Feller-type Properties and Path
Regularities of Markov Processes

Judith Maria Nefertari Dohmann

Diplomarbeit an der Fakultat fiir Mathematik
der Universitat Bielefeld

November 2001






Contents

Chapter 1. Introduction 5
Chapter 2. Continuous Case 9
Chapter 3. Cadlag Case 21
Chapter 4. Applications 29
Appendix A. Dirichlet Forms and Generalized Dirichlet Forms 35
1. Dirichlet Forms and the local property 35
2. Generalized Dirichlet Forms 36
Appendix B. Some Complements 39
1. A Feller process with right-continuous paths has the strong
Markov property 39
2. Exercise 2.14 of [BlGe68] 40

Bibliography 43



CONTENTS



CHAPTER 1

Introduction

Let E be a polish space with the complete metric d. Let L be an
operator on LP(E, i), that generates a Markovian Cy-semigroup (73);>0
on LP(E,u). A natural question is the existence of a Markov process
(Q, F, (Xt)t>0, (Pr)scr) whose transition semigroup (p:)i>o is related
to (T})e>0 via pif is a p-version of T, f for all f € B,(E) and t > 0 such
that one has

P,[t — X, is continuous/cadlag] =1 Vz € E.

If in the case of p = 2 there exists a quasi-regular (generalized)
Dirichlet form (€, D(€)) that generates the above semigroup (7}):>0
then there exists (under a second condition in the case of generalized
Dirichlet forms) a Markov process (Q, H, (Z:)i>0, (Qz)zer) With tran-
sition semigroup (p)+>o such that p,f is a p-version of Tif for every
f € By(F) and t > 0 and such that the trajectories are P,-a.s. cadlag
(or continuous under certain conditions) for £-quasi all z € E. But
no general conditions are known implying that this is true for every
z € F.

Now one could use one of the following criteria to get the desired
regularity, but one has to check the conditions for every measure @),
which might be too difficult, and one does not use our additional in-
formation, namely that the process has already “nice” paths Q,-a.s.

e Continuous paths
1. Kolmogorov found the following criterion (see e.g. [Ba91,
39.3 Satz|) for continuity of the sample paths:
Suppose there exist a > 0, § > 0, ¢ > 0 such that

Vs,t € R, : E[d(X,, X;)*] < c-|s—t|'FP.

Then there exists a modification of this process with con-
tinuous sample paths.

2. A more general criterion is the following from [Ba74, 63.5
Lemma]: Let (2, A, (X;)>0, P) be a stochastic process on
E. The following condition is necessary and sufficient,
that every random variable X; can be changed on a t-
dependent null-set, so that all paths of the resulting process
(Q, A, (X4)>0, P) are continuous: There exists a countable
dense subset S of R, such that:
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6 1. INTRODUCTION

(a) For allm > 0, k£ > 0 we have
nmp[u a<s {d(Xs, Xp) > n}] =0.
6—0 s,tES st<k
(b) For all ¢ € R, there exists a sequence (S,)peny C S
such that s, —— t and lim P[d(X,,, X;) > n] = 0.
n—oo n—oo
e In order to get cadlag paths sufficient conditions are the follow-
ing:
1. (See [We81, Theorem 9.3]) Define

a:(h) := sup pz,{y € E|d(z,y) > c}).
zEX,1<h

Suppose a.(h) — 0 for any € > 0. Then there exists
—

a Markov family with (p;);>¢ as transition function whose
paths are cadlag.

2. If E is in addition locally compact there exists for ev-
ery Feller process (where Feller means that for the tran-
sition semigroup p; one has that p,Coo(E) C Coo(F) where
Cw(F) denotes the continuous functions on FE vanishing
at 0o) a modification with cadlag paths, see for example
[ReYo091, I1I(2.7) Theorem].

In this Diploma thesis we provide as the main theorems (see 2.3 The-
orem for the continuous case and see 3.1 Theorem for the cadlag case)
a method to construct a process that is continuous or cadlag P;-a.s. for
every « € E using that there exists a process (2, H, (Z1)i>0, (Qz)zeE)
that is continuous or cadlag @ ,-a.s., where where Q,, := [ Q,u(dz) and
the measure p from above has full support, and for whose transitions
semigroup (p;):>0 we have that for every f € By(E) p.f is a p-version
of T, f.

More exactly we need that there exists a semigroup of kernels (p;)¢>0
that has the strong Feller property and that for every f € By,(E) pif
is a p-version of T;f, that there exists for every x € E a countable
family (f,)nen of functions in D(L) N C(E) that generates a subbase
for the neighborhood system of z, that limyo p, f2(z) = f2(z) for every
n € N and either that the associated resolvent of kernels (R, )q>0 maps
functions from B(E) N LP(E, ) to continuous functions or that the
functions f,, have the form f, = R, ¢, with ¢, € By(F) and A\, > 0
(for the second variant see 2.12 Theorem or 3.7 Theorem respectively).

The proofs of all cases of the main theorem are very parallel, so
here we will consider them only once. At first we construct via Kol-
mogorov’s Theorem a process (E*+, F, (Y)i>0, (Pr)zer), then we pro-
vide a method that allows us to show that for a set A with 6;'(A) D A
for some ¢t > 0 and of probability one with respect to P, we have
P07 (A)] = 1 for every x € E. After that we show that the measures
@, and P, have the same finite dimensional distributions.
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The next step is to find such a set A that describes the paths that
can be modified to be continuous or cadlag. For the continuous case
we take as A the set of all paths that are locally uniformly continuous
on the set of dyadic numbers, as in the proof of Kolmogorov’s criterion
for continuity of sample paths as it is presented in [Ba91, 39.3 Satz|.

In the cadlag case we fix first a countable family (gx)ren of bounded
functions that separates the points of E' and we take Ay as the set of
all paths that have only a finite number of up-crossings when com-
posed with any member of the abovementioned family of functions.
Then we find an increasing family (K, )nen of compact sets such that
Qullim, o 0p\Kk, = 00] = 1 and take A; as the set of all paths whose
restriction to [0, M]N D stay for any finite M in one of these sets, where
D denotes the nonnegative dyadic numbers.

Both of these sets are shift-invariant for ¢ € D and they have
probability one with respect to P, since the corresponding sets of the
Dirichlet-form process have probability one.

In the end we have to deal with time equal zero. But there we have
only to show the right-continuity whose proof is identical for both cases.
Since E is not necessarily locally compact we need another method to
ensure the convergence in time zero. We use that e”* R, f(X;) is a
supermartingale with respect to P, for every x € FE and for every
positive function f € B(E). Then there exists the limit lim; o f(X;)
almost surely. In order to show that the limit lim; o X, exists almost
surely we take for every point x a countable family of functions gener-
ating a subbase of the neighborhood system of this point, such that we
can identify the limits via L?(E®+, P,)-convergence; here we need that
limygo pf2(2) = f2().

This thesis is organized in the following way: Chapter 1 is this
introduction, in Chapter 2 we formulate and prove the main theorem
for the continuous case, in Chapter 3 we do the same for the cadlag
case. In Chapter 4 we consider the below mentioned application. In
Appendix A we include a short summary on (generalized) Dirichlet
forms and Appendix B contains some complements which are needed
for the proof of the main theorem.

In Chapter 4 as an application we consider the following operator

on Cg°:
LA,b = Z aijaiaj + Z bz8,
1,J i

We prove that under the following conditions there exists a solution to
the martingale problem for this operator for every z € R¢:

(i) p is a probability measure with L% ,u =0 i.e.
Lapyp is p-integrable and [p, Lappdp =0 Vo € C°(R?).

(ii) A = (aij)i; is continuous, symmetric, nonnegative and nonde-
generate with a;; € H,P (R?)

C
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(iii) b; € LY (R?, \) where A denotes the Lebesgue-measure on R.
(iv) (Lagp, C(RY)) is LY(R?, p)-unique

Also applications to the infinite dimensional situation are possible,
see for example [DaR601].

Finally I would like to thank Prof. Michael Rockner who led me to
Stochastic Analysis. T am grateful for his support during writing this
Diploma thesis, and for the opportunity to get an insight into current
research.

Furthermore, I want to thank Dr. Wilhelm Stannat for patiently
answering my questions.



CHAPTER 2

Continuous Case

Throughout this chapter let E be a polish space with Borel o-field
B(E) and a probability measure p on (F, B(F)) with supp[u] = E.

Denote by U(z) the set of all neighborhoods of a given point z in
the corresponding topological space and by R, the interval [0, 00).

