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Abstract

Let A = (a”) be a matrix valued Borel mapping on a domain Q C R”, let
b = (b') be a vector field on Q, and let Ly = a¥’ D;Djp + b*D;p. We study
Borel measures p on €2 that satisfy the elliptic equation L*A,bu = 0 in the weak
sense: [ Ly ppdp =0 for any ¢ € C§°(Q2). We prove that p has a density under
mild conditions. If A is locally uniformly nondegenerate, A € Hllo’f and b € LY

loc
for some p > n, then this density belongs to Hllo’f )
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Preface

Before I begin with the real scientific considerations, I want to make some
general remarks about my task and my way of implementing it. It was up to
me to form the elliptic case of [9] to a self-contained paper, which should be
learnable and understandable for some mathematician taking his doctor’s de-
gree, i. e. for someone, who is at least one year in advance with respect to me.
The latter gave pointer to me about what I could assume as standard facts and
what I had to work out explicitely. Therefore, I assume standard facts from a
Functional Analysis course and also from a Measure Theory course, in terms of
books let us say “half of [3]” plus “half of [5]”; additionally some elementary
knowledge of an introductory PDE course is assumed.

In the original paper the authors often put their proofs together by citing. Fur-
thermore, for drawing a full picture of the arguments, it was sometimes even
better to resign on given quotes (e.g. [26]) in favour of other literature, which
could happen to be found accidentally (e. g. [13]). What has come out is more
a book than a paper, still not being perfectly self-containing. Cuts were decided
to be made concerning Holder space theory (see 2.1 and 2.5), while the needed
LP-theory is completely given; complete in the sense of the above conditions.
Proofs found in literature were not only copied but revised and very often pol-
ished for the reader! I myself tried to avoid “clearly” and “easy to see” phrases,
if a handful exceptions are forgiven.

The way of ordering sections as presented is mainly due to the following moti-
vations:

e leading the reader towards the main theorems 2.28 and 3.54:
the settings of these theorems in mind, I do not always formulate the as-
sertions within the preparation parts as general as possible. For example,
we mostly consider balls as domains, so that we do not have to bother
about regularity of boundary portions — let them be smooth.

e motivate the reader to go on:
In fact, the first main theorem uses about a hundred pages of preparations!
If I put them all in front of it, probably no one would ever arrive. Therefore
the tension bow looks like AA, the highlights being found on the top of
the pyramids, but each of it understood not before arriving downstairs
again (where the last downhill shall symbolize the appendix).

e putting wild computations and may be standard results into an appendix
to avoid overloading the main part of the paper.

I want to thank Dr. Wilhelm Stannat for his admirable know-how and pa-
tience with me; I was inspired for example at the crucial point Proposition 2.6.
Not for nothing I labeled it “wilhelm” in IATEX. Moreover I want to thank
Prof. Rockner, who has not been losing his energy before, while and after teach-
ing his ten courses in a row. He motivates the students by carrying us with him
and really respecting our work.

Boris Kilian



Chapter 1

INTRODUCTION AND
NOTATIONS

1.1 Introduction

The work in hand treats of the main results of the elliptic case of [9], which
appear below as Theorem 2.28 and Theorem 3.54 in our numerical order. In
opposite to the original presentation, where their proofs are built up with the
help of quotations of other literature (sometimes not the best possible for un-
derstanding), this paper contains a complete deduction of the arguments that
come in. It moreover tries to be as self-contained as possible in a sensible
manner, assuming an ordinary PDE and Functional Analysis Course plus some
knowledge in Measure Theory.

Before we point out the content of this work in detail, as in [9] we first want
to give a brief introduction into its mathematical context. For further applica-
tions and former contributions to the part of mathematical research in demand
we refer to the introduction of [9]. The references concerning the elliptic case
given there, are also included into the bibliography of this work.

A fundamental problem in probability theory is the study of equilibrium
distributions (i. e., invariant measures) of diffusion processes governed by the
stochastic differential equation on R"

dft = O'(ft) dwt + b(&t) dt (1.1)

under minimal conditions on the coeflicients ¢ and b. The main issues are
existence and uniqueness of such invariant measures, but also their regularity
properties. In order to avoid a priori conditions that ensure the existence of a
solution to (1.1) or a corresponding semigroup describing its transition proba-
bilities, the purely analytic reformulation of the notion of an invariant measure
in terms of the underlying generator

1 ) .
L= E(O'O’t) = a”DiDj + szZ
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is used, i. e., we counsider solutions y to the equation
L'y =0.

To be more specific, let  be an open set in R*, let A = (a”/) be a Borel
mapping on 2 with values in the space of nonnegative matrices on R" and let
b= (b"): @ — R" be a Borel vector field. Let us set

Lapp =a"D;Djp+b'Dip, Vo € C(9Q), (1.2)

where the standard summation rule for repeated indices is used. Suppose that
1 is a locally finite Borel measure on €, such that a¥,|b| € L] (1) and

Lyyu =0 (1.3)

in the following sense:

[ Basedn=0. voecE@. (1.4)
Q

The first main result, Theorem 2.28, states that if y is nonnegative, then the

1 _n_

measure (det A) =y has a density in L' (Q2,dz) and if A is H6lder continuous
and nondegenerate, then the same is true for yu itself even if y only is a signed
measure. This extends a result from [21], where b was assumed to be locally
bounded. The proof is based on the following four main ingredients:

I1) C?-solvability of the special Dirichlet problem (2.13),
I12) an estimate of the solution’s H?P-norm (see Prop. 2.6),
)

(
(
(I3) Sobolev embedding (see Appendix D) and
(

14) Proposition 2.31.

Section 2.1 treats (I1) by following [19, Chapters 2-6] straightway towards (2.13).
The needed propositions mostly are standard results but not necessarily topics
of ordinary Functional Analysis or PDE courses. In order to keep this paper to
a reasonable size, as an exception, the principle of self-containedness is injured
in this section by citing Propositions 2.5 and 2.1 (global Schauder estimate).
Instead, the analogous result (Proposition 2.23) to the latter in L? is proved in
complete detail in Section 2.2. It is fundamental for the desired estimate (I12).
For 2.23, we first follow [13, p. 37-47], who in turn exploit potential operator
techniques from [19] and make use of the Calderén-Zygmund Decomposition
Lemma 2.12 to show LP-continuity of the special operator 17" defined in (2.15).
This operator leads us to the interior estimate 2.18. For the original references
of some of the used results we refer to the bibliography of [13]. In order to
extend 2.18 to the boundary, we turn back to [19] and use smoothness assump-
tions on our domain € to transform problems from 2 to BE with the help of
C*°-diffeomorphisms. Although [19, Proposition 9.17] asserts and proves (even
a global version of) the required estimate (I2), we again leave [19] in favour of
a more advantageous proof of W. Stannat, who does not need [19, Section 9.1
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and Lemma 9.16] for proving the uniqueness assertion of [19, Proposition 9.15],
which in turn is used in the proof of [19, Proposition 9.17]. For (I3), p < n,
we give the proof of [19], for p > n we follow the more general version of [3],
since we need the Hoélder continuity in, e. g., Theorem 3.52. Since the Sobolev
Embeddings play an important role in the proofs of the main theorems and
since also advanced students of mathematics may not have seen their proofs
yet, they are put into Appendix D for completeness.

In Section 2.3 the first main theorem (Theorem 2.28) plus some corollaries are
given, although we are not prepared for (I4), which is used in the proof of
the main theorem. Since the necessary elaboration of the geometric and ana-
lytic part of Krylov’s paper [22] is far away from what we have been doing up
to this point, it was postponed to Section 2.4 in order to avoid mental confusion.

Chapter 3 prepares the reader for the second main theorem, Theorem 3.54.
There, it is proved that if the a”/ belong to the Sobolev class Hllo’f (©2),det A >
¢ >0, and |b| € L} (), where p > n, then y has a density from Hll.jf. The main
idea of the proof consists of reducing the assumptions of the theorem by a finite
iteration process (bootstrapping) to the case, where p is assumed to be an ele-

T

ment of Li,.

(€2, dx) for some r € ( 2, oo) instead of r € (p’,00) only. Each of

its iteration steps is essentially based on the results of Chapter 2, several appli-
cations of the Holder inequality and an a priori estimate for weak H'P-solutions
of the elliptic Dirichlet problem L u = f, which is deduced in Section 3.1. For
that, we first prove the existence of a weak solution of Problem (3.3). This
might be a standard result, but note that neither [13, Section 1.1.2], where n
was assumed to be larger or equal to 3, nor [19, Section 8.2] (cf. Assumption
(8.8) and boundedness of b, d) are general enough for our application in Corol-
lary 3.56. Therefore, we mix their considerations. In the next subsection, we
introduce Morrey-, Campanato- and BMO-spaces, which are subspaces of LP
and which are useful for regularity considerations of weak solutions. Moreover,
we investigate their interdependencies. In Subsection 3.1.3 we present further
parts of the L?-theory of weak solutions mainly as in [13, Chapters 1 and 8]
and give the proof of Friedrich’s Theorem. Then we follow the methods of
S. Campanato (cf. [12]), which means investigating regularity of weak solutions
in smooth domains with the help of Morrey- and Campanato spaces. Using
also BMO spaces and Stampacchia interpolation, we shall arrive at the desired
LP-estimate. For additional references corresponding to this proceeding, see
the bibliographies of [12], [13] and [18]. Neither the refurbishments of these
methods in [13] or [18], nor the original [12] itself present the complete chain of
proofs. [13] is rigorous up to the local result, Proposition 3.42, but then only
states the global version, Proposition 3.28, and somehow misleads the reader
by posing the continuous case behind. Note that for proving the global ver-
sion, one has to carry equations from semispheres back to €2, which transforms
constant coefficients into non-constant (, but still continuous) ones. Thus, al-
though we actually use [12] and [13] only to prove the desired LP-estimate in
the constant coefficient case, while we use [18] for generalizing to continuous
ones, some elements of Campanato’s considerations of the continuous case are
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necessary. In the proof of Proposition 3.48, [12] conceals a technically hard
part of the proof by reducing to two cases without loss of generality. With the
help of fragments in [18, Section 3.4], we give the complete proof. The chapter
closes with the proof (see description above) of the second main theorem, the
Regularity Theorem 3.54, which improves a result from [10], where the o/ were
assumed to be infinitely differentiable.

The appendices contain proofs of several interpolation inequalities, completions
of proofs of the main part of the paper and, as mentioned before, a presentation
of the Sobolev Embeddings. Due to the aim of the given work, these appendices
complete the chain of necessary arguments for the main theorems.



Chapter 2

EXISTENCE RESULT

2.1 Starting point: Dirichlet problem
Throughout this section Lu = f shall denote the equation
Lu(z) = a”(2)Diju + b' () Diu + c(z)u = f(z), " = a’, (2.1)

where the coefficients and f are defined in a bounded domain Q C R". For

technical reasons we further assume that sup |&'((f))| < 00, where A(z) denotes
Q

the minimal eigenvalue, if L is assumed to be elliptic.

Since the underlying work of my diploma thesis consists of results in LP-
spaces and for reasons of avoiding a boundless presentation, we only want to
touch the theory of Holder-spaces slightly and appeal the reader to believe
Propositions 2.1 and 2.5, which will occur within this section.

Proposition 2.1 (glf)bal Schauder Estimate) Let Q2 be a CQ’O‘—dom_am in
R® and let u € C*>%(Q) be a solution of Lu = f in Q, where f € C®*(Q) and
the coefficients of L satisfy, for positive constants A\, A,

' (z)6i8; > AE|* Yz e DR,
and
|a*10,0505 [6" 0,050, [€lo,050 < A
Let o € C*%(Q) and suppose u = ¢ on 0. Then
ul2,0:0 < C(lulon + |@l2,050 + [ flo,e;0), (2.2)
where C = C(n,a, A, A, Q).

For the definition of C*¥®-domains, see Definition 2.20, or better do not bother
now.

Proof. see [19, Theorem 6.6] O
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As we will see later, this proposition is fundamental for the proof of existence
of a C*%(B)-solution of the Dirichlet problem

Lu=f in B, u=¢ on OB, (2.3)

where B := Bg(zg) for some 2y € R” and ¢ € C>%(B). Before that we need
another a priori estimate:

Proposition 2.2 (cf. [19, Theorem 3.7]) Let Lu > f in Q, where L is el-
liptic, ¢ < 0 and u € C°(Q) N C?(Y). Then

supu < suput + C sup — |f |

Q a0 Q
where C is a constant only depending on diam$2 and 8 = sup %. In particular,
if Lu= f in Q,

sup |u| < sup |u| + C sup m (2.4)
Q B o A

Proof.Let § lie in the slab 0 < z1 < d and set L, := ¢ D;D; + b'D;. For
a > 3+ 1 we have
Loe®® = (a®a'’ + ab')e®® > \(a? — aff)e™™
> dae®t > A(>0),

where A(z) denotes the minimal eigenvalue of (a™(z)).

Let v = suput + (24 — ¢2%1) sup |f | . Then, since
o0N
Lv = Lyv+cv
= —sup 177 |Loe‘”1 + csupuT 4 c(e® — 1) sup 1]
o A P o A
v sup ] !
< —Xsup (c <0,
Q A
we have

L(v —u) < /\sup|f| f——/\<supm+)\)§0 in Q

and

v—u>suput —ut+u >0 on 09
N

by the weak maximum principle. Hence, for C = ¢ — 1 and a >  + 1, we
obtain the desired result,

supu <supv < supu + Csup |f |
Q a9
(2.4) follows by replacing u by —u, since (—u)™ = u~, |u| =ut +u. O

We now reduce Problem (2.3) to the Dirichlet problem for Poisson’s equation
Av=f in B , v=¢ on OB (2.5)
with the help of
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Proposition 2.3 (cf. [19, Theorem 6.8]) Let 2 be a C*>*-domain in R",
and let the operator L be strictly elliptic in Q with coefficients in C%*(Q) and
with ¢ < 0. Then, if the Dirichlet problem for Poisson’s equation, Av = f in (,
v = @ on 09Q, has a C**(Q)-solution for any f € C®*(Q) and any ¢ € C>*(Q),
the problem (2.8) also has a (unique) C*%(Q)-solution for any such f and .

Proof. By hypothesis we may assume that the coefficients of L satisfy the
conditions

NEP < a¢¢; Vze Q€ eRY, 6

|a’z]|0,a;Q’ |bz|0,a;ﬁﬂ |C|O,a;ﬁ <A, )

with positive constants A, A. It suffices to restrict consideration to zero bound-
ary values, since problem (2.3) is equivalent to L& = f — Lo =: f'in Q, 4 =0
on 09 (after solving this define u := 4 + ).

We consider the family of equations,

Liv:=tLu+ (1—-t)Au=f, 0<t<1. (2.7)

We note that Ly = A, Ly = L, and that the coefficients of L; satisfy (2.6) with
At = min(1, A), Ay = max(1, A).

The operator L; may be considered a bounded linear operator from the Banach

space By = {u € C?%(Q)ju = 0 on 09N} into the Banach space By :=
C%(Q), since

IA

Z ‘DQU"O,a;Q < |u|2,a;Q’
|a|=2

|A’u’|0,a;(2

|Lu|0,a;(_2 < 3A|U|C2)O‘(Q)'

The solvability of the Dirichlet problem, Lyu = f in Q, u = 0 on 92, for
arbitrary f € C%*(Q) is then equivalent to the invertibility of the mapping
L; (injectivity is given by the boundary condition u = 0 on 02 and the weak
maximum principle). Let u € By. By virtue of Proposition 2.2, we have the
bound

lulp < C S?ZP|LtU| < C|Lyulo,a;

where C only depends on A, A and the diameter of 2. Hence from (2.2) we have
[ul2,0 < C1(Julo + |Liulo,e) < Co|Liuo,as

that is,
ulls, < CollLyuls,,

the constant C5 being independent of {. Since by hypothesis, Ly maps B onto
By, the method of continuity, Proposition 2.4 below, is applicable and the the-
orem follows. 0
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Proposition 2.4 (method of continuity, cf. [19, Theorem 5.2]) Let Ly, L; :
Bi1 — By be bounded linear operators between Banach-spaces Bi, By. We set

Ly:=tLi+(1—1t)Ly for 0<t<1.

Assume, there exists a constant ¢ independent of t such that

llu|lB, < c||Liul|l, for any w € Bj. (2.8)
Then, if Ly is surjective, so is L.

Proof.Assume, L. is surjective for some 7 € [0,1]. By (2.8), L, is injective
and therefore bijective. Hence, there exists L7 : By — By. For t € [0,1] and
f € Ba, the equation Lyu = f is equivalent to the equation

Lru=f+ (Ly — Li)u = f + (t — 7)(Lou — L1u),
which in turn is equivalent to the equation
u=L f+ (t —7)L7 (Lo — L1)u =: Au.

So, solving L;u = f means finding a fixpoint of the operator A : By — Bs.
Banach’s fixpoint theorem is applicable, if there exists ¢ < 1 such that

[Au — Av||B, < gllu—v]B,-

Now
[Aw — Av|| < |7 (Lol + | L1l It = 7lllu — .

From (2.8) we have |L;!|| < ¢. Thus we have to choose |t — 7| < 2(c(|| Lol +
|IL1]]))~! =: n in order to obtain the fixpoint. I. e., if L;u = f is solvable, then
Liyu = f is for any ¢t with |t — 7| < 5. Since Ly is surjective by assumption,
it follows that L; is surjective for 0 < ¢t < n. Applying the above assertion
on t = 7, we obtain surjectivity for n < ¢ < 2. In this manner we obtain
iteratively that all L;, ¢ € [0, 1] are surjective, in particular L;. O

We stop our top-down method (i. e., reducing (2.3) to (2.5)) here and do some
bottom-up in order to meet in the middle.

It is well known (e. g. [19, Theorem 2.6]) that

Rz o(y)
h(z) == won i Jop T—y|" dS(y) ,for ze€B (2.9)
o() ,for z€0B

belongs to C%(B) N C°(B) and satisfies
Ah=0 in B, h=¢ on 0B (2.10)

Moreover, consider the Newton potential

Nf(z) = wlz) = / T@-9)f@)dy, eR
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of f € L'(R"), where

jg[>~"
T(¢) =T(¢]) = { n(2=n)wn

,for n>2
75#0’

log ¢/ _
“on , fOI' n =

is the fundamental solution of the Laplace equation Ah = 0 and w, denotes
the volume of the unit ball in R". For later use:

1 -n
DiT(§) = n—wnﬁﬂﬂ
1
D;T'(€) = n—%(|f|25ij—n€ifj)|f|_"_2 (2.11)
Dyl (€)] < Clgl!
For f € C§°(R"™) we compute
tu@) = [ T y)dy

n

= Z - liJI:(I)l D;T(y)D;f(x —y)dy (int. by parts, Lebesgue)
i_1 ¢ ly|>€

= limz DiF(y)f(w—y)&dS(y) (divergence thm.)
el0 = Jy = |yl
= lim " (z —y)dS(y)
= f(x). (2.12)

We have arrived at the meeting point, because of our computation, problem
(2.5) is now equivalent to problem (2.10) (solved with (2.9)!) by setting v :=
h + w after considering Ah =0in B, h = ¢ — w on 0B.

Furthermore, the resulting solution v of (2.5) belongs to C*%(B) by the fol-
lowing proposition, which shall be the second of the propositions the reader is
suggested to believe.

Proposition 2.5 Let B be a ball in R" and letv € C?*(B)nC°(B) be a solution
of Av=fin B,v=0 on 0B , where f € C®*(B). Then v € C**(B).

Proof. see [19, Theorem 4.13] O
Using Proposition 2.3 we are now able to find a C%%(B)-solution u of
Lu=f in B , u=0 on 0B, (2.13)
if a¥ € C¥¥(B), f € C§°(B).

2.2 An [P-estimate

In the proof of the main theorem of this chapter we shall need an estimate in
H?P(B) for the solution u of (2.13), which is stated now:
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Proposition 2.6 Let Q C R" be open, p > 2 and
L := a(z)D;Dj, (2.14)

where a;; € C(R), a;; = aj; and (a;;) is nondegenerate. Then for any xo € §2
there exists ro := r(x9) > 0 such that

||u||2,p;BT(m0) < C(TO, (aij))HLqu;Br(.’L‘o)
for any r < r(z0),u € (H2? 0 HP)(By (o).

To prove this appears to be of proper effort, but we will progress step by step
and start as in [13, p. 37-47].

Definition 2.7 For f € L'(Q) and t > 0, we set
A(f) = {z € Q[|f(z)| > t}.

The function
Ap(t) = [Ae(f)]

s called the distribution function of f. Let p > 1. A measurable function f is
said to belong to the weak LP-space Li,(9), if

11|22, 0) = inf{A[Af (1) <tTPAP V> 0} < oc.
Let us get more familiar with the new notions.

Lemma 2.8 (i) If f € LP() and 1 < p < oo, then
[irde=p [ "o adpiar
Q 0

(i) LP(Q)2L5, () C L) V1 < g < p, and | - ) is mot @ morm on
L5 ().
)

(iii) L2(Q) = L™(Q)

Proof.(i):

()]
/|f|pda: = // ptP~ dt dz
Q aJo
= /Q/O ptp_llAt(f)dtd!E

Now E := {(z,t) € Q x (0,00)||f(z)| > t} € B(Q) & B((0,00)). Indeed, con-
sider F'(z,t) := (|f(z)|,t), then F is B(Q) @ B((0,c0))-measurable, since each
component is and Id( ) is continuous. Therefore £ = F1{(z,y) € Rz >

)

y}) € B() ® B((0,00)). By applying Fubini, (i) is proven.
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(ii): For f € LP(Q), tP|Af] < fAtf|f(x)|pdx < Jolf(@)|P dz.  Therefore,
1fllzz, < [[fllze-Next, if f € L§,(2), then by (i),

/ flide = g / 1971 A, 7] dt
Q 0

1 o0
¢ / 19 Af | dt + g / 1971 Ay f| dt
0 1

IA

IN

o0
q| + IIfII’;pq/ 1P dt < 0.
v oJ1
Let Q= (0,1), f(z) := 2?,g(z) := 1 —aP,z € Q. Then

1f+9llz @ =1

Moreover,

de({z > tr}) =1—t»
de({z < (1—t)7}) = (1 —1)7

dz({f > t})
dz({g > t})

By Analysis 1 methods we obtain

2p2
1 p
p = supdz St = sup (1 —tr) P = ————
iz = supde((f > = sup (1 -1} = P2
ol ds(fg > )P = sup (1 — )b = — L
gllzp = supdx({g > t})t* = sup (1 —t)ptl = ————-—
Lu(@) >0 0<t<1 (1+p?)ttr’
and therefore
2p2 2p
_ p P
”f”Lﬂ,(Q) + ||g||Lﬁ,(Q) - (1 +p2)1+p2 + (1 +p2)1+p

p? (1 +p?)? +p* (1 +p?)”
(1 +p2)1+p+p2

(14 p2)P*+P 4 (1 4 p2)p+7°
(1 + p2)+p+p

2
— <1,
1+p? ~

which shows that the triangle inequality is not valid. Now define f(z) := 2 ¢
L?(£2).Then

da({(f > 1) = do(z <P =17,
thus dz({f > t})t* =1 and f € LL,(Q) \ LP(Q).

(iii):]| |l = inf{t|Af(t) = O}and therefore, A(¢) = 0 for ¢ > || f||oc. Moreover,
Af(t) > 0 for t < ||f|lco- Thus, the definition implies (iii). O



2.2. AN LP-ESTIMATE 15

Definition 2.9 A linear map T : LP(Q) — LI(Q) is said to be of strong type
(p,q), if there exists C > 0 such that

1T flla) < Cliflley Vf € LP(Q).
T is said to be of weak type (p,q), if
1T flLe) < Cllflley V€ LP(Q).

We have recourse to the Newton potential, and for fixed 1 < 7,57 < n we
define the following linear operator T' : C§°(R") — C*°(R") by

Tf = Dy(N ) (2.15)

We are going to examine T, since it leads us to an interior H?P-estimate for
solutions u € H>?(Q) of (2.1).

loc

Lemma 2.10 T is a bounded linear operator from L*(R™) to L*(R") and
ITl(2,2) < 1. In particular, T is of strong type (2,2).

Proof. First we assume f € C§°(R™). By (2.12) and the divergence theorem
for any Br = Bg(0),

fldz = / (Aw)? da::Z DjwDjjw dx
Br — JBg

Br
= Z (— DiwDiDjjw dr + Diijj’wﬂ dS)
7 Br 8Bg R
= Z ( DjwD;jwdx — DiwDij'wﬁ ds +
7 \JBg 0Bg R
D; 'wDﬂw dS) (2.16)
8Bg R

-,

Now we suppose that suppf C Bg,. Then for R > 2Ry and = € 0Bp,

Z D;jw) dx—l—/ ZD’UJ Nw Dijw%) dS

R 4 BBR,LJ

lzi — vl ¢
D; < D;T'(x — dy < dy <
P < [ DXl sl [ ep i< g
C
D) < [ DTG n)lf W] dy <
BRO
Letting R — oo in (2.16), we obtain
/Z(Dijw)de: f2dz. (2.17)
i R

This equality implies that
ITfllz < lIfll2 Vf € Cg°(R?).
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Since C§°(R") is dense in L?(R"), T can be extended uniquely to a bounded
linear operator on L?(R"), i. e., T is of strong type (2,2). O
To show that T also is of weak type (1,1), we need two lemmas:

Lemma 2.11 For the fundamental solution ', the following estimate holds:

J:=  sup / |D;;T(z — y) — DyT(z)| dz < oo,
y#0,1<4,j<n J|z|>2|y|

where J only depends on n.
Proof. By the mean-value-theorem

n
/ |D;;I(z — y) — Dy;I(z)| dz < > 1Dy (x = My)[yx| da,
lz[>2]y] lz/>2]y| =1

where 0 < A < 1. Using (2.11) and noticing that |z — Ay| > % for |z| > 2|y|,
we obtain

y cly|
|D;i;T(z — y) — Dijl(z)| dz < / ———dz
/|w|>2|y| N af>2yyl [# = Ay["

< cly| 2|7 da = cly|@2ly)" T <,
2| >2]y|

where ¢ changes during computation. O

We introduce the following notation:

1
udx ::—/ udx
][M | M| S

for any Borel set M # () and measurable function u.

Lemma 2.12 (Calderén-Zygmund decomposition) For f € L'(R"), f >
0 and fixed o > 0, there exist two sets F and ), such that

(i) " =FUQ, FNQ=90
(ii) fz)<aa.e.z €F

(iii) Q = Ure; Qk, where (Qg) are nonoverlapping (disjoint interior) cubes
with their sides parallel to the coordinate azes, such that

a< fdr <2"a, k=1,2,.... (2.18)
Qk

Proof. Since f € L'(R"), we can decompose R” into congruent cubes, such
that for any cube @',

fdzr < a.
QI
We devide each @' into 2™ equal cubes Q”. There are only two possibilities:
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1. JLQ,,fdx <a

2. J‘lQ,,fdw >«

We take those Q" satisfying Case 2 into our family of (Qy) as stated in the
lemma. For such @, (2.18) is valid, since

1
a < fdx < fdx <2«
f” 2 n|QI| QI

We will further divide those cubes satisfying Case 1. This process will continue
until Case 2 appears. Let €2 be the union of all such cubes satisfying Case 2, and
let F = R"\{). By our construction process it is obvious that (i) and (iii) hold.
Now we prove (ii). For any = € F, there exist cubes (Q;), such that z € Q,
|Q;| — 0 as | —» oco. Furthermore, for each @, Case 1 is valid. If we can
show that

1
f(z)=lim —— [ fdy fora.e z€F,
k=00 |Qlk| Q1
then (ii) follows. This is done in Proposition 2.13. O

Proposition 2.13 (Lebesgue differentiation theorem, cf. [18]) Suppose that
f € LY(R"), then for a. e. x € R* we have

f(z) =lim f(y) dy,

=0 Qo

where Qg denotes the cube in R™ with center x and side length 2r.

Proof.Define T, f (z) := \szl Jo.. T . y) dy. For g € Cy(R™),
1
Tig(z) — g(z)| = Qudl g(y) dy — g(z)
wal Qm,l
1
< lg(y) — g(z)|dy — 0,
|Q.’L‘,l| Qz,l

as | — 0, for any z € R". For f € L'(R") and € > 0 there exists g € Co(R")
such that ||f — g[/ 1 (gn) < §. Hence,

ITig — Tif |y < / ][ ()] dy da
n le
- (/ 1Qm,l<y)dw) £5) 900 dy
IQm,ll re \JRn
= ||9—f||L1(Rn),

since the term in brackets equals |Qz;|. Choose a sequence (g,,) C Co(R™) such
that g,, — g in L'(R");

ITif = fllrey < WT(Sf = gm)l + 1 T0gm = gmll + 11f = gl
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< 2||f _gm“ + ||Tlgm - gm“ <€

for large m,l. Therefore Tjf — f in L'(R") (and consequently a. e. along
some subsequence (i), which already completes the proof of Lemma 2.12).
Now, it suffices to show that

Sf(x):= limsup][ f(y) dy — liminf fly)dy=0 fora.e. ze€R".
Q) =0 JQy

[—0

Note that Sg = 0 a. e., if g is continuous. Now Ve > 03g € C§°(R"), such
that ||f — g|li1 < e. Suppose that Sf(z) > s for some s > 0, then, since
f=9g+ (f —g) =: g+ h, this implies Sh > s. On the other hand Sh < 2Mjh,
where M denotes the centered Hardy-Littlewood maximal function (cf. A.18).
Therefore, {Sf > s} C {Moh > %} and by the Hardy-Littlewood-Theorem
(cf. A.12 and A.9),

dx({Sf > s}) < dx ({Mh S g}) - 2c(3n)e’

which tends to zero as e does. O

Note that in the setting of Lemma 2.12, by (2.18),

B o o0 1 1
9 =3 o ;Q/Qkf(w) v < |l

Lemma 2.14 T is of weak type (1,1).

Proof.First we assume that f € C§°(R"). Applying our decomposition lemma
to | f], we get two sets F' and €2, such that

Q]R":FUQ, FNQ=90
o |f|[<a,fora.e.z€F
e Q=Up, Qr, 19 <aHfll

° JLQk |f|dz < 2"

Define
0= { g S 2o 219
and b(z) := f(z) — g(z). For g and b we have
l9(z)| < 2", a.e. z€R (2.20)
lgllire < ([ fll1n, [[bll1;mn < 2| f[l1;Rm, (2:21)

since

[ Jsldz= [ lgldz+ [ |flda
Rn Q F
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and
| lslda =/U |g\dx=2/ gl do
< Z/][ Wldyds = [ 17wl dy
[oplas = 2 [ 156~ 10 ol
< Z/Qk|f|da:+/%]{2k y)|dyds
< 2 fllen
Moreover,
b=0 on F, bdz =0 (k=1,2,...) (2.22)

Qk

Since f € C§°(R), both g and b belong to L2(R"). Clearly Tf = Tg+ Tb. For
any z > 0

Arp(@) = [ITf] > e} = [{[Tg +Tb| > o}
< Ary(3) +An(3) (2:23)

By Lemma 2.10, T is of strong type (2,2). Using also (2.20), (2.21), we have

(2.24)

a4, o 4 4
)\TQ(E) < @”TQH% < @”9”2 < @HQHL(”HQHLI <

Next, we estimate A7p(5). Let Qf be a cube with the same center as @ and
its side length 24/ times that of Q. Set

= G Q;, F*:=R"\Q" (2.25)
k=1
Obviously,
@ < vl < B g (2.26)

Set by := blg,, then by (2.22), ka by dz = 0. We now prove that there exists
a sequence (bt); C C§°(Qx), such that

”bi: —bill2,0, — 0 as I — o0, o bfc dr =0 : (2.27)
k

Since by € L?(Qy), there exists 559 € C5°(Qk),! € N, such that Eﬁc — by in
L?(Qy) as I — oco. Necessarily, oy := ka b dz — 0, since

‘/ b dz +‘/ by dz
Qk Qk

< b — by dx

‘Qk
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< 12 q@u Ik = Bell2(@uy — 0-

Take x € C§°(Qy), such that ka x dz =1 and define b, := bl —a;x(€ CF(Qx))-
Then [, b dr = 0~ VI € N and
16, — bell 20y < 6% — brllr2(qy) + arllxllz(Q,) — 0 as | — oo.

By definition of T and (2.27), we have for z € (Q})¢,

Tbi(z) = Dy g I'(z — y)bl.(y) dy
k

- /Q [Dy;T(z — y) — DyyT(x — z*)]bj,(y) dy,

where z* is the center of Q. Integrating over (Q})¢, applying also Lemma 2.11,
we obtain for each [,

/ (Tb, ()] da
(Q1)e

)

k

< / / DT (z — y) — DT — o*)||bh(y)| dy dz
(@) JQp

< sup / DyT(z — ) — DyT(z — )| de b 1.0,
Qr\{zF} J(Q)°

= swp [ DI~ ah) ~ (g~ b)) - DT — a)] dalBh e,
Qr\{z*} /(Qp)°
< J||b§c||1;Qk’
since |z — z¥| > 2|y — z*|, because y € Q,z € (QF)¢. Asl — oo, bﬁe and
T, converge in L?(R") to by and Ty respectively. Since Th. converges even

pointwisely a. e. for some suitable subsequence (I,,), by the above inequality
and Fatou’s lemma we have that

/ |Th|dz < ]iminf/ T | da
(@) M J(QR)e

J lim inf / bk | da
Qk

m—r00

IN

= J[| |bgldz (|Qk| < o0)
Qr

_ J/ 1b] da.
Qk

Therefore, since by := 22:1 by — blg in L*(R™) as | —» oo, for a suitable
subsequence (i) we get

/ |Tb|dz = / lilgn Thy, | dx < lin}cinf/ |Tby + -+ 4+ Thy, | dx
* * F*

[e.e] o
< Z/ |Tbk|dx§Z/ |Tby| dz
k=15~ k=17 (Qp)°
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< Jlblle < 20 flze,

which implies that [{|70] > £}/ N |[F*| < £J|f||11. By (2.26),

’\Tb(z) < |0 + H|Tb| > %H < [4J+(2\/ﬁ)"]%. (2.28)
Substituting (2.24), (2.28) into (2.23), we get
Arp(a) < (212 +4J + (2@)")% Vf e C(RY). (2.29)

Since C§°(R") is dense in L!(R"), the above inequality also holds for any
f € LY(R). 0

Proposition 2.15 For 1 < p < oo, T is of strong type (p,p).

Proof.By Lemma 2.10 and 2.14, T is both of strong type (2,2) and of weak
type (1,1). From the Marcinkiewicz interpolation (see A.1) it follows that T is
of strong type (p,p) for any 1 < p < 2. For 2 < p < oo and any f,h € C§°(R"),

[ri@hede = [n@n; | [ra-ni6 ) o
= [ Dhta) [T -9 dydo
~ [ 1) [T@-y)Dyhiz) dway

[ 1600 ([ Pl - i) ay

[flze TRl L (Holder)

IN

Since 1 < p’ < 2, the case 1 < p < 2 implies that
/Tf(ﬂﬁ)h(ﬂﬂ) dz < C|\fllee ||l Vf b € C5°(R?)

Therefore || T f||» < C||fllzr Vf € C§°(R™), which implies that T is of strong
type (p,p) O

We employ our examination of T' to obtain the following

Proposition 2.16 Let Q C R" be a domain. Suppose that u € Hg’p(Q) satis-
fies Au = f. Then for 1 < p < oo, there exists a constant C, only depending
on n,p, such that

D%l o) < CllfllLe(e)-

Proof.Assume without loss of generality that v € C§°(2). Applying (2.12) we
obtain A(Nwu) = u and compute

u(z) = A/ T —y dy—A/ dy
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_ / P (y) Az — 1) dy = / D(z — ) f(y) dy

With Proposition 2.15 it follows that

ID?ulloy = >

Y]

= Y NTfllzo@) < Cllfliogey-

Y]

Dy [T~ 9)fw)dy

LP(Q)

O

We now get the curve to the promised interior H%P-estimate. Let us redefine
our setting first.

It is the boundary value problem

Lu = f in Q (2.30)
v = 0 on 09, (2.31)

where L is as in (2.1) and the coefficients satisfy

algE; > NEPE Vo e € €R® | where A >0 (2.32)
> lla¥]|ze + Z [6°]| o0 + llellze < A (2.33)
(%]
a? e C(Q),1<i,j<n (2.34)

Lemma 2.17 Let the assumptions (2.32)-(2.34) be in force. Then there exists
Ry > 0, only depending on n,p, A, \,a%, such that for any 0 < R < Ry and any
u € Hg’p(BR), 1 < p < o0, satisfying (2.30) almost everywhere, the following
estimate holds:

1 1
ID*ulisy < © (51 sy + glilisiam) . (239

where C only depends on n,p, A, A.

