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Abstract

This thesis is devoted to the study of a white-noise driven semilinear stochastic
partial differential equation with reflection, introduced by Nualart and Par-
doux. The main result is a completely rigorous interpretation of such equa-
tion as an infinite-dimensional Skorokhod problem. The relationship between
the Nualart-Pardoux equation and the excursion measure, i.e. the 3-d Bessel
Bridge, is explored: in particular, a fundamental tool is an integration by
parts formula on the excursion measure, where explicit infinite-dimensional
boundary terms appear. Other applications are given, to integration by parts
formulae with respect to d-d Bessel Bridges, § > 3, to reaction-diffusion SP-
DEs with singular nonlinearities and to integration by parts formulae w.r.t.
0-Brownian Bridges, N 5 § > 3, along vector fields which do not belong to
the Cameron Martin space.
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Chapter 1

Introduction

In [NP 92], Nualart and Pardoux prove existence and uniqueness of a solution
of a stochastic partial differential equation (SPDE) with reflection, namely of
a pair (u,n), where u is a continuous function of (¢,£) € O := [0, 4+00) x [0, 1]
and 7 a positive measure on O, satisfying:

(ou_ 15 0w
ot 20€2  OtoE

+n(t,€)

< u(0,€) = z(€), u(t,0)=u(t,1)=0 (1.1)

| >0, dnp>0, [,udn=0.

where z : [0,1] — [0,00) is continuous with z(0) = z(1) = 0, {W(¢,£) :
(t,€) € O} is a Brownian sheet. The solution u is obtained by penalization,
i.e. u is the pathwise limit as € | 0 of the increasing family u°, where for all
€ > 0, u® is the unique solution of the following approximating problem:

ou 18%5 n o*W n (uf)~

u(0,&) = z(&), u®(t,0) = us(t,1) = 0.

This thesis starts from the results of Nualart and Pardoux, but takes
advantage of a supplementary structure of the approximating processes u°.
Indeed, it turns out that u® is a gradient system in H := L?(0,1), i.e. a
Markov process associated with a symmetric Dirichlet Form of gradient type
and with state space H. Moreover, the unique invariant probability measure
of u® is absolutely continuous with respect to the Gaussian measure y :=

1



N(0,Q), where D(Q 1) := H*N H(0,1), Q' := —d?/d&?, and the density
can be explicitly computed. It is therefore reasonable to ask whether this
structure is maintained letting ¢ — 0.

First, we prove that u is a symmetric process, with respect to an explicit
invariant probability measure: the law v on H := L?(0,1) of the 3-d Bessel
Bridge, i.e. the law of the modulus of a 3-dimensional Brownian Motion
(B*(7))rep,1), conditioned to be 0 at time 7 = 1. This probability measure
is also known as the Excursion Measure, in connection with the Theory of
Excursions of the linear Brownian Motion: see [RY 91]. Therefore, our result
provides an unexpected connection between the analytic theory of SPDEs
and the probabilistic study of Brownian Motion.

We mention that this result has been obtained independently by Fun-
aki and Olla in a recent paper, [FO 01], where SPDEs with reflection are
applied to the study of fluctuations of an interface on a hard wall: see the
Introduction to Chapter 3.

Since the process = — wu(t,-), t > 0, satisfies a Strong Feller property
in H, then the law of u(t,-) for ¢ > 0 is absolutely continuous w.r.t. v
on L?(0,1): in particular, for (¢,€) € (0,00) x (0,1), the law of u(t,&) is
absolutely continuous w.r.t. to the measure y?dy on [0,00). Recall that in
[DMP 97], Donati-Martin and Pardoux consider the minimal solutions (u, 7)
of a class of SPDEs with reflection and multiplicative white-noise and prove
that, for (£,£) € (0,00) x (0,1), the law of u(t, &) is absolutely continuous
w.r.t. to the Lebesgue measure on (0,00): see Section 3.4.

The next step is the characterization of 7, the measure term in (1.1),
as a family of Additive Functionals of u: see Section 3.6. A key tool is
an integration by parts formula on the excursion measure v: for all smooth
function ¢ : H — R and h € C?%(0,1) we have

ROZE /K () (.1 () - / Cdr () / () oo(r, dz),

0 Ko

(1.3)

where Ky := {x € H : = > 0}, Ohp is the directional derivative of ¢ along

the direction h € H and A" is the second derivative of h, and the measure

oo(r,-) is explicitly defined in terms of two independent 3-d Bessel Bridges,

respectively on [0,7] and on [0,1 — 7], glued at r € (0,1): see (2.5) below.

The proof of (1.3) is based essentially on a result of Biane in [Bi 86], about

a connection between the Brownian Bridge and the 3-d Bessel Bridge: see
Section 2.1.



Recall that, by the Divergence Theorem in finite dimension, we have:

[@wipds = - [ pontognpds - [ pumypds ()

where O is a regular bounded open subset of R¢, h € R¢, ¢,p € C}(O),
0 <X < p< A< oo, nis the inward-pointing normal vector to the boundary
00 and o is the surface measure of 00.

For all » € (0,1), og(r, -) is concentrated on the set:

0, Ky = {x : [0, 1] = R continuous : z(0) = z(r) = z(1) = 0,

2(6) >0 Ve (0,)\{r}]

and the measure fol dr og(r,+) is concentrated on 0K := Ure(O,l) 0,Ky. On
the other hand v(0K,) = 0.

Compare (1.3) and (1.4): in the right hand side of (1.3), the first term
shows that the logarithmic derivative of v is  +— z”, and the second one can
be interpreted as a boundary term. Moreover the factor (n,h) in finite di-
mension corresponds to h(r) = (d,, h) in the infinite-dimensional case, where
6, is the Dirac delta at r.

Therefore, (1.3) provides the following interpretation: the boundary of
Ky ={z € H,z > 0} w.rt. v, is equal to 0Ky, and for all z € 0, K, the
inward-pointing normal vector to 0Ky at z is equal to the Dirac delta ¢, at
r. See the Introduction of Chapter 2.

Getting back to equation (1.1), formula (1.3) allows to prove that u is
associated with a gradient-type Dirichlet Form on the space (Kj,v), and:

1. For all Borel set I C (0,1), the process t +— 1([0,%] x I) is an Additive
Functional of u, with Revuz-measure £ [, dr oo(r, )

2. There exists a Borel set S C Rt and a map r : S — (0,1), such that
n((RT\S) x (0,1)) =0, and for all s € S, u(s, ) € 0r(5) Ko, i.e.

u(s,r(s)) =0, wu(s,&) >0 VEe (0,1)\{r(s)}.

3. The measure 1 admits the decomposition:



Therefore, we can write equation (1.1) as an infinite-dimensional Skorokhod
problem: ,

du = %g—g dt + dW + %n(u) -dL (1.6)
where 7 is the inward-pointing normal vector to the boundary, i.e. n(z) =4,
if z € 0,Ky, and L; := 2n([0,¢] x (0, 1)) is the Additive Functional associated
with the boundary measure [ dr oo(r, -). Recall that if O is a regular bounded
open subset of R?, n is the inward-pointing normal vector to the boundary
00, and (B%(t))¢>0, a d-dimensional Brownian Motion, then a solution of the
Skorokhod problem is a pair (X, L), where (X (t));>0 is a O-valued continuous
process, and L is a continuous non-decreasing process which increases only
when X (t) € 00, solving:

t

X(t) = X(0) + B(t) + %/ n(X(s)) dLs, t>0.
0

The process X is called the Reflecting Brownian Motion in O and L is called

the Local Time of X at 00: see [Ta 67|, [LS 84], [FOT 94|, [BH 90] and

references therein.

The proof of (1.5) and (1.6) is based on the theory of symmetric Dirichlet
Forms, and in particular on the theory of Additive Functionals and smooth
measures for non-locally compact state spaces, developed by Ma and Rockner
in [MR 92] and by Fukushima in [Fu 99]: see section 3.6.

We mention here that SDEs with reflecting boundary in an Abstract
Wiener Space have been recently studied by Fukushima in [Fu 00]: see the
Introduction to Chapter 3.

Once (1.3) is obtained, we prove the following integration by parts formula
w.r.t. the law 74 of the §-d Bessel Bridge, § > 3:

Oppdrs = — /K o(z) ((:L',h") + W(.ﬁ?’,h)) 75 (dz).

(1.7)

Moreover, we prove that for all § > 3, there exists a unique solution u to the
following SPDE:

ou 182u+ (6-3)(6—1) N o*W

ot 20¢2 8u3 oto€

(1.8)
u(0,-) =2 >0, u(t,0) =u(t,1) =0

and the process = — wu(t,-), t > 0, is symmetric with respect to its unique
invariant probability measure 7.



We give a final application to the law u® of a §-dimensional Brownian
Bridge, N5 6 > 3: formulae (1.3) and (1.7) allow to write an integration by
parts formula with respect to u®° along a vector field which does not belong
to the Cameron Martin space.

The results of this thesis are presented in Chapters 2, 3 and 4. Chapter
2 is devoted to the proof of the integration by parts formulae on the law of
0-d Bessel Bridges, 6 > 3. In Chapter 3, it is proved that the solution u
of equation (1.1) is the Markov process associated with a gradient-type Di-
richlet Form on (Kj,v). This result allows to apply the Theory of Additive
Functionals to 1, and obtain the decomposition (1.5). In Chapter 4 we give
applications of the results of Chapters 2-3, to equation (1.8), and to integ-
ration by parts formulae w.r.t. the law of §-dimensional Brownian Bridges,
N34 >3.

I would like to thank the Scuola Normale Superiore of Pisa, for giving
me the opportunity to study in a stimulating atmosphere and to meet many
people who have deeply influenced me.

My greatest debt of gratitude is to my supervisor, Giuseppe Da Prato,
who has introduced me to the study of SPDEs and has followed me with his
constant encouragement. In his research group I have found great collabor-
ation and friendship, and a rare richness of cultural and human qualities.

Among the people who have been generous with their time and help dur-
ing these years, I am particularly indebted to Prof. Paul Malliavin and Prof.
Sergio Albeverio. I would also like to thank Michael Réckner, for inviting
me to the University of Bielefeld, where part of this work has been done,
and for helping me in the study of Dirichlet Forms. For many illuminating
and stimulating discussions, I am very grateful to Franco Flandoli, Luciano
Tubaro, Samy Tindel, Paolo Tilli and Massimiliano Gubinelli.

1.1 Definitions and notations

We introduce the following notations: (¢,&) € O = [0, +00) x [0,1], H :=
L?(0,1) with the canonical scalar product (-,-) and norm || - ||,

(hy k) = / hEkE) e, Bl = (,h),

Co :=Cy(0,1) :={c:[0,1] = R continuous, ¢(0) = ¢(1) = 0},

A:D(A)C Hw H, D(A):=H2n HL(0,1), A::%—.



We denote by C*(0, 1), k € NU{oo}, the subset of Cy(0,1) of all C* functions
with support being compact in (0, 1).

We set Ko, := {h € H: h > —a} with a > 0, and we denote by
Ilg, : H — K, the projection from H onto the closed convex set K, C H.
Recall that [l is 1-Lipschitz continuous.

We introduce the following function spaces:

e If D C H, we denote by C,(D) the space of all ¢ : D +— R being
bounded and uniformly continuous in the norm of H. If D C H and

¢ € Cy(D), we denote the modulus of continuity of ¢ by w, : [0,00) —
[0, 1]:

wp(r) :=sup{lp(z) —p(z')|A1:2,2" € D, |lo— '] <r}.

We let ||¢||oo := sup |p|. Then (Cy(D), || - |l) is @ Banach space.

For all o > 0, we identify Cy(K,) with a subspace of Cy(H) by means
of the injection: Cy(Ky) 3 o — pollg, € Cy(H). If 0 < e < 3, then
Cy(Ka) C Cy(Kp).

We denote by Exp 4(H) the linear span of {1, cos((-, h}),sin({-, h)) : h €
D(A)}; Exp4(K,) is equal to the restrictions of Exp,(H) to K,.

e If D C H, the space Lip(D) is the set of all ¢ € Cy(D) such that:

wy(r)

lellup = ll¢llee + sup -2 < oo.
r>0 r

The space C}(H) is defined as the set of all Fréchet-differentiable ¢ €
Cy(H), with continuous gradient Vo : H — H; finally, C}(K,) C
Cy(K,) is equal to the set of all ¢ such that:

1. For all z € K,, there exists a vector Vo(z) € H such that for all
h € Ky, we have:

lim +(o(z + th) = ¢(x)) = (To(e),h).

2. Ko 32+ Vp(z) € H is continuous and bounded.

For all ¢ € C}(K,) we call Vo : H — H the gradient of ¢.



If {m, },U{m} is a sequence of probability measures on (H, B(H)), where
B(H) is the Borel o-field of H, we say that m,, converges weakly to m, if:

lim [ odm, = /cpdm, Vo € Cy(H).
H

n—oo H

Given a Markov process {Y(t,z) : ¢ > 0,z € D} on D C H, we say that a
probability measure m on D is symmetrizing for Y, or that Y is symmetric
w.r.t. m, if, setting for all p € Cy(D): PY¢(z) := E[p(Y (t,2))], x € D, we
have:

[ eRfvan = [ 6Ppin Ve eCuD),
D D

A symmetrizing measure is in particular invariant, i.e.:

/ PYodm = / wdm, Vo € Cy(D).

D D

We denote by 1p(-) the characteristic function of a set D. We sometimes
write: m(ep) for [, odm, ¢ € Cy(H).

By W = {W(t,€) : (t,&) € O} we denote a two-parameter Wiener process
defined on a complete probability space (2, F,P), i.e. W is a Gaussian
process with zero mean and covariance function

EW(t,OWE, &) =AY ENE),  (,8),(t,&) €0.

We denote by F; the o-field generated by the random variables {W (s, &) :
(5,€) € [0,4] x [0, 1]}

A Gaussian measure N (0, Q) on H with 0 mean and covariance operator
Q : H — H, with ) symmetric, positive and of trace-class, is defined as the
unique probability measure on H with Fourier transform:

f e N(0,Q)(dz) = exp (—é@h, h)) . he€H,
H

see e.g. [DPZ 92].

Let (B;)¢>o a linear Brownian Motion, and (B{);>¢ a R?-valued BM, N >
0 > 2. We fix the following notations:

e 1 is the law on L?(0,1) of the Brownian Bridge between 0 and 0 on
[0,1], i.e. the law of (B;),c[o,1] conditioned on B; = 0.



e v is the law on L?(0,1) of the 3-d Bessel Bridge between 0 and 0 on
[0,1], i.e. the law of (| B2|),c[o,1}, conditioned on B} = 0.

e 75, 0 > 1, is the law on L?(0, 1) of the -d Bessel Bridge between 0 and
0 on [0,1], i.e. the law of the unique process (25(7))re[,1] solving the
SDE:

6—1 €T

dr —
2x4 T 1—7

dzs = dr + dB, T€][0,1], x5(0)=0.

If 6 € N, § > 2, then 7, is equal to the law of (|B|),¢[o,1], conditioned
on B! = 0.
e Forall o >0, v, = u(-|K,), i.e. v4(D) := p(D N K,)/1(Ky).

Recall that u(K,) = 1 — exp(—2a?), so that v, is well defined for a > 0.

1.2 Preliminary results

We will use the following:

Lemma 1.1 Let T be a Polish metric space, and let {my}, U{m}, respect-
ively {on}n, a sequence of probability measures, resp. of real-valued continu-
ous functions, on T, satisfying:

e m, converges weakly to m.
e The family {¢n}n is uniformly bounded and equicontinuous on T.

e ©,(x) has a limit ¢(z) asn — oo, for allx € S, with S CT Borel and
m(S) = 1.