Let X be an arbitrary space of functions on E. By LP(E, u) N X or
X N LP(E, u) we denote the subspace of X' that contains all functions
f with [|f[Pdu < oc.

Let A: LP(E, u) — X be an arbitrary mapping. Then this mapping
induces a mapping which we will call for simplicity of notation again A
from BN LP(E, i) to X by Af := Af where f is the equivalence class
of functions that contains f.

By R, we denote the interval [0, c0) and lim;j; denotes lim; g s> .

2.1. DEFINITION. Let p € [1,¢].

(i) A kernel K on (E, B(F)) is said to have the p-strong Feller prop-
erty, if for all f € LP(E, u) N B(E) we have K f € C(F), where
C(F) denotes the set of all continuous functions on FE.

(ii) A semigroup (p:)s>o of kernels is said to have the p-strong Feller
property, if p, has the p-strong Feller property for all ¢ > 0.

(iii) A resolvent (R, )as0 of kernels is said to have the p-strong Feller
property, if R, has the p-strong Feller property for all o > 0.

2.2. REMARK. Since supp[u] = E we have that the oo-strong Feller
property coincides with the usual strong Feller property.

2.3. THEOREM. Let (L, D(L)) be the infinitesimal generator of a
sub-Markovian semigroup (T;)i>0 on LP(E, ) and denote by (Gu)a>o
the associated resolvent. Let (p)i>o0 be a Markovian semigroup of ker-
nels on (E,B(E)) and (Ra)a>0 the associated resolvent of kernels on
(E,B(E)) such that

Vf e By(E)Vt>0: pf is a p-version of T,f.

(Pt)t>0 has the oo-strong Feller property.

(Ra)a>o0 has the p-strong Feller property.

Ve € E 3(fn)nen € D(L)NC(E),

pifi(z) 5} f2(z), {710 |U € U(fu(x)),n € N} is a subbase

of U(x).

-



10 2. CONTINUOUS CASE

Suppose there exists a Markov process Mz = (0, H, (Zi)1>0, (Qz)zcE)
whose transition semigroup (Pi)i>0 has the property that pyf is a p-
version of T, f for all f € By(E) with

(2.1) Qult = Z, is continuous| = 1.

Then there ezists a right process Mx = (E®+, F, (X})1>0, (Py)zcr)
with transition semigroup (p;)i>o and

P.[t — X, is continuous] =1 Vz € E.

2.4. REMARK. Note that since u is a probability measure, we have
that every f € By(F) is p-integrable, hence we can apply 7; on f €
Bb(E) in 1.

PROOF OF 2.3 THEOREM. By Kolmogorov’s theorem there exists
a Markov process My = (E®t F,(Y})i>0, (Py)zer) with transition
semigroup (p:)+>o, family of shift operators (6;);>¢ and filtration (F;)¢>o.

The idea is to show that there exists a set A C EF®+ with P,(A) = 1
for all x € FE, such that all paths in this set can be modified to be
continuous.

In order to derive statements about P, from statements about P,
we will use the following lemma.

2.5. LEMMA. Let (E®t, F,(Xt)i>0, (Pr)zer) be a Markov process
with transition semigroup (p;)i>o which has the co-strong Feller prop-
erty and shift operator 0, u a probability measure on E with supp[u] =
E. Suppose A C E®+, P,JA] =1, t € (0,00) such that 6, ' (A) D A.
Then we have

P[0 (M) =1 Va € supp|p].

PROOF. P,[A] = 1 implies P,[A] =1 for p-a.e. z € E, and hence
P.[0;'(A)] = 1 for p-a.e. z € E. By
Py[0;H(M)] = Ep, [Ep,[14 0 0:| 7))
= Ep, [Ex,[14]]
= pi(E[14])(x)

and the oco-strong Feller property of (p;)i>0  — Py[0; ' (Ag)] is contin-
uous, hence P,[0; ' (Ay)] =1 for all z € E. O

P, and @, have the same finite dimensional distributions by the
following lemma.

2.6. LEMMA. Let v be a probability measure on (E,B(E)) and let
(Q, F, (X0) 150, (Pe)zer) and (Q, F, (X))i>0, (Pr)zer) E-valued Markov
processes with transition semigroups (py)i>o and (Py)i>o respectively such
that p.f = pof v-almost surely for all f, f € By(E) with f = f v-almost
surely, then P, and f’,, have the same finite dimensional distributions.
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PROOF. We will show that for any n and any ¢; < --- <'t, we have
P)[X;, € Ay,..., X, € Ay

_ / P (Lay Pty (Lay Pyt 1) - ) (@) pa(d)
E

= / ﬁtl (1A1 : ﬁtZ_tl (1A2 . 'ﬁtn_tn—llAn) T )(x):u’(dx)
E
= Py[th € Al, e ,th € An]

The second equality holds by our assumption, the first and the third
equalities are proved in the same way, so we will only prove the first.
To this end we will show, that Vfy,..., f, € B(E)

Ep,[fi(X0) - fa(X0)] = [E P (FiBtsis (Dot s f) - ) (@) a(d).

This will be done by induction.
For n = 1 the assertion holds by definition of p, and P,. Assume
that it is valid for n then we have for n + 1:

EP., [fl(th) s fn+1(th+1)] =

- / Ep,[£1(X0) - fu(X0,) s (Ko, ) ()

- /E En[fi(X0) - fulX0) Ep, [fass (Xor)) |1 [In(d2)
_ /E B, [fi(X0) - fa(X0) Erg, [far (X, 0me,) ]l (d2)
_ [E En,[f1(X0) - Fa(X0)Ptosr—tn 1 (X0, 0 (d)

= /E‘ptl (flptz—tl(- . -ptn—tn_l(fnptn+1—tnfn+1)) .- )l/(dl‘)-

O

2.7. REMARK. Note that P, and P, do not necessarily have the
same finite dimensional distributions.

Now we have to find an appropriate set A which characterizes the
paths which can be modified to be continuous. This set should be
shift-invariant so that we can apply 2.5 Lemma. And in order to use
Qu[t — Z, is continuous| = 1 to get the same result for P, it should
be describable as a union or intersection of sets which depend only on
a finite number of times.

Define now S, := {k-27"|k € Ny}, n € N and denote the set of non-
negative dyadic numbers by D. We have D = [, . Sn. Furthermore
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define
={we ER+|E|n0Vn > noVs,t € S, N[00, |s—t <27
d(Y; (), Yi(w)) <27},
2 ={w € Q|E|n0Vn > noVs,t € S, N[0, |s—t <27":
d(Zs(w), Zy(w)) < 27}

The functions in each set fulfill the e-6-condition for uniform continuity
on DN0,1] for e = 27%,

2.8. LEMMA. Vk,l € N
I !
P[AY] = Qu[B] = 1.
PROOF. The second identity follows by (2.1). The first one by

A= U N N {dv.v) <2}

noENn>ng s,t€5,N|[0,]

|5 t‘<2 0

= sup inf Pu[ M {dv.,v) < 2"“}]
noENTZ10 5,6€SpN[0,7]
[s—t[<27 ™0

= sup inf @) d(Z,, Z,) < 27F
n>n s
moENTZR0 N e s,/
ls—t|<27"0

—UN N {4z 2)<2}

noeNn>ng s,t€.S,N[0,[]
js—t]<2-"0

= QuB"].

Define now

Ao= ([N AV

keNIeN

By 2.8 Lemma we know that P,[Ag] = 1. Define [z] for 2 € R as
follows: [z] := min{z € Z,z > x}. For t € D, we have 6; '(Aq) D Ag
since

o' (4))
={we E®¥3ngVn > ngVr,s € Sy N[t 1+, |r —s| <27™
d(Yr(w), Ys(w)) < 27}
D {w e E®*[AngVn > nogVr,s € S, N[0, [l +t]],|r —s| <27
A(Y; (@), Vi(w)) <2 *p = 4



2. CONTINUOUS CASE 13

and then we have

6, () A) =6 1(A)) > N4 =N 4.
l l l l

Therefore by 2.5 Lemma we have that P,[0, ' (A¢)] = 1 forallz € E.
Define
(2.2) A= [ 67" (M)

teD,t>0

2.9. REMARK. For w € 6, '(A¢) the function Y (w) : (t,c0) N D —
E is locally uniformly continuous on (¢,00) N D and thus can be ex-
tended to a continuous function on (¢, 00), since E is complete.

We have P,[Aj] = 1 for all z € E and for w € A we have the
following property:

For every t > 0 the function Y. : (¢,00) = E, s — lim, |5 ,ep Y, (w)
is continuous.

