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Abstract: The main aim of this work is to establish an averaging principle
for a wide class of interacting particle systems of birth-and-death type in the
continuum. This principle is an important step in the analysis of Markov evolu-
tions and is usually applied for the associated semigroups related to backward
Kolmogorov equations, c.f. [Kur73]. Our approach is based on the study of
forward Kolmogorov equations (a.k.a. Fokker-Planck equations). We describe
a system evolving as a Markov process on the space of finite configurations,
whereas its rates depend on the actual state of another (equilibrium) process
on the space of locally finite configurations. We will show that ergodicity of
the environment process implies the averaging principle for the solutions of
the coupled Fokker-Planck equations.
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1 Introduction

Several models of dynamics for interacting particle systems are described by Markov
evolutions of finitely or infinitely many indistinguishable particles in a location space, lets
say for simplicity in Rd. Therefore, the natural state space for such Markov evolutions is
given by

Γ = {γ ⊂ Rd | |γ ∩K| <∞, ∀K ⊂ Rd compact },

where |γ ∩ K| is the number of points of the configuration γ inside the volume K, cf.
[AKR98a]. Stochastic dynamics of interacting particle systems include elementary events
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such as birth (γ → γ ∪ x, x ∈ Rd\γ), death (γ → γ\x, x ∈ γ) and jumps of individual
particles (γ → γ\x∪ y, x ∈ γ, y ∈ Rd\γ). Here and in the following we will always write
γ∪x instead of γ∪{x} and likewise for γ\x, γ\x∪y,Rd\γ, etc. It is also possible (at least
for Markov evolutions with the constraint |γ| <∞) to include other types of elementary
events such as collisions, fragmentation, etc., see e.g. [BK03, Kol06, EW03].
In this work we will use as environmental processes so-called birth-and-death Markov
evolutions on Γ which are described by their Markov generators LE. These operators are
given by means the following heuristic form

(LEF )(γ) =
∑
x∈γ

d(x, γ\x)(F (γ\x)− F (γ)) +

∫
Rd

b(x, γ)(F (γ ∪ x)− F (γ))dx. (1.1)

With a heuristic generator is associated a backward Kolmogorov equation

∂Ft
∂t

= LFt, Ft|t=0 = F0, (1.2)

that leads to the related semigroup (provided, of course, that a solution exists). The
function d(x, γ\x) ≥ 0 is called the death intensity and b(x, γ) ≥ 0 the birth intensity.
The corresponding processes were constructed and studied for several special classes of
intensities d and b. Equilibrium dynamics can be treated by the theory of Dirichlet forms.
Such approach was first used in [AKR98a, AKR98b] to construct the equilibrium gradient
diffusion process on Γ and to study their ergodicity. For equilibrium dynamics of birth-
and-death type in [KL05] the Glauber dynamics were constructed and the existence of a
spectral gap was shown. For both examples grand canonical Gibbs measures are invariant
measures.
Non-equilibrium dynamics with particular intensities were considered in [GK06]. There
the authors have used stochastic differential equations for the construction. For the
contact model, the corresponding non-equilibrium process was constructed by a suitable
approximation scheme in [KS06]. For other classes of intensities one tries to study instead
the evolution of states in the weak form, i.e. the Fokker-Planck equation dual to (1.2),
given by

∂

∂t
〈F, µt〉 = 〈LF, µt〉, 〈F, µt〉|t=0 = 〈F, µ0〉. (1.3)

The pairing between functions F : Γ −→ R and probability measures µ on Γ is simply

〈F, µ〉 =

∫
Γ

F (γ)µ(dγ).

It was developed an approach to the study of Fokker-Planck equations in terms of factorial
moments of states a.k.a. correlation functions [KK02, FKO09]. For many specific models
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there exists already a number of works (see e.g. [FKK09, FKK12, FKK13, FKKZ14,
FKKO15, FKKK15] ) for pure birth-and-death dynamics. For dynamics of jumping par-
ticles we refer to [FKO12, BKK15]. See also [FKK15] for a review on the developed
techniques so far.

Another class of interacting particle systems is formed by models where the number of
particles is finite for each fixed moment of time. Such models are also under active
investigation, see e.g. [BK03, EW03, FM04, Che04, Kol06, Fri16, Bez15]. In our notions
such systems evolve on the state space

Γ0 = {η ⊂ Rd | |η| <∞}

and the general form of the pre-generator is given by

(LSF )(η) =
∑
ξ⊂η

∫
Γ0

(F (η\ξ ∪ ζ)− F (η))K(ξ, η, ζ)dλ(ζ), (1.4)

where dλ(ζ) denotes the Lebesgue-Poisson measure on Γ0, see below. In this form the
operator LS includes birth, death and jumps of groups of particles. It is worth noting that
it is also possible to consider general kernels K(ξ, η, dζ), but since we want to investigate
here the evolution of densities we restrict ourselves to (1.4). Under suitable conditions on
K this operator can be rewritten as

(LSF )(η) =

∫
Γ0

(F (η)− F (ξ))Q(η, dξ),

where the transition kernel is given by

Q(η, dω) =
∑
ξ⊂η

∫
Γ0

δη\ξ∪ζ(dω)K(ξ, η, ζ)dλ(ζ).