Proof.Assume without loss of generality that A = 1. Let B = Bgr(xg). We
freeze the coefficients at =g and rewrite (2.30) as

a” (o) Diju = f, (2.36)

where f = f + [a¥ (x0) — a¥ (z)]Diju — b Dju — cu.
For the constant coefficients elliptic equation (2.3 1 the result of Proposi-

tion 2.16 holds, since we can reduce it to Au = f, as can be seen in the
following computation, where A := (a*(z¢)):

D; Z (Dju) 0A2 ZZ DyDju) oA2( )AZ%]AZ%,c

J
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= AwoA)(@) = Y.D;i| Y (Dju)o A3 (x)A]
U i J
1 11
= ) (Diju) o A2(z)AZ AL,
1,5,k
1
= Z Ajk(D]ku) o A2 (.’E)
Jk
1 ~ 1 _
= (Lau)(A2(z)) = (f - A2)(z) =: f(z).
Therefore, by integral transformation
ID*ull 1o (g < CllfllLo(8)» (2.37)
where C only depends on n,p, A. Define
w(R) := sup |a¥(y) — a"(z)|. (2.38)
1<i,j<n

By (2.34), w(R) — 0 as R — 0. Thus (2.37) implies that
ID?ull e < ClIfllze +w(R)ID?ullLe + llull g1)-
We take Ry < 1 such that Cw(R) <  for 0 < R < Rgy. Then

ID%ul, < C(Ifllp+ llullip) for 0<R< R

n

CII

c(wm+wmu+§jw%wﬂmu+;%mmﬂ
=1

(Sobolev interpolation, see A.3, and Poincaré, see A.7)

nC/I
¢ (1114 (2 +1) ully + 2l ).

AN

IA

IA

We now choose € such that C'Cne = % and obtain

1D?ull, (1 £lp + ullp)

<
< C"(Ifllp + R7*|lullp)

Proposition 2.18 Let the assumptions (2.32)-(2.34) be in force. Suppose that
w e H>P(Q) N LP(Q) satisfies (2.50) almost everywhere. Then for any domain

loc

Q' ccQ,
1
lullger < € (317l + o)

where C = C(n,p, A, \, ¥, Q, a").
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Proof.Assume without loss of generality that A = 1. Let Ry be the constant
in Lemma 2.17 and Ry = min (Ry, 3dist(€',9Q)). For any zy € @ and % <
p < R < Ry, welet 0 < ¢ <1 be a cutoff function on Bg(zg) such that
¢ € C§°(Bgr(z0)),{ =1 on B,(z) and

_ ¢
(R—p)*

The function v := (u satisfies the equation

D¥¢| < (k=1,2) (2:39)

aijDz'j’U + biDi’U +cv = f,

where f = (¢f + [a¥ D;;¢ + ' Di¢u — 2a¥ D;¢ Dju. By Lemma 2.17,

IA

= 1
1D lsuten < C (I lbsutan + 0ot

1 1
0181 atze + 775 1P lbten) + =7

AN

)2 H“”p;BR(cm)] )

since (Rp <1 = R —p < 1). Denote Bgr = Br(x¢). Using Proposition A.5, we
obtain
||D2u||p;Bp = ||DQU||p;Bp < ||D2'U||p;BR
1
WH“H;}

[ € 9 Ct 1
<011l + 1%l + (s + s ) ]

[ C,
< C |e|D?ullp + Ifllp + —=——u ]
_ 1D%ullp + [ f]lp (R—p)2” Ip

’ T
<C _||f||p+ R_p(ellDQUIIerCeIIUIIp) +

By Lemma 2.19 (see below), for sufficient small € it follows that
D? <C !
| UHp;Bp > 1fllp;Br + WHU’HP;BR

for % <p<R<Ry. Wetake R= Ry, p= % and then cover Q' with finitely
many balls of radius % to obtain the proposition. O

Lemma 2.19 Let ¢ be a bounded nonnegative function defined on the interval
[Ty, T1], where Ty > Ty > 0. Suppose that for any Ty <t < s < T, ¢ satisfies

o(t) < 0p(s) + ﬁ + B, (2.40)

where 0, A, B, a are nonnegative constants, @ < 1. Then

- +B] VI, <p<R<Ti, (2.41)

p(p) <C [W

where C' = C(a, ).
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ProofLet ty := p,tiy1 := t;+(1—7)7(R—p),i € {0,1,2,...}, where 0 < 7 < 1
is to be determined. From (2.40),

o(t;) < Op(tiy1) + T - + B,i€{0,1,2,...}.

T= (R p)]

By induction,

k—1
A - B
to) < 0%t B|) 6ir7™ (B<—Vi).
<P( 0) = (P( k) + (1 — T)a(R — p)a + :| g T ( = TWV’L)
We choose 7 such that 077 < 1. By letting k¥ — oo, we get (2.41). O

In order to extend Proposition 2.18 to the boundary 0f2, we must get to know
coordinate transformation and boundary portions.

Definition 2.20 (cf. [15], [3]) A bounded domain Q2 in R" and its boundary
are of class CH* 0 < o < 1,k € {0,1,2,...}, if at each point zy € OQ there
exists 1 = r(z9) > 0 and a CH°- function g : R*™1 — R such that — upon
relabeling and reorienting the coordinate azes if necessary — we have

an BT(.’B()) = {IE € Br($0)|$n > g(‘rl)}
00N By(z0) = {z € B(wo)|zn = g(a')},

where we set x = (¢',zy,) for © € R". Likewise, 0Q is C*, if 0Q is C* for any
keN.

A domain Q will be said to have a boundary portion T C 0 of class CH2, if
at each point zg € T there is a ball By (yy) (7o), in which the conditions of the
first part of the definition are satisfied and such that Br(wo)(aco) noQY cCT.

Remark 2.21 We want to transform the given definition of regular domains
into the setting of [19, Definition 6.2], because we are going to leave [13] in
favour of [19] for gaining global estimates. Let OQ be of class C*. Define

P(z) = (2’20 — g(a')) for =z € Br(wo)
and write y = (x). Similarly, set
o) = (s yn +9()) for y € p(Br(z0))

and write x = ¢(y). Then ¢ = ¥~ and the mapping x — Y(x) =y “straight-
ens out 00" near xg. Observe that

1 1
qu = 1 7D()0 = 1 7
—Dlg _Dn—lg 1 Dlg Dn—lg 1
| det D1p| = |det Dp| = 1. Therefore,

¥ : Br(zo) — 9(Br(z0)) =2 D € C*%(B,(29)),
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v ':D — B,(x) € C**D)
P(Br(zo) NQ) CRY ,  9(Br(zo) NON) C OR].

By restricting 1 to BT_EmO, we may assume without loss of generality that v €
C*h(B,(xg)), 9~ € CH*(D), respectively.

Letting Q7 := QNR} = {z € Q|z, > 0}, (0Q)" := (0Q) "R} = {z € 0Q|z, >

0}, we have the following lemma. We will say that v = 0 near (9Q)7, if for any
z € (0N)7 there is a neighbourhood V' of z, such that uyyng = 0.

Lemma 2.22 (cf. [19, Lemma 9.12]) Let u € Hy'(Q1), f € IP(Q1),1 <
p < oo, satisfy Au = f weakly in QF with u = 0 near (0Q)*. Then u €
H>P(Q) N Hy?(2F) and

ID?ull ot < Cllfllpsa+ (2.42)
where C = C(n,p).

Proof.We extend u and f to all of R} by setting u = f = 0 in R} \Q and then
to all of R" by odd reflection, that is, by setting

u(.’lil,.’[,‘n) = _u(xla _xn)a f(xl,xn) = —f(.’L'I, _xn) for z, < 0,

where 2’ := (z1,...,2Z,—1). It follows that the extended functions satisfy Au =
f weakly in R". To show this we take an arbitrary test function ¢ € C§°(R"),
and for € > 0 let 7 be an even function in C*®°(R) such that n(t) = 0 for |t| <,
n(t) =1 for [t| > 2¢ and |’| < 2. Then

—/n(xn)fsodw = —/wAud:v: /DuD(W) dz

/nDuD(pdx+/<p77'Dnudx.

Now

‘/(pn'Dnudx

= / w(w',wn)n'Dnud:er/ ¢(a',2n)n Dpudz
{0<zn <2¢} {0>z,>2¢}

/ (', zn) — (', —2n))n Dpu
0<.Z‘n<2€

(since f oz’ zn)n Dpudr = — f o', —zn)n Dpu(a’, z,) dz)
{0>2,>2¢} {0<zn<2¢}
< 8max |[Dy| |Dpul|dz — 0 as € — 0

0<zn<2e
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by the mean-value-theorem. Consequently, letting ¢ — 0, we obtain

—/fgodx:/DuDgodx,

so that u € HY(R") is a weak solution of Au = f. Since u also has compact
support in R”, the regularization up, := (u* &) € C§(R™) ((&) being a Dirac-
sequence) and satisfies Aup, = fj, in R".

We assert that u, — u as h — 0 in H?P(R") and

ID?ull, < CllAull,. (2.43)
Let us prove this: By Proposition 2.16,
1D (un = un)llpy =D I Diun — un)lp
2%
< CllA(un —uw)llp = Cllfn — fwllp — 0,

as h,h' — 0. Thus there exists

D;;u:=lim D;; in LP(R™).

iju }ifol ijUp 10 (R™)

By A.7,

lup —up | < ClD(up — up)llp

- CZ 1D; (up, — upe) ||
< OZ ID(Dj(up — up))lp

= O |IDsj(un — up)llp — 0
Y]

Thus there exists u € LP(R"), such that v, — @ in LP(R"™), in particular
up, — U pointwisely for some subsequence (hy) of (h). Since up, — u in
L'(R") and therefore Upy, — U pointwisely, it follows that v = @ a. e. and
therefore u € LP(R"). Now

uwe HY(R") = 3Dwuec L'(R")
< C|D(Dsup — Diup)llp < C Y |1 Dij(un — ups)llp — 0
i
= 3D;u:=limDju, in LP(R").
u := lm Diuy, - in (R")

| Diup, — Diup||p

But
Diun() = / w(y) DEén(- — ) dy
- / u(y) DYen( — ) dy
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= [ DM~y = (Daa() — D i LR,
im = Dju a.e. and D;ue€ LP(R").
Let ¢ € Cg°(R"), then
1. u € LP(R™)
2. [uD;p = — [(Dju)p, Diu € LP(R™)
3. [uDijp = lhifgfuhDij(p = l}glgf eDjjup, = [ ¢Djju.
Thus, v € H*P(R") and up — u in H>P(R™). Since supp u compact, we have

u € H2?(BR) and hence,
ID?ully < CllAull,

by Proposition 2.16. Thus, the estimate (2.42) follows with constant C twice
of that in (2.43). Since up(a',0) = 0, we also obtain u € Hy?(Q). O

For the global estimate, we require that boundary values are taken on in the
sense of HLP(Q). If T is a subset of 9Q and u € H*P(Q2), we say that u = 0
on T in the sense of H'P(Q), if u is the limit in H'P(Q) of a sequence of func-
tions in C*(9) vanishing near 7. With the aid of Lemma 2.22 we now extend
Proposition 2.18 to derive a local boundary estimate. Our later application in
mind, we only consider C*°-domains for simplicity.

Proposition 2.23 (cf. [19, Theorem 9.13]) Let Q be a domain in R* with
a C®-boundary portion T C 0Q. Let u € H*?(Q),1 < p < oo, be a strong
solution of Lu = f in Q with u = 0 on T in the sense of HYP(SY), where L
satisfies (2.32)—(2.84) with o' € C(QUT). Then, for any domain ' CC QUT,

ull2per < C(llullpa + [ fllp0), (2.44)
where C = C(n7pa )‘a A7 T, Q, Q,, ((J,z]))

Proof.Since T is of class C*, for each point zy € T there is a neighbourhood
N = Ny, and a diffeomorphism ¢ = 1), from N onto the unit ball B in R,
such that (N N Q) C R, (N NIN) C IR, € C®°(N),y~! € C*®(B).
Writing y = () = (¥1(x),...,%.(x)),4(y) = u(z),z € N,y € B, we have

Li=a"DYi+ b DVi+éi=f in BT,
where
" (y) = Da,tpr D50 (2), 57 (y) = D3, 1hra” (x) + Dyt (x),
&y) = c(x), f(y) = f ().
In fact, by the chain and product rule

a” (z) Dfju(x) = a” () Df;u(4(x))
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(Z DYa(yp(x)) Dy (x ))
= Z o'/ (2)[Df (Da(y())) Dftbr (x) + DY4p(2) Dijipr ()]
- Z i (2)) D¥pr (z) Dby () +
Z o'/ (z) DYa(3p(z)) Dfjr ()
= a"’ Dy + Z a” (z) DYa(1p(z)) Dfjr ()

Moreover, b D¥u(z) = D, (x)b' (2) D¥ii(y), so that f((z)) = f(z) = LPu(z) =
Lyu(a,b(w)) in Q. L satisfies conditions similar to (2.32)-(2.34) with constants
A, A also depending on A, A and +. Furthermore @& € H*P(B*t) and @ = 0
on BN ORY in the sense of H Lp(Bt). We now proceed as in the proofs of
Lemma 2.17 and Proposition 2.18 with the ball Br(zg) replaced by the half
ball B}(0) C B and with Lemma 2.22 used in place of Proposition 2.16 in
order to obtain

1
2~
1%l < C 1y + gyl |

for fo < p < R < Ry. Taking R = Ro,p = & and N = N,y = ¢~ (B,),
returning to our original coordinates, we therefore have
ID?ull,. 0 < Cllullpang + 1/ lpwvne); (2.45)
where C' = C(n,p, A\, A, 4, ). Finally, by covering Q' 0T with a finite number
of such neighbourhoods N7, ..., N;,, we obtain
[l 2,psc
< llly pony, 47 + Z(HuHPENi + 1 Dull i, + ||D2u||p;Ni)
i
(by A.2)
< C'(l[ullp + 11f ) +llullse + Y (1Dullya + C"(lullya + 1 l50))

(by 2.18, (2.45)) Z
= C(““Hp;ﬂ + ||f||p;9)

by A.6. O

When T = 99 in Proposition 2.23, we may take ' =  to obtain a global
H?P(Q) estimate. This estimate can, in fact, be refined as follows.

Proposition 2.24 (cf. [19, Theorem 9.14]) Let Q be a C*®°-domain in R"
and suppose the operator L satisfies the conditions (2.32)—(2.34). Then, if
u e H*(Q) N Hy?(Q),1 < p < 0o, we have

[ull2pe < CllLu = oullp,0; (2.46)
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for any o > oy, where C and oy are positive constants only depending on
n’p’ A’ A’ Q’ (aZ])'

Proof.We define a domain Qg in R**!(z,¢) by Qy := Q x (=1,1) together
with the operator Ly, given by Lov := Lv + Dywv for v € H*P(Q). Then, if
u € H*P(Q)N Hé’p(Q) the function v, given by v(z,t) := u(z) cos ot belongs
to H*P(Qg) and vanishes on 0Q x (—1,1) in the sense of H'?(Q). Indeed,
let u,, € C§(Q),m € N, such that u,, — u in H'P(Q). Define vy, (z,t) :=
U () cos O'%t,
then v, € C*(Q) and vanishes near T := 9Q x (—1,1). Moreover,

1 1
/ |um (x) cos o2t — u(z) cos o 2t|P d(z,t) < ||upm — u||’£p(dz) — 0.

Similarly ||Di’Um — Di'UHLp(d(z,t)) — 0 fori e {1, e ,n}.
Case i =n+1:

/ Dy (um (z) cos 02t) — Dy(u(z) cos o2¢)[P d(z, t)
= / | — um(a:)o% sino2t + u(a:)o% Sinoét|p d(z,t)
3 P
<o?||uy, — u||L,,(dw) — 0.
Furthermore,
Lpv = Lv+Dyv= cos(o%t)Lu — oucosot
= (Lu — ou)cos a%t,
so that by Proposition 2.23 with Q' := Q X (—¢,€),0 < € < %, we get
[ Duvllper < C([|Lu — oullp + ||ullpe)-
Indeed, Ly fulfills (2.32)—(2.34) on €. Therefore, by 2.23

||Dtt’U||p;Q’ < ||'U||2,p;ﬂ’ < C(”'U“:o;ﬂ + ||LOU||p;Q)
< C(HUHP;Q + ||L“ - UUHP;Q)-

But now, taking € := -5, we have
o2
[Duvllper = ollv]lper
€ 1 1_,)
= o(/ \u(x)cos05t|pdtdx)
QJ—e¢
1
> (207 (cos 7€) [ullo
1(2m\7 -1
> (%) ol
Thus,
n C
lullpe <~ [Duvllper < — (I — oullpa + [ulpe),

o g
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so that
C C
(1= =5 ) Il < =1 = ol
ag

2p o 2
Hence, for o large enough,

lullper < 1Zu - oul) (2.47)

and therefore by Proposition 2.23,

Cllullpe + [[Lullp:)

C(|[Lu — oullpo + [ Lu|lp;2)
C2lLu — oullpa + ollullpa)
C'||Lu — oul|p:q-

||U| 2,p;Q2

(VAN VAN VAR VAN

Now we can prove a preliminary stage of Proposition 2.6.

Lemma 2.25 Fiz z9 € R" and a symmetric, nondegenerate real matriz (a;;).
For Lu := a" D;ju(z) (constant coefficients!) and 2 < p < oo we have an
estimate of the form

[ull2,p:B1 (z0) < CtllL|p; By (20) (2.48)
Vu € (H%P N Hy?)(B (z0)).
Proof.Assume, (2.48) is wrong, then
Vn €N Ju, € (H** N Hy?)(By(zo)) : un ll2,p;B1 (z0) > Pl Lttnllp; By (20)-

Define v, : then

= _Un
[lunll2,p;: By (zq)

. 1
||Un||2,p;Bl(zo) =1 and ||Lvn||p;B1(mo) < ;HUWJHQ,I);Bl((Eo) — 0.

In particular, (v,) is bounded in H?P(B;(z)) and since (H?*P N H&’p)(Bl (z0))
is weakly sequentially compact, we obtain for some subsequence,

vm — v € (H*P N Hy?)(Bi(zp))  weakly.

<

We now show that v cannot be 0. By Proposition 2.24, 1 = |[vm]|2,p;B, (20) <

C(ol|vm ||p;B1(zo) + || Lo, ||p;B1(zo))'
—

—0

Hence, liminfy, [|vm||p;8,(z0) > (Co)~" > 0. By Rellich-embedding, Proposi-
tion C.1, we have

Um — v in  LP(Bi(zp)) strongly.



32 CHAPTER 2. EXISTENCE RESULT

Thus, [[v]lp;B,(z0) = 1M ||vm |lp;By(ze) > (co) ™ > 0, which implies v # 0.

m—0o0
Since fBl(wo)gDo‘fum dr — fBl(zO)gDav dz for any |a| < 2,9 € L (Bi(z0)),
we have

/ gLvdx = / ga® Djjvdr = lim gLy, dr =0
Bi(zo) Bi (zo)

m—r00 B (-750)

Vg € L” (B (z)), which implies Lv = 0.

If we can show that v = 0, we will arrive at a contradiction. In fact, since we
have constant coefficients, L is of divergence form, too, and because of p > 2,
(H?*P N Hé’p)(Bl (zg)) C H3’2(B1(w0)). Thus we can integrate by parts and

obtain
0= —/ UaijDijv dr = / aijDi'UDjv dr.
Bi(zo) Bi(zo)
Therefore, Dv = 0 and by Poincaré’s lemma, v = 0. 0

Second step:

Lemma 2.26 Let (ai;), L, C1,z0,p be as in Lemma 2.25. Then we have an
estimate of the form

[ull2,p;B, (20) < CrllLta]lp;, (20)
for any r < 1,u € (H>P N Hé’p)(BT(xO)).
Proof.Define Ty : B1(z9) — By(z0),x — zo+1r(z — x0), then |det T| = ™.
For u € (H%P N Hy?)(B,(z)) , we have that
up i=uoT, € (H* N Hy”)(By(w))

and Dfu,(z) = rDju(y) , Dfu,(z) = TQDE’]-u(y), where y = T, (z). In particu-
lar,
L%u;(z) = 7 (LYu)(y).

Hence, by integral transformation and Lemma 2.25,

rullopsp@) = 72D (/B( )ID"u(w)I”dx)
r\Z0

laj<2

1
= r? Z / |D%u(T,z)[Pr" dx
Bi(zo)

la|<2

= Y / =1l Dy, ()P dis
Bi(zo)

al<2

n__ +2
= Z ro @ D% ur|p; B, (o)
al<2

S =

IA

T;“u"'HQ,p;Bl(l‘o) (’I" < 1)
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n
< Clrp”LuTHP;Bl(ﬂ?o)
n og_n
= Cirer” % ||Lully;B, (x)

= Clr2||Lu“p;Br(10)'

Divide both sides by r? to obtain the lemma. O

We now give the proof of Proposition 2.6:
For 2y € Q choose ry = r(zo) small enough, so that
1
i (@0) — 0650l e oy <

where C; is the constant from Lemma 2.26. For r < ry and v € (H*P N
H& P)(By(zg)) it follows from the same lemma that

||u||27PEBr($0)
< Cif|a (wO)Dijqu;Br(%)
< Cull Ll ) + Call(@ () — ¥ () Dl o

< O Ll + 1 ma [a15(20) = () o gy i o)

and consequently,

Cy
1-C, max llaij(zo) — as; ()|l

[ull2,p;B,(z0) < |1 Zullp; B, (zo)-

OovB"‘(] (J“O)

O

Combining Proposition 2.6 and (2.13), we are able to prove an existence result
in LP of the Dirichlet problem of type (2.13) with a weaker assumption on a*,
which shall be used in Theorem 3.52.

Proposition 2.27 Let L be strictly elliptic in B := Bg with a¥ € C(B),L =
a'(z)D;D;. Then the Dirichlet problem (2.13) has a solution u € H>P(B),p €
[1,00), if f € C§°(B).

Proof. Approximate a by (a%), C CY(B) with respect to || oo (e. g,

polynoms over B are dense in C(B)). Let f € C§°(B) and mg € N such that
ay), satisfy the ellipticity condition for any m > mgy. We know that for any
m > my there exists u,, € C>*(B) C H*?(B) with

Ly, =f in B,
Uy =0 on OB,

in particular, u,, € (H*P N H&’p)(B) by C.11. By 2.6, we have

[tmll2,p < CllLmtimllp = C £l

for m > mg. Thus, (u,,) is bounded in H?P, which implies that there exists a
subsequence (u,,) converging weakly in (H%P N Hé P)(B) to some u € (H*P N
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H,")(B). Let us denote this subsequence again by (u,). We assert that Lu =
f: in fact, for g € L”',|a| < 2 we have

/gDo‘um dr — /gDo‘udx.
Moreover, for £ € C§°(B), m,n € N,
/ Efdx = / £a¥ Djju, do

:/5(0% — a)Djjup, div-i-/&af{Dijum dz .

v v~

Im,n Jm,n

Now, lim,;, lim,, I, , = 0 and since adé, a9 € L7,
lim Jm,n = /§a”Diju dx.
m,n

This implies Lu = f a. e.. 0

2.3 The Existence Theorem

It is time to present the main theorem of this chapter, although we can only
prove one half of it at the moment. The missing point in the proof of part (i)
is worked out in the next section.

Suppose that A is a Borel measurable mapping on a domain Q@ C R" with
values in the space of nonnegative symmetric matrices in R™.

Theorem 2.28 Let u be a locally finite signed Borel measure on 2, such that
a¥ € L} (u), and for some C > 0, one has

loc
| @"DiDspdu < Cloup el + sup Vo) (2.49)
Q Q Q

for any nonnegative p € C§°(2). Then

(i) If u is nonnegative, then (det A)%,u has a density, which belongs to L (2, dz);

loc

(ii) If A is locally Holder continuous and nondegenerate, then p has a density,
which belongs to LT (2, dz) for any r € [1,7n').

loc

Proof.(ii):Let By CC Q be a ball and ¢ € C§°(Q2), such that 0 < ( <1,{ =1
in By with support in another ball B C 2. Consider the signed measure v := (pu.
We want to generalize (2.49) to C?(B)-functions. Replacing ¢ in (2.49) by (1
for some nonnegative function 9 € C*(2), we obtain

/ a D;Djyp dv < Oy (sup |¢| + sup |Vp|) (2.50)
B B B
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by the computation below, where
C1 =+ (0 + 207 sup a9 5, 30p 9] + 10133, 500 DEDC] (251)
12¥]
is independent from 1:
[ @DDpdv = [ a(DDw)C dn
B B
— [ a(DD;(¢#) ~ D¥DC ~ DyDab ~ ¥DDIC) di
< Clsup ¢+ sup |V (C¥)]) + sup | Djef| sup |DiC || 1 (0 +

sup | D;(|sup I Dip[l|a™ || 21 (p ) + sup [+] sup IDiD;¢|lla || 1,y

(product rule,supp ¢ C B)
< C(Sl;p || + sup ¢V + 9 V() +

2n? sup |V4p| sup |V¢| sup [|a” || 11 (g, +
B B i,J

Sup |DiDi¢|lla" || 11, (sgp || + sup |Vbl)
< C(sup || +sup |Ve|) + C(sup || + sup |[Vy|) sup [ V(| +
B B B B B
2n® sup [|a™ | 11(p,,,) sup [ V| (sup [¢] + sup [ V4]) +
©J B B B
S%P|D1DJC|||GZ]HL1(B,M) (sgp || + sup Vy|) (0<¢<L1)

= Ci(sup [¢] + sup [V4)])
B B

We note that (2.50) remains valid for any nonnegative ¢ € C?(B), since for
any mollifier &, ||{c * b — hl|, g — 0, as € tends to zero for any h € C(R") and

D*(p * &) = (D) * . _
Let 9 € C?(B), then 0 < 4 +sup || € C?(B). Thus,
B

/ a”DzD]’(ﬁ dv
B

[ DD, + sup ) v
B B
Ci(sup |y + sup [¢[| + sup [V4)))
B B B
201(811131) |9 + Sup V) (2.52)

IA

IA

Now let 2y € Q,p > n. By Proposition 2.6 there exists r(z¢) > 0, such that
||u||2,p;BT(x0) < CQHLu“p;BT(mO)a

for any u € (WZ’pﬂWOl’p)(Br (20)),7 < r(x0), where L := a"(z)D; D is strictly
elliptic in B,(z¢), because A is assumed to be nondegenerate. Consider B* :=
B,(wg), where 7 < 7(zg) such that B® C Q. Fix f € C§°(B*) and (% €
C3°(2), By®, such that (Bg°, (", B") corresponds to (By,(,B) from above.
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By Section 2.1, there exists u € C*%(B?%°), such that Lu = f in B and u = 0
on @B%. Moreover, u € (WP N W,*)(B%) (cf. [3, A 5.11]). By Sobolev
embedding we obtain

sup [Vu| + sup [u| < Collullzp;peo < Cs|fllp;Beo-
B0 B*0
Together with (2.52) this yields
[ fam <20:Glf I V1 € G (B). (2.53)
B0

Hence 1% is absolutely continuous with v = g0 dz, g*° € L¥' (B*).
In fact, define
1: O5°(B%, dz) — R,1(-) = / v
B®0
Because of (2.53), I can be extended uniquely to a continuous linear functional
I on LP(B®, dz). Consequently, by duality, there exists g e L¥ (B%°), such

that I(-) = [zeo ¢°° + dz. In particular,

| fare= | fgtds VfeCR(B™)

It follows that v*0 = g% dz on B(B*°), since for any f € C§°(B™)

fdv*ot — fdv™~ = fg*ot dz — fg*° ™ dx
B0 B0 B0 B0
= fdv®t + fg*° " dz = fg*ot dz + fdv*o~
B0 B0 B0 B®0
& flz)(™T + g%~ N)(dz) = (z)(g% "\ 4 v% ) (dx)(\ :=Leb.),
B0 B0

which implies that the positive measures v%° " + g%~ dx, g*°* dz + v*°~ coin-
cide on B(B*), since o(C§°(B*°)) = B(B™) (for let U € B(B™) be open, zy €
B® r > 0, such that B,(z9) C U. Choose f € C§°(B*) such that B,(zo) =
{f >0} € a(CG°(B™)). Now, U= |J Byg)(x0) € 0(CG°(B™))).
ToeQPNU

Because of v*0 = ("0, we have p = ¢g”° dz on B(By*°), where g™ € Lp'(Bgo).
Now let N € B(f2),dz(N) = 0. Moreover, let K,, C Q,m € N, be compact
sets, such that Q = (J,,cy Km, Km C Kpg1 and such that for any K C Q,
K compact, we have that K C K,,, for some my. Then for any m: K,, C

no i
U B Thus 3z},...,28 € Ky : Ky C | By°. Consequently,
T0€EKm =1

n .
4 1(V) =37 |g% de(N 1 B3b)| = 0.

i=1 Y i=1

n
LIRS D

Therefore,

0< (W) = u(|J En NN < 3 [1(Emn N)| =0,
meN meN
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By uniqueness of the density, we conclude

1 << dr with density in Lfolc(Q, dz) Vp > n.

(i): We start with a remark; the above reasoning does not work in this case
even for bounded uniformly nondegenerate A, since the equation Lu = f does
not have to be solvable. For continuous A, the solution of this equation only is
in W2? and not in C2. Therefore, one cannot pass from C§°- functions to v in
(2.52).

As above, by considering a suitable function (, we arrive at estimate (2.52)
for the measure v = (p on the ball Bg,(z). Note that the support of the
measure v is contained in a ball Br(z¢) with radius R = Ry — r, where r > 0
(for orientation: B = Bpg,(zo),By C supp ¢ C Bgr(zg), such that { = 1 in
By). In this case, instead of solving the elliptic equation, we shall employ a
result from [22] according to which, for any nonnegative continuous function f
on R" vanishing outside Br(z() there exists a nonnegative continuous concave
function z on Bg,(zo) with the following properties:

—a¥1D;D;z > | det(a)|n f (2.54)

in the sense of distributions on Bg,(z¢) for any nonnegative symmetric matrix
(a¥) and

sup z < N”f”n;BRO(a:o)a (255)

Bprg(z0)

where N does not depend on f.
The next section is dedicated to this result. But first let us go on. Let g be a
mollifier, g, its Dirac sequence and v, := v*g, for suitable functions v. Then for
any nonnegative, symmetric matrix (¢*/) and e € (0, ), one has the estimates

~a"DiDjze(z) > |det(a)[7 f(x) on Br(go), (2.56)
sup |z€| < NHan;BRO(zo)a (257)
Br(zo)

where N does not depend on f, (aij ) and e
D Dyzs) = —aDD; [ gl —u)etw) dy
o1
> |det(ah)|* / ge(w — y)f(y) dy

= |det(a®)|x f.(z).

Clearly, the functions z, are smooth and nonnegative on B R+%(w0), if e < 3.
For these €, z is concave on BR+%($0), too:

ze(Az + (1 = N)z')
_ /ge()\.T + (1= Nz’ —y)z(y) dy
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- /ge(y)z(/\(x —y)+ (1 =N(=' —y)dy

> /ge(y)/\z(:v —y)dy + /ge(y)(l - Nz(z' —y)dy
= Aze(z) + (1 = A)ze(a).

We observe, that for any nonnegative continuously differentiable concave func-
tion w on Bp. x(zo), one has

2
[Vw(z)| < =v/n sup w(y) V€ Br(zo).
T yeBg(xo)

Indeed, consider the case n = 1,zy = 0:
Since w > 0 and concave, we have Vz € Bg

S;lfw(y) w(—R)

> w'(—R)

v
g\
&

NI

> w'(R)

v
|

CaseneN:

\Vw(z)| = /(Diw(x))2 + - + (Dpw(z))? < \/ﬁg Bs%p)w(y). (2.58)

Thus, using that v is nonnegative, we obtain
.. 1
/ |det(a ()| fe(x) v(dx)

‘ / 2)D;Dyz(x) v(dz)|  (by (2.56))

< C1 sup (|Vze| + [2]) (by (2.52))
Br(o)

< ON L+ 2l ay (b (257).2:58)

for any € € (0, 3). By Lebesgue, for € | 0 we obtain that

1 24/1
/|det Al fdv < CN(1+ Tf)llflln;BRo(zo)-

As in case (ii), we complete the proof. O

Corollary 2.29 Let u be a locally finite signed Borel measure on 0 and let
a’,b',c € L} (Q,u). Assume that

loc
[ Ease+coydu <o (2.59)
Q

for any nonnegative p € C§°(2). Then
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(i) If p is nonnegative, then (det A)~ u has a density, which belongs to L} (€2, dx);

(ii) If A is locally Holder continuous and nondegenerate, then p has a density,
which belongs to LT (2, dz) for any r € [1,n').

loc

In particular, the above statements are true, if
/QLA,bgod/z =0 Ve e CP(Q).
Proof.Note that for any bounded open Qy C Qo C Q, one has
| @Dy <supIVe [ il +swplel | el

for any smooth function ¢ with support in €y. Now starting with By, B, (, 1) as
in the proof of the Theorem, we obtain (2.50) with C := [ |b|d|u|+ [5 |c| d|pul,
since

/daijDiDj(Qﬁ) dp < C(Slép|c¢| + SEP IV(¢y)))

by (2.59). From here on, we can copy the rest of the proof of the Theorem.
The in particular assertion follows by choosing ¢ = 0. g

Corollary 2.30 Let p and v be two locally finite signed Borel measures on
and let a9, b, c € L} (Q, ). Assume that

loc

/ Lapp+cpdp = / pdv (2.60)
Q Q
for any nonnegative ¢ € C§°(?). Then

(i) If p is nonnegative, then (det A)%u has a density, which belongs to L™ (), dz);

loc

(ii) If A is locally Holder continuous and nondegenerate, then p has a density,
which belongs to LT (2, dz) for any r € [1,n)).

loc

Proof.Starting with By, B,(,v as in the proof of the Theorem, we obtain
(2.50) with C := 2max( [} |b| du|, [ |c| d|pl, [v|(B)), since

/B 0¥ DD (Cp) dps = — /B b Di(C4) dp — /B e dpi+ /B Cop v

< sup V()| [ [bldlul +sup (¢l [ el dlul + sup||v](B)
B B B B B
< Clsup|Cy| + sup[V(CY)])

by (2.60). From here on, we can copy the rest of the proof of the Theorem . O
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2.4 Convex Polyhedra

Now we want to work out the missing point in the proof of Theorem 2.28, which
can be found in [22], i. e. we want to prove the following

Proposition 2.31 Let Q C R" be a domain, g € Q and Ry, > 0, such that
Bp,(z0) CC Q and R:= Ry —r > 0. Let f € C(R") be nonnegative and f =0
outside Br(xzg). Then there exists a nonnegative continuous concave function

z on Br(zg) with the following properties:

(i) —o¥D;Djz > |det(aij)|%f in the sense of distributions on Bg,(zo) for any
nonnegative symmetric matriz (o),

() sup 2 < N||flnsp (ro)

Bprg(zo
where N does not depend on f.

At first, we have to get familiar with convex polyhedras and polytopes. Prop-
erties of those, that are not explicitely proven here, can be found and well
understood in e. g. [25].

Definition 2.32 A convezx polyhedron is the intersection of a finite number of
closed half-spaces.

An important role in the following will be played by functions z : R* — R,
such that {(z,2) € R*!|z € R?, 2 € (00, 2(z)]} defines a convex polyhedron.

Remark 2.33 All polyhedra in the following will be convex and this fact will not
be specifically mentioned. Also note that the function z will always be concave,
although it describes a convezx polyhedron! We shall identify these functions
with their corresponding polyhedra by saying the “polyhedron z(z)” instead of
the “polyhedron {(x,z) € R"l|z € R*, z € (—o0, z(x)]}”.

The plane z =< p,z — z¢ > +2(zg) in R**! will be termed a plane of support
of the polyhedron z(z) at the point (z¢, z(z¢)), if < p, (z —x0) > +2(z0) > 2(z)
for any =z € R”.

Definition 2.34 Let H be a supporting plane of the polyhedron z(z). Then
H N z(z) is called a face of z(x). A 0-dimensional face is called vertex, an
(n — 1)-dimensional face is called facet of z(x).

Suppose P,(zg) = {p € R*| < p,(x — zy) > +2(x0) > 2z(z)Vz}. Then P,(z) is
a closed convex set in R™ for each z:
convexity:

< apr+ (1 —a)pr,z —zo > +2(x0)
=< ap1,z —x9 >+ < (1 — a)p1,z — 29 > +2(z0)
> a(z(z) — z(z0)) + (1 — &) (z(z) — 2(z0)) + 2(z0)
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= z(z)
closedness: Let (pp) C P,(zg),pn, — p in R", then

<p,x—1x9 >=< lim pp,x —xzo >> 2(x) — 2(x0)
n—aoo

P,(x) will be called normal representation of the point 2 with help of the func-
tion z. Proceeding from the case n = 1 and noting that P,(z) = {Du(z)},
if e. g. u € C' is concave (since any supporting hyperplane must then be a
tangent hyperplane to the graph of u), we heuristically may speak of P,(x)
being the set of slopes of supporting hyperplanes at x lying above the graph of
z. P,(z) is bounded for each z, since otherwise P,(z) would contain the ray
tpg + p1,t > to, entirely, for some xy. We would conclude that

< tpo,x — o > + < p1,x — T > +2(x0) > 2(x)

for all z. However, if we take z so that < p,z — z¢p >< 0, then z(z) = —o0
as t — oo, which is impossible. Hence, the n-dimensional Lebesgue-measure
N, (z) of the set P,(x) is finite for any z.