Then:
lim [ ¢,dm, = / pdm.

Proof—We can suppose that 0 < ¢,, < 1 for all n. By Prokhorov’s Theorem,
there exists for every § > 0 a compact set (s C T such that eventually
my(Qs) > 1—0. Let {¢y, }r any subsequence of {¢,},. On Q5 we can apply
Ascoli-Arzela Theorem and obtain uniform convergence of a sub-subsequence
{(pnk(”}l to a continuous function f : Qs — R. Then:

Py [dmnkm —dm

/T(pnk(z) dmnk(l) - /Tgonk(l) dm < Mgy (T - QJ) +/

Qs



< §+25+ / f |dma,, — dm]
Qs

where for | > ly, supg, |¢n,,, — f| < d. Since m(T"— S) = 0 and Q; is closed:

lim | ¢,dm = / wdm, limsup fdm, < fdm, and therefore :
S

n=ree J n—oo JQs Qs

=00

limsup/wnkm dmy,, < /godm.
T S

Changing ¢, with 1 — ¢,, we obtain the thesis. [

The next Lemma identifies the Gaussian measure on H, N (0, (—2A4)71),
with a well-known probability measure on Cy(0, 1): the law u of the Brownian
Bridge. Recall that the law of the Brownian Bridge is concentrated on
Cy(0,1) and is the unique Gaussian measure on R%! with 0 mean and co-
variance function: T'(7,0) = 7 Ao — 10, o,7 € [0,1], (see [RY 91], Chap

1.

Lemma 1.2 The Gaussian measure N'(0,(—2A)"') coincides with the law
i of the Brownian Bridge.

Proof—Notice that the measure p is concentrated on C([0,1]) C H. By
definition of Gaussian measures, the following holds for all h, k € H:

[ oW AT, (-24) ) (da) = (240 "Ry (19
H
Since the operator (—2A4)~! can be expressed as an integral operator with

kernel: £ Ao — &0, ,0 € [0,1], then setting in (1.9) h = X0, £ = Xo,5];
s,t € [0, 1], and differentiating with respect to ¢ and s, we obtain:

/ z(t) x(s) du(x) = t As—ts. O
c([0,1])

We shall use also the following Proposition, see e.g. [DPZ 96], Chap. 8.
Proposition 1.1

e The positive symmetric bilinear form:
1
0, € Cy(H) = 3 / (Vo, Vi)dp
H

is closable in L?(H, ). We denote by (A, W ?(H, 1)) its closure.
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e The semigroup associated with A is the Ornstein-Uhlenbeck semigroup
(Iy)¢>0, given by the Mehler Formula:

Mp(z) = /H o) N2, Q)(dy), Vo€ Cy(H), z€ H, (1.10)

where Q; = 5625’4 ds. The infinitesimal generator (M, D(M)) of
(I1;)e>0 is the closure in L*(H, p) of the Ornstein-Uhlenbeck operator:

Mop(z) = %Tr [D*¢(z)] + (z, AVp(z)), ¢ € Expy(H). (1.11)

o (I1;)1>0 is the transition semigroup of the Markov process {Z(t,z) : t >
0,z € H} in H, satisfying the linear SPDE:

(02 _10°Z W
at  20e | oo

Z(t,x) e Cy, t>0 (1.12)

| Z(0,z) =z € H

e Forallt >0 and ¢ € L*(H, i), we have Tl € WY2(H, 1) and:

WU (H, p) = {90 € L*(H, p) : sup AT, M) < OO}- (1.13)
>0

e Forallt >0 and p € L°(H, 1), we have Ilyp € C{(H): in particular,

IT is Strong Feller. Moreover, for all p € Cy(H) and v € H, the map

0 <t Ip(z) is continuous, i.e. 11 is weakly continuous: see [Ce 94).

By (1.13) we have that every Lipschitz function on H is in W?(H, i), since

[VILp()|| = sup [(VILp(z),h)l

lIRl]<1

/ (¢ (eY(z + sh) +y) — ¢ (e"z +y)) N(0,Q:)(dy)

1
= sup lim -
[nl|<1 840 8

< llollLip

Finally, we have the following:
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Lemma 1.3 Let g}),gﬁ : [0, 1] xR — R be jointly measurable, p > 0. Suppose
that:

e For all p > 0 there exists ¢, > 0 such that for all £ € [0, 1]:
95| < co 1gEW) =9, &V < cly—d], Yy yeR
e Roym— gg(f, y) is non-increasing and there exists ¢ > 0 such that:

|9§(€,y)| < e(1+y|), VyeR.

Forall p > 0, set g, := g;—i-g?, and for all a € R, let uy be the unique solution
of the following SPDE:
( Ou®  10%*u® 02w

8tp = 2 85; +gp( ’ug(t5 5)) + 81535

ul(t,0) = ul(t,1) = a (1.14)

ut(0,) = (-) € L(0,1).

L Yo
Then, a.s. for allt >0, £ € [0, 1], we have:

o If p > g,(-,-) is monotone non-decreasing, then p — ug(-,-) is mono-
tone non-decreasing for all a € R.

o If p— g,(,-) is monotone non-increasing, then p — us(-,-) is mono-
tone non-increasing for all a € R.

e a > us(-,-) is monotone non-decreasing for all p > 0.

Proof-We prove the first assertion: the others follow analogously. Let p; >
p2 > 0 and set b := (uj, —uj )~. Then:

d a a a a
ol = 2(b, Alug, —u,)) + 200, 9, (u,) = g (u5,))
= = 'lI” + 206, 95, (uf,) = G (u5,)) + 20, 9, () = 9 (1))

< —m|IblI* + 2(b, g, (up,) — g5, (up,)) < =Bl + 4cp, |0

2
< —%||b||2+c

for some C' > 0. Since ||b(0, -)|| = 0, by Gronwall’s Lemma we have b = 0, so
that Uy > Up,. O
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Chapter 2

Integration by parts formulae

In this chapter we prove the following Integration by Parts Formulae (IbPF)
on the convex sets of paths K, :={z:[0,1] = R:2 > —a}, a > 0:

e with respect to the law p of the Brownian Bridge on K,, a > 0:

wodn =~ [ o). dn— [ ar b0) [ o) oalrde)
: (2.1)

Ko

e with respect to the law v of the 3-d Bessel Bridge on Kj:

Ohpdy = — /KO o(z) (z, h") dv — /01 dr h(r) /(p(x) oo(r, dz).

Ko

(2.2)
e with respect to the law 75 of the -d Bessel Bridge, § > 3, on Kj:
" d—3)(6—1), _
Opp dmy = —/ o(x) ((a:,h )+ M(m 3,h)> ms(dx).
Ko Ko 4
(2.3)

In (2.1), (2.2) and (2.3), and in the whole chapter, ¢ : H — R is bounded and
Fréchet differentiable, h € C%(0,1) C H and h" € H is the second derivative
of h. Moreover we set for a > 0, r € (0,1):

\/iaQ e—az/(2r(1—r)) . .
[ e@onlr.d) = Elp(cho @ clr —a)]  (24)
mr3(l—r)3
1
z) oo(r,dz) := E el o By L 2.5
[e@at ) = e Ele (e @ dig)]  29)

13
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where e ,, € , are two independent, copies of the 3-d Bessel Bridge on [0, 7]
between 0 and a > 0, and for (y, z) € L*(0,7) x L*(0,1 —r):

y®rze H, [y, 2] (1) :=ylr—7)1pn(r) + 2(1 —7) 11y(1).  (2.6)
Recall that, by the Divergence Theorem in finite dimension, we have:

/(ahso) pdzr = — / ¢ (Onlog p) pdx — / ¢ (n, h) pdo (2.7)
0 o 80
where O is a regular bounded open subset of R4, h € R%, ¢,p € C}(O),
0 < A< p<A<oo,nis the inward-pointing normal vector to the boundary
00 and o is the surface measure.

Since, by Lemma 1.2, y is equal to the Gaussian measure N (0, (—2A4) 1),
the Cameron-Martin Theorem gives:

/Hahsodu = —/HeO(x) (z,h") dp.

Therefore, the first term in the right-hand side of (2.1) comes from the well-
known fact that the measure p admits as logarithmic derivative the map
x>z

On the other hand, the second term in the right-hand side of (2.1) is
essentially of a different type, and can be interpreted as a boundary term:
indeed, it is concentrated on the set {x € Cy(0,1) : infx = —a}, i.e. the
topological boundary of K, N Cy(0,1) in the sup-norm, which has zero p-
measure.

Recall that a.s. the Brownian Bridge § attains its minimum on [0, 1]
at an unique time ¢, and (¢ is uniformly distributed on [0,1]: a trajectory
z(+) € K, of 8 lies on the boundary of K, if and only if 2({(z)) = —a. We
define for all r € (0,1):

0rK, = {z:[0,1] = [—a,00) continuous :
z(0)=2z(1)=0, z(§) = —a<=E=r},

and 0" Ko := U,¢(o,1) 0y Ko Then 07Ky, r € (0,1), are the faces with lowest
co-dimension in 0*K,. Moreover, the factor h(r) = (d,,h) corresponds in
the finite-dimensional case (2.7) to the scalar product (n,h), where n is
the inward-pointing normal vector to the boundary: this suggests that the
inward-pointing normal vector to d* K, is equal to the Dirac mass d, at r, on
each face 07 K, r € (0,1). Notice that J, ¢ H, which is related to the fact
that K, is not a C' domain in H.
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Following De Giorgi, we say that 0* K, is the u-reduced boundary of K,.
This terminology is justified, since * K, is smaller than the boundary of K,
in any reasonable topology.

Consider now (2.2). Analogous considerations hold for the right-hand
side: the first term gives the logarithmic derivative of v and the second one
the boundary measure o¢ on K. In particular, we can define the v-reduced
boundary 0* K, := Ure(O,l) 0f Ky and for all z € 9} Ky, we can interpret ¢, as
the inward-pointing normal vector to 0* Ky at z. In this case oy is o-finite
but not finite. Notice that, because of the boundary conditions, Ky N Cy has
empty interior in the sup-norm topology, and therefore the definition of a
v-reduced boundary is particularly interesting.

The fact that the logarithmic derivative of v is x — 2", i.e. the same as
in the case of the Gaussian measure yu, suggests that v can be considered as
a natural reference measure for SPDEs with values in the cone of positive
functions on [0, 1].

We turn to (2.3). Notice that no more boundary term appears if 6 > 3: on
the other hand, the logarithmic derivative of 75 becomes x +— z" + k(§)z 3,
with k(6) := (6 — 3)(d — 1)/4. Since 75 converges weakly to 73 = v as 0 | 3,
comparing (2.2) and (2.3) we obtain the remarkable formula:

limé%:i/go(x) (x73 h) m5(dz) = /0 dr h(r) /(p(:c) oo(r,dz)  (2.8)

613

There is a simple finite-dimensional analogue to this fact: consider the meas-
ures on R

my(dz) = 1jo,00)(2)dz, ms(dz) = 100)(z) 2° " du, d> 1.

Then, the following integration by parts formulae hold for all smooth ¢ with
compact support in R:

/ ¢ dmy = —(0), (2.9)

-1
/go'dm(; = —/cp(a:) 0 . dmg, o> 1. (2.10)

The space [0, 00) has {0} as boundary with respect to the measure m;. On
the other hand, if 6 > 1, the boundary term does not appear and is replaced
by an absolutely continuous term, with density (6 — 1)/z diverging as z | 0.
However, as 6 | 1, my converges weakly to my, and therefore the right-hand
side of (2.10) converges to the boundary term of (2.9).
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2.1 The Brownian Bridge conditioned on K
The main tools in the proof of (2.1) and (2.2) are the following Theorems:

Theorem 2.1 (Durrett, Iglehart, Miller, [DIM 77]) For all continuous
¢ : Cy — R such that for some w < 72, |p(x)| < eI for all z € H, we
have: f(pdl/a — f(pdyo as o | 0. In particular, v, converges weakly as
al0toyy=v.

Theorem 2.2 (Biane, [Bi 86]) Let (e;)rcjo,1] be a 3-d Bessel Bridge, and
let ¢ be a random variable with uniform distribution on [0, 1] and independent
of e. Then the process:

(BT)TE[O,I]’ ﬁT = Erg¢ — €¢,

where @& denotes the sum mod 1, is a Brownian Bridge.
Recall that v, := p(-|K,). Notice that
{e.or —e > —a} ={e <al, r € [0,1]. (2.11)

Indeed, e(; g,y > 0 for all 7 € [0,1]\{1 —r} and e _rgr) = (1) = 0. In par-
ticular, an infinite-dimensional information, namely that 5(7) > —« for all
T € [0, 1], is reduced to an information on two independent real valued ran-
dom variables, namely ¢ and e,, r €10, 1[. As we shall see in the next section,
formula (2.1) can be seen as a strengthening of this remarkable simplification.
Now, we give a proof of Theorem 2.1 based on Theorem 2.2.

Notice first that, by (2.11) and Theorem 2.2, we have for & > 0, ¢ €
Cb(H):

1 1
Yalp) = 1 —exp {—2a?} /0 v (e (econ —er) Le<a) dr (2.12)

Lemma 2.1 There exist reqular conditional distributions {v(-|e, = y) :
y >0} of v given e, r € [0,1], such that, setting:

5tp(ra y) =V (90 (6('@7”) - e?") |er = y) NS Cb(H)a T e ]05 1[5 y 2> 01

we have for all y > 0:

l}g}ldp (r, r(1—r) y) = lrigl&p (r, r(1—r) y) = v(p).
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Proof —Let (B;)r¢[0,00) and (BT)TE[O,OO) be two independent 3-d Brownian
Motions and 7 € ]0,1[. Set b:=|B|, b:=|B],

B(2)(r) =B, =By + 72, B(2)(r):=B,—1Bi+712 7€[0,1], z€R,
7, 7 0 L*(0,00) x L*(0,00) — L?*(0,1),
{ (¢, d)(T) == Ly (7)c(T) + 13py(7)d(1 — 7),

’ﬁ'r (C, d) (7') = 1[0,1_7«] (T)d(l — T — 7') -+ ]_]1_1,,1](7')0(7- +7r — 1)
For all p € Cy(H), we set:

(2.13)

vip(e)|le,=vy) = E [gp (7rr(b, 5)) ‘ by=y=b_.|, y>0, (2.14)

Elp(b)[b(1) =y] = /52 o(dn) E[e (I8(yn)])], vy =0, (2.15)

where S? is the unitary sphere in R* and o(dn) is the normalized uniform
distribution on S2. Then (2.14), respectively (2.15), is a regular conditional
distribution of v given e,, resp. of P(b € -) given b(1). In particular, the
law of |5(0)| is equal to v. By (2.13) and (2.14) we have:

v (@ (econ—e) ler=1) = Elo (£, —v) [bo=y=b]. (210
Identifying h € L?(0,1) with h 1y € L?(0,00), we set ¢, : H x H — R,
or(h K) = 0 (7 (VPR (- /r) s VT= Tk (- /(=) = V/r(T=7) ).
Since for v > 0, \/7 By. /) is still a 3-d Brownian Motion, we obtain by (2.16):
Sy (r, r(l1—r) y) = v ((p (e(.@r) — e,)

b =+/r(1—r)y= 514}
= B[ (0,8) | b =vI=ry, b=y, (2.17)

Since for all n € S? and y > 0:

lrlilol or (|5(\/Eyn) |, 18 (vryn) |) = ¢<|B(0)(1_ .)|>’

e, =r(l—r) y)

=E [gp (fr,(b, b) —/r(1—r) y)

lim ¢ (18 (VI=ryn) | |8 (Vryn)|) = ¢(BO).
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and since v is invariant by the time-change 7 +— 1 — 7, the thesis follows by
Dominated Convergence Theorem and (2.15)-(2.17). O

Proof of Theorem 2.1—We split the integral on [0,1] in (2.12), into two
integrals on [0,1/2] and [1/2, 1], respectively. Conditioning with respect to
e, and setting c, := (1 — exp {—2a?}), we obtain:

1 [1/2

o . dr v ((p E(-@r) — er) 1(e,<a))

:_/ dr/ dy \/ry eXp (iy )} Gp(r,y)

1 1/2 a/y/r(l-r) 2 y2

:a/o dr/o dy ;yQ exp{—;} dy (r, r(1—r) y)
1 2 2a y2 1/2

= a\/;/0 dy exp{—;} y2/0 dr &, (T’, r(l1—r) y)
a? [2 [t y? y\2 [rley)

+ g\/;/za dy exp{—;} (&) /0 dr 6, (r, r(l—r) y)

= L(a) + La), pla,y) ¢=% 1—y/1- <2_a>2 ~ <g>2

) Y

as @ } 0, y > 0. It is easy to see that lim,o [; (o) = 0, while I5(a) tends
to (1/2)v(p) by Lemma 2.1 and Dominated Convergence Theorem. Since
analogous computations hold for the integral on [1/2, 1], we obtain that v, (¢)
converges to v(¢) and Theorem 2.1 is proved. [

2.2 IbPF on the 3-d Bessel Bridge

In this section we prove formulae (2.1) and (2.2). In the previous section
we have given a proof of Theorem 2.1 based on Theorem 2.2. The key
observation there is that 5 = e.q¢ — e¢ € K, if and only if e, < a. Now
formula (2.1) says in particular that § = e.g¢¢ — e is in the boundary of K,
if and only if e = a: the proof of (2.1) is formalization of this intuitive fact.

