: H— L(H,Ly(U, H)) is continuous.

Remark 4.1. (i) Comparing these assumptions with the usual ones
(see [DaPrZa 96, Theorem 5.4.1 (i), p.69]) one will notice that on the one
hand we do not demand the boundedness of DB while on the other hand
the assumption concerning the continuity of S(¢)DB is additional. Even to
prove the Gateaux differentiability of X we need this stronger assumption.

(ii) We are especially interested in delimiting the Gateaux from the Fréchet
differentiability of X. Concerning the respective definitions see Appendix D.
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Remark 4.2. (i) If F satisfies Hypotheses H.0 and H.1 we obtain that
|DF ()| ) < C forall z € H.
(ii) If we just assume Hypothesis H.0 and the Fréchet differentiability of the
mapping B : H — L(U, H) we already get for all t €]0,7] and = € H that
S(t)DB(z) € L(H, Ly(U, H)) with

1S@)DB(@) Lia,L.) < K ()
Proof. (ii): By Hypothesis H.0 ||S(¢)B(z) — S(t)B(2)||, < K(t)||z — Z|| for
allt €]0,T] and 2,Z € H.
Therefore we obtain for all ¢ €]0,7] and z,y € H that

II%(S(t)B(fv +hy) = S()B(2))]lz, < K@)yl

If e,, n € N, is an orthonormal basis of U then

%(S(t)B(ac +hy) ~ S()B(@)es — S(H)DB(aye, forallne N

By the lemma of Fatou it follows that
IS DB(@)yl7, = Y _IISH)DB(x)y enl’

neN

= lim inf|| - (S(t)B(z + hy) — S(t)B(z)) I3
h—0 " h 2
< K*()[yll?
and thus ||S(t)DB(z)||r(#,1,) < K(t) for all ¢ €]0,T] and z € H. O

Theorem 4.3. Assume that the mappings A, F and B satisfy Hypothesis
H.0 and Hypothesis H.1 and let p > 2. Then the following statements hold.

(i) The mild solution
X : L5 — HP(T, H)
£ X(¢)
1s Gateaux differentiable and the mapping
0X : L x LK —HP(T, H)
(&, ¢) —0X(§)C

18 continuous.
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(#i) The Gdteaux derivative of X fulfills the following equation for all
&, (e Ll andt € 0,7

0X(£)C(t) =S(t)¢ + /Ot S(t — s)DF(X(£)(5))0X (£)¢(s) ds

—|—/0 S(t—s)DB(X(£)(s)0X(£)C(s) dW (s) P-a.s.

(#i) In addition the following estimate is true

10X (&)Cl2e < Lrp||<|| e

for all §,¢ € L where Ly, is the Lipschitz constant of the mapping
X :L§ — HP(T, H).

(iv) If 2 < p < q < 0o the mapping

X : L — HP(T, H)
£ X(6)

s continuously Fréchet differentiable.
In particular, the mapping

X . H — H°(T, H)
z— X(z)

1s continuously Fréchet differentiable for all p > 2.

Remark 4.4. To prove the first assertion (i) we follow the way which is
presented in [DaPrZa 96, Theorem 5.4.1 (i), p.69]. That means applying
Theorem D.8 (i) (see [Za 98, Theorem 10.2, p.207]). But to get that the
mild solution is (continuously) Fréchet differentiable we have to modify the
abstract implicit function Theorem D.8 as in this case we have to consider
not only one Banach space E = HP(T,H) but also a further one Ey =
HYT,H) C HP(T, H), q > p. Zabczyk and Da Prato already have proposed
this approach in the case of the second order derivatives (see Theorem D.13

())-
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Before we can prove Theorem 4.3 we need the following lemmas.

Lemma 4.5. Assume that the mapping B satisfies the conditions H.0 and
H.1. Then for allt €]0,T] and xz,y € H

I S(t)B(z + hy) — S(t)B(z)
h

<7 / ISDB(z + sy)y — SE)DB(x)y||L, ds

— S(t)DB(x)yl|,

and therefore we have in particular that

Proof. For all ¢ €]0,7] and z,y € H the mapping s — S(t)B(z + sy) is
continuously differentiable as a mapping from R to L(U, H) with derivative

s— S(t)DB(z + sy)y € L(U, H).

Therefore we get by the fundamental theorem for Bochner integrals, Theorem
A.7, that

S(H)B(x + hy) — S(t)B(x)
h
_1 / S(H)DB(x + sy)y — SEDB(@)y ds in LU, H).

— S(t)DB(z)y

h

Besides we know by assumption that the mapping s — S(t)DB(z + sy)y
is continuous even as a mapping from R to Ly(U, H). In particular it is
B(R)/B(Ls)-measurable and it is possible to define

/0 S(t)DB(z + sy)y — S(t)DB(x)y ds

also as Ly (U, H)-valued Bochner integral.
Since both integrals are identical the Bochner inequality with respect to the
Hilbert-Schmidt norm ||-||., provides the desired result
“ S(t)B(x + hy) — S(t)B(x)
h

< / IS DB(z + sy)y — S(E)DB(x)yllL, ds

— S(t)DB(z)yll.,

The last assertion is a consequence of the continuity of z — S(¢)DB(z)y as
a mapping to Lo(U, H). O
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Lemma 4.6. Let (Q, F, ) be a measure space where p is finite and let (E, d)
be a polish space.

Moreover let Y,Y,,,n € N, be E-valued random variables on (Q,F, u) such
that

Y, — Y in measure as n — oo.

Let (E, LZ) be an arbitrary metric space and f : (E,d) — (F,d) a continuous
mapping. Then

foY,— foY in measure asn — oc.

Proof. Without loss of generality we can assume that p is a probability
measure. Then we define v := poY ™! and v, := po¥, !, n € N, on
(B, B(E)).

Since Y,, — Y in measure as n — oo we have that v,, — v weakly.

Then by [Bi 68, Theorem 6.2, p.37] {v, | n € N} U {v} is tight, i.e. for all
e > 0 there exists a compact set K, C F such that

V(K) <eand v, (Kf) <eforallneN
Let now € > 0 and ¢ > 0. Then

pw(d(foYy,, foY)>c¢)
<p({d(foYa, foY)>cn{Y, € K.}N{Y € K.}) + 2

Since f : K. — E is uniformly continuous there exists § > 0 such that
d(f(z), f(y)) < cfor all z,y € K, with d(z,y) < é.
Therefore we can conclude

p{d(foY,, foY)>ctn{Y, e K.}n{Y € K.})
=p({d(foY,, foY)>c}n{Y, e K. }n{Y € K.}n{d(Y,,Y) > 6})
S u(d(Yn,Y) >26) <e

for n big enough since Y,, — Y in measure.

Consequently p(d(f oYy, foY) > ¢) < 3¢ for n big enough. O

Proof of Theorem 4.3. Idea: In order to prove the Gateaux resp. the
Fréchet differentiability of the H? (T, H)-valued mapping X we want to apply
Theorem D.8 to the spaces Ag := L, A := L, Ey := H¥ (T, H) and
E := HPP) (T, H) and the mapping G := F.
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To be in the setting of Theorem D.8 we have to choose A(p), A(g) > 0 (from
the proof of Theorem 3.2) such that

F: L2 x (P (P) (T,H) - HPAP) (T,H)
and F : LY x HMNO(T, H) — HNO (T, H)

are contractions in the second variable. In this way we get differentiability
properties of the mapping

X : Ly = HPAO(T, H), re{pq}

and therefore because of the equivalence of the norms || ||\, A > 0, also of
the mapping

X:Li—HT,H), re€{pq}

Since it is easier from a technical point of view we will check that the spaces
Ao :=L{, A := L}, Ey := HYT,H) and E := HP(T,H) and the mapping
G := F fulfill the conditions of

Theorem D.8.

Proof of (i): In Theorem 3.2 we already proved the continuity of the map-
ping

L§ — HP(T,H), &w— F(&Y), forallY € HP(T, H).
Hence it remains to verify the second condition of Theorem D.8 (i).
Step 1: We consider F : L x HP(T, H) — HP(T, H) and prove the existence
of the directional derivatives.
(a) We fix Y € HP(T,H) and &, € L and prove that there exists the

directional derivative 0, F(&,Y;() = S(-)¢ € HP(T, H):
This assertion is obvious since

F(E+h(,Y)(t) = F(E,Y)(E) = hS()C, for allt € [0,T] and h € R

(b) We fix £ € Lf and Y,Z € HP(T,H) and prove that there exists the
directional derivative

BF(E,Y; 7) = /St—sDF Y (s))Z(s) ds
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Let t € [0, 7] and h # 0. Then we get that
h

|
—/ S(t—s)DF(Y(s))Z(s) ds —/O S(t — s)DB(Y (s))Z(s) dW (s)||zs

<1 s~ ”Zﬁl” PO _ pr(y () 2(s)) dsus
+ ||/0 S(t — s) )+ hzf)) - BV(s)) _ DB(Y(S))Z(S)) AW (s)|| s

(1.) The first summand can be estimated independently of ¢ € [0,7] in the
following way

B / 5t 9 +"Z§j” PO6D) _ pry s z(s)) dsl) )
<7 / PR ZFEED by (20 )’
Since

”F(Y(s,w) + hZ(S,;w)) - FY(s,w)) DF(Y (s,w))Z(s, w)“z)m 0

for all (s,w) € Qr and is bounded by 2°C?||Z||P € L'(Qr, Pr, Pr) we obtain
that

s [ s s>(F(Y(S) P2 ZFACD Dy ())2(5)) dslle
< MTTp 1 / I s)+hZ( 5)) F(Y(s)) — DF(Y(s))Z(s)|P dS))E

h—)O

by Lebesgue’s dominated convergence theorem. In this way we get the desired
convergence of the first summand in H?(T, H).

(2.) Now we want to estimate the second summand. For that we fix A > 1
and get by the Burkholder-Davis-Gundy inequality the following estimation

s) + hZ(s)) = B(Y(s))
||/s (t—s .

=

— S(t = $)DB(Y (5) Z(s) dW(5)|P))’



< Bl 1)} ([ (Blste - o BV CLHAZE) =BG

2

~ St - DBV () Z()I1,))" ds)’

:(]—g(p—l))%(/OX<E(||S(t—S)B( ()+hzgj)) B(Y(s))

~ St - DB ()Z)IL,))" ds

[ (B0t - 9 2V £Z0) - BO'6)

— S(t—s)DB(Y (5)) Z(s)|I%, )) 5)°

By the semigroup property we obtain for the first integral that
/Oi (st - 9 (B(Y(s> + hzﬁf)) ~ B(Y ()
- DB(Y(5))2(s))I1,)|” d
_ /0 [B(I15(t — A9)5((r ~ 1ys) (B2 = BA)
= DB(Y(5))2()) I, )| ds
<2 / [£(Is(0 - 1)) (B(Y(s> + hzgs)) — B(Y(s))

>+

2

—~ DB(Y(5))2(5)) 1, )| "ds

If we fix s €]0, 7] then we obtain by Lemma 4.5 that

I5((— 1)) (BECLHRZN Z BN iy (s)) 29 1, — 0

L2y 50

P-a.s.. Moreover, by Hypothesis H.1 and Remark 4.2 (ii), the term is
bounded by 2PK?((A — 1)s)||Z(s)||P € L'(Q,F,P). Therefore we get by
Lebesgue’s dominated convergence theorem that

(B(1s(r - 1ys) (BELLIZED = BOUD _ v (s) 2(0)12,))
E))O

for all s €]0,T]. In addition, for all A # 0 and s €]0, T'] the above expectation
is bounded by the function 4K?%((\ — 1)-)||Z||3,» € L'([0,T],dz). Thus we
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obtain again by Lebesgue’s dominated convergence theorem that

/0 ' [B (15 - 1s) (Z2LE hzgf)) P

2

— DB(Y (5))2(5))I%,)|” ds — 0

The second integral can be estimated independently of h # 0 and t € [0, 7]
as follows

t[E(||S(t —s) (B(Y(S) . hzs)) A

~ DB(Y(5))2(5)) I3, )|” ds

AK2(t - 5)(E(|2(s)|P)? ds

o

LA

VAN
yﬁ

(O—1)T

2 A 2
< 4|2 / K?(s) ds
0

A—1)T

where [|Z||z» < oo and / ’ K*(s )dsT> 0, since K € L?*([0,T],dx).

Altogether we are able to estimate the second summand independently of
t € [0,T] and we have that

sup || [ S(t— 5)(B(Y(8) + thls)) — B(Y(s))

te[0,7] Jo
— DB(Y (5)Z(s)) dW (s)]1s
< Gw-0)} (3 [ [£(Is(r - o) (P = B

h

2

—~ DB(Y(5))2(5)) 7, )| "ds

A=1T 1

w1z [ K5 ds)’
0

where the righthand side becomes small if A is near to 1 and A tends to zero.
So finally the desired convergence of the second summand in HP(T, H) is
proved.
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Step 2: We prove the continuity of the directional derivatives
OWF :LE x HP(T,H) x LY — HP(T, H)
0o F :LE x HP(T,H) x HP(T,H) — HP(T, H)
(Notice that by Lemma D.4 this assertion especially implies that
F(&,Y;) € L(Lg, HP(T, H))

for all £ € L and Y € HP(T,H). Hence Step 2 includes the result that
the directional derivatives are the Gateaux derivatives. Therefore then it
is justified to write 0, F(&,Y)( and 0, F(&,Y)Z instead of 01 F(&,Y; () and

F(&,Y;Z).):
(a) Since for all §,¢ € L and Y € HP(T, H)

f(faYQ C) = (S(t)C)te[O,T]

the continuity of 01 F follows immediately from the fact that for all ¢ € [0, 7]
1S @)l ogmy < Mr.
(b) To analyze the continuity of

0y F L2 x HP(T, H) x H(T, H) — H*(T, H)

(€Y, 2) /St—sDF Y () Z(s) ds

/ S(t = s)DB(Y(s))Z(s) AW (5)),c o)

0
we take &, &, € L5, Y, Y,, Z, Z, € HP(T, H), n € N, such that ||§, — &||r» — 0,
n—r00
Y, = Y|4 — 0 and || Z,, — Z||y» — 0. Then we have for ¢ € [0, T
n—00 n—00

100 (€, Yis Za) (1) — 0T (£,Y'; Z) ()]s
<| / S(t — 3)(DF(Ya()) Zu(s) — DF(Y(5))Z(5)) v (1)
+ / S(t — 5)(DB(Y;(5)) Zu(s) - DBY())Z(s)|r (2.

(1.) At first we want to estimate the first summand independently of
t € 10,7

=

B(I [ 8= 9(DPY(s)Zu(s) = DF(Y (5)2(5) dslF) )
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< e (B[ NDF O 70(5) ~ 2P )

=

(( / | DE(Ya(s))Z(s) = DF(Y () 2(5)| ds) )|

< MyT™ [C’Tp||Z — 7|

E( /0 IDF(Yn(s))Z(s) — DF(Y (s))Z(s)|I” ds)) ]

=

The first summand CT' | Z, — Z||#» converges to zero as n — oo by assump-
tion.
Concerning the second summand we obtain by Lemma 4.6 that

|DF(Y,)Z — DF(Y)Z|| — 0 in Pr-measure
n—oo
since (Y, Z) — (Y, Z) in Py-measure and DF : H x H — H,
(y,2) = DF(y)z, is continuous. Moreover

IDF(Ya)Z — DF(Y)Z|P < 2°C"||Z||” € L*(Qr, Pr, Pr)

forallm € N. Hence |DF(Y,)Z — DF(Y)Z|P, n € N, is uniformly integrable
and altogether we obtain that

1

E(/0T||DF(Yn)Z — DF(Y)Z|P ds)) —

n—oo

Since this convergence does not depend on t € [0, 7] we finally have that

sup || [ S(t — 5) (DF (Ya()) Zu(s) = DF(Y())Z(s)) dsll i — 0

te[0,7] Jo

(2.) As next step we want to estimate the second summand independently
of t € [0,T7.

Using the Burkholder-Davis-Gundy inequality and the triangle inequality for
|I||» we obtain for fixed ¢ € [0, 7] and for arbitrary A > 1 that

=

E ||/ (t — 8)(DB(Yy(s)) Zu(s) — DB(Y (5))Z(s)) dW(s)Ilp))p

t\JI»—t

(/Ot(E(HS(t_5)(DB(Yn(S))Z (s) = DB(Y(s))Z(s ))“ ))2 >1



[¥]

2
+2/t( (||S(t—s)[DB( A(9)) = DB(Y (9))12(s)I1,))” ds |

/K%—s (12:(5) — Z()IP) ) ds

< G- 1) 2 [ (B(Is6 - 9DBOE ) - ZGDIE)) ds

1
2

+2/0* <E(||S(t—8)[DB(Yn(s))—DB(Y(s))]Z( e ))p
+2ﬁ(E(HS(t—S)[DB(Yn(s))—DB(Y(S))]Z( ) s ]’

A

D
< Pp-1) / K(s) ds (| Zn — Z)%

Sl
¥

2 [ ME(B(IS(2 = D9IDBYL(s) = DB (9)IZ()IE,)) ds

+8/K2t—s (12(s) ||p))’2’ds}2

< Co-1)[2 [ K6 ds 170~ 218

o

w2247 [ (E(IS(2 - Ds)IDBL() ~ DB ()IZ()IE,))” ds
w8 [ 1 K sz ]

Since ||Z, — Z||s» —> 0 as n — oo and since by Lebesgue’s dominated
(A=DT

convergence theorem K?(s) ds becomes small for A near to 1 it only

remains to show that
2

| (U - 0s)DB(s) - DB (NIZG)IE,)) ds — 0

n—oo
By Lemma 4.6 the inner term
[S((A=1)s)[DB(Ya(s)) = DB(Y (s))12(s)llz, — 0
in probability for all s €]0,7]. Moreover it is dominated by

2PKP((N—1)s)||Z(s)||P € L'(Q, F, P) for all n € N and s €]0,T]. Therefore

we obtain that
2

(BUIS(( ~ 1)s) DBV (s) - DBV (s)1Z(s)[3.)) — 0
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for all s €]0, 7.