Let us prove that if N,(z¢) # 0, then (z¢, z(z¢)) is an extreme point, i. e. a
vertex of the polyhedron z(z): the equations zg = 3(z1 + z2) and 2z(z) =
%(z(xl) + z(z2)) imply that zo = z1 = 9. Indeed, z9 — g = —(z1; — z¢) and

z(zo)
_ %(z(m) + 2(z2))

1 )
< —{ min [<p,z1 —x0) > +2(z¢)]+ min [< p,zo —zo > +2(20)]}-
2 pEPz(-'EO) pEPz(wo)

Hence, it follows that

0 < min [<p,z1—2x9>]+ min [— <p,z1 — 30 >]

pEP,(z0) pEP,(zo)

=  min [< p,x1 —xo >] — max [< p,z — z0 >
PEP;(x0) PEP:(z0)

< min [<p,x1—z9>]— min [<p,x;—1x0 >] <O0.
pEPz(J)o) pEPz(Io)

Assume, Ip1,ps € P,(x) such that < p1,z1 —zo > > < po2,z1 —zo >. Then

0 > <po,z1—20>+ < —p1,21 —x0 >
> min [< p2,z1 — 2o >]+ min [< —p1, 21 — 29 >] > 0,

p2€EP, (30 p1EP, (350)
which forms a contradiction. Therefore, < p;1 — p2, 1 — zg >= 0 for any
p1,p2 € P,(xg). But since N,(zg) # 0, P,(xo) has interior points and thus the
last relation is possible only if z1 = xy.
The vertices of the polyhedron constitute a finite set (for a vertex is point of
intersection of at least n + 1 halfspaces. Let z(z) = (%, H;, then we have

vert(z(z)) < (n”jl) T (Z) < ).
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Therefore, N,(x) can be nonzero only at a finite number of points, say, z1, ..., Zp-
Set now, for any set I', N,(T') := } .. N;(z;). This set function plays a ba-
sic role in our investigation. In the theory of convex surfaces, it is called the
volume of the normal representation of the set I' with the help of the function z.

Let z(z) be a convex polyhedron, dd the inward normal derivative on the
boundary 0B, and dS, the area element of 0B, (cf. C.7). For some nonsingular
matrix ¢ and ¢ > 0 define

-1 . 2
T f(z) = (2nt) 3[deto] "t [ f(y)exp [_W] .
R™
e(s) := 5n+1/oor”_1exp [—7‘2] dr, for s> 0.

Note that (TtE")t>0 coincides with the Brownian semigroup. To be able to
construct the ordered concave function, which will complete the proof of The-
orem 2.28, we need a handful lemmas.

Lemma 2.35 There exists a positive constant € just depending on the dimen-
sion n such that, for any positive r,

n -1
. dnrz(y)dS,«Ze N,(Bz)r" ™.

Proof.Let us first treat the case r = 4. We therefore have to show that
y)dSy > €3/ N,(Bs). 2.61
W S > Y/N(B) (2.61)
Further, if instead of z(z) we consider the function z(z)+ < p’,z > +b, then
neither side of inequality (2.61) will be effected:

{pl <p, =3 > +2(zi) 2 2(z)Va} = {<p— P,z — 2 > +2(zi) 2 2(z)Va},

because of translation invariance of the Lebesgue measure; use the divergence
theorem for the left-hand side.
Therefore to prove (2.61), we may assume that

z(0)=0 and 2z(z) <0 Vz

(choose a plane of support s(z) =< p,z > +2(0) of z(z) at the point (0,2(0))
and consider 2/(z) := z(z) — s(z)). In addition, if z =< p,z — zy > +2(z¢) is a
plane of support and zy € By, then z(zg) — z(z) >< p,xo —x > and

|2(z1) — 2(2)|

[2] = sup ————"""=> sup |<p,z—mz0>]|=]p|
z1,T2€B3 T1 — T2 |z—zol=1

Hence, P,(z) C Cp,) for x € By and

N.(Bo)= >, [P@)=| |J Pulo)|<wal",
T€B> r€ B2
T vertex T vertex
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where we used that P,(z¢) and P,(yy) have not got any interior points in com-
mon for g # yo. Indeed, let p € P,(xg), such that < p,z — zy > +2(zg) >
z(z) Vz € R*\{zo}, in particular < p,yo — zo > +2z(x0) > z(yo). It follows
that < p,zo — yo > +2(y0) < 2(20), i. e. p ¢ P (yo)-
Therefore, (2.61) will be proved, if we can show that

[ < /a ) 4 (2)dSs (2.62)

uz

for some positive constant e only depending on n, and for any polyhedra z(zx),
such that z(0) = 0, z(z) < 0 for any z.

Suppose that such a constant does not exist. Then one can find a sequence of
polyhedra z(z), such that

1
]=1 —2zx(2)dSy < — <0 0) =0.
(2] /834 dn4zk 4 S kazk(37) <0, 2(0)

If for fixed x € 0B4 we regard zx(tx) as a function of the single variable ¢ € [0, 1],
we establish that

d
0 < 2zi(ta) - zx(e) < 401 — ) 2 (a),
dng
since
dzy, . zp(x 4 hng) —zk(x) 1. zp(tz) — zx(x)
2ok - 1 —  jm ZF\Y) T 2R\
dng @ = h R
_ L Z(1) — Zx(t) > 12(t) — 2(1)
4 11 1-1 4 1-1¢
by concavity. Hence, it follows that
1—1t
0< / zg(tz) dSy — / zi(r) dSy < 4——. (2.63)
0By 0By k

The relations [zx] = 1 and 2,(0) = 0 allow us to apply the Arzela-Ascoli theorem
and therefore we obtain uniformly convergence towards some concave function
z on B for a subsequence of (z;), again denoted by (z;). Taking t = % in
(2.63), we see that lim faB 2k () dSy exists:

t< 2= faB 2k ( ta: )dS4 converges to faB (tx) dS4, because of uniform

EB3
convergence. Therefore, by (2.63), we see that klim Jom, #(x) dSy exists and
—Q

lim zk(tx) dSy (: lim zk(x) dS4Vt € (O, §>)
k—o0 JoB, k—o00 J5B, 4

is independent from ¢ for t € (0, 1). Now

lim zp(tr)dS, = / z(tz) dSs
OBy

k—00 8By
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= lim 2(tz) dSy = nw,4" 12(0) = 0,
t0 JoB,

thus
lim zk(z) dSy = 0. (2.64)

k—00 8B,

Again consider the condition [z;x] = 1. Let
zk(z) = min{< pf,x > —I—b§|j =1,...,1%}.

We shall assume that any plane z =< pf,a: > +b§ has at least one point in
common with z = zx(x) for x € Bs,if j = 1,...,s, and none, if sy < j < 7.
Then zx(z) = min{< pf,x > +b§|j =1,...,85} for z € By and so, for z,y €
B37

2k(2) — zk(y)] < max{| <ploz—y>|ji=1... s}
< |z —ylmax{|p}|lj = 1,..., s}

VAN

(suppose

|2k (2) — 2k ()| ze(z) — zu(y) =<pl o> +bh — <ph y > —bh
J y Y

IA

<phix>4bk —<ph y> b =<pk r—y>
Jy Jy Jy Jy Jy

IA

max{| <p§,x—y> l7=1,...,sk};

the other case works analogously).
Consequently, max{|p§||j =1,. sk} > 1. Suppose that, say |[p¥| > 1 and

< pF b > 40k = i (2h), Where z¥ € Bs. Then, for any z,
zp(z) << ph o> 408 =< pf,z —2F > 4 2.(aF) << pb,z —2F > .
——

<0

Hence, we obtain
/ zi(x) dSy < / OA < pf oz — ¥ > dS,. (2.65)
OBy 0By

Finally, the function 0 A [< p¥,z > — < p¥, 2% >] is nonincreasing with respect
to < p¥ 2% > and thus its largest value for z¥ € Bj is

0A[< pk,z > +3[p5] = 0 A Ipk|[< Db e > +3)

|1|

This in conjunction with (2.65) yields

/ zk(:(;)dS4§/ 0/\[<— z > +3]dSy <0,
OB4 OBy |

the middle term in this last inequality being independent of k£ and p’f, contra-
dicting (2.64).
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Arbitrary case: by integral transformation (see, e. g. [17, Section 14, Satz 7))

[ s EE) e @)

Consider Z(y) := z (%£). We compute

dz

B Y r 4y Y
—(y) = <Diy),——=>=-<Dz|—),—=>
ans ) N ( ) |

y yl
_ () (4
4 \dn, Y

Hence,
dz r\n—2 r\n—2
2.66) = — - > (- Y/N5(Bs).
o) = [ was ()= ()" VB
By definition, N3z(B2) = }_, cp, |Pz(20)| and
Ps;(z0) = A{pl<p,z—mo>> Z(x) — Z(z0) Va}
. 4 r T T TIQ
= (l<ipgo-go>22 () -=(F) v
= T(P,(Tx)),

when 7' : R" — R", 2 +— Jz.
r\n
= |P;(a0)| = [T(P.(Tw0))| = |det T||P,(Two)| = (7) " IP.(Tao)|

Now T'(Bz) = B, hence,

N:B2) = Y Pl = Y (5) IP.(Two)]
To€E B2 To€E Ba
= > (D) 1P = (5) N8y,
11635

Consequently,

v

[, s> (5) " i/ (5) vy - ey i)

B, dnr

Definition 2.36 The convex hull of a finite set of points is called a convex
polytope.

Remark 2.37 Let us collect some facts about convex polytopes. A bounded
convex polyhedron is a convexr polytope. It only has got a finite number of
distinct faces, and each face is a convex polytope itself. Moreover, a convex
polytope P is the convex hull of its set of vertices, that is P = conv(vert P).
If {F\,...,F,} is a family of faces of a convez polytope, then (;_, F; is also a
face of it. (see e. ¢.[25])
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Lemma 2.38 Let z(z) < 0 outside B, and let z(zg) > 0 for some point zgy €
B,. Then any plane z =< p,x > +b with < p,zy > +b = z(xy) and < p,z >
+b > z(x) for x € B, is a support plane at one of the vertices lying on B,.

Proof.Let z = ﬂle H;,{H;|i =1,...,k} irredundant (i. e. one cannot resign
on any of the H; to describe z), z(z) < 0 on (B,)¢, z(xy) > 0 for some zy € B;.
Clearly, z is bounded from above. Do not let (zg, z(zg)) be a vertex, because
the assertion would be obvious, otherwise. Consider the convex polytope

1
Zi= (20 {(5,y) Rz € R,y > Z2(s0)}) C Br x Ry

'

=Hy 41

E:zZ=<p,xz>+bwith <p,zo > +b=2z(z9) and < p,z > +b > z(z) for z €
B, is plane of support of z and 2’. Because of Remark 2.37, EN 2z’ = conv(vert
ENZ'), since ENZ’ is a convex polytope. Thus (zo, 2(z0)) = Y oieq mi(2?, 2(z})),
where p; > 0,57 p =1

= z(wél) > z(xzg) for some i3 € {1,...,m}

= (zb', z(zl!)) € vert(ENz) C vert(z) N E

Lemma 2.39 Let z(x) <0 for x ¢ Br. Then for any x
Z(.’I}) S N() \n/ Nz(BR);
1

where Ny = 2Rw, ™ and w, is the volume of B.

Proof.Without loss of generality, z := max z(z) > 0. Let {(zi,2(z;)),7 =
zE€BR
1,...,7} be the set of all vertices of z(z), for which x € Bg. This set is not

empty, since by Lemma 2.38, z = z(z;,) for some iy € {1,...,r}. Further,
consider the plane z =< p,z > +b, where |p| < 5%. For b > 372, we have

33
<p,x>+b>—R|p|+§>2 Vz € Bpg.

If b =0, < p,x >< R|p| < 4 for z € Br. Since the distance function is
continuous, for some xy € Br we obtain

leIle {dist((z, < p,z > +b),2(Bg))} = dist((zg, < p, 0 > +b),2(Bgr)) =: f(b).

Since f is continuous in b, f(0) = 0, f(b) > Z for any b > 3z, there exists a
least b = b(p) among those, for which < p,z > +b > 2(z) for any z € Bg. In
addition,

z
z(zo) =< p, iy > +b(p)+ < p,xo — Tiy >> 7 — ﬁmo — Tip| > 0.
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Therefore, o € Br and by Lemma, 2.38, there exists an 4, such that p € P,(z;),
proving that the ball {p||p| < 5%} is contained in | J;_; P;(;). From this follows
the inequality for volumes satisfying

(55)" wn < No(Ba),

as required. O

Lemma 2.40 Let f be a nonnegative continuous function vanishing outside of
B,.. Then there exists a sequence of polyhedra zi(x), such that

1. N, (U) — [ f™(x) dz for any open region U C Bg, where 0 <1 < R;
2. Vzx,y:
|z (z) — 21 (y)| < 2No|z — y[ {/ Nz, (Br),

zi(z) > —2No|z| {/ N, (Br);

3. the sequence zi(x) converges uniformly on any compactum to some con-
cave function z(x) vanishing on OBg.

Proof.Let U be a convex polyhedron in R” with vertices on dBg and such that
B, C U C Bg for some r < p < R. Let there be given points z1,...,z,, € B,

and positive numbers 1, .. ., y,. After this proof we will show that there exists
a polyhedron z(z) such that z5y = 0, N,(zi) = pi,i = 1,...,m, and the set of
vertices of z(x) lying over U can be projected into {z1,...,Zm}-

Let this be z(z) = min{< pj,z > +b;|j = 1,...,r} for z € U, the collection
of planes being chosen, such that for each j there is a point z(j), lying strictly
inside U, for which z(z(j)) =< pj,z(j) > +b;. If this condition is satisfied,
then we can redefine z(x) outside U and set

z(z) = min{< pj,z > +bj|j = 1,...,7} Vaz.

By virtue of Lemma 2.38, for each j there exists, together with the point z(j),
a vertex, say (zi(j), #(Ti(;))), such that < pj, z;;) > +b; = z(w;(;)). Therefore,
taking Lemma 2.39 into consideration, we obtain

0 < z(z) << pj, T — Ti(5) > +2(Ti(5)) << pj, T — Tyj) > +No Y/ N.(By)

for z € B,. For z = —% + z;(;5) we have [p;| < (pNT"r) Y/N,(By) and hence,

J
for any z,y,

|z(z) — 2(y)] < max{|<pj,z—y>|lj=1,...,r} (see Lemma 2.35)
N
< — |z —y|Y/NA(By). (2.67)

(p—r)
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If we take y = 0, then since z(0) > 0,

2(0) — NOT)|:U|{‘/NZ(BT)2— No_ 1 /N8, (2.68)

(p— (p—r)

N
—~
8
~—
v

Assertion 2 will follow from (2.67) and (2.68), if we can construct a sequence of
polyhedra z;(z) of type z(z):

Choose a sequence of polyhedra Uy in R”, such that the vertices of Uy lie on
OBR, B, C Uy C Bgr,Uy C Uiy for any k, and B C Uy, Uy. By definition
of the Lebesgue-integral and the assumptions on f, we have

K2k .
K3
"dr = li —dz(A;
e kgnw;%dx( i*);
where
A i {fr>i2FIn{fr<@+1)27%} ,for i=0,...,k2F -1
k= {f" >k} , for i = k2¥

Fork e Ni=1,...,k2F =1, select =¥ € B, (if possible), such that f(zf) €
Ajr and define pf := p(zf) .= 757 (Ajx). Then

"dr = 1 k B :
/Uf dz kgnooz;zz YU C Bg,U open

waU

We construct zgx(z) from U, {z},...,2f } and {u¥,..., 4 } in the same way
as z(z) is constructed from U, {z1,...,zn} and {p1,...,um}. As above, by
Lemma 2.39, (2.67) and (2.68), we have for any z,y that
Ny
(p—r)

|~'E‘ \ Nzk(Br) < Zk(.’B) < Noy Nzk(Br)

and

() — 2 (y)] < (/f"—(’)n —y|t/N..(B,).

—r
Let S C R" be compact, S C B, then

No

supsup |z, (z)| < sup{———=[z|{/ N, (Br) < oo,
keNzeS keN (P —T)
since
No(B) = 30 Na(eh) = 0 ub< [ f7do < oovk
zkeB, zkeB, T
Moreover,

Ny .
sup |2k () — 2 (y)| < sup |z — y|{/ Nz, (Br) — 0,
keN ken (p—T)



2.4. CONVEX POLYHEDRA 49

as |z — y| — 0. With the help of the Arzela-Ascoli theorem, we can pick out
a subsequence of the (z), which fulfills the lemma. O

Let us now construct the missing polyhedron in the situation of the previous
lemma (cf. [4, Sections 11.2, 11.3]). If you already believe Lemma 2.39, then you
can skip off the next lemma and use the upper bound of Lemma 2.39 instead
of that of the following lemma, in the construction. Nevertheless, the proof of
the following lemma is interesting and therefore presented.

Define ¢(¢) := dz(B¢(0)), T := g~ and note that both functions are strictly
increasing and continuous.

Lemma 2.41 Let z(z) be a convex polyhedron on U such that
1. zpv =0,
2. N,(U) < o0,
then T(N,(U))diam(U) > z(z) > 0.
Proof.Let zy € U such that z(zg) = sgp z(z), Ky a cone with peak (zg, z(zp))

and base 0S, where S := Bgjam y(z0) C R*, and K; a cone with peak
(0, 2(zo)) and base OU.

Clearly, Pg,(z0) C Pk,(zo). Moreover, if z;,z9 are concave functions on U
such that 2115y = 22/sr and 21 < 29 on U, then P, (U) C P, (U) by shifting
planes of support. Therefore,

Ny (§) < Nk, (U) < N(U).

We have (z0)
. _ Z\Z(
9(Co) = Nk, (S) , where (p= Tam U

Indeed, consider the one-dimensional case:

_ z(z) — 2(z0) _ z(zo)  2(o)
Pico (o) = {pER|p = T — To Vw} B [_diam U’diam U |

In n dimensions, we have Pg,(z0) = Uyern Pi1, K, (70), where TI; Ky shall be
the projection of Ky onto the line (z¢ + A\z) cg; the assertion follows.
Thus (o = T(Nk,(S)) < T(N,(U)), since T is isotone. Consequently,

0 < z(z) < (diam U)T(N,(U)) on U.
O

Let Bi,..., B, be the vertices of U and H the set of all convex polyhedra
z(x), such that z(B;) = 0 for j = 1,...,k,Ny(z;) < p; for i =1,...,m and
vert znou C {Z1,---,Tm}. H is not empty, for 0 € H. Let now 2(z) € H and
[0 = )i~ pi, then

m

N(U\OU) = Na(z:) <Y i = po < 00,
i=1

=1
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and from the lemma it follows that
0 <z(z) <T(w) diam U VzeU.

If § := min dist(z;,0U), then all functions z(z) € H fulfill the lipschitz-

i=1,...,m
condition with common constant M = T'(ug) diam(U)d~!. Therefore, we can
apply Arzela-Ascoli and obtain that H C C(U) is compact.
Let V(2) be the volume of z|UﬂRT'1 =:S,, then V : H — R continuous w.r.t.
|| - lloo;7. Consequently, Vp := sup V(z) < oo and 32 € H, such that Vj = V(Z).
We want to show by contradictli{on, that z is the polyhedron in demand:
Let us assume the opposite. Then Nj(z;) < p; for i =1,...,m and there exists
igp € {1,...,m}, such that Nz(z;,) < pi,- Consider the pomt (%ig, 2(24,)+e€) and
let .S, denote the polytope belonging to d[conv(vert(Sz) U {(zi,, Z(zi,) + €)})].
For sufficient small €, we have

vert Viu\ou C {mla s ,m},Nv(.’ﬂiO) < Hz’va(xi) < MZVZ # 10,

which implies that v € H. But, by our construction,V (v) > V(%) = sup V(u),
u€H
which is a contradiction. O

Lemma 2.42 Let z(xz) be a polyhedron, such that the integrability condition
K > z(z) > —K(1 + |z|) holds for some constant K and all . Then, for any
z and t >0,

z(x) > T z(x) + ce /| det a|\/2_t/ T"_le(r)\/Nz[A(a, t,x,r)] dr,
0
Ao, t,xz,r) = {y € R"| 7_

\/2_t(y_x) <£}

Proof.Case x = 0 and V2tc = I: with the help of integral transformation
(see [17, Section 14, Satz 8]) we compute:

where ¢ = w_%, € is the constant of Lemma 2.35 and

-1

=c [ [2(0) — z(y)] exp[~|y|*] dy
= c/OO exp[—TZ]r”_lf [2(0) — z(ry)] dS1 dr (polar coord.)
0 0B1

—c / exp [-r?] ! / [2(0) = 2(riy)] + - + [2(rm) — 2(ry)] dS dr,
0 0B,

where 0 =rg <ry <--- < rm =7 and riy are the non-smooth points of z

= —c/ exp[—r2]r"” 1/ / —(sy)dsdS1dr (fund.-theorem)
0 8B1 i1
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o0 (s
= c/ exp[—r?]r"! / / ﬁ(sy) dsdS1 dr (def. of normal deriv.)
0 o8, Jo dn

= c/ exp[—r-]r"” / —(sy) dSi1dsdr (Fubini)
0 o Jom, dm

o0 T dz

:c/ exp[—rQ]rn_lf 31_"/ (y)dSsdsdr (int. transform.)
0 0 0B, dns
o0

dz
iy /0 e(s) /6 i @) dS,ds (def of e(s)

o0
n -1
> c/o e(s)e{/N;(Bs)s" " ds (Lemma 2.35)

Arbitrary case: fix z € R", a nonsingular matrix ¢ and consider the bijection

7:=T(y) = —"—2 and zZ:=zoT .
We have 2(0) = z(z) and

~1(y — 2)[2
T z(z) = (27rt)_%|det0|_1/ w} dy

2(y) exp [— -

n

= w%/ 2(x + V2toy) exp[—y|*] dy
R

I

= T 3(0).

Now, if 1"/N§(B%) = V2t %/| det o|N,[A(0,t, z,7)], the lemma follows:

A:= Ao, t,z,1) = {y||T(y)| < g} = T_I(Bg)

and

Nz(A) = Z ‘Pz(-’ﬂz)‘

T, EA
Thus, it remains to show: |P,(z)| = (2t)” 2| det 0| | Ps(T'zo)|. But
P,(z0) = A{p|<p,z—2z0>>2(x)—2(x0) Vz}
= {pl <p, T~ (Tx — Txo) >> #(Tx) — 5(Txo) Va}
= {p| < (T Yp, Tz — Txq >> 3(Tz) — 3(Tx0) Vr}
T'(P;(Tx0)).
Together with | det T%| = |det T| = | det 0|~ (2t) "%, we obtain

|Px(z0)| = |T"(Ps(Txo))| = | det T'|| P5(Tzo)|
= |deto| 1 (2t)" 2 |Ps(Txo)|-
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After all the preparations, we now start to fill the hole in the proof of the
main theorem.
Let zx(z) be the sequence, whose existence is asserted in Lemma 2.40. By
Lemma 2.42,

o
zi(x) > TY zi(x) + ce y/| det 0|\/2_t/ r"le(r) VNzk [A(o,t,z,7)] dr
0
and by Fatou’s lemma,

2(z) = lim z(z)

> TY z(x) + ce /| det 0|\/2_t/ " le(r) ’\‘// f(y) dydr
0 Alotsa,r)

for any z and ¢ > 0 and nonsingular o. Writing

1
’ 4

1 "
r"le(r) = / r"le(r)— d ,
(r) A(ot,z,r) (") n/dy(A(o,t,z,T)) Y

we can apply Holder’s inequality and obtain

2(z) > T 2(z)+

ce \"/|deta|\/ﬂ/ /
0o JA(

| Fly)r™te(r)(dy(A(o, t,,7))) =" dy dr.

ot,z,r
Now,
1-n _ 1-n _ 1-n
(dy(Alo,t,z,m) ™ = (dy(T~'(By)) = = (|detT'|dy(By)) ™
_ AT
= |detT | (2) Wn,
and
[ twdy= [ jEey+ o) dedy
A(ot,x,r) B%
Consequently,

z(z) > TY z(z)+
1-n 00
ce| det 0\%\/ﬂwn" |detT_1|vlz2"_1/ e(r) f(V2toy + z) dy dr

0 Br
2
[e.e]
= T 2(z) + Vdet 02t Ny / e(r) f(z + V2toy) dy dr, (2.69)
0 Br
2
1-n

where N; := 2"w,™ ce. Now let the matrix ¢ be fixed and set for § > 0,

z5(x) =Tj z(x) and  f5(z) = T5 f ().
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Then, from (2.69), we obtain

1T 25(2) — 25(2)]

- %[Tt”Tg’z(x) — T 2(x)]

_ %[T{(sz(:c) — 2(z))]

< -T7 (N1 Vdet o2 /000 e(r) f f(- +V2tog) dy dr) (z)

:—(27r5)%|deta|1/ N \"/|deta|2/ e(r)
- 0

a2
/B fly+ \/Q_tay) dy dr exp [—W] dy

— MY detaP/ e(T)/ 2m8) 3| det o] !
0

(
Br
2

/ fy +V2toy) exp [—w] dy dij dr

~ 7
~~

—L(p— 7)|2
Jan F(v) eXP[*M] dy

(2.70)

o
= —Np|det 02|% / e(r) fs(z + V2toy)dy dr.
0 Br
2

For § < %, the left-hand side of (2.70) tends to

- - %25
Loz(z) = aij 55— (@),
i,j=1 e

as t —» 0, where a := (a;;) = 300’ Therefore, (2.70) implies that

L7 25(z) < —3/|det 02| Ny f5(z),

where Ny = ce {/wy, [ r"e(r)dr, since fs(z + V2toy) — f5(x) for any z by
Lebesgue, as ¢ | 0.

The last two convergence assertions walk along with wild computations and are
put into appendix B for keeping orientation. We get near to (2.54), (2.55).

Let u € C§°(Bg,(z0)) be nonnegative. Then for § < 1,

_/aijDiju(x)(ng)(z) de = —/aijDij(ng)(:E)u(z) dz

=L%24

> |det02|rlzN2/uf5dx.
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By appendix B we obtain
—/(aijDiju(a:))z(x) dz > |det 02|%N2/uf dz,

as 6 | 0. This is (2.54) for nonnegative, symmetric, nonsingular matrices (")
because of

Lemma 2.43 Let (o) be strictly positive and symmetric, then there exists a
1

nonsingular matriz o, such that (o) = Nj oo

Proof By linear algebra results, there exists an orthogonal matrix 7', such

that T(a¥)Tt = diag(\1,...,An), where \1,...,Ap > 0. Define (a&¥) :=
1 1 - . .
diag(AZ,...,A2), then (TY(&Y)T)(TH(aY)T) = Ttdiag(\1,---,A\)T = (a¥).
Thus, define
1 g
o := N, > (T'(&")T)(= o')

o is nonsingular: Let ov = 0. Then 0 = |lov|? =< ov,0v >=< olov,v >=

_1
n

N, * < (a¥)v,v >> ¢€||v|?. Consequently, v = 0. O

Hence, we have (2.54), when (a¥) is strictly positive and symmetric. Now
define () := (') 4 €(6"), where (') is as in the situation of (2.54), and let
L, L% be the corresponding operators. Note that (a¢) is symmetric and

< (@9)v,v >=< (), v > +e < v,v >> €||v[|* > 0.

Thus,

—/Lauzdzv = —/Laeuzdw-l-e/éijDijuzdw

N2|deta€|rlt/ufdx—l—e/éijDijuzdx

Y

— N2|deta|3b/ufdw,

for any u € C§°(Br, (o)), since det(-) is a polynome and therefore continuous.
This is (2.54).

For (2.55) let 2y, 2,k € N as in Lemma 2.40. Then by Lemma 2.39
zk(z) < No {/ N, (Br,(z0))VkV.
Therefore, by Lemma 2.40,

sup 2z < N|[flln,Bg, (o)
By (z0) n,Br, (2o)

which is (2.55).



Chapter 3

REGULARITY RESULTS

3.1

Weak Solutions of Elliptic Equations

3.1.1 Existence in H,”

In this section we prove the existence of weak solutions of elliptic partial differ-
ential equations of second order in divergence form on balls. We therefore need
the following result of functional analysis.

Proposition 3.1 (Fredholm alternative, cf. [19, Theorem 5.3]) LetT be
a compact linear mapping of a normed linear space V into itself. Then either

(i) the homogeneous equation x —Tx = 0 has a non-trivial solution x € V or

(ii) for anyy € V the equation x —Tx = y has a uniquely determined solution

rzeV.

Furthermore, in case (ii), the operator (I — T)™!, whose ezistence is asserted
there, is also bounded.

Proof.

e Step 1: Let S =1 —T and let N = S71(0) = {z € V|Sz = 0} be the

nullspace of S. Then there exists a constant K, such that

dist(z, N) < K||Sz||Vz € V. (3.1)

Proof.Suppose the result is not true. Then there exists a sequence (z,,) C
V satisfying || Sz, || = 1 and d,, = dist(z,, N) — oo. Choose a sequence
(yn) C N, such that d,, < ||zp — yn|| < 2d,. Then, if

LIn — Yn
‘n = )
[0 = yall
we have ||z,|| = 1 and ||Sz,|| < d,;' — 0, so that the sequence (Sz,)

converges to 0. But since T is compact, by passing to a subsequence
if necessary, we may assume that the sequence (Tz,) converges to an

55
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element yo € V. Since z, = (S + T)zy, we also have (z,) converging to
yo and consequently yo € N. However this leads to a contradiction as

dist(zn, N) = infllen =yl = llon — Yall Juf on = yn = [l = ynllyll

= ||37n - ynH_ldiSt(xn,N) >

N —

O

Step 2: Let R = S(V) be the range of S. Then R is a closed subspace of
V.

Proof.Let (z,,) be a sequence in V', whose image (Sz,,) converges to an ele-
ment y € V. To show that R is closed, we must show that y = Sx for some
x € V. By our previous result, the sequence (d,), where d,, = dist(z,, N)
is bounded. Choosing y, € N as before and writing w, = =, — y,, we
consequently have that the sequence (wy,) is bounded while the sequence
(Swy,) converges to y. Since T is compact, by passing to a subsequence if
necessary, we may assume that (T'w,) converges to an element wy € V.
Hence, the sequence (wy,) itself converges to y + wq and by the continuity
of S, we have S(y + wg) = y. Consequently, R is closed. O

Step 3: If N = {0}, then R = V. That is, if case (i) of Proposition 3.1
does not hold, then case (ii) is true.

Proof.By our previous result, the sets R; defined by R; = S¥(V),j =
1,2,... form a non-increasing sequence of closed subspaces of V. Sup-
pose that no two of them coincide. Then each is a proper subspace of
its predecessor. Hence there exists a sequence (y,) C V of “nearly or-
thogonal” elements (see [3, 2.18]), such that y, € R,,|lys|| = 1 and
dist(yn, Rn+1) > 3. Thus, if n > m,

Tym —Tyn = Ym + (_yn — Sym +Syn) =UYm — Y

for some y € R, +1. Hence, ||Tym —Tynl| > % contrary to the compactness
of T. Consequently, there exists an integer k£ such that R; = R;, for any
7 > k. Up to this point we have not used the condition N = 0. Now let
y be an arbitrary element of V. Then S*¥y € Ry = Ry.1, so Sky = Sk+lg
for some x € V. Therefore, S¥(y — Sz) = 0 and therefore y = Sz, since
S7k(0) = S71(0) = 0. Consequently R = R; =V for each j. O

Step 4: If R =V, then N = {0}. Consequently, either case (i) or case (ii)
holds.

Proof.This time we define a non-decreasing sequence of closed subspaces
(N;) by setting N; = S77(0). The closedness of N, follows from the
continuity of S. Suppose that no two of these spaces coincide. Then each
one is a proper subspace of the following. Hence, as above, there exists a
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sequence (y,,) C V, such that y,, € Ny, |lyn|| = 1 and dist(y,, Np—1) > 1.
Thus, if n < m,

TYym —Tyn = yYym + (_yn - Sym +Syn) =Ym — Y

for some y € Ny,,_1. Hence, | Tym — Tyn|| > 3, contrary to the compact-
ness of T'. Therefore, N; = N; for any j > some | € N. Thus,if R=1V,
any element y € N; satisfies y = S'z for some z € V. Consequently,
S?z =0, so that z € Ny = N, whence y = Sz = 0. 0

The boundedness of S™1 = (I — T)~! in case (ii) follows from step 1 with
N = {0}. O
Let B C R" be a ball. We are going to consider equations of the form
Lu = Di(a" Dju+ D;ja"u — b'u) + cu = D;f* in B (3.2)
u = 0 on OB.

Let p > n,a¥ € H'P(B),b, f*,c € LP(B), A > M. For u,v € H"?(B) we set
a(u,v) = / (a" Dju + d'u) Div + cuv dz,
B

where d' := D;a" — b*. We mix considerations in [13, Section 1.1.2] and [19,
Section 8.2] until we obtain the existence result needed in Corollary 3.56.

Definition 3.2 For T € H~%(B) and g € H"?(B) we say that u € H2(B)
1s a weak solution of the Dirichlet problem

Lu = T in B

u = g on OB, (3.3)
if u satisfies
a(u,v) = <T,v>Wwe€ Hé’z(B)
u—g € Hy*B). (3.4)

Lemma 3.3 a(-,-) is a bounded bilinear form on H&’Q(B).

Proof.Using Holder,

/ aijDiuDjv dr
B

< N suplla”||oolull1,2]lv]l1,2-
0]

Case n > 3: Using generalized Holder, p > n and Proposition D.1, we obtain

/ diuDiv dx
B

/ cuv dx
B

< DI dllallull 2 | Divll2 < Clulli2llvl
%

< lellz llull 2o_llvf] 2o < Cllull2[lv]l1,2-
n—2 n—2
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Case n = 2: u € Hy”(B) = u € Hy” “(B)Ve € [0,1]. By Sobolev,

—(2—¢

lullazze = Jlull e o2 < Cllulliz-e < Cllull,2-

Choose 0 < € < g%f, then 22 < 4=2¢ Hence, with generalized Holder,

p—2 €
/ d'uD;v dz
B

< Z”din“uH%HDiUHQ
i

< Clidllpllull 2z, l[vl1,2
< C'lldllpllulli2lvll2,

< C|lull12lv]l1,2  analogously

‘/ cuv dx
B

la(u,v)| < Cllull12]lv]l1,2- (3:5)

Thus we obtain

Lemma 3.4 There exists i > 0, such that a(u,v) + p(u,v) is coercive on
Hy?(B) for > ji.

In order to prove the lemma, we need the following fact: for f € LP(B) and
€ > 0 there exists a decomposition f = f; + f2, such that

12l < e, supli @) < K0 (3.6)
Choose
L@ i<k [0 i) <K
Nt {o ) >k O P {f(:c) iflf(2)] > K,

where K is sufficiently large.
Proof.For € > 0 there are decompositions d' = d} + dj, c = ¢1 + c2, such that

dallp + llezll, < €
ldilloo + lletlles < K(e).

Set
agz(u,v) = / (¥ Dju — d%u)Djv + couv dz
aj(u,v) = afu,’u) — az(u,v),
then
as(u,u) = /BaijDiuDju dz +/BdguDju + cpu? dx

> X|Dull3 — ellull? 5 — ellullf 5

2 2
> cA[ullfz — (¢ + Dellullt s,
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where we computed as in Lemma 3.3 and used the equivalence of norms on
H& 2(B) (cf. Poincaré inequality A.7). For a;(u,u) we have

la1 (u,u)] < K(e / Z|D | da:+/ |ul? dz

z (f)IIDUI|2IIUIIg+IIUIlz (€)

K
<el| Dul |3+ 5 ||u) 3

K(9
<epulf+ (52 + k@ ) Julg
K(9
< eull s + (4 + K@) lulk

Therefore,
a’(ua u) =ai (ua u) + a2 (ua u)

K(e
> —c"ulha = (52 4+ K(9)) Il + Al - (€ + Delul,

= [eA- el 4 ¢4 )]l - (T + K )

P
Set € := c,f,’lijj_l, where k. € N such that ¢ — k—lc € (0,1)(c € (0,1)!), then
A _ A
a(u,u) > —|lull?y = Allull} > { = =7 ) [[ull? - (3.7)
k. ke
0

Proposition 3.5 Let T € H~'2(B). Then there exists i > 0, such that for
> [ the Dirichlet problem

Lu+ pu =T,u € Hy”(B), (3.8)
has a unique weak solution.

Proof By definition of weak solutions, the bilinear form corresponding to (3.8)
is given by a(u,v) + p(u,v). A weak solution satisfies

a(u,v) + p(u,v) =< T,v > Vo € Hy*(B),u € Hy*(B). (3.9)

From lemmas 3.3 and 3.4 we derive that a(u,v) + pu(u,v) is a bounded coercive
bilinear form on Hy*(B) for u > fi. It follows from Lax-Milgram that (3.9) has
a unique solution u € Hé’Q(B). O

We define I : H&’Q(B) — H 1Y2(B) by

(Tu)(v) := /Buv dz,v € Hé’2. (3.10)
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Lemma 3.6 I is compact.

Proof.Let I : Hé’2 — L? be the natural embedding. I is compact by C.1.
Let Iy : L2 — H~'2 be given by (3.10). I is continuous and therefore
I = I o I, compact. O

The equation Lu = F for u € Hé ’2, F € H 12 is equivalent to the equation
Lyu+ plu = Lu — plu + plu = F,p > - fixed.

By Lax-Milgram, Lljl is a one-to-one and continuous mapping of H~1? onto
H&’Q: in fact, Lyu = Gy < ay(u,v) = Gyv Vv € H&’Q. Now, by Lax-Milgram,
there exists a unique A € L(HS’Q), bijective with A~! € L(Hé’2), too, such that

(Au,v)10 = au(u,v) = Guv Vv € H&’Q.

