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Abstract

In this paper we study the solution of the stochastic heat equation
where the potential V' and the initial condition f are generalized stochastic
processes. We construct explicitly the solution and we prove that it belongs
to the generalized function space ‘7:(19*)* (N).
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1 Introduction

In the last years new classes of spaces of generalized and test functions were
introduced by many authors, see e.g., [CKS98], [GHORO00]. Let N be a complex
Fréchet nuclear space with topology given by an increasing family of Hilbertian
norms {|-|,, n € N}. It is well known that A may be represented as N' = NyenNV,,
where the Hilbert space N, is the completion of N with respect to | - |,,, see e.g.,
[Sch71], [GV68]. By the general duality theory AN is given by N’ = UpenN_p,
where N_,, = N is the topological dual of NV,,. Let  : R, — R, be a continuous



convex strictly increasing function such that

lim b(z) =00, #(0)=0.

T—00 I
Such functions are called Young functions, see [KR61]. The test function space
Fo(N') is defined as the space of all holomorphic functions on N’ with an expo-
nential growth condition of order . More precisely, for any m > 0 and n € N we
denote by Fy.(N_,) the Banach space of holomorphic functions on the Hilbert
space N_,, with the following growth condition

1 Fllgm = sup |f(2)| exp(=0(m[z|-n)) < oo. (1)

Then Fy(N') = NmsonenFo,m(N_n) equipped with the projective limit topology
is our test function space. The corresponding topological dual, equipped with the
inductive limit topology, is denoted by Fj;(N') which is the generalized function
space, see [GHOROOQ] for more details. In particular, if ' = Sc(R) (the com-
plexified of the Schwartz test function space S(R)) and #(z) = 22, then Fy(N”)
is nothing than the analytic version of the Kubo-Takenaka test functions space
and the corresponding topological dual is the Hida distribution space, see e.g.,
[KT80a], [KT80b], [Hid80]. The test function space of Kondratiev-Streit type
(S)s, B € [0,1) are obtained choosing 6(z) = T, see [KS93], [Oue9d4], [Oue9s],
[Kuo96], [Oba94].

More recently, it was introduced a multivariable version of the above spaces,
see [Oue00]. In fact, we can replace the nuclear space N’ by a Cartesian product
NiX...x Ny, keNand 6 by (61,...,60;) where 6; are Young functions and N;
is a complex nuclear Fréchet space, 1 < 7 < k, then it is possible to extend all
the results obtained in [GHORO00]. In particular, the Laplace transform L is a
topological isomorphism between the generalized function space Fj (N X. .. xN))
and Gp«(Ny X ... X Ny), where Go« (N} X ... x Ny) is the space of entire functions
on N X...x N which verify an exponential growth condition similar to (1) with
respect to 6% = (67,. .. ,0;), where 8} (x) = sup,((tz —6;(t)) is the polar function
corresponding to 6;, see [KR61] for this notion. Another important result in
[Oue00] is the characterization theorem for convergent sequences of distributions
in Fj (N x ... xXN]), see Proposition 10 below. In fact, we can directly define for
any given continuous stochastic process X (t) € F5 (N x ... x N}) the integral

/0 tX(s)ds =t /0 t LX(s)ds.

Very useful in applications is the convolution product on F; (N”), see  BCEOOO00]
and [GHKOOO0] for details. In fact, we define the convolution of two distributions
O,V e Fj(N') by

QU =L LD LY)
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which is well defined because Gy (N) is an algebra under pointwise multiplication.

We can define for any generalized function ® € F;(N’) the convolution expo-

nential of ® denoted by exp* ® as a generalized function on .7-'(*89*)*(/\/ ). Note

that for a generalized function on the Kondratiev-Streit space ® € (5)j the Wick

exponential of ® exp® ® does not belong to (5’)23, but it belongs to a bigger space

of distributions (S)~! so called Kondratiev distribution space, see [KLS96].
Now we consider the following Cauchy problem

2X(t,z,w) = aAX (t,z,w) + X (t,z,w) * V(t,2,w)

: (2)
X(0,z,w) = f(z,w)

where a € Ry, t € [0,00) is the time parameter, z = (z1,... ,,) € R is the spa-
. . 2 . .
tial variable, 7 € N, and A =37, % is the Laplacian on R", w = (wy,... ,wy)

is the stochastic vector variable in the tempered Schwartz distribution space
Sh = S'"(R,R?), d € N, and * is the convolution product between generalized
functions on F; (S} x R"). The problem (2) was analyzed by many authors from
different point of view with the Wick exponential instead of the convolution prod-
uct, see e.g., [HOUZ96], [Pot94] and references therein.