Since the above expectation is bounded by the function 4K%((A —1)-)||Z]|3,
€ L'([0,T],dz) we obtain by Lebesgue’s dominated convergence theorem
that

2

/0 (B(IS((A = 1)5)[DBY.(s)) - DB ()]Z()[E,))” ds — 0

n—o0

So finally we get the required convergence in ‘HP (7', H)

—

sup (E(| [ 5= 9)(DBOL(9)Z,(5) ~ DB () Z(5) aW(9)))”

t€[0,T]

— 0.

n—oo
Proof of (ii): Let &, ¢ € L}. Then by Theorem D.8 (i) we have the following
representation of the Gateaux derivative of X:

BX (6)C = [I — BuF (€, X(€))] T O F (€, X (6))C

and therefore

IX(E)C = D F(E X(E)C + 0.7 (6, X(€)0X ()¢
= (S(c+ [ S(t=9)DP(XE)0X () ds

+/0 S(t — $)DB(X(€) ()X (€)((s) ds)

Proof of (iii): By Theorem 3.2 the mild solution X : L — HP(T, H) is
Lipschitz continuous with Lipschitz constant Lz ,. Hence we get that

X(E+hC)— X
10X ()¢l = lim]| €+ i) (6

Proof of (iv): To prove the Fréchet differentiability of the mild solution X
it remains to verify the fifth condition of Theorem D.8.
(a) The mapping
OF : L{ x HUT,H) — L(L§, HP (T, H))
(ga Y) = 61'7:(6’ Y)

t€[0,T]

e < Lopl[Clle  forall §,¢ € L

1S continuous since it is constant.
(b) To prove the continuity of the mapping

0y F : L x HUT, H) — L(HYT, H), H?(T, H))
(ga Y) = 82‘7:(5, Y)
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let £,&, € LY and Y,Y,,Z € HY(T,H), n € N, such that ||§, — &|lr» —> 0
n—00
and ||Y,, — Y|y« —> 0. Then we have to show the existence of a sequence of
n—oo

positive real numbers ¢,, n € N, independent of ¢t € [0, T] such that ¢, — 0

n—o0
and

1027 (&n, Yu) Z(t) — 02 F (&, Y) Z(t)| e

<| / S(t — $)(DF(Ya(s))Z(s) - DF(Y())Z(s)) dsllz (L)

+ II/0 S(t—s)(DB(Ya(s))Z(s) — DB(Y (s))Z(s)) dsl»  (2.)
< cal| 2

for all t € [0, 7.
(1.) The first summand can be estimated independently of ¢ € [0, 7] in the
following way

(1] 5= )PP () 2(5) = DF((9)Z(5)) dslP)

-

»

IS Lo /

<77 (B([ IDFOH(:)Z(6) ~ DPY () Z()IP ds))

—

<M ([ B(IDFOL) = DEY ) I12)1P) ds)°

<7 ([ BIDF0L) = DFO )l ds)

([ ez )’
q

(Holder inequality for r = 95 1and s = —)
b q—p

1

< w7 ([ BIDPOLE) - DRI )I,) ds) ™

1
T Z]|na
As in part (i) Step 2 (b) we get that

1

ay = MyT"% Ta (/0 E(|DF (Y,(s)) = DF (Y (3))[%7)) ds)W —0

n—o0

(2.) To estimate the second summand we fix A > 1 and use the Burkholder-
Davis-Gundy inequality.

(51 5= 5)(DBEL)2(6) = DB () 2() W (3)17))

=
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t

| / (B(IS( - 9)DB(YL(s) - DBY ()IZ(5)IE,)) " ds
- [(E(Hs(t— 9DB(Y,(5) - DB ()Z(E,))" ds |
< (g(pi n)?
| T(E( 15X = 1)s)[DB(Ya(s)) = DB ($)]llz (...

12(5)1P))" ds

+ / (E(IS(t = 5)[DB(Ya(s)) = DBEY () 111,

2

12)I7))" ds |

N

< (50-1)" sw (E(1Z0I7)°
| / (E(IS(A = 1)9)[DB(Ya(s)) = DB (D] 1)) )™

2 1

+ﬂt<E(|lS(t—8)[DB(Yn(s)) _DB(Y(S))]”%?;I,LZ)))W ]2

A

(Holder inequality for r = % >1landr = ﬁ)
< (50— 1)1 Zll
[M% /0 (E(||S((A —1)s)[DB(Yy(s)) — DB(Y(s))]I’i’('H,m))W ds

(=—1T 1

—I—4/OAK2(S)ds }2

As in part (i) Step 2 (b) we get that

| (BUSO = D9DBOME) = DB D)™ ds =20

n—o0

(This is the moment where we use the full assumption that
S(t)DB : H— L(H, Ly(U, H)) is continuous.)
(A=1)T

G-yr
Besides K*(s) ds )\—“> 0 so that we get the existence of a sequence
0
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bn, n € N, such that b, — 0 and

n—oo

||/0. S(- = 5)(DB(Ya(s))Z(s) — DB(Y (5))Z(s)) dW (s)llne < bul|Z]|na
Altogether we have that

102F (§n, Yn) Z = 02 F (£, Y) Zlar < (an 4 b)) 2|00
H_,_/

=:c,

where ¢, — 0. O

n—0o0

Now we are interested in finding conditions under which the mapping
DX : L{ — HP(T,H) is even uniformly continuous. This result will be
relevant in chapter 6.

Hypothesis H.1’

e DF: H — L(H) is uniformly continuous.

e There exists a mapping K : [0,7] — [0,00[, K € L*([0,T), dz) such
that

IS#)(DB(z) = DBW)) a0y < KBl — |
for all t €]0,7] and z,y € H.

Corollary 4.7. Assume that the mappings A, F' and B satisfy the Hypothe-
ses HO, H.1 and H 1’ and let 4 < 2p < g < oo. Then

DX : L{ — L(L{, H*(T, H))
15 uniformly continuous.
Proof. By Corollary D.12 we only have to check that the mappings
DiF : LE x HY(T,H) — L(L{, HP(T, H))
and Do F : L{ x HY(T,H) — L(HY(T, H), H"(T, H))

are uniformly continuous since we already know that the derivative

DX : L{ — L(L{, HP(T, H)) is bounded (see Theorem 4.3 (iii)).

Since D1 F is constant we only have to prove the uniform continuity of DyJF.
For that let £,€ € L%, Y,Y,Z € HY(T, H). Then we get for all ¢ € [0,7T7]:
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IDoF(£,Y)Z(t) — DoF(E,Y)Z(t)]| 1o
< ||/0 S(t - $)[DF(Y(s)) — DF (V(s))12(s) dsl|.» (1)
1 / S(t— $)DB(Y(5)) — DB(Y(9))2(s) dsll (2.

(1.) Let € > 0. Since DF : H — L(H) is uniformly continuous there exists
0 > 0 such that

|IDF(z) — DF(y)||lnany < e for all z,y € H with ||z —y|| <.

Using this fact we obtain that

||/0 S(t— s)[DF(Y(s)) — DF(Y(s))]Z(s) ds| s

=

<7 ([ QDR () - DR E)IZ6P) ds)’
<t ([ (BUDPOG) - DEFO)E)) (B 7)) d5)°

< MTTT</OT(E(IIDF(Y(8)) — DF (Y (9)) I Ly - Y<s>||<6}))

1

+(E(IDF(Y(5)) = DF (V)2 Lyvio-sisa1) ) 45)

=

1Zl3220 (1)
1

1 T >
< w75 ([ 4 OP(PUYE) =T @)1 > 9) ds) 1 Z bencrn

1

< ([ e+ @OPL(EIVG) - YOI d5) 12l
<M (24 OPHY — Plhocran) 12l
(2.) By the Burkholder-Davis-Gundy inequality we get that

1 5= DB () - DB ()12() dsl
s(5<p—1>)%( / (B(IS( - 9IDBOY(s) ~ DB ()ZG)E,))F d

P — 1)) ( / Rt =) (B(IY () - T @IPIZ(s)IP)) ds)’

1

)

ISAIN]

bS]
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1

< Co-0)} ([ B2- 9BV - TEIP) (B(126)7))* ds)’
2 0

< (g(p - 1))

D=

T 1 3
([ & ds) 1Y = Plncrnll 2l
0
Since the estimates (1.) and (2.) are independent of ¢ € [0, 7] the mapping
DoF : LY x HI(T, H) — L(HY(T, H), H"(T, H))

is uniformly continuous. O

In the second part of chapter 6 we analyze the existence of a strict solution
of the Kolmogorov equation which is related to problem (2.1). For that it is
important to know assumptions under which DX (z)y(t), t € [0,T], z,y € H,
has a pathwise continuous version.

Proposition 4.8. We assume that the Hypotheses H.0 and H.1 are fulfilled
and in addition we demand that there exists o €]0, 1| such that

T
/ 572 K?%(s) ds < 00
0
Then we get that there is a continuous version of
OX(E)C(t), te[oT],

forallé&, (e Lf, p> 1.
Proof. By Theorem 4.3 (ii) we know that
t
OX () =S+ | St =) DPXO)OX(E)5(s) ds
¢
—l—/o S(t—s)DB(X(£)(s))0X (£)C(s) dW (s) P-a.s.

where:
1. Tt is clear that ¢t — S(¢)C is P-a.s. continuous since S(t), t € [0,7], is a
Co- semigroup.

2. Since the process DF(X(£)(s))0X (€)((s), s € [0,T], is predictable and
P-a.s. Bochner integrable Lemma 3.9 provides that

i ' S(t = $)DF(X(6)(5))0X (€)C(s) ds
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is P-a.s. continuous on [0, 7.
3. To prove that there is a continuous version of

[ stt-9) pBECOEDIX €KL W), te0.1)
=: ®(s)

we first want to use the factorization formula 3.12 to get that

sin o

/0 S(t — $)B(s) dW(s) = /0 (t— $)*1S(t - 5)V¥(s) ds P-as.

™

for all ¢ € [0,T] where Y.®(s), s € [0,T], is a B([0,T]) ® Fr-measurable
version of

/Os(s —u)"S(s — u)®(u) dW(u), se€]0,T].

To this end we have to know that

1

(4.1) /Ot(t _ g)-t [/Os(s ) B(|S(s — w)B(s)[2,) du]” ds < o0

for all ¢ € [0,7T]. But this is true since the additional assumption concerning
K :[0,T] — [0, 00] implies that

t s
[e=971[ [ =0 E(Is(s - wDB(x ()
0 0
DX(E)C(3)I7,) du] " ds
t s 1
— a—1 _ —QOzKZ _ E(IDX 2 d ) d
< [e=9[[ =0 K= wBDX ECEIR) dd] " ds
t T 1
DX ) Y- B 72aK2 d 2 d
< IDX Ol [ (6= [ [ w2 Ko w) o] ds < o0
To prove now that
/t(t —8)*7 1St —s)Y.2(s) ds, te€]0,T],
0
has a continuous version we only have to check that Y2 € L([0,T]; H)

P-a.s. (see Proposition 3.13). But by the help of the Burkholder-Davis-
Gundy inequality we can conclude that
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E(Yy@I)
= E(II/O (t —5)7*5(t — ) DB(X(£)(s)) DX (£)C(s) ds]|”)

[V

< (g(p ~1))* (/0 (t— 5)2(E(|S(t — s)DB(X(€)(s)) DX (€)C()IIL,)) * ds)
G- 1) ([ ¢~ =K - ) (BUDX ()P ds)’

M}

( / (t— )2 K (t - 8)| DX (€)C|2 ds)
< Glo= ) FIDX O ([ 570 (0) ds)F < o

Since the process ¢ : Qp x [0,T] — Lo(U, H) given by
o(u,w, s) := 1y s(u)(s —u) *S(s — u)P(u)

fulfills the conditions of the stochastic Fubini Theorem 1.37 (see (4.1)) the
process Y. has a B([0,7]) ® F- measurable version (see proof of [DaPrZa
92, Theorem 4.18, p.109]). So finally we get by the real Fubini theorem that
T
0

B / V2@ de) = / E(IY2®)|P) dt < oo



Chapter 5

Second Order Differentiability
of the Mild Solution

As in the previous chapter let X (§)(t), ¢t € [0,7], be the mild solution of
problem (2.1) with initial condition £. To get the second order differentiabil-
ity of the mapping £ — X (§) we make the following assumptions concerning
the coefficients F' and B.
(For details about the different concepts of differentiability see Appendix D.)
Hypothesis H.2
e I and B are twice Fréchet differentiable where the derivatives
D?*F : H — L(H,L(H))
D’B:H — L(H,L(H,L(U, H)))
are continuous.
e There exists C; > 0 such that ||D*F(z)||rm,rmy < Ci for all z € H.
e There exists a square integrable mapping K; : [0, 7] — [0, oo[ such that
IS()D*B(x)(y)=llr, < Ki(@®)llyllll2
for all ¢ €]0,7T] and z,y,z € H.

e The mapping S(t)D?*B : H — L(H, L(H, Ly(U, H))) is continuous for
all ¢ €]0, 7).

Remark 5.1. These conditions differ from those made in [DaPrZa 96, The-
orem 5.4.1 (ii), p.69] as we do not demand that the derivative D?B itself is
bounded while the last assumption is additional.
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Remark 5.2. If the mappings A, F' and B satisfy Hypothesis H.2 they even
fulfill Hypothesis H.1’ by the fundamental theorem for Bochner integrals.

Theorem 5.3. Let ¢ > 2p > 4. Assume that the mappings A, F and B
satisfy the Hypotheses H.0, H.1 and H.2.. Then the following statements
hold.

(i) The Fréchet derivative of X
DX : L{ — L(L{, H*(T, H))
1s Gateaux differentiable.

(i) The Gateaux derivative of DX : L — L(L{,HP(T, H)) fulfills the
following equation for all £, (1,¢ € LE and t € [0, 7]

IDX(£)(¢1)¢6(?)
- /0 S(t — s)DF(X(€)(s))0DX(€)(C)Cals) ds

+ / S(t — s)DB(X(¢)(5))ODX (€) (C1)Ca(s) dW (s)
+ / S(t — 5)D*F(X(€)(s))(DX(€)C:() DX (€)Gals) dis
4 / S(t — 8)D2B(X(€)(5)) (DX (€)1 () DX (€)Cals) dW(s) P-as.

(#ii) There exists a constant CN’T,M > 0 such that the following inequality
holds for all (1, (s € L{

10DX () (C1)Callwr < Crpg

|Gill e |2l 2o
(iv) If ¢ > 4p > 8 the mapping
X : LY — HP(T, H)

15 twice continuously Fréchet differentiable.
In particular, the mapping

X : H — HP(T, H)
z— X(x)

1s twice continuously Fréchet differentiable for all p > 2.
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Before we can prove Theorem 5.3 we need the following lemma

Lemma 5.4. Assume that the mapping B satisfies the Hypotheses H.0, H.1
and H.2. Then we have for allt €]0,T] and x,y € H that

| SWDB( + hy) = S(ODB()
h

= %/0 ”S(t)D2B(x + sy)(-)y - S(t)DQB(x)(')?J”L(H,b) ds

< 2K, (#) |yl

— St)D*B(z)(-)yllr(a,L0)

In particular

i S(t)DB(z + hz}/L) —S(t)DB(z) _ SHD*B(@)( )yl — 0

Proof. The proof is analogous to the proof of Lemma 4.5. O

Remark 5.5. The idea of the proof of Theorem 5.3 can be found in [DaPrZa
96, Theorem 5.4.1 (ii), p.69] where the abstract Theorem D.13 (i) (see [Za 98,
Theorem 10.4, p.208]) is applied. In this way the authors get the existence
of the directional derivatives of second order of the mapping X : H —
HP(T, H). The proof is not explained in detail but if one is interested in it it
is not hard to modify the proof of our Theorem 5.3 (i) in such a way that it
provides the existence of the directional derivatives of second order even in
the case that X is considered as a mapping from Lg? to HP(T, H). Since we
are interested in twice Fréchet differentiability of the mild solution we added
part (ii) and (iii) to Theorem D.13. Especially we consider the case that the
initial condition may even be random.

Proof of Theorem 5.3
Idea of the proof of (i): Since ¢ > 2p > 4 there exists a ¢’ €|2p,q[. To
prove the Gateaux differentiability of

DX : L} — L(L{,H?(T, H))
we will apply Theorem D.13 (ii) to the mapping G := F and the spaces
Ay = L8 Ag:= LY, A = L8, Ey := H'MO(T, H) and E := HPA®)(T, H)
where A(r) > 0 such that

F: Ly x HAO(T,H) = HAOT, H), 1 >2,
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is a contraction in the second variable.

In this way we get the Gateaux differentiability of the L(L{, HP(T, H))-valued
mapping DX by the equivalence of the two norms || ||z and || ||;x¢),7-

By the proof of Theorem 4.3 we already know that the conditions 1. and 4.
of Theorem D.13 are fulfilled. Therefore it remains to verify that

F- Lg’ x HIAN (T, H) — HPAP)(T, H)

is twice continuously Fréchet differentiable in each variable. For simplicity
we prove that

F: LY x HY(T,H) — H"(T, H)

is twice continuously Fréchet differentiable in each variable.

Proof of (i):

Step 1: Let (¢ >)¢’ > 2p > 4. We prove the existence of the directional
derivatives of D1 F and DyF:

(a) Since

DyF: LY x HY(T,H) — L(L{ ,H*(T, H))
(&Y) = (S(t))sep,m

is constant we obtain that

o O\D\F(E,Y;¢)=0¢e L(LY , H* (T, H)) for all ¢ € L

o 0,D\F(£,Y;Z,) =0 € L(LY , HP(T, H)) for all Z, € HY (T, H)
(b) Since

D, F : LY x HY (T, H) — L(HY (T, H), H*(T, H))

€v) /OtS(t _ $)DF(Y(s)) ds

+ /Ot S(t —s)DB(Y (s)) dW(S))

t€[0,77
does not depend on & € Lgl we get that
Dy F(E,Y;¢) =0 € L(HY (T, H), H?(T, H)) for all ¢ € L.