Therefore L, = A by duality. Applying this to the above equation, we obtain
the equivalent equation

w+pL; ' Tu=L,'F. (3.11)
The mapping T' = —,uLlle is compact by Lemma 3.6 and hence by the Fred-
holm alternative, Proposition 3.1, the existence of a function u € H é )2 satisfying
(3.11) is a consequence of the uniqueness in Hé 2 of the trivial solution of the
equation Lu = 0 (see proposition below):

u—i—,uL;lIu:O@L“u—i—uu:O@Lu:O@u:O.
Applying the Fredholm alternative, there exists a unique w, such that u +
,uLﬁlIu = L;IF, which is equivalent to Lu = F.

Proposition 3.7 Problem (3.3) with T = D;f' has at most one solution on

B = B,, if r is so small that ket o2 1, where u > p fized, ke, A as above.
A n=p

The underlying idea of the following proof can be found in [23, Section 4.3].

Proof.Let u',u" be solutions of (3.3), then u = u' —u" is a solution of Lu = 0
in B,u =0 on 0B. By (3.7), we have

k kept ket
[ 1D+ do < Seau,u) + 5 ullp = 5 ul,
B

Now by Poincaré, Corollary A.8,
s, < er® [ 1DuP ds = cur?|Dull s,
By

Consequently, for sufficient small r,

-
0< (1 _ ;"WZ) 1Dull2 + lul < 0

implies u = 0. 0
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3.1.2 [LP-subspaces

In this section we introduce Morrey-, Campanato- and BMO-spaces, which
are subspaces of LP and which are useful for regularity considerations of weak
solutions of equations as in the last section. The original work of Bogachev,
Krylov and Rockner in mind, we will only present the necessary facts, which
are mostly taken from [13, I1.9.1 and II1.10.1].

Let Q be a bounded domain in R". We notate:

Q(zo,R) := QN B(zp,R)
1
upy = ][M u(z)dz = M| /M u(z) dz

for any measurable u and Borel set M # () lying in the domain of u.

Definition 3.8 If there exists a positive constant A, such that for any x € Q
and any p with 0 < p < diam$Q) the estimate |Q(z, p)| > Ap" is valid, we say
that Q is a domain of type (A).

Definition 3.9 Let p > 1,u > 0. The collection of functions u € LP(Q)
satisfying

sup p_“/ lu(2)|P dz < o0
Sy Q(z,p)
0<p<diam

with the norm
P
sy = | s o [ )P ds
Qz,p)

e
0<p<diam Q2

constitutes a normed linear space and is called the Morrey space LPH(Q).

LPH(Q) is a Banach space: let (u,,) be LP*#-cauchy, then (u,,)LP-cauchy and

thus there exists u = LP — lim w,,. Now, for any p, z:
m—r00

p_“/ |u —up|Pdz = lim p_“/ |un, — um |P dz
Q(z,p) nree Q(z,p)
< limsup||lun — um |7 .-
n—o0
Therefore,
lu — um |55, <limsup|um — upl|},,. <€ for sufficient large m.
n—oo
Lemma 3.10 (i) LP°(Q) = LP(9)
(i) LP™(Q) = L>(Q)

(15i) If u > n, then LPH(Q) = {0}.
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(iv) If p < q and n;,%“ > %, then LT (2) C LPH(Q).
Proof.
(i) obvious

(ii) If u € L*(Q), then

S =

[l Lon(a) < sup - p " Julle [z, p)

[S
0<p<diam Q
1
< wr |[uf]oo-

Conversely, if u € LP"(Q), then for a. e. z € Q, by 2.13, we have

1
u(z) = lim udz = lim 7/ udz.
p—> 0 Q(z,p) p—> 0 |B(‘Tap)‘ Q(z,p)

1
|u(z)| < sup n/ |u| dz
p \WnP" JQ(z,p)

1
<sup | —fw o) ([ )
SSup | —— €z,

14 wnpn P Q(z,p)

_1
< wn ? [|ul Lo )

Therefore

(iii) If uw € LP#(Q) for some pu > n, then

1 nl—1 & Ii/
Wn P ppr | p u| dz
wnp"( " ) ( Q(:c,p)| |

n=n
<Cp 7 ||ullgpw) — 0.
p—0

S

<

1 / J
e —— uaz
|B(*Ta p)‘ Q(z,p)

Therefore u(z) = 0 for a. e. z € Q by 2.13.
(iv) If u € L9"(Q), then for 0 < p < diam €,

p / ()P dz < ™ |0(e, p)|'E </ lur“”)
Q(z,p) Q(z,p)

1-2 _np v
:p_“wn qpn qpp qp (p_y/ \u|qdz)
Q(z,p)

p

1-2 n—p__n—v a
= wn qpp[_p& q ] p”/ |ul?dz
Q(z,p)

1-2 n—p_ n—v
< wn q(diamQ)p[ ] q ]||u||7£q,,

P
q

b
q

(@)
Thus u € LPH(Q). O
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Next, we introduce the Campanato spaces. We will often use the following
notations:

Up ::][ u(z)dz and wug, ::][ u(z)dz for z€Q,0<p<d,
BP B("'Cyp)

where we only integrate over B/, B(x,p)*, respectively, when reasonable by
the context.

Definition 3.11 Let p > 1,u > 0. The collection of functions u € LP(Q)
satisfying

1
P
[ulp,user = sup  p ¥ / u(2) = ug,pfPdz | < o0
z€Q WUz,p)
0<p<diam Q
with the norm
”uHﬁP’M(Q) = ||U||p;Q + [U]p,u;ﬂ

constitutes a normed linear space and is called the Campanato space LPHF(S).

LPH(Q) is a Banach space: in fact, let (u,,) be L£P#-cauchy, then there exists
u:= LP — limy,_,o um- For any z, p,

p_“/ |u—um—][ U — Uy, dz|P dz
Qz,p) Qz,p)

= p‘“/ |lim ey, — Uy, — lim][ Uy — U dz|P dz,
Qa,p)\N " " Q)

where N shall be the Lebesgue nullset, on which the for reason of LP-convergence
existing subsequence (u,,) does not converge pointwisely.

< liminf p™# /
n

|Um,, — Um —][ Um,, — Um dz|P dz  (Fatou)
Q(z,p) Qz,p)

.. P
< hmnlnf[umn - um]p,“;g'
It follows that
[u — Um]g,u;ﬂ < lin}Linf[umn — um]z,“;g <e€

for sufficient large m.

Just like in LP#(9Q), if p < g and £ > 222, then £97(Q) C LPH(Q). In order
to prove that LP#(Q) = LPH(Q) for 0 < p < n and suitable domains €, we
need the following lemma.

Lemma 3.12 Let Q be a domain of type (A). Ifu € LPH(Q), wherep > 1, p >
0, then for any x € Q and any 7, R with 0 < 7 < R, we have

no~p

lu, =tz 5| < C(p, A)lulpuaf » Rv. (3.12)
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Proof.-We have
g, — uy plP < 2P (Jul2) —uy lP + |u(z) — uzg[P).

Integrating this inequality over Q(z,7), we obtain

g i—uy 5P|z, 7)) < 2P71 [/ lu(2) — u, 5|’ dz + / |u(z) — ug 7P dZ] :
b Q( -l b

z,R) Q(z,7)
Since €2 is a domain of type (A), |Q(x,7)| > A7", it follows that
o — 1y g < 2 AT R+ P 0)
< Clp, Al 0 "R

Taking the p-th root on both sides, we get (3.12). O

Proposition 3.13 Let Q be a domain of type (A). Then
LPHQ) =2 LPHQ) for 0< p<n.

Proof.First, we show that u € LPH(Q) and ||ul[co.nq) < Cllullrrn), if u €
LPH(Q), pp > 0: for any = € Q,p > 0 we have

/ u(2) — tg gl dz < 21 / (uf? + Junpl?) dz
Q(w,p) Q(.’E,p)
(3.13)

— gp—1 / |ulP dz + |Q($>P)||u$,9|p .
Nz,p)

Moreover,

1 p

|Q(‘T> P) | Qz,p)

1 p
< ———— uldz
N |Q('Ta P) |p (/Q(m,p)‘ | )

1 -1 / g )
< — | |9z, » ulP dz Holder
ST QX p)| ( Q(w)l \ ) ( )

— [z, p)|! / fuf? dz.
Q(z,p)

[tz = udz

1\ P

Substituting this inequality into (3.13), we get

/ |u(z) — ugp|P dz < 2p/ |ulP dz.
Q(Z‘,p) Q(w’p)

It follows that [u]p .0 < 2||ul|Lr.u(q) and u € LPH(C2); furthermore, ||lul|zp.u(q) <
Cl|ul|zp.i(2), where C depends on diam 2 (cf. Lemma 3.10(iv)).
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Next, we show that u € LP#(S2) and |lu||pr.x() < Cllullgrnq), if u € LPH(S)
and 0 < p < n: for any z € 2, p > 0 we have

p_“/ |ulP dz < 2P~ 1 (p_“/ |u(z) — ugp|P dz + wnp"_“|uw,p|p> .
Q(z,p) Qz,p)
(3.14)

For R > p > 0, we have
Uug,pl’ < 2p_1[|“w,R|p + |uz,r — Uz p["]- (3.15)

In order to estimate |uz r — ug,p|, in Lemma 3.12 we choose

R _ .
R:RZ = ?,T:RH—I = W,(Z :0,1,2,...).
Then B .
R\ R \ »

For any integer h > 0 it follows that

h
|u$7R B u-T:Rh+1‘ S C(p, A) [’U,]p,'uRuT Z 2_Z%+(Z+1)E
=0 5 i(n—p)
202 P
(n=p)(h+1)
pr=n P — ]
<C(p,A,n)ulp R P = (geom. series)
27 —1

p—n (n—p)(h+1)
P

S C(pa A,’IL,ILL)[U]I;’NR P 2
p—n

= Clp, Ay, w)[ulpuRy Y, -
For any fixed p € (0,diam 2), we choose h, R such that
diam Q < 2"y < 2diam Q, R = 21y,
Then

p—n

U’i,R - Iu’ﬂf,ﬂ‘ S C(p7 A7 ’n” U)[U]P,NPT (3'16)

and

_1
<1977 |ullps0- (3.17)

1
|ug,r| = 9] ‘/Qu(z) dz

Substituting (3.16) and (3.17) into (3.15), we get
1

P < 9op—1
|uwap| = [‘Ql

Julf + Ol
Substituting this inequality into (3.14) and using n > u, we derive
1
p_"/ |ulP dz < 21)—1[“]5 st wp2%~2 [—(diam Q)" Hulp + CPlulf ,
Q(z,p) ’ |Q| ’

< Clljullp + [ulp,ul;
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where C' depends on p, A,n, u,diam Q. Therefore, v € LP#(Q) and ||ullp,, <
CH“HH’:“(Q)- O

We shall not need it, but for completeness, we state without proof the follow-
ing (cf. [13, Proposition 9.1.5])

Proposition 3.14 (Integral characterization of Holder continuity)
Let Q be a domain of type (A). If n < p < n + p, then LPH(Q) = CY(Q),8 =
B2 if p>n+p, then LPH(Q) = {constant}.

Next, we introduce the space of bounded mean oscillation BMO.

Definition 3.15 Suppose that Q° is a cube in R*. If u € L'(Q°) satisfies
|ul, o := sup ][\u —ug|dzr < oo,
QCQRYJQ
where the supremum is taken over all subcubes parallel to Q°, then we say that

u € BMO(QV).

The norm of an element in BMO(QP) is defined to be

llullBMmo(goy = Ilull1;go + |uly go-

With this norm, BMO(Q") is a Banach space; this follows analogously to the
proof of completeness of the Campanato spaces LP*.

We shall use 0, to denote a cube with center at z and @)z, to denote the cube
in R" centered at = with side length 2r and sides parallel to the coordinate
axes. We often drop the z and r and simply denote cubes by @, Q°, ..., if there
is not any confusion.

Lemma 3.16 Let u € L}(Q°) such that

1
1 b
[t]s p:go := | sup —/ lu —uglPdz| < oo
ecee Q1 Jq
(i. e. w € BMO(QY), if p=1), then

1
sup

SR —u Pdz < o0.
Quwe@o [@ N Q| QnQO'u an

Proof.Let z € Q° = Qupr, and Q = Q. Without loss of generality Q #
QNQ"#Q°.

e Case 1: Let 7 > rq. Since z € Q°, we have |[Q N Q°| > 27"|Q°| = 2.
Therefore, using

1
luns — un| < M/Mm—u]v\dx (3.18)
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in the last but one step,
1
QN Q° Jonge

1
<cep)—=——s (/ lu —u o|pdm+/ lugo —u o|pd:1:>
QN Q% \Jongo N QNQ° 9 one

< op) [ AL+ hugo — ugnool?
\Q0Q0| #,0;Q0 QO QNQ°

v (o o))
()<‘Q”Q°l| e * \QOQOI\QOI/ e ugeldw) )

< 2"c(p)\u|f:,p;Q0 + c(p)2p"|u|f:;Q0 (independent of Q !)

|u — ugngol? dx

e Case 2: Let 7 < rg, then v < |[Q N Q% (z € Q) and there exists
Q= Qx » such that QNQ° c Q = QNQ° (by parallel shifting in direction
Q"). Therefore,

Q (2r)"

< =2".
QNQ° —

Consequently,

1

(similarly as above)
< 2”c(p)|u|f:’p;Q0 + c(p)2p"|u|f:;Q0 (independent of Q !)

O

We need to get to know more about the BMO-space and present a result of
F. John and L. Nirenberg [20].

Proposition 3.17 There exist two constants C1,Cy only depending on n, such
that for any Q C Q°

—¥£%VUEBMMQ%.

|uls@

dr({z € Qluz) — ug| > 1)) < C1|Q|exp [—

Proof.Since the asserted inequality is homogeneous in ¢, we may assume
lul, go = 1. Moreover, u € BMO(Q?) = u € BMO(Q)VQ C Q°, so we may
also assume Q = Q°. For a > 1 > JCQ0|u — ugo| dr we apply the Calderén-
Zygmund decomposition, Lemma, 2.12, to the function |u(-) —ugo|. There exist

nonoverlapping cubes (Qg-l)), such that

a< ]{2(1)|u —ugo|dz < 2"a, (3.19)

J
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u(z) —ugel <@ ae. zeQ\|JQ. (3.20)
J
It follows that (see remark after Lemma 2.12)
1 1 1
S0P < ¢ [ Ju-ugolds < 1Q°) (3.21)
j Q
\uQ§_1) —ugo| < ]{2(1)|u —ugo|dz < 2"« (3.22)

i
Since |ul, go = 1, we still have o > 1 > f—Q(l)|u — uQ(1)| dz for any Q;-l). Ap-
i i
plying Lemma 2.12 again to the function |u(-) — uQ(1)|, we obtain a sequence
i

of nonoverlapping cubes (u Q(z)) (collecting all cubes obtained for each u Q(l)),
such that ! ’

1
Shugenl < 3 /Q i gl dz, (3.23)
j i %
|u(z) — uQ§1)| <a ae zTE€ le) \ U Qz@). (3.24)
i
Again notice that we have |ul, go = 1. (3.23) and (3.21) imply that
2 1 1 1
171 < 23l < Q. (3.25)
a a
J J

We shall show that

lu(z) —uge| <2-2"a a.e. z€ Q°\ UQZ(?) : (3.26)

in fact, if z € Q°\ U, Q;l), then (3.20) implies (3.26). Now suppose that z €
U; Qg-l) \ Uk Q§C2), then z € Qg-l) for some j and therefore, by (3.24) and (3.22),

lu(z) — ugo| < |u(z) — uQ§1)\ + \uQ§_1) —ugo| <2-2"a.

We inductively repeat the above decomposition. For any integer k > 1, there
exist nonoverlapping cubes Qg-k), such that

1
311 < Q) fule) — ugol < k2'a ace. zeQAJQM.
J

J

It follows that

dx({z € Ql[u(z) - ugol > 2"ka}) < Y IQ".
J

The above inequality is obviously valid for £ = 0. For any t € (0, 00), we choose
k > 0, such that
2"ak <t <2"a(k +1).
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Then
dx({z € Q°[lu(z) — ugo| > 1})

< dx({z € Q°|ju(z) — ugo| > 2"kas})
1

< aexp[-At)|Q°,

g[}

where A = ong s Since @ > 1 and > k. O

2"a

Corollary 3.18 BMO(Q) = £P"(Q°) for any p > 1.

Proof.
e “&": Let u€ £(Q°) and Q = Quyr C Q°, then

QI = (2r)",Q C B(z,7v/n) N Q° =
Using (3.18) and |B| > (2r)", we obtain

1
—/|u—uQ|dy§T_"/|u—uB|dy+7“_"/|uB—uQ|dy
Q| Jo B Q
< e(n)[u]ypqo + [us —ug|

< ofn)[ul o + ﬁ / ju — up| dy

/\

B
< cln)luhwn + g 1 . Ju = unldy

< C(’)’L) [u]l,n;Qoa

since 5 < /i _ ) /n". Thus, u € BMO(Q?) and
[ullBmo < e(n)||ull g1 (qo)-
If p > 1, then £P"(Q°) C £V™(Q°) by Holder. Hence,
lul,go < e(n)|lullc1n (o) < e(n, Q%)lull com(qo)
and again v € BMO(Q°) with |lu||gmo < c(n)|[ull zom (goy-

o “=7: If u € BMO(Q), then for p > 1 and Q C Q° we have
(e e]
[lu=uaPds=p [~ #-{z € Qllulo) - uol > 1}
Q 0

o
<p0 [0 Qle [— Cat ]dt
0 ‘u|*,Q0

p 00
= pC (L‘*’QO) |Q|/ e Pl dt
Cy 0

< celp,n)lul’ ol Q-




70

CHAPTER 3. REGULARITY RESULTS

It follows that
][ ju—uglPds < clp,m)lul go - (3.27)
Q@ —_—

(independent of Q)

We assert that u € £P"(Q):
Let z € Q° = Qg 0,0 > 0,B := QN B(z, p), then

B CQupnQ®=:Q,|Q < (20)"

—unlPd _unl?d
(/|u ug| :c-l—/B\uQ up| w)
(| |u—uQ|pdx+wn|uQ—uB\”)

1 p

o+ (o [ lu—uqld

o) (1800 + (137 /o vale) )
Q] 1 P
<c(p )<| |PpQ0+(E@/Q|u—uQ|d:c> )

< @)l o + clp,m) P g
= ( ap)‘uLkQO (by (327)) ’

and we compute

—/|u—u3|pdw<£
"

which is finite and independent of p, if we can show that f: p — %(q)

is bounded, but

on Hn o 22n .
@(p) S 2—nppnwn - m ’ lfp < T0,
=1 , if p > diam Q"

and f is continuous. Thus u € £P™(Q) and [u],, ,.q0 < ¢(p, n)|ul. go-
Moreover,

fulf go << = vant o + )
0
< e, 1QD [l 00
Hence, Jull o (gs) < Cllullmroeo)
O

We close this subsection with stating an interpolation theorem between LP
and BMO spaces, whose proof can be found in Appendix A.

Proposition 3.19 (Stampacchia interpolation) Let Q° be a cube in R".
Suppose that for some p > 1,T is both a bounded linear operator: LP(Q°) —
LP(Q°) and a bounded linear operator: L®(Q%) — BMO(QP), i. e

HTu“p;QO < BP“qu;QO (328)
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7wl Bmogo) < Boolltilloo;qo- (3-29)

Then for any q € [p,00),T is a bounded linear operator: L1(Q°) — LI(QP)
and
HTu“q;QO < CHu”q;QO Vu € Lq(QO)a (3'30)

where C only depends on n,p, q, By, By.

3.1.3 L2-Theory of Elliptic PDEs in Divergence Form

For simplicity, let 2 denote a C*°-domain in R”. We are going to consider
equations of the form

Lu = D;(a"Dju) = D;f* in Q (3.31)
u = 0 on 00O (3.32)

Let p > n,a” € H*(Q),A > M. By the Sobolev embedding, there exists
A := sup||a;j||oc;0 € Ry. Of course, we can find v € Ry, such that
]

vEP < a(@)6k; < V€ Vo e Q€ eR (3.33)

For u,v € HY?(Q2) we set
a(u,v) = / a(z)DjuD;v da

Q
<Twv> = fiDi'u dr
Q

and give a reformulation of definition 3.2 corresponding to our setting, which
is more specific than that around (3.2). We are going to follow considerations
of [13, I1.8].

Definition 3.20 If u € H*(Q) satisfies

loc
/aiijuDigodx = /fiszPdiF Vo € H(}Q(Q)a (3.34)

then u is said to be a weak solution of the elliptic equation (3.31). If additionally
u € H3’2(Q), then u is said to be a weak solution of the Dirichlet problem (3.31),
(3.32).

Remark 3.21 Let u € H&’Q(Q) be a weak solution of the Dirichlet problem
(3.31), (3.32) with f; € L?(). Replacing ¢ by u in (3.34), by ellipticity and
Cauchy-Schwarz, we obtain

1 1 . .
Lipujg, =1 / |Duf? de < / FiDsude < ||flal Diullae
1% 1% 0 0

< Ifllz;ell Dull2;0-

Consequently, by the equivalence of norms on HS’Q (cf. Poincaré),

[ullze < CllDullae < CW)|fll20-
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Proposition 3.22 Let (3.33) be in force. Suppose that f* € L?(Q2). Then the
Dirichlet problem (3.31), (3.32) admits an unique weak solution.

Proof.a(-,-) is a bounded bilinear form on H,*(Q) x Hy*(Q). By ellipticity,
a(u,u) > v /|Du|2d:v Yu € Hé’Q(Q). (3.35)

Thus, a(-,-) is coercive. Since < T,- > is a bounded linear functional on
H&’Q(Q), there exists an unique u € Hé’Q(Q) such that a(u,v) =< T,v >
Vo € Hy?(92) by Lax-Milgram. O

Under higher regularity assumptions on the coefficients and the right-hand
side of (3.31), we shall establish H*2-regularity for weak solutions.

Proposition 3.23 (Caccioppoli’s inequality) Under the assumptions of Propo-
sition 3.22, if u € Hllo’f(ﬂ) is a weak solution of (3.31), then for any zo € 2,0 <
p < R < dist(zg,00), we have

1 / 2 2
— lu — al d:C—I—/ |f —a|*dx|,
(R - p)2 B(z0,p) B(z0,p)

(3.36)

/ |Dul?dz < C
B(J;Oap)

where a € R,a € R* are arbitrary, C = C(n,v,a").

Proof.The integral identity (3.34) remains valid, if we replace f* by (f*— a');
moreover, we choose ¢ = n%(u—a), where n € C§°(B(z¢, R)) is a cutoff function:

C
0<n<1 on B(zy,R),n=1 on B(xg,p),|Dn| < s (3.37)
Then

/ n?a" (z)DjuD;u dz

Q

= —/ 2n(u — a)a” (z) DjuD;n dz + / n?(f! — &?)Djudx
Q Q

+/ 2n(f? — o) (u — a)Djn da.
Q
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Therefore, by ellipticity and since ab < ea? + A%ebQ,

1/_1/ |nDu|? dz
B(:C(),R)

< 2u/ ol Dullu — af| Dy da:—l—/ 2f — a||Dul do+
B(zo,

B(zo,R

2 / 7lf - allu - al| Dn| d
B(zo,R

<c [ aDul(lu—aliDyl+1f -~ aln), ds

B(@0.R) <e?| Du >+ 5 [u=al?| D+ & | f—af>n?

+ 2 / 17|f —allu —aHDnL dx

B(xo,R) n2\f—a|2+i\u—a|2|Dn|2
1

< Ce/ n?|Dul|? dz + (g + —) / |u — a|?|Dn|? dz
B(zo,R) 2¢ 2 B(zo,R)

+(g+1>/ 7]2|f—a\2dw
2¢ B(:C(),R)

!

< C'e/ 772|Du\2dw+%/ lu — a|? dz
B(zo,R) (R—p) B(zo,R)

-I-C'/ |f — af? dx,
B(zo,R)

where C = max(2v,1),C" = C'(e,n). We take € = ”2—_01 Then

/ |Du|? dz < / |nDul|? dz
B(.Z‘o,p) B(£07R)
1

2
< / u—a2dx+/ f—al?de
(R—p) B(mo,R)| | B(mo,R)| |

Proposition 3.24 (Friedrichs’ Theorem, [3, Proposition 10.17]) Let A >
v, Let u € HY2(Q) be a weak solution of (3.31) and m € {0,1,2,...}. If
fi € H™12(Q), 455 € C™(Q), then u € H 2 (Q).

loc

Proof.Let m =0 and D CC Q. For 0 < h < dist(D,09),k € {1,...,n} and
the canonical onb {ey,...,e,} of R" we set

Dlio(z) := + (o(z + hex) — v(a))
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Hence, for any ¢ € C§°(D)
/Z D¢ (Z aiijDZu + Z(D]}CLGZ])D]U('T + hek) — D]I;fz> dx
i J J
1
= E/ZDZC (Z aiij(u(x + heg) — u)+
i J
> (aij(a + hex) — aij) Dju(z + hey) — fi(x + heg) + fi) dz (3.38)
7 .
= %/ZDZC (Zaiiju+
i J

Z a;j(z + heg)Dju(z + hey) — fi(z + heg) + fi | dz
J
= O’

1. e., setting

fri = Y_(DRaij)Dju(z + hey) — Di fi,
J

/D Z Di¢ (Z ai;D;j(Dju) + fm) dr = 0. (3.39)
i J

Hence, D,@u solves a PDE of the same type and we can apply Proposition 3.23
to obtain

IDDgullo;B(zo,0) < Cllfnll2sp + [1DRull2;p),

for any ball B(zg, p) CC Q. Therefore,

||le<:L’u’||1,2;B(z0,p) = ||DI}<:LIU’||2;B(z0,p) + ||DDI’;U||2;B(IO,,0)
< C'(|| fallz;p + [1DRull2;)-

Now, for any u € (H%? N C*)(D),
1
[ Phat@)? ds = [ [ o+ hey) —ula))? do
D ph
1 h
:/|—/ Dyu(z + sey,) ds|* dx
phlJo
1 h
g/ —/ |Dpu(z + seg)|? ds dzx
phlJo

< / |Dyul|? d.
Q

(3.40)
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Since (H%? N C*®)(D) C H*?(D) dense, we can extend
T : (H"? N C*®)(D) — L*(D),u — DMy

to all of H?(D), (3.40) remaining valid. Correspondingly,

J

<C (/\Du|2dx+2/ |D,’}fi|2dm)
Q i D

< C'(|Dullzn + 1Dk fll20)%,

which shows that (D!u), is bounded in H"?(B(z,p)). Since H“*(B(zo,p))
is reflexive, there exists vy, € H?(B(zo,p)) such that for some subsequence
h — 0,

4l < Y [ (o ti(a) v 1) | SIDjule + hew)| + DS | do
Z- 3.

Diu —s vpweakly in HY?(B(z, p)).
It follows for ¢ € C§°(B(zy, p)) as h — 0, that

/ ¢ Doy dz +— / ¢DDu dx
B(EOap) B(J:Oap)

1
-2 /B@m,p) ¢ (@) Dy(u(z + hey) — u(z)) dz

-/ ( )%mw — hey) — ¢(«)) Duu(e) da

-/ » (D¢t = hew = @) ) ula) o

— / (leC)Ud'T,
B(zo,p)

i. e. u € H*?(B(zg,p)) with Dyyu = Djvp = Dyv; by definition of Sobolev
spaces. Moreover, Dl'a;; — Dya;; weakly in L%(B(zo, p)), since

/ CDZGU dx = / az-jD,;hC dx
B(z0,p) B(z0,p)

—_— — aijDdew = / CDkaij dzx.
h—0 B(”“Ovﬂ) B(”“Ovﬂ)

Analogously, D f; —s Dyf; weakly in L?(B(zg,p)). We have even strong
convergence of Dju(- + heg) to Dju in L*(D) as h tends to zero. Thus, we can
pass to the limits in (3.39) and obtain for ¢ € C§°(B(zo,p)),

/ ( ) Z DZC Z aiij(Dku) + Z Dkaiiju - Dkfz dr = 0.
B Zo,p ]

i J
In the case m > 1 we can therefore take over the proof for u on € so far to the
above PDE for Dyu on B(zg,p) to obtain the full result iteratively. O
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Corollary 3.25 Suppose that a¥, f* € C®(Q) with (3.33). If u € HY2(Q) is
a weak solution of (3.31), then u € C*®(Q).

Proof.By C.6, the embedding J : C*1(Q) — HFT1:°°(Q) is an isomorphism
for each k € N. Now apply the Sobolev embedding D.10 to obtain the corollary.
O

Corollary 3.26 Suppose that a”/ are constants satisfying (3.33), f* = 0. If
u € HY2(Q) is a weak solution of (3.31), then for any B(zy, R) CC Q and any
positive integer k,

wllk,2;B(z0,R—e) < Cllull2;B(zo,r): C = C(n, v, k, R).

Proof.Under our assumptions, Corollary 3.25 implies that v € C*(Q). It
satisfies

/ a"DjuDpdr =0 Yy € Hy*(Q). (3.41)
Q
We choose a sequence of Ry, as follows:
1
Ro=R,R; = i(R_ €+Rk_1),k €N

Applying Lemma, 3.23 to u, we obtain

C
Dquwgi/ uwl?dz,C =C(n,v),s=1,...,n.
/B(wo,Rl)| o (R — Ry)? B(zo,R)| | (n.v)

Note that Dyu (t =1,...,n) satisfies
/ aiij(Dtu)Dicp dr=0 Vype Hé’Z(Q),supp pCQ:
Q

in fact, employing (3.41), v € C*(2) and integration by parts, it follows that
aD;Dju = 0. Hence, Dy(a” D; Dj)u = a¥ D;(D;Dy)u = 0.
Applying Lemma 3.23 to Dyu, we get

C
DDuZdazgi/ Dwu|? dz
/];ﬁ’(wo,Rz)l . ‘ (Rl _R2)2 B(:L‘(),Rl)| ! |
C

< ul? dz.
~ (R—R1)*(R1 — Ry)? /B(acg,R)l |

Applying Lemma 3.23 k-times and Lebesgue, we are done, since R | R—e. O

Corollary 3.27 Let a¥ be constants satisfying (3.33), f* = 0. Ifu € H"*(B})
is a weak solution of (3.31), u=0 on I'r := BrN {z, = 0}, then

||u||k,2;314{‘_E < CHUHZ;B}"

where C = C(n,v, k, R).
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Proof.Set u(z',z,) = —u(z',—z,) for z,, < 0, then the extended function u
satisfies Lu = 0 weakly:
Let ¢ € C§°(Bg) and for 6 > 0 let 7 be an even function in C*°(R), such that
n(t) =0 for [t| < 6,n(t) =1 for |t| > 26 and || < 3. Then

O:/ aijDiuDj(n(wn)w)dw
Bg

:/ aijn(avn)Diungodx—I-/ o' (x7) Dpua¥ dz.
Bg

Bpg

< 8max|Dy| |Dpu|dz — 0.
4
{ W0

/ on' Dyudz
Bg

(see proof of 2.22). Consequently, letting § | 0, we obtain

0<-’En <26}

0:/ aijDiungodx,
Bg

so that u € H2(Bg) is a weak solution of (3.31). By Corollary 3.26,

lllg s < lullkasmg . < Cllullssg < 2C ullyps.

O

The following considerations mainly base on [12] and shall lead to the follow-
ing regularity result of weak solutions:

Proposition 3.28 (cf. [13, IT Theorem 9.2.4]) Suppose that a” are con-
stants satisfying (3.33), f* € L**(Q),0 < u < n and 00 is smooth. If
u € Hé’Z(Q) is a weak solution of (3.31), then Du € L>*(;R™); furthermore,

[ Dul| g2y < Cl fll c2m(0)s
where C = C(n,v, u,diam ).
We start with three fundamental lemmas.

Lemma 3.29 ([12, Lemma 6.1]) Let ¢ : (0,00) — R and B : (1,00) — R
be nonnegative, A > 1,a > 0. Suppose that for any p > 1 there exists t(p) > 0,
such that for p,r € (0,t(p)] with 1 < % < p the following inequality holds:

p(p) < A (g)a o(r) + B(p)p”- (3.42)

1
€

Then for any € > 0 and p,r, such that 0 < p < r < t(A¥?),

1 Are

e0) < A(2)" () + Blan) (3.43)
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ProofFix € > 0, set p, := At. For p,7 € (0,%(pc)]; such that 1 < 2 < p,
(3.43) follows immediately from (3.42), for

p(p) <A (g)a o(r) + B(A?)p” < A (g)a_e o(r) + B(A®)repe=e
<4 (g)w o(r) + B(A%)Af P

Now suppose that p,r € (0,%(pe)], % > pe. There exists h € N, such that
(4% =)t < % < phH. (3.44)

Therefore,

T
1< — <per < pplth,
pp

€

which implies

AN A
1< h h—1 — T T T Pe
PPe PPe P

We apply (3.42) to the list of pairs (ppl,r), (op? ", pp?), - -, (p, ppc) and p = pe
to obtain

i0)
P\ @
elopt) < A (2)" pete(r) + B(po)ppe”

i1)

h—1\ @
_ pp! B
o(ppl ) SA(—pph ) o(pp) + B(po) (ot 1)

a, a(h—1)

A
= ﬁw(pp?) + B(p)p®p!

in)

©(p) < —w(ppc) + B(pe)p™.

B[

Successive usage of the predecessor-estimate yields

A
o(p) < ﬁw(ppe) + B(pe)p®
A
pe

h
<o < AMH(2) () + B(p)p® Y A7,

r

< (%(p(ppz) + B(pe)pap?) + B(pe)p® (3.45)

€
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Therefore,

p(p) < A1 (g)e (g)&_6 o(r) + B(pe)%wpaf (E)6

e A .
<A (g)a o(r) + B(pe)ﬂrfpo‘_6 (since (2)° < A"

Lemma 3.30 Let ¢, B, A be as in Lemma 3.29, o, € R such that 0 < 8 < a.
Suppose that for any p > 1 there exists t(p) > 0 such that for p,r € (0,t(p)]
with 1 < % < p we have

p(p) < A (g) o(r) + B(p)p”. (3.46)
Then V0 < € < a — B,Vr € (O,t(A%)] and V0 < p<r
a=p
a—2 1 A<
wp) <A(2)" o) + BlAS) —5—". (3.47)
r A% — A

Proof.Fix 0 < € < a—f3 and set p, := A<, For p,r € (0,t(pe)] with 1 < % < pe
(3.47) follows from (3.46), since 7 < 1 and

a—p3
A«

a—pB

A~ —A
Now, suppose p,r € (0,%(pe)] and % > pe. Analogously to Lemma 3.29, for
some h € N with p? < ;< pht1l we obtain

> 1.

io)
P\ @
olopt) < A (2)" phog(r) + B(po)opl?
i1)
A

paso(pp?) + B(p)ppl~’
€

p(ppt™") <

in)

0(p) < =(ppe) + B(pe)p”

2|

and instead of (3.45),

o(p) < I%w(ppe) + B(p)e?

INA
YN

(I%p(pp?) + B(mp%f) + B(pe)p”

€
A[A

3.48
<= (— (—w(ppg) + B(pe)pﬁpfﬂ> +B(pe)pﬂp5> B
h

T op¢ \p¢ \p¢

<o A (O i)+ B’ Y- (25)

r




80 CHAPTER 3. REGULARITY RESULTS

We have (g)€ < A" and

h j h 1 h a—p3
A\ A Y _a-p 1 A%

() 3 () e A
j:O pE j:(] A € j:() ]_ — A € A € — A
Therefore,

p a—€ 1 /3 a:B

p(p) <A (—) p(r) + B(A<)p" —=

r A= A

as in Lemma 3.29. O

Lemma 3.31 (cf. [13, I1.9.2.1]) Let ¢ be a nonnegative and nondecreasing
function. Suppose that

plp) <A [(%)a +6] ¢(R) + BR? V0 < p<R< Ry,

where A, a, 8, Ry are nonnegative constants, 8 < a. Then there exist positive
constants ey = €g(A4, a, B) and C = C(A, «a, 8), such that for € < €,

p(p) <C [(%)%(R) +Bpﬂ] Y0 < p < R < Ry.

Proof.Under our assumption, for any 7 € (0,1) we have
¢(TR) < AT°[1+e7™*Jp(R) + BR’, R < Ry,

where we assume without loss of generality that A > 1. At first, we take

v, such that( g)< v < a. Then we choose 7, such that 2A7% = 77, i. e.
log(2

T= exp[—ﬁ]. With these choices of v, 7 and ¢, for € < ¢y we have

o(TR) < 2A7%p(R) + BR"
< 717¢(R) + BR?, R < Ry.

Now, we iterate. For any positive integer k£, we have
o(T**1R) < T7p(t*R) + BrkPRA
< 77(T790(tk_1R) + B'r(k_l)ﬂRﬂ) + BTk RA
k
<-or < 76 F)%(R) 4+ B RP Z F3I(=5)

7=0
—B)(k+1)

o(T*1R) < cr*k+DB[p(R) + BRP],C = C(A, o, B). (3.49)
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For any p < R, we choose k such that 7**'R < p < 7*R. Inequality (3.49),
isotony of ¢ and our choice of k& imply that

o(p) < p(mFR) < CT*P[p(R) + BRP)
<cr B (%)5 [o(R) + BR"]

<cr? [(%)ﬂ o(R) + Bpﬂ]
<0 [(%)ﬁw(R) +Bpﬂ] ,
where C1 = C1(4, a, B). O

In the next lemmas, we establish some L?-estimates for weak solutions.