Proof of (2.1) and (2.2)—Recall the notations given in (2.4), (2.5) and
(2.6). For x € H, we set x* € H, 7 (1) := sup{z(7),0}, 2~ =zt — x.
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Notice that hy := A(A— A)~*h converges to h in D(A) as A — oco. Moreover,
we have hy, = (h+))\ — (hf))\, with (h+))\,(h7))\ € D(A), (h+))\,(h7))\ >0
and:

O = (Vo,ha) = (Vo(z), (7)) — (Ve(a), (h7)x),
Then, we can suppose that h > 0, so that K, C K, —th, t > 0. Moreover,
since ¢ is bounded and V(¢ — inf ¢) = V¢, we can suppose ¢ > 0. Recall
that O (z) = limyo(¢(z) — p(x —th))/t. By the Cameron Martin Theorem:

P ol = pte =) i) = = /( e, S
(2.18)
e[ et (1= e (G ) ) o)

LetneN ¢, >cp1>-->c¢1 >¢:=0,{l,...,I,} aBorel partition of
[0,1] and I, := (@, and set:

n

hiZ:Z(C]‘/\Ci)l[j, Z:1,,TL

Jj=1

The key point is the following: for ¢ = 1, ..., n, since h; > h;_1, and
hi = hi—y on | J,_} I;, then for all r € (0,1)

C.or — € € (Ka — thz)\(Ka — thi_l) <~

n
egr—€r € Koy —1th;, 1—1r¢€ UIi and e, € [+ te;_1,a+ tc;).
j=i
Indeed, recall that e.q, — e, attains its minimum —e, only at time 1 — r.
Applying Theorem 2.2 we obtain forallt > 0and i=1, ..., n:

1
[ eua) = [ Bl e, o -] d
(Ka—thi)\Ka 0
1
= / E [QD‘ [1(Ka—thi_1)\Ka + 1(Ka—th,-)\(Ka—thi_1)] (6-@1« - er)} dr
0
1
= / E[¢ L(Ka—thi)\Ka (€0r — €)] dr
0

+ / E [(P . 1(Kafth,-) (6-697‘ - 67‘) 1[a—|—tci,1,a+tci[(er)] dT‘,
1-U Ij

n_.
j=i
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where 1 — I := {1 — 7 : 7 € I'}. Proceeding by induction on n we obtain:

/ p(o) (o)
(Ko —thn)\Ka

n

= Z/ E [‘P Lo —thy) (e.or — €r) 1[a+t0i—1,a+t6i[(er)] dr
1-UP_, I

i=1
a+ttc;
= ZZ/ dr / da A(r,a) E [cp “L(ko—th) (Eor —€r) | € = a]
i=1 j=i attei—1
where \(r, a)da, law of e,, is defined by
2 0 a?
=y e I E— 1 2
A(r, a) 7rr3(1—r)3a exp( 2r(1—r))’ re€[0,1], a >0,
and for all bounded Borel ¢ : H — R and a > 0:
E [1/} (eor —€r) |€r = a} = E [ (ef, ®r €04 —a)] (2.19)

The measure defined by (2.19) depends continuously on a > 0. Then we
obtain, since A(1 — r,a) = A(r, a):

lim — p(z) pldz)

tlo ¢ (Ko—thn)\Ka

= ZZ - 1/ (Taa)]E[QD (eaa-n — )

I;

= Z/ ciA(r,a) E [cp (e.@(l_T) — a) ‘el_r = a] dr
j=1 1L

el_p = a] dr

1
_ / dr hn(r) A(r, @) E [ (€], &, é177 — a)]
0

— /01 dr hn (1) /go(Z) 0q(r, d2).

Set now I, := h='([(i — 1)/n,1/n)), 1 € N,

o0

2 i—1 i
fn 322 - 1, gn ::ZE 1y,
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where both sums are finite, since h is bounded. Then f, < h < g,, f, and
gn, converge uniformly on [0, 1] to h as n — oo and: K, —tf, C K, —th C
K, —tg,, t > 0. Therefore we have, since ¢ > 0,

1
.1
/O dr fn(r) /gp(z) oa(r,dz) < hlﬁénf n /(Ka_th)\Ka ¢(z) p(dz)

1 1
< limsup - / o(x) p(dx) < / dr gn(r) /cp(z), 0a(r, dz)
10t J (Ko th)\Ka 0

and by (2.18) : Ohpdy = 123(1)1% (p(z) — p(x — th))u(dx)
K.

Ko

- _ /agp(x)<x,h">dp - /Oldr h(r) /go(z) 0a(r, dz)

so that (2.1) is proved. In order to prove (2.2), we recall that u(K,) =
1 — exp(—2a?). We divide (2.1) by u(K,) and let o | 0: in the second term
of the right-hand side, we have for all r €0, 1]:

1 1 |A(r)]
= = <
lolilg 2a2A(T, a) = A(r,0) TS0 208 A(r, ) < |h(r)|A(r, 0),

which is integrable, since h € H? N H}(0,1) implies |h(r)] < Cr(1 — 1),
r € [0,1], for some C' > 0. Moreover, the laws of e, are continuous in
a > 0. Then we apply Theorem 2.1 to the first and second term in (2.1) and
the proof of (2.2) is complete. [

Remark 2.1 We have in fact proved that formula (2.1) holds for all ¢ €
C}(K,) and formula (2.2) holds for all ¢ € Uysg Cf(Ky).

Corollary 2.1 For all ¢ € Cy(H), a >0, h € H* N H}(0,1):

lim [ (@) (z+ ). ) exp <—M> u(dz)

el0 € 5

1 [
=35 / dr h(r) /<p(z) oa(r, dz).
0
Proof—We can suppose h > 0. If ¢ € C} (H), then by (2.1):

! /H (@) (h, (@ + ) ) exp (—M) u(dz) (2.20)

€
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-5 /H (V). h) + (z, h") (z)) exp (—M) u(da)
- _% / (Ve(z), h) + (z,h") o(z)) p(dz) ase ] 0. (2.21)

«@

Setting ¢ = 1, we see that the family of finite measures on H defined by
(2.20) have equibounded mass by (2.21). Since C}(H) is dense in Cy(H) in
the uniform norm, the thesis follows for all ¢ € Cy(H). O

Recall the definition of the Ornstein-Uhlenbeck operator:

Mop(z) = %Tr [D?*¢(z)] + (z, AVp(z)), ¢ € Exp,(H). (2.22)

Corollary 2.2 For ally € C}(H), ¢(z) € Expy(H),

1 1 (!

- du = — M -z .

5 Ka(WJ, Vi) dp /Kaw ©dp 2/0 dr /(Vso,&)wdaa(n )
(2.23)

1 1 !

§/I(O(V¢,V¢)du = — KOz/;Mgpdy — 5/0 dr /(V(p,ér)wdoo(r,-),
(2.24)

where, denoting by i the imaginary unit, for ¢ = exp(i(h,-)), h € D(A):

(Vo(x),0,) := ih(r) exp(i(h,)), xz € H. (2.25)

2.3 IbPF on the /-d Bessel Bridge

The aim of this section is to prove (2.3). We define:

_6-3

c(0) : 5 k(6) =

(0—3)(0—1)

0 5> 3. (2.26)

We fix 6 > 3 throughout the section. The proof of (2.3) will be divided into
several steps. We can assume without loss of generality that:

v > 0, h > 0. (2.27)

Step 1. We consider a fixed linear Brownian Motion (B;)¢[o,1]- Recall that
the d—dimensional Bessel Bridge between 0 and 0 on [0,r], for § > 1 and
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r € (0, 1], is defined as the unique solution of the SDE:

0—1 J
daoy= ——dr — %5 dr + dB, T€]0,r|
2% r—T (2.28)
z5(0) =0
Then we define for all € (0,1], § > 1:
7§ = law of z§ on L*(0,r), (2.29)
and we write x5 := zj, 75 = 5. If Q5 := (x5)?, then Qs satisfies:
dQs =ddr — 1Q5 dr + 24/QsdB, T €]0,1]
-7 (2.30)

Qs(0)=0
We set the following SDE for € > 0:

Vgl g
dg.= |3 + 2¢(0 — dr + 2+/|g.|dB,, T €]0,1
( R Vial 0.1

.(0) =0

(2.31)
(2.31) is a one-dimensional SDE with 1-Hélder continuous diffusion coeffi-
cient and bounded drift on every interval [0,a[. Then by Theorem IX.3.5
of [RY 91] pathwise existence and uniqueness holds for (2.31). Moreover,
by comparison with (2.30) we obtain by Theorem IX.3.7 of [RY 91] that
Qs > q¢. > Q3. In particular ¢.(7) > 0 for all 7 €]0, 1] and we can apply 1t6’s
formula to z. := /gc, obtaining:

1 4] .
dze = —dr + ) dT—z—dT+dB, T €]0,1]

Ze 6+Z€ 1—71 (232)
2.(0)=0

Step 2. We list a few properties of equation (2.32):
A. Pathwise uniqueness holds for (2.32).

B. Uniqueness in law holds for (2.32).
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C. ]0,00[ 3 € > 2, is monotone non-increasing.
D. z. T zs uniformly on [0, 1] as € | 0.
E. ]0,00[3 € — € + 2, is monotone non-decreasing.

F. €+ 2z, | &5 uniformly on [0,1] as € | 0.

Proof

A. Let 2. be a solution of (2.32). Then, setting b := (2. — 2.)* we have:

o= o [(31) ¢ ()]

€

which implies z. > 2! and, by symmetry, z. = z..

. This follows by (A) and Yamada-Watanabe’s Theorem.

. Consider ¢; > €, > 0, and set b := (2., — 2¢,)": then

1d, ., L1 1 1 1
L0 = e - 2) [( z@)w(@)(eﬁzﬂ +)]

—|—bc(6)< 1 )— ¥ <o

€1 + Ze, €2 + 2, 1—71

which implies 2z, < z,.

. By (C), ]0,00[3 € + g. = (2.)? is monotone non-increasing. By Dom-

inated Convergence Theorem, we find that ¢ := lim, g, satisfies (2.30).
Since pathwise uniqueness holds for (2.30), we find ¢ = Q)5 and there-
fore z; = lim.o2.. Since x5 is continuous, by Dini’'s Theorem the
convergence is uniform on [0, 1].

. Consider €; > €; > 0, and set z; := € + 2., b := (2, — 2,,)". Then by

€2

(C) and ¢(d) > 0:

1d 1 1 1 1
- b2 — P\t - 5 -
2d7'( ) (Zez Zﬂ) |:(Z€2 261) *el0) <Zéz z&)]
Reo — R
—b €2 €1 <
1—-7 — 0

D, ,
which implies z,, > z,.
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F. This follows from (D) and (E).

Step 3. We prove now that for all ¢ € Cy(H):

Elp(z)] = Elp(z3)I'],  where: (2.33)

T, := exp (/01 ecfzg dB — %/01 Lc_ggrdf) . (2.34)

First notice that 0 < (e + x3)"! < e !. Then E[l'(] = 1, and the right hand
side of (2.33) defines a probability measure on H. If we set:

B(7) := B(r) — /OT <(9) ds, 7€][0,1]

€+ T3

then by the Girsanov Theorem B is a Brownian Motion under I'.dP. There-
fore x5 is, under I'.dP, a weak solution of (2.32), and by (B) above (2.33) is
proved.

Step 4. Notice that we can write I', as a function of x3 only. Indeed, by
(2.28) with & = 3:

x3

dr,

1
dB = dx3 — —dr +
I3 1

dzs 1 dr
dlogle+3) = o = ST ag

/1 dB /1< 1 1 1 )
= — + dr.
0o €+ T3 o \2(e+x3)? x3(e+x3) 1—Te+x3

We obtain that

log(e + x3(0)) = log(e + z5(1)),

Fe = 76(33'3) (235)

B <c(5) /01 <21€_+Ca(3i;2 - xg(ei-xg) 1 i TGf?’LEg) dT) ’

where 7, : Ko — R is in L'(v) and (2.33) becomes:

Elp(z.)] = Elp(s)re(zs)] = / o@)(e) vds).  (2.36)
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Notice that v, is not in C}(K,) for any a > 0. If we set for all p > 0:
Ky >z — 7°(z) := (2.37)

exp (0((5)/01 (21(e_ff))2 a (p—l—a:)l(e—l-a:) * 1+;—Te-f~’r) dT>'

then for all a € [0,p A€), v* is in C}(K,) and

o c(6) =1 1 1
Vlog(z) = C<5)[(e+x)3 (p+ a7 (e+2) ' (p+a)(et P

+(1+p_7)(€+x)2], z € K,. (2.38)

By (2.2) and Remark 2.1, we obtain for all h € C2(0,1) :

| @emazar = = [ o [ ) + (Viogat. ] 2 vida)
(2.39)

1
= [ arb) [ ete) @) ot o)
0
Step 5. We want to let p | 0 in (2.39). Notice that:

1
Y (z) < 7e(x) exp <1/ d—T> for v —a.e. z, (2.40)
0

€ T

s e (2[4 o
el )] sefniro )

<l e e (¢ 4)]”

€ I3
for every p,q > 1 with (1/p) + (1/¢) = 1. Recall that by (2.28):

E[exp (%/01 Z—Z)} < E |exp (2?(1/01/2 Z—Z)]
exp (i—q (x3(1/2) +/01/2 1‘7237617 — B(l/2)))

(2.41)