Combining the convolution calculus and the multivariable version of the above
tools we give an explicit solution of the Cauchy problem (2), see Proposition 12,
(14) below. In particular when V' is a positive distribution, then there exists an
unique Radon measure v (see e.g., [OR00]) on the real part of N =: M’ which
represents V' and therefore the Fourier transform of v is given by

(Viexp(i€)) = o(6) = [ exlity, )dv(y)

Moreover, if v is a Radon measure on M’ such that there exists n € N with
v(M_,) =1 and v satisfies some integrability condition, e.g.,

/ exp(B(mly|_n))dv(y) < oo,

for some m > 0, then v is in the Albeverio-Hgegh-Krohn class, [AHK76].

We also would like to mention the work of Asai et al. [AKKO00], [KSW99],
and [Wes95] for related considerations on Feynman integrals for the Albeverio-
Hgegh-Krohn class of potentials.

2 Preliminaries

In this section we introduce the framework need later on. We start with a real
Hilbert space H = L*(R,R?) xR", d,r € N with scalar product (-, -) and norm |-|.



More precisely, if (f,z) = ((f1,---, fa), (z1,... ,2,)) € H, then the Hilbertian
norm of (f,z) is given by

d T
= Z/Rff(u)du + fo = |f‘%2(R,Rd) + |zl
i=1 i=1

Let us consider the real nuclear triplet
M =5RR) xR D>H D SRR xR =M. (3)

The pairing (-, -) between M’ and M is given in terms of the scalar product in
H, ie., ((w,7), (& Yy) = (W) prry + (2, Y)r, (W,z) € M and (§,y) € M.

Since M is a Fréchet nuclear space, then it can be represented as

M= ﬂs (R,RY) x R = ﬂMn,
n=0
where S, (R, R?) x R" is a Hilbert space with norm square given by |- |2 + |- |%,,

see e.g., [HKPS93] and references therein. We will consider the complexification
of the triple (3) and denote it by

N'DZDON, (4)

where ' = M + M and Z = H +iH. On M’ we have the standard Gaussian
measure y given by Minlos theorem via its characteristic functional for every

(€,p) € M by

Cle.p) = [ explil(,a), (€ DM, 2) = exp(—5 (6 + o).

In order to solve the Cauchy problem (2) we need to introduce an appropriate
space of generalized functions for which we follow closely the construction in
[OUGOO] Let 6 = (91, 02) : Rﬁ_ — R, (tl, tg) — 91(751) + 02(t2) such that

lim —01 ®) =00, lim —02 (t)

t—oo T t—soo
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where 6,6, are two Young functions. For every pair m = (mq, ms) where mq, mo
are strictly positive real numbers, we define the Banach space Fy,,(N_,), n € N
by

FomN_n) = {f : N = C, entire, ||fllgnn, = S}\pr |f(2)| exp(—0(m|z|_n)) < o0},

zeN_



where for each z = (w, ) we have 8(m|z|_,) := 0;(m1|w|_,) + O2(m2|x|). Now we
consider as test function space as the space of entire functions on N’ of (61, 65)-
exponential growth and minimal type given by

‘7:0(-/\/’,) = ﬂ f@,m(an)a

TTLE(RX_)Q,TLENO

endowed with the projective limit topology. We would like to construct the triplet
of the complex Hilbert space L?(N,~) by Fyg(N”), to this end we need an addi-

tionally condition on the pair of Young functions (0, 6;). Namely, lim; 01(;) <
00, ¢ = 1,2. This is enough to obtain the following Gelfand triplet
FoN') D L*N',7) D Fo(NY), ()

where F; (N") is the topological dual of Fy(N") with respect to L*(N”, ) endowed
with the inductive limit topology which coincides with the strong topology since
Fo(N') is a nuclear space, see e.g., [Oue00] or [GV68] for more details on this
subject. We denote the duality between Fj(N') and Fop(N') by (:,-) which is
the extension of the inner product in L?(N”, 7).

Remark 1 For every entire function f : N/ — C we have the Taylor expansion

f(Z) = Z('Z@ka fk)?

keNg

where &% € N"®F and this allowed us to identify each entire function f with the

corresponding Taylor coefficients f: (fe)32y- The mapping f — T(f) = f is
called Taylor series map.