Concerning the differentiability of DyF in the second variable Y € HY (T, H)
we obtain that
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82D2f(§, Y; ZQ) = (/Ot S(t — S)DQF(Y(S))()ZQ(S) dS

+/0 S(t—s)D*B(Y(s))(-) Za(s) dW(S))
€L(HY(T,H),H" (T, H)),

t€[0,T]

where the integrals on the right hand side are pointwisely well defined as
strong integrals:
Let Y, Zy, Zy € HY (T, H). Then we have for ¢ € [0,T] and h # 0 that

| Dy F(E,Y + hZs) Zi(t) — DyF(£,Y) Zy ()
h

_ / S(t — $)D*F(Y (5))(Z1(5)) Za(5) ds

- [0~ 9P BE N2 Wi
<[ s - o ZPEERAZG “DIEWIAE - )

h
~ DP(Y ()(Z1(5)) Ze(s) ) dsov
N “/0 St - 8)( DB(Y (s) + th(s))Z}ll(s) — DB(Y (s))Z.(s) 2)
= D*BY(5))(Z() Za(s)) AW ()]

(1.) The first summand can be estimated independently of ¢ € [0,7] in the
following way

h
- DEY O ANE) )

< a1 /0 p( PFOG) +hZ2(s))Z}1L(8) — DF(Y(s))Zu(5)

— D2F (Y (5))(Z1(5)) Za(5)|I?) dS)E

(E(||/0 S(t — 8)( DF(Y (s) + hZy(s)) Z1(s) — DF(Y (s)) Z1(s)

[
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h
_ DQF(Y(S))(‘)Z2(8)||iIEH)))

(EQz (1)) a5 )*

< M7 / (5 2L L)+ () = DF(Y(s)

~ DRV ()2 ) ds )1 21

<y ([ (BRI - D)

=

Since F'is twice Fréchet differentiable we get that

| DE(Y(5) + h2s(s) = DF(Y(s))

— D*F(Y(5))() Z2() | nary == 0

P-a.s. forall s € [0,T]. In addition, by the fundamental theorem for Bochner
integrals, Theorem A.7, we have that

DF(xz + hy)z — DF(x)z

|| : I < Cull=lyll

for all z,y, z € H and therefore we get that

| PR %) = DEVD  por(y () () Za(o) 2

< 2C)*[|Zo(s)|I* € LN, F, P)

for all s € [0,T]. Hence we obtain by Lebesgue’s dominated convergence
theorem that

(2O 220D = PO _ pip(y () () 2u(s) ) ) 5 0

h—0

for all s € [0,7]. Moreover the above expectation is dominated by
(2C1)P|| Zo|%,, < oo for all h # 0 and s € [0,T]. Thus we get again by
Lebesgue’s domlnated convergence theorem that

o =M T /0 ! (5 (I DF(Y(s) + hZz}(Zs)) = DF(Y(IS))

= D F(Y())()Z(3)|[Z ) ) ds )" — 0

h—0
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(2.) Now we want to estimate the second summand independently of
t € [0,7]. For that we fix A > 1 and by the Burkholder-Davis-Gundy in-
equality we get the following estimation

”/ s DB s) + hZs(s)) 24 h( s) — DB(Y (s))Zi(s)
~ D2B(Y (s))(Z:(5)) Za(s)) dW (5)]I"))”
< (g(p — 1))
[ /O (E (15— 8)( DB(Y (s) + th(s))Z}ll(s) — DB(Y(s))Zu(s)

2

~ D*B(Y (5))(Z1(5)) Za(s ))n ))p

— D*’B(Y (s))(Z1(s)) 2 ())“ )>p ]

o

1
2

M /T (B(IS( = 19)( DB(Y (5) + hZs(s)) — DB(Y (s))

(
— D*B(Y (5))()%(5) ) s a1 Z2(5) 7)) ds

i [/ (BU1S( o 2B+ 1200 - DB )

A 2 1

= D*B(Y(3))() 22(5) ) I 1y | 21(5) 7)) dis |

5P =1)1Zillge

[M% /OT <E(||S(()\ _ 1)3)( DB(Y(s) + hZZ;(LS)) — DB(Y(s))

— DB () () 22()) %)) ds

b [ (B0 o 2B+ - DB()

— D?*B(Y (5))(-) Zo(s ))“L H,L: ))); dsr

With regard to the first summand we get by Lemma 5.4 that

>
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DB(Y (s) 4+ hZy(s)) — DB(Y (s))
s)( h
~ D*B(Y (5)()2(3) ) [Zippy —2 0 P-as,

1S((A =

for all s €]0,7]. Moreover, again by Lemma 5.4, the term is dominated by
22K ((A—=1)s)|| Zo(s)||*? € L'(Q, F, P). Therefore we obtain by Lebesgue’s
dominated convergence theorem that

- 1)5)( DB(Y(s) + hZQ’(ls)) — DB(Y(s))

— DB ()2 [Zi) ) — 0

h—0

(B(IS(

For all A # 0 and s €]0,T] the above expectation is bounded by the function
AKT((A = 1))||Z2|%,, € L'([0,T],dx). Therefore we can conclude again by
Lebesgue’s domlnated convergence theorem that

/0 (E(IIS((A —~ 1)5)( DB(Y(s) + hZz}(Ls)) — DB(Y(s))

— DPBY () 2a(5)) B ) s — 0

h—0

For A near to 1 the second summand becomes small independently of A # 0
and ¢t € [0,7] as we have by Lemma 5.4 that

A (E(”S(t _ S)( DB(Y (s) + hZy(s)) — DB(Y (s))

h
= DB (5))()2:(5) ) r1,))

< [(arti= o) (B(1RI"))" ds

8=

ds

(A=1)T

A
< 4/ K2(s) ds || 22

o ”’,L[q’ )\—U> 0

Therefore we get that

B(| / (¢ — s) (REXLLF AN A1) — DEA()AE)

— D*B(Y(5))(Z1(5) Z2(5)) dW ($)I) )" < &nll Zi e
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where ¢, ﬂ) 0. Altogether this implies that
%

aup | DyF(E,Y + hZQ)Zlge) — Dy F(6,Y)Z1(t)

t€[0,1] '
- /0 S(t = s)D’F(Y (5))(Z1(s)) Z2(s) ds

_ /0 S(t — ) D2B(Y (5))(Z1(5)) Za(s) dW (5)]|1»

< (cn + en)||Z1]| ¢ Where ¢y, + ¢, — 0.

Step 2: We prove that the directional derivatives are the Fréchet derivatives
in the case that (¢ >)¢’' > 2p > 4:
Since

OD\F(E,Y;¢) =0 € L(LY , HP (T, H)),
0D\ F(£,Y;Z,) =0 € L(LY , H(T, H))
and 9, D, F(E,Y;¢)=0€ L(HY (T, H), H*(T, H))

forall £,C € Lg' and Y, Z, € HY (T, H) it remains to verify that
0y Dy F = D2F. Proposition D.6 provides that it is enough to check that

(a) 02DoF(€,Y5-) € L(HY (T, H), L(HY (T, H), H(T, H))) for € L{ and
Y € HY(T, H)

(b) oDy F(&,-) + HY(T,H) — L(HY(T,H),L(H7(T,H),H?(T, H))) is
continuous for £ € L .

(a) Since dDyF(£,Y;-) is given pointwisely by
O DsF(E,Y: Z0) 71 = ( /0 S(t — $)D2F(Y (5))(Z1(5)) Za(s) ds
+ /0 S(t — s)D*B(Y (5))(Z:(5)) Zs(5) AW (s) )seor,

for all Zy, Z, € H7 (T, H) the linearity in Z, is obvious.
Moreover we have for £ € Lg’, Y, 7,7, € HY(T,H) and t € [0, T]

102DoF (€, Y5 Zo) Z1 | 1

1

< (B( [ IO A AP )
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2 1

+(§<p—1))5[/:(E(Hs(t-s)wB(Y( (2 ()Z(5)IE,) )" ds]”

<MTT;cl( /T( (126)) (B2 E)I7) d5)
D[ K- 9 (B0261) (R0261%)° 0]

< [MTT01+(§(p—1 ([ 5260 45) 1 | ol

Hence the mapping Zy — 0, Do F(€,Y; Zy) € L(HY (T, H),H?(T, H)) is lin-
ear and continuous. Therefore we write 0y Dy F(£,Y)(-)Z2 instead of
02D F(E,Y; Zy) where 0y Dy F(€,Y) is the Gateaux derivative of

DyF(€,7) : HY (T, H) — L(HY (T, H), HP(T, H)).

(b) Let now & € LY and Y,Y,, Z1, Z, € HY(T, H) such that ¥, — Y in
HY(T,H) as n — co. Then we have for ¢ € [0, T] that

||52D27:(§ Yo)(Z1) Za(t) — 02 Do F (&, Y )(Z1) Za(t) || oo

<|l| S(t—s)D*F(Ya(s))(Z1(5))Zs(s) (1)
D= S(t—s) D°F (Y'(5))(Z1(5)) Za(s) ds]| v

all St—8D2 B(Yu(s))(Z1(s)) Z2(s) (2,)
" = S(t—9)D*B(Y(5))(Z1(s)) Za(s) AW (s)]|1s

(1.) At first we want to estimate the first summand independently of
te [0 T):

||/ S(t — 8)(D*F (Ya())(Z1(5)) Zals)
_ DQF(Y( D (Z4(5)2(s)) dslP) )’
< M;T"s

E([ 1D*F(Ya(s)(Z1(5)) Za(s) — D2F(Y (5))(Z1(5)) Za(s) | )|

S

o\,‘
~
=
_
T
N
=
=
T
[\V]
=
=
:~s
m
h
5
N
=
N
=
S

/
a —2p

< MyTS [/OT (E(||D2F(Yn(s)) — D*F(Y (s ))”L(HL H)))) §
(B2 @IE12061%) 7 a
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! !

(Holder inequality for 2 51 and
2p q —2p

)

d-2p

< T / (E(ID*F(Y(5) — DF D fisiny))

)
1

(B0 >||q))q£’( B(12(1)) " s

(Holder inequality for 2)

T =2

<t [ (BODFOR6) - DFO O )
1 Z1 1|30 | 22l 34

The sequence Y,,(s), n € N, converges to Y (s) in probability for all s € [0, T
and D*F : H — L(H, L(H)) is continuous.
Therefore we get by Lemma 4.6 that

=

|D*F(Ya(s)) — D*F(Y (8))]| nm,pm) — 0 in probability
Moreover

ID?F (Y, (s)) — D*F(Y <>>||L’H“’L < (201)7% for all n € N

which implies that the family | D?*F (Y, (s)) — D*F(Y (s ))||Z ijL ay " EN,
is uniformly integrable. Hence we obtain that

g -2

(E(ID*F(va(s) - D*F(Y Ot ) 7 = 0foralls € 0,7].

Since the above expectation is bounded by (2C))? we get by Lebesgue’s
dominated convergence theorem that

0y =MrT"% [/OT(E(||D2F(Yn(s)) ~ D*P(Y(s ))IIL'H”'L )) dSF
T;)o 0

(2.) Now we want to estimate the second summand independently of
t € [0,7T]. To this end we fix A > 0 and obtain by the Burkholder-Davis-
Gundy inequality that

E(| / (t — $)D*B(Yu(5))(Z1(5)) Za(s)
S(t — $)D*B(Y (5))(Zi(s)) Zo(s) dW (5)]) )

|-



< (50-1)7 /Oi (E(I1 5t = $)D*Ba(s))(Z(5)) Za(5)
~ 5= D BE AN A, ds
+ [ (RISt 9D BOE) Z6) 20
L St DBY )@ ZGIE,)) 4]

222 [ (BUS(A =09 DB A ()
— S(A= D) DB (DL Z)E,) ) ds

1

+/ K ) (BUZGIPIZE )’ ds)’

(SIS

< (=) (M7 + )| 2l | Zol
T 2a ~2p)
[ [ (BUs = 1910287, (s) = DB M) ™ s
(=T

A 1
+ / 4K?(s) ds

0
where we used the Hélder inequality for % and then for 2 as in (1.).
For each s € [0, T] the sequence Y,,(s), n € N, converges to Y (s) in probability
and the mapping S((A—1)s)D?B : H — L(H, L(H, Ly(U, H))) is continuous
for all s €]0,T] by our additional assumption. Therefore we can conclude by
Lemma 4.6 that

IS((A = 1)s)[D*B(Ya(s)) = D*B(Y (s))]l|cqa.Lar.Ly) —2 0

in probability for all s €]0,7]. Moreover we have for all s €]0,7] and all
n € N that

!

IS~ DS BY(s) — DB D sy < (25 (A~ 1)3) 5

Hence the family || S((A—1)s)[D*B(Y,(s)) — D*B(Y (s ))]||L' ;”L(H Ly P EN,
is uniformly integrable which implies that

2(q' —2p)

(BUS(O -~ DD BOGE) -~ DB O my) 0

n—o0
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for all s €]0,7]. Since for all n € N the above expectation is dominated by
the function 4K%((\ — 1)-) € L*([0, T], dz) we get by Lebesgue’s dominated
convergence theorem that

T 2(¢'~2p)
/ (E(|| S((A=1)9)[D*B(Y,(s)) — D*B(Y (s ))]||L'<;”L<H L2) )) " ds
0
— 0
n—o0
(A=DT
Moreover we know that KZ(s) ds _¢> 0 so that we get the existence

of a sequence b,, n € N, such that b, — 0 as n — oo and

(B(1 [ 5- DB (260 20)

-5t - S)DQB(Y(S))(Zl(S))Zz(S) dW(S)II”)) ’
< bl 2l [| Z2 |0

=

for all ¢ € [0,T]. Altogether we have that
102Dy F (&, Yn)(Z1) Zo — 02 D2 F (8, Y )(Z1) Zo|lpr < (an + b)) || 21| 3y | Z2 || e

where a, + b, —> 0 as n — oco. That implies that the Gateaux derivative of
D, F(&,-) is the Fréchet derivative and therefore it is justified to write D3.F
instead of 9y Dy F.

Proof of (ii): Let £,(;,¢ € L{. Then by Theorem D.13 (i) we have the
following representation for the Gateaux derivative of D.X:

ODX (€)(G1)¢2 = [I — 0. F (&, X ()] D3 F (&, X () (DX (§)C1) DX (§)C

and therefore

DX (£)(¢1)¢2
= 0,F (&, X(€))0DX (£)(G1)C2 + Dy F (&, X () (DX (€)G1) DX ()¢

= ([ st - 9DFX©EIDXECIL) i
+ [ 8- DB E)IDX @G dW ()
+ [ 8- 9D PO () DX OGN DX E6ls) ds
+ [ 8- DBXEEEXOGEPXEGE W),
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Proof of (iii): Let ¢’ €]2p, q[. We will apply Corollary D.14 (i) to the spaces
Ay =L A= LY, A := LY, Ey := HOANO(T, H) and E := HPO)(T, H).
By Theorem 4.3 (iii) we know that DX : L — L(LE, H? (T, H)) is bounded.
Therefore it remains to show that

D2F : LY x HY(T,H) — L(H (T, H), L(HY (T, H), H"(T, H)))

is bounded. ,
Tothisend let ¢ € L and Y, Zy, Zo € H? (T, H) then we have for all ¢ € [0, T

ID2F (&, Y)(Z1) Zo(t) | v
< II/0 S(t = s)D’F(Y (5))(Z1(s)) Za(s) ds||r» (1)
+ II/0 S(t = s)D*B(Y (5))(Z1(s)) Za(s) dW (s)l|1» (2)

(1.) The first summand can be estimated independently of ¢ € [0,7] as
follows

II/0 S(t — s)D*F(Y (s))(Z1(s)) Z2(s) ds|r» < MrTC1l|Z1]lyye || 2ol

(2.) By the Burkholder-Davis-Gundy inequality we have for all ¢ € [0, 7]
that

II/ (t = s)D*B(Y (s))(Z1(s)) Za(s) dW (s)]|L»

< Ce-1)*( / (B - S>D2B(Y(s))(zl(s))22(s)||p))5 ds)”
< G- 1) ([ K26 ) 1l Zll
(1.) and (2.) provide the result
ID3F(EY)(Z)) Zollwo
< (MTTC1+ % / Ki (s ds 3 ||Z1||7{q 1 Zo|| 30

-

Proof of (iv): If ¢ > 4p > 8 then there exists ¢’ €]2p, 1[.
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We apply Theorem D.13 (iii) to the spaces A; := L{, Ay := Lg’, A= LF
Ey := HINO(T, H) and E := HP®)(T, H).
Since g > ¢’ > 2p all conditions of Theorem D.13 (ii) are fulfilled. Moreover
q > 2¢'. Therefore we obtain by (i) that DX : L¢ — L(L, HYMI)(T, H)) is
Gateaux differentiable with derivative

ODX : L{ — L(LY, L(LL, HTA(T, H))).
Hence we get by Theorem D.13 (iii) that

X : LI - HP(T, H)

is twice Fréchet differentiable. O

As in the previous chapter where we gave conditions under which DX is
uniformly continuous we are now interested in conditions under which D?X
is uniformly continuous. We will use these results in chapter 6.

Hypothesis H.2’
e D?F: H — L(H,L(H)) is uniformly continuous.

e There exists a mapping K : [0,T] — [0, 00[, K; € L*([0,T], dz), such
that

1S(t)(D*B(z) — D*BW)) |l e(mpm.1.)) < Ki(®)||lz — y]|
for all t €]0,T] and z,y € H.

Corollary 5.6. Assume that the mappings A, F' and B satisfy the Hypothe-
ses HO, H.1, H.2 and H.2’ and let ¢ > 6p > 12.
Then

PEXGIREAT, H)))
s uniformly continuous.
roof. Let ¢ = 3p. We want to apply Corollary D.14 to the spaces Ay := L{,
0:=LY, A= I8, Ey:=HIMN(T, H) and E := HP?®)(T, H).
ince ¢' > 2p we already know by the proof of Corollary 4.7 that

DoF : LY x HY (T, H) — L(HY (T, H), H*(T, H))
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is uniformly continuous. Moreover we have by Theorem 4.3 (iii) and by
Corollary 4.7 that

DX : LY — L(LL, H7 (T, H))

is bounded and uniformly continuous since ¢ > 2¢’. Moreover

ODX : LY — L(LE, L(L§,HY (T, H))) is bounded by Theorem 5.3 (iii) since
q > 2q.

Therefore it remains to check the boundedness and uniform continuity of the
mappings

D2F: LY x HY(T,H) — L(LY, L(LY , H*(T, H)))
DiDyF : LY x HY (T, H) — L(LE, L(HY (T, H), H*(T, H)))
DoDyF : LY x HY (T, H) — L(HY (T, H), L(L{ , 1P (T, H)))

DAF : LY x HY(T,H) — L(HY (T, H), L(H" (T, H), H*(T, H)))

Since D?F, DiDyF and D,D;F are constant we only have to prove the
boundedness and uniform continuity of D3.F. Since ¢’ > 2p the boundedness
is clear by the proof of Theorem 5.3 (iii).

To prove the uniform continuity let &, € € Lgl and Y,Y,Z,,Z, € (T, H).
Then we have for all ¢ € [0, T]:

ID3F (&, Y)(21) 2s(t) — DyF(E,Y)(Z0) Za(8) | o

< ||/0 S(t—s)[D*F(Y (s)) = D*F(Y (5))](Z1(5)) Za(s) ds|l 1 (1.)
+ ||/0 S(t—s)[D*B(Y(s)) = D*B(Y (5))](Z1(5)) Za(s) dsllz» (2.)

(1.) Let € > 0. Since D*F : H — L(H, L(H)) is uniformly continuous there
exists 6 > 0 such that

||D2F(£L‘) — DQF(y)HL(H,L(H)) <e forall z,y € H with ||z — y|| <.

Using this fact we obtain for all ¢ € [0, 7] that
||/0 S(t — 5)[D*F(Y (5)) — D*F(Y(5))](Z1(s)) Za(s) ds| v
< M7 ([ BOID PO ) = PP ODI s

124(5) P11 Za(5)IP) ds )’



127

1

p—1 T 3 p
< MyT% (/0 (E(||D2F(Y(s)) — D*F(Y ()| ..o ))3 ds)
| Z1 [ 230 || Z2 || 93
—1
< MpT"% || 24 gy | Zo |30

([ (BUDFO ) - DFT N s o-sionen))
i (E (ID*F(Y(s)) = D°F (}7(5))”EﬁH,L(H))1{||Y<s)—f/(s)||>6})) ds)g
<M | 2l |l ([ 2+ GO0 (5 ()~ ¥ ) )

L o\
< My Zillye | Zollger (7 + CLPSIY = Pl )

ol
-

(2.) By the Burkholder-Davis-Gundy inequality we get for all ¢ € [0, T that

(SE

(501 5= 9[D*BEE) - DBE )| Z(s) W )I7))

< ?(p—n (f K- ) (EQY6) - V@I A@PIZEI) ds )’
([ &2e-9) (BOVG) >||3p))l
(E (12:(5) |3P)2( B(I)")) " ds)’
D) ([ &26) d5) 1Y = Pl Wl Ve

Since these estimates are independent of ¢ € [0, T] we finally have that
ID3F(€,Y)(Z1) 25 — DSF(,Y)(Z1) Zol o

< [MTT(s” + (201)p1||y - i/||%3)‘1’

1
([ K269 d5) 1Y = Pl 1 | ol
and therefore the uniform continuity of the mapping

D2F : LY x HY(T,H) — L(HY (T, H), L(H" (T, H), H*(T, H)))
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To prove the existence of a strict solution of the Kolmogorov equation 6.1
related to problem (2.1) (see chapter 6) we need the pathwise continuity of
X (x)(t), DX (z)y(t) and D*X (z)(y)z(t), t € [0,T], z,y,z € H. In chapter 3
and 4 we already gave conditions under which there exist continuous versions
of X(z)(t) and DX (z)y(t), t € [0,7]. The assumption we make to get a
continuous version of D?X (z)(y)z(t), t € [0,T], is analogous to those made
in the previous cases.