<E < 00
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/dTh / dy — & 2w o o
1—’7'

for p < 2, since h has compact support in (0, 1). Then we can by Dominated
Convergence Theorem let p | 0 in (2.39) and obtain:

wenrdr = = [ ol@) [(@.) + (Tiogr )] (o) ()
(2.42)
- /0 dr h(r) /cp(x) Ye(x) oo (r, dz),
where we set for v-a.e. x:
ety [0 1 1
(1.9 g1 = [ 1)) | T+
1 €
werar T ANty 0
Step 6. Recall that ~. dv is the law of z., so that:
| ota) (Viogra), k)ule) vida) = Blp(ee) (Vlog (a0, b
We prove now that:
i Bip(e) (VIog (a0, )] = w(0) B[ plea) (0 )] (249
€l0 (31‘(5)
. G e+ 4yt 52 (2.44)
¢ (z)%(e+2.)  z(e+2)? = (e+2)3
Then (2.43) is implied by (2.45)-(2.46)-(2.47):
. 2
R Elp(z0) (6] = B[ olaa)(h, )] (245

| () (. )| = Bleae. D) 2

= 0. (2.47)
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First, (2.46) and (2.47) follow by (E), (F) and Dominated Convergence The-
orem: indeed € 4+ z. > x5, and since § > 3:

/(h, x 3 ms(da) = /01 dr h(T) /:L'3(T) 7s(dx)

1 o) 1 C(syé—l y2
- [ [ i e ) <

since h has compact support in (0,1). On the other hand, (2.45) is natural
but not immediate: indeed, the map

1 1
_|_
(z)2(€+ 2ze)  ze(€+ 2)?
is not monotone a priori; moreover the easy estimate:
1 n 1 < 2
(z)?(e+2)  ze+2)? = (x3)%

10,00[3 € —

is not useful for a Dominated Convergence argument, since E[(h, (z3)73)] =
+oo if A > 0 and A is not equal to 0 a.e. In order to prove (2.45), we have
to proceed in a different way. By (2.46):

B (o) (0 )| = Eletedtn 2 @

€l0 (€ + 2
Now by (2.27) and (2.44) we have:

| ptc] - B[ot) 2|

<l E| \<h, - |
<l (B0 0 -B [0 5] ) (2.49)

By It6’s formula we find:

o /od(eﬂe) /olefzedT
+/0[ L [( Eci616>dT+dB:|+(e+Lze)3dT:|

€+ Z¢
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so that we can compute:

e R e

R ]E[/Olf—;—kﬁ—k(l—c(é)) (;;)3] (2.50)

as € | 0, where the convergence of each term in the right hand side of the first

line of (2.50) can be justified by either Dominated or Monotone convergence.
Analogously, we obtain for all a > 0:

N L/op h
=0 = + dr
o+ 2|,y o \a+z (a4 z)?
1
—/ k(L 2 O ) apl
o (@+2)? [\ze 1—-7 €+z2
! h
E
[/0 (o + 2e)%(e + Ze):|
_lg /1 Moo h o h ok
— ¢(d) 0o at+ze (1—7)ze (a+2)3  zela+ z)?
1 Lo h
< —E
= 0 UO a+z€+(1—7')zj’
=1 1 !
h =0 = / < h + h )d’T
a+ ;5| _, o \a+zs  (a+mz5)d

B / [(a f%)z (c(éijl _ (11‘_57)) dr + dB] |

. [/01 (iﬁ?:&))}l (o +h$5)3)] -k [/01 Oéfﬂﬁzs " (1- T;L(ZJ-F 905)2] '

Letting first « | 0 and then € | 0 we obtain:

. [/ a) = E [/ T (252)
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so that by (2.50), (2.51) and (2.52):

2
0 < li E|(h ) — (h,
< lim sup (h,Ce) — ( (T2

) <0

and by (2.48) and (2.49), (2.45) is proved.
Step 7. We turn to the last term in (2.42). Notice that

/ (@) 7e()ou(r, dz) =

w &, 2) e (w) e (2) Z¢ (w) 75 (dw) @ w37 (dz),

- i

where 77, Z" € L'(n%) are defined by:
" 1—¢(6) 1 1w
) _ d
Velw) = exp <C(5)/0 (2(e+w)2 w(e+ w) * r—Te—l—w) T) ’

Zr(w) = exp (c(é)/or (1; U«L) o dT) < exp (%)

Arguing as in steps 3-4, by (2.28) 7 dn} is the law of w”, where:

1 -3 r
dw£=—d7+57d7'— e dr + dB, 71 €]0,7]
wr 2(e + wr) r—T

wr(0) =0

and w! 1 2% as € | 0. Moreover, since a.s. wi(7) > 0 for all 7 € (0,1), we
have Z7(w!) — 0 a.s. as € | 0 and by Dominated Convergence Theorem we
obtain

1

lim [ dr h(r) /(p(x) Ye(z) o9 (r, dz)

el0 0

= lim ldr hlr) E [o(w! &, w.™") Z] (w])] = 0.
€0 Jo /27TT3(1 —T)3 e Wr We €\ e



Chapter 3

SPDEs with reflection

Consider the solution (u, ), where u is a continuous function of (¢,£) € O :=
[0, +00) x [0,1] and n a measure on O, of the Nualart-Pardoux equation:

((Ou  10%u 0*wW
9 2082~ f(&u(t,§)) + tOE

+n(t,§)

w(0,€) = (), u(t,0) =u(t,1) =0 (3.1)

(| ©>0,dnp>0 [,udn=0.

where z : [0,1] — [0,00) is continuous with z(0) = z(1) = 0, {W(t,£) :
(t,€) € O} is a Brownian sheet and f : [0,1] x R — R. The aim of this
chapter is to prove the following decomposition theorem for n:

n(dsa df) = T(S)(df) 77(d5a (07 1))’ (3'2)

where r : S — (0,1), n((R*\S) x (0,1)) = 0 and r(s) is the unique £ €
(0,1) such that u(s,&) = 0. Moreover, for all Borel subset of (0,1), we
characterize t — n([0,t] x I) as an Additive Functional of u with a Revuz-
measure explicitly written in terms of the boundary measure oy of (2.2).
Recalling the introduction of Chapter 2, we can write (3.1) as a Skorokhod

problem:

10%u 1
where n(z) = §, for z € 0} K is the inward-pointing normal vector to the
boundary, and L, := 27([0,¢] x (0,1)) is the Additive Functional associated

with the boundary measure fol dr oy(r, -).

31
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The results of this chapter establish a precise connection between the
Nualart-Pardoux equation (3.1) and the theory of stochastic differential in-
clusions: recall that, in [DP 00], Da Prato considers a convex, lower semi-
continuous U : H — R U {+o0}, satisfying suitable integrability conditions
with respect to p and:

pu(z : U(z) < o0 and OU(z) #0) =1
where U (z), the subdifferential of U at z, is defined as the subset of H:
oU(z):={ye H: Ulx+h)>U(z)+(h,y), Yhe H}.

For all x € H, 0U(z) is a closed convex subset of H: therefore, if OU(z) #
(), then there exists an element of minimal norm dyU(z) € 9U(z). The
main result of [DP 00] is the existence of a symmetric semigroup (P;);>o
on L? (H, ([, e 2Ydu)'e=?Udp ), associated with the stochastic differential
inclusion:

10°X O*W
dX € (5 e —8U(X)> dt + 5i0E" X(0)==x € H. (3.4)

This result is obtained, proving that the infinite-dimensional elliptic operator
on Exp,(H):

1
S DD ()] + (2, AVi(2)) = (DU (2), Vip(x)), @ € H,
is essentially self-adjoint in L* (H, ([, e7*"du) "¢ ?dy)). Using the The-

ory of Dirichlet Forms, one obtams the existence of a weak solution of the
equation:

10%°X O*W
dX = (2 sz~ OUX )) U+ e XO)=zeH,  (35)

and therefore of the differential inclusion (3.4), since dyU(X) € oU(X). The
technique is based on the study of the approximating operator, ¢ > 0:

1
ETI'[DZQD(,I)] + (z, AVop(x)) — (VU.(z),Vo(z)), =z € H,
defined on Exp4(H), associated with the SPDE:

. 192X oW .
i = (35 - V) @+ So X O =seH (9
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where U, are the Yosida-approximations of U:

z —yl?

U.(x) := inf (U(y) + 5

f ), r€H, €>0,
ye

and the following properties of U, are used (see [DP 76]):

asel0: U. — U, VU — 8U, |VU.| < |8U].

Recall now that the solution v of (1.1) is constructed in [NP 92] by means
of a penalization technique, i.e. the following approximating problem is in-
troduced for all € > 0:

ous  10%u° B PW  (uf)~
o 2oz TEUEO)FGEe T

(3.7)
u(0,&) = z(§), u®(t,0) =u°(¢,1) = 0.

Then for all t > 0, £ € [0,1], € — u(t,£) is monotone non-decreasing, and
u := lim, o u® is continuous. Moreover, the measure n*(dt, d§) := (u°)~ dt d
converges to a positive measure  on Rt x (0,1) as € | 0, and (u,n) solves
(1.1). Equation (3.7) can be written in the following form:

1 0%u® 0*w
du® = = — VF (uf) — - (uf) ) dt
u <2 e VF (u*) = VU (u )) + D10 58)
uf(0,z) = x € L*(0,1)
1 (€)
where F,U.: H— R, F(z) ::/ d¢ f(&, ) ds,
0 0
Ue(x) := i/1 [(2(&)7]" dé = _ ld(a, Ko))?
T2 T oe TV
and U, are the Yosida-approximations of:
0 if >0
Ulx) = (3.9)
400 otherwise

Therefore, the approximating problem (3.7) of the Nualart-Pardoux equa-
tion, is an example of (3.6), apart from the trivial drift term VF. However,
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since p(Ky) = 0, in the case of (3.7) u(U = +o00) = 1 and the measure
([ e dp) texp (—2F — 2U) dy” is not well defined.

Our first result is that a natural Gibbs-type measure for (3.1) is provided
by:

1 1 z(¢)
—expy{ — d ds ¢ v(d C .
Zep{ 2 [ae [ s } (@), 2€C0.1),  (310)

where Z is a normalization constant. Notice that v is not Gaussian and is
even singular with respect to the reference Gaussian measure p. Moreover,
the support of v is a closed convex set, having empty interior both in the
topologies of L?(0,1) and C([0, 1]).

This result, together with a Strong-Feller property satisfied by v in H,
implies that the law of u(¢,&), for all ¢ > 0 and & € (0,1), is absolutely
continuous w.r.t. y?dy on [0,00): see Section 3.4.

Notice that, in general, it is a difficult task, to prove that the solution
X°¢ of (3.6) converges as ¢ | 0, and in fact this is not the content of [DP 00].
The monotonicity of ¢ — u®(t,£), where u® is the solution of (3.7), is one
of the key tools in [NP 92], and strongly depends on the specific form of
the nonlinearity %x_. However, as already mentioned, in the case of (3.7),
p(U < oo) = 0, and this makes most of the techniques of [DP 00] non-
effective in this situation.

The key tool, which allows in this thesis to combine the probabilistic
approach of [NP 92] and the analytic approach of [DP 00], is the integration
by parts formula on v proved in the previous chapter:

/KO Ohpdv = — /Kotp(a:) (z,h"ydv — /01 dr h(r) /cp(ac) oo(r,dx). (3.11)

Indeed, we can prove that: z +— u(t,-), t > 0 is the Markov process associated
with the Dirichlet Form:

50((‘0"[/]) = ﬁ /I; <VQO, VT/J> 672F dV,

and for all interval I in (0, 1), the process t — n([0,¢] x I) is an Additive
Functional of u, with Revuz measure:

1
] /dr e 2F@) go(r, dx). (3.12)
I

2u(e2F
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Moreover, the specific form of (3.12) and the Theory of Additive Functionals
allow to prove the decomposition of 7, (3.2). On one hand, the use of the
explicit knowledge of the boundary measure oy seems to be crucial. On the
other hand, our proof of (3.2) is also essentially based on the Theory of Addit-
ive Functionals and in particular on the one-to-one correspondence between
Additive Functionals and £%smooth measures: see Section 3.6. Since the
state space Ky of x — wu is not locally compact, the theory of quasi-regular
symmetric Dirichlet Forms is needed, in order to apply the theory of Additive
Functionals. In particular, quasi-regularity of £° has to be proved. Recall
that in Theorems IV.3.5 and IV.5.1 of [MR 92], Ma and Réckner prove that
quasi-regularity is a necessary and sufficient condition for a Dirichlet Form to
be properly associated with a nice Markov process. In the present situation,
the process is given by the Nualart-Pardoux solution of (3.1): since we prove
that u is properly associated with £°, then quasi-regularity of £° follows by
the necessity-part of Ma-Rockner’s Theorem.

By (3.3), equation (3.1) can be interpreted as an example of (3.4), provided
we define for all z € K, OU(z) as the subset of the dual space M of Cy(0, 1),
M := {signed measures on (0, 1)},

oU(z) == {meM:U(x+2)>Ux)+ (z,m), Vz € C;(0,1)}

— {meM:mzo, /[0,1]”5(5)7”(‘15) - 0}-

Then (3.1) can be written formally as a differential inclusion of measures on
(0,1):

10%u 1~
(dtu - dt + f(&, u(t, g))dt) de — W(dt,d€) € — §8U(u(t, +))-dL,

2 0&?

(3.13)
with L; = 27([0,¢] x (0,1)). The appearance of dL instead of the classical
dt in (3.13) is not surprising, since also in finite-dimensions the local time
at the boundary of a reflecting BM is not absolutely continuous w.r.t. the
Lebesgue measure. On the other hand, the fact that we have QU instead of
OU is peculiar of this infinite-dimensional model, and is in particular related
to the fact, mentioned above, that the normal vector to the boundary 0* K|
of Ky is a measure on (0,1), but not an element of H = L*(0, 1).

To our knowledge, it is still unknown, whether 7([0,¢] x (0,1)) is finite or
infinite for ¢ > 0. Using the theory of Additive Functionals, we can say that
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a.s. 7([0,%] x (0,1)) < oo for all ¢ > 0, if and only if the measure fol drog(r,-)
is £%smooth: see Definition VI.2.3 in [MR 92] and also [Fu 99]. However,

we have not been able yet to prove the £%-smoothness of fol dr og(r,-). On
the other hand, in [NP 92] Nualart and Pardoux prove the estimate:

//51— n(dt,d¢) < oo, vT > 0.

Recall the definition (2.5) of 0y, and in particular the factor (r(1 —r))~%/2,
€ (0,1): this allows to improve the Nualart-Pardoux estimate, and obtain
for all p: (0,1) — R*:

/[5 3/2d§<oo=>// n(dt,d€) < oo, VT > 0.

Recently, Funaki and Olla in [FO 01] and Otobe in [Ot 01}, have ap-
plied the Nualart-Pardoux equations to the study of fluctuations of an in-
terface on a hard wall. We recall the setting of Funaki and Olla: if I'y :=
{1/N, 2/N, ..., (N —1)/N}, and w} := (w)(y))yery, t > 0, is a RV "1~
valued Brownian Motion, then ¢} : Ty — R* ¢ > 0, is defined as the unique
stationary solution of the following system of SDEs with reflection:

dgy' (7) = — (V' (6 (v) = ¢ (v = 1/N)) + V' (67 (7) — &' (v + 1/N))) dt
+V2dwM () + di¥(y), ~vely (3.14)
with ¢N (0) = ¢N (1) := 0, subject to the conditions:

(1) ¢ (7) =0

(ii) ¢+ 1;(7y) is non-decreasing,

(i) / T did () = 0

for every v € T'y. Moreover, in equation (3.14) the potential V € C?*(R) is
pair and strictly convex: 0 < ¢. < V" < ¢, < oo. Then, setting:

(t g \/— Z ¢N2t fy ﬁ,rﬁ»ﬁ)(g)a 6 € [Oa ]-]a

v€l'n



37

Funaki and Olla prove that ®" converges in law, as N — oo, to the unique
stationary solution ® of the Nualart-Pardoux equation:

(9D 2 MW
9 _ 2 L o(t
5 = e T V2 g TOGE)

B(t,0) = d(t,1) =0 (3.15)

| >0, d0 >0 [,Pdf =0,

—1
where : ¢ := (/ eV dy) . (/ e VW dy> .
R R

Our results, and in particular the decomposition (3.2), hold also for the
measure 6 of (3.15): therefore, we hope that the results of this thesis find
applications also in the study of such problems.