Lemma 3.32 (cf. [12, 5.1]) Let u € Hé’Q(Q) be a weak solution of Lu =
D;f7. Then there exists ¢ = c(v), such that for any o € R"

/|Du|2dm < c(u)/|f —al*dz (3.50)
Q Q

Proof.Since u is a weak solution, we have
/ a’DjuD;pdr = /(fj —aj)Dipdz Yy € Hé’Q(Q).
Q Q

For ¢ = u by ellipticity and Cauchy-Schwarz,

- /Q IDul?dz < SNIf; — a0l Diullze
J

< |If = allzallDull2;0-

Dividing by ||Du||2;o yields the lemma. O

Lemma 3.33 Let u € HY?(B;}) be solution of Lu = D;f? in B andu =10
on T, = 0B, N{z, =0} (i. e., Ju, € C1(B}),un =0 on T,,neN:u, —
u in HY2(B})). Then there exists c = c(v), such that for any 0 < p < r,a €
R,

2 v 1 2 2
/B+|Du| ds < of )<(T_p)2 /B;r|u| dm+/B:r|f o dx). (3.51)

P

Proof.Since u is a weak solution, for any ¢ € Hé’Q(Bj), a € R we have

/B N a”’ DjuDip dz = /B +( fi — aj)Dipdz. (3.52)

Let § € C3°(By) with0 <9< 1,0 =1 on By, |D;0] < X and 6, = 0 ;-

Since u =0 on Ty, #2u € Hé’Q(Bj'). Take ¢ = 62 u and go on as in the proof
of 3.23. O
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Lemma 3.34 For any u € H"?(B;") with u =0 on T, one has

2
/+|u\2dm < %/+|Dnu\2dm. (3.53)
B B

Proof By A.4, we may assume without loss of generality that u € C1(B;}),u =
OonT,. Let Z = (21,...,2,-1,0) € T, and = € B;}. Since u(Z) = 0, we have

u(x):/ Dpu(zi,...,n_1,t)dt
0

and thus
[ :
W@P < ([ MpwlIDau(as, oo zues, ] de
0
< wn/ |Dypu(zy, ... o0 1,t)% dt
0

by Holder. Integrating over B, yields

/B;F|u(ac)|2da::/T/Om|u(x)|2dxndi

L LT

|Dpu(zy,. .., o 1,t)? dtdz, dz

- / / Dou(z, )2 dt / o din d7
r»J0 0

2
< —/ | Dyul? da
2 B;.’_

by the Fundamental Theorem of analysis. O

Properties of homogeneous solutions in the constant case

Lemma 3.35 (cf. [13, I1.9.2.2.(i)]) Let u € HY?(Q2) be a weak solution of
Lu = 0, where we assume that a are constants satisfying (3.33). Then there
ezists a constant C > 0, such that for any x¢g € Q and p, R with 0 < p < R <
dist (xg,00) =: d,

P\" 2
ul2de < C (L / luf? dz. (3.54)
/B(l‘o,p) (R> B(IOaR)

Proof.Corollary 3.26 implies that u € H*?(B(zo, £)) and that

el 0,2 < Cllwllypo,my (k €N, (3.55)
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where C = C(n,v, k, R). We choose k > n. By the Sobolev embedding, D.10,

sup |u| < C||u||k,2;B(zo7§)- (3.56)

B(%a%)

It follows from (3.56) that for 0 < p < &,

Juf? dz < wap™ sup [ul? < Cp"ull? , o ny.
/Bm,p) Blzo &) k2B (a0, )

By (3.55),

/ uf? do < C(R)p”/ luf? da, (3.57)
B(J"Oap) B(.’L‘(),R)

where C'(R) also depends on R in addition to the dependencies on n,v,d. Us-
ing a rescaling technique, we next show that C(R) = C1R™™, where C; =
Ci(n,v,d). In fact, at first we fix a < d. Then (3.57) implies

/ lu|? dz < C(a)r”/ lu? dz
B(zo,r) B(zo,a)

a I—Zo
R

for any r < 5. Set y = a
ly| < r < §; therefore,

/ ()2 dz = (§> / lu(z0 + Ra~ly)|2 dy
B(IO,P) a By

(since T : B(xg,p) — By, detT = (%)”)

< (g)nc(a)r”/a u (xo + %y)
_ (g)nC(a)r"< )H/B(wO’R)m(m)\de

= p"C(a) (E)n/;(zo,R)m(x)P dx

— "RC / ()2 d,
B(J)o,R)

= T(x),r = a%. Then |z — z9| < p implies

2
dy

o e

where C; = Ci(n,v,d). This proves that (3.54) is valid for 0 < p < £. For
% < p < R one has

R n P\ P\
wldr < / w?dr = (—) — / widr < 2" (= / u? dz.
/B,, ~ JBg p (R) Br B <R) Br
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Corollary 3.36 (cf. [12, Corollary 7.1]) Let u be as in Lemma 3.35. For
any p with 0 < p< R<d,méeN*

/ D™ dr < c(v.d) (£)" / \D™|? dz. (3.58)
B R B
P R

Proof.D™u satisfies the assumptions of Lemma 3.35 on Bpg, since u € C*°(BRg)
by 3.24, and L(D™u) = D™ Lu = 0, because of constant coefficients. O

Lemma 3.37 Let u € C®(Bg) be a solution of Lu = 0 on Bg. Then there
exists a positive constant C1(v), such that for any 0 < p < R,a € R,

+2
/ u—uydz < () (2)" / lu— of? dz. (3.59)
B, R Bpr

Proof.For any a € R, u — « satisfies the assumptions of Lemma 3.35 on Bp.
Analogously to Lemma 3.35,

lu— all? 55, < C(t R E) / lu — af? dz. (3.60)
2 BR

For sufficient large k, by D.10 we obtain

> sup [Dju < Oln, Bl s, <CwiR) [ Ju—affds. (361
7 50.5) L B

Let 0 <p < %. For z € B,, by the mean-value theorem we have

fu(z) — u(O)* < C(n)p* Y sup |Djul” (3.62)
7 B(0.5)

From (3.61) and (3.62), for 0 < p < & it follows that

Br

/ lu— | dz < / lu— u(0)? dz < C(v, R)p"+2/ lu—al’dz, (3.63)
B, B,

where the first inequality follows from 3.39 and the rest of the proof is done as
in 3.35. O

Corollary 3.38 Let u be as in Lemma 8.37. Then for any p € (0,R],m €
N, a € R?,

9 p n+2 9
|D™u — (D™) |2 dz < C (v) (—) / ID™u—a?dz.  (3.64)
B, R Bgr

Proof.D™u verifies the assumptions of Lemma 3.37. 0
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Lemma 3.39 p+— ®(p) = fB(wo p)|u(:c) — Uz p|? dz is mondecreasing.

Proof.Setting
B(t) = / u(z) — P2 do,t € R
B(w07p)

we derive that ®(p) = minger ¥(¢). In fact,
| (o) = tggf? = fute) o da
— [ ((e) =tz ule) = )(ule) iz~ u0) + ) o
B(zo,p

= (2u(m) — (Ugg,p + 1)) (t — Ugg,p) dz

B(w07p)
=2t — ) — 12+l
- u$07p Iu'w05p Zo,p
2 2
= 2tUgqy,p — 17 — (9

= —(u2 — 2tug, , + t2)

Zo,pP
= —(tgo,p — 1)? < 0.

Thus for p < R we have

/ () — g d: < / ()t ]2 i < / () iz e
B(zOzp) B($07p) B(IO’R)

O
Properties of solutions of Lu = D;f’ in the continuous case
In the following we consider the equation
Lu=D;f! with f; € L*(B,),a;; € C(B,). (3.65)

We set w?(r) := sup;; sup g, |aij(z) — ai;(0)|? and also write

w(r) =sup sup |ag(z) — aij(zo)[?
tj B (zo,r)

later on without redefining; furthermore, let Ly denote the constant coefficient
operator

Lo = a"(0)D; D;. (3.66)

Lemma 3.40 Let v € H%%(B,) be a solution of (3.65) in B,. Then there
ezists C(v), such that for any p € (0,7]

/Bp‘DuPdeC(V) ([(}%)"-I—wZ(T)] /BT‘Dude-l_/Brlledw)' (3.67)
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Proof.From
/ a(z)DjuD;p dx = /B fiDjpdx V€ Hé’Q(BT)
it follows that T “
/ a(0)DjuD;p dx —/ [fi + (a¥(0) — a¥(x)) Dju) D dz. (3.68)

r

Now decompose u in v + w, where v solves
/ a(0)DjuDipdz =0 Vo € Hy*(B,),v —u € Hy*(B,) (3.69)

and w solves

/ a3(0)DjwDip dz = / [fi + (a(0) — ay;(2)) Diu)Dipds Ve € HY(B,).
B,

' (3.70)
Since v solves Lyv = 0 in B,, we may assume that v € C*°(Bg) by Proposi-
tion 3.24 for any Bg CC B,. Fix § < R < r. By Corollary 3.36, we obtain

2 AN 2
/ \Dvldz < C(v )(R) Do ds
(3.71)
<2"C(v /|Dv|2dw

for p € (0, R]. Since R is arbitrary, (3.71) is valld forO0<p<r.

w € H&’Q(B,«) solves Low = D;(fi + [a¥(0) — a¥(z)]D;u), where f; + [a;;(0) —
aij(z)]DIu € L?(B,) by assumption. We apply Lemma 3.32 with & = 0 and
obtain

/ \Dw\Qda:gC(u)/ FI2 + w2(r)| Dul? da. (3.72)
B, B,

For 0 < p < r, from (3.71), (3.72) and u = v + w it follows that

/ |Dul? d
B

P

gc@){[(f) /|Du|2dx—l— /|Dw|2d:c+/ |f|2dm}
SC(V){[(';) (1 + w?(r)) /|Du|2dx+ p +1 / |f|2da:}

(3.73)
O

Lemma 3.41 Let u € HY?(B,) be a solution of Lu = D, fJ in B,. Then there
ezists C(v) > 0 such that for any p € (0,7) and o, B € R",

/ |\Du — (Du), | dz <

P

C(V)((g)"”/B |Du—ﬂ|2dw+w2(r)/B |Du|2dac+/B |f—a|2d:c>.

(3.74)
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Proof.Decompose v in v + w as in Lemma 3.40. Then v satisfies the as-
sumptions of Lemma 3.37 with B, instead of Br. Applying Corollary 3.38, for
0<p<rpBeR" we obtain

/ Dy — (Do), 2 dz < 272C(v / D — B2 da. (3.75)
Applying Lemma, 3.32 to w, for 0 < p < r,a € R", we obtain
/ \Dwl? dz < C(V)/ 1f — a? + w(r)| Dul? da. (3.76)
B, B,
For 0 < p < r, from (3.75), (3.76) it follows that

/ \Du — (Du), 2 da

P

< 2/ |Dv—(Dv),,|2d:z;+2/ \Dw — (Dw), | dz
B, B,

7

SQIBP\Ddem

)n+2 |Dv — B dx —I—/ | Dw/? dw]

L B, By

<Cv) ( )"”/ \Du — B dz + <1+ (3)"+2) /Br|Dw|2dac]

<ow [ (&)™ / Du— B2 de + (1+( ) “) ) [ DuP s+
/ |f — o dw] .

<CWw) (

3D

3D

(3.77)
0

Regularity of Du in the constant coefficient case

Proposition 3.42 Let u € HY2(Q) be a weak solution of Lu = D;f*, where we
assume that a,] are constants satisfying (3.33). If f; € L2*(Q),0 < u < n+2,
then Du € L2*(Q;R™).

loc
Proof.For zy € Q CC Q,0 < R < ¢ := 1dist(Q, 09), similarly to Lemma 3.40,
we let v € HY2(B(zg, R)) be the solution of the following elliptic equation
/ a’DjuDjpdr =0 Vo€ Hé’Z(B(xo,R)),v —u € Hé’Q(B(xO, R)).
B(zo,R)

(3.78)
Such a solution exists, for we can solve Lw = D; f*,w € Hé ’Q(B(aco, R)) uniquely
by Proposition 3.22, then define v := u — w to obtain

Lv=Lu—-Lw=0,u—v=wE€ Hé’Z(B(wO,R)).
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By Corollary 3.38,
n—+2
/ Db — (Do) d < € () / Do — (Dv)ay 5l? dz, (3.79)
B(107p) R B(IOaR)

where 0 < p < R,C = C(n,v,d). For simplicity, we denote B(xzy, p) by B, and
(Du)gg,p by (Du),. Since for any suitable set M

1
[ wheds = Sl <l (3.80)
M | M|
we compute
/ |Du — (Du),|? dz < 2/ |Dv — (Do), 2 dz + 2/ \Dw — (Dw), | dz
B, B, By

+2
o(L)" / |Dv—(Dv)R|2d:v+8/ \Dw? dz
R Bg B,

IA

IN

+2
o(L)" / Du— (Du)R\2dx+C/ |\ Dwl? da.
R Br Br
(3.81)

Now, we estimate fBR\Dw\Z dz. Note that w=u—v € Hé’2(BR) satisfies

/ aiijWDiwd””:/ [f* = (F)rIDipdz Vo € Hy*(Bp)
Bg Br

(this follows from [ c¢D;édz =0 V¢ € C§°,c € R and C§° C H&’Z dense). By
choosing ¢ = w in the above equation and using the ellipticity condition and
Holder, we derive

v Dl = v / Dwdz < |If = fallassnl Deollns,.

Bgr
Therefore,

/ |Dw|? dz < C/ \f — fr|? dz. (3.82)
Br Br
Since f* € L2*(12), we have
[ 1= iul do < R¥1 o
Br
Substituting this inequality into (3.82), we get
/ Dwl? dz < Of 2 o RH. (3.83)
Bpg
Substituting (3.83) into (3.81), we conclude that

Du— (Du),de < 0 (£)"™ [ |Du— (Du)pf da + C[f13 0 R"
. U U)p|”axT < R o U U)r| ax 2,u;4
P
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where C = C(n,v,d). In Lemma 3.31 we choose
So(p) = / |Du - (DU)P‘2d$7A = CaB = C[f]g,p;Sba =n+ 2a:8 =M, €= 0.
By
Then
[ pu-@uds <o (R [ 1Du DU do+ 1B e )
B, Br
It follows that
o [ 1Du= (D), do < C (IDulfie + 7B u0)
P

where C = C(n,v, u,d),0 < p < R. This implies Du € L',IZO’QL(Q;R"). O
Regularity at the boundary — constant coefficients

The following considerations prepare us for generalizing Proposition 3.42 to 2.

Lemma 3.43 Let u € HY?(B;}) solve Lu = 0 in B,F, u =0 on T, where the

T
coefficients of L are assumed to be constants satisfying 3.33. Then there exists

C =C(v) >0 such that for 0 < p<r

n+2
2dr < L 2 da. :
/B,}Lu dx_C(l/)(R) /B;ru dz (3.84)

Proof.By Corollary 3.27,

4l 059 < COskr) [ u da (3.85)
B,

At this point we remind ourselves at the proofs of Lemma 3.35 and Lemma 3.37.
Let k be sufficiently large, then with Sobolev,

Z sup ‘D]u|2 S C(n’ T)||u||i,2;B+(0,%)' (3.86)
7 5 05)

By (3.85) and (3.86), we obtain for p € (0, 5]

/B; uw?dr = /B,,+|u(m) — w(0)[? d

gC(n)pn+22 sup |Djul® (3.87)
I OR

< C(V,r)p"+2/ u? de.
Bf
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For defining the dependence of C(v,r) with respect to 7, we at first consider
v:=u(r)(€ H**(Bf"),v =0 onTy,Lv =0 in Bf"). (3.87) for v and B* (0, 2),
Bi respectively leads to

[ i@t < c (8 [ tan

Now consider z — 7; then

2
2 < P n+/ 2dx. .
/Bju dx < C(v) (7") Bju dz (3.88)

Modifying C(v), (3.88) remains valid for any 0 < p < r. O

Corollary 3.44 Let u be as in Lemma 3.43. Then for 0 < p < r,h €
{1,...,n =1},

n+2
/ Dyl dz < C(w) (2) / \Dyul? da. (3.89)
B} T Bf

Proof.Dpu satisfies the assumptions of Lemma 3.43. O

Lemma 3.45 Let u € HY?(B,") be solution of Lu = 0 in B}

T

Then there exists C = C(v) > 0, such that for any 0 < p <,

u =0 on T').

2 P\" 2
/B;|Dnu| dz < C(v) (T) /Bj\Dnu| dz (3.90)
and

2 P n+2 9
/ Dy~ (D) de < O) (£) Dyt — (Dou)r[2dz.  (3.91)
Bf R B,

Proof.After odd reflection and 3.24, we may assume u € C*°(B (O, %)) By (3.85)
and Sobolev, for 0 < p < 7, we obtain

/ |Dpul?dz < C(n)p™ sup |Dnul?
i B7(03)

< C(n, T)pn||u||i,2;3+(0,§) (3.92)

< C(V,’)")pn/ u? d.

BF

Since © = 0 on I';;, we may apply Lemma 3.34 and obtain

/ |Dyul? de < C(I/,T)’I‘Qpn/ | Dyul? dz. (3.93)
B} Bf
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(3.90) follows with the same homothety argument as between (3.87) and (3.88).
Note that u — cz,, satisfies the assumptions of the lemma for any ¢ € R and
that (3.91) is not affected, if we replace u by u — cz,. By (3.85),

lu = el 55402 < Cln, k,T)/ = can|? de (3.94)
345 ’g B+

T

and together with Sobolev and the mean-value theorem

/+|Dnu — Dpu(0)]?dz < Cp™™?  sup Z |D™(u — cxp)? (3.95)
B BH(0,5) [mi=2

< C(l/,‘l“)pn+2/ lu — czp|? da.
Bt

T

On the other hand, by Lemma 3.34,

2
/B+|u — cxp|?dz < % /B+\Dnu — ¢|* dx. (3.96)

T

Thus, for 0 < p < 7,
/ |Dpu — Dypu(0)|? dz < C(v, r)TQp"+2/ |Dpu — cf? d. (3.97)
BY B}
Applying the homothety argument, which lead to (3.88), we obtain
9 P n+2 9
Dy — Dpu(0)]? dz < C(v) (—) Dy — ¢f? da.

BY r B

Setting ¢ = (D,u), and using Lemma 3.39, we obtain

|Dpu — (Dpu),|? dz < |Dypu — Dpu(0)|? dz
Bf Bf

0 [

<CW) (8)"” /B Do~ (Dy), * da.

r

The case 5 < p < r follows as usual. O

Regularity at the boundary — continuous coefficients

Lemma 3.46 Let u € HY?(B;") be solution of Lu = D, f* with a;; € C(B;}),
fi € L*(B;) and w =0 on T,. Then there ezists a positive constant C(v) such
that for any p € (0,7),

/B+|Du|2 dr < C(v) ([(;)n +w2(r)] /B;JDulQ d$+/BT+|f|2 d$> . (3.99)

P
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Proof.Decompose u in v + w as around (3.69), (3.70) with B, replaced by
B;f. v satisfies the assumptions of Lemma 3.43 and Lemma 3.45. Hence, for
0 < p <7 by (3.89) and (3.90), it follows that

/ |Dv|? dz < C(v) (B)n/ | Dv|? dz. (3.99)
Bf T Bt
Applying Lemma 3.32 on w with 2 = B, and o = 0, for 0 < p < r we obtain

/ |Dw|? dz < C(u)/ |f|? + w?(r)| Du|? dz. (3.100)
Bt Bt

P

The assertion follows from (3.99) and (3.100). O

Lemma 3.47 Under the same assumptions as in Lemma 3.46 there ezists a
positive constant C(v), such that for any p € (0,7),a € R”

n—1

Z/ |Djul? dz <
j=1 IT
p n+2n—1
P P 2 2 2
ow | () Z/B+\D]u| dz + w (r)/B+\Du| d:c+/B+|f of? do
7j=1 T ™ r
(3.101)
and
/ Dot — (Do), |2 dar < (3.102)
B

P

n+2 9 9
/\Dnu Do)y 2 d + w*(r )/\Du| dx+/|f—a| do

B Bf

Proof.We argue as in the previous lemma. Let u = v + w as in (3.69),
(3.70) with B, replaced by B;f. Apply Lemma 3.32 on w, (3.89) on v for
j=1,...,n—1 and (3.91), for j = n respectively. O

The following proposition is fundamental for passing from Proposition 3.42
to its global version 3.28. The proof is kind of hair-raising, because of its case
distinctions. This might be the reason, why it has not been done in detail in
the literature we took into consideration.

Proposition 3.48 Letu € H"?(B;) be a solution of Lu = Diftin Bf,u=0
on Ty, where f; € LP*(B),0 < p < m,a;; € C¥(B]),0 < v < 1. Let
R € (0,1). Then Du € L2*(B};R") and we have the estimate

1Dl 5 < OO RYIDUIE o + 11 ) (3.10)
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Proof.Fix R € (0,1) and set dp := %. Let 29 € B}, and 7 € (0, ).
Case u < n.

1. Case B(zg,r) C Bf:
By Lemma 3.40,

/ |Du|?dz <
B(x0,p)

cw) [(£)" +w*t)] /B(w T)\Du|2dx+0(u) /B(w T)|f|2d:1:.
<P

L2 N(B+)

Remember that £># = L% if 0 < u < n. Since a;; € C(Bf), there
exists g € (0,dp), such that for 0 < p < 7 < 7y,

n
Dul?dz < C g _|_€/ DU2d$+Cf
/;(Io,p)| | B [(T) ] B(zo,7) | | || ||£2 p,(B+
where C' = C(v, R). Now apply Lemma 3.31 with
w(p):/ |Duf? dz, A = C,B = C|f|2a . sy @ = n. B = .
B(;I,'pr)

Then there exists 7y € (0,79), such that for 0 < p <7 <7,

2 g, < ~—p 2 2
/B(zo’p)|Du| dz < C (r /31+|Du| dx + ||f||£z,u(31+)) p

Therefore,

p [ DU (Du)ay s < CODUIR e+ 1)
B(z0,p) ot !

where C = C(v, u, R).
2. Case B(zo,r) N By = BT (z0,7), i. €. 29 € Tp:
Decompose u in v + w as in Lemma 3.46 with B;" replaced by B (zg,r)

and a;;(0) replaced by a;j(xo). From this lemma, it follows for p € (0,7)
that

[ puttds <06 [(2)" 4] [ 1D do 00 [ 177

Analogously to 1., we obtain for 0 < p < 7 < 7y,

P o 1Dul < OUDUE 4 11 )
Z0,p

Remember LPH 22 [PF V0 < py < n.
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3. Case 0 < dist(wo,[r) =: d <, B(wo, p) C B (in particular p < d):

Let yo be the projection of xzy onto I'p. Decompose u in v + w as in
Lemma 3.46 with B (yg,4r) instead of B;f. Then

/ |Dvf?dz < C (3)"/ | Do|? da
B($05p) d B(““Oyd)

by Lemma 3.35 applied to D;v, since after odd reflection and in view of
Friedrich’s theorem we may assume v € C*°(B*(yq, 2r)).

IN

P\" 2
cl= / Dv|* dz
(d) B+(yo,2d>| |
n . n+2
C (E) c <2—d> / | Dv|? dz
d 2r B+(y0,27')

by Lemma 3.43 applied to D;v.

<c (3)"/ \Do|? da,
r B+(y0727‘)

where C = C(v, R). Clearly,

/ |Du|? dz < 2/ |Dv|2dx+2/ |Dwl|? dz.
B(.Cﬂo,p) B(.’E(],p) B(l‘(),p)

Thus for p < d,

/ \Duf?dz < C (3)”/ \Do|? da + C |Dwl|? da.
B(l‘o,p) r B+(y0,27") B+(y0527')
(3.104)

IA

Since

/ a% (zo) DiwDjp dx = / (fi+[a% (zo)—a" (x)]| Diu) Djp dx
B+ (yo,4r) B+ (yo,4r)

for any ¢ € H3’2(B+(yo, 4r)), it follows for ¢ = w that

/ \Dw|dz < C 1|2 da + Cw2(47")/ |\ Dul? da.
B+(y0547‘) B+ y0547‘)

B+ (yo,4r)
(3.105)
Substituting (3.105) into (3.104) yields

n
/ |Dul?dz < C [(B) + w2(4r)] / | Du? dm+C||f||L2,“(B+)r”.
B(zo,p) T B (yo,4r) !
Note that w?(4r) < € for r < 2. Similarly to case 1., apply Lemma 3.31

with
o(p) = {f%o,p)lD“l? de, p<d
fB+(y0,4p)|Du‘2 dz, p2>d,
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which is nonnegative and isotone. Consequently, for 0 < p < 7 A d,

o [ IDuPde < CODUR 4 1T ) (3:106)
B(wOap)

where C = C(v, u, R).
4. Case 0 < d < r,B(z9,p) ¢ B

/ |Dul? dz < / |Dul|? dz
B+($0,p) B+ (y012p)

<CWw) [(;—’T’) + w2(2r)] / | Dul? dz + C(u)/ 1£[2 da.
Bt(yo,2r) B*(yo,2r)

Note that w?(2r) < e for r < 5. Applying Lemma 3.31 as in case 3., we
obtain (3.106) for 0 < p < 7.

Up to now we have shown that for any p < (71 A7), zo € B,
o [ Duf? dz < CO(IDulZ e + 1 P )
B(EO,P)OB"" | B com(Bl)”
where C = C(v, 4, R). But for p > (71 A7) we have
p“/ |Duf? dz < (71 Afo) #||Dull; gy < CUIDully, g + 11720 5))-
B(zo,p)NBY ot
Consequently,

sup p“/ |Du|? dz < C(v, p, R)(|1Dull?, v + 1150 gty
zoEB; B(wo,p)ﬂB+ 2;B] L2 #(BT)
p>0

Case py = n.

1. Case B(zg,r) C Bf:
By Lemma 3.41 for p € (0, 7],

[ 1w (D, s <
B(zo,p)

+2
co) (&)™ [ 1Du= (DuausPda+ ) [ |Dudot
r B(zo,r) B(zo,r)
/ |f - fwo,r‘2dx] .
B(zo,r)
Note that w?(r) < € for r < ry and fB (zo T)|f foor|?dz < ||f||£2n B ™,

Now apply Lemma 3.31 with a = n + 2,8 = n,

o(p) = / Dt~ (D) p? dz, A = C(0), B = CW) 12t
B(Eo,p)

Then for 0 < p < 19

o [ D (Du)anpl ds < DI g+ )
B(;Uo,p)
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2. Case B(zg,r) N By = BT (z¢,7), i. e. zp € Tp:

Since £ C L2727 = [2"~27 we may apply case u < n on fi = n — 2y
to obtain Du € L?"~27(B*(3£)) and

1DuI24 2, e gy < COT RYIDUI g+ 1, ) (3:107)
At this point we apply Lemma 3.47 and obtain the estimates (3.101) for

1<j<n-—1and (3.102) for j = n. From these and (3.107) it follows for
0<p< 7 <dy,

Z/ \Dju|2dx
B+ J:in
n—|—2
Z/ |Djul? dz | +
B+(z0,

C’Fn[HDU’HLZn 2y B+ ||f||£2n B+]

(since w?(r) < hélg(aij)r%)

"+2 Djul? dz + 7| D 2
Z o D e 4 PODUE gy 4171 )
(3.108)
by case p < n, where C = C(v,~, R). Analogously for j = n,

/ | Dy — (Dnu)mo,p|2d$
Bt(zo,p)

+2
(5) / Dyt — (D)o s |+ (3-109)
" B (20,7)

< C(v,v,R)

C(v,y, RF I Dully s + 1 22m 50

We set

n—1
= Z/ |Djul? dx (3.110)
j=1 B+(zo,t)
B(t) := C(v,7, R)[|| Dull; BT 1£11%2.0 el

D(t) = / Dot — (Dot o d (3.111)
B+(.’E0,t)
Summarizing, from (3.108) and (3.109) one obtains for arbitrary fixed
p > 1 that for any pair (p,7), such that 0 < p <7 < dp,1 < % <p

olp) < w1, B) ()" o) + B)p"
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and

90 < Oy, R) (£)" () + Blo)o"

At this point we apply Lemma 3.30 and obtain for xg € T and 0 < p < 7
that

Z/ |Djul® dz
B+ -Z‘Oap

n+2 €
<C(v,v,R,n) ( E/ |Djul*dz| + p" ||Du||2 Bt
B+(:L‘0,

+ pn”f“ﬁzn(Bi‘r)}

for any € € (0,2). Therefore, with e =1

n—1
S / Dju — (D) pl? dc
j=1 B+(I0,p)nB§

n—1
< C'Zp_"/ |Djul? dz
j=1

B+($0 7/7)

<cpm [ (P\ Dul?dz + o*[|D
<Cp P |Dul? dz + p"[|| Dul3 B++||f||£2nB+)]

Bt(zo,7)

< ClIDull3 s + 1172 ]

and for j =n

p [ 1Dt (Dat)an P do <UDl + 1 )
B+ (0,0},

where C' = C(v,v, R,n). Consequently, for o € T'r and 0 < p < 7,

p" / | Du—(D)gyp|* dz < C (v, 7, R, n)[[[ Dully, g+ £ 1% (5h)

Bt (z0,p)NBY
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3. Case 0 < d < r, B(wp,p) C Bf (in particular p < d):

/ Du — (Du)gy pf? da
B(z07p)

<C(v)

n+2
(%) / Dt = (Du)ay af? do + w2 (d) / | Dul? dot
d B(zo,d) B(zo,d)

/ 1 = Frodl? dw]
B(EOad)

(by Lemma, 3.41)

P\ 2 2
() / |Du — (Du)yy 2al? da+
B+ (u0,24)

w2(2d)/ |Du|2dac—|-/ |f — fy0,2d|2dm
B+(y072d) B+(y052d)

<C(v)

(isotony)

P n+2 9
<Cwy mi(2) [Du — (Du)yo,2a” da+
d B+ (yo,2d)

(Qd)n[“Du”i%n_%(B_‘_(#)) + ||f||izn(31+)]}

=: (%),
(3.112)

since again w?(r) < h('ilgy(aij)r%. Decompose u in v + w, where v solves
the problem

Lov =0 in BT (yg,4r)
v —u € Hy* (B (yo,4r))

and w solves the problem

{Low =32 Di{fi — (fi)yoar + 255laij(z0) — aij(z)]|Dju} in BT (yo,4r)
w € Hy*(B* (yo,4r)).
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Now

/ Do — (Do), 00’ dz
B+ (yo,2d)

(2d) CZ/ D(D;w)|>dz  (by Corollary A.8)

+ yO 72d

< (2d)"*2C sup |D;Djv|?
ZB (yOan)

< C’(k)(Zd)"+2||U||k72;B+(y0727) (by Sobolev, if k large enough)

< C(k,r)(2d)"+2/ lv|*dz  (by Corollary 3.27)
B+(y0547')

< C(k,r)(2d)" / |Dpv|?dz (by Lemma 3.34)
B+(y0547')

Again note (cf. proof of Lemma 3.45) that the last inequality is not af-
fected, if we replace v by v — (Dy,v)yg 4rZn. We obtain thus

/ Do — (Do), 0al” dz
B+(y0a2d)

<Ot [ D= (Dus s
B+(y0,4r)

< C(k,r)(2d)n+2/ |Dv — (D) yo 4r|* da.
B+(y0,4’l")

Therefore, similar to (3.81), since u = v +w

n+2
m<o((§)" e [ |Du- (Duyul dot
d B+(y0,4r)
c’ / | Dw|? do+ (3.113)
B+(y0’4r)

(2d)" (| Dull3 5, 2y (p+(1ER)) T 1 1 2.m ()]

Again similarly to the proof of Proposition 3.42 and to (3.108),

/ |Dw|? dz <
B+(y054T)

/ |f = Fyouar|” dz + Cuw?(4r) / | Du|? dz
B+(y0,47‘) B+(y0747‘)

< CUNIf 1 Zompsy + CONAN)? (4r)" Y| Dull7, .,

< Cla, RYAr)" [IDull7 22y (i (152, + 1 22 )

(B+(52)

(3.114)
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Thus with help of (3.113), (3.114), case y < n and since d < r < 1,

| 1D~ (el s
B($07p)

+2
<c((8)" [ Du- (Dl dt (3.115)
" Bt (yo,4r)
" UDull3, i + 1 1o )1
where C = C(v, , R). We set

B(t) = C(v,, R)[||Dul} B T 171720 @t p) = do,

[ |Du— (Du)gou|?dz, if t<d

B(wo,t)
o(t) :=< n-1 ) )
23 f |Djul® dzx + f |Dpu — (Dpt)y, 4t|* dz,
3=1 B+ (yo,4t) B (yo,4t)

ift > d. Then for fixed p > 1 and any pair (p,7) with 0 < p < 7 < dp,1 <
f<p
p— 7

olp) < 1, R) ()" o) + B)p"

In fact, for t < 7 < d use the first step of (3.112) and the Holder continuity
of a;; as in (3.114), for t < d < 7 use (3.115) and for d < t < 7 use (3.108),
(3.109) and (3.111). Now apply Lemma 3.30 to obtain

1
L[ 1Py (D P < O, R D g + 1)
Z0,P,

for any zg EBE,O<p<d.

4. Case 0 < d < r,B(zg,p) ¢ Bf ,p < 5:

/ Du — (D) pf? dic < / |Du — (Du)y 2|2 da.
B(zo,p) B*(y0,2p)

As in case 2.), for the projection yo € I'g and 0 < 2p < §y
p" / |Du — (Du)yo 2|* dz < C[| Dy gt + 1 [ 72m 1))
B+(y0,2p)ﬂB$
where C' = C(v,7, R,n), and by monotony,
[ Du-Dufdes [ Du- (Du)yl de.
B(wo,p)nB+
B+ (yo,2p)NB};

Hence, 4.) is done.



3.1. WEAK SOLUTIONS OF ELLIPTIC EQUATIONS 101

Up to now, we have shown

p" / |Du = (Du)ay,p|* dz < CllIDully gt + [ 720 5]
B+(z0,0)B},

for p < 5,70 € B;E, where C = C(v,7, R). For p > & we proceed as at the end
of case u < n. O

We are now prepared for the proof of 3.28: Since (2 is of class C°°, there exist
finitely many domains g, Q1,...,Q,,, such that Qy CC Q = U;-n:O }; and for
each 2,1 < j < m, there exists a diffeomorphism 7} of class C*°, such that
T;(; NQ) C Bff UTy and T;(Q; N 69Q) C T'y. By Theorem 3.42, we know that
Du € L%#(Q0; R") and we have the estimate

DUl < CUIDUIE + 12200} (3.116)

We fix j € {1,...,m} and denote again by u the restriction of u on Q; NQ. Let
y € B; arbitrary. Consider v := u o Tj_1 on Bf". In Bf", v solves an equation
of type

Ljv=D'F;(y) weakly,

where (y — Fj(y)) € L2*(By) and L; is elliptic in B with some ellipticity
constant Kv (see B.2). Applying Proposition 3.48, for 0 < R < 1 we have that
(y — Du(y)) € L2*(B};R") and

1DVl oty < CUDDIG s + 1Pl 700 1} (3.117)

Integral transformations (see B.2) yield

1DullZ2.(0, ) < CLUIDUl3,0;00 + 11 Z20,00)}

3.118
< C{IIDull30 + 1 £1Z20 ) 3 e

where Q; g = j_l(B]"_-E). Since R € (0,1) was arbitrary, we may choose R
sufficient close to 1, such that €, g,...,Qy g still cover Q. From (3.116)
and (3.118) it follows that

1Dl 2y < CLIDUlE0 + 1,0 )} (3.119)

Using 3.21, i. e.
IDullz0 < Cllf 30 < Clflzowq

we arrive at the assertion

IDulZ sy < CllF iy
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Remark 3.49 (cf. [13, I1.9.2.4]) Since L**(2) C L2H(Q) for 0 < p < n+2
and

I-llc2n@) < Cli-llL2m@),

the assumption on f; in Proposition 3.28 can be changed to f; € L**(2),0 <
p < n. In this case, the weak solution u of the Dirichlet problem (3.31), (3.32)
satisfies Du € L2*(;R") and

[1Dullg2n) < Clifll2m@),

C = C(n,v, u, diam ).

3.1.4 [P-Theory of Elliptic PDEs in Divergence Form
Constant Coeflicients

Proposition 3.50 (cf. [13, I1.10.2.1]) Suppose that u € Hé’Q(BR) satisfies
(3.34) on Bpg, where a;j are constants satisfying (3.33), fi € LP(Bg),p > 2.
Then Du € LP(Bg;R") and

||DU||p;BR < CHpr;BR’

where C = C(n,v,p) is independent of R.

Proof.Let u € Hé 2 (BRr) the unique solution of (3.34) corresponding to f. We
define an operator T as follows: T'f = Du. By choosing ¢ = u in (3.34), we
obtain the estimate

|Dullo;sr < Cllfll2;85,C = C(n,v).
This shows that 7" is a bounded linear operator from L?(Bg; R") to L?(Bg; R").
On the other hand, Remark 3.49 implies that if f € L?>"(Bg;R"), then Du €
£2™(Bg:R") and
[Dul g2 () < CllF |28, C = Cln, ).