Using the mapping 7" we can construct a topological isomorphism between
the test function space Fy(N') and the formal power series space Fy(N') defined
by

Fﬂ(N) = ﬂ FB,m(Nn)a (6)

mée(R%)?,n€Ny

where

Fym(No) = F= (kg fo € NZHLIFI? =D 0.7 m | fil < o0
keNg
here 6% = 9;2195,1%2’ with 6;x, := inf,~o w, 1 = 1,2. In the case where
0(z) = 2%, then Fy1(N,) is nothing than the usual Bosonic Fock space associated
to Ny, see [HKPS93] for more details.



In applications it is very important to have the characterization of generalized
functions from F;(N”). This will be done in Theorem 2 with the help of the
Laplace transform. Therefore, let us first define the Laplace transform of an
element in Fy (N”'). For every fixed element (£, p) € N we define the exponential

function exp((&,p)) by
N3 (w,2) = exp((w, §) + (p, @) (7)

It is not hard to verify that for every element (£,p) € N exp((§,p)) € Fo(N').
With the help of this function we can define the Laplace transform £ of a gener-
alized function ® € F;(N') by

(&, p) = (LD) (&, p) = (@, exp((&, p)))- (8)

The Laplace transform is well defined because exp((£,p)) is a test function. In
order to obtain the characterization theorem we need to introduce another space
of entire functions on N with #*-exponential growth and arbitrary type, where
f* is another Young function defined by

0*(x) := sup(tz — 6(t)).
>0
The next characterization theorem is essentially based on the topological dual
of the formal power series space Fy(N') defined in (6) and the inverse Taylor series
map T !, see e.g., [GHORO0] or [Oue00] for details. In the white noise analysis

framework this theorem is known as Potthoff-Streit characterization theorem, see
[PS91], [KLP*96] for details and historical remarks.

Theorem 2 The Laplace transform is a topological isomorphism between Fy(N')
and the space Go«(N'), where Gy« (N) is defined by

g@* (N) = U gﬂ*,m(Nn)a

mE(Rl)z,nENO

and Go« ;m(N2,) is the space of entire functions on N, with the following 0-exponential
growth condition

Gorm(Nn) 2 g, 19(€,p)| < kexp(0] (m1]€ln) + 05(malpl)), (&, p) € N

3 The Convolution Product *

It is well known that in infinite dimensional complex analysis the convolution
operator on a general function space F is defined as a continuous operator which
commutes with the translation operator, see e.g., [Din81]. This notion generalizes
the differential equations with constant coefficients in finite dimensional case. If
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we consider the space of test functions F = Fp(N”), then we can show that each
convolution operator is associated with a generalized function from Fj(N') and
vice-versa, see e.g., [GHKOO00].

Let us define the convolution between a generalized and a test function on
Fy(N') and Fp(N'), respectively. Let ® € F;(N') and ¢ € Fyp(N') be given,
then the convolution ® * ¢ is defined by

(@ * @) (w, 7) = (&, 7 (wa) P,

where 7_, ;) is the translation operator, i.e.,

(")) (10, y) == p(w +n,2 +y).

It is not hard the see that ® x ¢ is an element of F»(N”’), see [GHKOO00, Propo-
sition 2.3]. Note that the dual pairing between ® € F;(N') and ¢ € Fy(N')
is given in terms of the convolution product of ® and ¢ applied at (0,0), i.e.,

(@ *¢)(0,0) = (2, ¥)-
We can generalize the above convolution product for generalized functions as

follows. Let ®, ¥ € F;(N’) be given. Then ® x ¥ is defined as
(@ W, ) = (@,¥ x ), Vo € Fy(N'). (9)

This definition of convolution product for generalized functions will be used on
Section 4 in order to solve the heat stochastic equation. We have the following
connection between the Laplace transform and the convolution product.

Proposition 3 Let (§,p) € N be given and consider the exponential function
exp((&,p)) defined on (7). Then for every ® € Fj(N') we have

® xexp((€,p)) = (L) (& p) exp((€, p))-

Proof. In fact for every (w,z) € N we have

T(—w,—2) €Xp((§,p)) = exp((w, §) + (p, 7)) exp((§,p)),

then

® x exp((&,p)) (W, 7) = (P, T(—w,~2) exp((§, P)))
= exp((w, &) + (p, 7)) (@, exp((£, )
= (LD)(&, p) exp((§, p))(w, x),

which is just the required result. |
As a consequence of the above proposition and the definition in (9) we obtain

the following corollary which says that the Laplace transform maps the convolu-

tion product in F;(N') into the usual pointwise in the function space Gy« (N).
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Corollary 4 For every generalized functions ®,V € F;(N”)
L(D*T) = LOLV.