Proposition 5.7. Assume that the mappings A, F and B satisfy the Hy-
potheses H.0, H.1 and H.2.
If there exists a €]0, 5[ such that

T
/ sT2K2%(s) ds < o0
0

then the process ODX (€)(¢1)¢(t), ¢ € [0,T], has a continuous version for all
£,G,Ge L], g>2p>4.

Proof. If £,(;,( § W know by Theorem 5.3 (ii) that the following

equation holds for all ¢ € [0, T].

ODX (£)(¢1)¢(2)

- / S(t — 5)DF(X(€)(3))ODX (£) (C)Gals) ds
/ S(t — 5)DB(X(£)())dDX () (C)Ga(s) AV (5)
/0 S(t — 5)D*F(X(€)(5))(DX(€)C,()) DX (€)Ga(s) dis

n / S(t — 5)D*B(X(6)(s))(DX(€)G1()) DX (€)Ga(s) AW (5) P-as..

The appearing Bochner integrals have P-a.s. continuous trajectories by

Lemma 3.9.
To prove that there is a continuous version of the stochastic integrals one pro-
ceeds analogously to the case of the first derivative (see Proposition 4.8).



Chapter 6

Application: Feller Property of
the Transition Semigroup and
Kolmogorov Equation

We assume that Hypothesis H.0 is fulfilled. Let X(z)(¢), t € [0,T], be the
mild solution of problem (2.1)

dX(t) = [AX(t) + F(X(2)] dt + B(X(t)) dW(?)
X(0) =zecH

For any
p € By(H) :={f: H— R | f bounded and Borel measurable}
we define
pep(x) == E(p(X(2)(t)), te[0,T], z€H.

Then py, t € [0, T], has the semigroup property, i.e. py(psp)(z) = prrsp(z) for
allz € H and s,t € [0,T] with s+t € [0,T]. (This can be proved in the same
way as [DaPrZa 92, Theorem 9.8, p.249; Corollary 9.9, p.251; Corollary 9.10,
p.251].) Hence p, t € [0, 7], is called the transition semigroup corresponding
to the mild solution X.

In addition, we set for k& € {0,1,2}

CF(H):={f:H —R| fis k times Fréchet differentiable with bounded
and continuous derivatives up to order k}

and
UCF(H) := {f € CF(H) | f has uniformly continuous derivatives}
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6.1 Feller property of the transition semi-
group

Actually, with regard to the existence of a strict solution of the Kolmogorov
equation (6.1), it is important to know that p, : UCE(H) — UCZ(H). Since
for example the Feller property of p;, ¢t € [0,77], is also of independent interest
we will split the above assertion.

Theorem 6.1. If we assume that we are in the setting described above we
get the following results.

(i) Under Hypothesis H.0 we have for all t € [0,T] that
pr: Co(H) = Cy(H) and py : UC,(H) — UCy(H) respectively.

(ii) Under the Hypotheses H.0 and H.1 we have for all t € [0,T] that
p: Cp(H) — CL(H). If we assume in addition that Hypothesis H.1’ is
fulfilled we even get that p, : UC}(H) — UCL(H).

(111) Under the Hypotheses H.0, H.1 and H.2 we have for all t € [0,T] that
pe: C2(H) — C¢(H). If we assume in addition that Hypothesis H.2’ is
fulfilled we even get that p, : UC}(H) — UCE(H).

To prove this theorem we need the following lemma.

Lemma 6.2. Let p> 2 and X : H — HP(T, H) once Fréchet differentiable.
Moreover let E be a Banach space and we assume that

G : H — FE is a continuously Fréchet differentiable function with bounded
derivative (|| DG || i,py < ¢). Then we get for allt € [0,T] and z,y € H that

G(X (z + hy) (t;} — G(X(=)(1) — DG(X () (1)) DX (x)y(t)

in LP(Q, F,, P; E).

Proof. We fix t € [0,7] and z,y € H. Then we get by the fundamental
Theorem A.7 that

(E(“ G(X(z+ hy)(t])g — G(X(2)(?))

- (E( I / DG(X (z)(t) + o (X(z + hy)(t) — X (z)(t)))
0 X(z + hy)(t) — X (z)(t)

( ! )

~DG(X(@))DX (@)y(t) do [13))’

=

- DG(X@))DX (W OIE) )’
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< (E(/ IDG (X (2)(t) + 0 (X(z + hy)(t) — X(z)(t)))
: (Xl + )0 = X)),
h
~ DG(X (@) (1) DX (@)y (1) [ dor ) )

< (E(/o |DG (X (2)(t) + o(X (z + hy)(t) — X (z)(¢))) ||I£(H,E)
”X(x + hy)(t) — X(2)(?)
h

+ (E(/O IDG (X (2)() + (X (z + hy)(t) — X (2)(1))

~ DG(X (@)Dl gy DX @)y 1) do)

22O = X0 _ )y p))’
(/ B(IDG(X @)1 + o(X(a + ) (0) = X (@)(6) |
= DEX @O r) do) " (BUIDX @yI7)) ™

As X : H — HP(T, H) is Fréchet differentiable it is easy to see that the first
summand converges to zero as h converges to zero.
Because of the continuity of X (-)(¢t) : H — LP(Q), F;, P; H) we obtain that

1

- DX @)y ()| do))’

Sk

gc(E(

X(2)(t) +-(X(z + hy)(t) — X(2) (1)) — X(2)(t)

h—0

in Pj-probability. Therefore we get by Lemma 4.6 that
IDG (X (2)(t) + (X (z + hy)(t) = X (2)(t))) = DG(X (2) ()| rr,0) — O

in Pj-probability. In addition, we have by assumption that the norm of
the difference is dominated by 2c¢ and therefore the second summand also
converges to zero as h — 0. O

Proof of Theorem 6.1. Proof of (i): Let ¢ € C,(H). Since the mapping
x — X (z)(t) is especially stochastically continuous we get by the help of
Lemma 4.6 that p;p : H — R is continuous. The boundedness is obvious.
Now let ¢ € UC,(H) with |p(x)| < cfor all z € H and let € > 0. Then there
exists § > 0 such that |¢(z) — p(2)| < € for all z,Z € H with ||z — Z|| < §.
Thus we obtain by Theorem 3.2 for x,z € H that
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E([p(X(2)(1) — o(X(2)(®))])

< (X (2)(1) = (X (2)(1)| dP

/{IIX(w)(t)X(i)(t))|<5}

+f X @) - e(X@) )] dP
{IIX (z)(t)—X(2)(t))[|>0}

< e 2¢ PIX(2)(0) = X@)0)] > 0)

<ot HIX (@)~ X@)I

2c

52
Therefore the assertion follows.

<e+ I/2T,2||3C - 7|)?

Proof of (ii): Let ¢ € C;(H) with |¢(z)| + ||De(z)||Lmr) < c for all
x € H.
Claim 1: The mapping = — pyp(z) is once Gateaux differentiable with

O(pp)(2)y = E(Dp(X(2)()) DX (2)y(t))-
This result is easy to see because

PPt =20 Do x ) (1)) DX () )

p(X (2 + hy)(t) — p(X(2)(?))
h

as h — 0 by Lemma 6.2 and it is obvious that d(p:p)(z) € L(H,R).
Claim 2: Concerning the boundedness we even have that

< E(]

— Dp(X (2)(8)) DX (z)y(1))[) — 0

sup  [|0(pp) ()| LRy < 00
(t,z)€[0,T]x H

For that let z,y € H. Then we get that
|E(Dp(X (2)(t)) DX (2)y(1))| < E(|De(X (2)(t)) DX (2)y(t)])
< || DX (2)yllp2cr,m)
< Lrpllyll

as X : H — H*(T, H) is Lipschitz continuous and the claim is proved.
Claim 3: The mapping = — 9(p:p)(z) is continuous from H to L(H, R).
To this end let xy,z,y € H. Then we get that

10(prp) (2)y — O(pep) (20) Y|
= [E(Dp(X (z)(t)) DX (2)y(t) — Dp(X () (t)) DX (x0)y(t))]
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< BE(|Dp(X (2)(1)) [DX (2)y(t) — DX (z0)y(1)]|
+ [[De(X (2)(t)) — Dp(X (20) (1)) DX (w0)y(t)])
< cE(||[DX(x)y(t) — DX (z0)y(t)]])
+ E([|Dp(X (2)(t)) — De(X (20) ()|l Lo, [ DX (o) y (£)]])
< c||DX(2)y — DX (z0)yl|ln2(r.m)
+ (B(|Dp(X (2)(1)) — D@(X(xo)(t))”%(H,R)))%||DX($O):U”7-L2(T,H)
< c|[DX () — DX (o)l iz r,my 1Yl

+ (E(|1Dp(X (2)(2)) - D@(X(xo)(t))“%(H,R)))%||DX(~Z0)”L(H,H2(T,H))||y||

Under Hypotheses H.0 and H.1 we know by Theorem 4.3 (iv) that
DX : H — L(H,H?(T, H)) is continuous. Moreover we get by the help of
Lemma 4.6 that

E(|De(X (2)(t)) = Do(X (20) () Lz ry) — 0 sz — zg

since the mapping = — X (z)(t) is especially stochastically continuous by
Theorem 3.2 and Dy : H — L(H,R) is continuous and bounded.

—

Actually Claim 3 implies by Proposition D.6 that the mapping z — pyp(z)
is even (continuously) Fréchet differentiable with D(p,p)(x) = 0(pip)(z).

Let now ¢ € UC} (H).

Claim 4: If we assume that the additional Hypothesis H.1’ is fulfilled then
the mapping z — D(p;)(x) is uniformly continuous from H to L(H,R).
Let ¢ > 0 and z,z,y € H. Then we get that

|D(psp) (x)y — D(pep) (2)y|
< c||DX(z) — DX (2)|| (a,m2cr,my Y]]

+ (B(ID(X (2)(1)) — Do(X @) O3 a,)) * DX @) s 2 9]

By Theorem 4.3 (iii) we have that DX : H — L(H,H*(T, H)) is bounded
and by Corollary 4.7 that there exists a 6 > 0 such that

Besides, as in the second part of the proof of (i), we get the existence of §>0
such that

N[

(E(IDe(X ()(t)) — Dep(X (@) (1) Iz (mx)))

for all z,% € H with ||z — || < 4. In this way (ii) is proved.

<eg
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Proof of (iii): Let ¢ € CZ(H) with

0(@)] + 1D () 1) + D6 (2) a2y < e for all & € H.

Claim 1: The mapping z — D(pip)(x) from H to L(H,R) is Gateaux
differentiable where

OD(pip)(2)(y)z = E(D*p(X (z)(t)
+ Dop(X (z)(

@L\_/
=
-
Jad
-

N
=
=
N—
)
S

8
N—

N
X
=

for all z,y,2z € H.
If we take z,y, z from H we get that

| E<D<P(X($ +h2)(1)) DX (x + hz)y(t) — Do(X (z)(4)) DX (x)y(?)
h

- D2p(X (s )(t))( ()y(t))DX( )2 (t)
~ De(X(2)(t) D (y)zt)|
< (| 22U+ RIDDX o+ hely(t) DX o + ) )DX ()
— Dy(X () |)
+E<‘Dw(x<x+hz><)>DX<><;> D (X () (1)) DX () (1)

— D*(X () (1)) (DX ()y(t)) DX (2)2(t) I)
1. The first summand can be estimated in the following way.

B(IDp(X o+ b)) 2@+ 1O = DX ()0

— Dyp(X (2) (1)) D*X (z)(y)= (t)|)

E(|D<P(X(x+hz)(t))(DX (z + ha2)y (Z) DX (2)y(t)

— D*X (2)(y)2(t))] )
+E(|[Dop(X (2 + h2) (1) — (z)(t))] D* )2(t)])
)

DX (z+ hz)hy — DX@) ~ D*X(2)(y) |9,

+ (B(IDp(X (z + hz)(t)) — Dp(X (z)(t) ”L(H]R)))
||D2X($)(Z/)z||ﬂ2(T,H)

DX(x+ hz) — DX(x
<o PRI ZPXE) o) Ozl ol

<cll
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N =

+ (B(I1De(X (z + ha)(t)) — Do(X (2) (1) 2 (r,2)))
ID*X () () 2ll e,y Iy
= cn ||yl

where ¢, — 0 as h — 0 because X : H — H*(T,H) is twice Fréchet
differentiable by Theorem 5.3 (iv) and

E(|De(X (z + hz)(t)) — Do(X (2)(t) Iz m) — 0 ash—0

as we have already seen in the proof of (ii), Claim 3.
2. Concerning the second summand we obtain that

p(| R+ 1)) ~ DX

— D2 (X (2)())(DX ()y(t) DX (2)2(1)]
< (B() 22+ 1) = DpX()e)
— D2p(X (@) (1) () DX (2)2(Dl sz ) )
(B(IDX (2)y(0)[?)*
< (p() 220 +h)0) ~ DpX()e)
— D2p(X (@) (1) () DX (2)2(D)l3 sz ) )
1DX (@) g 20
=& [y

where ¢, — 0 as h — 0 because of Lemma 6.2. Moreover it is obvious that
0D(pip)(x) € L(H, L(H,R)) for all z € H.
Claim 2: Concerning the boundedness we even obtain that

sup  [|0D(pso) (@)l n(a,Lm gy < 00
(t,x)€[0,T]xH

For that let z,y,2 € H. We obtain by Theorem 4.3 (iii) and Theorem 5.3
(iif) that
|E(D*p(X (2)(t))(DX (2)y(t)) DX (2)2(t)
+ Do(X (2)(t)) D* X (2)(y)2(t))]
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< E(|D*(X (2)())(DX (2)y () DX (z)2(t))
+ E(|D(X (2)(1))(D*X (z)(y)2(t))])
< (€ L7, +c Cro)llyllllz]
where Cry := inf 54 Cr o, (see Theorem 5.3 (iii) and Theorem 4.3(iii)).
Claim 3: The mapping z — 0D(pip)(z) from H to L(H, L(H,R)) is con-

tinuous.
Let z,xg,y,2 € H. Then we obtain that

| E(D*p(X (2) () (DX (2)y(t)) DX (2)(t)
+ Dop(X (2)(t)) D*X () (y)2(t))
— E(D?p(X (w0)(t)) (DX (w0)y (t)) DX (z0)2(1)
+ Dep(X (0) (1)) D* X (20) (y)(t)) |
E(|D*o(X (z)(t))(DX (z)y(t)) DX (z)2(t)
— D*p(X (20) (t)) (DX (w0)y(t)) DX (z0)2(1)])
+ E(|Dp(X (2) () D*X (2) (y)2(t) — Dep(X (20) () D* X (o) (y)2(t)])
1. The first summand can be estimated in the following way:
E(|ID*¢(X (z)(t)) (DX (z)y(t)) DX (x)z(t)
— D*p(X (20) () (DX (w0)y(t)) DX (0) 2()]
< E(|D*(X (z) () (DX (2)y(1)) (DX (2)2(t) = DX (z0)2(1))|)
+ E(|D%p(X (2)(t)) (D ( ) () DX (w0)y(t)) DX (z0)2(t)])
+E(|(D*e(X(2)(t) — 0)())) (D(X (z0)y(t)) DX (w0)z(t)|)
< (2¢ Ly IDX () - DX(xo)HL (o021,

+ Ly (E(ID%0(X (2)(t)) — D*p(X (x )())”%(H,L(H,R))))%>||y||||z||

where we know by the same arguments as in the proof of (ii), Claim 3, that
for all € > 0 there exists § = d(xg) > 0 such that

2¢ Ly || DX (z) — DX (o) || Lo me(1,m)

+ Ly (E(ID*0(X (2)(t) = D*@(X (20) O La1.012)))

for all z € H with ||z — || < 4.
2. The second summand can be estimated in a similar way. We get that for
all £ > 0 there exists 6 = §(zo) > 0 such that

E(|Dg(X (2)()) D*X (2)(y)2(t) — Dp(X (20) () D* X (w0) () 2(t))

N =

<e
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< E(\Deo 2) (1)) (D*X (2)(y)2(t) — D*X (z0)(y)2(1)) )
E(|(D ( (@) (t)) — D( ( 0)(1))) D*X (z0) (y)2(2)])
<c E(IIDQX(w)(y)Z(t) DX (x0) ()2 (1))

+ (B(ID@(X (2)(1)) = Dep(X (20) (DI 1)) * (E(ID?X () () 2(1) [2)) *
(

< (C |D*X (z) — D*X (20) || Lo, L1342 (1, 10)))
+ Crap(E(|De(X (z)(t) — (X(xﬂ)(t)”'%(H,R)))%)”y””Z”
<ellyllll=]

for all x € H with ||z — x| < 6.
In particular, we know by Proposition D.6 that dD(p;p) = D?(psp).

Let now ¢ € UCE(H).

Claim 4: If we assume that the additional Hypothesis H.2’ is fulfilled we get
that the mapping D?(p;p) : H — L(H,L(H,R)) is uniformly continuous.
This is clear as we know by Corollary 4.7 and Corollary 5.6 that the deriva-
tives DX and D%X of X : H — H?(T, H) are uniformly continuous. Using
the same estimates as in Claim 3 the assertion follows by inspection. O

6.2 Kolmogorov Equation

Now we have all instruments to study the following Kolmogorov equation
associated with the problem (2.1) (see [DaPrZa 96, p.71])

%(t,x) % T [D2 (t, )B(x)(B(:E))*]
(6.1) +(Az + F(x), Du(t,x)), te€][0,T], x € D(A)
u(0,z) =p(z), z€H

Definition 6.3 (Strict solution). A continuous function
u:[0,T] x H— R is called strict solution of (6.1) on [0, 7] if

(i) u(t,-) € C3(H) for all t € [0,T]
(ii) u(-,z) € C'([0,T]) for all z € D(A) and
(iii) the Kolmogorov equation (6.1) is fulfilled.

To prove the existence and uniqueness of solutions for equation (6.1) we
have to introduce a new condition on B (see [DaPrZa 96, Hypothesis 5.2 (ii),
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p.71]).

Hypothesis H.3

e B: H — Ly(U, H) and there exists a constant K > 0 such that

|B(x) — B(y)||z, < K ||z —y||, forallz,ye€ H.

Theorem 6.4. (i) Letp > 2. We assume that the mapping F : H — H is
Lipschitz continuous with Lipschitz constant C >0, B: H — Lo(U, H)
fulfills Hypothesis H.3 and A € L(H).

In addition, we require that there is a strong solution X(z)(t),
t € [0,T], of problem (2.1) for each initial condition x € H such that
X :H — HP(T,H) is twice continuously Fréchet differentiable.

If there are continuous versions of X (z)(t), DX (z)y(t) and

DX (z)(y)z(t), t € [0,T), for all z,y,2 € H and if we know that
pp = E(p(X(-)(t)) € UCE(H) for all ¢ € UCE(H) then the mapping
u: [0,T] x H = R given by u(t,x) = pyp(x) is a strict solution of
problem (6.1) with initial condition ¢ € UCE(H).

(i) We assume that X (z)(t), t € [0,T], is a strong solution of problem (2.1)
with initial condition x € H. If v : [0,T] x H — R is a strict solution
of problem (6.1) with initial condition ¢ € UCZ(H) such that v and
the derivatives 2%, Dv and D?*v are uniformly continuous on bounded

ot
subsets of [0, T] x H and bounded on [0, T] x H then we have that

v(t,x) = pro(x)  for all (t,z) € [0,T] x H.