Hence, under some general conditions, it determines a pure jump Markov process. For
pure jump Markov processes equation (1.2) has been first analyzed in [Fel40] and the
theory of this kind of stochastic processes is quite well developed. Between recent works
on this subject we would like to mention [FMS14]. There the authors constructed (even
in the time-inhomogeneous case) associated (sub-)Markov transition functions and gave a
characterization for the related minimal process to be conservative. In [Che04] is given a
complete summary for jump processes and considered applications to interacting particle
systems on a lattice. In [Bez15] was constructed a Markov process with generator (1.1) for
specific intensities as the strong solution to the related stochastic differential equations.
Recently for the more general generator LS in [Fri16] the corresponding conservative
Feller evolution system was been constructed in the time-inhomogeneous case. We will
use essentially the results of the latter work.
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The main aim of this work is to describe the behaviour of a system with state space Γ0

evolving in the presence of an equilibrium, ergodic environment, which is described by a
Markov process with the state space Γ and an associated invariant measure µ. This situa-
tion is a particular case of so-called random evolution framework, see e.g. [Pin91, SHS02].
Examples for such environments have been constructed e.g. in [AKR98a, AKR98b, KL05].
There (via the Dirichlet forms technique) the existence of a Markov semigroup TE(t) on
L2(Γ, µ) has been shown, where µ is the unique invariant measure and TE(t) is symmet-
ric on L2(Γ, µ). As a consequence this semigroup can be extended to all Lp(Γ, µ) with
1 ≤ p < ∞ and for p = 1 this extension, also denoted by TE(t), gives the evolution
of densities. More precisely, if R ∈ L1(Γ, µ) and the environment is in the initial state
Rdµ, then the time evolution is given by Rtdµ, where Rt = TE(t)R. Assume that TE(t)
is ergodic on L1(Γ, µ), i.e., TE(t)R →

∫
Γ

R(γ)dµ(γ), t → ∞ in L1(Γ, µ) and denote by

LE its generator. We will study an evolution of a system described by the Kolmogorov
operator LS, cf. (1.4), with kernel K(γ, ξ, η, ζ), which additionally depends on the present
microscopic state γ ∈ Γ of the environment. Therefore, solutions to the Fokker-Planck
equation

∂ρt
∂t

= (LS)∗ρt + LEρt, ρt|t=0 = ρ0,

on the space L1(Γ × Γ0, µ ⊗ λ) describe the evolution of densities of the joint Markov
process for the system and environment. Here (LS)∗ stands for the adjoint operator on
densities ρ(η, γ), which depends on γ as a parameter but acts only on the first variable η.
Similarly, LE acts only on the second variable γ. The weak-coupling limit is obtained via
an approximation ρεt , where ρεt solves the rescaled version of the Fokker-Planck equation

∂ρεt
∂t

= (LS)∗ρεt +
1

ε
LEρεt , ρεt |t=0 = ρ0 ∈ L1(Γ0, λ).

Thus we will seek for the limit ρεt −→ ρt when ε → 0. In such a case we will prove
that ρt solves the Fokker-Planck equation for a finite system determined by the averaged
generator

LF (η) =
∑
ξ⊂η

∫
Γ0

(F (η\ξ ∪ ζ)− F (η))K(ξ, η, ζ)dλ(ζ),

where K(ξ, η, ζ) =
∫
Γ

K(γ, ξ, η, ζ)dµ(γ). The aim of this work is to realize this approach

and show for one specific example how this can be applied.

The paper is organized as follows. In the first section we collect general properties for
the spaces Γ and Γ0. The second section is devoted to the main result and is divided
into four parts. In the first part we clarify the assumptions on the environment and
extend the semigroup for the environment to the space L1(Γ×Γ0, µ⊗λ) of joint densities.
Afterwards we will deal with general finite systems and related solutions to the Fokker-
Planck equations. We will show that such solutions will leave the space L1(Γ0, λ) of
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densities invariant and give a characterization when they will preserve the convex cone of
probability measures. The third part will extend the considerations of the second part to
systems depending on γ as a parameter. Finally, in the last part of the main section we
will state and prove the main result about the averaging scheme for our specific situation.
In the last section we will give an example for an interacting particle system in continuum
for which our averaging results can be applied successfully.

2 Preliminaries

We are going to collect certain properties for the space of finite configurations, which shall
be used later on, for more details see [AKR98a, KK02] and references therein. Let Γ0 be
the space of all finite subsets of Rd, i.e.

Γ0 = {η ⊂ Rd | |η| <∞},

where |η| denotes the number of elements in the set η. This space has a natural decom-

position into n-particle subspaces, Γ0 =
∞⊔
n=0

Γ
(n)
0 , where

Γ
(n)
0 = {η ⊂ Rd | |η| = n}, n ≥ 1

and in the case n = 0 we set Γ
(0)
0 = {∅}. For a compact Λ ⊂ Rd let

ΓΛ = {η ∈ Γ0 | η ⊂ Λ}.

and
Γ

(n)
Λ = {η ∈ Γ

(n)
0 | η ⊂ Λ}.

Let (̃Rd)n be the space of all sequences (x1, . . . , xn) ∈ (Rd)n with xi 6= xj for i 6= j.