In [Fu 00], M. Fukushima has recently given a theory of stochastic equa-
tions in domains with reflecting boundary on an Abstract Wiener Space. The
results presented here are in the same spirit. However, the Abstract Wiener
Space setting allows to study Hilbert space-valued SDEs, but not SPDEs.
Moreover, the main results of this chapter are based on the explicit know-
ledge of the invariant measure v and of the boundary measure oy, rather
than on general arguments.

3.1 Setting of the problem

In this section we recall the definition given by Nualart and Pardoux in
[NP 92] of a solution of the following SPDE with reflection at —a < 0:

((Ouq  10%u, 0PwW
ot - 5 852 —f(f,ua(t,f))-i- atag

+ 1a(t, &)

e (0,€) = 2(€), ua(t,0) = ug(t,1) =0 (3.16)

| Ua+ >0, djg >0 [,(us + a)dn, =0.

where a > 0, z : [0,1] = [—a, +00) is continuous and z(0) = z(1) = 0.
We assume in the following that:

(H1) f:]0,1] x R — R is jointly measurable.
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(H2) f(&, -) is continuously differentiable for all £ € [0, 1], and there exists
¢ > 0 such that

fl<e [0,f(&y) <¢ VE€(0,1], yeR

(H3) There exists C' > 0 such that for all £ € [0, 1]:

/tf(E,U)du <C, Vvt>0o.
0

Hypothesis (H1)-(H3) do not aim at the greatest generality. We have in mind
mainly the following example:

f&y) = —alf) 5 Y20

(e+y)

with @ bounded and non-negative, ¢ > 0 and b > 0, and f(-,-) defined on
(0,1) x (—00,0) in any way which fits (H1)-(H3). This example will be of
interest in section 4.

Following [NP 92], we set:

Definition 3.1 A pair (uqe,na) is said to be a solution of equation (3.16)
with reflection in —a < 0 and initial value © € K, N Cy(0,1), if:

(1) g : O = [—a,00), {ua(t,§) : (t,€) € O} is a continuous and adapted
process, i.e. uy(t, &) is Fy-measurable for all (t,€) € O, and a.s. uqy(-,-)
is continuous on O, uy(t,-) € KoNCy(0,1) for allt > 0, and u,(0,-) =
z.

(1) 1o is a random positive measure on O such that n,([0,T] % [0,1—0]) <
+oo for all T,6 > 0, and n, is adapted, i.e. ny(B) is Fy-measurable
for every Borel set B C [0,t] x [0, 1].

(111) For allt >0 and ¢ € C°(0,1):
(talt, ), 0) — / (ta(5, ), Ap)ds + / (s uals, ), o)ds =
= (50) + /0 /0 (€)W, e + /0 /0 () maldt, de).

(w) [,(ua+a)dn, = 0.
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3.2 The approximating problem

In the proof of existence of solutions of equation (3.1), the following approx-
imating problem is introduced:
ous,  10%us . *W  (a+ug)”
e (A P AL
ot 2 0¢ Oto€ € (3.17)

us(0,) =z € H, u5(t,0)=us(t,1)=0, Vt>D0.

[e%

with € > 0, (1)~ := sup{—r,0} and o > 0. This is a SPDE in L?(0,1) with
additive noise and monotone or Lipschitz-continuous drift terms, for which
existence and uniqueness of a solution are well known: see e.g. [DPZ 92].

We write:
Xo(t,x) = ui(t,-) €e H t>0, z € H.

Let a,e > 0, and set:

F:H—R F(z /dg/ FE ) (3.18)

By (H1)-(H3), F € C;(H) and VF(z) = f(-,z(-)) for all z € H. Set also:

RN &

6 ) p(dz), =€ H,

/ (Vo Vi) dis, Ve, € CLH),
) — (VF(z), Vo)), € Expy(H),

(@
Liple) = Lo() + {(@+0a)", Ve(@), ¢ € Bxp,(H)

where Z¢ is a normalization constant such that u5(H) = 1 and M is the
Ornstein-Uhlenbeck operator defined in (2.22). Finally, set for all ¢ € Cy(H):

RE(\)o(x) :== /0 h e M E[p(XE (¢, 2))] dt, r€H, \>0.

Recall Proposition 1.1. Then we have the following:
Theorem 3.1

1. (E**,Exp4(H)) is closable in L*(u): we denote by (E%¢, D(E%*)) the
closure. We have WH2(H, pi) C D(E*¢) with continuous immersion.
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2. (L:, Exp,(H)) is essentially self-adjoint in L*(pS,): we denote the clos-
ure by (L5, D(LE)). We have that D(£%¢) = D((—L£5)'?) and:

/H o L dyis, = —E9°(p,0), Vi € D(E™), b€ D(L5). (3.19)

3. The process (XE(t,x))i>0zen is the diffusion generated by £%°, i.e. for
all A >0 and ¢ € Cy(H), R (N)p € D(E®) and:

A / R (N dyi, + % (5, (N p, 1) = / odis, Vi € D(LE).
H H

4. 1, 1S the unique invariant probability measure of X;. Moreover, X; is
symmetric with respect to .

Proof-This result is well known. For the reader’s convenience, we sketch
the proof.

Let {¢,} C Exp,(H) such that |l¢n|lz2ey — 0, as n — oo. Then,
integrating by parts:

E% (¢n, ) = — / on Lippdpg, — 0 asn — oo, Vi € Expy(H),
H

and this implies closability of (E**, Exp,(H)) by Lemma 1.3.4 in [MR 92].
Essential self-adjointness can be proven as in [DP 98] or [DP 00].
Applying It6’s formula to (X (¢, x)) for ¢ € Exp,(H), we obtain by

point (2.) that R is the strongly continuous resolvent associated with £*=.
From the previous points, we obtain that 4, is invariant for X:, and that

X¢ is symmetric. Let m' and m? be two invariant probability measures for

X,, and let ¢' and ¢? be K,-valued random variables, such that the law of

¢' is m* and {¢*, ¢, W} is an independent family. Setting b := || XE (¢, ¢') —

XE(t,¢%)|| we have:

d2 212 ;22 2
tb T“b° + ¢b 2b—|—C,

IX5(t ") = X566 < Ce™lg' = ¢’|l, VE>o. (3.20)

Since the law of X2 (¢, ¢%) is equal to m® for all ¢ > 0, (3.20) implies m! = m?.
U
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3.3 The process X,, a >0

In [NP 92], the following theorem is proved:

Theorem 3.2 Assume that f satisfies (H1),(H2),(H3) and let © € K, N
Co(0,1). Then there exists a unique solution (uq,ns) of equation (3.16) with
reflection in —a and initial value x.

The existence statement is proved in the following way: let u{, be the solution
of (3.17). Then:
(a) us(t,-) € Cy(0,1) for all ¢t > 0, and ug, is continuous on O.

(67

(b) By Lemma 1.3, the map 0 < ¢ — u(t,&) is non-increasing for all
(t,€) € O. The limit lim.joué(t,€) = sup,sous(t, &) =: ua(t, &) is
finite for all (¢,€) € O, wuu(t,:) € Ko N Co(0,1) for all t > 0, and  u,
is continuous on O.

(c) The measure on O, 75 (dt, d€) := (1/e)(a + us,)~dtd, converges distri-
butionally as ¢ | 0 to a Radon measure 7,(dt, d¢) on O.

(d) The pair (uq,7n,) is the solution of (3.16) with reflection in —« and
initial value z € K, N Cy(0,1).

We set for allt >0, a >0, > 0:
o X,(t,z) € Cp(0,1), Xo(t,2)(&) :=ua(t, &), x € Ko N Cy(0,1),
o X:(t,x) e H, X:(t,x)(&) :=us(t, &), v € H.
Lemma 3.1 Foralla>0,¢>0,t >0, we have: Vz,z' € Cy(0,1),
1X6(t, @) — Xa(t,2)]| < el — o (3.21)
where || - || denotes the norm in H and ¢ > 0 is the constant of (H2).

Proof—By the monotonicity properties of (1)~ and fy(&,-) we have:

1d € € € €
5 g 1Xa (@) = Xo(t )| < el X (8 @) — X582

and the thesis follows from Gronwall’s Lemma. O

Therefore, the same estimate holds for X,, a > 0: Vz,z' € K, N Cy(0,1),

1Xa(t,2) — Xa(t, 2')]| < el — 2| (3.22)
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and we can uniquely extend X((t,-), respectively X, (¢,-), to maps from H
to H, resp. from K, to K,, that we denote by the same symbols, satisfying
(3.21) for all z,2' € H, resp. (3.22) for all z,2’ € K,. We set for all a > 0,

e>0,p€Cy(H), t>0:
Pit)g: Ho R, Pip(@) =Elp(Xa(ta), zeH,  (3.23)
Po(t)p: Ko » R, Pa(t)o(z) == Elp(Xa(t,2))], =€ K. (3.24)
Lemma 3.2 Foralla >0, >0, ¢ € Cy(H), t > 0, we have:

(
(

Pi(t)p € Cy(H),  wpspyo(r) <wy(er)  Vr >0, (3.25)
P,(t)p € Cy(K,), w1y (1) < wy(er) Vr >0, (3.26)
lim Po(t)e(z) = Pa(t)p(z) Vo € K, (3.27)
P,(8)P,(t)p(x) = Py(t + s)p(x), Vz € K,. (3.28)

In particular, (Py(t))i>0 is a Markov semigroup acting on Cy(K,).

Proof—For (3.26), notice that, by (3.22), for all z,2’ € K,:
|[Pa(t)e(x) — Pa(D)p(z')] < Ellp(Xa(t, 7)) — o(Xa(t, 2))]] <

< Bl ([ Xalt, 2) = Xa(t, 2))] < wy(ellz — 2],

and (3.25) follows analogously. (3.27) is a consequence of (b) in the proof
of Theorem 3.2 and (3.25). It is well known that (P:(t));>0 is a semigroup
acting on Cy(H): since the family of probability measures {m®}.so, where
mF is the law of XZ (s, z), and the family of functions { P5(t)¢}.>¢ satisfy the
Hypothesis of Lemma 1.1, (3.28) follows. [

Lemma 3.3 For all ¢ € Cy(H), limy o Py(t)p(z) = Po(t)p(x), t > 0, z €
K.

Proof—If z € Ky N Cy(0,1), then the map 0 < a — XE(¢,z)(£) is non-
decreasing for all (¢,£) € O, € > 0. Therefore:

lim Xo(t,2)(6) = sup Xa(t,)(€) = sup sup X (t,7)(6)

a>0 >0

= sup sup X.(t,z)(§) = sup X;(t,z)(€) = Xo(t,z)(§),

e>0 a>0 e>0

since sup,sq ug (t, §) = ug(t, &) by the uniqueness of solutions of (3.17). The
general case follows by (3.26) and a density argument. [
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Proposition 3.1 Foralla > 0 and ¢ : H — R bounded and Borel we have:
Pa()p(z) = Pa()o(®)| < Cllellw(1 A2z —yll, 2,y € Ko, t>0.
In particular, the process X, is Strong Feller.

Proof—Fix e > 0, o > 0 and set for v > 0:

[(r) ], r<(1+9)" 1
sy :R—=R, s4(r) ==
r=y1l+y) e > (1)

Then s, is C'(R), monotone non-decreasing, and for all 7 € R, s,(r) 1 (r)
as v | 0. Consider the following equation:
du, 10%u, O*W

ot 208  otoc

~ (i) + 2O
(3.29)
i(0,) =z € H, y(t,0) =1, (t 1) =0, V¢ > 0.

We set X, (t,z) := i,(t,-). Equation (3.29) is a white-noise driven SPDE
with differentiable non-linearity of Nemytskii type, satisfying the hypothesis
of Proposition 8.3.3 of [Ce 01]. Then, we have for ¢ € C,(H), z,y € H:

Blo(X, ()] — Elp(X, (&) < Cllgllo(1At) 2le -yl  (3.30)

By the monotonicity properties of s,, Lemma 1.3 and the uniqueness of
solutions of (3.17), we have that @, 1 uf, as v | 0. Then letting v | 0 in
(3.30), we obtain:

|Peo(z) — Pop(y)] < Cllelles(1At) 72|z —y).

The thesis follows letting € | 0 and using the Monotone Class Theorem. [

3.4 The invariant measure of X,

We have the following:

Theorem 3.3 For all o > 0, the measure

dvl = 1 exp(—2F(z)) vo(dx) (3.31)

a Va(e—ZF)

is the unique invariant probability measure of X,. In particular, X, is v -
ergodic. Moreover, X, is symmetric with respect to vE.
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Proof—If m! and m? are two invariant probability measures for X,, then
for all ¢ > 0, arguing as for (3.20):

3 & 3 —7T2
1Xa(t, ') = Xa(t, )| = Um X5 (8,p") = X5t 7]l < Ce pt =,

(3.32)
where p! and p? are K,-valued random variables, such that the law of p’ is
m' and {p',p?, W} is an independent family. Since the law of X,(¢,p") is
equal to m? for all ¢ > 0, (3.32) implies m* = m2.

Let o > 0. By (H1)-(H3) above, we have that e=?* is bounded and con-
tinuous on H. Therefore, by Dominated Convergence Theorem p, converges
weakly to vX as ¢ | 0. Moreover, the families {1 P:(t)0}eso U {10 Py(t)p}
and {ug}es0 U{vE}, ¥, ¢ € Cy(H), satisfy the Hypothesis of Lemma 1.1 by
(3.25), (2.1) and v (K,) = 1. Therefore:

Vo (& Pa(t)p) = lim ug, (4 P(t) ) = lim pig, (0 Po(D)¥) = v (9 Pa(t)¥).
Therefore, v’ is symmetrizing measure for {X,(t,z) : t > 0,2 € K,}. By

Theorem 2.1, v’ converges to v as a | 0, and by Lemma 1.1 and Proposition
3.1, the thesis follows analogously. [

Remark 3.1 Since we assumed (H3), we have: e 2¢ < exp(—2F) < €*¢
on H. This is in fact not really necessary, but it simplifies several technical
points: see e.g. the proof of Theorem 3.5 below. Moreover, we stress again
that (H3) is enough to handle the SPDEs which appear in the proof of
Theorem 4.1 below.

By Theorem 3.3 and Proposition 3.1 we obtain:

Corollary 3.1 For allt > 0, x € H, the law of X,(t,x) is absolutely con-
tinuous with respect to v,. In particular, for all t > 0 and £ €0, 1], the law
of uo(t,€) is equal to

y2

pre(y) y° exp {—m} dy, y>0

with pye > 0.

Proof—This is well known, since if S is a Borel set of H such that v,(S) = 0,

then:
0= / lge ™ dy, = /[Pa(t)ls] e 2P du,.
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Since e 2" > 72¢ and P,(t)1g is continuous, we have for all x € H:
Pa(t)1s(z) = P(Xo(t,2) € S) = 0. O

Recall that Donati-Martin and Pardoux prove in [DMP 93] the existence
of a minimal solution (v, #) of the following semilinear SPDE with reflection
at 0:

((Ov  10% *wW
= — fu(t t
ot ~2oe  TWEO) Tl O) 5

v(0,€) = z(§), v(t,0) =v(t,1) =0

+0(t,€)

(3.33)

| v>0,d0>0 Jovdn=0.

and in [DMP 97|, under the assumptions that f,o are differentiable on R
with bounded derivative, that for all ¢ > 0, £ € (0,1), the law of v(t,&) is
absolutely continuous w.r.t. the Lebesgue measure dy on (0,00). Corollary
3.1 shows that, if 0 = 1, then for all t > 0, £ € (0,1), the law of v(¢,&) is
absolutely continuous w.r.t. the measure y* dy on the whole of [0, c0).