Up to now we only needed the assumptions 1. and 2., but we have
the above property for all positive times ¢, but not for time zero, so we
have to do additional work, where we will use the remaining assump-
tions.

Define

Ay = {w € E®| liI(I)l Yi(w) exists}.
sSéD
We have P,[A;] =1 for all z € E by the following lemma.

2.10. LEMMA. Let (L,D(L)) be the infinitesimal generator of a
sub-Markovian semigroup (T})i>0 on LP(E,u) and denote by (Ga)a>o
the associated resolvent. Let (E®+,F,(Y})i>0, (Pr)zer) be a normal
Markov process whose transition semigroup (pg)i>o and resolvent of ker-
nels (Rq)a>o0 fulfill the following assumptions:

(i) Vf e By, Yt > 0: p.f is a p-version of T,f.

(i) Vz € E I(fa)nen C D(L) NC(E): {f;HU)IU € U(fu(@)),n €
N} is a subbase of U(x), pifi(z) w0 f2(x).

(iii) (Ra)a>0 has the p-strong Feller property.

Then we have for all x € E that limy o Y; = = Py-a.s., and in particular
limy o Y; =Yy Pp-a.s.

PROOF. For every f € D(L) N C(E) there exists u € LP(E, p)
such that Gyu = f where f denotes the equivalence class of functions
in L?(E, pu) containing f. Take now v € LP(E,u) N B such that u
contains v. Then we have that Riv = f p-a.s. But since f and Ryv
are continuous by assumptions (ii) and (iii) and since supp|u] = E we

have that f(x) = Ryv(z) for all x € E.
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Then we have
/ e~ |pov()|ds < / e~ pJol(z)ds = Rulo(z) < oo
0 0

and since 1y ye™*psv, () a) 0 pointwise, we have that
lpef (2) — f(2)] = [peRiv(z) — Riv(z)]
= pt/ e *psv(r)ds — / e °*psv(x)ds
0 0

= / e_spt+sv(x)ds—/ e *psv(x)ds
0 0

= et/ e_spsv(x)ds—/ e ’*psv(x)ds
t 0

+(ef —1)

t
< / e °psv(x)ds
0

— 0.
10

/ e °psv(x)ds
t

Fix now z € E and (f,)nen as in assumption (ii) above. Then
there exists by our considerations above for every n € N a function
v, € LP(E, u) N B(E) such that f,(y) = Riv,(y) = Riv;} (y) — Riv;, ()
forall y € E.

Since e 'R, f(Y;) is a supermartingale for every f > 0 we have that
the following limits exist P,-a.s.

1. —t + Y 1 —t — Y
ime Ryv, (Yi(w)) ime Ry, (Yi(w))
and hence
lgjglfn(li(w))-
Because of

Ep,[(fa(Y2) = fu(2))"] = pefu(@) — 2fn(@)pefu(z) + fr(2)
20— 220 + 2
—0
we have that ltigl fo(Ys) = fu(z) in L2(E®+ P,). Hence ltij?f”(m =

fu(z) Pp-a.s.
Since we have the countable index set N there exists a set N C E®+
such that for allw ¢ N and all n € N we have that lim; o f,,(Y;) = fo(2).
Applying 2.11 Lemma below we get that lim;y Y; = z P,-a.s. Since
Y, is normal by assumption we have Y, = = P,-a.s. O
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2.11. LEMMA. Let X, Y be topological spaces, v € X, f;: X =Y
continuous in x, Vi € I, such that {f;*(U)li € I,U € U(fi(z))} is
a subbase of U(x). Let (x,)nen be a sequence in X and assume that
fi(xn) — fi(x) inY foralli e I. Then z, — x.

n—oo

PROOF. Assume z, # z. Then there exists a neighborhood O
of z and a subsequence (z,,)r such that z, ¢ O for all £ € N.
Since {f; {(U)|i € I,U € U(fi(z))} is a subbase of U(z) there exist
i1y € 1, Uy € U(fiy (2)), - - -, Un € U(fi, () with (2, £ (U;) C
O. Therefore we have for all k¥ € N that z,,, ¢ (-, fz;l(Uj). By the
pigeon-hole principle there exists j € {1,...,m} and a subsequence
(ny, )1 such that for all I € N we have z,, ¢ fizl(Uj). Hence we have
fi;(@n,) ¢ Uj for all | € N and then we have f;;(z,) 7> fi;(z) which is

in contradiction to our assumptions. O
Define
A:=AgNA;

and fix an arbitrary g € F. Now we will define the new process
My = (E®*, F, (X1)i>0, (Pr)zer) by:

lir? Vi(w) ,weA
Xt(w) = s.séLD
T , W ¢ A.

This process has continuous paths for every w, because for w € A the
function ¢ — Y;(w) is locally uniformly continuous on D N [t,cc) for
t > 0 and limgg Y (w) = Yo(w).
seD\{0}
Finally we will show that My is a right process with transition
semigroup (p;)i>0. To this end we will show that P,[X; = Y}] =1 for

all z € E.
Ep,[d(X,, Yi)] = Ep, [d(lim ¥;, 11)]
seD
= Ep.[Ep.[d(im Y, ;)| 7]
seED
= Ep. [Ep.[d(lim Yy, o) 0 04| 7]
seED
= By By d(im Y, . V)]
seD
= (],
since Yi(w) € E and lim;o Y; = Y by 2.10 Lemma. So d(X;,Y;) =0
P,-a.s. hence Py[X; = Y;] = 1 and in particular X; has the transi-
tion semigroup (p;)i>o. Then X; has the Markov property w.r.t. the
filtration (F"*)i>o where 7 = o(X,|0 < s < t) by [Ba91, 42.3
Satz| and since N := (,cpp{4 € FIP,[A] € {0,1}} is a o-algebra
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independent of every .7-}0’X w.r.t. every P, we have by [BlGe68, Exer-
cise 2.14] (for a proof see B.2 Proposition in Appendix B) that X; has
the Markov property w.r.t. (F;X)iso, where FX := o(F)X, N).

Since the paths are continuous it has the strong Markov property
with respect to (F7}):>0 by B.1 Proposition, and since it is normal by
construction it is a right process. O

Another version of 2.3 Theorem is the following one, here there
is no assumption on the resolvent, but then we need to know more
about the family of functions (f,,)nen that we needed to ensure the
right-continuity for time zero.

2.12. THEOREM. Let (L, D(L)) be the infinitesimal generator of a
sub-Markovian semigroup (1})i>0 on LP(E, ) and denote by (Ga)a>o
the associated resolvent. Let (p)i>o be a Markovian semigroup of ker-

nels on (E,B(E)) and (Ra)a>0 the associated resolvent of kernels on
(E,B(E)) such that

1. Vf € By(E) Vt > 0: pif is a p-version of Ty f
2. (p1)i>o has the oo-strong Feller property.
4", Ve e E El(fn)nENafn = R)\n@n, ¥n € Bb(E), /\n >0
pif2 () e f2(z), {f;7H0)|U e U(fn(2))} is a subbase of U(x).

Suppose there exists a Markov process Mz = (0, H, (Zi)1>0, (Qz)zcE)
whose transition semigroup (P¢)i>o has the property that pyf is a p-
version of T, f for all f € By(E) with

(2.3) Qult — Z is continuous| = 1.

Then there ezists a right process Mx = (E®+, F, (X})1>0, (Py)zcr)
with transition semigroup (p;)i>o and

P,[t — X} is continuous] =1 Vz € E.

PROOF. The proof of this theorem is the same as for 2.3 Theorem
with the following lemma instead of 2.10 Lemma. We can apply it,
since we have R,f = fooo e~ ¥p,f, so the resolvent (R,)s>o has the
oo-strong Feller property. O

2.13. LEMMA. Let (L,D(L)) be the infinitesimal generator of a
sub-Markovian semigroup (T})i>0 on LP(E, ) and denote by (Ga)a>o
the associated resolvent. Let (E®+,F,(Y1)i>0, (Py)zer) be a mormal
Markov process whose transition semigroup (p;)i>o and resolvent of ker-
nels (Rq)a>o0 fulfill the following assumptions:

(i) Vf € By: pof is a p-version of T,f.

(11) Vx € E El(fn)nENafn = R)\n@n, DPn € Bb(E)a /\n >0
pefi(z) e f2(x), {71 U)|U € U(fn(z))} is a subbase of U(x).

(iii) (Ra)a>0 has the co-strong Feller property.
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Then we have for all x € E that limy o Y; = = Py-a.s., and in particular
limy 0 Y; =Yy Pp-a.s.