Denote by symn : (̃Rd)n → Γ
(n)
0 , (x1, . . . , xn) 7−→ {x1, . . . , xn} the symmetrization map

and define a topology on Γ
(n)
0 via A ⊂ Γ

(n)
0 is open if sym−1

n (A) ⊂ (̃Rd)n is open. On Γ0

we define the topology of disjoint unions, i.e., a set A ⊂ Γ0 is open if and only if A∩ Γ
(n)
0

is open in Γ
(n)
0 for all n ∈ N. Γ0 equipped with this topology is a locally compact Polish

space. We let B(Γ0) stand for the Borel−σ−algebra on Γ0. In this topology a sequence
(ηn)n∈N ⊂ Γ0 converges to η ∈ Γ0 if and only if

〈ϕ, ηn〉 −→ 〈ϕ, η〉, n→∞

for all continuous bounded functions ϕ, i.e., ϕ ∈ Cb(Rd). Here the pairing 〈·, ·〉 is simply
the pairing of the point measure η =

∑
x∈η

δx with the function ϕ, i.e. 〈ϕ, η〉 :=
∑
x∈η

ϕ(x).

Therefore the convergence ηn −→ η can be equivalently reformulated to: η = {x1, . . . , xl}
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and for sufficiently large n there is a numeration ηn = {x(n)
1 , . . . , x

(n)
l } such that x

(n)
k −→ xk

as n→∞. Denote by dx the Lebesgue measure on Rd and by d⊗nx the product measure
on (Rd)n. Let d(n)x be the image measure of d⊗nx on Γ

(n)
0 via symn and set for z > 0

λz = δ∅ +
∞∑
n=1

zn

n!
d(n)x.

This measure is called the Lebesgue-Poisson measure on Γ0 and for z = 1 set λ := λ1.

3 Main results

3.1 Environment

Let us start with the main assumption on the environment process on Γ:

(E) There exists a probability measure µ on Γ and a positive semigroup of contractions
TE(t) on L1(Γ, µ), which is assumed to be L1-ergodic, i.e., for each R ∈ L1(Γ, µ)∫

Γ

|TE(t)R− 〈R〉µ|dµ −→ 0, t→∞.

Here 〈R〉µ =
∫
Γ

Rdµ denotes the average of R with respect to µ.

Denote by (LE, D(LE)) its generator. As a first step we will extend this semigroup to the
space of Bochner integrable functions L1(Γ → L1(Γ0, λ), µ) =: Lµ. It is well-known that
L1(Γ→ L1(Γ0, λ), µ) ∼= L1(Γ× Γ0, µ⊗ λ). The subspace

D =

{
f =

n∑
k=1

Rkρk

∣∣∣∣ n ∈ N, Rk ∈ L1(Γ, µ), ρk ∈ L1(Γ0, λ)

}
⊂ Lµ

is dense and since TE(t) is positive it can be uniquely extended to Lµ, cf. [Gra04], such
that for f ∈ D

TE(t)f =
n∑
k=1

(TE(t)Rk)ρk.

One has ‖(TE(t)f)(·, γ)‖L1(Γ0,λ) ≤ TE(t)‖f(·, γ)‖L1(Γ0,λ) for all f ∈ D, thus this exten-
sion will be a positive strongly continuous semigroup of contractions which shall be de-
noted again by TE(t). We will denote the generator of the extended semigroup also by
(LE, D(LE)). The generator (LE, D(LE)) can be characterized by the relation

LEf =
n∑
k=1

(LERk)ρk,
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where f ∈ D with Rk ∈ D(LE). We obtain for f ∈ D

‖TE(t)f − 〈f〉µ‖Lµ ≤
n∑
k=1

‖TE(t)Rk − 〈Rk〉µ‖L1(Γ,µ)‖ρk‖L1(Γ0,λ) −→ 0, t→∞

and since TE(t) is a semigroup of contractions and D dense this implies for each f ∈ Lµ:
‖TE(t)f − 〈f〉µ‖Lµ −→ 0, t → ∞. Note that 〈f〉µ(η) :=

∫
Γ

f(γ, η)dµ(γ) is simply the

projection of Lµ onto L1(Γ0, λ).

3.2 Isolated system

The class of Markov jump dynamics we want to describe in this section are given by a
Markov pre-generator on bounded measurable functions F : Γ0 −→ R as

(LSF )(η) =
∑
ξ⊂η

∫
Γ0

(F (η\ξ ∪ ζ)− F (η))K(ξ, η, ζ)dλ(ζ) (3.1)

for η ∈ Γ0. Such Kolomogorov operator includes death, birth and jumps of groups of
particles. In order to give rigorous meaning to this expression we have to assume for the
kernel K : Γ0 × Γ0 × Γ0 −→ R+ the following:

(K) The map (ξ, η, ζ) 7−→ K(ξ, η, ζ) is measurable and for all ξ, η ∈ Γ0∫
Γ0

K(ξ, η, ζ)dλ(ζ) <∞.

For η ∈ Γ0 and A ∈ B(Γ0) we define a transition kernel

Q(η, A) :=
∑
ξ⊂η

∫
Γ0

1A(η\ξ ∪ ζ)K(ξ, η, ζ)dλ(ζ).

Then q(η) := Q(η,Γ0) =
∑
ξ⊂η

∫
Γ0

K(ξ, η, ζ)dλ(η) is finite for each η ∈ Γ0. The operator LS

is for any bounded measurable function given by

(LSF )(η) = −q(η)F (η) +

∫
Γ0

F (ξ)Q(η, dξ) =

∫
Γ0

(F (ξ)− F (η))Q(η, dξ).