3.5 The Dirichlet Form &%, a > 0

The aim of this section is to apply (2.1) and (2.2) to the symmetric bilinear
forms

1
Ci(H) 3 06 B*(py0) =5 [V, Vo) af, az0,

The main result is that E® is closable in L?(v,) for all « > 0, and X, is
the associated diffusion. We refer to [FOT 94] and [MR 92] for all basic
definitions.

We set for all f € Cy(H):
RS ) = [ T B (Xalt,2))]dt, € Kay A O,
0

Notice that by Theorem 3.3, R,(\) extends to a bounded linear operator in
L2(vE) for all A > 0: we denote also such extension by R,()\). We also set:

ol (r,dx) = ﬁ exp(—2F(z)) o4(r, dz), a>0,re(0,1).
(3.34)
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Theorem 3.4 Let a > 0. Set for all o, € WY?(H, p):

E*(e0) = 5 | (Ve Vv dvf.

Then the positive symmetric bilinear form
Cy(Ka) 3 0,9 = E*(p,%)
is closable in L*(VY). We denote by (€, W'2(VY)) the closure. The family

(Ra(N)aso on L2(vE) is the strongly continuous resolvent associated with £*,
Lip(K,) C W'2(vF) and Exp,(K,) is a core for £%.
Proof-Let ¢ € Expy(H), f € Cy(H). Set Vi := RE(1)f, Vo := Ra(1)f.
Then, by Lemma 1.1, Lemma 3.2 and Corollary 2.1:

E%F(VE, ) = — / VE Lo du,
H

(e}

= — [ Viteau, — [ Vi) e+ a) Velo) rildo)

1 !
— — Vo Lo duf ~ 3 / dr / Va(2) (Vp(2), 0r) 05(7“, dz),
Ko 0

as € | 0. On the other hand, we have

/ Veodu, + E*(Vi,p) = / f @ du;, so that:

1 /1
/ (Vo — f)goduf :/ V., chdl/f—i— 3 / dr / Vo Ve, 0,) af(r, dz).
o Ka 0

(3.35)
Notice that V, o I, is Lipschitz on H: therefore it is in W?(H, u). Set
{vatn =1l (Vo ollg, ), where (II;);>¢ is the Ornstein-Uhlenbeck semigroup
defined in (1.10). Then {v,} C C}(H), sup,, ||Vullcc < 00 and 7, converges
to V, oIl in Wh2?(H, p) and pointwise. By (2.23) and (3.35):

_Ea(Vaaw) = - h?gn Ea(’}’naéo)

i ([ atearf 5 [ar [(Tete ) ol )

n
(e}

1 1
= [ Veredf 45 [ar [ Ve (Ve().6) o0, d2)
K, 0

= [ Wa-pyeat.

(e}
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Let now ¢ € Lip(K,): then v o Ilg, € Lip(H), and by Proposition 1.1 we
can find a sequence ¢, € Exp,(H) converging to v o Ilg, in WY2(H, u).
Then we obtain

B (Vi) = / (f — Vi) dvf Wi € Lip(K.),

[e3

and analogously, Ro(\)f o llx, € WY2(H, 1) and for all A > 0:

E*(Ra(N f.9)) = / (f — ARa(Nf) 9 dvf Vi € Lip(KL).  (3.36)

o

Since (Rq(A))xso0 is a strongly-continuous resolvent in L?(v)), then there
exists a Dirichlet Form (E%, D(E®)) with D(E®) dense in L?(vL), associated
with (R4 (A))aso. Consider f € Lip(K,): by the general theory of Dirichlet
Forms,

feD(E?) < sup / MNF=ARO)f) f dvF < oo (3.37)

>0 JK,

By (3.26) and (3.36), we have:

/ A = AR F) £ dvf = B2ORaON 1) < Cll iy

(o7

for some C' > 0, so that Lip(K,) C D(E®). Then, by (3.36), E* is closable
on R, (1)(Lip(Ky,)), the closure (£, W2(vF)) coincides with (E®, D(E%))
and (R,(A))x>o is the resolvent associated with (€%, W12(vl)).

Finally, since for all ¢ € Lip(K,) there exists a sequence ¢, € Exp,(H)
converging to 1 o llg, in W'2?(H, 1), then we have that Exp,(H) is a core
for £%, and the Theorem is proved. [

We turn now to the case a = 0. We set H*> = @2 | H = L?(0,1; R®),
H’ 3y = |yl € Ko, [yl(1) = |y(7)lgs, 7€ (0,1).
Cy(Ko) 2 ¢ — p € Gy(H?), B(y) = @(ly)-

Recall that the image measure of pu®3 under | - | is v, i.e.

[ et = [ e@utdn),  veecm. (@39

Ko
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In particular, there exists a measurable set Qy C H? with u®3(£) = 1, such
that for all y € Qq, |y| > 0 on (0,1). Then, we can define for all h € Kj:

Yy 3 Y1) = hir y(7)
Qoay»—>h|y|eH, [h|y|](). h(r)

Notice that an analogue of Proposition 1.1 also holds for the Gaussian space
(H3, u®?): in particular, we denote by W12(H3, u®3) the domain of the clos-
ure A3 of the form:

1 .
CHH?) > &, ¥ — 3 (V&, V) ysdu®?, (3.39)
H3

where V& € Cy(H? H?) is the usual gradient of ®. If & € W'(H?, u®%),
then we denote the generalized gradient of ® by V® € L%(H?3, u®3; H?).
Moreover, if ¢ € Lip(Kj), then ¢ € Lip(H?) C WH2(H3, u®3).

Lemma 3.4 For all ¢ € Lip(Ky) and h € Ky there exists the limit in L*(v):
1
lgf(gl g(go(x +th)—p(x)) = (Vo(x), h) z € K. (3.40)

We call Vo € L®(Ky,v; H) the generalized gradient of ¢. For u®3-a.e.
y € H? we have:

(Ve(yl).h) = (Vo) hdme,  Yhe K. (3.41)
Finally, for all ¢, € Lip(Ky) and v € L*(v):

/K (Vo Vi) y do = / oD )du®  (342)

H3

Proof By Proposition 1.1, for all ® € Lip(H?), there exists a sequence
®,, € C;(H?), such that

1PnllLipaz) < [|@lluip(rzy,  Bn — @ in WH(H?, u®?).

Then, by a density argument, for all ® € Lip(H?):

13351% {@ (y + th%) - @(y)] - (V@(y),h%)m in L2(1®).
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Then, for & :=o:

(Veollyl), h) = ltifg)li(eo(\y\ +th) —o(yl))

i o (v + 0l ) —2)] = TR0 Ly 2

By (3.38), we obtain (3.40) and (3.41). Finally, (3.42) follows by (3.41):
indeed, denoting the scalar product in R® by (-, - )gs, for p®*-a.e. y € H?

we have:
B kLY, = /Olh(T)k(T) (y(T) y(T)) dr

y
™ |yl y|(7) 7 lyl(7)

= (hk), Vh,k € Ko. O

Theorem 3.5 Set for all ¢, € Lip(Kjy):

B.0) = 5 [ (Ve Vv drf.
Ko

where Vo and Vi are defined by (3.40). Then the positive symmetric bi-

linear form (E°, Lip(Ky)) is closable in L?*(v}"). We denote the closure of

(E°, Lip(Ky)) by (E°,WLA(WE)). The family (Ro(A\))xso on L2(W) is the

strongly continuous resolvent associated with £° and Exp 4(Ky) is a core for

EC. Finally, £° is the image of the Dirichlet form

1

1,2/ 173 ,,®3
W (H a/J' )9 @,\If — 2f6_2p(|.|)du®3

under the map | - |, i.e. WYAWE) = {¢ € L?(W) : o = o(]-]) €
WhH2(H3, u®3)} and for all o, € WH(WE):

1 o
0 — 5 s e 2F (D 4,83
E (9071/)) = 2fe,gp(‘.‘)du®3 /HS<VS0,V1/)>H e dps”. (3.43)
Proof—By (3.42), the form
. 1
Ko

is closable in L?(v), since by (3.42) it is the image of the Dirichlet Form

1 .
WY2(H? 4u®%) 5 @,0 s A3(®,0) := E/S(Vé,V\II)Hsdu@?’ (3.45)
H
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under the map | - |. By (H1)-(H3), we have that 0 < e 2¢ < exp(—2F) <
e’¢ < oo, so that L?(v) = L?(v{) with equivalence of norms, and the
form in (3.44) is equivalent to E° on Lip(Kj). This implies closability of
(E°, Lip(K))) in L?(¢{"): we denote the closure by (£°, WL2(ul)).

As in the proof of Theorem 3.4, let ¢(z) € Exp,(H) and f € Cy(H). Set
Ve = R§(1)f, V := Ry(1)f. Then, by Lemma 1.1 and Lemma 3.2, letting
e } 0in (3.35) we obtain:

1 1
/ (V= f)edy :/ V Lodvy + 5/ dr/V(Vgo,ér)ag(r,dz).
Ko Ko 0

(3.46)
By Corollary 2.2, for all ¢p € C{(H) and h € D(A), denoting the imaginary
unit by 7 and setting ¢, := exp(i(h, z)):

?

To = 1 /K 0 ) — () ) of )

(Vip(x + sth),ih) op g (dz)

|
DN | =
\

Ko

Il
N =
\

/ (V(x + sth), Vo) vt (dx)
= / [ (+ +sth) Mopdvf

+ %/0 dr /¢(- + st h) (Ve 6,) ag (, dZ)} :

Ty < Cl[Ylo,
with C' > 0 independent of ¢ € C}(H). By the density of C}(H) in Cy(H)
in the sup-norm, by (3.46) and (3.40), we obtain:

EVoon) = lim s [ S0V C+th) =V anad = [ (7-V)aua,

t10 2 Ko

and for all ¢ € Exp,(H):

BV, ¢) = /K (7 -V)pdf,

and analogously for all A > 0, ¢ € Exp,(H):

EY (RN, ¢) = /K (f — AR\ f) p it (3.47)
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The thesis follows once we have proved that (3.47) holds for all ¢ € Lip(Kj).
Let {ex}ren be any complete orthonormal system in H, and set

n

H>zw— 2, := Z(x,ei) €,

i=1

and for ¢ € Cy(H), ¢, € Co(H), V() := 9(x,,). Then:

lim ¢, (z) = ¢¥(z), sup |Yn(z)| < oo.

Let ¢ € Lip(H): then ¢, € Lip(H), and |[¢s|ly120r) < [[¥]lwrory: there-
fore, there exists a subnet {n; };c; such that (¢, );es converges to 1) weakly in
Wh2(yf'). Fix i € I: then v, can be identified with a function in Lip(R™).
By convolution between t,,, and a smooth mollifier p,,, . € C}(R™ ), we obtain
a family (¢, c)eso C Cy(H), such that

lsiglwm,s(x) = Un, (z), Vre€H, S>110p (W}nz,s(mﬂ + |V7vbm,e(x)|) < 0.

Again, there exists a subnet (¢, ¢, )jes converging to ¢, weakly in W (u{).
Since vy, ¢; depends only on finitely many coordinates, it is well known that
for all i € I, j € J, there exists a net (¢’ )rex C Exp4(H), such that:

lim ¢ (2) = Ynie; (2), MV (@) = Vi, (2), Vo € H,

slllp(lwij(w)l + [V (2)]) < oo.

Let ¢ := o7 in (3.47): then by convergence in the weak topology of Wh2(u{):

lim lim lim E°(Ro(A)/, 0i7) = E°(Ro(N)f, 1),

z J

and by Dominated Convergence Theorem:

il i [ (= M) el = [ (F = AR ) v .
Ko

i J k Ko

and (3.47) is proved for all ¢ € Lip(H). Notice that we have also proved that
Exp 4 (H) is dense in Lip(H) with respect to the weak topology of Wh2({):
by Hahn-Banach Theorem, this implies that Exp4(H) is a core in W2 (y[").
(]
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Corollary 3.2 Formulae (2.1) and (2.2) hold for all ¢ € Lip(H), where for
fized o > 0, Opp := (Vp, h) € L*(v,).

Proof-For a > 0, the proof of (2.1) yields also this result. For o = 0, the
thesis follows from (2.2) and the existence of a net {¢,} C Exp,(H) such
that ¢, — ¢ weakly in W'?(1;) and:

lim ¢, (z) = p(z) Ve € H, sup |pn(z)| < oco. O

n,x

For all o > 0, the Dirichlet Form £¢ enjoys the following properties:
(i) Lip(K,) is dense in Wh2(vF).

[e%

(i) Exp4(K,) separates the points of K, and is contained in W12(vL").

By Definition IV.3.1 in [MR 92], £¢ is quasi-regular if moreover:

(iii) There exists a sequence of compact sets Fy in K, such that the set:

U {oeW™W)): ¢ =00v, —ae on K,\F}
k

is dense in W12(vl).

On the other hand, by Nualart-Pardoux’s Theorem 3.2, the process X, is
continuous, with infinite life-time and Strong Markov. Therefore X, is a
Hunt process on K, properly associated with £, see Chapter IV in [MR 92]:
indeed, for all Borel bounded ¢ : K, — R and ¢t > 0, P,(t)p € Cp(K,), and
by Theorems 3.4-3.5, P, is the semigroup associated with £*. Then we have:

Theorem 3.6 Let o > 0. The process {Xa(-,x)}s is a continuous Hunt
process on K, with infinite life-time, properly associated with the Dirichlet
form E%. In particular, £ is quasi-regular.

The last assertion in Theorem 3.6 is a consequence of Theorem IV.5.1 in
[MR 92|, which states the necessity of quasi regularity for a Dirichlet Form
to be properly associated with a nice Markov process. Theorem 3.6 plays a
crucial role in the next section. Finally, we have:

Corollary 3.3 The Log-Sobolev and the Poincaré inequalities hold for the
Nualart-Pardoux equation (3.16) for all > 0, i.e. there exists C > 0 such
that for all ¢ € W12 (vL):

2
/ lo—vF () avf < C / IVl dvF,

[e3 [e}
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/ S log(¢?) dvf < C / IVl dvF + (]2 10816220,
[0 Ka

For the proof, see e.g. [St 93] and [DP 01].

3.6 The Revuz-measure of 7

The aim of this section is to characterize 7, as a family of Positive Continuous
Additive Functionals of X, and to prove the decomposition formula (3.2).
Notice that Theorem 3.6 has the following important consequences: by the
transfer method of Chapter VI in [MR 92], several statements of the theory
of Dirichlet Form can rephrased from the classical locally-compact case into
our setting. In particular, we can apply the results of Chapter 5 in [FOT 94].
We refer to [MR 92] and [FOT 94] for all basic definitions.

Let now E := C([0,00); H) and define X; : E— H, t >0, X;(e) := e(t),

N2 = o{X,,s€]0,00)}, N = o{X,, s€]0,t]}.

Fix a > 0. For all z € K,, we denote by P, the law of X,(-,z) on (E,N2),
and for all probability measure A on K,, we define the probability measure
P, on (E,N2):

NS SA = Py ::/ P, (A) M(dz).
Then we denote by N (resp. N}') the completion of N2 (resp. completion
of MY in N}) with respect to Py. We also set N := Mrep(ra) N3, N 1=
Miep(ia) N7, where P(K,) denotes the set of probability measures on K,.
By an Additive Functional (AF) of X,, we mean a family of functions A(¢) :
E +— R, t > 0, such that:

(A1) A(t) is (NVy)-adapted

(A.2) There exist a set A € N, and a £*exceptional set V C K, such that
P,(A) =1forall z € K,\V, 6:(A) C Aforallt > 0, and for all w € A:
A(-)(w) is continuous, A(0)(w) =0 and for all £,s > 0:

At)(w) < oo, A(t+s)(w) = A(s)(w) + A(t) (Brw). (3.48)
where (6;) ;>0 is the time-translation semigroup on C([0, 00); H). We say that

an AF A is a Positive Continuous Additive Functional (PCAF) is A satisfies
moreover:
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(A.3) For all w € A: A(-)(w) is non-decreasing.