PROOF. Fix now z € E and (f,)nen as above, then for any f, we
have that

/ e |psion (@) ds < / e ps ion| (z)ds = Ry, || (x) < oo
0 0

and since 1 e **

|pefn() = fol2)]
= [p1Bx, on(2) — B, 0n(2)]

o0 o0
= pt/ e’\"spsgo”(a:)ds—/ e*)‘"spsgon(x)ds
0 0

Psn (1) ﬁ 0 pointwise, we have that

(o] o0
= / e_)‘"spt+s<pn(x)ds—/ e_)‘”sps(pn(x)ds
0 0

o0 o0
— e)‘"t/ e_’\”spsgon(a:)ds—/ e M pson(x)ds
¢ 0

+ (eMt 1)

t
< / e pson(z)ds
0

— 0.
10

/ e_’\”spsgpn(m)ds
¢

Since e"* R, f(Y};) is a supermartingale for every f > 0 and o > 0
we have that the following limits exist P,-a.s.

o —Ant + im et (Y,
ltljgle Ry, 0, (Yi(w)) lgfgle Ry, 0, (Yi(w))

and hence

lim fu(Yi(w))-

Because of
Ep,[(fa(Y?) = fa(2))’] = pefi(x) = 2fu(@)p1fu(x) + ()
20N o2 2
=0

we have that limg f,(Y;) = f.(z) in L?(E®+, P,). Hence we have
limy o fn(Y2) = fu(z) Pp-as.

Since we have the countable index set N there exists a set N C EX+
such that for allw ¢ N and all n € N we have that lim, | f,,(Y2) = fu(2).

Applying 2.11 Lemma we get that lim; o Y; = x P,-a.s. Since Y} is
normal by assumption we have Yy =z P,-a.s. O



18 2. CONTINUOUS CASE

In order to apply the above theorems one needs the existence of
a Markov process Mz = (,H, (Zi)i>0, (Qz)scr) With the property
Qu[t — Z; is continuous | = 1. In the special case of p = 2 the exis-
tence of such a process follows with the theory of Dirichlet forms (cf.
Section A.1 in the appendix or [MaR®692| for an exact definition). In
this case (p = 2) one has the following corollary to 2.3 Theorem.

2.14. COROLLARY. Suppose there exists a quasi-reqular Dirichlet
form (€, D(E)) with the local property associated with L on L*(E, u),
where supp(u] = E and a Markovian semigroup of kernels (pt)i>o, sat-
isfying assumptions 1.—4. or assumptions 1., 2. and 4. Then there
exists a right process (E*+,F, Xy, P,) that is properly associated with
(€,D(£)), such that

P,[t — Z, is continuous | = 1 Vz € E.

PROOF. By [MaR692, Theorem IV.3.5] there exists an u-tight spe-
cial standard process (2, H, (Zt)i>0, (Qz)scr,) that is properly associ-
ated to (£,D(£)). Because the semigroup (1};):>o is Markovian, the
process is conservative and we have ( = oco. By [MaR692, Theo-
rem V.1.5| we have Q.[t — Z; is continuous|] = 1 for £-q.e. = € F,
in particular we have Q,[t — Z; is continuous] = 1. Then we ap-
ply 2.3 Theorem or 2.12 Theorem respectively and get a right process
(E®+, F, (Xt)>0, (Pr)zer) with transition semigroup (p;);>0, hence it
is associated to (£, D(€)). By assumption 1. it is properly associated
o (€,D(£)).

U

The last corollary in this chapter states that we can take the image of
the process constructed in 2.3 Theorem or 2.12 Theorem on the space
Ck([0,00)) of continuous functions from [0, 00) to E.

2.15. COROLLARY. In the situation of 2.3 Theorem there erists a
family of probability measures (Py)zer on Cg([0,00)) such that the
coordinate process (Xt)tzo 1s a strong Markov process with transition
semigroup (p¢)i>o-

PROOF. 2.3 Theorem gives us a process on E®+. Consider the
following mapping T : E®+ — Cg([0,0)), w — T(w) with T(w)(t) =
X,(w) and take as P, the image measures of P, under T. Since X
is a Markov process w.r.t. its natural filtration (F;); and since .7-} =
{T—'(A)|A € F,} we can express conditional expectation under P, in
terms of conditional expectations under P, as follows: Ejp | fl1F] =
Ep,[f o T|F)] for any F.-measurable function f : C([0,0)) — R.
Then we get the Markov property of (X;) by the Markov property of
Xy
( i“or the transition semigroup of this process we have for any f €
By(E) that Ep, [f(X,)] = Ep, [fo Xi] = Ep,[fo X, 0T] = Ep,[foX] =
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nf(x), hence it has the strong Feller property. Since the paths of
the process X; are continuous, hence especially right continuous, this
process is a strong Markov process by B.1 Proposition. O
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CHAPTER 3

Cadlag Case

In this chapter we will prove the cadlag case of the main theorem.
The only difference is that the assumed process has cadlag paths instead
of continuous paths ),-a.s., the constructed process will have also only
cadlag paths. All the other conditions remain the same.

3.1. THEOREM. Let (L,D(L)) be the infinitesimal generator of a
sub-Markovian semigroup (1})i>0 on LP(E, ) and denote by (Ga)a>o
the associated resolvent. Let (pi)i>o be a Markovian semigroup of ker-

nels on (E,B(E)) and (Ra)a>0 the associated resolvent of kernels on
(E,B(E)) such that
1. Vf € By(E) Vt > 0: pif is a p-version of T;f .
2. (p1)i>0 has the oo-strong Feller property.
3. (Ra)a>0 has the p-strong Feller property.
4. Vz € E I(fn)nen C D(L)NC(E),
pefi(z) e f2(x),{f71U)|U € U(fn(x)),n € N} is a subbase of
U(x).
Suppose there exists a Markov process My = (0, H, (Zi)1>0, (Qz)zcE)

whose transition semigroup (Pt)i>o has the property that pif is a p-
version of Ty f for all f € By(E) and t > 0 with

(3.1) Qult — Z; is cadlag) = 1.

Then there ezists a right process Mx = (E®+, F, (Xt)i>0, (Pr)zer)
with transition semigroup (p)i>o0 and

P.[t — X, is cadlag) = 1 Vz € E.

3.2. REMARK. Note that since u is a probability measure, we have
that every f € By(F) is p-integrable, hence we can apply 7; on f €
Bb(E) in 1.

PRrROOF OF 3.1 THEOREM. By Kolmogorov’s theorem there exists
a Markov process My = (E®+ F, (Y})i>0, (Py)zer) with transition
semigroup (p;)>o, family of shift operators (6;);>o and filtration (F)so.

In order to use 2.5 Lemma we have to find an appropriate set A
which characterizes the paths which can be modified to be cadlag. This
set should be shift-invariant and describable as a union or intersection
of sets which depend only on a finite number of times.

Denote by Ups(a, S, f) the number of up-crossings over the inter-
val [, f] by the function fip. Let (gn)new be a family of bounded

21



22 3. CADLAG CASE

continuous functions which separates the points of E. Such a family
exists, because E is separable (take e.g. g,(z) := d(z,z,) A 1, where
{z,|n € N} is a countable dense subset of F).

It is well-known (cf. e.g. [Wi79, (37.1) Lemma| ) that for a function
f iRy — R and a dense subset S of R, the following conditions are
equivalent:

e the function ¢t — lin% f(s) is cadlag,
S—r
s>t

° vaaﬁ € Q, a < /BVTL eN USO[O,n](a’ﬁ:f) <
Define now for k,n € N, o, 3 € Q

A = {w € B®¥|Ugunp(a, B, g o Y.(w)) = oo},
Bf(lngk = {w € Q‘U[O,n]ﬂD(a/,ﬁ,gk o Z(w)) = OO}

and

_ER+\ U A,,Bk

a,B€Q
n,k€EN

By the following lemma we have that P,[Ao] = 1, and since
0, (AT} ) = {w € E* [Upnsion (e B, g1 0 Y (@) = o0}
C {w € B [Uipnygonlas B, g 0 Y () = 00}
we have for ¢ € D that 6, (Ag) D Ay.

3.3. LEMMA. Vn,k € NVa,5€Q:

P[ ,Bk] QM[B(T/)M]:O-

PROOF. By Lemma 2.6 we have that P, and (), have the same finite
dimensional distributions. The second identity follows from (3.1). The
first one by

PuAT: )
= P,[[ {w € Ry [Upmpn(a, B, gk 0 Y.(w)) > 1}]
leN
=inf P, U U &) <eals)>si=1,..,1]
meN {t1,51,...,t1,81}

Cl0,n]NSm
t1<81 << <81

1nfsupP[ U {9x(Y2,) < o, g (Vs )>B,z—1...,l}]

lEN meN
{tl 7511--',tla5l}
Cl0,n]NSm
11<81< <t <8

= inf sup Q,[ U {o6(Z,) < o, ge(Zs;) > B,i=1,...,1}]

le eN
m {tlasla--'ytlrsl}
C[0,n]NSm
11<81<- < <85
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- - QM [Ba B, k]
0
Applying 2.5 Lemma we get that P[0, '(Ay)] =1 for all z € E.