Hence there exists a (sub-)Markov transition function P : R+×Γ0×B(Γ0) −→ [0, 1] such
that for any bounded and measurable function F : Γ0 −→ R

T S(t)F (η) :=

∫
Γ0

F (ξ)P (t, η, dξ), t ≥ 0 (3.2)

7



is a positive semigroup of contractions, cf. [Fel40, FMS14, Che04, Kol06]. Moreover, this
semigroup is continuous w.r.t. t ≥ 0 in the sense that

T S(t)F (η) −→ F (η), t→ 0, η ∈ Γ0.

For any bounded measurable function and any η ∈ Γ0

T S(t)F (η)− F (η)

t
−→ LSF (η), t→ 0 (3.3)

holds. Hence for any bounded measurable function F0 and any fixed η ∈ Γ0 the action of
the semigroup T S(t)F (η) satisfies (1.2). Note that formula (3.1) is well-defined for any
η ∈ Γ0 and bounded measurable function F , but LSF does not need to be bounded in η.
Using the same (sub-)Markov function, we can also define the evolution of states

T S(t)∗ν(dη) =

∫
Γ0

P (t, ξ, dη)ν(dξ), ν ∈M(Γ0), (3.4)

where M(Γ0) is the space of signed finite Borel measures on Γ0 equipped with the total
variation norm

‖ν‖ = |ν|(Γ0) = ν+(Γ0) + ν−(Γ0).

Therefore, for any probability measure ν0 on Γ0, T S(t)∗ν0 =: νt provides a solution to the
Fokker-Planck equation

∂

∂t

∫
Γ0

F (η)νt(dη) =

∫
Γ0

LSF (η)νt(dη).

Note that P (t, ξ, ·) is, in general, only a sub-probability function, i.e. 0 ≤ P (t, ξ,Γ0) ≤ 1
holds. The system is called conservative if P (t, ξ,Γ0) = 1 holds for all t ≥ 0 and ξ ∈ Γ0.
In such a case P (t, ξ, ·) is the unique Markov transition probability function corresponding
to the operator (3.1). That is T S(t)F (η) is the unique solution to (1.2) and T S(t)∗µ0 is
the unique solution to the Fokker-Planck equation.
In the following we give an alternative construction of T S(t)∗ and deduce that it leaves
the space L1(Γ0, λ) invariant. Let

Dom =

ν ∈M(Γ0)

∣∣∣∣ ∫
Γ0

q(η)|ν|(dη) <∞

 ,

where q(η) =
∑
ξ⊂η

∫
Γ0

K(ξ, η, ζ)dλ(ζ) and define a transition kernel

Q(η, A) =
∑
ξ⊂η

∫
Γ0

1A(η\ξ ∪ ζ)K(ξ, η, ζ)dλ(ζ), A ∈ B(Γ0).
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This kernel defines via

(BF )(η) =

∫
Γ0

F (ξ)Q(η, dξ) =
∑
ξ⊂η

∫
Γ0

F (η\ξ ∪ ζ)K(ξ, η, ζ)dλ(ζ)

an operator on bounded measurable functions F and via

(B∗ν)(A) =

∫
Γ0

Q(η, A)ν(dη) =

∫
Γ0

∑
ξ⊂η

∫
Γ0

1A(η\ξ ∪ ζ)K(ξ, η, ζ)dλ(ζ)ν(dη)

on measures ν ∈M(Γ0). Both operators (B∗,Dom) as well as (LS)∗ = −q +B∗ given by

(LS)∗ν(A) = −
∫
A

q(η)ν(dη) + (B∗ν)(A) (3.5)

are well-defined. The multiplicative part (−q,Dom) generates a positive analytic semi-
group of contractions such that

(e−tqν)(A) =

∫
A

e−tq(η)ν(dη).

The resolvent of (−q,Dom) exists for λ > 0 and satisfies

R(λ;−q)ν(A) =

∫
A

1

λ+ q(η)
ν(dη), A ∈ B(Γ0).

Since (B∗,Dom) is a positive operator and for 0 ≤ ν ∈ Dom it holds that

B∗ν(Γ0) =

∫
Γ0

Q(η,Γ0)ν(dη) =

∫
Γ0

q(η)ν(dη),

there exist an extension (G,D(G)) of ((LS)∗,Dom) which is the generator of a sub-

stochastic semigroup T̃ (t)∗, cf. Theorem 2.1 [TV06, ALMK11]. This semigroup is mini-
mal, i.e., for any other sub-stochastic semigroup S(t)∗ onM(Γ0) with generator being an

extension of ((LS)∗,Dom) one has T̃ (t)∗ ≤ S(t)∗.

Lemma 3.1. The semigroup T̃ (t)∗ coincides with T S(t)∗, where T S(t)∗ is defined in (3.4).

Moreover T̃ (t)∗ leaves L1(Γ0, λ) invariant.

For convenience of the reader the proof can be found in the appendix. We should em-
phasize that without further assumptions the semigroup T S(t)∗ might be not stochastic,
i.e. P (t, ξ,Γ0) < 1 may happen. Sufficient conditions for T S(t)∗ being stochastic (and
hence P (t, ξ,Γ0) = 1) can be found in [Che04, TV06], and in the time-inhomogeneous
case in [Fri16]. In the following we will need the following characterization for T S(t)∗

being stochastic.
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Theorem 3.2. The semigroup T S(t)∗ is stochastic if and only if its generator (G,D(G))
is the closure of (−q +B∗,Dom).