Two AFs A; and A, are said to be equivalent if for each ¢ > 0, P, (A;(t) =
Ay(t)) =1, for £%-q.e. x. Moreover, we say that A is a PCAF in the strict
sense if one can choose V' =0 in (A.1). Recall that X, is Strong Feller and
Corollary 3.1 implies the “absolute continuity condition” of [FOT 94]. This
condition often allows to avoid the restriction: x € K,\V of (A.2) above:
see e.g. Theorems 5.1.6 and 5.1.7.

In the sequel, when it is necessary to stress the dependence of 7, on the
initial datum z and the Brownian sheet W, we write n% or n%". By the
uniqueness statement of Theorem 3.2, we have a.s. for all ¢ > 0:

([0, + s],0) = =Y ([0,8],1) + nX=CGDW ([0, 5],1) (3.49)

where Wt :=W(- +t,-)—W(t, -) is a Brownian sheet, independent of F;.
Notice that Formula (3.49) is reminiscent of (3.48). However, it is not clear
whether 7, is a PCAF of X,: in fact, 7, is adapted to the filtration of the
noise W, but a priori not to the natural filtration of X,. We can clarify this
point by means of the following example: for all y : [0, 00) +— R continuous,
y(0) > 0, by Skorokhod Lemma, see Lemma VI.2.1 in [RY 91], we have that
setting

[0,00) 3t at) := Sslilt)(_y(S)) VO, [0,00) 3t 2(t) :=y(t) — alt),

then (z,a) is the unique solution of:
1. z > 0 continuous
2. a continuous non-decreasing, a(0) = 0
3. Jy 2(t) da(t) = 0.

Therefore, if y(t) =  + By, where > 0 and (By)i>¢ is a linear Brownian
Motion, then X := z is the reflecting Brownian Motion and L := 2a its local
time at 0. L is a PCAF of X, in particular adapted to the filtration of X:
indeed, it is well known that:

1 t
Ly = lim— [ 1p4(X,)ds Vt >0, a.s.

However, this is true only almost surely: indeed, we have:

h1=0 = 2,=0, a; =0,
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() = =t VE>0 = 2,=0, ap(t) =t Vt> 0.

In this case, z;1 = 29, but a; # a9, so that a is not a function of z. The same
can happen to n: two different paths of W can give rise to different paths
of X, but same 7. The Theory of Additive Functionals provides the tools

which allow to prove that that a.s. this does not happen.
Recall that, since X, is conservative with unique invariant measure v,

the Revuz-measure of a AF (A(t)):>o is defined as:

SErTYA E[ | exatt o) aa o] vian)

where :  A%(t) := A(t) (Xo(-, 7)), t>0.
In the proof of Theorem 3.8 below, we use several results of the Theory
Additive Functionals. In the next theorem we collect the results we need,
stating them in our setting in order to avoid notational confusion. For the

general statements and the proofs, we refer to Theorem 2.4 in [MR 92] and
Theorem 4.2 in [Fu 99].

Theorem 3.7 Let a > 0. For ¢ € WY2(vL'), the next three conditions are
equivalent:

(i) For some constant C > 0 we have:

€@, )] < CliYlles, Vo € WH(rg) N L¥(vy). (3.50)

(ii) There exists a finite signed measure m charging no E*-exceptional set
such that:

Elpw) = [vdm W eWHEHNGK), @5

where £ = (-, -)p2ry + E*. We say that m is a E*-smooth measure
with 1-potential

(zzz) There exists a AF (A(t)); of Xa, unique up to equivalence, such that
=K, [, e 'dA(t)] for E*-qe. w.

If (z)—(m) hold, then m in (ii) is the Revuz-measure of (A(t)): in (iii).

Moreover, we shall use that for all AF A Wlth Revuz-measure m and for all

¢ bounded and Borel, we have that (f - A)( fo f(Xy)dA(t), t >0, is a
AF with Revuz-measure f - dm: see e.g. Lemma 5.1.3 in [FOT 94].

Recall that u(t,-) = X4(t, z)(-) is the solution of (3.16). The main result
of this section is the following:
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Theorem 3.8

1. Let a > 0, x € K, N Cy. Almost surely, there erist a measurable

random set S, C Rt with nZ(RT\S,, (0,1)) = 0, and a measurable
map 14 : So — (0,1), such that:

Vit € Sa, ualt,ra(t)) = —a, and us(t,§) > —a VE € (0,1)\{ra(t)}-

Almost surely, for all continuous | with compact support in [0,00) X
(0,1), we have:

/o L = / Tt ra6)) mE(d, (0,1)), (3.52)

e Mgldt, d§) = Op, ) (d€) 1a(dt, (0,1)) on O.

Finally, t — 14 ([0,t] x (0,1)) is a PCAF in the strict sense of X, with
Revuz measure given by 10£((0,1),): i.e. there exists a PCAF in the
strict sense of Xa, (A0,1)(t))t0, such that

1a([0,1] X (0,1)) = Apy(H)(Xal2))  VE20, €K,

/QE[/()l(p(Xa(t,x))dA‘(”O,l)( ] / dr/ Py dz).

. Let o = 0, x € KogN Cy. Almost surely, there exist a measurable

random set Sp C RT with n§ (RT\Sy, (0,1)) = 0, and a measurable map
ro : So — (0,1), such that:

Vit € Sy, ug(t,re(t)) =0, and wue(t,&) >0 VE€ (0,1)\{ro(t)}.

Almost surely, for any § € (0,1/2) and for all continuous | with compact
support in RY x [§,1 — 4], we have:

[ = [ "1t rolt)) m (dt, (0,1)) (3.53)

- /0 "1t o) E (dt, [5,1 — ),

ie. 1 (di, d§) = 0y (d€) 5 (dt, (0,1))  on O.

Finally, for all § € (0,1/2), there exists a PCAF in the strict sense
(Ajs1-6)(8))1z0 of Xo with Revuz measure given by 2o{'([6,1—46],-) such
that:

16 ([0,¢] x [6,1 = 6]) = Ap1-5()(Xo(,2)) V>0, z € Ky,
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e[ contm s, q0] k@ =3 [T ar [oot.a,

The family (Aps1—s))sc(0,/2) Satisfies the consistency condition:
¢ 1
A[(;/’l_(;/](t) = / 1[5/,1_5/](7'0(3)) dA[(s,l_(s](S), VOo<d<d < 5
0

Proof-We divide the proof into two steps.

Step 1. Let o > 0 and h € C?(0,1), h > 0. We claim that there exists a
PCAF (Ap(t))i>0 of Xo with Revuz measure:

[ &[] eXalt ) 430 vf o) = 5 [ arie) [potna

and such that for P-a.e. w:
/0 h(&) 1a([0, 1], d€) (w) =: ng([0, 1], h)(w) = An(t) (Xal 2)(W))-

In particular, t — 71,([0, t], h) is adapted to the filtration of X,.
We can restrict to a dense countable family {h,} C D(A). We set for all
T € H:

Us*(z) =FE [/ e"%(h, (Xo(t,x) + a)‘}dt] ,
0
Uz):=E [/ e 'nZ(dt, h)] .
0
Then we have for all ¢ € Exp,4(H):

! /H (@) (h, (z + ) i (de)

€
= /UE’”‘soduZ + B (U 9) = /UE""(so = Lop) dug
For o > 0, letting € | 0, we find by Corollary 2.1:

/ U~ Loydvt — / dr / (Ve (2),8,) U*(2) oF (r, d)
(3.54)

— %/01 dr h(r) /SD(Z) 0, (r,d2),
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Notice that we have for all o > 0:

/ooe tnZ(dt,h) = —{x,h) + /00 e X, (t,x),h — Ah) dt
n / " e (Xalty ), By d — / " e th(E) W (dt, do),

U°(z) = — (z,h) + /Oooe—tEKXa(t,x),h—Ah) + (f(Xalt,2)), b)) dt.

Then U%(z) — U°(z) as « | 0 for all z € K,,, and by Proposition 3.1 {U*}4>9
is an equi-Lipschitz family. Moreover, 0 < U% o Ilx, < C(1+|-|). Then
Lemma 1.1 and Theorem 2.1 yield (3.54) for every o > 0. Moreover, U* €
Lip(K,) C D(E%). By (3.54), Corollary 3.2 and the density of Exp 4(K,) in
D(E?%), we obtain for all ¢ € D(E%) N Cy(K,), a > 0:

e = 5 [ 1) [e@ottdz) = 5 [ oot b,

EF(U*, @) < 04 (h; Ka) |0lloo, 04 (h, Ka) < oo, (3.55)

where £ 1= (-, ) 2,5y +E% If o € D(E*)NL>®(vY), we set @, := Po(1/n)e.
Since P, is Strong Feller, letting n — oo, we obtain that (3.55) holds for all
¢ € D(E* N L>*(vEl). Now we can apply Theorem 3.7: U? satisfies (i),
ol (h,-) is equal to the measure given by (ii), so that by (iii) there exists
a PCAF (Au(t))i>0 with Revuz measure ol (h, -) and a-potential equal to
U®: in particular, we have U%(z) = E[ [ e -t dA%(t)] for all z € K,\V,, for
some E£*-properly exceptional set V

Since U? is continuous and therefore locally bounded on K,, we can
repeat the proof of Theorem 5.1.6 in [FOT 94|, and extend (Ax(%))i>0 to a
PCAF in the strict sense, which we still denote by (Ap(t))i>0. In particular,
U(z) = E[[; e "dA%(t)] for all 2 € K,. Now we can mimic the proof of
Theorem 5.1.2 in [FOT 94]: by (3.49), we have for all z € K,,:

</Ooo et dAii(t))zl = 21E[/0°° 6_2tUa(Xa(t,x))dAﬁ(t)]
on[ [ (o) ]
(/Oooe "nadt, h)>2] = 2E[/0006QtU“(Xa(t,x))ng(dt,h)}

E

E
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_ 9 [ /0 et ( /t h e—UdA;g(u)) nE (dt, h)]

= 9F [/Ooo et (/Ot ene (du, h)) dAg(t)] ,
]E[/Oooe e (dt, h)/oo ‘tdA””()]

=e| [T ([ + [ ]ermnn) asicn].

([ etmaanm- [

0 0
() 0 2]

(/ “ApE(dt, h) — / e”dAzt> =0, VA>0,
0 0

which implies 9% ([0, ], h) = A% (¢

so that : E

.
TdAL(t )) = 0, and analogously :
(1)

E

for all z, t, a.s.

)
Step 2. Let « > 0, and I C (0,1) be an interval. Denote by ¢; the indicator
function of the Borel set {x € K, NCy : x - 1g,1)\1 > —a}. The key point is
that the following holds:

/01 dr /gm/JI(z (r,dz) /dr / (r,dz), Vo € Cy(Ky).

(3.56)
Set now:

t):= /Otwl(Xa(s,x)) ne(ds, (0,1)), t>0,z € H.

By Step 1, we have that A; is a PCAF of X, with Revuz measure equal to
Yr(2) - o ((0,1),dz). In particular, by (3.56):

[ & [ o0t et 0.29)] valae)

/dr/god)l rdzz /dr/ rdz

which is the Revuz measure of ¢t — 7%([0,t],I). By (iii) in Theorem 3.7, A
and 7,( -, I) are equivalent, i.e. there exists a £*-properly exceptional set V,,
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such that for all z € K,\V,, and for every interval I C (0,1) with rational
extremes, we have

n2([0,7, 1) = /0 Ur(Xa(s,2)) nE(ds, (0,1) YT >0, as..  (3.57)

We claim that (3.57) holds for all z € K, N Cy. First, nZ({0},(0,1)) = 0 for
all z € K,. Moreover, by Corollary 3.1, if ¢ > 0 then P(X,(¢,z) € V,) = 0.
Then, for all z € K, N Cy, t > 0, a.s. X o(t,z) € K,\V, and by (3.57):

(LTI = W (0.7~ 1), 1)
= [ Pl ) 0 s, 0,1)

_ /T¢I(Xa(s,x))ng(ds, (0,1)), VT >¢>0, as.
t

and the claim is proved. Now, fix z € K, N Cy and consider a regular
conditional distribution of 7 on [0, 00) X (0, 1), w.r.t. the Borel map (¢, &) — t:
i.e., a measurable kernel (¢, J) — 7(t,J), where t > 0, J C (0, 1) Borel, such
that

ne (7], J) = / A(s, J) 72 (ds, (0,1)), (3.58)

forall 0 <¢<T,J C(0,1) Borel. By (3.57) and (3.58) we obtain that a.s.
and for nZ(ds, (0,1))-a.e. s:

Y(8, [0n, bn]) = Vjanp01(Xal(s,2)), Van, b, € QN (0,1). (3.59)

Notice that, since 1; is an indicator function, the right hand side of (3.59)
assumes only the values 0 and 1. Therefore the measure I — (s, I) takes
only the values 0 and 1 on all intervals I with rational extremes in (0, 1), and
the value 1 is assumed, since ¥ o,1) = 1x,nc,- Then v(s, -) is a Dirac mass
at some point 7,(s) € (0,1).

Consider s € S, ¢n,Pn € Q, g T 7a(8), P 4 7(s), and set I, := [gn, pn:
then 1 = ~(s,I,) = ¥r,(Xa(s,z)), which means u,(s,£) > —a for all £ €
(0,1)\I,,. Therefore, r,(s) is the unique & € (0,1) such that X,(s,z)(&) =
Ua(s,€) = —

Let now a = 0, and for all interval I C (0, 1) define 9; as the indicator
function of the Borel set {z € Ko N Cy : z(§) > 0, V€ € (0,1)\I}. Notice
that in this case it is not known whether 7§([0,7],(0,1)) is finite or not.
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However, n7([0,T7], (5,1 —6)) < oo for all § > 0. Therefore, the proof can
proceed as in the case of @ > 0, provided one replaces nf(dt, (0,1)) with
n&(dt, (1/n,1 —1/n)) and then let n — co. O

Corollary 3.4 For all Borel p: (0,1) — R*:

/[g 3/2d5<°°:>// &) mo(dt, d§) < oo, VT > 0.



62



Chapter 4

Applications

This chapter is devoted to some applications of the results obtained in Chapters
2 and 3.

In section 4.1, we consider the following white-noise driven semilinear
heat equation

du_10%  (5-1)(6-3) &W

u(0,€&) = z(£), u(t,0) =u(t,1) =0

where u > 0, z : [0,1] — [0,00) is continuous and satisfies z(0) = z(1) = 0,
W is a Brownian sheet and § > 3. Notice that (3,00) 3 d+— (§—1)(6 —3) €
(0, 00) is increasing and bijective.

We prove that, for all 6 > 3, there exists a unique solution u of (4.1)
and the process x — u(t,-), t > 0, is symmetric w.r.t. its unique invariant
measure: the -dimensional Bessel Bridge on [0,1]. Notice that (4.1) is a
SPDE with reaction-diffusion dissipative non-linearities and additive white-
noise, whose solutions are non-negative. The non-linearity in (4.1) is singular
enough to make the standard techniques non-effective.