If w € 0, *(Ay) then the function g, o Y., (w) : (t,00) = R, s
lim, s yep gk © Yo (w) can be defined for each k and is cadlag. Define

6 (Ao).

teDt>0

3.4. REMARK. For w € A}, we have the following property: For
every t > 0 and k € N the function goY. | (w) : [t,00) = R, groYyy :=
lim, |5 re p groYr(w) is well-defined and cadlag. We now have to conclude
the same for the function Y. (w) : [t,00) — E.

To this end let (K, ),en be an increasing sequence of compact sub-
sets of E such that

(3.2) QN [nll)rgo OB\K, < 00:| =0.

These sets exist, because the process (Z;);>o is p-tight by [MaR92,
Theorem IV.1.15] and the semigroup (p;)¢>o is Markovian (hence life-
time ¢ = 00). Define also

Q) ={weQVM e N3In e NVt € DN[0,M]: Z;(w) € K.},
A ={we€ E*|VM € Nan e NVt € DN [0, M] : Y;(w) € K,,}.

3.5. LEMMA.
Pu[A] = Qu[fh] = 1.
PROOF. From (3.2) we deduce
1= Qu[lim op\k, = oo
=Qu{w € QVM e NIn € N:og\k, > M}]

<Qu{w € QVM € Nan e NVt € DN [0, M] : Z,(w) € K, }]
= inf supQ“[{w € QVl e NVt € SN [0, M]: Z;(w) € K, }]

= inf suplan”[{w e QVt e SN0, M]: Zy(w) € K, }]

MeN

= R+
Al/[%fl\lilégllgfp WH{w € ERF|Vt € §;N [0, M] : Vi (w) € K, }]

= P,[{w € E**|VM € N3n € NVt € DN [0, M]: Y;(w) € K, }]
< 1.
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Again we have that 6;(A;) C Ay if t € D. Define

Ay:i=AgNA; and  Ay:= [ 6,(Ay).

t€D,t>0
If we define

A=) 67 (A

teD >0
we have

A, = Ay A AL

We know that P,[A}] = 1.

3.6. LEMMA. For everyw € Al we have the following property: For
everyt > 0 the function Y. (w) : [t,00) = E, Y (w) := lim, s rep Yo (w)
15 well-defined and cadlag.

PROOF. Fix w € A}, and s > 0. Then there exists m € N such that
{Y,(w)|r € (s,s+1]Nn D} C K,,. Since K,, is compact there exist
(sn) C (s,s+1]N D, s, | s and z € E such that lim,_, Y;, (w) = z.
Suppose lim, | .¢p Y, does not exist. Then there exists a neighborhood
O of z and a sequence (5,)neny € D N (s, s+ 1] such that Y;, (w) ¢ O
for all n € N. Since K, is compact there exists a subsequence (3., )ken
and y € E with limy 0 Y5, (w) = y. Then there exists [ € N with
ai(z) # ¢/(y) But then lim,j; ¢g;(Y;(w)) does not exist. Hence Y., (w)

is welldefined. D

That it is cadlag follows in a similar way: Since g is continuous
we have that gk(sz-l-(w)) = gk(limr,Ls,rED Y;"(w)) = limrJ,s,rED gk(Y;(w))
hence the function s — g;(Ysy(w)) is cadlag. But since s — gx(Ysy)
is cadlag we have that for every k the limits limy o gk (Ys+n)+(w)) and
limp, o g (Y(s—n)+(w)) exist. Then by a similar argument as in the first
part we have that limy o Y(s4p)4+(w) and limp g Y{s_py4 (w) exist. And
since (gk)nen Separates the points of £/ we have that limp, o Yis4n)4+(w) =
Yii(w). O

Again we have to do additional work for time zero. The remainder
of this proof is completely analog to the proof of 2.3 Theorem.

As = {w € E®| lig)l Y (w) exists}.

seD
We have P.[A{] =1 for all x € E by 2.10 Lemma.
Define
A=A, Ay

and fix an arbitrary zy € E.
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Define the new process Mx = (E®+, F, (X})t>0, (Pr)zer by:

(3.3)

seD

lim,; Vi(w) ,weA
Xi(w) = {
T , W ¢ A.

This process has cadlag paths for every w.
It remains to show that P,[X; =Y, =1forall z € E.

Ep.[d(Xe, V)] = Ep, [d(lim Y;, Y1)]
seD
= Bp,[Ep,[d(im Y, ;)| 7]
seD
= Ep,[Ep, [d(lggl Y4, Y0) 0 0, F]]
seD
= Ep, [Ey[d(lmY,-,, Yo)]
seD
=0.

So d(Xy,Y;) = 0 Ppas. hence Py[X; = Y] = 1 and in particu-
lar (X;)i>0 has the transition semigroup (p;)i>o. Then (X;);>o has
the Markov property w.r.t. the filtration (F, ’X)tzo where F; X =
0(X;|0 < s < 1) by [Ba9l, 42.3 Satz| and since N 1= (,cp {4 €
F|P,[A] € {0,1}} is a o-algebra indepent of every F~* w.r.t. every
P, we have by B.2 that X; has the Markov property w.r.t. (F;*)>0
where FX := o(F)™,N). Since the paths are cadlag it has the strong
Markov property with respect to (FiX)i>o by Proposition B.1. And
since it is normal by construction My is a right process. O

As in Chapter 2 there exists the following version of 3.1 Theorem,
where there is no assumption on the resolvent, but a stronger assump-
tion on the family of functions (f,)nen that we needed to ensure the
rightcontinuity for time zero.

3.7. THEOREM. Let (L,D(L)) be the infinitesimal generator of a
sub-Markovian semigroup (T})i>0 on LP(E, ) and denote by (Ga)aso
the associated resolvent. Let (pi)i>0 be a Markovian semigroup of ker-
nels on (E,B(E)) and (Ry)a>0 the associated resolvent of kernels on

(E,B(E)) such that

1. Vf € By(E): pef is a p-version of Tyf .
2. (pt)i>0 has the oco-strong Feller property.
4 Vx ek El(fn)nEN; fn = R)\n@n, ©n € Bb(E), An >0
pifa (@) T [ @), {71 U)|U € U(fa(x))} is a subbase of U(z).
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Suppose there exists a Markov process Mz = (0, H, (Zi)1>0, (Qz)zcE)
whose transition semigroup (Pt)i>o0 has the property that pyf is a p-
version of T, f for all f € By(E) with

(3.4) Qult — Zy is cadlag) = 1.

Then there ezists a right process Mx = (E™, F, (X})i>0, (Py)secr) with
transition semigroup (p;)i>o and

P,[t — X is cadlagl =1 Vz € E.

PROOF. The proof of this theorem is the same as for 3.1 Theorem
with 2.13 Lemma instead of 2.10 Lemma. We can apply it, since we
have R,f = fooo e~ ¥p,f, so the resolvent (R,)a>o has the oc-strong
Feller property. O

In order to apply the above theorems one needs the existence of
a Markov process My = (2, H, (Z1)i>0, (Rz)zcr) With the property
Qu[t — Z; is cadlag | = 1. In the special case of p = 2 the existence
of such a process follows with the theory of generalized Dirichlet forms
(cf. Section A.2 in the appendix or [St99a] for an exact definition). In
this case (p = 2) one has the following corollary to Theorem 3.1.

3.8. COROLLARY. Suppose there erists a quasiregular generalized
Dirichletform on L*(E, 1) fulfilling the following assumption:

There ezists a linear subspace Y C H N L*®(E, m) such that Y N F
is dense in F, limy oo (0Gou —u)p = 0 in H for allu € Y and for the
closure Y of Y in L®(E, i) it follows that u Ao € Y foru € Y and
a> 0.

Let (T})i>0 be the Markovian semigroup associated to (£, D(E)) and
a semigroup of kernels (p)i>o0, which fulfills assumptions 1.—4. or as-
sumptions 1., 2. and /.

Then there exists a right process (E®+, F, (X1)i>0, (Py)zer) that is
properly associated with (£, D(E)). And we have

P.[t — Z; is cadlag ] = 1 Vo € E.