Proof. Assume that (G,D(G)) is the closure of (−q + B∗,Dom), then it is well-known

that T̃ (t)∗ is stochastic, cf. [TV06]. By Lemma 3.1 also T S(t)∗ is stochastic. Conversely,
assume that T S(t)∗ is stochastic, then ‖T S(t)∗ν‖ = ‖ν‖ for any 0 ≤ ν ∈ M(Γ0). Hence
Corollary 3.6 [ALMK11] implies in this case the assertion.

3.3 System in the presence of stationary environment

In this section we assume that K depends on another parameter γ ∈ Γ, i.e. K(γ, ξ, η, ζ).
Let µ be a probability measure on Γ as in assumption (E). Since we work only with solu-
tions to the Fokker-Planck equation on densities we have to assume that K is measurable
with respect to all variables and∫

Γ

∫
Γ0

K(γ, ξ, η, ζ)dλ(ζ)dµ(γ) <∞, ∀ξ, η ∈ Γ0. (3.6)

Let us outline the construction of the evolution of densities on Lµ = L1(Γ × Γ0, µ ⊗ λ).
First of all, the Markov pre-generator LS is of the form

LSF (γ, η) =
∑
ξ⊂η

∫
Γ0

(F (γ, η\ξ ∪ ζ)− F (γ, η))K(γ, ξ, η, ζ)dλ(ζ). (3.7)

It can be rewritten as

LSF (γ, η) =

∫
Γ0

(F (γ, ω)− F (γ, η))Q(γ, η, dω),

where

Q(γ, η, A) =
∑
ξ⊂η

∫
Γ0

1A(η\ξ ∪ ζ)K(γ, ξ, η, ζ)dλ(ζ).

Define q(γ, η) = Q(γ, η,Γ0) =
∑
ξ⊂η

∫
Γ0

K(γ, ξ, η, ζ)dλ(ζ), then the adjoint operator on den-

sities ρ ∈ Lµ is given by

(LS)∗ρ(γ, η) = −q(γ, η)ρ(γ, η) + (B∗ρ)(γ, η),

where

(B∗ρ)(γ, η) =
∑
ξ⊂η

∫
Γ0

ρ(γ, η\ξ ∪ ζ)K(γ, ζ, η\ξ ∪ ζ, ξ)dλ(ζ). (3.8)
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Proceeding as in the case without γ, define the domain

Dom =

ρ ∈ Lµ
∣∣∣∣ ∫

Γ×Γ0

q(γ, η)|ρ(γ, η)|dµ(γ)dλ(η) <∞

 .

Then the multiplication operator (−q,Dom) is the generator of an analytic positive semi-
group. Moreover (B∗,Dom) is well-defined, and for any 0 ≤ ρ ∈ Dom∫

Γ

∫
Γ0

B∗ρ(γ, η)dλ(η)dµ(γ) =

∫
Γ

∫
Γ0

q(γ, η)ρ(γ, η)dλ(η)dµ(γ).

Again by Theorem 2.1 [TV06] there exists an extension (GS, D(GS)) of ((LS)∗,Dom),
which is the generator of a sub-stochastic semigroup T S(t)∗ on Lµ. This semigroup is the
minimal sub-stochastic semigroup with generator being an extension of ((LS)∗,Dom).

3.4 Weak-coupling limit

As it is already stated in the introduction, we are interested in the asymptotic regime
ε→ 0 for solutions ρεt to the Cauchy problems

∂ρεt
∂t

= (LS)∗ρεt +
1

ε
LEρεt , ρεt |t=0 = ρ0 ∈ L1(Γ0, λ) ⊂ Lµ (3.9)

on Lµ. Typically, it is hard to construct solutions to (3.9) in this generality. Let us define
approximations (LSδ )∗ by setting Kδ(γ, ξ, η, ζ) := e−δq(γ,η)K(γ, ξ, η, ζ). Then LSδ is defined
by (3.7) with K replaced by Kδ and (LSδ )∗ is its adjoint given by

(LSδ )∗ρ(γ, η) = −q(γ, η)e−δq(γ,η)ρ(γ, η) + (B∗δρ)(γ, η).

The operator B∗δ is simply given by (cf. (3.8))

(B∗δρ) =
∑
ξ⊂η

∫
Γ0

ρ(γ, η\ξ ∪ ζ)e−δq(γ,η\ξ∪ζ)K(γ, ζ, η\ξ ∪ ζ, ξ)dλ(ζ).