Remark 6.5. (i) Let A € L(H), assume that the Hypotheses H.0, H.1, H.2,
H.2” and H.3 are fulfilled and require in addition that the condition of Propo-
sition 5.7 is satisfied.

Then there is a mild solution X of problem (2.1) (see Theorem 3.2) such that
the mapping X : H — HP(T, H), p > 2, is twice continuously Fréchet differ-
entiable (see Theorem 5.3). Proposition 3.15, Proposition 4.8 and Proposi-
tion 5.7 provides that there exist pathwise continuous versions of the deriva-
tives. Moreover we know by Theorem 6.1 that pyp € UCE(H) for all ¢ €
UCZ(H). By Proposition 2.10 and Proposition 2.9 we know that it is even a
strong solution. Hence all conditions of Theorem 6.4 are satisfied.

These assumptions are corresponding to those made by Da Prato and Zabczyk
in [DaPrZa 96, Theorem 5.4.2, p.71] where we added the assumptions pro-
viding the pathwise continuity of the second order derivative of the mild
solution.
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(ii) In contrast to [DaPrZa 96, Theorem 5.4.2, p.71] we do not get the unique-
ness of the strict solution p.¢ : [0,7] x H — R in Theorem 6.4 (i). This
uniqueness can only be proved under stronger assumptions on the solution
(see Theorem 6.4 (ii)). In general we do not know that the mapping p.¢
fulfills these conditions. For example the mapping itself is not uniformly
continuous on bounded subsets of [0, 7] x H in general.

(iii) The Yosida approximation provides a possibility to generalize this result
to the case that A is not necessarily in L(H) (see [DaPrZa 92, Theorem 9.17,
p.261]).

To prove Theorem 6.4 we need the following preparations.

Lemma 6.6. Under the assumptions of Theorem 6.4 (i) we get that the
mappings

(i) t = E((AX (2)(t) + F(X (2)(t)), Dp(X (2)(1))))
+ E(tr[D*p(X (2)(£)) B(X () (1)) (B(X ()(1)))])
and
(ii) t = tr[D*(pip) (2) B(x) (B(2)) ] + (Az + F(2), D(pwp) (x))
are continuous from [0,T] to R for all z € H.

Proof. (i): By assumption we know that the mapping ¢ — X (x)(¢) is P-a.s.
continuous. Therefore we get that

t = (AX () () + F(X(2)(1), De(X (2)(1)))

is P-a.s. continuous because of the continuity of A, F' and Dy. In addi-
tion, the family (AX (z)(t) + F(X(z)(t)), Do(X(2)(t))), t € [0,T], is uni-
formly integrable since it is dominated by ¢|| X (z)(¢)||, t € [0,T], and X (z) €
‘HP(T, H) for p > 1. Therefore the continuity of the first summand is clear.

To prove the continuity of the second summand we fix ¢, € [0,7] and a se-
quence t,, n € N, in [0, 7] such that t, — ¢, as n — oco. Then we get by
Lemma B.8 that



140

< e K2 (1+ || X (2) (t) INIX () (tn) — X (2) (o)
+c K2 (1+ || X (2)(to) DIIX (2) (ta) — X () (to) |
+ [|D?*p(X () (tn)) — D*(X (x) (to)) | ey K2(1 + [|X (@) (to)[])* — O
P-a.s. as n — oo. In addition, the family is uniformly integrable as X (z) €
HP(T, H), p > 2, and therefore the continuity of the second summand is also
proved.

(ii): To verify the continuity of the first summand we first have to notice
that by Proposition B.10

tr[D%(pio) (2) B(2) (B(2))] = tr[(B(x))" D*(pe) () Blx))

Moreover we have that

t D) (@) ()2 ( = (D2(pip) @)z, 9))
€H~L(HR)

=E(D*p(X () (1)) (DX (2)y(t)) DX (z)z(t)
+ Dyp(X (2)(t)) D* X () (y) ()
is continuous from [0, 7] to R for all z,y, 2z € H as we first know that
t = D*p(X (2)(t)) (DX (2)y(t)) DX (z)2(t)
+ Dyp(X (2)(t)) D* X () () 2(t)

is P-a.s. continuous because of the P-a.s. continuity of t — X (z)(¢),
t — DX (z)y(t) and t — D?X (z)(y)z(t). Secondly, we have that the family

D*o(X (2)(t)) (DX ()y(t)) DX (z)2(t)
+ Do(X (z)(1)) D*X (z)(y)2(t), t€[0,T],

is uniformly integrable.
Hence let eg, kK € N, be an orthonormal basis of U. Then we get that

t = ((B(2))"D*(pr) () B(2)ex, ex) = D*(pep) () (B()ex) B(w)ex

is continuous from [0,7] to H for all £ € N and

as sup 1D (peo) (@) |y < (DX (@)L 02) + 1D° X (@)l o, 2))
€o,

< oo. But Z||B(:1c)ek||2 = ||B(z)||7, < co and therefore the first summand
keN
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is continuous by Lemma 3.10.
To prove that the second summand is also continuous we simply show that

t = (D(pep)(2),y) = D(prp)(z)y = E(Do(X (z)(t)) DX (z)y(t))

€H~L(H,R)
is continuous from [0,7] to R for all z,y € H. This is true as
t = Dp(X(2)(t)) DX (z)y(t)

is P-a.s. continuous because of the P-a.s. continuity of ¢t — X (x)(¢) and
t = DX (z)y(t). The family Do(X (z)(t))DX (z)y(t), t € [0,T], is in addi-
tion uniformly integrable as DX (x)y € HP(T, H) for p > 1 and therefore the
assertion finally follows. O

Lemma 6.7. Let f : [0,T7] — R be a continuous function which is differ-
entiable on the right on [0,T[ such that the derivative f' : [0,T[— R is
continuous.

Then we get for all 0 < s <t < T that there exists & € [s, t] such that

f(t) = f(s)
t—s

= fi(8)

Proof. Case 1: M =0

If f is constant the asserfion follows immediately. Otherwise there exists an
element ¢, €]s,t[ such that f(to) # f(s) and f(u) < f(to) for all U € [s, ]
or f(u) > f(ty) for all u € [s,t]. Without loss of generality, we consider the
case that there exists a to €]s, t[ such that f(s) < f(to) and f(u) < f(to) for
all u € [s,t]. Then it is clear that

f'.(to) = lim fu) = f(to)

udto u — t()

<0

Now we set ¢ := sup{u > s | f(v) < f(s) for all v € [s,u]}. It is obvious that

¢ < to. In addition, f’ (c) > 0 since if we assume that f}(c) < 0 it follows
that there is an € > 0 such that

fw) — f(o)

<0 forall u€le,c+ ¢
u—-c

This implies that f(u) < f(c) = f(s) for all u € [s,c+ €[ which leads to a
contradiction to the definition of c.
Hence, because of the continuity of f! on [c, %], we get that there is an
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element £ € [c, o] such that f (&) = 0.
Case 2: J(t) = J(s) =a€R

In this case we define g : [0,7] — R by g(u) := f(u) — au. Then it is clear
that g still fulfills all assumptions of the lemma and we obtain that
9(t) —g(s) _ f(t) = f(s) alt—s)

P— —_ :0
t—s t—s t—s

Using the result of Case 1 this implies that there exists £ € [s,t] such that
9,.(&) = f1(§) —a=0. 0

Lemma 6.8. Let f:[0,7] — R be a continuous function which is differen-
tiable on the right on [0, T[. We assume that the derivative f) : [0,T[— R is
also continuous with a continuous extension on [0,T] also denoted by f .
Then the mapping f is even continuously differentiable with f\ = f'.

Proof. We show that f(t) — f(0) = /t fi(s)ds forallte[0,T]:

0
Let € > 0. Because of the continuity of f} : [0,7] — R there exists N € N
such that for all n > N

\/h @ﬁ

1
|fi(s) = fi(u)] <e forall s,ue[0,T] with |s —u| < -

and

Therefore we get that

—fﬂ@m

n—1
<f Zﬁ“1|2ﬁ“1/ﬁ.m

n—1 (k+1)t\ _ p(kt
ﬂm%ﬂ)ZM“)ﬂ"lfwb

- [ )] e

_ n—1[|ﬁ(%) B f((kzl)t)l—f(%)|_} <

< € because gf Lemma 6.7
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O

Proof of Theorem 6.4. Proof of (i): We first prove the existence of a
strict solution.
Since X (z)(t), t € [0,T], is a strong solution it is an [t6 process given by

X(z)(t) == —1-/0 AX(z)(s) + F(X(z)(s)) ds —1-/0 B(X(z)(s)) dW(s)

P-as. for all x € H and t € [0,T]. This allows to apply the It6 formula 1.33
to p(X(x)), ¢ € UCE(H), which provides that

p(X(2)(1) = o(z) + /;(DsO(X(w)(S)), B(X(z)(s))) dW (s)

; / (De(X (2)(s)), AX (2)(s) + F(X («)(5)))
+ 5t [D?0(X(@)() B (5)(5)) (BX ()(s))) ] ds

-

~ ~~

€L(H) €L2(U,H) L2(E,U)

S}ilnce (Dp(X (z)(s)), B(X(z)(s))), s € [0,T], is in N3 (0,T;R) we obtain
that

B( / (DX (@)(), BX(2)(s)) dW(5)) =0
On the other hand we know that
(5,0) =H{D@(X (2)(5,0)), AX (2)(5,) + F(X () (5,)))
+ 5 e [D%(X (1) (5,0)) BX (2)(5,)) (BX (2) (5,))

is Pr- and therefore in particular B([0,7]) ® F-measurable. In addition, we
have that

E(/O [(De(X(x)(5)), AX () (s) + F(X () (s)))| ds)
< E(/0 clllAllzan I1X @)(s)ll + CA + X (z)(s)]))] ds) < o0

and by Lemma B.8 and Remark B.6
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T

E() ltr [D?o(X (2)(5) B(X (2)(5)) (B(X ()(s))) ]| ds)

< E(| ID*(X(2)(s)BX () ()l o@,m 1 BX (@) () o, ds)

< e B / 1BX () () |2, 00 ds) < o0

Therefore we can use the real Fubini theorem to get that
t
B( [ (De(X(@)(s). AX @) + F(X (@) 3))

+ L (DX @)(5) BOX () (6) (B (@)(5)) ] ds)

-/ B(De(X(@)(5)), AX (2)(5) + F(X(2)(5))
+ 5t [D2(X (@)(s) BX () () (BX (2)(5))) ) ds
Altogether this provides that
pup(a) =E(o(X (@) (1))
~ola)+ [ E((D(X(@)(), AX (@)(5) + F(X()(5))

+ 5 e [D2(X () (5) B(X (2) () (BOX(@)(5))) 1) ds
and since
s B ((Dp(X(2)(5)), AX (2)(s) + F(X(2)(5)
+ B (tr [D%0(X (2) (5) BX () () (BX (2)(5)) )
is continuous by Lemma 6.6 (i) the fundamental Theorem A.7 implies that

or o () — pop()
apﬁﬂ(x)\t:o = ltlfgl ;

= E((Dp(X (2)(0)), AX ()(0) + F(X (2)(0)))
+ %tr [D?(X ()(0)) B(X (x)(0)) (B(X ()(0)))"])

= (Dy(z), Az + F(z)) + %tr [D*¢(2)B()(B(x))]
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Now we fix £, > 0 and we want to calculate the derivative at this point.
That is the moment where we will use the fact that p,o = ¢ € UCE(H) if
¢ € UCF(H). Together with the semigroup property of p;, ¢t € [0,T7], this
provides that

ot Db tSO(-T) — Dt 90(35)
- _ 1 o+ 0
ot pt(p( )\t:to tlf(r)l f
_ i PeP(2) — Pop(2)
10 t

= (Dg(a), Az + F(2)) + 5tx[D*6(x) B(2) (B(z))
= (D(pi, ) (z), Az + F(z)) + %tr [D?(pro) () B(2) (B(2)) ]

As the right hand side is a continuous function in ¢ by Lemma 6.6 (ii) we get
by Lemma 6.8 that p.o(z) € C*([0,7T]) with

9
ot

As it is obvious that pop(z) = E(p(X(2)(0))) = ¢(x) and since we know by
Theorem 6.1 that p,p € UCZ(H) C CZ(H) it only remains to prove that

(Pesp) (€)=, = (D(p1op) (2), Az + F(z)) + % tr[D*(pr) (2) B(x) (B(x)) ]

py:[0,T] xH—>R
(t’ .’E) F—)pth(LE)

is continuous to get that p.p is a strict solution of the Kolmogorov equation
(6.1).

For that let (¢,z), (tn,z,) € [0,T] x H such that ¢, — t and z, — z as
n — oo. Then we obtain that

< E([o(X(2)(1) = (X (2)(tn))]) + E(lp(X () (tn)) — ¢(X (2a)(tn))])
< E(lp(X () (1)) = (X (2)(tn))]) + | X (z) = X (zn) |l — 0

Proof of (ii): To prove that v(s,z) = psp(z) for all (s,z) € [0,7] x H we
apply the Ito formula to the process

v(s —u, X(x)(u)), ue€lo,s],

and get that
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v(s — u, X(z)(u))
= v(s, X (2)(0)) + /0 (Do(s —r, X(z)(r)), B(X(z)(r))) dW(r)

- (s X (@) dr

n /0 u(Dv(s —r, X(2)(r)), AX () (r) + F(X (z)(r))) dr

+ / e [DPu(s =, X(@)(r) BX (2) () (BX (2) ()] dr
— o(s,0) + /0 (Duls - 1, X (2)(r)), BOX (@) (1) dW ()

as v is a strict solution of problem (6.1). If we choose now u = s and take
then the expectation we obtain that

psp(x) = E(p(X(2)(s))) = E(v(0, X (2)(s)))
=u(s,z)+ E(/O (Dv(s — 1, X (z)(r)), B(X (z)(r))) dW(r)) = v(s, )

as the process (Dv(s —r, X (z)(r)), B(X(z)(r))), r € [0, s], is an element of
N2 (0, s;R).
Therefore the uniqueness is proved. O

Remark 6.9. Section 2 of [AIKoR6 95] deals with the problem of essential
self-adjointness of Dirichlet operators. There a special symmetric differen-
tial operator H, is considered. [AIKoRG 95, Theorem 1, p.107] provides
conditions under which this operator fulfills Berezansky’s abstract parabolic
criterium of essential self-adjointness (see [Be 86, Theorem 6.13], [BeKo 88,
Theorem 1.10]). By this criterium the question of essential self-adjointness is
traced back to the question of the existence of a solution of the Kolmogorov
equation associated with a stochastic differential equation of the type

(6.2) dX(t) = SF(X(8) dt+dW(t) telo,1]
| X(0) =zel

To get this existence it is used that there is a solution of the stochastic
equation (6.2) which depends regularly on initial data. Concerning the latter
the authors refer to [Dal 67] which, as explained, does not contain proofs.
But to justify the above statement one could use our Theorem 4.3 (iv) and
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Theorem 5.3 (iv) which we have proved in detail. In fact they can be applied
as the stochastic equation is considered within the following framework:
(U,{, )v) and (Uy,(, )1) are two separable Hilbert spaces such that U C U,
and the embedding by the identity function I : U — U, is Hilbert-Schmidt.
W (t), t € [0,1], is a cylindrical @ = Iy-Wiener process in U (with values
in Uy, see subsection 1.5.1). Besides, in contrast to our setting, F' has not
bounded derivatives of first and second order but lies in
Coy(Ur,Ur) :={f : Uy = Uy | f is twice continuously Fréchet differen-
tiable and the derivatives f @ are

polynomially bounded }

such that there exists a constant C > 0 with (F(z),z); < C(1 + ||z]|1)?
and (DF(z)y,y)1 < C||y||? for all z,y € U; (see [AIKoR6 95, Theorem 1,
p.107]).

Instead of a strict solution which solves the Kolmogorov equation pointwisely
it is asked for a strong solution as a function v : [0,1] — L?*(u). But to an-
swer this question it is also used that there exists a strong solution X (x)(%),
t € [0,1], of problem (6.2) which is twice Fréchet differentiable with respect
to the initial data x € U; (see proof of Theorem 6.4 (i)).

This problem is reduced to our case that F' is twice continuously Fréchet dif-
ferentiable with bounded first and second order derivatives (see [AIKoR6 95,
p.110] and for more details [Zii 95, Theorem 6.4, p.30]). Then it is easy to see
that the conditions of Theorem 5.3 are fulfilled. Hence we first get the exis-
tence of a mild solution X (z)(t), t € [0,1], of equation (6.2) which is twice
continuously Fréchet differentiable with respect to the initial data. Secondly,
our Proposition 2.10 and Proposition 2.9 provide that the mild solution is
even a strong one.

Hence it is verified that the statement about the existence and the differen-
tiability of X used in the proof of [AIKoR6 95, Theorem 1, p.107] is really
true in this setting. For example this result plays an important role in the
proof of [AIKoR6 95, Lemma 4, p.112] which says that p;p € C? (U, R) for

pol
all p € C2,(Uy,R). It is proved in a similar way as our Theorem 6.1.
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Appendix A

The Bochner Integral

Let (X, || ||) be a Banach space, B(X) the Borel o-field of X and (2, F, i) a
measure space with finite measure p.

A.1 Definition of the Bochner integral
Step 1:

As first step we want to define the integral for simple functions which are
defined as follows. Set

E={f: Qo X|f=) xpla,u € X, A, € F, 1<k <nneN}

k=1

and define a semi-norm || ||¢ on the vector space £ by

1 flle = /||f|| du, f€E.

To get that (£, ]| ||¢) is a normed vector space we consider equivalence classes
with respect to || ||¢. For simplicity we will not change the notations.
For f € £ we define now the Bochner integral to be

/fd,u = zi: T (Ag).

In this way we get a mapping
int : (&, ]| fle) = (X, [ 1)
£ [ fau
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which is linear and uniformly continuous since || [ f du|| < [||f]| dp for all
feé.

Therefore we can extend the mapping int to the abstract completion of £
with respect to || ||¢ which we denote by &.

Step 2: We give an explicit representation of &.

Definition A.1. A function f : {2 — X is called strongly measurable if it is
Borel measurable and f(2) C X is separable.

Definition A.2. Let 1 < p < co. Then we define
LP(QF, pu; X) :=LP(u; X) :={f:Q — X | f is strongly measurable with

respect to F and /||f||p du < oo}

and the semi-norm || f||z» := (/||f||p d,u)g, f e Lr(Q,F,u; X). The space

of all equivalence classes in £P(Q, F, u; X) with respect to || ||z» is denoted
by LP(Q, F, p; X) == LP(; X).

Claim: L'(Q, F,u; X) = €&.

Step 1: (L'(Q%, F, u; X), || |z1) is complete.

The proof is just a modification of the proof of the Fischer-Riesz theorem by
the help of the following proposition.

Proposition A.3. Let (2, F) be a measurable space and let X be a Banach
space. Then

(1) the set of Borel measurable functions from Q to X is closed under the
formation of pointwise limits, and

(#) the set of strongly measurable functions from Q to X is closed under
the formation of pointwise limits.

Proof. [Co 80, Proposition E.1., p.350] O

Step 2: £ is as dense subset of L'(Q, F, u; X) with respect to || ||z
This can be shown by the help of the following lemma.