Remark 5 Since Gp(N) is an algebra under usual pointwise product and ap-
plying Theorem 2 we may define convolution product between two generalized
functions as

O+ V=L (LDLY).

We stress the fact that the convolution product is commutative and associative
operation on F;(N7).

Using Corollary 4 we may define the convolution exponential of a generalized
function which will be the main object in solving the stochastic partial differential
equation in (2), see (14). Before we need the following useful Lemma which is a
consequence of the characterization theorem.

Lemma 6 Let ® be an element on Fj(N*), then exp(LP) belongs to G- (N).

Using the inverse Laplace transform and the fact that any Young function 6
verify the property (6*)* = 6 we obtain that £ (G, (N)) = oy W)

Definition 7 For every generalized function ® € Fj(N') we define exp* ®, the
convolution exponential functional of ®, by

L(exp* @) = exp(LD).

A direct consequence of Lemma 6 and the above definition we obtain the
following corollary.

Corollary 8 For every ® € F;(N') the convolution functional exp* ® is an ele-
ment of the space '7:*@9*)* (NY).

Remark 9 In the next section we will handle a special kind of stochastic pro-
cess on Fy(N'), namely deterministic process. In order to apply our general
framework we need the following identification: if ® = &; ® ®, is a generalized
function, where @, € Fj (S;¢) and @, € F;,(C"), then we have

(LD ® By)(&,p) = (D1 ® Dy, exp((€,p)))
= (@1 ® 2, exp(§) ® exp(p))
= (£191)(&)(L2®2)(p),

where £, is the Laplace transform with respect to the first variable and £y with
respect to the second one. If 1 is the function such that 1(w) = 1, Vw € S,
then every element V' € F; (C") can be identified with V' = 1® V' and moreover
(LV)(&,p) = (L2V)(p). The same reasoning can be applied to the convolution
product, i.e., the convolution product V x f, f € F; (C") coincides with the usual
convolution product with respect to the spatial variable.



4 Applications to Stochastic Partial Differential
Equations

A one parameter generalized stochastic process with values in F; (N”) is a family
of distributions {®;, ¢t € I} C Fy(N'), where [ is an interval from R, without loss
generality we may assume that 0 € I. The process ®, is said to be continuous
if the map t — ®; is continuous. In order to introduce generalized stochastic
integrals, we need the following result proved in [OR99] or [Oue00, Theorem 18|.

Proposition 10 Let (®,)nen be a sequence of generalized functions on Fy(N”).
Then the following two conditions are equivalent:

1. The sequence (®,)nen converges in Fy(N') strongly.

2. The sequence ((i>n = L(Py))nen of Laplace transform of (®n)nen satisfies
the following two conditions:

(a) There exists p € N and m € (R%)? such that the sequence (®n)nen
belongs to G+ ;m(N,) and is bounded in this Banach space.

(b) For every point z € N, the sequence of complex numbers (®,(2))%,
converges.

Let {®;}ic1 be a continuous Fy (N')-process and put

3
-

@, = O, neN :=N\{0}, tel

0

S|+
il

It is easy to prove that the sequence (®,) is bounded in Gp-(N) and for every
EeN,peC (9,(p)), converges to fo s(&,p)ds. Thus we conclude by
Proposition 10 that (®,) converges in Fy (N”). We denote its limit by

t
/ ®.ds := lim &, in F;(N').
0

n—oo

Proposition 11 For a given continuous generalized stochastic process X we de-
fine the generalized function

Yi(z,w) = /0 X,(z,w)ds € F5(N")

(/Xxwds>g, /LXp,

Moreover, the generalized stochastic process Yi(x,w) is differentiable in Fj(N")
and we have 2Y;(z,w) = X;(z,w).



Proof. Since the map s — X, € Gy-(N) is continuous, {X,, s € [0,]}
becomes a compact set, in particular it is bounded in Gy« (N') i.e. there exist
n €N, m = (my,my) € (R%)? and C; > 0 such that for every £ € N, p € C" we
have

| X,(&,p)| < Crelitmildttitmalel) s ¢ [0, 7], (10)

The inequality (10) show that the function & — fot X, (£, p)ds belongs to Gg- (N).