Because of

‖B∗δρ‖Lµ ≤
∫
Γ

∫
Γ0

∑
ξ⊂η

|ρ(γ, η\ξ ∪ ζ)|e−δq(γ,η\ξ∪ζ)K(γ, ζ, η\ξ ∪ ζ, ξ)dλ(ζ)dλ(η)dµ(γ)

=

∫
Γ

∫
Γ0

|ρ(γ, η)|e−δq(γ,η)q(γ, η)dλ(η)dµ(γ)

≤ 1

δ
‖ρ‖Lµ

11



the operator B∗δ is bounded on Lµ and hence so is (LSδ )∗. Let us fix the notation for the
limiting objects when ε→ 0 and δ → 0. Define the averaged functions K and Kδ by

K(ξ, η, ζ) :=

∫
Γ

K(γ, ξ, η, ζ)dµ(γ) (3.10)

and

Kδ(ξ, η, ζ) :=

∫
Γ

e−δq(γ,η)K(γ, ξ, η, ζ)dµ(γ). (3.11)

Both functions are measurable and hence satisfy condition (K). Consequently, there exist
semigroups T (t) and T δ(t) given by the associated (sub-)Markov functions P and P δ

which are determined by

LF (η) =
∑
ξ⊂η

∫
Γ0

(F (η\ξ ∪ ζ)− F (η))K(ξ, η, ζ)dλ(ζ)

and

LδF (η) =
∑
ξ⊂η

∫
Γ0

(F (η\ξ ∪ ζ)− F (η))Kδ(ξ, η, ζ)dλ(ζ),

cf. (3.2) and (3.3). The adjoint semigroups on L1(Γ0, λ) are denoted by T (t)∗ and T δ(t)
∗

respectively. The corresponding generators are simply given by

(L
∗
δρ)(η) =

∑
ξ⊂η

∫
Γ0

(ρ(η\ξ ∪ ζ)− ρ(η))Kδ(ζ, η\ξ ∪ ζ, ξ)dλ(ζ)

and likewise for L
∗

with Kδ replaced by K.

Theorem 3.3. Assume that condition (3.6) satisfied. Then for any ε > 0 the operator
(LSδ )∗ + 1

ε
LE is the generator of a sub-stochastic semigroup Tε,δ(t) on Lµ. For any δ > 0

and any ρ ∈ L1(Γ0, λ)

lim
ε→0

Tε,δ(t)ρ = T δ(t)
∗ρ (3.12)

holds uniformly on compacts in t ≥ 0. Assume that T (t)∗ is stochastic, then for any
ρ ∈ L1(Γ0, λ)

lim
δ→0

T δ(t)
∗ρ = T (t)∗ρ (3.13)

holds uniformly on compacts in t ≥ 0.

12



Proof. The operator 1
ε
LE is for any ε > 0 the generator of the semigroup TE( t

ε
) on Lµ.

Since (LSδ )∗ is bounded on Lµ also the sum (LSδ )∗ + 1
ε
LE is the generator of a semigroup

Tε,δ(t). Due to the Trotter product formula this semigroup is sub-stochastic. So let us
show (3.12), which holds true if we can apply [Kur73, Theorem 2.1]. Therefore observe
that for ρ ∈ Lµ and λ > 0∥∥∥∥∥∥λ

∞∫
0

e−λtTE(t)ρdt− 〈ρ〉µ

∥∥∥∥∥∥
Lµ

≤
∞∫

0

e−s
∥∥∥TE ( s

λ

)
ρ− 〈ρ〉µ

∥∥∥
Lµ

ds.

Since TE(t) is ergodic on Lµ it follows that for fixed s ≥ 0 the integrand tends to zero as
λ→ 0. Due to ‖〈ρ〉µ‖Lµ ≤ ‖ρ‖Lµ and the contraction property of TE(t) the integrand is
bounded by 2‖ρ‖Lµe−s and hence dominated convergence implies for all ρ ∈ Lµ

Pρ := lim
λ→0

λ

∞∫
0

e−λtTE(t)ρdt = 〈ρ〉µ.

The operator P is a projection on Lµ with range Ran(P ) ∼= L1(Γ0, dλ). Following the

notion of [Kur73] Cρ := P (LSδ )∗ρ = L
∗
δρ is defined on L1(Γ0, dλ) and is additionally

bounded, which implies (3.12). For the second assertion observe that by Theorem 3.2

Dom :=

ρ ∈ L1(Γ0, dλ)

∣∣∣∣ ∫
Γ0

q(η)|ρ(η)|dλ(η) <∞


is a core for T (t)∗, since T (t)∗ is stochastic. For any ρ ∈ Dom it holds

‖L∗δρ− L
∗
ρ‖

≤
∫
Γ0

|ρ(η)||qδ(η)− q(η)|dλ(η)

+

∫
Γ0

∑
ξ⊂η

∫
Γ0

|ρ(η\ξ ∪ ζ)||Kδ(ζ, η\ξ ∪ ζ, ζ)−K(ζ, η\ξ ∪ ζ, ξ)|dλ(ζ)dλ(η)

and by (3.10) and (3.11) for any δ > 0 we obtain

|Kδ(ζ, η\ξ ∪ ζ, ξ)−K(ζ, η\ξ ∪ ζ, ζ)| ≤
∫
Γ

|1− e−δq(γ,η\ξ∪ζ)|K(γ, ζ, η\ξ ∪ ζ, ξ)dµ(γ).

Since the integrand is bounded by 2K(γ, ζ, η\ξ ∪ ζ, ξ) and tends to zero for any γ ∈ Γ,
dominated convergence yields that |Kδ(ζ, η\ξ ∪ ζ, ξ) − K(ζ, η\ξ ∪ ζ, ζ)| −→ 0 as δ → 0
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for any η ∈ Γ0, ξ ⊂ η and ζ ∈ Γ0. Finally due to |Kδ(ζ, η\ξ ∪ ζ, ξ)−K(ζ, η\ξ ∪ ζ, ζ)| ≤
2K(ζ, η\ξ ∪ ζ, ξ) the second term tend to zero as δ → 0. For the first term observe

|qδ(η)− q(η)| ≤
∑
ξ⊂η

∫
Γ0

|Kδ(ξ, η, ζ)−K(ξ, η, ζ)|dλ(ζ),

then above argument implies qδ(η) −→ q(η) for all η ∈ Γ0 as δ → 0. The assertion follows
from qδ ≤ q and dominated convergence.