We recall that Mueller in [Mu 98] and Mueller and Pardoux in [MP 99]
study the following SPDE on S! := R/Z with periodic boundary condition:

@— 1@4_@‘“4_ (ﬁ) aQW
ot~ 20€? T roe (42)
a(0,-) = &

where o« > 0, £ : S — R is continuous, infZ > 0 and ¢ satisfies suitable
growth conditions. The results of [Mu 98] and [MP 99| are that o = 3 is the

63
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critical exponent for 4 to hit zero in finite time. More precisely, the following
is proved:

1. If @ > 3, then a.s. 4(¢,£) > 0 forall t >0, £ € S™.

2. If a < 3, then with positive probability, there exist ¢ > 0, £ € S!, such
that a(t,&) = 0.

However, the critical case o = 3 is not covered by [Mu 98] and [MP 99]. The
study of (4.1) allows to prove, that, in the critical case o = 3 with ¢ =1, 4
has a well-defined solution for all time ¢ > 0 and 4~ € L;,.(O). Indeed, if u
solves (4.1), with 6 = 5, so that (6 —1)(6 — 3) = 8, and =z = 0, then @ > u,
and since u=® € L] (0O), then 472 € L] (O).

In section 4.2 we prove that, for N 3 & > 3, the law u®° of the 6-
dimensional Brownian Bridge admits an integration by parts formula along
the vector field H? > y — hy/|y|, where h € C2(0,1) and |y|(7) := |y(7)|s,
see (4.15) below. However, the resulting measure X°(h, -) is known explicitly
only on radial functions ® = ¢(| - |), ¢ € Cy(Kp). A complete explicit
description of ¥ (h, -) would lead to an Itd’s formula for the modulus of the

solution Z; : [0, 00) x [0, 1] x L?(0,1; R?) — R’ of the system of linear SPDEs:

(02; _ 10°Z; W'
ot 202 | oo’

Z&(ta ',SL') € (00)65 t>0

Zs(0,-,2) = z € H°

\

WO = (Wy,...,W;) and {W;},; are independent Brownian Sheets.

4.1 SPDE generated by the /-Bessel Bridge,
0> 3

Recall that in section 2.3 we defined for all § > 3:

This section is devoted to the proof of the following
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Theorem 4.1 Let § > 3. For all x € KyN Cy, there exists a unique random
continuous u : [0,00) x [0,1] — RT, such that v € L}, and:

loc

Ou _ 182u k(8) O°W

u(0,&) = (&), u(t,0) =u(t,1) =0

Moreover, u is adapted and the process x — u admits as unique tnvariant
measure the law 75 of the 6-dimensional Bessel Bridge on [0,1]. The sym-
metric bilinear form

1
Ci(Ko) 3 o0 = o | (Vip, Vi) drs
Ko

1s closable, and the process x — u s properly associated with the closure and
Strong Feller.

Remark 4.1 Let u’ be the unique solution of (4.4), for all § > 3.

e If 6, > 6, > 3, then the law of u” and u® are singular: indeed, u% is
Strong Feller, and therefore the law of u%(t, -) is absolutely continuous
w.r.t. 75, and ms,, w5, are singular. Analogously, the law of u° and the
law of u, solution of the Nualart-Pardoux equation (3.1), are singular.

e For all (t,£) € O, (3,00) > § — u’(t,£) is non-decreasing, and by
the uniqueness stated in Theorem 3.2, as 6 | 3: u’ | u uniformly on
[0,T] x [0,1], T > 0, and

5;33 dtd¢ — n(dt, d§) distributionally on O,
4 (u?)

where (u,7n) is the solution of equation (3.1), with f = 0.

Proof of Theorem 4.1-Uniqueness is clear by the dissipativity of the coef-
ficients in (4.4). We divide the proof of existence into several steps. The idea
is to approximate the solution u from below by means of functions u,, € > 0,
solving equations of Nualart-Pardoux type with suitable reaction-diffusion
coefficients f.. Indeed, we can choose f. so that the invariant measure of u,
is the law of z, see (2.32), which converges to ms. The results of section 2.3
are used extensively.
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Step 1. We define for 0 < p <e: f*, f. : [0,1] x [0, 00) > [0, 00),

P(r.a) = 0(5) 0(5) —1 1 1
fé(ma) 2 (e—l—ab)?’+(,0—|—a)2(e—l-oc)+(,0+6L)(€-|-Cb)2
(4.5)

BRIk

fe :=sup ff = hmfp
p>0

Recall (2.37) and (2.38).
Notice that —f? and Rt > y — —x(6)(e + y) 3/2 satisfy (H1)-(H3) of
Section 3.1. We set the following SPDEs with reflection at 0 for x € KoNCy:

( Ou? 182u” 2W
€ _ — p
ot 2 0&2 c (6 ud) + otos + Ne,p (2, €)
Y w2(0,€) = z(€), uf(t,0) = ut(t,1) =0 (4.6)
| ©# >0, die, >0, [ufdn.,=0
( Ov, _ 1 0%v, K(6) 52W
ot ~20¢ T a(e+vy " orog T Y
< (4.7)

ve(0,€) = z(£), ve(t,0) = ve(t,1) = 0

ve >0, df. >0, [v.df. =0

\

and we set X?(t,z) := uf(t,-). By Theorem 3.3, the unique invariant meas-
ures of u? is v/ dv, deﬁned in (2.37). By Theorem 3.8, the Revuz-measures
of 7., is given by 21/( 75 Ve oo(r, ).

We shall prove that u? converges to a process u, which is symmetric with
respect to 5 and satisﬁes (4.4). The proof of this is based only on monoton-
icity arguments and on the computations already performed in section 2.3.
Then, we shall prove that v, converges to a continuous process v, and u = v.
First, notice that:

(al) a > fP(7,a) is non-increasing
(a2) p > fP(7,a) is non-increasing

(a3) (0,a) > € — fP(7,a — €) is non-decreasing



67

(ad) f2(7,a) > K(6)(e +a)~*/2.

By Lemma 1.3 and (al)-a(4), we obtain:
bl) p+ uf is non-increasing

b2) € — € + u? is non-decreasing

(b1)
(b2)
(b3) € — v, is non-increasing, € — € + v, is non-decreasing.
(b4) u

b4

Step 2. By (bl) we obtain that, almost surely, there exists the limit u, :=
lim,jo u? = sup,,ouf. We set Xc(t,z) := lim, o Xf(¢,7). We claim that a.s.
for every ¢ > 0, u(t,-) € L?(0,1). Indeed, we have:

[ X, 0)| < [IXe(t 2)|| < [|IXE(E 0 + =, (4.8)

The first inequality follows from a comparison argument, and the second one
by the Lipschitz continuity of X?(¢,-). Therefore, we can reduce to the case
xz = 0. Integrating the first inequality in (4.8) with respect to (y*dv) ® P,
where the invariant measure v* dv of X”, we obtain:

BIX2 (0 < [ BIXE(0) ) 32(0) o(de) = [ llallt (@) v(da)

By Beppo-Levi and (2.40)-(2.41), we obtain:

E[[| X (%, 0)]] S/IICUII%(SE) v(dz) = Efl|z|l] < o0

and the claim is proved. By Dominated Convergence, we obtain:

/ Ejp(X. (t, 2))] 7.(z) v(d) = / o(@)7.(x) v(dz), Y € Cy(H),

i.e. 7.dv is an invariant probability measure for X.. Moreover, X(t,-) is
1-Lipschitz. Analogously, by (b2) € — € + u, is non-decreasing. Therefore,
there exist the limits v = lim.ou,, H 3 X(¢t,2) = lim. o X (¢,2) for all
t > 0. Be the equicontinuity of X,(¢,-), we have for ¢ € Cy(H):

Blp(X(t 25))] = limElp(X(t, 2))] = limE{p(2)] = Elo(s));

i.e. ms is an invariant probability measure for X.
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Step 3. By Dominated Convergence, we obtain for h € C2(0,1), h > 0:

(et ) ooty 3 [ Xls,onds - w2 [ [ o €+X

Since € — €+, is non-decreasing we can let € | 0, and obtain by Beppo- Lev1
Theorem:
K(9)

(X(t,x),h) — (x,h) — %/0 (W', X (s,z))ds — (h, W(t)) > 5

(4.10)
Recall that «* dv is invariant for X”. Then:

[ exetenm — = 3 [, X260 ds = oW 0)] 00 ot

= [E[ [mseamas + [ nag, v
= i [ B @@ ) + 5 [ arne) [ ot

First, we have by Step 7 of the proof in section 2.3:

lim lim dr h(r )/ ?(z) og(r,dz) = lim i dr h(r)/%(x) oo(r, dx)

el0 plO €l0

= lim drh /ZT = (.

el0
Furthermore, by (2.50), (2.51) and (2.52):

i [ (1, BL? ()] 0) () = T B () = “(j)E[w ! >}

el0 plO

By Dominated Convergence, we have:

1

lim ]E[(Xf(t,-),h)—(-,h>——/0(h",Xf(S,'))dS—(haW(t»] Ve dv

pl0 2

= B[ (Xt 2 )~ (o) — 5 [ 00X, (o,2) ds = W 0|



69

By the 1-Lipschitz continuity of X(t,-), we can let € | 0 and obtain:

E[(X(t,x(g),h)—(x(g,h}—% /0 (W', X (s, 25)) ds — (h, W(t))

1
= —k(6)E [(h )} (4.11)
On the other hand, since € — X (¢, z.) is non-increasing, we have by (4.10):

I K(0)
0= 5/0 e e Xz

< (W = Gty =5 [ WX, dsde = W)

< (X(t,25),h) + IIh"II/0 1X (s, z5) [l ds — (b, W(2)),

E [<X(t,z5>,h> ) [ 1020 ds - <h,W(t>>]

= E[(zs, h) + {1 llzs]] < oo,

and by Dominated Convergence Theorem we obtain:

SR R e —r

= lim t]E[(h, ﬁ)} — tE [(h(;)Q} | (4.12)

By (4.10), (4.11) and (4.12), we obtain that there exists A C Kj x £ with
75 ® P(A) = 1, such that for every (z,w) € A, we have for all ¢t > 0:

(X(t,2), h) = (x,h)—i—%/o ((M,X@,WH%,h)) ds + (h, W (1))
(4.13)

Step 4. By (b4) u. > v,, and by (b3) there exists the limit in the uniform
norm of v, as € | 0. Setting v := lim,jy v¢, we have that v is a.s. continuous,
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and u > v. Setting Y (¢,x) := v(t,-), we have that Y (¢,-) is 1-Lipschitz.
Moreover, by Beppo-Levi, for h > 0:

(v(t, ), h) > (x,h) + %/0 ((v(s, ), A"y + (%, h)) ds + (W(t), h).

If now h(£) := £(1 =€), £ € [0,1], then h € H* N H}(0,1), h > 0 on (0,1)
and A" < 0. By (4.13) for all (z,w) € A, t>0:

(u(t, '), h’> > <U(t’ ')a h)

> (x,h) + 1/0 ((v(s, )), A"y + (ﬁ)?’, h)) ds + (W (t), h)

2 (v(s,+))
> (z, h)+%/0 ((u(s, -),h”)—i—(%,h)) ds + (W (t), h)
= <u(t’ )7h>

so that for all (z,w) € A, for allt > 0 u(t,-) = v(¢,-) in H. By Fubini-Tonelli
Theorem, for P-a.e. w, we have m5(A N (Ky x {w})) = 1. By the continuity
of X(t,-) and Y(t,-), we obtain that u(t,-) = v(t,-) in H for all ¢ > 0,
x € Ky, a.s. Therefore, v is a.s. continuous, solves (4.4) and is symmetric
with respect to its unique invariant measure ;.

The last assertions of Theorem 4.1 can be proved arguing as in the proof
of Theorems 3.4 and 3.5. [

4.2 IbPF on ¢-d Brownian Bridge, ¢ > 3

Let N> § > 3 and denote the d-dimensional Brownian Bridge (682)¢p,1- We
set H® = @%_ H = L*(0,1;R?),

H >y~ |yl € Ko, |yl(7) := |y(n)|gs, 7€ (0,1).
Co(Ko) 2 ¢ = B € Co(H®), B(y) = o(ly]).

Recall that the image measure of u®° under |- | is 7, i.e.

| o) = [ e@man,  veeoum. @

Ko

We denote the gradient of ® € W12(H? ;®%) by V®. Then:



71

Theorem 4.2 For allh € H*NHy(0,1), there exists a finite signed measure
Yo(h,-) on H° such that for all ® € WH2(H?, u®%) N Cy(H?):

[ @aw). b Dy = = [ o)) @)

The measure X0 (h, ) is equal, on the radial functions ® = o(|+]), ¢ € Cy(Ky),
to:

/H5 ®(y) 2% (h, dy) = /H(; o(ly|) S (h, dy)

_ /K pla) (. ) mofd) + / Cdr h() / o(x) oo(r, dz), if 6 =3,

/m@(y) Eé(h, dy) = /HJQDU?JDEJ(h, dy)

_ / o(z) ((z,h") + K(0) (&2, h)) ms(dz) if 6 > 4.
Ko
Proof-Let:
Wh2(H®, u®%) 3 @, 0 s A%(®, ) := %/ (VO, V) du®’,
HS

Let D be the closure in WH2(H?, u®°) of {@ := ¢(| - |) : ¢ € Lip(Kp)} and
II: WY2(H?, 1®) — D the unique symmetric orthogonal projector w.r.t.
Af := (-, -)p2(uesy + A°. Arguing as in Lemma 3.4, we find:

5 | (Ve Voydns = XY, Vb e W)
Ko

Since (D, A?) is a Dirichlet form, II satisfies a maximum principle:
||H(I)||L°°(u®5) < ||(D||L°°(u®5)a Vo € W1’2(H67M®5) n LOO(H’@&)
Let vy (z) := (z, h), © € Ko, then:

V,(y) = h Y for p® —ae. y.

y|’

Let ® € WH2(H?, u®2)NL>®(u®?). Then II® = @ for some ¢ € WL2(Ky, 75)N
L*>(ms), and

/ FoW),h Ly 1 (dy) = [ (V8T s du,
HS |?J| S
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_ — 1
N(@. ) = M125,) = [ pvndns + 5 [ (Vo.ndm,
Ko Ko

where A = (-, 12(ues) + A%, By Theorem 4.1, there exists a sequence
©n € Lip(Ky) N WH2(Ky, ms), such that: ¢ converges to ¢ pointwise and
weakly in W12(Ky, 75), and ||¢n || is uniformly bounded. By (2.2) for 6 = 3
and (2.3) for 6 > 4 we obtain:

N2 Y
[T b Ly )| < GO gy < @l

and by the analogue of (ii) in Theorem 3.7 we have the thesis. [

The interest of Theorem 4.2 is that the field H° > y — hy/|y| does not
take values in the Cameron-Martin space of the Gaussian measure u®°, i.e.
(H$(0,1))°. Let now Zs : [0,00) x [0,1] x L%(0,1;R?) — R’ be the solution
of the system of linear SPDEs:

(02 _ 10°%; W’
ot 2 0g2 oto¢”’

Y Zs(t,2) € (Co)’, t>0 (4.16)

Z5(0,-,2) = z € H’

\

WO = (Wy,...,W;), and {W;}; are independent Brownian Sheets. By Pro-
position 1.1, Zs is associated with the Dirichlet Form A°. Then, by Theorem
4.2 we can apply the celebrated Fukushima decomposition and, by Theorem
6.2 in [Fu 99], obtain:

Corollary 4.1 For all h € H?> N H}(0,1), we have the following decomposi-
tion:
(1Zs(t,2)|, By = (||, By + N™(t) + (W(t),h)m

where (W (t))io s a cylindrical white-noise in L?(0,1) and N" is a bounded-
variation Additive Functional of Zs with associated Revuz-measure equal to
Yo(h,-).
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