Lemma A.4. Let E be a metric space with metric d and let f : Q — E
be strongly measurable. Then there exists a sequence f,, n € N, of simple
E-valued functions (i.e. f, is F/B(E)-measurable and takes only a finite
number of values) such that for arbitrary w € € the sequence d( f,(w), f(w)),
n € N, is monotonely decreasing to zero.
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Proof. [DaPrZa 92, Lemma 1.1, p.16] Let {ex|k € N} be a countable dense
subset of f(€2). For m € N define

dm (w) = min{d(f(w), ex) |k < m}
km(w) := min{k < m|dn(w) = d(f(w), ex)}
fm(w) = (w)

Obviously f,, m € N, are simple function since

fm(Q) C {61, €9, ..., em}

Moreover, by the density of {ex|k € N}, the sequence d,,(w), m € N, is
monotonically decreasing to zero for arbitrary w € ). Since
d(fm(w), f(w)) = dm(w) the assertion follows. O

Let now f € L'(u; X). By the above Lemma A.4 we get the existence of a
sequence of simple functions f,,, n € N, such that

| fn(w) = f(w)]| 4 0 for allw e Q as n — oo

Hence f,, — f in || ||z by Lebesgue’s dominated convergence theorem.
n—oo

A.2 Properties of the Bochner integral

Proposition A.5 (Bochner inequality). Let f € L'(Q, F, u; X). Then

1 #dull < [ do

Proof. If f € £ the assertion is obvious.
Otherwise there exists a sequence of simple functions f,, n € N, such that

1fn = fllr — 0.
Since int : L'(u; X) — X and || ||z : L'(; X) — R are continuous we get

1 1 aul = Jim ] [ ol < s[5 s = [17) a

Proposition A.6. Let f € L'(Q, F,u; X). Then

/@Ofdu=<p(/fdu)

holds for all p € X* = L(X,R).
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Proof. [Co 80, Proposition E.11, p.356] O

Proposition A.7 (Fundamental theorem). Let —oc0 < a < b < 00 and
f € C(a,b]; X). Then

t . S lsg(u) f/(w) du if s <t
. — [ 1p(u) f'(u) du  otherwise

for all s,t € [a,b] where du denotes the Lebesgue measure on B(R).

Proof. Claim 1: If we set F(t) = f: f'(u) du, t € [a,b], we get that
F'(t) = f'(t) for all t € [a, b].
For that we have to prove that

I (F(E+ ) = F©) = @)l 3 0

For this end we fix ¢ € [a,b] and take an arbitrary € > 0. Since f’ is
continuous on [a, b] there exists 6 > 0 such that || f'(u) — f'(¢)||r < ¢ for all
u € [a,b] with |u — t| < §. Then we obtain that

1 t+h

II%(F(t +h) = F@) = f'@Olle =l f'(w) = f'(t) dullg

t

t+h
<] / 17() — F'(8) s du < &
t

~h

ift +h € [a,b] and |h| < 6.

Claim 2: If F € C'([a,b]; E) is a further function with F = F' = f’ then
there exists a constant ¢ such that F — F = c.

For all L € E* = L(E,R) we define g, := L(F — F). Then ¢} = 0 and
therefore g7, is constant. Since E* separates the points of ' by the Hahn-
Banach theorem (see [Al 92, 4.2 Satz, p.114]) this implies that F — F itself
is constant. O



Appendix B

Nuclear and Hilbert-Schmidt
Operators

Let (U,(, )v) and (H,(, )) be two separable Hilbert spaces. The space of all
bounded linear operators from U to H is denoted by L(U, H) for simplicity
we write L(U) instead of L(U,U). If we speak of the adjoint operator of L €
L(U,H) we write L* € L(H,U). An element L € L(U) is called symmetric
if (Lu,v)y = {(u, Lv)y for all u,v € U. In addition, L € L(U, H) is called
nonnegative if (Lu,z) > 0 for alluw € U and z € H.

Definition B.1 (Nuclear operator). An element 7 € L(U, H) is said to
be a nuclear operator if there exists a sequence (a;);jen in H and a sequence
(b;)jen in U such that

Tx = Zaj<bj,x)U forallz € U
jEN
and

> llaslllibsllo < o

jeN
The space of all nuclear operators from U to H is denoted by L(U, H).

Proposition B.2. The space Li(U, H) endowed with the norm

1Ty = {3 laslslr | T2 = 3 a5 (05,200, 3 € U}

jEN jEN
1s a Banach space.

Proof. [MeVo 92, 16.25 Corollar, p.154] O
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Definition B.3. Let 7' € L(U) and let e, k € N, be an orthonormal basis
of U. Then we define

tr T := Z(Tek, ex)u

kEN
if the series is convergent.

One has to notice that this definition could depend on the choice of the
orthonormal basis. But there is the following result concerning nuclear op-
erators.

Remark B.4. If T € L;(U) then tr T is well defined independently of
the choice of the orthonormal basis e;, & € N. Moreover we have that
jtr T < ||T'|| 2y v)-

Proof. Let (a;)jen and (bj)jen be sequences in U such that Tz = Z a;(bj, z)v

jEN
for all z € U and Y _|lagl|u|b;]lv < oo.
jEN
Then we get for any orthonormal basis eg, £ € N, of U that
(Ter, ex)y = Y (ex, a;)v{ex, bj)u
jEN
and therefore
D WTer,en)ul <D ew, az)ulers bi)ul
keN jEN keN
<3 (e o) (D ew bidul?)
JEN keN keN
= llasllolibjlly < oo
jEN

This implies that we can exchange the summation to get that

Z(T@k, €k>U = Z Z(ek, aj>U<€k:7 bj)U

keN JEN keN

= Z<aj’bj>U

jEN

and the assertion follows. O



155

Definition B.5 (Hilbert-Schmidt operator). A bounded linear opera-
tor T : U — H is called Hilbert-Schmidt if

Z||Tek||2 < 00

keN

where ¢, k € N, is an orthonormal basis of U.
The space of all Hilbert-Schmidt operators from U to H is denoted by
Ly (U, H).

Remark B.6. (i) The definition of Hilbert-Schmidt operator and the num-

ber ||T||%2(U,H) = Z||Tek||2 does not depend on the choice of the orthonor-

kEN
mal basis ey, £ € N, and we have that ||T'||,,w,z) = ||T*||Lo(m,0). For sim-

plicity we also write ||T||., instead of ||T'|| 1, v, m)-
(i) |17l v,y < 1T aqw,m)

Proof. (i): If e;, k € N, is an orthonormal basis of U and fi, £ € N, is an
orthonormal basis of H we obtain by the Parseval identity that

DolTerl® =2 KTew, f)I* =D _IT S5

keN kEN jeN jeN

and therefore the assertion follows.
(ii): Let z € U and fy, k € N, be an orthonormal basis of H. Then we get
that

ITz|? =Y (Ta, fi)® < llzllf Y IT* fillyy = ITIZ 0l

keN kEN

0

Proposition B.7. Let S,T € Ly(U, H) and let ey, k € N, be an orthonormal
basis of U. If we define

<T, S>L2 = Z(Sek, T€k>

keN

we obtain that (Ly(U, H),{, )1,) is a separable Hilbert space.
If fi, k € N, is an orthonormal basis of H we get that f; ® e, = fi{ex, )u,
J. k € N, is an orthonormal basis of Ly(U, H).

Proof. We have to prove the completeness and the separability.
1. Ly(U, H) is complete:
Let T,,, n € N, be a Cauchy sequence in Ly(U, H). Then it is clear that it is
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also a Cauchy sequence in L(U, H). Because of the completeness of L(U, H)
there exists an element 7' € L(U, H) such that ||T,, — T||p@w,zy — 0 as
n — 0o. But by the lemma of Fatou we also have for any orthonormal basis
ex, k € N, of U that

1T, = T3, = > ((Tn — T)ex, (T — T)ex)

keN
= liminf||(T,, — T)ex||?

kEN m—00

. . . . 2
<liminf Y ||(Ty = T)exl|” = lim inf|| T, — T, |2, <&

keN

for all n € N big enough. Therefore the assertion follows.

2. Ly(U, H) is separable:

If we define f; ® ex := fi{er,)v, 4,k € N, then it is clear that f; @ e, €
Ly(U, H) for all j,k € N and for arbitrary T € Lo(U, H) we get that

(fi®en, T, = (ex en)u(fi, Ten) = (f;, Tex)

neN

Therefore it is obvious that f; ® e;, 7,k € N, is an orthonormal system.
In addition, T = 0 if (f;® ek, T)r, = 0 for all j,k € N, and therefore
span (f; @ ex | j,k € N) is a dense subspace of Ly(U, H). O

Proposition B.8. Let (G,{ , )g) be a further separable Hilbert space. If
T € Ly(U,H) and S € Ly(H,G) then ST € L1(U,G) and

15T |y w,6y < ISz, 1T 2,

Proof. Let f;, £ € N, be an orthonormal basis of H. Then we have that

STz =Y (Tx, fi)Sf, €U

keN

and therefore

IST | Law,ey < D IT* fellollSfelle

keN
< (DI sz (S NS sellz)”
keN keN
= IS lz.T
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Remark B.9. Let e, & € N, be an orthonormal basis of U. If T € L(U) is
symmetric, nonnegative with ), (T'ex, ex)y < oo then T' € Ly(U).

Proof. The result is obvious by the previous proposition and the fact ’Eha:c
1 . .

there exists 72 € L(U) nonnegative and symmetric such that T = 7372

(see Proposition 1.24). Then T2 € Ly(U). O

Proposition B.10. Let L € L(H) and B € Ly(U,H). Then LBB* €
Li(H), B*LB € Li(U) and we have that

tr LBB* = tr B*LB

Proof. Let e;, £ € N, be an orthonormal basis of U and let f, £ € N, be
an orthonormal basis of H. Then the Parseval identity provides that

D> [fx> Ben){fr, LBey)|

keN neN
< 3 (St BeP)* (Slthes LBen) )’
neEN  keN kEN

= [ Benll[[LBen|l < || L]l | Bllz.

Therefore it is allowed to exchange the summation to obtain that

tr LBB*
= YN (B i e (BL fr, ey
keN neN
= 3> {fx Ben)(fi, LBen)
neN keN
= Z(Bena LBen> = Z(en, B*LBen)U
TLEN 'VLGN
=trB*LB
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Appendix C

Pseudo Inverse of Linear
Operators

Let (U, (, )v) and (H,(, )) be two Hilbert spaces.

Definition C.1 (Pseudo inverse). Let 7' € L(U, H) and Ker (T) := {z €
U|Txz = 0}. The pseudo inverse of T is defined as

T ':= (T

‘Ker (T)L

)"t T(Ker (T)*) = T(U) — Ker (T)*

Remark C.2. (i) There is an equivalent way of defining the pseudo inverse
of a linear operator T' € L(U, H). For x € T(U) one sets T~'z € U to be the
solution of minimal norm of the equation Ty =z, y € U.

(i) If T € L(U, H) then T~! : T(U) — U is linear.

Proposition C.3. Let T € L(U) and T~ the pseudo inverse of T.

(i) If we define an inner product on T'(U) by
(@, y)r@) = (T2, T ')y for all 2,y € T(V),
then (T'(U),(, Yrw)) is a Hilbert space.

(ii) Let ey, k € N, be an orthonormal basis of (Ker T)*. Then Tey, k € N,
is an orthonormal basis of (T'(U),(, )rw))-

Proof. (i): Let z,, n € N, be a Cauchy sequence in (T'(U), (, )r)). This
implies that T 'z,, n € N, is a Cauchy sequence in U and therefore there
exists v € U such that T7'z,, — u as n — o0.

Since 7! : T(U) — Ker (T')* we have that each T~ 'z, is an element of
Ker (T)* which is a closed subspace of U.
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Hence we get that u = lim, ,,, T 'z, € Ker (T)*. In this case there exists
z € T(U) such that u = T~'z and so finally we obtain

lon = llrn = 1T 20 = T ally = 1T = ully — 0

O

Now we want to present a result about the images of linear operators. To
this end we need the following lemma.

Lemma C.4. Let T € L(U,H). Then the set {Tu | u € U, |ullv < ¢},
c >0, s convex and closed.

Proof. Since T is linear it is obvious that the set is convex.
Let J: H— H'= L(H,R, =+ (z,-) be the Riesz isomorphism. Then

{Tuluellully < ct =T ({{Tu, ) | uw € U, |lully < c})
=J ({7 lue U lully <c})

- -
v~

=M

Since J is continuous it is sufficient to prove that M is closed.

To this end let (u,, T*(:))v, n € N, be a sequence in M which is convergent
with respect to the operator-norm.

Since U is reflexive B.(0) C U is weakly sequentially compact (see [Al 92,
5.7 Satz, p.162]). Therefore there exists a subsequence u,,, ! € N, and
u € B.(0) C U such that

(Un,, VYU = (u,v)y for all v € U.

In particular

(Un,, T*x)y — (u,T"x)y for all x € H.

n—oo

Since (un,, T*(-)), n € N, is convergent in H' with respect to the operator-
norm we obtain that

(U, T*(: Ny — (u, T*(-))y in H" and |ju|ly < c.

n—oo

O

Proposition C.5. Let (Uy,(, )1) and (U, {, )2) be two Hilbert spaces. In
addition, we take Ty € L(U;,H) and Ty € L(Uy, H). Then the following
statements hold.
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(i) If there exists a constant ¢ > 0 such that ||T7z| < c||Tyz|| for all
x € H then {T\u | u € Uy, ||ul|y <1} C {Thw| v € Uy, ||v|la < ¢}. In
particular, this implies that Im Ty C ImT5.

(i) If | Ty x|y = || T5x||2 for all x € H then Im Ty = Im Ty and
T z||. = || Ty =||2 for all z € Im Ty,
Proof. [DaPrZa 92, Proposition B.1, p.407] (i): Assume that there exists
ug € Up such that
lluolls <1 and Tiug ¢ {Tov | v € Uy, ||v]]2 < c}.

By Lemma C.4 we know that the set {Tyv | v € Uy, ||v||2 < ¢} is closed
and convex. Therefore we get by the separation theorem (see [Al 92, 5.11
Trennungssatz, p.166]) there exists x € H, x # 0, such that

1 < (xz,Tiup) and (z,Tov) <1 for all v € Uy with |jv]|s < ¢

Thus ||T7z||; > 1 and ¢||T5z||2 = sup [(Tyz,v)s] < 1, a contradiction.
l|v]l2<c

(ii): By (i) we know that Im7; = Im7;. It remains to verify that
| T z|| = || T 'z|| for all z € ImT;.

If x = 0 then | 770]| = 0 = ||T5'0]|.

If z € ImT; \ {0} there exist u; € (KerT;)* and uy € (KerTy)* such that
xr = T1U1 = TQUQ. We have to show that ||U1||1 = ||UQ||2

Assume that ||ui||; > ||uz|l2 > 0. Then (i) implies that

x u
— =T <|—2> e {Tov |vels,l|v| <1} ={Tiu|u e Uy, |u|; <1}

ualla |ual|2

But —— =T <L) and | —=—||; > 1, therefore
[z

=13
||U2||2 ||U2||2
T

[|uzl]2

¢ {Tvulu € Uy, [Jully < 1}.

That is a contradiction. 0

Corollary C.6. Let T € L(U,H) and set QQ :=TT* € L(H). Then we have
ImQ? =ImT and |Q=z|| = ||[T 2|y, for allz € ImT,

where Q% 1s the pseudo inverse of Q%.

Proof. Since by Lemma 1.24 Q% is symmetric we have for all x € H that
1 * *
1Q22|* = (Qz, ) = (TT"x,z) = ||T"z||3
Therefore the assertion follows by Proposition C.5. O
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Appendix D

Continuity and Differentiability
of Implicit Functions

At the beginning of this part of the appendix we fix four Banach spaces
(Eo, [l llo), (E1I'11); (Ao, [| llag) and (A, [| [|a) where we assume that (Eo, || [[o)
is continuously embedded in (E, || ||) and (Ao, || ||a,) is continuously embed-
ded in (A, || ||a)-

For the whole section we consider a mapping G : A x E — FE with the
following properties:

1. G can be restricted such that G : Ay x Ey — Ej.

2. There exists an « € [0, 1] such that

G\, z) — GO\, )| < allz —y)| for all A\ € A and all
r,y e F

and

|G (Ao, z0) — G(Xo, %o)llo < a||zo — yollo for all A\ € Ap and all
To, Yo € Eo

Then we get by the contraction theorem that there exists exactly one map-
ping ¢ : A — E such that
©(A) =G\, p(A)) for all A € A and ¢ : Ay — Ej.

D.1 Continuity of the implicit function

To prove the continuity of the implicit function ¢ it is sufficient to consider
the case that £ = Ey and A = Ag.
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Theorem D.1 (Continuity of the implicit function). (i) If we assume
in addition that the mapping A\ — G(A,x) is continuous from A to E
for all x € E we get that ¢ : A — E is continuous.

(i) If the mappings A — G(\, z) are not only continuous from A to E for
all x € E but there even exists a L > 0 such that
G\, z) — G\, 2)||g < LA = Al for allz € E
then the mapping ¢ : A — FE is Lipschitz continuous.

Proof. (i): We fix Ay € A. Then for any other A € A

©(A) = ©(Xo) = G(A, 0(N)) — G(Xo, (M)
=[G\ ¢(N) = G(A 0(h0)] + [G (A, ©(N)) — G (Ao, (Ao))]

Because of the contraction property we obtain that

le(A) = ¢(Qo)llz < allp(A) = o)z + IG(A; (X)) = G (Ao, (X))l

and for that reason
1
lo(A) — e(No)lle < EHG(A, (X)) — G( Ao, (M)l &

Therefore we get the result (i). 3
(ii): In the same way as in (i) we can show that for arbitrary A and A € A

L1600 o) = G (W)l < —2—JIA = Ala

o) = ¢(lls < — <.

by the additional Lipschitz property of the mapping G. O

D.2 Different concepts of differentiability in
general Banach spaces

Let F1 and E5 be two real Banach spaces and let H : E; — FE».

Definition D.2 (Directional derivatives). H is said to be differentiable
in the point xy € Ey and in the direction y € E; if there exists an element
OH (x9;y) € Ey such that

H —H
OH (z9;y) = lim (&0 + h?jl) (7o)

OH (z0;y) is called the directional derivative of H (in zo and direction y).



165

Definition D.3 (Géateaux differentiability). H issaid to be Gateaux dif-
ferentiable in xy € FE; if there exist all directional derivatives 0H (zo;y),
y € Ey, and if 0H (zo;-) € L(Ey, E3). Then we write 0H (zo)y instead of
O0H (z¢;y) and 0H (zo) is called Gdteauz derivative of H in xy.

If H: F; — F5 is Gateaux differentiable in each x € F; we call H simply
Gateaux differentiable.

Lemma D.4. (i) If H : E; — E5 is differentiable in xo € E; and in
direction y € Ey then there exist all directional derivatives OH (zo; Ay),
A€ R, and

OH (z0; Ay) = AOH (203 y)
(i) If there exist all directional derivatives OH (z;vy), =,y € Ei, such that

the mapping © — OH (x;y) is continuous from E; to E, for eachy € F;
then OH (x;-) is additive for all x € E), i.e.