4 Examples

Consider equilibrium diffusions or Glauber birth-and-death Markov dynamics on Γ for a
given invariant (Gibbs) measure µ. For the construction of equilibrium diffusions and
ergodicity see [AKR98a, AKR98b] and concerning equilibrium Glauber dynamics see
[KL05]. We focus on one example and show how to apply our result to concrete in-
teracting particle systems on Γ0. Let us consider the spatial logistic model, i.e.,

(LSF )(γ, η) =
∑
x∈η

m(x, γ) +
∑
y∈η\x

a−(x− y)

 (F (γ, η\x)− F (γ, η))

+
∑
x∈η

λ(x, γ)

∫
Rd

a+(x− y)(F (γ, η ∪ y)− F (γ, η))dy.

The statistical dynamics for such model (without the presence of an environment) has
been analyzed, e.g., in [FKKK15, FKK09]. Here m ≥ 0 is the intensity of the death of
particles and λ ≥ 0 describes fecundity effects caused by the environment in the state γ.
Finally a− ≥ 0 is assumed to be symmetric. It describes the competition of particles from
the configuration η ∈ Γ0. The distribution of new particles is described by a symmetric
probability density a+ on Rd. After scaling the averaged dynamics will be given by the
generator

(LF )(γ, η) =
∑
x∈η

m(x) +
∑
y∈η\x

a−(x− y)

 (F (η\x)− F (η))

+
∑
x∈η

λ(x)

∫
Rd

a+(x− y)(F (η ∪ y)− F (η))dy,

where m(x) =
∫
Γ

m(x, γ)dµ(γ) and λ(x) =
∫
Γ

λ(x, γ)dµ(γ) are the averaged intensities.

Proceeding as in the previous section denote by Tε,δ(t) the scaled semigroup on densities
Lµ and by T (t)∗ and T δ(t)

∗ the semigroups on L1(Γ0, λ) defined by the adjoint operator

14



L
∗

of L respectively their counterparts scaled by δ > 0. The next result states conditions
for which these semigroups exist and (3.12) holds.

Theorem 4.1. Assume that all intensities a±,m, λ are non-negative, measurable, that
a+ is a probability density and that m(x, ·), λ(x, ·) are integrable with respect to µ for any
x ∈ Rd. Then the semigroups Tε,δ(t), T δ(t)

∗ and T (t)∗ exist and (3.12) holds.

Proof. First of all

q(γ, η) =
∑
x∈η

m(x, γ) +
∑
x∈η

∑
y∈η\x

a−(x− y) +
∑
x∈η

λ(x, γ)

=
∑
ξ⊂η

∫
Γ0

K(γ, ξ, η, ζ)dλ(ζ) ≥
∫
Γ0

K(γ, ξ, η, ζ)dλ(ζ)

for any η ∈ Γ0 and fixed ξ ⊂ η. Hence∫
Γ

∫
Γ0

K(γ, ξ, η, ζ)dλ(ζ)dµ(γ) ≤
∫
Γ

q(γ, η)dµ(γ) <∞

and (3.6) holds. Condition (K) is obvious for K and Kδ. The considerations of the
previous sections imply the existence of the semigroups and property (3.12) follows from
Theorem 3.3.

The reader may wonder why such weak assumptions are sufficient for existence and con-
vergence of the semigroups. The crucial point here is that we consider an approximation
by bounded linear operators and hence for each δ > 0 no additional conditions are needed.
In order to pass to the limit δ → 0 additional assumptions are necessary, which are given
below.

Theorem 4.2. Assume that the conditions of previous theorem are fulfilled. If m,λ, a− are
bounded, then T (t)∗ is stochastic and hence (3.13) holds. If m,λ, a− are locally bounded,
then T (t)∗ is still stochastic, provided there exists a continuous function ϕ : Rd −→ [1,∞)
with ϕ(x) −→∞ when |x| → ∞ and c > 0 such that

λ(x)(a+ ∗ ϕ)(x) ≤ cϕ(x) + ϕ(x)m(x), x ∈ Rd (4.1)

holds.

Proof. In the first case set En = {η ∈ Γ0 | |η| ≤ n}, then En ⊂ En+1,
⋃
n≥1

En = Γ0,

q(η) =
∑
x∈η

m(x) +
∑
x∈η

λ(x) +
∑
x∈η

∑
y∈η\x

a−(x − y) is bounded on any En. Moreover, for

V (η) = |η| we obtain inf
η 6∈En

V (η) ≥ n + 1 → ∞, n → ∞ and hence the assertion follows

15



from [Che04]. For the second case take En = {η ∈ Γ0 | |η| ≤ n, η ⊂ Bn}, where Bn ⊂ Rd

is a ball centered at zero of radius n. Hence due to (4.1) we see that the Lyapunov function
V (η) =

∑
x∈η

ϕ(x) satisfies

(LV )(η) ≤ cV (η), η ∈ Γ0.