PROOF. By [St99a, Theorem IV.2.2] there exists a u-tight special
standard process (€2, G, (Zi)1>0, (Qz)zcE, ) that is properly associated to
(€,D(£)). Because the semigroup (7}):>o is Markovian, the process is
conservative and we have ( = co. Then we have Q,[t — Z; is cadlag] =
1 for £-q.e. © € EA and in particular Q,[t — Z; is cadlag] = 1. Now
we can apply 3.1 Theorem or 3.7 Theorem respectively and get a right
process (E®+  F, (Xt)t>0, (Pr)zer) with transition semigroup (pt)i>o,
hence it is associated to (£,D(€)). By assumption 1. it is properly
associated to (&€, D(£)). O

The last corollary in this chapter states that we can take the image
of the process constructed in 2.3 Theorem or 2.12 Theorem on the space
Dg([0,00)) of cadlag functions from [0, 00) to E.
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3.9. COROLLARY. In the situation of Theorem 3.1 there exists a
family of probability measures (Py)zer on D([0,00), E) such that the
coordinate process is a strong Markov process.

PROOF. Theorem 3.1 gives us a process on E®+. Consider the
following mapping 7T : E®+ — Dg([0,00)), w — T(w) with T(w)(t) =
X,(w) and take as P, the image measures of P, under T. Since X;
is a Markov process w.r.t. its natural filtration (F;); and since F; =
{T—*(A)|A € F,} we can express conditional expectation under P, in
terms of conditional expectations under P, as follows: Ep | fIF] =
Ep,[f o T|F] for any Fy-measurable function f : Dg([0,00)) — R.
Then we get the Markov property of (Xt)tZO by the Markov property
of (Xt)i>o0-

For the transition semigroup of this process we have for any f €
By(E) that Ep [f(Xi)] = Ep [foXy] = Ep,[f o Xy oT] = Ep,[fo X =
pif (), hence it has the strong Feller property. Since the paths of
the process (Xt)t>0 are cadlag, hence rightcontinuous, this process is a
strong Markov process by B.1 Proposition. O
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CHAPTER 4

Applications

In this section we will take £ = R?%, d > 2 and denote by ) the
Lebesgue measure on R?. Let

LA,b = Z a,-jaz-(?j + Z bzal
irj i
be an operator on C{°(R?).

We will need the notion of LP-uniqueness, as it is introduced in
[St99b, Definition 1.8|.

4.1. DEFINITION. Let p € [1,00) and (A, D) be a densely de-
fined operator on LP(X,m). We say that (A4, D) is LP(X,m)-unique,
if there is only one extension of (A, D) on LP(X,m) that generates a
Co-semigroup.

4.2. THEOREM. Let u be a probability measure on R? and Ly =
0 i.e. fpaLappdp =0 VYo e CPRY). Assume the following condi-
tions hold for some p > d + 2:

1. A = (a;);; is continuous, symmetric, nonnegative and nonde-
generate with a;; € HP(R?)

2. b e L (R, )\)

3. (Lap, C(RY)) is L' (R, u)-unique.

Then there exists a family of probability measures (Py),ecra such that
M = (Cg([0,00)), F, (Xt)t>0, (Pr)gera) @5 a conservative Markov pro-
cess whose transition semigroup (p;)i>o0 has the following properties:

e p.f is a p-version of Ty f for all f € By(E), t > 0 where (T})>o is
the Cy-semigroup on L*(E, 1) generated by the unique extension
of Lay that generates a Co-semigroup.

e (p)i>0 has the co-strong Feller property.

4.3. REMARK. Although L'-uniqueness implies by its definition
the existence of such an extension we will not need this part, due to
the following proposition. We will only use L!'-uniqueness to ensure
that the associated semigroup (7});>0 is Markovian.

4.4. PROPOSITION. Suppose in the situation of the above theorem
that you have only assumptions 1. and 2. Then there exists a closed ex-
tension Lay of Lay that generates a Cy-semigroup (Tt)e>o on L' (R?, p).

PROOF. To this end we want to apply [St99b, Theorem 1.5]. So
we have to check the following conditions:
29
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1. u is absolutely continuous w.r.t. Lebesgue measure.
2. supp|u] = Re.

3. & = o where ¢ € H2(RY).

4. aw Hllof(Rd,u),l <i,j <d.

5

6

1

. A is locally strict elliptic.
. |b|2 € Lloc(Rd’lu’)'

By |[BoKrR6, Corollary 2.9] p is absolutely continuous with
respect to Lebesgue measure on R? and for its density p we have p €
H'? 1o and p is locally Holder continuous.

2. Since b; € L} (R%) we can apply [BoKrRo Corollary 2.10| and
get that for every compact V C U C R? where U is compact one has
supy p? < Cinfy ¢?. Take now V,, = B,(0) and U, = B, 1(0). Since
1 is a probability measure there exists ng such that 90|2Vn0 # 0 but then

¢®> > 0 on V, for all n > ng and since R* = |J>7, V;, we have ¢* > 0
on R? and hence supp[u] = R.

3. Since p is a probability measure by assumption and supp|u] = R¢
its density p is positive and admits a representation ¢? where ¢ € H llof
and ¢ is again locally Hélder continuous since the function z — /x is
locally Lipschitz continuous on (0, 00).

4. We have for V C R%, V compact [, Y¢_, |0kai;|® + |aij|?dy =
Jo X 0kai P + lag P’z = i, [ |Okaiode + [ |agel*de <
(max{le(z)lz € VH? (S fyloka® + fylagl) < oo since ¢ is
continuous and since p > d + 2 > 2 we have that Hllo’f(]Rd,dac) C
H?(RY, d).

loc

5. We have to show that for all V' C R? compact there exists
cv,Cy > 0 such that for all z € V, h € R* we have cy|h|? <
(A(z)h, h) < Cy|Ih|?.

It is sufficient to show the above inequality for h € R* with ||h|| = 1:

The mapping (z, h) — (A(z)h, h) is continuous, since the mapping
z + A(z) is continuous with respect to the operator norm on (R?, (-, -))
and since we have the following inequality:

A(z)u, u) — (A(y)v, v)|

[{A@)u, u) = (A@)u, v)| + [(A(z)u, v) = (A(z)v,v)]

+ [(A(2)v,v) = (A(y)v, )]

(A@)u, u = v)| + [{u — v, A(z)v)| + [((A(z) = A(y))v, v)]
|A(@)ul + [A(z)v])lu = vl + [(Alz) = A(y))vl]lv]]
IA@)lull + 1A@)oIDlle = vll + A) = A@)lv]l*.

—~

IA

|
(
(

<
<

Since V' x {||h]| = 1} is compact there exists (zq, ho), (T1,h1) € V X
{“h“ = 1} such that Cy = <A(.’C0)h0,h0> = infw7h6VX{||h||:1}<A(l')h, h)
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and Cy = (A(x1)h1, h1) = supg pey«qn=13(A@)h, h) Then we get
Cy < o0 and cy > 0 since A is nondegenerate.

6. We have to show that for every V C R? compact we have
S \IblI* dp < co. This we get by calculating

d
b 2d,u:/ b da
/V Il = [ 3
d
<suplof? Y- [ #do
1%

eV i—1

v v

g/dx+/\bi\pdx<oo,
v 14

since p>2 and [, dz < oo,
Since all prerequisites are fulfilled, we can apply [St99b, Theo-
rem 1.5] and get a closed extension (Lap, D(Lap)) of (Lap, C5°(R?))

which generates a sub-Markovian Cy-semigroup (7;) of contractions on
LY(R?, p). O

PROOF OF 4.2. The extension of (L4, C§°) on L' (R?, i) that gen-
erates a Cy-semigroup (Tt)tgo will be denoted by (Lap, D(Lag)) -

We observe that a;; is locally Holder continuous.

Indeed: Let V C R? compact. Then there exists R > 0 such that
Br(0) D V. There exists x € Cg° such that x, = 1 and x(z) =
0 for all z ¢ Bgy1(0). Define U = Bgi2(0). Then we have that
(aijX), € H"P(U). Since U is a Lipschitz-boundary we have by
the Sobolev embedding theorem that there exists a (1 — g)—Hélder-
continuous function f : U — R with Holder-constant L such that
f = a;jx m-almost surely on U. But since a;; is already continuous
and since x,, = 1 we have that f(z) = a;(z) for z € V. Hence we
have that |a;;(z) — ai;(y)| < Ly |z — y|* 7.

Now we can apply [St99b, Corollary 2.2] and get that u is Tj-
invariant since (L4, C§°) is L'-unique by assumption.