Using Lemma, 3.10 and Corollary 3.18, we conclude that 7" is a bounded linear
operator from L*®°(Bpg;R") to BMO(Bg;R"). By 3.19, for 2 < p < o0, T
is a bounded linear operator from LP(Bg;R™) to LP(Bgr;R"), i. e., if f €
LP(Bg;R™), then Du € LP(Bg;R") and

1 Dullp;8r < Cllfllp;Br, C = C(n,v,p).
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Non-Constant Coeflicients

We now generalize to the case of continuous coefficients using [18, section 4.3].
Look at a solution u € Hy"(Bg) of

/ aij(:c)Diungadx:/ ijdeﬂU V¢€Hé’p’(BR)-
BR BR

We write
/ a% (zo) DiuD;p dx
Bg
= [a¥ (x0) — " (z)]|DjuDjp dz + / a(z)DyuDjp dx (3.120)
Bgr Bg
= [a (o) — a” (z)]|DjuDjp dz + / fDjpdz.
Br Bgr

We fix V € H'?(Bg) and take a solution v € Hé’p(BR) of the equation

/ a(zo) DivDjp dx

Br

= [a (o) — 0" (z)]|D;V D dx + / fiDjpdx
Br Br

= Z/ (Z[aij(.’ﬂ()) — GZ](IL')]DzV + fJ> Dj(,O dx,
j UBr \

-~

€LP(Bg)

then
|1Dv|lp;Br < Cll[A(z0) — AlDV ;85 + Cllfllp;Br

for any f € LP(Bpg;R™), in particular for f = 0. Consider the solution operator
T : Hy?(Br) — Hy"?(Bg),V — v:

||TV1 - TVQHl,p;BR = ”Ul - 'UQHLP;BR

< C(RP + 1)||Dv1 — Dusllps, (by A8)
C(RP +1)||[A(zo) — AID(Vi — V2)l|p;Br
C

<
< C(RP + 1) sup|A(zo) — Al[[V1 — V2
Br

1,p;Bgr-

Consequently, T is a contraction for sufficient small R. Hence, there exists a
unique fixpoint, which solves (3.120) and therefore equals u. Moreover,

||D“||p;BR < CHf”p;BR' (3.121)

3.2 The Regularity Theorem

After the huge amount of preparations, we are now able to understand the
proofs given in the original work of Krylov, Bogachev and Rockner concerning
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the regularity of densities of type cf. Chapter 2.

Note that, if pg > p+ ¢, |b| € LP(Bg) and p € LY(Bg), then by Hoélder’s
inequality, |b|u € L"(Bg) and

. Pq
bullrBr < |0||p: . with r=——; 3.122
[1bllr;B < [1bllp;Brll1ll4:BR Py (3.122)
in fact,
1 1 1 1
—+—=m:—,thereforeT—FT:l:C-I-C,
p a pg T & @ P g
so that

-1 -1 -1
1Bullr = 118767 <10 {le" e~ = [1Bllpllllq-

Lemma 3.51 Let p and q be two numbers satisfying p > n,q > p' but not such
that p=mn = ¢'. Let Ry > 0. Assume that the functions a;; € H'"P(Bg,) are
continuous and A > X for some X > 0. Then there exists N > 0 and Ry > 0
only depending on p,q,n, A\, Ry, the modulus of continuity of A, ||aij||1,;,,;BR1 and
the rate of decreasing to zero of || Dajj||ln;p, as R — 0, such that for any
R<Ryand ¢ € Hé’q(BR) one has

f=a"D;D;p € H "(Bg)
and
||D<P||q;BR < N”f”fl,q;BR- (3123)

Proof.We may assume that R; = 1.

o Step 1: f € H-1(Bg) = (Hy" (Bg))
If we assume, that for ¢ € (H'P N L*®)(Bg) the linear operator

. gLd 1,q'
TC : HO — HO s

P

. . 1,4
is continuous, then for u € Ho’q ,

|fu\:/ a"(D;Djp)udx
Br

= /Taij (u)D;Djp dx

_ |- / Di(Tyi; (u)) Djip dz

1DT i (u)llg | Dellg - (by Holder)
ClIDellgl| Dull4



3.2. THE REGULARITY THEOREM 105

and step 1 would follow by equivalence of norms on H& 7 Tet us justify
our assumption; again by equivalence of norms, it suffices to show that
ID¢)|lg < C|ID9||g- Let us first estimate [[¢pD(||y in all cases for ¢’
and then use the product rule (see (3.124) below).

— Case ¢’ < n: By assumption and D.1, D;¢ € LP(BR),v € Lnanq’(BR).
Since

! !

ng ’ ’ !
2p+n_q, < pnqg 2 pn—pq +ng

ngq
n—q

p

!
epn(d —1)+4¢'(p—n) >0,

which is true, (3.122) is applicable and implies | D(| € L* with

!

bgn

—
nq'
n—q'

' pn '
>
qpn—pq’+nq' =1

S =

n
p+

and again by D.1,

19 DCls < N9l g [1DClp < Cn, ) D llg 1 DClp-

nfq’

By Hélder,

1
T

[ D¢lly < dx(Br)e

1
s

[ DC¢ |l

— Case ¢’ > n: For ¢ € H&’q’ (Bgr), by D.1 we have

=

1_
noq

sglpliﬁl < C(n,q)dx(Br)™ || Dylly

The general assumption g > p’ implies p > ¢/, thus again by Holder
¥ D¢l < l9lloo IDC
< C(n, q, R)||D¢ll¢ [ DC]l
— Case ¢’ = n: Since) € Hé’"(BR), by D.1 we obtainy € L"(Bg) Vr €

[1,00). From our assumptions ¢' =n,p > n,—(p =n = ¢') it follows
that p > ¢'. For 0 < € < 1 we have by case ¢’ < n and Holder,

19Dl e < CIDCIIpDPllgr—c < CIDL | DPllgr-

Now,
’ ! ! !
|7 =€) D¢|e _0) |¥|7 D¢ pointwisely
€—

and

[$DC|7 ™ = 1yne 213D ™ + Lyng <1y [ DE T~
< 1{ype>1p$DCY + Lyype<1y = h € L'(Br),
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since 1 € L!(Bg) and

[wpare e <UD Iy

! !
= IDCIF 1%,y < oo

p—q’

Therefore, by Lebesgue with majorante h,

Jwianed <z — [ 1D do

By a diagonal argument, we find a subsequence (e;), such that
||¢DC||q’—ek ;? ||’¢)DC||q’ and

19DCllg < CIDC][pl| DYl -
By assumption and combination of the three cases, we obtain

1Dl = [[# D¢y + IS Dl
< CIDCpl DYl + 1I¢lloo [ D]l (3-124)
= (ClID¢lp + [IClloo) [ Dl -

e Step 2: we assert (3.123).

Note that D;(a” Djp) = a¥’ D;Djp+ D;a"’ Djp =: f +g, since integration
by parts yields

| a"DiDjpuds =~ [ Diau)Dspdo
Bg
- _/Diaiﬂ'chpu +a DjuDjp dx
_ / Did" D pudz + / uD;(a" Djp) da.

Since f+g € H~Y9(Bg), by Lemma C.13 there exist vy,...,v, € LI(Bg),
such that

(f + g)u = / viDiu dr Yue€ Hé’q,(BR),
Br

or in other words,
—/ a’ (z)DjpDjudzx :/ v'Diudr Vu € Hé’q’ (Br).  (3.125)
Br Bg

We now interpret ¢ as a solution of the PDE (3.125), u playing the test-
function’s part. Now, we apply (3.121) with ¢, ¢, —v instead of u, p, f and
then (C.4) to obtain

||D(P||QEBR < CHUHq;BR
< Ni||f + gll-1,¢;Bx (3.126)
< Nl(”f”—l,q;BR + ||9||—1,q;BR)’
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where N is independent of R € (0,1] and ¢. Now, we consider three
cases in order to get rid of the g-term on the right-hand side of the last
inequality.

— Case ¢ > n': By Lemma D.3(i) and (3.122), we have
lgll-1.0:8, < Nallgll on. = No|| Dia" D] an.

< M2||Dyllqllalln  (gn > q+n < q>n)

(%)

where a = (a’),a’ = D;a" and Nj is independent of R. Using
(3.126),

[1D¢llg < NilNsllallallDellg + Nill fll-1,q0- (3-127)

N1, N; are independent of R and f, and since |Da”| € LP(Bg; R*),p >
n, we can choose R so small that

1
NiNzllallnB, < -

For such an R, (3.127) implies (3.123).
— Case p' <qg<n': ¢q>p' = pg>p+q, hence by (3.122),

MWMemwzﬁ%. (3.128)

Also from ¢q > p’ and (*) it follows that for r defined by

n2L

m__ _Pq . — _ptq
=— lLe Tr= Pq
r+n p+gq = e

we have r > n' > ¢q. By (¥), (3.122) and Lemma D.3(i) we have

lgll-17 < Nligll 2. < Nllallp||Dellg-
By (C.3), Proposition C.13, norm equivalence and Hoélder, we also
have
11
loll-1.50 < 50l < M52 )

r

—y
" ||ol|z;, < Nsllgll-vr,

< N3R"

where D;" shall be the representation of ¢ € H~'", for which
1917, = llgll-1,-- Note that D;i* also is a representation of g €
H~149, for which ||g||_1,4 < [|8lq, since C§°(Bg) C (Hy™ NHy? )(Bg).
Altogether,

lgll-1,4 < Nllallp[[Dellq

and we continue as above.
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— Case ¢ = p' < n': By Lemma D.3, for R € (0,1) we have
lgll-1,4 < NaR' "7 |lglly < NuR' ™7 |lall,|| Depll,

where we used Holder and p’ = ¢ for the last inequality. Now, we
continue as above. O

Theorem 3.52 Let p > n,q € (1,00), R1 > 0, let a¥ € HYP(Bg,) be contin-
wous, A > M for some A > 0. Then there exist Ry, Ng > 0 with the following

properties. Let R < Ry and let p be a measure of finite total variation on Bg,
such that for any ¢ € C§(Bg) := C*(Br) N {ulugp, = 0} we have

[ @iy du‘ < NIDgll, (3.129)
Br

with N independent of ¢. Furthermore, assume one of the following:
1. p>mnor
2. p=n>q and p € U, L' (Br)-

Then p € Hé’q’Ap(BR) (where we identify p with its density) and

||H||1,q’/\p;BR < Np.

In addition, Ry only depends on p,n,q, \, Ry, ||aij||17p;BRl, the rate of decreasing
of || Da"||,;5, as R — 0, and Ny depends on the same quantities and N.

Proof.-We break the proof into two cases. Let R < R;.

e Case g > p': Take f € C§°(Bgr) and solve the equation

a’D;Djp=f in Bg
=0 on OBg. (3.130)

If 1.) holds, then p > n and A is Hélder continuous in Br by Sobolev.
By (2.13), there exists an unique solution ¢ € CZ(Bg), which we can
substitute into (3.129). Note, that a density u € Lj (Bg) exists for
€ [1,n') by Theorem 2.28. Also note that 1.) holds, if ¢ = n'.
If 2.) holds, then by continuity of A and Proposition 2.27, D;D;p €
Mpeft,o0) LP(Br). Owing to pu € U, L"(Bg), we again can substitute
@ into (3.129): in fact, let u € L"(Bg), then oy € L7(Bg). Since
C2(Bgr) C (H2’qW'ﬂHé’qu)(BR) dense by Lemma 3.53, there exist ¢, €
C2(BR), such that

= lim
m—0Q

/ aijDingou dx
Br

/ aijDiD]wpmu dx
Bpr

< lei_HSOOHD(,Oqu;BR = N||Do|l¢;Bs-
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Now,

fudz| =
Br

/ aijDingou dx
Br

< N|[Dyllg;B, (by (3.129))
< N|fll=1,¢;B; (by Lemma 3.51)

which implies the first case by duality.

e Case 1 < ¢ < p < n': Observe that (3.129) is satisfied with r = ’% in
place of ¢: indeed, n’ > r > p’ > ¢, therefore

11
||D<P||q;BR < dx(Bg)e - ||D(p||7"§BR'

By the first case, we have u € Hgl’l(BR) for sufficient small R. Since
r' > n, by the Sobolev embedding, y is bounded in Bg. Furthermore, we
note that (3.129) means that

L:p+— aijDingau dz
Bg
is a linear functional defined on C3(Bg)(C H& “(BRr) dense) and bounded

w.r. t. the HP'(Bg)-norm. By duality between Hy'?(Bg) and H 17 (Bg),
we have that

Lgaz/ aijD,-ngo,udm:/ oD, f* da,
BR BR

where D;f* € H=14 (Bg) C H~'P(Bg) is the representation of L of type
(C.3). Thus, i is a generalized solution of the equation

Dj(a" Dip) = D f’ — D;j(uDia") =: g.

Here uD;a" € LP(Bg), since u is bounded, so that ¢ € H~1?(Bg). We
assert that u € Hy?(Bg):

u € LP(BR), since p € C(Bg), moreover, Dy € LP(Bg;R™) by (3.121),
hence y € HYP(Bg). Since p € H-" (Bg) N C(Bg), u = 0 on 8Bg, which

implies our claim.

O

Lemma 3.53 ([19, Exercise 9.6]) C2(Bgr) C (H>? N Hy")(Bg) dense Vp €
(1, 00).

ProofLet u € (H?*P N Hé’p)(BR),B := Bj(0). Since Bpg is of class C™,
there exist U',..., U™ C R™ with 0By C Uiz, U? and C*-diffeomorphisms
¢1,...,¢m with

P € C®(U"), ¢! € C°(B),%:(U' N Bg) C R}, 4;(U" N 0Bg) C ORY.
¥ ¥
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Let ( € C§°(B),{ =1 on B,(0), where p < 1 is chosen such that

m

v '(B,(0)) > 9B

i=1
Add U° = B,(0) CC Bg, such that Bg C |, ¢ 1 (B,(0)) UU". Since u €
(H*? 1 Hy")(Br),

G = ((uoy™ ") € (H? N Hy")(BT)

by the chain and product rule in Sobolev spaces, and moreover, @%; = 0 near
(0B)*. After odd reflection and extension by zero, as in Lemma 2.22, we obtain
that @; € H%P(R"). Therefore, using a usual mollifier, there exist

as € C°(R"),e >0 ,such that @ — @; in H?P(R"),a(«',0) = 0.
In particular, 4 — 4; = uo 7,&2-_1 in H?P(B,). Therefore,
Co(UY) suf ==afoth; — u in H*P(yY;7Y(B,) V1<i<m. (3.131)

Since C*°(U%) c H*P(UY) dense by A.4, we also find (u§) with u§ — u in
H?P(UY). Let (m;)™, be a partition of unity, subordinated to

Vo :=U% Vi := 971 (B,(0)), ..., Vi := 9, (B,(0)).

Define u, := Y 1" nuf € C®(Bg) (after extension with zero even C{°(R")),
then

m
lu — ue|l2p;Br = ||Z mi(w — w)|2,p;85
1=0

m
< ZH%(U - UE)HQ,P;WOBR
i=0

— 0,

because of (3.131), the product rule and |[D%n;| < C V|a| < 2,7 € {0,...,m}.
Moreover, for z € 0Br withz € V;,i € I C {1,...,m},

ue(a',0) = > (miug) (2, 0) = 0.

i€l

We now arrive at the main theorem of this chapter.

Theorem 3.54 Let p > n,r € (p',00),u € L7 (Q,dz),a” € Hllo’f(Q), and let

loc

either B € LV (Q,dz) or B € LY (Q,pu). Suppose that A is locally uniformly

loc loc

nondegenerate and that for any ¢ € C§°(Q) we have

/ aijDZ-ngou dx
Q

< [ (el + 1De)IBul . (3.132)
Q

Then p € Hllo’f(Q)
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Proof.-We compute

r
r>p'=L1¢pr>p+r¢q':=q'(r):= T 1
p— p+r
Hence,
pr
1 _ q . ptr pr
<q_q’—l_ﬂ— S pr—r—p
p+r

If B € I (), then Bu € LL () by (3.122).

loc loc

Case 8 € L (Q,u): We have

loc
1817 |ul? = |87 || 7 || 7

where

Bl € Li(@),s = EXD (o5 = 1)
and
pr—7r !
W5 € L (o)

because B = 7 — L < rand p € L (). For R > 0 such that Bg :=

loc

Bg(zo) CC Q,n € C§°(Bgr) and ¢ € CZ(Bg) we have

/ " D;iDjp(ny) dx
Br

/ a’ DiD;j(pn)u — a" opuD;Djn — 2a” Dy Djnp da
Bpg

< +

/ a” D; D (n)p dz
Bgr

/ aijquiDjn dx
Bgr

2 / | Al D7l Dl |
Bgr

SN’(n)/ (I¢l + |De|)|Bul dz +N Dyl |1 All |l | Dol g+

Bg

J

v~

<N||Bully | Dellq
21 Drlloo I Alllellla 1 Pellq

by (3.122), Poincaré and since C§°(Bg) C {u € C?(Bg)|supp u compact}
dense, which can be shown by mollifying and is needed to apply (3.132)

< N1||D‘P||q;BR>
(3.133)

where N; does not depend on ¢. Applying Theorem 3.52, 1.), we obtain nu €

H&’q’/\p (Bg), if R is small enough. Since we can take any point as zo and

_ pr _P2

! —
¢ —P= 455 —P= p+r<0,wehave

pe HET (). (3.134)
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Note, ¢ <n&r < 1%' In this case, by Sobolev embedding,

' P,
. an pt+r prn
€Lt (Q) with r = = = )
€ Tioe() =g T T prom—pr

pn

Thus, on the interval (p%l, o

) we have a mapping
T:r—1r
with the property that

(p € Lioo(Q),d(r) <n=pe L' () and therefore py € Hllo’g’(”)(ﬂ))

loc

by the first part of this proof. Note that (-)’ is antitone and

!
T1 pn pn n
1= > == >1
r pn—r(p—n) pn—-p(p-n) p ="

where the first inequality sign dues to r > p’ and the second to p > n. Con-

k
sequently, T' is strictly increasing on (p’ , p’%"n) with Tr > "p—’,T,TkT > (Z—:) 7.
Hence,

n n
ko € N, such that T*r < p—,Tk0+1’1“ > L
p—n p—n

Therefore, after kg applications of T to the given r, we will arrive at a point

mn
s€ (p', P )
p—n

such that t = T'(s) > p’%"n and pu € LY(Bg), i. e. we are leaving the domain of
T and the (bootstrapping-) process stops. Without loss of generality we may
assume that ¢ > p’%"n: ift = p’%"n, then p € LI €(Q2) and we can apply the above
considerations on r := t—eg, where ¢y > 0 shall be so small that T'(t—ep) > ppfnn.
This shows that we could have assumed from the very beginning that r > 1%’
that is ¢’ > m. In that case, (3.134) and Sobolev imply that the function yu is
locally bounded, which shows that (3.133) remains true with ¢’ = p. Now apply

Theorem 3.52 again to finish the proof. O

It should be noted that the assertion of Theorem 3.54 is valid under the
following alternative assumptions on a, 3, u:

(11 locally finite signed Borel measure on
a' € HP(Q)  continuous
a) ¢ A locally uniformly nondegenerate
18 E L{’oc(Q7 l’l‘)
[ (3.132)
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Proof.By (3.132), 8 € Lt (2, 1) and Holder, we have for any R > 0 such that
BR = BR(.T()) CccC Q,

/ aijDingo du
B

R

< Csup(|o| + |Deyl),
Bp

where C does not depend on ¢ € C§°(Bj). Applying Theorem 2.28, we obtain
p € Li, (Bi) Vr € [1,n'). Since p' < n', we have u € L, (Bp,dx) for some

r > p'. Now, we can copy the proof of Theorem 3.54 with Q replaced by Bj
and the case B € L (2, ). O

loc

or
(11 locally finite signed Borel measure on {2

. 1 ]
1] P
a” € H . (Q2) continuous

b) ¢ A locally uniformly nondegenerate
B € LL (9, ) N LD (2, dx)

loc loc

[ (3.132)

ProofBy (3.132) and 8 € L] (9, u), we have for any R > 0, such that
BR = BR("EO) CcC Q,

/ aijDiDjtp du
B

R

< Csup(|o| + |Deyl),
By

where C does not depend on ¢ € C§°(Bj). Now proceed as in a), case
B e L (Q,dx). O

loc

Corollary 3.55 Let i be a locally finite Borel measure on . Let A be locally
uniformly nondegenerate in Q with a¥ € Hllo’f(ﬂ), where p > n, and let either
b',c € L (Q,dz) or b',c € LY (Q,p). Assume that for any ¢ € C§(Q) one
has

/ [a” D;Djp + b' D + cp| du = 0, (3.135)
Q

where we assume that b',c are locally p-intgrable. Then u has a density in
H}P(Q), which is locally Holder continuous.

loc

ProofBy (3.135),
/ aijDiDjw dy = —/ b Dip + cpdp.
Q Q

Therefore,

/ aijDz'Dwdu‘ < [ (el + Do)l

where 8 = |b| + |¢|]- Now proceed as in a), b) respectively. O
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Corollary 3.56 Let p > n,a" € Hl’p(Q),bi,fi,c € L . A locally uniformly

loc loc?
nondegenerate in Q. Assume that p is a locally finite Borel measure on 2, such

that b',c € L, .(Q, ) and for any ¢ € C§°(Q) one has
/ a’D;Djp + b Dy + codp = / fiD;ydz, (3.136)
Q Q

then u € H.P ().

Proof.Let B := Bp(zg) CC Q. By Subsection 3.1.1 we obtain a solution
u € Hy*(B) of the problem

D,-(aiiju + Djaiju — b'u) 4 cu = Difi,u‘gB =0,

/ (" Dju + D;ja"u — b'u)D;p + peudz = / f'D;pdz
for any testflfnction . Therefore, ’
/ a“D;Djp du = —/ (biu+ f)Dip — cup dx
B B
<supllyl + D) [ Pl + 11|+ leulds (3137
< Csup(jg| +|Del),

where C does not depend on . Applying Theorem 2.28, we obtain u €
L7 .(Q,dx) for some 7 > p'.
Define 8 := |b| + |c| € L?._, then as in Theorem 3.54, Bu € LY (B). For R > 0,

loc? loc

such that Bp := Br(zg) CC B and ¢ € C3(Bg), we have

/ a" D;D;pu dx
Bpg

< / (Il + | D) Bul da + / (gl + D) dz  (by (3.137))
Br

Br
< N3||Dollg;B + || fllp;Brlll#l + [Dolllp;s  (by Holder)
< N4||D¢l|g;B, (Poincaré and p' < q)

As in Theorem 3.54, it follows that v € H%? (Bg), if R is small enough. Fol-
lowing the proof of Theorem 3.54, we see that u is locally bounded. Therefore,

| a"DiDjpdul <suplul [ (el+ Del)lBlds + [ (lol + D) do
Bg Bgr Br

Br

< N5||5||p;BR||D<P||p';BR + ||f||p;BR||D‘P||p’;BR
< NGHD(»O”IJ’;BR-

Application of Theorem 3.52 yields u € Hé’p (Br) for some suitable small R.
Consider the measure y — udz on Bg. It is

/ ' DiDjp + V' Dip + cpd(p —udz) =0 Ve € C°(Br).
Bpg

Now, it remains to apply Corollary 3.55. 0



Appendix A

INTERPOLATION
INEQUALITIES

The following interpolation inequalities were needed in chapter 2 and shall be
proven here.

A.1 Marcinkiewicz interpolation

Proposition A.1 (cf. [13, I Theorem 1.2]) Let 1 < p < g < o0. Suppose
that a linear map T is of both weak type (p,p) and weak type (q,q), i e.,

1Tz, < Bpllflly VfeLP(Q) (A.1)
ITfllzg, < Bgllflly Vf e L) (A.2)

Then for any r € (p,q), T is of strong type (r,r) and
||T||(T,r) < CBgBéie,

where C only depends on r,p,q and 0 = %.
Proof.Let f € L"(2). Decompose f as f = f{ + f5, where

s . 0 ) for |f(.T)| > s,
f2 (SL') - { f(m) , for |f(-'E)| < s,

and +y is a constant to be determined and s > 0. We observe that f5 € LI(Q),
since

e / flode = / 7T de < sl / I dz < oo
{IfI<ys} {IfI<ys} Q
and f{ € LP(Q), since

1£2 0 = 11 = £2llp = [ Flsqtsisnsy < Ax({1F] > s 77 [|£]lr < oo.

Moreover,
dz({|Tf] > s}) < dz ({f] > g}) +dz ({ir s8] > %}) Vs, t > 0. (A.3)

115
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If ¢ < 00, then from (A.1), (A.2) and (A.3) we derive
Mry(s) < sTPEBpPISLIG + s79(2By) I 208 vt > 0.

By Lemma 2.8,

o0
/ |Tf|"dz = / rs" "' Ars(s)ds
Q 0

(2Bp)”/ 7‘3’_”_1/ |f|P dz ds
0 {If1>vs}

o
-I-(QBq)q/ rsr_q_l/ |f|?dz ds
0 {If1<vs}
L£]

= (ZBp)pr/ |f|p/7 s Pl dsdx
Q 0
o
+(ZBq)qr/ |f|q/f| s dsdx
(9] AR
-

2B,)P 2B,)?
= [%v’”“r%vw]/lflrdﬁ,
P g 0

IN

where we used

/ sT_p_l/ |f|P dz ds
0 {{f1>vs}

fp/ 1 s" P dsdx
/QH 0o {45}

Lfl
= /\f\p/7 s"P L ds da.
Q 0

1
Choosing v = (B, ’Bf)?»—< (choice as in [13] does not lead to the required 6),
we obtain

(2By)Pr (2Bg)r

T—p q—rT
2Pp plzl 4Pt 29y _pI=l BT
— Bpp (IBqP q _|_ Bpﬁn (IBqP q
r—0p q—r
2Py 29y pr—2 gB—T
— ( _|’_ )Bp? QBqP q,
r—p q-—r

_ p—r o q—r
IT(ltrry < (B, "Bg)r=a + (B, "Bj)»=

Y A p—r _ p—T
where we used that p s and g + Up=q = 9p=g- In other words,
6 p1—0
IT|rry < CBpB™".

In the case ¢ = oo, we can take 7y so large that the second term on the right-hand
side of (A.3) vanishes. In fact, (A.2) implies that |7 f2||cc < Bool|f2llco < Boo?s;
thus we can choose v = (2By,)~!. Tt follows similarly to above that

o
/Q|Tf|’"dx = / rs" Ay (s)ds
0

< /000 rs" Ay, (%) ds
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o0
< /0 rs PP BY| B ds

f12Boo
= (2Bp)pr/9|f|7”/0 s Pl dsdx

= By [ 1P

— CBIBILY /Q £ da.

Hence,
(r—p)
T

p  \r7p)
||T||(T,T) < CBI; B .

A.2 Interpolation in Sobolev spaces
Lemma A.2 1. Vp,a,b € [0,00),
(a +b)P < 2P(aP + V).

2. Vp,a,b € [0,00),
(a® + b7) < 2" (a + D).

Proof.

1. Without loss of generality, a > b.

p
(a +b)P =aP (1 + 2) < 2PgP = 2P(max(a,b))? < 2P(a + b)P.

2. By the first part of this lemma,

S =

(a® + 0P)» < 2P((aP)? + (bP)

[f"P(2Boo)" P dx

) = 2%(a + b).
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Since z — z° is isotone for s € R, , the lemma follows by taking the p-th

power on both sides.

Proposition A.3 (cf. [19, 7.27]) Let 1 < p < oo,u € HP(Q).

any € > 0,

C C
||Diu||p;9 < €||D2u||p;ﬂ + ?HUHPEQ < 6||U||2,p;9 + ?Hqu;Q'

O

Then for

(A4)

Proof.Let us first suppose u € C3(R) and consider an interval (a,b) of length
b—a=ec Fora' € (a,a+5),2" € (b— £,b), by the mean-value theorem we

have , " 5
()| — ) ()]

‘:I," _ x//'

< ~(lu(@)] + fu(z")])
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for some € (a,b). Consequently, for any z € (a,b), we can compute

[u'(z)] < |u'(z) =o' (Z)] + [u'(Z)|
b
< | dz 4 = (Ju(z")] + u(z")])
a
e atg b ! "ol
= §|u'(x)| = ) |u'(z)| dz" dz
a b*g
ez [° " 3 [ots o / "ot
< — | |u'dz+ - |u(z")| dz" dx
9 a a 7%
3 a+ < b
+_ 3/ | ( II)|d n dl‘
€Ja b—%
ez [° " oty / / b " "
< 9 |u"| dz + |u(z")| dz" + - |u(z")| dz
a a — €
62 b b
< — | WN\dz+ [ |u|ldz
g a a
b 9 b
S W) < / | dz + = [ |u de,
a € a

so that by Holder’s inequality

W@P < (/ |u"\da:+—/ |u\da:)

< (||1||p | + 2|u|||p)

_ p—1 " P

= ¢ lu |+—2|u| dz
a €
b 9P

< ep_l/ 2r—1 <|u"|p+ T|u|p> dx
a P

<

b
2r—1 (epl/a |u" P dz + p+1/ \u|pdx>

Hence, integrating with respect to x over (a,b) we have

/ |u ()P dx < 2P~ 1(6”/ |u"|pdy+< ) / |u|pdy)

Consequently, if we subdivide R into intervals of length €, and sum up all those
inequalities, we obtain

/\u P da < 201 (EP/|U"|pdy+( > /|u|pdy> (A.5)

which is the desired result in the one-dimensional case.
To extend to higher dimensions we fix ¢ € {1,...,n} and apply (A.5) to u €
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C2(2) regarded as a function of z; only. By succesive integration over the
remaining variables we thus obtain

9 p
/ | DyulP dz < 20! (é) / | Dysul? dz + (—) / |u|p>,
Q Q € Q

so that

p=1 9
||Diu||p;ﬂ < 20 €||Diiu||p;ﬂ+;||u||p;9

IN

- 36
E1D%ullp0 + Zlullo. (A.6)
O

Before we can show the same inequality for u € H*P(Q), we need some prepa-
ration. Since our estimates in section 2.2 take place on balls, we may assume
Q to be of class C*° in the following propositions for simplicity. Originally, it
would be enough to assume € to be a C*¥~bl-domain for k > 1.

Proposition A.4 (cf. [19, 7.25]) (i) C®(Q) C H*?(Q) dense for 1 < p <
m’

(i) for any open set Q' DD Q) there exists a bounded linear extension operator
E from H*?(Q) into H(l)c’p(Q’), such that Eu = u in Q and

Cllullkp0 (A7)
C““Hp;ﬂ (A.8)

||EU||lc,p;Q’

<
[Bullpor <

for any u € H*P(Q), where C = C(Q, ).

Proof.Let us first consider the density result (i) for the half-space R} . In this
case the translated mollifications of u, given by

vp(z) = up(z+ 2hey,) (A.9)

= / u(y)en(z + 2he, —y)dy, h >0,
{yn >0}

converge to u in H¥P(R%) as h —» 0 (cf. [3, 2.5,2.12]) , (¢5,) being a Dirac-
sequence. Setting z = (z',z,), we may define an extension Eyu of u to all of
R™ by
u(z) ,for z, >0
E =
ou(z) { Zle ciu(z',—2=) | for =z, <0,

2

(A.10)

where ¢; are constants determined by the system of equations

1 m
Zci(——,> =1, m=0,1,...,k—1,
- K3

=1
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i. e. by (Vandermondematrix)c = 1. If u € CK(R% ) N HFP(R?), it follows that
Eyu € CF1(R*) N H*P(R™) and, moreover,

|| Eou

k,p;R™ < CHUl k,p;R% - (A'll)

Therefore, by approximation we obtain that Eq maps H*? (R%) into H ksp (R )
and satisfies (A.11) for any u € HFP(R ).

Having treated the half-space case, let us now suppose that €2 is a C'°°-domain
in R". According to definition 2.20, there exist a finite number of open sets
Q; Cc,j=1,...,N, which cover 99, and corresponding mappings 1; of Q;
onto the unit ball B = B;(0) in R", such that

(i) ¢j(Qj nQ) = BT =B ﬂ]Rg_,
(ii) ¥;(Q;NdN) = BNIR",
(iii) y; € C=°(Q)), o;' € C®(B).

We let Qg cC 2 be a subdomain of €2, such that {Q2;},7 =0,..., N, is a finite
covering of €, and let n;,7 = 0,..., N be a partition of unity subordinated

to this covering. Then (n;u) o qu—l € H®P(R?) and hence Ey[(n;ju) o ¢J_1] €
H*?(R"), whence E'o[(nju)ozpj_l]owj € H(’f’p(Qj),j =1,..., N, since suppn; C

Q;. Thus the mapping E defined for u € H*P(Q) by

N

Bu=wuno+ Y Eo[(nju) o ;'] o 4 (A.12)
j=1

satisfies Eu € H(]f’p(Q’),Eu = u in Q and (A.7), where C = C(N,;,n;) =
C(Q,9). Furthermore, (Eu), — u in H*P(Q) as h — 0 .

It remains to show (A.8). Since the mappings 1; are only defined on §;, we
set Eo[(n;u) o ¢j_1] o 9j(z) := 0 for z ¢ ;. Hence, since det D1p; # 0 on ©;,

1Eo[(nju) o 95 '] 0 5l = [ Bol(mju) o 5T o sllpq,

_ oy |det D)
/Qj Bllng) o5 TP oy o) o

/ | Bol(nju) o 5 V)Pl det Dapj| ™" 0 9" d
B

< [ Ao s Pldet Dy do - (det D(Td) = 1)
BNH+
+ [ IBal(yu) 0 ;1P| det DY do
BNH~
S/ |njul” dz
Qﬂﬂj

k
_ Z _
#300 [l ow @ =T det Dy ()
i=1
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Let us estimate:

01/ |(nu) 0 9 (@', —2n) P| det Dy |(a', 20) ds
BNH~—

= ) ot Ly W
- /BnH+ |(nju) o 45 |P(2)] det Dby [(2", —zn) | det D¢J_1|(£E) o
| det Dbt {(4h(a"), —pn(2))
= ulP J
Cl/ o, [ det Dy (5(2)) ldx
=:g(z)

< C’l/),n/ |77]u|p dﬂ?,
QN

J

where we used integral transformation several times and boundedness of g in Q2N
Q;. In fact, since 1 : Q; — B is a diffeomorphism, | det D¢;1| is bounded from
below and above on #(Q N ;) and (¢', —1,) (2 N Q;), respectively. Therefore
g is bounded on QN €2; and the inequality follows. We estimate the other
summands analogously and obtain

1Bol(nju) o 95 '] 0 il < Cllullpse-
Summing up our estimates, we arrive at (A.8). O

We now prove the analogous result of Proposition A.3 for u € H*P(Q) with
the help of F.

Proposition A.5 (cf. [19, 7.28]) Let u € H>P(Q). Then for any € > 0,i €
1,...,n,

C
[Diullpe < €llull2po + ?HUHPEQ’ (A.13)

where C = C(Q).

Proof.Let Q' DD Q. Consider Eu € Hg’p(Q’). A.3 gives

!
[ Diullpse < [|[Di(Eu)||pr < €l Bullopa + ?”Eu“p;ﬁ’-

Using (A.7) and (A.8), we obtain (A.13). 0O

Remark A.6 We can go round the first derivatives on the right hand side,
since

[Dullpe = ZIIDiUIIp;n
%

AN

c 4 -
(nﬁ + :) [ullpe + nez | D*ul|ps2 + me Z [ D" u||p; ©2
i Y]
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Therefore,

C y
(=)Dl < e+ L)l + e S 1Dl
2%

and consequently

c
IDulpe < 2 ful + L
= g||D2“||p;ﬂ + Cellullpa-
Proposition A.7 (Poincaré, cf. [13, Appendix 1, Theorem 3.1])
(i) Let Q be a bounded domain in R". If u € Hé’p(Q), 1<p< oo, then
/ |ulP dz < C(n,p,Q)/ |Dul? dz.
Q Q
(ii) Let Q be of class C™®, then for v € H'P(Q),1 < p < oo,
/Q|u —uqlPdz < C(n,p, Q) /Q|Du|p dz. (A.14)

Proof.

(i) We first consider the case u € C3(Q). Assume without loss of generality
that Q CC Q :={z e R"||z;| < a,i =1,...,n}. Set

(2) = { u(z),z € Q

u 0 ,z€Q\Q
For any = € Q,
T1 p
|ﬂ’($)|p = ‘ Dlﬂ’(taa:?a"'axn) dt
—a
T1 p
< ([ it o))
—a
< U DRI

a
— (2a)! / Dyl day

—a

a
< ()P / Dl da.

—a

It follows that

/Q\u(ac)|pda: - /Q|ﬂ(a:)\”dx§(2a)p_1/Q/_(; \Daf dzy do
(2a)" /Q D dz = (2a)? /Q |\ DulP da.

IA

Since C}(2) C Hé P(£2) dense, the assertion follows.
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(ii) Since (A.14) is invariant under adding a constant to u, we can assume
without loss of generality that ug = 0. If (A.14) is not valid, then for any
positive integer k, there exists u, € H'P(Q) satisfying f, ug dz = 0 and

/\uk\p dx > k ][ | Dug|P dz.
Q Q

Set wy, = k € N, then w;, € H"P(Q) satisfies

Uk
llukllp;e?

(1) fqwrdz =0
(2) [lwgllpo =1
(3) [olDwk|Pdz < .

From (2) and (3) we deduce that ||wg||1 p;0 is bounded. By using C.3, we
can find a subsequence wy, € H'"P(Q) and w € H'?(Q), such that

wg; — w  strongly in  LP(Q) (A.15)
Dwy;, — Dw weakly in LP(;R"). (A.16)

By (3) and (A.16), Dw(z) =0 a. e. z € Q. It follows that

w = const a. e. x € ().
By (1) and (A.15), f, wdz = 0; therefore,

w=0 a.e ze€ll (A.17)
However, (2) and (A.15) imply that ||w||,;o = 1, which contradicts (A.17).