A

Consequently the pointwise convergence of the sequence of functions (X,)p%, to
fot X,ds becomes a convergence sequence in Gy« (N') and we get

el t
/Xsds:/ X,ds.
0 0

Let to € I and € > 0 be such that [ty — €, t, + €] C I. It follows from (10) that

t
0*,n,m§/ ”Xs
to

< |t = to|Chy -

||}A/;5 - Zo

0*,n,md3

This proves the continuity of the map I 3t — Y; € Gy-(N) which is equivalent
to the continuity of the process Y; on F;(N'). By the same argument we prove
the differentiability of Y;. |
We are now ready to solve the Cauchy problem in (2). Let us recall again
this problem for the reader convenience. Let f be a given generalized function in
Fy(N') and V a Fj(N')-valued continuous generalized stochastic process given.
Consider the following stochastic differential equation with initial condition f

2 Xi(w, 1) = aAXy(w, z) + Xi(w, z) * Vy(w, z).
: (11)
Xo(w, z) = f(w,x)

where a is a constant and A is de usual Laplacian with respect to the spacial
variable z € R". To solve this SPDE we apply the Laplace transform to (11) and
obtain

%Xt(é-ap) = a’p2Xt(§)p) + Xt(é-ap)‘z(fap)

' A , (12)
XO(&:p) = f(gap)
The solution of (12) is given by
¢
Xu(&:p) = f(&,p) exp <ap2t+/0 ‘Z(E,p)d8> : (13)

Now the solution of the system (11) is given using Proposition 11, Corollary 8
and the characterization theorem, Theorem 2. We give it on the next proposition.
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Proposition 12 The Cauchy problem (11) has an unique solution X; which is
a generalized .7-';(]\/ "Y-valued stochastic process, where the Young function [ is
given by B = (e’ )*. Moreover, the solution X; is given explicitly by

Xi(o2) = flo) r e ([ Vi, )ds ) (14

where vYoqt 15 Gaussian measure on R" with variance 2at.

Deterministic case

In the special case when the potential V' and the initial condition f do not depend
on the random parameter w the Cauchy problem (11) is solved as follows

Corollary 13 Let V' and f be independent of w, then the Cauchy problem (11)
reduces to

%X(t, z) =aAX(t,x)+ X(t,z) *x V(t,x)
’ (15)
X(0,2) = f(z)

using Remark 9 to interpret the convolution product *. The solution of (15) is
given by

X(tx) = (9(t, ) * 72a) (@), (16)

where g is equal to

o(t,7) = f(z) exp (/OtV(s,x)da’) .

Remark 14 In the particular case when a = % and r = 1, it is well known that
the solution of (15) when V' does not depend on the time parameter ¢ and the
convolution product * is replaced by the usual pointwise product is given by the
famous Feynman-Kac formula, see e.g., [RS75] or [KS91]

uttn) = [ stwtyes t V(o(s)ds ) dun(o), (1)

where p, is supported on the set €2, of Holder continuous paths w of order o with
0<a< % The measure pu, has the property

[ hNdisw) = 4mt) 7 [ ) exp(-lo - y/()dy,  (18)
a R
where h is any measurable function on R such that h(-) exp(—|z — -|?/(4t)) is
integrable.

11



In our framework, we can write the solution (16) and as

X(t,2) = / (9(t,2 + y)dn(y) (19)
= [, b+ Mog )

= [y T o)) exp (o + (Liog 1) (o),

where + is the standard Gaussian measure on S'(R).

It is clear that the solutions (17) and (19) coincides when V' is constant.
In fact, if we interpret V(z) = V(x)dy (here &y is the Dirac measure at 0) the
convolution: V *wu(t,-) is given by

(Vo) * u(t,-)(xz) = V(0)u(t, x).

Therefore the convolution product (V x u(t,-))(z) coincides with the pointwise
product V(z)u(t,z) when V is constant.

Moreover, if the potential V' is given by a measure v on R which verifies a
certain integrability condition, e.g., there exists m > 0 and a Young function 6
such that

/R exp(8(mla))dv(x) < oo,

which implies that v € Fy(R), then we have

(V*u(t,-))(z) = /Ru(t, x4+ y)dv(y).
In this case we can also apply our method. A special case of such potentials was
investigated by Albeverio et al. [AHK76], [KSW99] (see also references therein for
more details and historical remarks ) and more recently by Asai et al. [AKKO00].
For a general potential V' it is still open the question whether or not exists a
distribution @, such that

(Dy xu(t,-))(z) = V(x)u(t, z).
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