OH (z;91 +y2) = OH(z;y1) + OH(312)  for all x,y1,y2 € Ey

Proof. (i): Because of the definition of the directional derivative the asser-
tion is clear for A = 0 and for A # 0 we get that

H(zy + hAy) — H(zo)

O0H (zo; Ay) = lim

h—0 h
— lim M H (zo + hA\y) — H(xg))
h—0 )\h
— i H @0 M) = H@o) _ o
h—0 h
(11) For Zo,Y1,Y2 € El and h € R\ {O}
H(zo + h(y1 + v2)) — H(xo)
h
H (o + hyy + hys) — H(zo + hy) n H(xo + hy:) — H(xo)
- h h

While it is clear that the second term converges to 0H (z9;y1) as h — 0 we
need the fundamental Theorem A.7 to obtain that

H(zo + hy1 + hys) — H(zo + hy:)
h

— O0H (zo;y2)|l2 — 0as h — 0 :

Let € > 0. As the mapping x — 0H (z;y9) is continuous from E; to Fj there
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exists a § > 0 such that ||0H (zo + hys + sy2; y2) — OH (zg;y2)||2 < € for all
0<h<dand 0 < s <. Then we get by the fundamental theorem for
Bochner integrals, Theorem A.7, and by the Bochner inequality A.5 that

i H(zo + hy + hyo) — H(zo + hy)
h

1 h
= ||E/ OH (zo + hyy + sy2;y2) — OH (03 y2) ds||2
0

— OH (05 y2) |2

1 h
< [ 108 0+ hs + sy ) — O s0s o) ds < =
0

for all 0 < h < 4. So finally

OH (zo;y1 + y2)

_ lim H(zo + hyr + hyo) — H(zo + hyr) 4 lim H(zo + hy1) — H(zo)
h—0 h h—0 h

= 0H (03 y2) + OH (203 y1)

O

Definition D.5 (Fréchet differentiability). Let £, and E, be two Ba-
nach spaces. A mapping H : F; — Fj is said to be Fréchet differentiable in
xy € F if there exists an element DH (xy) € L(FE;, E3) such that

o(xg,y)

H(zog+y) = H(xg) + DH(x)y + o(z0,y) with i

— 0 as||lyll1 =0

DH () is called the Féchet derivative of H in x.

If H: Ey — F, is Fréchet differentiable in each z € E; we call H simply
Fréchet differentiable.

H is said to be continuously Fréchet differentiable if DH : E; — L(E, Es)
is continuous.

Proposition D.6. Let E; and FE; be two Banach spaces and
H : Ey — E5 be a Géateaux differentiable mapping.

If the mapping x — OH (x) is continuous from E to L(Ey, Es) then H is
even Fréchet differentiable with OH (x) = DH(z) for all x € E;.

Proof. We have to show that for each xq € E;

|H (2o +y) — H(xo) — 0H (20)yl|2
1yll+

— 0 as|y|li = 0.
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For this end let £ > 0. Then there exists § > 0 such that

||8H($0 + y) — 3H(m0)||L(E1,E2) < ¢ for all Yy E FE; with ||y||1 < 4.

Because of the continuity of the mapping s — 0H (zo + sy)y € E, we get by
the fundamental theorem for Bochner integrals, Theorem A.7, that

H(zo + ) — Hzo) = / OH (zo + sy)y ds

Hence we obtain by the Bochner inequality that for all y € E; with ||y||; < 0
| H (20 +y) — H(xo) — 0H (z0)y]|2

1
- ||/ OH (o + sy)y — OH (z0)y dss
0
1
< / 10H (20 + sy)y — OH (z0)y» ds
0

1
< / 10H (20 + 5) — OH (20)ll gm0 d5 Iyl
0

< ellyllx
Therefore the assertion is proved. O
Concerning the second order derivatives we introduce the following defini-
tions.

Definition D.7 (Second order derivatives). H is twice differentiable in
o € E; in the directions y; € F; and y, € E; if there exists
i OH (2o + hy2;y1) — OH (20; Y1)
im
h—0 h
H is twice Gateaux differentiable in zy € E; if 0H : Ey — L(E;, Es) is
Gateaux differentiable in xy. Analogously to the above notation we write
h—0 h

= 82H(x0;y1,y2) € by

=: 0°H(xo) (-)y2 € L(E1, E»)
————
€L(E1,L(E1,E?))
H is twice Fréchet differentiable in zq € Ey if DH : E; — L(E, E,) is

Fréchet differentiable in xq, i.e. there exists D?*H(zy) € L(Ey, L(Ey, E»))
such that

DH (zo +y) = DH(xo) + D*H(20)(-)y + (0, y)

o(xo, y)

lyllx
if it is twice Fréchet differentiable in each point x € E,. If D?*H : E; —
L(Ey, L(Ey, E,)) is continuous H is said to be twice continuously Fréchet

differentiable.

where — 0 as ||ly|[i = 0. H is called twice Fréchet differentiable
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D.3 First order differentiability of the implicit
function

To get the Gateaux differentiability of the implicit function it is still possible
to take Ag = A and Ey = E. But to prove the Fréchet differentiability it
becomes important to choose smaller spaces Ay and Ej.

Theorem D.8 (First order differentiability).

(i) We assume that the mapping G : A x E — E fulfills the following
conditions:

1. The mapping A — G (A, x) is continuous from A to E for allz € E.

2. Forall \,p € A and all x,y € E there exist the directional deriva-
lives

011G\, z; ) = E — lim

02G (A, x;y) = E — lim

of G:AXx E— FE and
001G AXExA— E and 0:G : Ax Ex E — E are continuous.

Then the implicit function ¢ : A — FE is Gateaux differentiable such
that the mapping (A, p) — 0p(N)u is continuous from A X A to E and

p(Np = [I =BG, oMW HG (A, o(N))
forall \,u e A

(11) We assume now that not only G : AXE — E but also G : Ag X Ey — Fy
fulfills the conditions of (i), i.e.:

3. The mapping Ao — G (XN, xo) is continuous from Ay to Ey for all
Ty € Eo.
4. For all N\o, po € Ao and o, yo € Ey there erist the directional
derivatives
G(h+h —G(\
9,G (ho, zo: o) = Fo — Tim S0 T tto: Zo) = Gldo, o)
h—0 h
G(A hyo) — G(A
02G(Xo, To; Yo) = Eo — lim (Ao, 2o + hy) (Ao, o)
h—0 h

OfGIA() XEO—)E() and
81G:A0><E0><AO—>EO and@zG:ononEO—)Eo are
continuous.
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In addition we demand
5. The restricted mappings

51G : A() X EO — L(Ao,E) and
82G : AO X EO — L(Eo,E)

are continuous. (Therefore, by Proposition D.6, it is allowed to
write D1G instead of G and DyG instead of ,G.)

Then O¢ : Ag — L(Ag, E) is continuous and that means that ¢ : Ag —
FE is continuously Fréchet differentiable.

Remark D.9. In fact condition 2. and Lemma D.4 especially imply that
01G(\,z) € L(A,E) and 0,G(\,z) € L(E) for all A € A and € E. This
means that the mappings G(-,z) : A - E, z € E, and G(\,:) : E — E,
A € A, are Gateaux differentiable. Therefore it is allowed to write 0, G(\, z)p
and 0,G (A, z)y instead of 01G(\, z; u) and 0,G (A, z; ).

For the same reason it follows from condition 4. of part (ii) that
01G : Ay X Ey = L(Ag, Ey) and 0:G : Ay x Ey — L(Fp). But one has
to notice that we only demand the continuity of 0;G : Ay x Ey — L(Ag, E)
and 0,G : Ag X Ey — L(FEy, E) (see condition 5.) which is weaker.

For the proof of Theorem D.8 we need the following lemma.

Lemma D.10. Let (B,)nen be a sequence in L(E) which converges strongly
to B € L(E) (i.e. Byjx — Bz in E asn — oo for all z € E). Besides we
assume that there exists a constant o € [0, 1] such that || By, || sy, || B||e) < o
for alln € N. Then (I — B,)™',(I — B)' € L(E) for alln € N and

(I —B,)™' — (I — B)™! strongly as n — oc.
One even gets that
(I-B,) "'z, — (I-B) 'z asn—

for each sequence (xp)nen in E with x, — = in E as n — oo.

Proof. The existence of (I — B)™! € L(E) and (I — B,)™* € L(E), n € N,
follows from [Al 92, 3.6 Neumann-Reihe, p.104]

Hence let (z,)nen be a sequence in E with z, — = in E as n — oo. If we
define vy, := (I — B,) 'z, and y := (I — B) "'z we obtain that z,, = y, — B,yn
and z = y — By such that

Yn — Y = Bp(yn — y) + (zn — z) + (Bny — By)
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This implies for the norm of the difference that
lyn — 9l < allyn —yll + llzn — [ + [ Bay — Byl

and since o < 1 we can conclude that

1
192 = yll < 7= (llen — @[l + | Bay — Byl))

So finally the assertion is proved as ||z, — z|| — 0 and ||B,y — By|| — 0
as n — oo. 0

Proof. Proof of (i): We fix A and pu € A. Because of the continuity of the
directional derivatives 0;G and 0,G we obtain by the fundamental theorem
for Bochner integrals, Theorem A.7, that for all h € R

A+ hp) — (N

= G(A+ hp, (A + hp)) — G(A, (N))

= [G(/\ + hp, (A + hu)) — G\, (A + hu))]
+ [GO oA+ hp)) =GN, 9(V)]

1
= / 01G (A + shu, (A + hp))hp ds
0

+ /0 G (A, o(A) + s(p(A + hu) — (X)) (@A + hp) — (X)) ds

For general z,y € E we define the strong integral

1
/ OGNz +sy)ds: E—E
0

1 1
/ 02G(\,x + sy) ds z == / 02G(\, x + sy)z ds
0 0

1
Then [ 0,G(A, x + sy) ds describes a linear operator on E.

0
Furthermore we obtain by the contraction property that

1 1
||/ 9GO\ 2 + sy)z ds| g/ 1,GO\ 3+ sy)2]| ds < a2
0 0

for all z,y, 2 € E. Hence for each h € R there exists

- / HG(A, (N + s((A+ h) — (A)) ds] ™ € L(E)
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by Lemma D.10 and we get that

A+ hp) — ¢
h

W - || 26000 + el ) — () ds]

1
/ 01G (A ~+ shu, oA+ hp))u ds
0

So finally by Lemma D.10 we only have to show that for all z € £

/0 G\, () + s(p(\ + hps) — 0(N))z ds

— [ G\ o(N)x ds

h—0 0
and

1
/ O1G (A + shu, oA+ hy))p ds
0

1

— | G\, p(N\))p ds

h—0 0

But this assertion follows from Lebesgue’s dominated convergence theorem:
By Theorem D.1 the mapping ¢ : A — E is continuous. As the mappings
0:G and 0,G are also continuous by assumption we obtain

1. Forall s € [0,1] and z € E

OG(A + shis, oA + hpp) )i —— BG (A, p(A))p
and
092G (A, p(A) + s((A + hu) — p(A)))x —> .G (N, p(N))x

h—0

2. There exists a constant ¢ such that

101G (A + shp, (A + hp))pll < c

and

10:G (A, o(A) + s(p(A + hp) — 0(X)))z]| < ¢

for all s,h € [0,1].

So far we know that there exist the directional derivatives of ¢ and that they
are described by the given formula. This representation already provides
that 0p(A;-) € L(A, E) and therefore the Gateaux differentiability of ¢. The
continuity of the mapping

(A, 1) = 0p(X; ) = [I = BaG (A, 0(N)] TG (A, (M)
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is again a consequence of Lemma D.10.

Proof of (ii): We consider G : Ay X Ey — Ey. Then we get by part (i) that
w : Ag — Ej is Gateaux differentiable and for \g, pg € Ay the derivative is
given by

Ap(Xo) o = [I — 3G (Mo, 0(Ao))] "' 01 G (Ao, (o)) o

where 0,G( g, p(Ao)) € L(Ep) and 91G (Mo, v(Ao)) € L(Ao, Ey) C L(Ay, E).
But by condition 1. 0,G(Ag, ¢(Ag)) can also be considered as an element of
L(E) with ||82G(/\0, QO(A()))“L(E) < a<1forall A\g € A().

Now let (Aon)nen be a sequence in Ag with A, — Ag in Ag as n — oo.
Besides we fix pg € Ay and define

Yn = 00 (Xon) o € Ey
Yy = 8(,0(/\0)u0 € E()

Applying the formula for the derivative of ¢ we obtain that

Yn = 02G (Ao, (Aon))Yn + O1G (Ao, ©(Aon)) o
Y= 320(/\0a @(Ao))%alG(/\oa 80()\0))#0

In this way we get for the norm of the difference

”890()‘0,71)/1‘0 — 0p(Ao) pol|
= |lyn — yll
< [[02G (Ao, (o)) yn — 02G(Aojms ©(Aon)) ¥l
+ 102G (Aojn, ©(Aon))y — B2G(Aos (o))
+ [[01G(Aons p(Aom)) o — O1G (Ao, p(No) ) ol
< [|02G (Aons 0 (Ao))l i) |Yn — ¥l
+ 102G (Ao, (o)) — 02G (Ao, (o))l Lm0, ) 1Yl 0
+ 101G (Ao, ©(Aon)) — 01G (Ao, ©( o))l Lo,y 0] 40
< ally, -yl
+ (102G (Aojn, (o)) — 02G (Ao, ©(Ao))| 150,00 (Ao) || (10, E0) | 0| 40
+ 101G (Aojn, ©(Aon)) — 01G (Ao, ©( o))l Lo,y K0l 40

Since a < 1 and ¢(Aon) — ¢(Ao) in Ep as n — oo we can finally conclude
that

||380()\0,n)ﬂo - 590()\0),”0”

1

<1, 102G (Ao.n, (Aon)) = 02G (Mo, (A0)) | £(220,2) 10 (Xo) || L0, 20)

+101G(Xo,n, (o)) — LG (Ao, ©(Ao))ll Liro,2)] 110l 40
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= cpll ol a, Where ¢, — 0 as n — oo.

by condition 5. Hence the Fréchet differentiability follows from Proposition
D.6. O

Corollary D.11. If the assumptions of Theorem D.8 (i) are fulfilled and if
we have in addition that ||01G(X\, 2)||La,m) < C for all X € A and x € E then
the mapping 0 : A — L(A, E) is also bounded.

Proof. Let \,x € Aandz € E. Since G : AxE — E fulfills the assumptions
of Theorem D.8 (i) we get for ¢ : A — E that

N = [I =GN, (M) HG (A, (V)
This implies that
dp(A)p = 0:G(X, p(A)dp(A)pu + D1G(A, p(A))
where 0,G (A, p())) € L(E) with [[0.G (A, ¢(A))||z(s) < a < 1. Therefore

10 M)l < elldp(Npll + Cllalla

Since o < 1 it follows that

C
00Nl < Il
]

Corollary D.12. We assume that the assumptions of Theorem D.8 (ii) are
fulfilled. If we have in addition that the mappings

alG : AO X E() — L(Ao,E)
82G : A() x By — L(Eo,E)

are uniformly continuous and that 0p : Ay — L(Ag, Ey) is bounded then the
Fréchet derivative Do : Ay — L(Ay, E) is even uniformly continuous.

Proof. As d¢p : Ay — L(Ayg, Ep) is bounded we have that ¢ : Ay — Ej
is Lipschitz continuous by the fundamental Theorem A.7. Then the result
easily follows from the proof of Theorem D.8 (ii). O
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D.4 Second order differentiability of the im-
plicit function

Theorem D.13 (Second order differentiability).
(i) We assume that

1. Both mappings G: A X E — E and G : Ay X Ey — Ey fulfill the
conditions of Theorem D.8 (i).

2. There exist the directional derivatives of second order from G :
Ao X Ey — E which means that for all Ay, po, vo € Ay and xy, Yo,
zo € Ey the following limits exist in E.

m 01G (Ao + hig, xo) po — 01G (Ao, o) o

8%6'(/\0, To; fo, Vo) 1= ,lli

—0 h
A h — A
61820(/\0,330;:%),[110) = lim 82G( ot /1'05330)2/() a26;'( OaxO)yO
h—0 h
. 01G(Ng, 29+ h — 0,G (),
301G (Ao, o; Ho; Yo) = lim 1G (Ao, o 2‘/0)/;0 L G(Ao; o) 1o
0oG (N0, To + hzg)yo — 9G (Mo, 70) Yo

630()\0,330;?10&0) = ’111_I>r(1) h

Then the mapping ¢ : Ao — E is twice differentiable in all points
Ao € Ao and all directions pg, vy € Ao such that the mapping

82(‘02A0XA0XA0—)E

Ao + o) pio — o(A
(Ao, o, ¥0) — 0% (Ao; o, o) maso( 0o+ Vo)h/«to ©(Ao) o

=1l
h—0
s continuous. There even is an explicit formula describing the direc-
tional derivatives:

8% (No; po, o) = [I = 826G (Ao, p(No))] ™
{07G (Mo, ©(No); o, o)
+ 0102G (o, ©(Xo); O (Xo) o, o)
+ 0201G (Ao, 9(Ao); 1o, Op(Ao)1o)
+ 953G (Ao, ©(o); D0 (Xo) o, Dp(Xo) o) }

(i) Let (A1, || ||a,) be a further Banach space which is continuously embed-
ded in (Ao, || [a,)-
In addition to the hypotheses of part (i) we assume that the following
conditions hold:
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3. The mapping G : Ay x Ey — E is even twice Fréchet differentiable
in each variable such that the derivatives

D?G : Ay x Ey — L(Ag, L(Ag, E)
DD>G : Ag x Eg — L
DyDG : Ay x Eyg — L

D3G : Ay x Ey — L(Ey, L(Ey, E

are continuous.
4. The mapping ¢ : Ay — Ey is Fréchet differentiable with continu-
ous derivative Dy : Ay — L(Ay, Ey) C L(Ay, E).

Then the Fréchet derivative Dy : Ay — L(Ay, E) is once Gdteauz
differentiable.

(#i) If it is even possible to verify that
5. 8D<p : Al - L(AI: L(AlaEO)) C L(AlaL(AlaE))
then ¢ : Ay — E s twice Fréchet differentiable.

Proof. (i): [Za 83, Theorem 10.4, p.208]

(ii): Let Ar, p1,v1 € Ay. At first we make use of condition 1. which provides
that ¢ is Gateaux differentiable as a mapping from A to E (see Theorem
D.8). Using the formula which describes the derivative we get that for all
heR

Do(A1 + b)) — Do(A)
= 0p(Ar + hvy)py — 0p(A)
= 0,G (A1, (M) (Op(Ar + hwr) py — Op(Ar) )
+ [01G (A1 + by, (A1 + hy)) — 01G (A1, (A1) ]
+ [02G (A1 + hvy, (A + b)) — .G (A1, ©(A1))]00( A1 + hvy )y

and therefore
1
E(DSO()\l + hvi) s — Do(Ar) )

= 1= 3G, o)) 3 AW + 7 ()

where by condition 3.

Ji(h) : = 01G (A1 + hvr, (A1 + hir)) — 01G (A1, (A1)
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= D1G(\ + hvy, (A + b)) — DiG (A1, (M)
€ L(Ay, E) C L(AL, E)

and by condition 3. in addition to 4.