Then we have that (T;);>o is Markovian. Indeed, we have [(1 —
T,1)dp = 0. But since (T});o is sub-Markovian, we have T;1 < 1 and
hence 1 — T;1 > 0. But since supp[u] = R¢ we have T;1 = 1.

(Tt)tzo induces a Markovian Cp-semigroup (7});>0 on L*(RY, u),
since 2 > 1 (for a proof using the Riesz-Thorin interpolation theorem
see e.g. [Eb99, Lemma 1.11]). The new semigroup is again Markovian
since it coincides with the old semigroup on L'(R%, ) N L?(R?, p).

Let L denote the generator of (T});>o and (G4)a>o the associated

resolvent. Then by [St99b, Theorem 3.5] there exists a Markov process
(QH, (Z)1>0, (Qz)zer) such that Eg. [fooo e~ f(X;)dt] is an E%q.c.
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p-version of Gof for all f € By(RY) N L?(R%, ), o > 0 and hence
Eq [f(Xy)] is a p-version of Tif for all f € By(R?) N L?(R?, i) and
so it is a p-version of Tyf. By [St99b, Theorem 3.6] we get Py[t —
Z, is continuous] = 1 £%q.e., hence in particular p-a.e. and so we get
Qu[t — Z, is continuous| = 1.

By |BoKrRG, Theorem 4.1] there exist unique probability kernels
pi(-,dy),t > 0 on R? such that p;(z,dy) = p(t, z,y)dy where p(t,z,y)
is a locally Holder continuous function on (0,00) x R? x R%, and for
every f € L*(R%, p1) the function z — p,f(2) := [ea f(y)p(t, z, y)dy is a
p-version of T} f such that (t,x) — pyf(x) is continuous on (0, 00) x R?,

and so for f € By it is a p-version of T} f.
To apply Corollary 2.15 we have to check the following conditions:

1. R? is a polish space.

2. Vx € Rd EI(fn)nEN € D(I_/A,b) N C(E)
{£,HO)|U € U(fn(z)),n € N} is a subbase of U(z),
P2 o 120)

3. Vf € By(E)NLP(E, p) : pif is a p-version of T;f.
4. (pt)t>o has the oo-strong Feller property.
5. (Ra)a>o0 has the p-strong Feller property,

where R, f = [° e *'p.fdt.

1. This is fulfilled for R?.
2. Consider the function ¥ (z) := {exp( ), |7

0, |z| > 1.

Then supp ¢/(z) = B1(0), $(0) = 1, 9, ¥* € C§°(R?), and {1)(z) >
0} = By(0). Define ¢y n(z) = ¥((y — z)n). Then supp ¢y, = B1(y0)
and {¢y, > 0} = B%(y). Since Yy, 2, € D(Lap) we have that

Y,n
Pt n(t) = Yan(z) and py)?, (2) = Ypn(z). Thus the second condi-
tion is fulfilled.

3. This was shown above.

4. and 5. This follows by [BoKrR&, Theorem 4.1]. We even
have that (¢,z) — p.f(z) is continuous on (0,00) x R? for every f €
LHRY, ).

By Corollary 2.15 there exist probability measures P, such that
(C([0,00)),R"), B(C([0, 00), RY), (X )120, (Pr)zere) With Xi(w) = w(?)
is a Markov process with continuous paths starting at every point = €
Re. O

As a result of the above theorem we get the following corollary
which states that there exists a solution for the martingale problem for
L,y for every starting point z € RY.

4.5. COROLLARY. Under the conditions of Theorem 4.2 exists for
every starting point x € R? a probability measure P, on Cgra([0,0))
that is a solution for the martingale problem for L.
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PROOF. As a result of Lemma 2.10 and the construction of the
probability measures (P,) we have P,[X, = z] = 1. Let ¢ € C§°(R™).
We have to show that M; = ¢(X;) — fo Lapp)(Xy)du is a (Fy)-
martingale under P,. Let s > ¢, then we have

Ep, [M,|F] = Ep,[p(X.) - / (Lape) (X.) dul F)
= Ep,[M; — (X)) + o(X,) — /t (Lage)(X)dul 7
= M+ Bno(X) - (%) - | (Law) (X.)dul 7]

= My + En[(9(Xot) — o(Xo) — / (Lagg) (Xus)du) o 6| F)

= M, + By [0(X) — 0(X0) - / (L) (Xus)dl]
= M, + o 1p(X) — / Epy [Lapp(Xuo)ldu
= M+ ps_10(Xy) — / Pu—tLapp(Xi)du

Sd
=M+ ps_ tﬁp(Xt / p ——Pu—tP Xt d

t u

= M; + ps—1p(Xe) — ©(Xe) = (Ps—tp(Xs) — Pr—rp(Xy)) = M.
O
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APPENDIX A

Dirichlet Forms and Generalized Dirichlet Forms

1. Dirichlet Forms and the local property

In this section we will only cite the most important definitions and
the main theorem. For a complete reference see [MaR692|.

A.1. DEFINITION. Let (E,B,m) be a measure-space. A coercive
closed form (€, D(€)) on L?(E,m) is called a Dirichlet form if for all
u € D(&) the following holds:

ut A1l e D(E) and Eu+utALu—utA1)>0
and Ew—u"AlLu+ut A1) >0.

A.2. REMARK. It is shown in [MaR692, Theorem 1.2.8.] that £
uniquely determines a pair of strongly continuous contraction resol-
vents (Ga)as0, (Ga)aso on L2(E, m) such that £(Gaf, u) + (Gof,u) =
(f,u) = E(u, éaf) + (u, @af). Corresponding to these resolvents are
two strongly continuous contraction semigroups (7;);>0 and (Tt)t>0.

It follows from [MaR®&92, Proposition 1.4.3.] and [MaR592, The-
orem 1.4.4.] that the resolvents and the semigroups are sub-Markovian.

In order to define quasi-regularity we have to introduce some po-
tential theoretic notions.

A.3. DEFINITION. Let a € (0,00). An element v € L*(E,m) is
called a-ezcessive if e Tyu < u for all ¢ > 0.

For a function h on E and an open subset U of E define L,y =
{w € D(&)|lw > h m-a.e. on U}.

It is shown in [MaR&92, Proposition I11.1.5.] and [MaR$92, Re-
mark I11.1.6.] that for A and U such that £,y # 0 there exists a
1-excessive hyy € Ly, such that hy < u for every u € Ly, iy 1-excessive.

Define for F' C E, F closed

D(€)p:={ue D()|u=0m-a.e. on E\ F}.

A.4. DEFINITION. (i) An increasing sequence (Fj)xen of closed

subsets of E is called an £-nest if (J;, D(€)F, is dense in D(E)

w.r.t. 511/2.

(ii) A subset N C FE is called £-exceptional it N C (), Ff for some
E-nest (Fk)kEN- -

35
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(iii) A property is said to hold £-quasi-everywhere (£-q.e.) if there
exists an £-exceptional set N such that the property holds on
E\N.

(iv) An &-q.e. defined function f on F is called &-quasi-continuous
if there exists an £-nest (Fj)ren such that fig, is continuous for
every k € N.

A.5. DEFINITION. A Dirichlet form (£, D(€)) on L?(E, m) is called
quast-reqular if the following conditions hold:
(i) There exists an E-nest (Fy)ren consisting of compact sets.
(ii) There exists an &;/*-dense subset of D(£) whose elements have
£-quasi-continuous m-versions.
(iii) There exists u,, € D(€), n € N, having £-quasi-continuous m-
versions u,, n € N, and an £-exceptional set N C E such that
{tiy|n € N} separates the points of E'\ N.

Finally we have the following theorem:

A.6. THEOREM. Let (€, D(E)) be a quasi-reqular Dirichlet form on
L*(E,m).

Then there exists a pair (M, M) of m-tight special standard pro-
cesses which is properly associated with (£, D(E)), i.e. for the transi-
tion semigroup (pi)i>o0 and (Pr)i>0 we have that p,f is an m-version of
T.f, puf is an m-version of T,f, and p.f and p.f are E-q.c. for all
t>0, feBy(E)NL*(E,m).

Now we have to define the local property.

A.7. DEFINITION. (&, D(€)) is said to have the local property if for
all u,v € D(E) with suppu], supp[v] compact and supp[u]Nsupp[v] = 0
we have & (u,v) = 0.

The local property is closely related to the continuity of the sample
paths as states the following theorem:

A.8. THEOREM. Let M = (Q,F, (Xt)i>0, (P;).cE) be an m-tight
special standard process with life time ¢ associated with (€, D(£)).