O

Corollary A.8 (i) Ifu € Hy*(Bg),1 <p < oo, then

/ |ulP dz < C(n,p)Rp/ |Dul? dz.
Br

Bpr
(ii) If u € HYP(BRg),1 < p < oo, then

/ lu —uglP dr < C(n,p)R”/ |Dul? dz.
Br

Br

Proof.If R = 1, Proposition A.7 implies the assertion. Otherwise, use integral
transformation. g
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A.3 Stampacchia Interpolation

We are now going to prove the Stampacchia interpolation theorem, Propo-
sition 3.19, as is done in [13, Appendix 4]. At first, some preparations are
necessary.

For f € L'(Q"), the function

Mof(z) == sup ][ F()|dy, @ € Q° (A.18)
>0 J Qq,rNQO

is called the centered Hardy-Littlewood maximal function. Sometimes, it is
more convenient to define

Mf(z):= sup f F@)ldy, @ € Q°, (A.19)
Q:xeQJQNQO

where Q is a cube with center inside Q°. M f is called the Hardy-Littlewood
maximal function on Q°.

Lemma A.9 Myf(z) < Mf(z) < 2"Myf(z),z € Q°.

Proof.The first inequality is obvious, because more cubes are admitted.
Let z € Q% and @ = Qs be a cube with z € Q,7 € Q°, then

1
d —_— d
fo 0 < g [ @l

1
=2 |f(y)| dy
2n|Q n QO' Qz,2:NQ0

<o f F)ldy  (since 271Q N Q0| > |@uar N Q)
Qz,27NQ0

Consequently, M f(z) < 2"M, f(x). O

Lemma A.10 (1) Mf is a measurable function on Q°.
(2) M is sublinear,i. e. |M(f+g)|<Mf+ Mg.
(3) I [ € L(QP), then M € L2(QP) and [ M[lses0 < I1fllsesqo-
Proof.
e (2),(3): obvious

e (1): Consider G := {z € Q°|M f(z) > t}. We assert that G is open. Let
therefore be z € G, such that M f(z) > t' > t, then there exists Q = Qi
and € < t' —t such that z € @ and anQ0|f(y)|dy >t —e Let £ € R[]
small. If x + & € Q, then Mf(x+&) >t If x4+ & ¢ Q, then define

Q = Qi i +dist(a+£,Q) 2 @
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and obtain
1
Q"N Q] Jgingo
> 1
TR NQY Jongo

[f ()l dy

|f(y)| dy

1
> QN QO +g"(dist(w + £, Q)7 + dist(z + &, Q)Q), /QOQ0|f(y)| dy.
=i9(6)

Note that g is continuous and tends to 0 as & — 0. Choose & € R" with
|€o| so small that

1
QN Q% + g(éo)

Thus B(z,|&|) C G. O

/ ) dy =t —e>t.
QNQ°

After the next covering lemma, we give a deeper property of the maximal
function.

Lemma A.11 Let G C R" be a bounded set. If r : © — r(x) is a function
defined on G, such that 0 < r < 1, then there exists a sequence of points
z; € G,1 €N, such that

Quir(zi) N Qmj,r(a:j) =0,ifi#] (A.20)
U in,3r(zi) BYES (A.21)

Proof.Consider the following family of cubes:
Qo-k o-G+1) = {Qqr(x)|T € G, 2~k < p(z) < 27F} ke N

Since G is bounded, we can choose finitely many (say n1) cubes given by

< r(x;) <1,i:1,...,n1},

N | =

Q1= {Qwi,r(wi)‘l'i € G,
such that

(1) Quir(@) N Qujir(ay) =0, 14,5 =1,...,n1,1 # 7,

(2) each cube in @ 1 must intersect with at least one cube in Ql, 1.
Next, we choose a subfamily of @) 11 given by

~ 1 1 .
Q = {Qm#(l‘z)‘xl € Ga Z < T(mz) < E’Z =n1 + 13"'5”2} N2 > Ny,

ENE

)

M

such that
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(1) Ql‘i,'l‘(zi) n Qmj,r(zj) = @7 lf Z7.7 = 17 b ,’II,Q,’L. 7é j’

(2) each cube in Q1 1 must intersect with at least one cube in

11
2°4

Ql’% U Q = {ij,r(zj)|$i €G,i=1,...,n9}.

11
2°4

(It might happen that ny = nq; in this case Q1 L= (.) Continuing this process,

if z1,...,zy,, are chosen, then we choose a subfamlly of Qy-k o-(k+1) given by

k
Qok g-tksn) = {Quyr(wo)|zi € G,27%) < p(my) <27% i =mp + 1, mppa ),y
ng+1 > ng with the following properties:

(1) Q:Ci,'r(wi) N Qw]','r(zj) = @7 if 17.7 = 17 s 7’n’k+17i ?é j7

(2) each cube in Qy—k o (x+1) must intersect with at least one cube in
k
U @o-i o6+ = {Quy iy |2i € Gri =1, ;g1 }-

(It might happen that ngi 1 = ng; in this case QQ_k,Z_(kH) = (.) By our
selection, (A.20) is obviously satisfied. We next prove (A.21). For z € G let
ko € N be such that 2=(ko+1) < r(z) < 27%0_ Then = € Qur(z) € Qo—ko 9—(ko+1)-
Therefore, there exists z;, such that ’

ko
in,r(wi) € U Q2—j,2—(j+1)a Qwi,r(:ci) N ij,r(:cj) = (Da 2T($i) > 7"(‘7:)
j=0

Thus |z — z;| < 7(x) + (7)) < 3r(7y), i e, € B(xi,3r(73)) C Qu, 3r(zi)- O

Proposition A.12 (Hardy-Littlewood) The operator M is of weak type (1, 1)
and

1M fllzs, @0y < e(m)[Ifll,qo¥f € LHQ°). (A.22)

ProofLet z € G := {z € Q0|M0f( ) > s}. From the definition of M, we
deduce that there exists Qg ;(z), such that

1
f F@)ldy> s, i e]Qur N QY < - / F)ldy.  (A23)
Qe r(m)mQO Qz r(m)mQO

By the covering lemma, there exist countably many cubes Qg »(z,),? € N, such
that

(1) Ql‘i,T‘(wi) n Q(Ej,T‘(.’I)j) = @ fOI' 9 ?é j,
(2) G C Uz Qwi,Br(mi) N QO-
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It follows that

|G| < Z|Qwi,3r(wi) N QO| < 3" Z'le,r(w,) N Q0|

By (A.23),

G<TE Dldy < =1 o

Qm 'r(avl)m

This proves that M is of weak type (1,1). Using (A.9), we see that M is also
of weak type (1,1):

671
{z € Q°IMf(z) > s} < {2"Mof > s} NQ°| < ~ I llqe-

Corollary A.13 For 1 < p < oo, the mazimal operator M is of strong type

(p,p).

Proof.-M is of weak type (1,1), (00, 00) (see (3.30)). Applying Marcinkiewicz
interpolation, we obtain the corollary. O

For f € L'(Q"), the function

#(z) := su — fonoo| dy, x 0 A24
P = f 1~ Joneoldz < Q (A.21)

is called the maximal mean oscillation function of f on Q°, where () has center
inside Q°.

Lemma A.14 (i) f € BMO(Q®) & f# € L>®(Q°)
(ii) If 1 < p < oo, then
17 #llpigo < eln,p)IIF llpio- (A.25)
(iii) If f € LNQ), then f# € L;,(Q°).
Proof.

(i) follows from Lemma 3.16 with p =1

(ii) We have f# < 2Mf. By Corollary A.13, M is of strong type (p,p). It
follows that the sharp operator (-)# must also be of strong type (p,p).

(iii) dx({z € Qf#(2) > s}) < dx({z € QUM (2) > 5}) < 2| fll1qo
O

Another important property of the mean oscillation function was discovered
by Fefferman and Stein (cf. [16]).
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Proposition A.15 Let f € LY(Q°). If f# € LP(Q°) for some 1 < p < o0,
then f € LP(Q°) and

1 1lpsgo < €, p) (1 F# 1l + £ 1ol Q1) (A.26)

Proof.For any fixed « such that
! >][ |f| dz (A.27)
QO

we apply Lemma 2.12 to the function |f|. There exists a sequence of nonover-
lapping cubes (QF) such that

a<][ fldz < 2a,j =1,2,... (A.28)
Q7

f@)|<a ae ze@Q\ UQ;-’. (A.29)

If we do the decomposition simultaneously for all values of « satisfying (A.27),
then (Q}") are subcubes of @7, when a1 > ay (see proof of Lemma 2.12). Set

o) =I5 for o> ]{2 1fldz.

Then a — p(a) is a nonincreasing function. From (A.29) we deduce that

Ao) = dx({z € Q|| > a}) < () (A.30)
We claim that if
gorr > . /1o = 1fleo (A3)
then
uo) <ax ({r e @UF@) > SH) + 2u (o), (A32)

where A is an arbitrary positive number.
—(n+1 ~
Denote any cube Q;f (3 by Q°. For each cube Q7 there are two cases:

e Case1: Q° C {z € Q|f# > %}. Then

> 15l <dx ({z e @It @) > F}nQ°). (A.33)
QeCQP

e Case 2 Q¥ ¢ {z € Q°|f# > &}. Then there exists 7y € Q°, such that
f#(z0) < %. By definition of f#, we have

]{}Olf(x) — faoldz < %. (A.34)
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On the other hand, (A.28) implies that

6% (0%
o <2 (55) < %5 Iflgg > sy

It follows that

/Q?|f(w) — ool do > /Q?Hf\ Szl da

z/Q?m ~ fg0l da

> /Q?Ifld:v—/Q?IfIQo da
— (Iflgz — /1g0)/Q2]
> 51Q31,

where @ is an arbitrary element in (Q;"), which is contained in Q°. We sum
up over all such cubes. Then

W2 2 -
Y@<y X [ 1@~ Slde < ZIQ oy (A3) -y g5
Q3 Qo Qe
Combining the two cases, we deduce from (A.33) and (A.35) that
o 0t # ) > 2V a0) + 2160
> 105l < dx ({z e @I*(@) > 5nQ°) + FI1Q,
Qecde

where Q° is an arbitrary cube from the set {QJ’B |8 = 2,5%} By summing over
all such cubes, we obtain (A.32):

pl@) =105 =>" > Q7
i

7 Qpc@y
cox({r st S+ 2 55)
For any s > 2"*1| f| 0o, we set
I, :p/os o () da.

Since u(a) < |Q°|, the above integral is well defined. Using (A.32), we get

2n+1‘f|Q0 s 1
I, :p/ o u(a) da —i—p/ o p(a) da
0 2n+1|f‘Q0

<1QUslgpr + % [ 0 (55) da
+p/ooo dx ({x € Q0|f#(ac) > %}) o Lda

2
< 20 OPIQP|| £ By + 2P AP FEP o,
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where we applied Lemma 2.7 and the transformation o — 2"+1a. We choose
A = 4.2+ in the above inequality. Then

I, < 20 F0ETDIQ0) 12 + 247 FHD -

By (A.30),
S
p [ Al dac < 200 H ] go + 27 IOEIQO 17
0 »Q Q
Letting s — oo, we conclude (A.26) by Lemma 2.7. O

Proof of the Stampacchia interpolation theorem. Define T#u := (Tu)#. By
Lemma A.14 and the assumptions, we deduce that

“T#u’Hq;QO < C(nap)”TUHq;QO < C(nap)BqHqu;Qo'
By the definition of f#,
||T#U’||OO;Q0 < |Tu‘*;Q0 < 2BOO||U||00;Q0'
Thus, the Marcinkiewicz interpolation theorem implies that T# is of strong
type (p,p) for p € [g,00) and
4q pP—q 0
IT#ullygo < OB Bod [l gV € IX(Q°),

where C only depends on n,p,q. Now we use the Fefferman-Stein theorem to
conclude that for u € LP(Q°)
ITullpgo < CUT#ullygo + Q17 Tu|g0)
Ullp;Q° = Ullp;Q0 ujQo
1
< C([lullpsgo + 1Q°F ™ [ Tull1;q0)
11
< O([[ullpge +1Q°17 | Tullgq0)
1_1
< C(H’“’Hp;QO + |Q0‘p qu”qu;QO)

1

11 11
< Clllullpgo +1Q°7 4 Bl Q[ 7 lull o)
< Cllullp;qo,

where C = C(n,p, q, By, Bo)- O



Appendix B

SOME COMPUTATIONS

B.1 Refering to Section 2.4

In the situation at the end of Section 2.4 let us show that

_[Tt 2z5(z) ]—>Z axzaxj —: L72%(z),

1,J=1

as t — 0, where a = (a¥) = Joo': At first,

oMz —y)P =< (00")! (z-y)z-y>= (Z AN e — yr) (w1 yl)) :

::Ailz:(A;jl) k,l:1

Define y 2

p7(z,y) == (2rt)" % | det o| "L exp [_W] ,
then
4 eey) = —(2m 3G deto] " exp |- EZWE]
dt't 5 5

o~ e —y)® 1,
2 3 Dy (‘T y)

- o = —y)I”

= i) (n- 100,
Opf (z,y - 1 (S
# = Py [ Y Az —w) |,

6$Z t P

n

2,0 T
882-593;]?) - pg(x’y)tiz (Z A (g — yk)) (Z Az (@ — yk)> -

k=1

1 -1
pg(xay)EAij

3

1 (&, _ 1
= p{(z,y) [t_g (Z AG (g, — yk)) ( At (g, — yk)) - ;Azjl
k=1 k=1

131
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Now

g
. J Bxlax]
%)

1 _
y)z(z Aij A
1,J
1 _
= Zpg(ﬂﬁ,y)t—Q Z&'k(ﬂ% —yk) Ay (@ — ) —

(since AJAZ! = 6; = 1)

147

2

1 n
_pg(‘xa y) n

0*p? (z,y 1 _ _
ZA”# — Zpg(w,y)t_QZAijAjkl(xk — ) A (2 — y) —
kil ij

t

1 _ n
= Zp?(w,y)t—g(xk —yr) Ay (11— i) — rACR)

k,l

i (z,y), _ p{ (z,9)
tT\U 1(51c - y)|2 - tf”

0%p? (z,y d
S 1@y = Yoy ot = Sat(e)
ij ¢

Let f € C*(R"),|D%f(z)| < M(1+|z|) for |a| < 2, where M = M(c). Then,

for € € (0,t), with pf := T¢:

P @) —p0 @) = //f @) duds

=Lgpg(x ( Y)

- [ [epwmeya

= [ nwas

€

Lemma B.1 Letting ¢ — 0 in (B.2), we obtain
t
vif(@) = f@) = [ ()@ ds
Proof.left-hand side: If f € Cy(R™), then pf f(z) — f(z)Vz

lp7 f \</|f z)|pf (z,y) dy

= / ()If(y)—f(w)lp?(w,y)dy+ [ @ 1)) dy

e\ T VT

—0 pointwise, as t—0

< swp (1)~ S@)]|+ 20 o [ 1o,cor PET:9) o ) dy.
yEB. () 7 (z,y)
Now
>4 fore<i
1
- lo 1 (a=y)|? (_ — 1)
) 7 2
P A )RS B t
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—1 _ 2
< texp [—M] Lo (9)

b

and, since for z > 0 we have z" < nlexpl[z], it follows for ¢ < 1,

—n lo~ (@ —y)|? . (4"
t - A P St
o [ 4 = i@y
4™n!
TR B.
-y 3
Therefore,
i (z,y) 47! ][>
1Be($)c (y)pg—(m’y) < ‘U_l(.’L' — y)|2n 1BE($)c(y) < e2n 47Ln|’

which is a majorante with respect to a probability measure.

= limsup|p? f(z) — f(z)| < sup |f(y) — f(z)| — 0,
t—0 yEB(z)

as € J 0, by Lebesgue.

For f € C(R"), such that |f(z)| < M(1 + |z|), we take x, € C§°(R") such
that 1p () < xn <1,Xxn 1. Then

192 1(2) — F(@)] < 17 (F(1—xa)) @)+ 107 (FXn) (@) — (Fxa)(@)| + £ (1 = xa)(@)]-
Now
DS (F(1 — X)) ()] < / 1L = xn) @)pS () dy
< [ O dy

<M / (1 + || + Iy — =)p (2,9) dy
B (0)c

< M(1+1al) [

P (2,y) dy + Mo / o™ (@ — y)|pf (2, 9) dy,
Br(0)c B Br(0)c

~

—0,as t}0,if n is large enough

since

|z —y| < sup |z —y| :Supla(:v—y)\

ot @ =y)| T azylo Nz -yl oy |z -yl

We assert that the second summand tends to zero by Lebesgue as ¢ | 0:

= [lo]l-

Mllo] / o~ (& — )9 (,9) dy
Br(0)c

— Mllo / 0_—1 T — pg(‘xﬁy) o z, d
o]l Bn(o)c| ( y)|p(1,(x’y)p1( y) dy
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M4 n!||o||?™
~ dist(z, Bn(0)°)’

if n is large enough and ¢ < %, since

4 4"n!
1 c 0'_1 T — M 1 c
Ba(0)c ()0 ( )Ip({(x,y) < g, (y)|0_1($_y)|2n_1
4np)||o||?m L
< 1Bn(O)C (y) |.’1: — y|2n71

4nn!||o.||2n—1

This is our majorante and because of pointwise convergence of the integrand,
the assertion is proved. Consequently, |p{ f(z) — f(z)| — 0 as ¢t | 0.

right-hand side: We want to apply Lebesgue again. Since pointwise conver-
gence is shown, it would be enough to prove that

t
/0 197 (L7 £)(3)] ds < ooV

Now, since D;; f(z) < M(1+ |z|), we have by definition of L7, that | L° f |(z) <
—~

M'(1+ |z|). With that,

pS (9) ()] = ‘(27r5>‘)_g|0'let 0’|_1/9(y) exp [—W] dy‘

< (27s) 2| deto| ! /M'(l + |y|) exp [_W] dy

—1 . 2
< (27rs)‘%|deta|—1/M' ly — x| exp [_M
N——

<1t|y—zl?

] dy + M'(1+ |z|)

(since y =y — = + x)
< M'+ M"(o,n)s + M'(1+ |z)).
Thus,
t
/ 1P (g)(z)|ds < M(1 + |z]) + tM" < co.
0

O

Let us try to turn to (B.1). Since z is continuous and uniform limit of piece-
wise linear functions z, each of them fulfilling |z (z)| < M(1 + |z|), we know
that

|z(z)| < M(1+|z|) and 25 = pfz € C*(R™).

Moreover,
|25, | Dizsl, | Dijzs| < M(1+]-]), (B.4)
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as we will see later. Therefore, we can apply the first part of Lemma B.1 to
obtain
psLozs(x) — L7%5(x),

as s | 0 for any z. Let € > 0, then there exists ¢ such that
lps L z5(xz) — L7z5(z)| < e Vs € (0,tp).
Hence, for t < t,

1

t
2 | sz e) — ()@ dsl < e

Let us look at (B.4): Let € > 0.

Ip§ z(z)|
-1 _ 2
< (276) % |det o] ! / I2(y)| exp [_W] dy
< sup |z(y)| +
yEB(x)
—1 _ 2
(27r5)—3\deta|—1/ M(1 + |y|) exp [_M] dy
BE(E)C 2(5
<supZ Y4 ar g
ey 12(Y)]
-1 . 2
Be(z)° 26
Ssup|x_y|+M+M|.Z‘|+M/ |x_y|pz(w7y)pg(x’y)dy
sy 12(y)l Be(z)° p{(z,y)

An above computation in mind, we obtain for ¢ < %,

i (z,y) 4"n!
1 () (¥)lz —y < g @@l -y
@ (W)l lp‘{(w, y) Wk =¥l =y
o>
o lol”® n
= [p§2(z)] < | sup [2(y)|+ M+ M4l | (14 |z)).
YEBe(z) €
Similiar computations yield the estimates for the partial derivatives. 0

Our last task in this section is to show that
fs(@ +V2toy) — fs(x) as t10:
Remember, that f = 0 in Bf. Therefore,
fs(z + V2toy)

o™ (= + V2toy — y)?
26

= (2n0)” 2| det 0| ; f(y) exp [— dy
R

— fs(z) as t] 0 by Lebesgue.
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B.2 Refering to Proposition 3.28

(compare with [12, Appendix I and III]) Let 7' € C*(£21;Qs) be a diffeomor-
phism and u satisfy

/ a’DjuD;pdz = Djpdz. (B.5)
(91 1971

If ¢ € Hy?(§), then

| Do D o) do

:Z/ ;5 (Z Dk’u,(T.’E)DZTk(.’L‘)> (Z Dl'Lﬁ(T.’II)D]Tl(LII)> dx
i U k !

-y /Q ai; DiTy () D; T} () Dyu(Tiw) Dy (T) dx

-y / a;;DiTy o T~ 1(T2)D;T o T (Tw) Dyu(Tx) Dy (Tw) dev
ikt ?

=> /Q aij(DiTy o T 1) (y)(D;Ti o T )(y) Du(y) Digp(y)|det T|  (y) dy
2,7,K,l 2

by integral transformation and since a;; are constants.

= Z/Q (Z aij(DiTy o T~1)(y) (D T; o T~)(y) |det Tll(:u))
kg V%2

]
Dyu(y) Dip(y) dy
=: Z bri(y) Dru(y) Dyt (y) dy,

[T

from what we see that the ellipticity constant of the by; is

minycq, |det 7-1|(y)
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On the other side,

fiDi(3 o T) dz
1951

= /Q (@) | Y_Diw(T=)DiTy(x) | du
! J
=Z [ () DiTs (@) Dy () o
N Z fZOT Tz)(D;Tj) o T~ (Tx)Djh(Tx) da

—Z [ (510 7)) (D) 0 T7)(w)ldet 71 () D) dy

=: / FI(y)Djyp(y) dy
Q2

Hence, defining the equation

/ V¥ (y) Do Dy dy = / F*(y) Dy (y) dy, (B.6)
Q2 Q2

we can say:
u is a weak solution of (B.6) < woT is a weak solution of (B.5).
or in other words:

u is a weak solution of (B.5) < uoT ! is a weak solution of (B.6).

Since T is a C*-diffeomorphism and a;; are constants, by, € C°°(Qy).
We now assert that Fj, € £L2(Qy):
Step 1: fj oT 1 e £2’“(Qz)

Proof.Set J(x) := |det T|(z), J~'(y) := |det T~"|(y). Since Ji, J» are bounded,
there exist ¢1, cg > 0, such that for z1,z € )y,

Cl‘l‘l - .’E2| S ‘Tl‘l _T.Z'Q‘ S CQ|!E1 - .Z'Q‘.
Therefore, for z € Q1,p > 0,
Qo(T'(z), c1p) := B(Tz,c1p) N Q2 C T (1 (z, p)) C Q2(T'z, c2p); (B.7)

in fact, let x € Q1 and y € Qo N B(T'x, ¢1p), then
. 1 1
T (y) —z| < —ly —Tz| < —cip = p.
C1 c1

Let y € T(Q1(z, p)), then |y — Tz| < c2| T~ (y) — z| < cop.
Analogously,

o (1700, 2) cT @) c o (170, L) (B

C2
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By monotony and integral transformation,

/ T — (f 0 Ty pl? dy
QQ(yO:ﬂ)
< / T7Y) = (Fay iz-ty0pen
Q2(y0,0)
< . _ . 12
<[} 1)~ B 0 2

<||J (%) = (Fi) e (a1 ooty d
<1l [ e ) = (st
< T llocpes ™ 1 fill 222y
Consequently, f; o T~ € L#(Qy) with
_ 1
1£5 0 T H g2y < (T 1l00B) 211 £ill 2
With help of (B.7) we get the estimate

|- o Tl z2.m(0) < Clivll 220 (020)
analogously. O
Step 2: Of course, (D;T}) o T~'J~1 € C®(Qy).

e Case 0 <y < n: By Proposition 3.13, L5H(Q) =2 L2 (Qy).
Let ¢ € C(Q2) and u € L>#(€s), then

/ pul? dz < suplpl? / ul? da.
92(:9077') QZ 92(110’7')

Hence,

[upllconz) < CllupllLznay) < ClielloollullL2u(ay)

<
< Cllellsollull c2.(c)-

e Case u =n: Let ¢ € C%%(Qy) for some 0 < a < 1,u € L2(Qy).
For yg € Q5 and r > 0 we have

/ |U(P - (U<P)yo,r|2 dy
92(110,7‘)

- / o (o) — ul (o) — @] — @(w0)igor — (ulo(¥e) — @)yorl? dy
Q2(yo,r)

<Clowplel [ g+ [ fuPlo) - e dy),
Q9 Q2(yo,r 2(yo,T)

where we used (3.80),

192

= (x).

<Clwplel [ u— eyt el [ udy)
Q2(yo,r) Q2(yo,r)
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Now, L27(§y) C L2 ¢(Qy) =2 L2 ¢(Qy), hence for € = 2

/ lu|? dz < rn_2a||u||%2,n_2a(92)
QQ(yO;"‘)

< Crn_2a||u||%2,n—2a(ﬂz)

< C’r"‘2a||u||:2c2,n(92)'

Ergo,
(%) < C{Sélp|<p|2T"[U]iz,n(g2) + 1"l con (@) ullZ2m (g, }
2
< O |9l o @) 1ullZ2m 0
Therefore

[“‘P]%z,n(m) < C||<P||co,a((22)||U||%2,n(92)a

which implies up € £"(Q) and

||U(P||£2’n(ﬂ2) = [|uep||2;0 + [ugo]ﬁz,nm?)
< Cllgllgoa @y llulleznay)-

Altogether, Fj, € [,2’“(522) Y0 < p < n with
1Fnll c2e(y) < CllFn o Tl g2.0(02y)
1
= C”zj: ijjThm||£2’”(Ql)

< Cliflle2n(au)-



Appendix C

PROPERTIES OF H""P

Cl meN

This section is based on [3, Chapter 5]. Let in the whole section @ C R™ be
open and bounded, m € N.

Proposition C.1 (Rellich-Embedding) Let 1 < p < oo and m > 1. If
up — u weakly in Hy"P(Q), then up —> u strongly in H™ 17(Q).

Proof.Let m = 1 (otherwise apply the following argumentation to each 9%uy
with |s| < m —1). If we set ux = 0 in R* \ , then u; € H"P(R"). For the
Dirac-sequence (g.) of some ¢ € C§°(B1(0)) we have that ¢, * up € C°(R")
and @¢ * uy — @ *u in LP(R™) as k — oo: in fact, outside B((2), e * ug
and @, * u are vanishing and for z € B.(Q),k € N, such that z, — z, we
have @ (zy — ) — @c(z — ) uniformly, thus in L? (), too. Since up — u
also weakly in LP((Q2), it follows that (ug) is bounded in LP and

pexup(zy) = /Qwe(wk — y)ur(y) dy
N /Q%(x — y)uly) dy = @ xu(z) (cf. [3, 5.3.5])

From this, we derive @, * ur, —> @, * u pointwisely as K — oo and since

e * ur(-) < [|@cllooCllurllpa < l@ellocCCL < C'(e),

where C' does not depend on k, we conclude that ¢, *x up —> @ x u in LP(R")
as k tends to infinity for any e.
Moreover, for arbitrary v € HP(R") we have an estimate of the form

[v — @ * v|pre < €| Dvl|prn : (C.1)

Y

o= s vl = ([ ds
b N

- (L )

oa) = [ e~ )l dy

/ pelz — 1) (v() — v(y)) dy

140
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< swp (/n|u(gc+h)—v(x)v’>5 (cf. [3, 2.8))

|h|<e

For v € H'?(R") N C*®°(R") we have

/n (@ +b) — v(@)Pds = /

1
|h\p/ / Doz + sh)|P de ds
0 Jre
(Cauchy-Schw., Jensen, Fubini)

|h\p/ | Dof? da.
Rn

Since HYP(R™) N C°(R") dense in HP(R"), the above estimate remains valid
for v € HYP(R") and we obtain (C.1). Now we replace v by u; and obtain

p

1
/<Dv(x+sh),h> ds| dz
0

IA

IN

|u — ugllpre < [|u—@e* ullp +l|‘:06 *U — Pe *“ng"‘ﬂ‘Pe * U — Uk”;g-

—0Ve <el|Duy||lp<eCy

Since @e * 4 — u in LP(R™) the proposition follows. O

Remark C.2 We have not used that Du belongs to LP(R™). Actually, we have
proven the following implication:
ug bounded in Hy?(Q),u € LP(Q) and [, Cu, — [, CuV¢ € C°(Q)

= u —>u strongly in LP(Q).

During the following considerations it would be enough to assume 2 to be
of class C%!. Since we are only interested in the case Q = ball and want to
use the extension operator E from A.4, we assume §2 to be of class C* for the
rest of this section, if not otherwise stated, for simplicity (see Definition 2.20).
According to that definition, U := {B,(4y)(z0)|zo € 00} is an open covering
of 00. By compactness, there exist U',..., U™ € U such that Ui, U’ 5 09Q.
Add U with U° C Q and obtain an open covering of Q. Let

WeCEUN0<H <13 =1 in O
=0

be a partition of unity subordinated to {U?|j = 0,...,m}. If then u € H™P(Q),
m .
we have u = Y n’u. In particular, n’u € Hy"P(2) (for p < 0o) and if we define

7=0
Q7 :=UINK, then pfu € H™P(Q).

Proposition C.3 Let 1 < p < oo,m € N. If uy, — u weakly in H™P(Q),
then uy — u strongly in H™ HP ().
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Proof.-With our notation Duy — nu weakly in H™P(Q) for each j: in fact,
let [ € H™P(Q)'. Define [ : H™P(Q)) — R, v > I(n7v), then

o] = [L(n70)| < Ul ol < NI | om ) 10 lm -
Thus, | € H™P(Q)". Consequently, |I/(uy) — I(u)] — 0, in other words,
(7 ug) — U w)] — 0.

Since nuy, and n’u € Hy"? (), n’ur — n’u strongly in H™~1P(Q) by C.1.
Let ' DD Q and E be the extension operator from A.4. We assert that
E(pug) — E(nfu) weakly in Hy"P(Q'): in fact, let I € Hy*P(Q2)’, then lo E €
H™P(Q)', since for any u € H™P(Q),

(1o E)(uw)| = |I(Eu)
S C”EUHQ,]);Q’ S C,HUHQ’IJ;Q'

Therefore,
B u)) = UE( w))| = |( o B)(n’u — n'u)| — 0.

So we can apply C.1 to E(n/u), E(n’u) and obtain the proposition, because
Ejq=1d in Q. O

Lemma C.4 For m € N and 1 < p < oo the following equivalence holds:
fe H™P(Q) &

FELL(Q) and \ | 10 ds| < Cllclpa¥ls] < m.¢ e G @),

Proof.= : UQ fD*C dm| = UQ D?f¢ dm| <|ID? f | psellC]lpsa
< : For 0 < |s| <m and ¢ € C§°(Q) set Fy(¢) := [, fD*Cdz. Since C§(Q2) C
L”' (Q) dense, we can extend Fy to L” (Q) and obtain by duality the existence
of functions f(*) € LP(Q) such that

F(9) = [ (=101 ds g e’ @)
Q
Thus,
[ Do = (-1 [ fOcdsv e o),
Q Q
For |s| = 0 we have that [, f¢dz = [, fO¢dz V¢ € C§°(Q). Therefore
f=f9and f € H™?(Q). O

Lemma C.5 Let xog,z1 € Q. Then there exists v € C*([0,1];Q) such that
¥(0) = zo,¥(1) = z1 and for some constant C, which only depends on Q, we
have for its length

1
L(y) = / W ()] dt < sup ()] < Clar — o).
0 0<t<1
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Proof.step 1: Construction of a C%!-path « such that lip (y) < C|zy — zg].
We start from our covering (U7); j=1,0..;m OF BQ and choose points 2/ € Q7. Then
we take an open set D CC (, such that z',...,2™ € D and D,UL,..., U™
cover Q. Moreover, cover D with finitely many balls U7 := Bg(zj ) C Q,5 =
m+1,...,1L
We distinguish three cases. If zg,z1 € U’ for some j > m, then define

v(#) = (1 — t)zg + tz1.
If 2y, z1 € U7 for some j < k, then define
() := 7((1 = )7 (@o) + tr " (21)),

where 7(y) := Z?:_ll yieg + (yn + ¢ (y'))e%. This defines a lipschitz continuous
path v in Q from zy to z; with

_ . (@) — () :
lip(y) = s,te[op,l] [(1 = )7 Y(zo) +t71(z1) — (1 — 8)7~L(mg) — 87 (z1)|

|(s = )7~ (wo) + (£ = 8)77 (1))
|s — 1|
< lip(7)|7™ (o) — 77 ()| < lip(r)lip(r )|y — wo)-

In the third case zy and z; do not both lie in the same of our Q-covering sets.
We assert that there exists a constant ¢ > 0, just depending on our covering,
such that |z; — zo| > c. This follows from the fact that for z € Q U U’ lying
close enough to OU7,x € U* for some k # j; let T := {1,...,1} and define

c:= min{dist((ﬂ U\ U U, ﬂ U\ ( U U’))

i€lp 1€I\Ip i€l t€I\I1
@7&10 CI,@#Il cl,lynly :(b}

Then 0 < ¢ < diam® (set dist(, A) := oo) by construction. Now let I, I, C
I, such that z¢ € nielzo U,z € ﬂz’elml U', then |zg — x1| > c. Since € is a
domain and therefore connected, there exists a continuous path v; : [0,1] —
Q with v, £(0) = 27,7;,(1) = z*. If we work on -, ; as we will do on the entire
path in step 2, we may assume <y, to be smooth. Then lip(y;x) < oo and
because of |z1 — x| > ¢, there exists C' = C(v; ), such that

lip(;%) < Cc < Clz1 — zol-

Now let zy € U%,z; € UJt. At first, according to case 1 and 2, we connect
zo and 2/° within U% by some path, whose lipschitz constant is estimated by
C|z70 — zy| < CdiamU’°. Then we connect 270 and 27! by v, j, and 27! with
x1 within U71. Reparametrizing the concatenation of these paths, step 1 follows.

step 2: Let 7y be the result of step 1. Define y(t) := z( for t < 0,7(t) := z1
for t > 1 and v, := @¢ * 7, where ¢ € C§°((—1,1)) and (¢.) denotes its Dirac
sequence. For any £,

,YI (t) — lim ’YC(t) — ’)’g(t())

<li
to—st t—1o < lip(3e)
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= ”’Yé”oo < lip('ye)

o D@ =) o)t —r) = (s 7)) dr|
e S T e (t—7)— (s —7)]
< lip(y)
= |Vl < lip(7e) < lip(y)-
Moreover,

%eaa/ pe(s) y(—c — 8) ds = o
B, (0) S———
=xoVsEBe(0)

7ﬂ+d=/ we(5) (1 +e—s) ds = 1.
=x1Vs€B(0)

Consider the transformation
Te: [0,1] — [—€, 1+ €],t —> (1 4 2€)t —e.

and define J. := v, o T¢, then 4. € C°°([0,1;R"),7:(0) = 20, %e(1) = 1. Set
eo := dist(y([0, 1]), 09), then for any ¢ € [0, 1],

Fe®) =) = |yeoTe(t) —v

< [ edoln(@® - 5) =10l ds < o,
R

if € is sufficiently small, because +y is uniformly continuous and |T¢(t) — s — t| <
|Te(t) — t| + |s| < 4e. Thus for suitable €,7.([0,1]) C © and step 2 is proven. [J

Proposition C.6 C™~b1(Q) c H™™(Q) and the embedding J : C™1H1(Q) —
H™(Q) is an isomorphism with ||J| < 1. In particular, any function in
H™>(Q) has got an unique representation in C™~L1(Q).

Proof.It suffices to consider the case m = 1. So let v € C%'(Q). Letting h
tend to 0 we have for arbitrary ¢ € C§°(Q),

s oGt he) — (@)
/Q uDi( dn| — /Q () : d
B u(x — he;) — u(x)
= /Q . ((z)dz
< tip) [ [cldo.