JQ(h) L= [82G()\1 + h,l/l, 90()‘1 -+ hl/l)) — 52G(/\1, (,0()\1))]8@0()\1 -+ hl/l)
= [pQG()\l -+ hl/l, SO()\I + hl/l)) — DQG()\l, QD()\l)l] pg@()\l + hl/ll

€EL(Eo,E) €L(A1,Ep)

€ L(A,E)
Claim.
1
L3 Ai(h) 3 DRG(N, ¢(0) (o
h—0
+ DQDlG()\l, (p()\l))()DQO(/\l)Vl in L(Al, E)
1
2. 5J2(h) mD1D2G(/\1:90(/\1))(D€0(/\1)('))V1
+ DG (A1, (M) (De(M) (1)) Dp(A)vr - in LAy, E)
1. We prove the first part of the claim:

||%J1(h)ﬂl — DG (A1, (M) (p1)v1 = DaDiG (A, (M) (1) Dp(An) |

[D1G(A1 + hwy, (A1 + i) = DiG(Ar, (M + b))
h

<||

— D}G(A1, (A1) ()|
H [D1G (A1, (A1 + hry)) — DiG (A1, o(M)]u
h

— Dy D1G (A1, (A1) (1) Do(Ar) v |

(1) Using the continuity of the Fréchet derivative

D2G : Ay x Ey — L(Ag, L(Ag, E)) we obtain by the fundamental theorem for
Bochner integrals that the first summand can be estimated in the following
way:

| [D1G(A1 + hvy, (A + hvy)) — DiG (A, (A + b))l

| h

— DiG (A1, (M) ()|

1
| / D2G (M + o, oA + hin)) () — DX, o) () do|
0

1
< / IDYG (M + ohvy, (A + hin)) (p)vr — DIG (A1, 9(A)) () v || do
0
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1
< / |DIG (A1 + ohvy, (A1 + b)) — DIG(Ar, (A1) L(ro,Liro,E)) dO
0

|11l a0 l|21]] Ao
< cnllpallae < enellplla,

where the last estimate follows from the fact that A; is continuously em-
bedded in Ay. Besides ¢, — 0 as h — 0 because of Lebesgue’s dominated
convergence theorem :

Since D?G : Ay x Ey — L(Ag, L(Ag, E)) and ¢ : Ag — Ey are continuous we
get that for all o € [0, 1]

|DYG (M + ohwi, (A1 + b)) — DIG(Ar, (A1)l L(ro,L(Ao,E) — O
as h — 0 and of course there exists a constant C such that
IDIG (M1 + ohwr, (A + hin)) = DIG (A1, (M) | niao,Lino,my) < €

for all (o, h) € [0,1] x [0,1]
(ii) With respect to the second summand we obtain in a similar way that

” [D1G (A1, (M1 + hvt)) — DiG (g, 0(M))]
h

— Dy D1G (A1, 0(A\1)) (p1) Dpo( A1) |
< [ ID2DG O ) + (s + hin) — o)) ) (ZR L= 2

— Dy D1G(A1; (A1) (1) Deo( M) || do

1
< / IDsDIG O, o) + 0 (0 + i) — 0O i sirosy 4o
0

A1+ hvy) — (A
il EX =) 3y

1
+ [ ID2DIG O, 90 + oo + hon) = (A)
" = DaDiG (M, o)) llL(Eo Lo ) dO
12| o 1 Do (Ar) s [lo
= aullslay < cnclmll,

where ¢, — 0 as h — O:
Since DyD1G : Ay X Eq — L(Ey, L(Ag, Ep)) and ¢ : Ay — E; are continuous
we can use Lebesgue’s dominated convergence theorem like above to get that



178

[ 122160, 60 + {60+ 1) = 0Dl do
- ||D2D1G()\1, <P()\1)||L(E0,L(A0,E))|
< [ 1D, o) + o + ) = ()
— Dy DG (A1, 0(A)|| (B, L(ro,B)) dO — 0.

Besides assumption 4. provides that

“ (A1 + hvi) = p(M)
h

— D(p()\l)l/lno — 0.
h—0
In this way we proved that

2 i() 3 DEG O, e ) (s
+ DQDlG(/\l,gD(/\l))()D(p()\l)l/l in L(Al,E)

In fact it is even possible to get this convergence in L(Ag, F) but we will
see that it is really necessary to introduce the smaller space A; to prove the
second part of the claim.

2. We prove the second part of the claim:
At first we split the term in the following way

1
—Jo(h
I ()

— D1 DyG (A1, (M) (Do(Ar) )i — D3G (A, (M) (Do (M) pa ) ||
” DyG(AL + hvy, (M1 + hiy)) — DoG (A q, (A1 + huy))
- h
— D1 DyG (A1, (A1) (Dep(Ar) pa ) ||
+ DG (A1, (A1 + hvr)) — DaG(Ag, (A1)
h

— D3G(A1, (M) (Dp(M)p) Do(Ar)wa |
(i) By assumption the Fréchet derivative Dy DoG : Agx Ey — L(Ag, L(Ey, E))

is continuous. Therefore we can use the fundamental theorem for Bochner
integrals to obtain for the first summand that

DQO()\I + hl/l),Uq

Dy(\ + hvy) g
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|| DQG(/\l + hl/l, (p()\l + hl/l)) - DQG(/\l, QO(/\l + hl/l))
h
— D1 DoG( A1, (A1) (Dp(Ar) ) ||

1
- / DyD,G (M + ohw, (A + hin))(Do(A + hon) )i
0
— D1 DG (A1, 0(A1)) (Dp(A1) pa)vn do|

DQO(/\l -+ h,l/l),Uq

1
S / ||D1D2G()\1 + O'hl/l, SO()\l + hl/l))(DgO()\l + hul),ul)le
O~ DiDyG(\ + chvr, (A1 + b)) (Do) pa) || do

+/1 ||D1D2G (A1 + ohvy, (A + b)) (Dp(Ar) p)va
= DiD,G (M, (M) (Dep(Ar) )i || do
< /O IDDAG O + oo, (0 + b)) vy do
Do (A1 + hvr) = Do(A) |l pallas [[va]]ag
+ /01 ||D1D2G (A1 + chvy, (A1 + hvy)) — DiDoG(Ay, o(A))|| do

Do (Al iar, o) [l [l a0 < callpalla,

where ¢, — 0 as h — 0 for the following reasons :
Because of the continuity of D;DyG : Ay x Ey — L(Ag, L(Ey, E)) and
¢ : Ay — Ej it is clear that for all o € [0, 1]

|D1D2G (A1 + ohvy, (A + hvy)) — D1DoG(Ar, (M) | niao,2(Eo, ) — 0.

Besides there exists a constant ¢ such that
| D1D2G (A1 + ohvy, (M + hiy)) — DiDaG (A, (M) || n(ao,L(50,5)) < €

for all (o,h) € [0,1] x [0,1].Therefore it is clear by Lebesgue’s dominated
convergence theorem that

1
| / ID1DoG(As + ahwn, 9(M + b)) ososiso.ey) do
0
1
- / 1D D2G (s, o(A)]| do
0

1
S/ | D1 DG (A + ohvy, (A + hiy)) — D1DyG(Ar, (M) 1(ao, (50, 5)) O
0

— 0as h—0.
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Besides we obtain by assumption 4. that
|Do(A + hin) — Do(M)||pay,zy) — 0 as h — 0

(ii) For the second summand we get in a similar way that

DyG(A1, oM\ + hin)) — DoG( A, (N
122 (A, (M Vl}z) 2G (A1, o 1))DQ0(/\1+/”LV1)N1

— D3G (A1, (A1) (Dp(Ar) 1) Dep(Ar ) |

< /0 ID3G (A1, (M) + o (@A + hvr) — 0(A1)))(D(Ar + hon) )

(90()\1 + hvy) — <P()\1))
h

— D3G (M1, (A1) (Dp(M)p1) Dp(M) v || do
1
< / 1D2G (O, o(M) + 0 (@ + hn) — 0())) s £(z0.2)) do
0

(AL + hvi) — (M)
h

1
+ / ID2G (A, 0(M) + 0 (000 + hin) — 9O oo ziensy do
0
| Do (A1 + hvy) = Dp(A) || Ly, o) |1 ac | Do (M) v |o
1
+ [ IDBG O, elh) + (o0 + ) — (M)
* — D2G(M, o) b 0.2y do

|1 Do(A) [ z(Ar,B0) 2]y [ Dp( A1) w10
< cnllplla,

| Do(A1 + hvi) || Lay, mo) | 1] Ay — Do(M)vilo

where ¢, — 0as h—0:
Using the continuity of the derivative D3G : Ay x Ey — L(Ey, L(Ey, E)) and
the continuity of ¢ : Ag — Ey we get that

1
| / 1D3G (A1, (M) + o (M + hrn) — (M) L(Eo,L(Eo,E)) do
0
1
- / ID2G (A, o(M)) | do

1
< / ID3G (A, 0(M) + 0 (0(h + h) — p(M\))
L D3G (A, ©(A)) || L(Eo,L(0,E)) do
—s0ash—0
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In addition assumption 4. provides that

DM+ hn)llniay,m) — 1D9(A) |lniay,50)|
<|[Dp(A + hvy) — Do(A1)||pear,m) — 0 as h — 0

and
oA+ hvy) — ()

I Y
Now we define
Ji1 =DiG (M, 0(M)) ()
+ DaD1G(A1, (A1) () Do(M)vs € L(Aq, E)

— DQO(AI)UIHO —0as h— 0.

and
Jo :=D1DyG(A1, (M) (De(M) ()1
+ D3G (A1, (A1) (Dep(A1) () Do(Ar)

(
By assumption 1. we have that 0oG(\,z) € L(E) for all A € A and z € E.
Thus we finally get that
1 - .
||E(D90()\1 +hv)p — Dp(An) ) — [T = G (A, o(A)] ™ { i + T }|

= = G, oA (G () = Ty + (5 o) = Ty}
< = 3G (A (M) ey
(SABEPAT RN FFAOEFAM)
< = 3G (A1, (M)l ey
(137 = il + 15 2o(8) = ellsons )l
< cpl|p]|a, with ¢, — 0 as h — 0

Thus it is verified that there exist the directional derivatives of Dy : Ay —
L(A4, E) and we have the following representation

(ODp(A; 1)) = [I = 3G (A1, (M)
{DIG (M, o(\)) (1)1
+ D1D2G (A1, 0(A1)) (D (M) )
+ D2D1G(A1, 0(A1)) (1, Dp(Ar))
+ D3G (A1, (M) (Dep(Ar) 1) Dep(Ar) 1 }

Therefore it is easy to see that the mapping 0D¢(\i;-) 1 Ay — L(Ay, Ey)
is linear and continuous. That means that Dy : Ay — L(Aq, F) is Gateaux
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differentiable and we write 0Dy(A1)(u1)v1 instead of (0D@(A1;v1)) -
Proof of (iii): By Proposition D.6 we only have to show that 0Dy : A —
L(Ay, L(A4, E)) is continuous.

Hence we fix A\;, u1, v1 € Ay and a sequence (Ay,)nen such that Ay, — A;
as n — 0o. Then we set

Yn = 0Dp(A1,n) (1)1

= G (An, (AM,n))0DP(A1,n) (1)1
+ DG (M, 9(Ain)) (1)1
+ D1 DG (A1 jn, 0(A10)) (Dp(Arn) 1)1
+ Dy D1G (A1, (A1) (1) Do(Arn)n
+ D3G (A ©(A1n)) (Dp(Arn) 1) Do( Ay )11

and
y := 0Dp(A1)(p1)y

= 02G (A1, p(M))OD (A1) (p1) 11
+ DG (M, (M) (1)
+ D1DyG(A1, 0(A1))(Do(A) )i
+ D2D1G(A1, 0(A1)) (1) Do(A) v
+ D3G(M1, 0(M)(Dep(Ar) 1) Dep(Ar)

In this way we obtain that

[0D@(A1,n) (1)v1 — ODp(A1) ()|
= |lyn — yll
< [02G (A1 s (A1) | 1y — Yl
+ |1 D2G (A1 jn, 0(A1,n)) — D2G (A1 (A1) || (10,1 [[0D (A1) (1)1 [l
+ ”DSG()‘I,M QO(/\I,H))”L(EO,L(EO,E)) | Dp(A1,n) |L A1,Ep) 11| Ay
[De(A1,n) — Do(A)|| s, Eo) V1] 44
+ 1D3G (M my 0 (M) |6, L50,2) 1D ( A1) = Dip (M) a0y | |4,
1D (A1) L(ay, o)1 ]|as
+ ID3G (A, ©(Mn)) — D3G (M, (M) Lo L020.2)) 1D (M) (4, 6)
1]l ag llva |,
+ |1 D2D1G(A1n, (A1) | 1(izo,p0n0,m) |11l a0 | DO(A1,n) = Do (A1) || i, 50)
1]l
+ | Do D1G(Aijn, 9(A1,n)) — D2D1G( A1, (A1) [ Lm0, L0, my) |11 ]| Ao
[De(A) |l pear,z0) 71114y




+ [[D1D2G (A1, 0 (A1 0)) | L(ro, L0, 2)) 1 PP (A10) — Do(A1) || Lias,E0)

+ [[D1D2G (A1, 9(A1n)) — DiDoG (A1, (A1)l (Ao, L (80, 2))
| DAl Lear,zo)ll 1]l l|v1] Ag

+ | DG (A1 jn, ©(A10) — DIG (A1, @A) || Ltro, Lo ) 181 a0 171 ]| Ao

IrzyreyiEzyive

Now we use assumption 1. which provides that

10:G (A, p(Ar0))lliimy < 0 <1
Further we get by assumption 5. that

10D @ (A1) (11)v1llo < {|0D@(A) || Lar,pias, 2o 171 | [l 1] 4y

183

Since A; is continuously embedded in Ag there exists a constant ¢ < 0 such

that

Imllao < cllmlla, forallm € Ay

In this way we get that

10D@(A1,5) (1) v1 — 0D (A1) (1) ||

<

S1C

«

Collpea | 122 ]]4

where ¢, — 0 as n — oo because of the continuity of the second Fréchet

derivatives of G : Ag x Ey — E (assumption 3.) and the continuity of
Dy : Ay — L(A4, Ep) (assumption 4.). That is all we had to show.

O

Corollary D.14. We assume that the assumptions 1.-4. of Theorem D.13

are fulfilled.

(i) In addition, we demand that

7. Dy : Ay — L(A1, Ey) is bounded

8. the second order derivatives

DiG :

DlDQG :
D2D1G .

are bounded.

Then it follows that 0Dy : Ay — L(Ay, L(Ay, E)) is bounded.

DiG :
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(i1) In addition, we assume that condition 5. of Theorem D.13 is fulfilled
and that

9. the above functions appearing in 7. and 8. not only bounded but also
uniformly continuous

10. DG : Ay X Ey — L(Ey, E) is uniformly continuous

11. 0Dy : Ay — L(Ay, L(Ay, Ey)) is bounded.
Then it follows that 9Dy = D?*p : Ay — L(Ay, L(A1, E)) is uniformly
continuous.

Proof. (i): Let Ay, u1,24 € Ay. Since 0Dy : Ay — L(Ay, L(Ay, E)) is given

by
0Dp(M) ()vr = [I — 0:G (A1, o(M))] ™

{DIG (A1, (M) (p1) 1
+ D1DyG(A1, (A1) (Dep(A1) pa ) v
+ Do D1G (A1, 0(A1)) (1) Dp(A1)
+ D3G (M1, 0(M))(Dep(A) ) Deo(Ar) 1 }

we get that

10D@(A1) (1) w1 ||
1

< 7= (IPIG O, o) llecro, Lo, €l llas 111y

1
+ | D1 DoG (A1, (A1) || L(ro,L(Eo,2) [P0 (A)| L(Ar,B0) € [[1allas (1] Aq
+ [[DaD1G (A1, 0(M)) || Lo, L0, 1D | Lias, o) € Il ay 1] 4,
+ |D3G (A1, (M) | 1B, L(Eo, BY) ||D<P()\1)||L(A1,E0)||M1||A1||V1||A1)

< 1—||u1||A1||V1||A1

because of the boundedness of the second order derivatives and of

Dy : Ay — L(Ay, Ey).

(ii): To prove the uniformly continuity let A, A, u,v1 € Ai. Using the
estimate as in the proof of Theorem D.13 (iii) we obtain that
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19D¢(A) (1) — 9D (Au) ()|
< 772 (DGO (M) = DoGOh, 0 (A) e

< 7T
+1Dp(A1) = Dp(A )IILAlEo)

+ID3G (A, (M) = DG (A, (M) (o, (50, 2)

+|1D2D1G (M, 0 (Al)) D2D1 (At @O 280,210, )

+ || D1 DG (A1, ()\1)) D1D2 (5\1790()\1))||LA0, L(Eo,E))
+1DIG (A1, 9(A1)) = DG (A, (M) llzro,zra,en) 1l a1l a,

for some constant ¢ > 0. Therefore the assertion follows since ¢ : Ay — Ej is
Lipschitz continuous if Dy : A; — L(A1, Ep) is bounded by the fundamental
theorem for Bochner integrals. 0
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Symbols

L(U, H) space of all bounded and linear operators from U p.153
to H

L(U) L(U,U)

tr Q trace of Q p-154

L(U,H) space of all nuclear operators from U to H p.153

N(m, Q) Gaussin measure with mean m and covarince ) p.10

W(t), t €[0,T] (standard) Wiener process p.13
cylindrical Wiener process p-44

E(X|G) conditional expectation of X given G p.17

M2 (E) space of all continuous E-valued, square integrable  p.19
martingales

£ class of all L(U, H)-valued elementary processes p-21

Ly (U, H) space of all Hilbert-Schmidt operators from U to p.155
H

A* adjoint operator of A € L(U, H) p.153

Q3 square root of @ € L(U) p.23

T-1 (pseudo) inverse of T € L(U, H) p.159

Uy Q:(U) p.25

Qr [0,T] x Q p.20

dx Lebesgue measure p-20

PT d.T|[0,T] X P p20

Pr predictable o-field on Q7 p.26

LP(Q, F,pu; X)  set of all with respect to u p-integrable mappings p.150
from Q to X

LP(Q, F, ) L (Q, F, ;R

s LP(Q2, Fo, P; H)

Lr([0,T1; H) Lr([0,T), B([0, T]), dz; H)
LP([0,T1], dx) LP([0,T]; R)
I |l L2-norm on L?(Qy, Pr, Pr; LY) p.24
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N3 (0,T; H)
N (0,7)

Nw (0,7)

OF (z;y)

UCFK(H)

My
1Y |l

1Y [[p27
P (T, H)

W2(t), t €[0,T]

L2(QT, PT, PT; Lg)

NZ(0,T; H)

Ny (0,7)

space of all stochastically integrable processes
Nw(0,T; H)

N w (0’ T)

directional derivative of F' in z in the direction y
Gateaux derivative of F’

Fréchet derivative of F'

directional derivative of F' in the kth variable x;
of x = (x1,...,x,) in the direction y

Gateaux derivative of F' in the kth variable
Fréchet derivative of F' in the kth variable
derivative of F(-,z) : [0,7] = R

space of all k£ times continuously differentiable
functions from [0,7] to E

Ck([0,T],R)

space of all £ times Fréchet differentiable functions
from H to R with bounded derivatives up to order
k

subspace of all functions in CF(H) with uniformly
continuous derivatives

suprego)[1S(0) o

supyejo,r1l|Y (1) e

suprefo;r €Y (0)]es

{Y : Qr — H|Y predictable and [|Y(¢)||z» < o0}
stochastic convolution

p-26

p-29

p-164
p-165
p-166

p.37
p-b4

p-129

p-129

p.66
p.67
p.67
p.67
p.84
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