Then (£,D(E)) has the local property if and only if we have for
E-q.e. x € FE that Pt — X, is continuous on [0, ()].

2. Generalized Dirichlet Forms

In this appendix only the most important definitions are cited. For
a complete reference see [St99al.

Let us first define generalized Dirichlet forms:

Let (F,B,m) be a o-finite measure space, (A,V) be a coercive
closed form on H := L?(E,m) and (A, D(A)) be a linear operator on
‘H such that:

(i) (A, D(A)) generates a Cy-semigroup of contractions (U;);>o on H.
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(ii) (Ui)>0 can be restricted to a Cy-semigroup on V.

Identifying ‘H with its dual H' we obtain that V — H = H' — V'
densely and continuously. Let (A, F) be the closure of A : D(A)NY —

V' and (A, F) be the dual operator. Then the bilinear form associated
with A and A is given by

A(u,v) — (Av,u), uweV,veF,
where (-, -) denotes the dualization of V' with V.

E(u,v) := {A(U, v) = (Au,v), ueFoeV

A.9. REMARK. It follows from [St99a, 1.3] that £ uniquely deter-
mines a pair of Cy-resolvents of contractions (Gy)as0, (Ga)aso on H
such that Go(H) C F, Go(H) C F and

E(Gaf,9) + a(Gaf.9) = (f,9)u = E(9, Gaf) + a(Gaf, 9).

A.10. DEFINITION. A bilinear form £ associated with (A, V) and
(A, D(A)) is called a generalized Dirichlet form if the following condi-
tion is satisfied:

ueF = u"AleVand E(u,u—ut A1) >0.

A.11. REMARK. It has been shown in [St99a, Proposition 1.4.6.]
that the above condition is equivalent to the sub-Markov property of
(Ga)aso and the corresponding semigroup (7}):>o respectively.

In order to define quasi-regularity for generalized Dirichlet forms
let us first introduce some potential theoretic notions: For f € H let

L;:={g9eHlg> [}

A.12. DEFINITION. Let o > 0. An element u € H is called «-
excessive if fGgiou < u for all B > 0. Let P, denote the set of all
a-excessive u € V.

If feHand U C E, U open such that L1, NF # () there exists a
1-excessive element fy € L., such that fy <wuforallu € Ly, u 1-
excessive (cf. [St99a, Proposition I11.1.7.]). fy is called the 1-reduced
element fy of f on U.

A.13. DEFINITION. (i) An increasing sequence (Fy)gen of closed

subsets of E' is called an £-nest if for every element u € F NPy
it follows that limy_, up\r, = 0 in H.

(ii) A subset N C E is called £-exceptional if there exists an £-nest
(Fk)kEN such that N C ﬂzozl ch

(iii) Finally, a function f : E' — R is called £-quasi-continuous (€-
q.c.) if there exists an £-nest (F})ren such that fip, is continuous
for all k.
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A.14. DEFINITION. A generalized Dirichlet form £ associated with
(A, V) and (A, D(A)) is called quasi-regular if the following conditions
hold:

(i) There exists an £-nest (F})g>1 consisting of compact sets.
(ii) There exists a dense subset of F whose elements have £-q.c.
m-versions.
(iii) There exist u, € F, n € N having £-q.c. m-versions @,, n € N
and an &-exceptional set N C E such that {@,|n € N} separates
the points of £\ N.

For the existence of an associated process we need one further con-
dition. Then we have the following theorem.

A.15. THEOREM. Let & be a quasi-reqular Dirichlet form satisfying
the following condition.:

There ezists a linear subspace Y C H N L*(E, m) such that Y N F
is dense in F, limy o0 (0Gou —u)p = 0 in H for allu € Y and for the
closure Y of Y in L*®°(E,m) it follows that u Ao € Y for u € Y and
a > 0.

Then there exists an m-tight special standard process M which is
properly associated in the resolvent sense with £, i.e. for the resolvent
(Ra)a>0 we have that Ry f is E-q.c. and an m-version of Gof for all
a>0and f € By(E)NH.



APPENDIX B

Some Complements

1. A Feller process with right-continuous paths has the
strong Markov property

The contents of the following proposition are well-known. However
for the version presented here we could not find a reference, but only one
with slightly stronger assumptions (cf. [ReYo091, III (3.1) Theorem]|).
Therefore we will present a complete proof which is essentially the proof
of the abovementioned reference.

B.1. PROPOSITION. Let (Q, Foo, (Xt)1>0, (Pr)zer) be a Markov pro-
cess with the natural filtration (Fy)iso (i-e. FY = 0{X;|0 < s <t} and
Fi = uerm) (FP) ™, where P(E) denotes the set of all probability mea-
sures on (E,B(E)), and AY denotes the completion of the o-algebra A
with respect to P). Suppose its transition semigroup (p;)i>o0 has the
Feller property (i.e. p,C(E) C C(F)), then it has the strong Markov
property with respect to (Fiy)

PrROOF. We will show that for any F,-measurable positive f and
for any (F;;)-stopping time we have that

Ep,[f o 0r|Fri] = Epy [f].

Step 1. T(Q) = D, where D is countable. In this case we have by
the Markov property

Ep,[f ob0p|Fr| = Ep, [Z Lir=ayf o HT‘FT]

deD

= Z EP,,[l{T:d}f © gt‘fT]

deD

= Z EP,,[l{T:d}f o gt‘}—t]

deD

= Z Lir=ayEp,[f 0 0;|F]

deD

=Y lreaEpy, |f]

deD
= EPXT [f]

39
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Step 2. f € F2. Define T, := [zngn]ﬂ where [z] := max{z € Z|z <
x} then we have T,, | T as n — co. And since {7, <t} ={T < [ZQLJ]}

we have that T}, is a (F;)-stopping time such that 7,(€2) is countable.
Take now f; € Cy(E), i = 1,...,k and t; < --- < tx. And define

9(x) = fptl(xadxl)fl(xl) fptrtl (z1,dzs)- - 'fptkftk,l(xkfladxk)fk(xk)-
Then we have by Step 1 for every n € N

Ep, [f[ fi(Xy,) o Or, an] = Epy, [f[ fi(Xti)] = 9(Xt,)

By taking the limit n — oo we get by the continuity of g, f;, 1 =1,...,k
and by the right-continuity of X. that

By, [H £i(Xe) 0 Or|Fri] = 9(X1) = Ery, [H fi(X2)-

By a monotone class argument, we then get for every f € F2
Ep,[f o 0r|Fri] = Epy [ f]-

Step 3. f € Fu. Take now f € Fy and let p € P(E) be the
distribution of X7 under P,. Then there exist f’, f” € F2 such that
Fl < f<f"and P — f > 0] =0.

Then we have by Step 2

P,[f"obr — f' o0y > 0] = Ep,[P,[f" 00 — [ o6y > 0|Fr]|

[
[

= Bp[Px,lf" = 1> 0]
= Plf" = > 0]
=0.

So we have that f o 67 is F-measurable and Ep,[f o 07|Fr] can be
calculated. We get

Ep,[f' 0 07|Fr] < Ep,[f 0 0r|Fr] < Ep,[f" 0 07| Fr]
and thus
Epy [f'] < Ep,[f 0 0r|Fr] < Epy_[f"]
and by the above equation

Ep,[f o 0r|Fr] = Epy, [f]P-as.

2. Exercise 2.14 of [B1Ge68]

B.2. PROPOSITION. Let (2, F, (X¢)t>0, (Pr)zecr) be a Markov pro-
cess with filtration (F;)i>o0. Suppose M C F is a o-algebra that is for
every t independent of Fi. Then (2, F,(Xt)i>0, (Pr)zecr) s a Markov
process with respect to the filtration (o(M, F))e>o-
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PROOF. We have to show that for every f € By(E) we have Ep, [fo
Xsii|o(MUF)] = Epy, [f(Xs)]. Since the right hand is F;-measurable
by assumption, it is also o(M U F;)-measurable. Hence we have only
to show that for every o(M U F;)-measurable g we have that Ep,[g -
Epy [f(Xs)]] = Ep,[g - f(X;)]- By a monotone class argument we can
assume that g = g- g where g is M-measurable and g is F;-measurable.
Then we get

Ep,[g-Epy, [f(Xs)]]
= Ep,[§- 7 Ep,, [f(X,)]]
= Ep,[g] - Ep,[7 - Epy, [f(Xs)]] (M and F; are independent)

= Ep,[9] - Ep,[9 - f(Xss)] (g is F-measurable,
Markov property)
=Ep,[§- 9 f(Xs11)] (M and F; are independent)

= Ep,[g- f(Xsps)]-
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