Hence, u € H»*() by Lemma C.4. Now let u € HY®(Q), u, := u * @,, where
(pe) shall be the Dirac-sequence corresponding to some ¢ € C§°(B1(0)). We
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proved in Lemma C.5 that for zg,z; € Q there exists a path v € C*([0, 1], )
with v(0) = zo,v(1) = z; and length flo |Y'|dt < C|z1 — x|, where C' only
depends on 2. We obtain
1
/ (ue 0y) dx
0

1
(Y (t)] dt
< sup [Duc(y(2))[Clz1 — o
t<1

lue(21) = ue(zo)| =

A
IS
£

and for sufficient small € we have for z = y(¢),0 <t < 1,
|Duc(z)| = |D(ux @e)(@)| = [(Du* pe) ()]

/ e — y)Diuly) dy
Q

= .

i=1

< [[1Dulloos-

Since ue — u in LP(Q) for p < oo, there exists a subsequence ¢ — 0 such
that ue — u a. e. in Q. Hence we have shown that for any zg,z1 € €,

lu(z1) — u(zo)| < C||Dullsosr;
|1 — o

i. e. wu is lipschitz continuous outside a nullset. Modify u on this nullset to
obtain u € C%1(Q). O

Definition C.7 Recalling definition 2.20 and that 0Q is compact, we can choose
finitely many U?,j = 1,...,m of type B,i(z;), that cover OQ. Let (e])" , be

i /14

the corresponding modified coordinate systems. We say that f : 002 — R is

measurable (integrable), if with our notation for j =1,...,m the functions
n—1 ) ‘ )
yr— f (Z yie] + ¢’ (y)€%>
1=1

fory € R*1 |y| < 1 are measurable (integrable). The boundary integral of f
over 0S) is then defined by

Aﬂfds::ji;/mnjfds,

and if supp(f) C U7,

n—1
fds = / f (Z yiel + gj(y)6%> 1+ |Dg?(y)|* d=.
o9 Re=t o \i=1

Note that Dg? is a well defined measurable and bounded function by C.6.
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For 1 < p < oo we set

LP(0Q) :={f : 00 — R|f is measurable and || f||p00 < oo},

1 . .
where || fllpo0 = ([5q [fIPdS)? and ||f]lo00 = esssupsq|f|. Since Dg are
measurable functions, we can define

n—1
v(z) = (1+|Dg/ (y)[2) 2 (Z Dig’ (y)e] — 6%)
i=1

n—1 . i . .
for z = Y yiel + ¢’(y)el € U? with |y| < 77 in each local neighbourhood
i=1
UJ,j=1,...,m. We call v(z) the outer normal of 9 in z. v is measurable in
0 with |v| = 1, thus v € L*>®°(09). Because of the above representation of z,

v(z) is orthogonal to

n—1
() := Dy, (Z yie] + gj(y)ef;) = e}, + Ocg’ (y)e),
i=1

for 1 < k <n — 1. Moreover, v(z) points outside, i. e. = + ev(zx) ¢ Q for small
€ > 0: for this, we have to show that (z + ev(z))7, < ¢/ (((z + ev(x))?)"):

€
1+ [Dgi(y)[?

g (z+ev(@))) = ¢ <y+ 1+|ng(y)|2ng(y)>-

(z+ev(@), = ¢ —

Thus

€ . €
. Dg’(:u)) <0< —
1+ |Dgi(y)[? V1+|Dg’(y)|?

since Dg’ (y) points to the direction of strongest ascent.

J) - (y +

Proposition C.8 There exists exactly one continuous linear map
B: HY(Q) — LP(6Q),

such that Bu = upq for u € HMP(Q)NCY(Q). (In this case we sometimes write
u instead of Bu.)

Proof.The case p = oo follows from C.6. So let p < co and u € H'P(2). We
know that v := n/u € H'?(Q?) and since 7/ € C§°(U7), for some § > 0 we have

v(z) =0 V|(z?)|>r'—§ and Val — g/ ((z7)") > h —&.
For s > 0 we define functions v, : R*~! — R by

vs(y) == v(y, ¢’ () + 9),
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n—1 . .
where (y,h) := > yiel + he},. We assert that for a. e. s1,s2 > 0 and then for
i=1

a. e. y € R*! we have

Vs, () — sy (y) = v(y, ¢ (y) + s2) —v(y, ¢’ (y) + s1)
97 (y)+s2
- / D, v(y,h) dh (C.2)
97 (y)+s1 "

In fact, approximate v by vy, € H'"?(Q7)NC*®(Q?),k € N. For vy, (C.2) is true
and moreover,

hj . .
[ ] g w)+5) - utg @) + )l dyds
0 JB,;(0)
:/ |lv —vg|de — 0 as k— o
QI

and

h 9 (y)+s
[ [ 100w — Dyt bl dndy ds
0 J/B,(0) /g’ (y)
Shj/ |D,i (v —wvg)|de — 0 as k — oo.
Q "

Now for s1 < s by Holder
/ |v52 — Usy |p dy
B, ;(0)

N /Brj (0)

9’ (y)+s2
/ De%v(y,h) dh
g
97 (y)+s2 P
<[ [ ipgewnian) d
B,;(0) \/g/(y)+s1 "

p
dy

I (y)+s1

p . p
< /B P R e e O P A
9 (y)+so
— [ sl [ D o )P dndy
B,;(0) 97 (y)+s1 "

<lsg — 81|p_1/ , |Dv? dz,
{zeQi|si<ah—gi ((z7))<s2}

thus

1—1
105 = Va1 llpip, 5 0) < 52 = 511 2 1DV oeifsy <ot —gi (a3 ) <2}

Since the right hand side tends to 0 as s1,s95 — 0, the functions vs build a
Cauchy sequence in LP(R*~1) for s — 0, hence v; — vg in LP(R*~1) for some
vo € LP(R* 1), Set

Blo(y, g’ (y)) == vo(y)-
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By C.7, Blv € LP(0R2) with

IA

1B70|| ;00 Clivollp;s,;(0)

CHUS - vso”p;BTj (0)
= Clsljg ||,Us - USoHp;BM' (0)
1-1
< Csy ” ”D")HIJ;QW
if b/ —§ < s9 < h. For u € H'P(Q2) we then define
Bu := Z BI(1fu).
7j=1

In particular, Bu = ujgq, if u € C(Q). Thus the existence of B is proven.
Uniqueness follows by A.4 (i). O

Proposition C.9 (weak Gaussian theorem) 1. Ifu € HY'(R), then for

1=1,...,n,
/Diu:/ uv; dS,
Q 80

where v shall be the outer normal to 0Q2 from C.7.
2. Ifu € H'?(Q) and v € H'*?'(Q) such that %-l—z% =1, thenfori=1,...,n

/(qu+vDiu) :/ uvy; dS.
Q o9

Proof.2.) Approximate u and v by functions in C*°(2) according to A.4 and
obtain that wv € HV1(Q) with D;(uv) = uD;v + vD;u and that B(uv) =
B(u)B(v) in L'(6€). Thus 2.) is reduced to 1.).

1.) Approximate u by functions in C*°(2) according to A.4. Then use the
classical Gaussian theorem and the continuity of B. O

Lemma C.10 Let u : R* — R such that ujg, € HY(Qy) and ugq_ €
HYYQ), where
Q= {(y,h) € R"[ £ (h - g(y)) > 0}
If B+ are the boundary value operators w. r. t. Q4 from C.8, then
u € HYY(R") & Byu = B_u.

Proof.= : For s € R define us(y) := u(y, g(y) + s). By (C.2),

9(y)+e
/ ‘ue _u*€|dx < / / |D6nu(y7 h)‘dhdy
Rn—1 Rn—1 Jg(y)—e
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9(y)+e
< / / |Du(y, h)|dhdy — 0 for €] 0.
Rr=t Jg(y)—e

Thus by definition of B (see also the proof of C.8), Byu = B_u.

< : Let vy denote the outer normal to 4, then v_ = —v,. Thus, by C.9
for ¢ € C§°(R™),

n Q4 Q

= ((Biu)vy dS + ¢(B_u)v_dS
804 89

= [ (B + (B as.
graph(g)

vl

v~

=0

Let us now show that functions in Hé () have zero boundary values.
Lemma C.11 For 1< p < oo,
Hy?(9) = {u € H*P(Q)|Bu = 0}.

Proof By definition, any function u € Hé P(2) can be approximated by uy €
C§°(€2). Therefore 0 = Buy, —» Bu in LP(02). Now let u € HYP() such that
Bu = 0. We also have B(n’u) = 7’ B(u) = 0 on 0% (see proof of C.9). If we
define _ _

(Wu)(z) ,ifze?

vj(z) := } .

0 yifx ¢ QY
for j =1,...,m, then v; € HY(R"), because of C.10, just like

vis(T) == v;(z — del),
for § > 0, and as J tends to zero, v;s — v; in HYP(R"). Hence
Uy 1= no'u, + Z’Uj5 —Uu
j=1

in HYP(Q) as § — 0. But us has compact support in  and can therefore be
approximated by functions in C§°(Q2) through convolution. A diagonal argu-
ment yields the lemma. O

C2 m=-1

(compare with [1, Lemma 3.7ff.]) Consider L}, := L? x --- x L* with norm
——

n

1
p

n
115 = | DoIAIE ]
=1
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where LP = LP(Q) for some suitable domain Q (e. g. Q@ = B(0, R)). We want
to show that any L € H~ P can be written as

L=D;f',ffelli=1...,n, (C.3)

such that
I Ll 10 = C| fllp- (C4)

Lemma C.12 Let 1 <p < oo. To any L € (Lﬁ’)' there corresponds an unique
v € LL, such that for any u € L},

Lu =< uj, v >
Moreover, | Ly, = ol Thus (L5 )Y=2E,
ProofFor 1 < j < n and w € L?, let w(jy = (0,...,0,w,0,...,0). Setting
Ljw := Lwy;), we see that L; € (Lp')’. Hence, by Riesz, there exists v; € LP,

such that
!
Lwj = Lyjw =< w,v; > Yw e LP.

If u € IE , then
n n )
Lu=1L Zuj(j) :ZL“j(j) =<ul,v; >.

By Holder, _
Ll < [’ [l l[vgllp < [lullpllvllz

so that ”LH(L”')' < |[vll;». We show that these norms are in fact equal as

follows. Define

0 , otherwise,

oy o (@) PP0s(z) i vg(z) #0,
uj(z) -

then

n
o)l = (32 1ol ds| = 1971, = ol -
]:

O
Proposition C.13 Let 1 < p < oo. For any L € (H&’p’, ||||;Iép, = HDUHZ;{),
there exists an element f € L}, such that
Lu=< Dy, f' > Vue HJ"
and
L]l -1, = ]{glL% 1f11zs - (C.5)

with(C.3)
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Proof.Consider P : Hé’p [, Lﬁ’,u +—— Du. A linear functional L* on
P(H,” ’) is defined as follows:

L*(Pu) := Lu,u € HY? .

Since HPUHZP' = ||u||;{1’p,, we have
n 0

10
L* € (P(Hy"))" and IZ7]] = || Ll g-1.-

p(Hy? )

By the Hahn-Banach theorem there exists a norm preserving extension L of L*
to all of L}, and by Lemma C.12 there exists f € L}, such that

Lu=< fi,ui > .
Thus, for u € Hé’p’, we obtain
Lu = L*(Pu) = L(Pu) =< Dju, f* > .

Moreover, B
1l = 12l paory = Nl g, = 1115 (C.6)

Now, any element f € L}, for which (C.3) holds for any u € H& ' corresponds
to an extension L of L* and will therefore have norm |[/f|[;» not less than
IL||-1,p- Combining this with (C.6), we obtain (C.5). O

Let now L € (Hé’pl, l|-l1,p7)", then by norm equivalence (cf. A.7, A.2),

1,p *
Le(HP -

1,p’
Hy

Therefore, there exists fo € L}, such that L = D, f} and

L = .
|| ||(Hé,p,’|'”;é,p’), ||f0||L£

Now, by norm equivalence,

| Lu | Lu|
1Eloo = ol 20 Gl
u€ Hy'P L2 wemy? YT gL
_ -1 _ -1 *
- Cl ||L||(Hé,10’,”||* lp’)’ - Cl ||f0||Lg
Hy
> Gy Gl follp,

which shows (C.4).



Appendix D

SOBOLEV EMBEDDINGS

We now present one of the most important tools of the regularity examinations
of this work. We often refered to the results of this section, which are, e. g.,
that functions in H™P automatically have C**®-versions, if m — % >k + a.
Let © C R® be a domain. To spare time, the reader should only concentrate
on the case p < n in the following proposition, because we will develop even
better results for the case p > n in the rest of this section — in a total different
manner. Perhaps the reader is interested in both proofs.

Proposition D.1 (cf. [19, Theorem 7.10], [3, Chapter8]) Let 1 < p,q <
oo such that =7 =1- 2. Ifu€ H'P(R") then u € LY(R") and

n—1
lully < a——I1Dullp. (D.1)

In particular, Hé’p(ﬂ) C L%(Q), if p < n. For p > n and bounded 2, we have
HyP(Q) € C(Q) and
11
SIéPIUI < Ol » || Dullp.

Proof.By density it is enough to show the assertion for C§°(R™)-functions.
For if u € HYP(R") is the limit of uy € C{°(R"),k € Nw. r. t. || - |1,, then
lskllg < =] Dugly and [fug — il < g2=41D (g — )l thus (1) is Canchy
in L9, therefore uy — @ in LY for some @ € L and |[|iil|q < g2 || Dul|p. Since
for bounded sets D C R®, uy, — w and uy, — @ in L', it follows that & = u
a.e. in R™.

So let u € C§°(R™). Note in the following argumentation that v € C}(R")

would be enough. At first, let us consider the case p=1,i.e. ¢ = 2=

n—1-
Since u(x1,...,Ti-1,& Tit1,---,%,) = 0 for large &, we have for z € R" and

1=1,...,n that

lu(z)| =

00
/ Diu(xl,...,mi_l,f,xi+1,...,xn)d§
T

IN

/ \Dzu(xl, ,xi_l,ﬁ,miﬂ,... ,xn)|d§
R

=! / |Diu| d&;
R

152
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Multiplication of these n inequalities yields

1

2] wld )"
i@l < T ([, 1pwiae)

Integration w. r. t. z1 leads to

[ i des < ( / |D1u|dfl)”il / H( i |Dz~u|dfz~)"ll dé,

=2

and by Holder,

< ( [ 1 dg)_lj( L/ |Diu|d§1dfi)ﬁ.

Now we integrate w. r. t. z2 and obtain the desired estimate in the case n = 2,
because for n = 2 we have

JERGE ( / |D1u|d51) ( L |D2u|d51d§2)

and therefore

||u||%s< /R /R |Dlu|d§1df;2) ( /R /R |Dgu|d£1d52)s||uu||%

In the case n > 3, again by Holder, we obtain

/R/R|U|nzld§1 déo
= (/R /R|Dzu|d§1 d@)ﬁ /R ( /R |D1u|d§1)ﬁ

n

II ( /R 1Dyl dé; d&) " ey

i—3
1

< (/R/R|D2u|d§1 d§2>n£1 (/R/R|D1u|d§1 d§2>”_1
ill (/RS | Diul déy dé d§i> "

Proceeding in this manner, we inductively obtain

Jul 7T dgy .. dg;
RJ

J n—1
Sil;ll(/Rj|Diu|d§1---d§j> ,
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thus for j = n,

[ uae <] ( / |D,~u|d£) < ( / |Du|dw) ,
Rn 1 \URe Rn

i e. the assertion [luf|_» < || Dwl|1 .

(n—1) .
For p > 1 we want to apply the above case to v := w7 . Since u € C§°(R™)

and @ > p > 1, we have v € C}(R") and

(n—1)

(n—1)
\Dv| =1 ju| 5 Dul.

Therefore by what we have shown above,

n—1 n—1

(/ |u|qdm) oo ( |v\#dx) ! S/ |Dv| dx

-1 (n=1)
e TR
n R»

1
~

-1 (n=1) !
< g(n—1) (/ S dm)p |Dull, (by Holder)
n n
Now”%—z%z—%—l-%:%andthus (q("n—_l)—l)p':q. Hence,
a 1
q J—
([ wirae)” < =Dypuy,,
Rn n
For p > n, let us write 4 = ”l%”p and assume that || = 1. We then obtain for
7> 1,
1
1@l = 5yl [l
" 1Dullp "
1
< Yol ™y 1Dl (see (22))
IDullp ! :
1 -1
= Y——lllu]" "y
IDullp
= @y,
so that
1 1 .
[l = @75 <y l1@777 ]y (by (27))

1o =t 1o 1-1
= g,y <7 Nl
since LP(Q2) .

Let us substitute for 7 the values §”,v € N, where § = Z—,’ > 1. Then we obtain

for any v,

- 671/ - _Ss—v 671/ - *(57”
[l < 8 w@@y=y [l 501
pl
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We assert that for any k € N : || 4|5 < §X0=1v07 In fact, for k = 1:

~ ~ -1, 1151 -1
a5 < llallsnr < 6 i, <8,

i 7 D
since ||| = ||Dh”p|||u|||n/ < ”DZ”;, <1.
k— k+1:
lallgers < ll@llygess
—(k+1) |y o1 _f5—(k+1)
< ST
< 5(k+1)5—(k+1> (5213:1 ms—v)15(k+1)

_ (52’3:1 ué_”)(;— (k+1)
0

~ ~

<1, since — (52’3:1 V57”)57(k+1)§0

s v

Moreover, §u v M, since 6 > 1, and 302, vd~¥ =: x by quotient cri-
terium. Consequently, as k — oo,

supu < x
Q
and hence
Sgzplul < x| Dullp-

To get rid of the restriction |2| = 1, we consider the transformation 7' : Q@ —

R z +—> ﬁl— for arbitrary bounded domain Q. With integral transformation
we obtain [T'(Q)| = |det DT'||©2| =1 and

supu(z)] = sup |uoT '(y)|
Q yeT ()

< x|ID(u OT_1)||p;T(Q)
1_1
= x| 7| Dul|p0-

In order to transfer the estimates (D.1) to arbitrary u € Hé P we let (uy,) be
a sequence of Cj(€2)-functions tending to u in HP(£2). Applying the estimates
(D.1) on the differences t;,, — Up,, we see that (u,,) will be a Cauchy sequence
in La-» (Q) for p < m, and in C°(2) for p > n. Consequently, the limit function
u will lie in the desired spaces and satisfy the stated estimates. O

Remark D.2 The first estimate in D.1 remains valid for any uw € L™ (R™) such
that Du € LP(R"), where 1 <r < gq.

Proof.Just like in the proof of D.1 it suffices to approximate u in the LP-norm
of the gradient and locally in L' by functions in H? with compact support. At
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first let us approximate v € L"(R") with Du € LP(R™) by bounded functions.
Therefore let

Ps(z) : (= lyps| <671)

z
S 140V1+22
for § > 0. Then us := 9s(u) € L¥°(R™) N L"(R"™), because |us| < |u|, and since
us — u a. e. as 6 —» 0, it follows that us — u in L"(IR") by Lebesgue. Since
Dus = ¢§(u)Du and

)

1+
' V1422
— <1446
s (2)] 14 26v/1 + 22 + 62 + 6222 =

and 9j5(z) — 1 as § — 0 for any z, it follows that Dus; — Du in LP(R").
If now v € L®(R") N L"(R™), then |u|? < Clu|", where C' depends on ||uso-
Thus, u € LI(R") and we can therefore assume that r = ¢. If r = ¢, then we
approximate u € LI(R") by cutting off. Therefore define for 1 < R

1 , for ] <R
2

(@) = pr(lz]) == ¢ L2l for R< |o| < R?
0 ,forR? < |z

Then g has compact support and |¢’z(t)] < 1. Thus pr € CO'(Bype) C
HY®(Byp2) by C.6, moreover gp € H'*(Bygr2)Vs > 1, because of compact
support. Now define ug := uppg for u € LI(R"). Since q"T_l > p, we have ¢ > p
and hence ur, Dur = uDypgr + prDu € LP(R"), because of compact support,
i.e. up € HYP(R") and (D.1) is fulfilled for any R > 1.

By Lebesgue: ugp — u in LY(R") and g Du — Du in LP(R™). It remains to
show that uDyr — 0 in LP(R"). Now, since s := % > 1, by Holder

1

1 1
/ |[uDppg|P dz < (/ |ul? d:v) ’ (/ |Dyg[P* dx) "
Rn R» R»

ps g
s—1 -1

1
|Dor|"dz = / ————dz = (logR)_"/ |z| =" dx
/]Rn BRQ\BR (l.’EllOgR)n BRQ\BR

= (logR)™"C(n)log R = C(n)(logR)"™"™ — 0

Moreover, ps' = = n by assumption and

3|

as R — oo (remember that n > 2). O

By turning to dual spaces, we arrive at the following lemma. (My calculations
returned another exponent for R in (iii) than in [9, Lemma 2.5], but we will
not need it.)

Lemma D.3 (i) Let n' < r < co and R > 0. Then L7+ (Bg) C H-'"(Bg),
and the embedding operator is bounded. In addition, there exists N inde-
pendent of R, such that

lull 18 < Nlull 225, (D.2)

for any u € LTTTnn(BR) and R > 0.
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(ii) Let 1 <r <n' and R > 0. Then L'(Bg) C H~%"(BRr) and the embedding
operator is bounded. In addition, there exists N independent of R, such
that

el —1,rsm7 < NR'5 ||ull;my (D.-3)

for any u € L*(Bg) and R > 0.

(iii) Letr =n',s > 1,R > 0. Then L°(Bg) C H-Y"(Bg). In addition, there
exists N independent of R, such that

n(s+1)
||u|| LB < NHUHS,BRR 32 fOT S S n, (D 4)
—L,7; — n—2s .
" NH“HS;BRR s fO’f‘ s > n.

for any u € L°(Bg) and R > 0.

Proof.(i) By D.1 we know that Hé’r C La-7,if 1 < r < n. Thus, fractions
and duality considerations yield

nr’ nr nr \/ ! ’
Lo+ = [nr—ntr = (Lm) C (Hé’T) = H_l”r V1 <r<n.

. 7
Since 7 > 1, we have 7' > 1; moreover 7 < n < r' > n'. Therefore,

Lot C HY Vn! < r < . By D.1, we know for the embedding operator
I:Hy" — Lu-r that

1 ull == < N(n,)lluly,.

Since ||I]| = ||I'|], if I' denotes the dual operator of I, (D.2) follows.
(i) Let u € L'(Bg). Define

Tug ::/ QUd$ag € C(()DO(BR)a
Bg

then T, can be extended to a bounded linear functional on H&’r’ (Bg) with
IT%]| < ||ulli- Relabeling the extension by u, by norm equivalence and D.1
(r' > n!) we obtain

|Tu9|

<Ci sup ——
) 1Dgllr;Bg

T
-ty = sp |
gery” () 1ILr"Br geHy" (Br

T
<GB F sup 10

|| ” S ClCanRli%Hqu;BR'
gey™ (Br) 19Nl

(iii) By D.1, Hy™"(Bgr) C L* (Bg) for any s’ € [1,00), thus L*(Bg) ¢ H™1"
for any s > 1. By Holder and again by D.1, the following embedding operators
are continuous, if 1 <t < n and s’ < n”—_tt:

e I, : Hy™(Bg) — H,"(Bg),

o I, : H''(BR) — Ln=(Bg),
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o Iy: Lu~i(Bg) — L* (Bg).

Let s > 1 be fixedNow 2L > &' &t > —2_ and —2_ > 1 & s < n.

n—t — — sn—n+s sn—n—+s — —
Choose
SN
4, = J e for s < n,
2, fors>mn,
then

! nts ! nt;

Again by Holder and D.1, we have

1 1 1 1
o L)1y, < |Brl% ol = wi "R 0]l

o ]| sty < O, ts)lfol s,

—t n—ts 1 —t
o Isvlly < |BRIF 7 o] oty = wn™ TRET ol
n—ts n—ts
Consequently, for I := I30 30 I3,
n__t&_l, n—ts _n %—l n_q
||I’u||51 Swnms ' R ts SIC(’)’L,ts)wns " Ris ||u||1,n
n—ts 1,1 1 2(n—ts) n
_wnnts o Tig "C(n,ts)R ntss _sn'||u||1,n_

Since ||I'|| = ||I||, it follows that

2n=ts) n NR™™ |lulls for s <mn
[ull-1p S NR % lulls < nezs o -
NR ™= ||u|]|s for s >mn.

The rest of this section is based on [3, Chapter 8].

Proposition D.4 (Embeddings within Holder-spaces) LetQ C R be open
and bounded an let k1,ky > 0,0 < a1, < 1 such that k1 4+ a1 > ko 4+ as. Then
the embedding J : Ck1:21(Q) —s Ck222(Q) is compact. In the case ky > 0 we
assume that Q is a C*°-domain.

Proof.Let (f;) be a bounded sequence in C*121(Q). We have to show that
some subsequence converges in C*22(Q)). At first, let ky = k; = 0, thus
0 < ag < a; < 1. By the Arzela-Ascoli theorem there exists f € C(Q) such
that for some subsequence f; — f uniformly in Q.

For |y — z| < § we have

=W~ = RD@] 0= 1)~ ~ R
ly — x| j—00 ly — z|*2

Sl%PHfj - fi||00:al((z),
J

60{1 —Q2

IN
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and for |y —z| > ¢

I(f = fi)ly) = (f — fi)(=)]

ly — z|*2

<25 | f = fillew

thus altogether with some constant ¢

sup I(f = f)(y) = (f = fi)(z)]

T,y |y - $|a2

< @ 4252 — fill oy
g illo@)

—0, a8 6—0 —0 a8 i—00

i. e. the Holder constant of f — f; tends to zero as ¢ grows to infinity.

From now on we assume () to be a C*°-domain. We now show that the em-
bedding C'(2) — C%!(Q) is well-defined and continuous. As is shown in
Lemma C.5, for fixed zg,z1 € Q there exists v € C*°([0,1];2) such that
7(0) = 20,7(1) = 21 and [} |7/ (t)| dt < Cla1 — xo|, where C = C(9).

For f € C'(2) we obtain

1 1
|f(z1) = f(zo)| = |/0 (fom)()dt < ||Df||oo/0 1Y (8)] dt
< Cllfller@yler — zol,

i. e. the lipschitz constant is estimated by the C'-norm.

We now consider the case ko = k1 > 1, thus again 0 < as < a; < 1. Then
(D*f;) are bounded sequences in C*(Q) for |s| < ki, thus in C%!(Q) and for
|s| = k1 they are bounded in C%1(2). By what has been shown above we
can successively (in s) choose subsequences such that finally, for a subsequence
(renamed as (f;)),

Déf; — g, in C%2(Q) V|s| <k

for some g, € C%2(Q). In particular, (f;) is Cauchy in C*'(Q), which implies
that f := go € C*¥1(Q) with D*f = gs, i. e. f; — f in Ck122(Q).

Let now k1 > ko. By the above considerations, we have that in the case as < 1
the embedding C*2'1(Q) — C*>22(Q) is compact and in the case a; > 0 so
is the embedding C*1:21(Q) — C¥1(Q). Moreover the embedding C*!(Q) —
Ck1~L1(Q) is continuous, which follows from the continuity of the embedding
CH(Q) — C%(Q). So it remains to consider C*¥1~11(Q) —s C*¥21(Q), which is
the identity in the case ko = k1 —1. Inthe case ko < k1 —1 (e. g. @1 = 0,0 = 1)
ck-LHQ) — Ck*LL(Q) and CF2H1(Q) — C*k»1(Q) are continuous and
Ck2+L1(Q)) — C*211(Q) is compact. Hence the concatenation is compact. [

Proposition D.5 (Embeddings within Sobolev-spaces) Let Q@ C R" be
open, mi >ma > 0,1 <p; <0 and 1 < ps < 0. Then

1. If my — 3+ =mg — 3+, the embedding J : H"PH(Q) — Hy"P2(Q) ewists

and is continuous, 1. e.

||u||m2,p2;§2 < C(”amlapl)H“Hmupl;Q'
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2. If Q1 is bounded and my — 7 > my — 7+, the embedding J : H"VPH(Q) —
H{"P2(Q) exists and is compact.

3. If Q is a C®°-domain, each of both assertions above is valid for the spaces

H™Pi(Q). C will additionally depend on €.

Remark D.6 In 3.) a C%'-domain would be enough, but we will use Proposi-
tion A.4 later in the proof and may have 2 =ball in mind anyway.

Proof.1.)Let ma = m; — 1. By iteration we then obtain assertion 1.) also for

smaller my. If u € Hy"P* (), then u € H(Tg)l’pl (R") by extending u by zero

outside Q. Thus, D%u € H&’pl (R™) for each |s| < mj; —1 = my. Hence, by D.1
we obtain D®u € LP?(R") with

1D%ullpy;0 < Cp2, ) |DDullpy;0 < Clpz; 2)|ullmy p;0-

2.)We restrict ourselves to the case m1 = 1,mg = 0,p := p1,q := p2. The
general version follows analoguously to 1.) and by using that for continuous
linear operators T} o Ty is compact, if 77 or T5 is compact. So we have to show,
that any bounded sequence (uy) C Hé’p (Q) contains a subsequence, which
converges in LI(€2). We will prove this with help of D.1 and C.1.
Since ¢ < oo, we can choose 1 < pg < p and g < ¢y < oo such that

n n n n
l-—->1——=——>_—,
P P q

Since Q2 is bounded, (uy) is also bounded in Hy?°(€2) and therefore in L% (Q)
by D.1, thus bounded in L7 () for any ¢; < ¢go. Choose g1 = gp. Since L7 (Q)
is reflexive, (uy) contains an L% -weakly converging subsequence, i. e.

/guki dr — /gudw Vg € (L)

for some u € L% (); in particular,

/guki dr — /gudw Vg € (L)'

Thus (u;) contains an L!-weakly converging subsequence, renamed as (uy)-
Since (ug) C Hé’l(Q) bounded, uy — wu strongly in L'(Q) by C.2. Now
1 < g < qi1, therefore for any ¢ > 0 we have an elementary inequality of the
form

a? <ea” + Cea Va >0,Cc = Ce(e,q,q1)

(in fact, define f : [0,00) — R, f(a) := a9~! — ea?*", then f(0) = 0 and

(f’(a)<o@a> (%))
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and thus f is bounded from above).
Hence,

/|Uk—ul|qS€ /|Uk—ul\(“ +Ce /|Uk—ul :
Q Q Q
—_— —_——

bounded in £, —0 a8 k,l—o0

which implies that (uy) is Cauchy and therefore converging in L4(£2).

3.)Let E : H™P1(Q)) — H"""*(B1(Q)) be as in Proposition A.4. Then in
the situation of 1.) we have for u € H™P1(Q) that Eu € Hy">"*(Q2) by 1.) and
therefore

||Eu||m2,p2;B1(Q) < C||Eu||m1,p1;B1(Q) (again by 1.))

[ullmapese <
< C'|ullmyp;2  (by Proposition A.4)

In the situation of 2.) (Euy) is bounded in Hy"'P*(By(2)), whenever (uy) is
bounded in H™!P1(Q2). Thus, by 2.) a subsequence of (Fuy) is converging
strongly in Hy"*"?(B1(f)), thus the corresponding subsequence of (uy) is con-
verging strongly in H™2:P2(()). O

Before we come to the embeddings from Sobolev-spaces into Holder-spaces,

we need some preparations.

Proposition D.7 Let Q@ C R" be open and bounded, 1 < p < oo such that
1-— % > 0. Then for any u € H&’p(Q), we have u € L*°(Q) and

||u||Loo(Q) < C(n,p, diam Q)| Dul|p;q.

ProofIt suffices to consider u € C§°(2). Let R :=diam Q, i. e. Q C
Bpg(zo)Vzo € Q. Then for any £ € 0B1(0)

R
| g+ reyar

lu(zo)| =

R
< [ IDeutan + )] dr
0

R
- / | < € Dulzo + 7€) > | dr
0

IA

R
/ |Du(zo + 7€)| dr.
0
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Integrating this inequality w. r. t. £,dS, we obtain

R
dS (8B, (0)) u(zo)| < /0 /a [P0 0 dS(E) dr

:/ 7|Du(w)tl dr
Br(zo) 1T — To|™

(by [17, Section 14, Satz 8] applied to |Du(-)||-|! "™ and translation invariance)

L
T

1 »
: L Dullpq
(/BR(%) |z — @ [P/ (n=1) ) | Dull,

by Holder. The first factor is independent of zy and finite, if p'(n — 1) < n, i. e.
p' < n', which is equivalent to p > n. O

Proposition D.8 (Morrey) Let Q@ C R open, 0 < o <1 and u € H&’I(Q)
such that

/ |Du| dz < Myn—ite
Br(wo)ﬁﬂ
for any zog € Q and r > 0. Then for a. e. 1 # 9 € Q,

|u(z1) — u(zs)|

P < C(n,a)M.

Proof.-We can assume {2 = R", since u can be extended to all of R® by 0. For
any ball B, (zg),zo € R", we have

/ \Duldz < / \Duldz < M(2r)"=1+e,
Br(zo) Ba, :El)ﬂQ

if z1 € By (z9) NQ, and

/ |Du|dz = 0,
Br(wo)

if B.(zg) N = 0. At first, we prove the estimate of the Holder-constant for
u € C®(R"). For z1,z9 € R" let zy := “142'—5”2 and p := w We have

wnp"|u(T1) — u(z2)| = /B - lu(z1) — u(z2)| dz
< /B,,(zo) lu(z1) — u(z)| dz + /Bp(zo) lu(z2) — u(z)| dz.

By symmetry, it remains to estimate the first integral. Now for z € B,(z)

u(z) —u(e1)] =

/ 4 o + e - xl)))dt‘

1
/ Doy (@1 + te — 1)) dt‘
0
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1
/ <z —z1,Du(zy +t(z —z1)) > dt
0

1
< |lz-— a:1|/ |Du(z1 + t(z — z1))| dt.
0

Since 2p = |z2 — 71| = 2|zo — z1] and |z — z¢| < p, it follows that |z — x| =
|z — zo + ¢ — 21| < 2p. Hence, integrating w. r. t. z,

1
/ u(z) — u(z)|dz < 2p/ / \Du(z: + t@ — 21))| do dt
By (z0) 0 By (o

1
= 2p/ t"/ |Du(y)| dy dt
0 Btp(;c1+t(wofw1))

(integral transformation y(z) := z1 + t(x — z1))
1
< 2 / ™M (tp)" e dt
0

1
— 2p/ ta—lMpn—l—I—a dt
0

o

Now let ¢ € C§°(B1(0)) be a mollifier with corresponding Dirac-sequence ()
and v € HY(R"). The functions ue := u* @, € C*°(R") fulfill the assumptions
of this proposition, because

n

|Due(z)|dz = /
/BT (zo) Br(zo) z:zl

n

< /B)E/R Diu(z — y)||oe(y) | dy de

< nf [ IDue—v)l ey

< nMrnite / pe(y) dy

= nMrrTite

Diu(z — y)pe(y) dy| dx
R

Moreover, we have a. e. convergence of some subsequence of (p,) towards u as
e tends to 0. Altogether: for u € C*°(R") we have

2M |u(z1) — u(ze)] AM
- <2 ¢ = < .
[u(z1) —ulz)] < 2 =p o —m* = 20w,

For v € HY'(R") we have

|ue(z1) — ue(z2)| < 4M
|z1 — z2|* T 2%wy,

and because of ue —> u a. e. for a subsequence, the assertion follows. O
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Remark D.9 Let Q be bounded and u € Hé’p(Q) such that 1 — 7> 0. Then

witha:=1-2
P

1

[ ipul < Wl 7 |Dula
B (z0)N$2

= Mynite
and D.8 can be applied.

Proposition D.10 (Embeddings of Sobolev-spaces into Hélder-spaces)
Let Q C R™ be open and bounded, m > 1,1 <p < oo,k >0,0<a<1. Then

1. Ifm—3 =k+a,0 <a <1, then the embedding J : H"P(Q) — CF(Q)
exists and is continuous. I e. for u € H{"P(Q) there exists a unique
continuous function, which is equal to u a. e. (and again denoted by u),
such that

|u|k,a;Q < C(Qa n,m,p, ka a)||u||m,P§Q'

2. If m — 3 > k + «a, the embedding J : H{"P(Q) — CF2(Q) ezists and is
compact.

3. If Q is a C*®-domain, then assertions 1.) and 2.) remain valid for
H™P?(Q) instead of Hy"P(Q).

Remark D.11 In 8.) a C%'-domain would be enough, but we will use Propo-
sition A.4 later in the proof and may have 2 =ball in mind anyway.

Proof.For the proof of D.10, part 1.) we can assume k = 0. Otherwise we
apply the following consideration for |s| < k to each function Du € HJ" **(Q).
Next, we are going to reduce the proof to the case m = 1:

If m > 1, then Dju € Hgn_l’p(Q) for i =1,...,n. Define ¢ := {2-(> n), then

m-1)-"=a-1=-",
p q
By D.5, D;u € LY(2) and
[Diullgn < C(n,m,p)|| Divsllm—1p0- (D.5)

Let us now show that u € Hy(Q): for that, we first show that u € LI(f).

Define
1+ 2 —(m—1) 2 > 1

then -2 =1-2 =(m—-1)-%2and 1 <r < n < ¢ We already know
that D;u € LY(?) and u € LP(Q). Since || < oo and r < ¢, we have D;u €
L7(92). Analogously, u € L'(2). Now apply D.2 on D.1 with r instead of
p, and 1 instead of r, respectively, to obtain u € L(€2) and (D.6). To show
that v € Hé’q(Q), we must be able to approximate u by C§°-functions. Since

2

Q
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u € Hy"P(9), there exist uy, € C§°(Q),k € N such that ||ug — ullmp0 — 0.
Now,

n

-1
| Dullr;0 (D.6)

n

-1, 11
n Q||| Dullga  (r <4q).

VAN

[ullge q

n

IA

q

Therefore, by (D.5),

l|ug — u”q;Q < CIHD(uk - u)”q;Q — 0.

Since 1 — % = «, we have reduced the proof to the case m = 1. For m =1
Proposition D.10.1 follows from D.7 and D.8 (see D.9).

2.) Choose m <m and 1< p < 00,k > 0,0 < & < 1, such that

(m = m,p = p possible, if% ¢ N). If we choose R such that Q@ C Br(0), we can
extend functions in H{"?(Q2) to Hy"?(Bgr(0)) by setting them 0 in Bgr(0)\Q.
The embedding Hy"?(Bg(0)) — Hy"P(Bg(0)) is continuous in the case 7 = m
by Holder and in the case m < m by D.5. Then the embedding into Ck’d(BR(O))
is continuous by 1.) and C’;’&(BR(O)) — C*2(Bg(0)) is compact by D.4.

3.) Let u € H™P(Q), then Eu € Hy"P(Q'), where Q' DD Q and F is the
extension operator from A.4. Thus we apply 1.) and 2.) to Fu and obtain the
desired result by the properties of F. [l
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