The assertion follows again by [Che04].

As a concrete case we can take µ = πz, that is the Poisson measure with intensity z > 0.
Let us take for the interactions

m(x, γ) = m0 +
∑
y∈γ

κ(x− y)

and
λ(x, γ) = λ0 +

∑
y∈γ

ψ(x− y)

with λ0 > m0, 0 ≤ κ, ψ ∈ L1(Rd) and 〈ψ〉 < 〈κ〉. Then m = m0 + z
∫
Rd
κ(y)dy = m0 + z〈κ〉

and λ = λ0 + z
∫
Rd
ψ(y)dy = λ0 + 〈ψ〉. Define

β(z) = (λ0 + z〈ψ〉 −m0 − z〈κ〉),

then for the function V (η) = 1 + |η| a short computation yields

(LV )(η) ≤ β(z)|η|

and therefore an a priori estimate on the evolution of densities, provided a− is bounded.
More precisely, let 0 ≤ ρ ∈ L1(Γ0, dλ) with

∫
Γ0

(1+|η|)ρ(η)dλ(η) <∞ and
∫
Γ0

ρ(η)dλ(η) = 1,

then the evolution of densities for the averaged system is given by ρt = T (t)∗ρ and by the
Gronwall inequality we have∫

Γ0

|η|ρt(η)dλ(η) ≤ eβ(z)t

∫
Γ0

|η|ρ(η)dλ(η), t ≥ 0.

Without the presence of an environment, i.e. z = 0, the number of particles within the
system will grow exponentially in time. But due to the influence of the environment, such
growth may be prevented or even exponential decay may be observed.
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Appendix

In order to prove above Lemma 3.1 some preparation is needed. Denote by BM(Γ0) the
space of all bounded measurable functions and by 〈F, ν〉 :=

∫
Γ0

F (η)ν(dη) the dual pairing

between BM(Γ0) and M(Γ0). Now let C be a bounded linear operator on BM(Γ0) and
C∗ a bounded linear operator on M(Γ0) such that

〈F,C∗ν〉 = 〈CF, ν〉, F ∈ BM(Γ0), ν ∈M(Γ0).

Then for any η ∈ Γ0, ν ∈M(Γ0) and A ∈ B(Γ0)

(C∗δη)(A) = 〈1A, C∗δη〉 = 〈C1A, δη〉 = (C1A)(η). (4.2)

The operator R(λ,−q) can be realized on BM(Γ0) and likewise on M(Γ0) as a bounded
linear operator. For simplicity we will preserve the notation R(λ,−q) for both realizations.
Clearly R(λ,−q) and B∗R(λ,−q) are examples for C∗ and R(λ,−q) and R(λ,−q)B for C,
i.e it holds that 〈F,R(λ,−q)ν〉 = 〈R(λ,−q)F, ν〉 and 〈F,B∗R(λ,−q)ν〉 = 〈R(λ,−q)BF, ν〉,
where R(λ,−q)F (η) = 1

λ+q(η)
F (η) and

R(λ,−q)BF (η) =
1

λ+ q(η)

∫
Γ0

F (ξ)Q(η, dξ), η ∈ Γ0.

Proof. Lemma 3.1
The construction of T̃ (t)∗, cf. Theorem 2.1 [ALMK11], shows that (G,D(G)) satisfies for
any µ ∈M(Γ0) and λ > 0

R(λ;G)µ = lim
n→∞

R(λ,−q)
n∑
k=0

(QR(λ;−q))kµ (4.3)

in the total variation norm. Fix λ > 0 and define on M(Γ0) a bounded linear operator
by

R(λ)µ =

∞∫
0

e−λtT (t)∗µdt.

The semigroup T (t)∗ is continuous w.r.t. the topology σ(M(Γ0), BM(Γ0)) and hence the
integral is well-defined w.r.t. this topology. Then (3.4) yields

R(λ)µ =

∫
Γ0

P̂ (λ, ξ, ·)µ(dξ), (4.4)
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where P̂ (λ, ξ, ·) =
∞∫
0

e−λtP (t, ξ, ·)dt. Due to Theorem 2.16 [Che04] P̂ is the unique minimal

solution to the equation

P̂ (λ, η, A) =
1

λ+ q(η)
δη(A) +

1

λ+ q(η)

∫
Γ0

P̂ (λ, ξ, A)Q(η, dξ).

Such a minimal solution can be constructed as follows, cf. Theorem 2.21 [Che04]. Set

P̂ (0)(λ, η, A) = 1
λ+q(η)

δη(A) and for n ≥ 0

P̂ (n+1)(λ, η, A) =
1

λ+ q(η)

∫
Γ0

P̂ (n)(λ, ξ, A)Q(η, dξ). (4.5)

Then P̂ (λ, η, A) is given by P̂ (λ, η, A) =
∞∑
n=0

P̂ (n)(λ, η, A). Hence by (4.4) we get

R(λ)µ(A) =
∞∑
n=0

∫
Γ0

P̂ (n)(λ, η, A)µ(dη) =
∞∑
n=0

R(n)(λ)µ(A),

where R(n)(λ)µ(A) =
∫
Γ0

P̂ (n)(λ, η, A)µ(dη). Therefore, in view of (4.3), it suffices to show

for any n ≥ 0, µ ∈M(Γ0) and A ∈ B(Γ0) that

R(n)(λ)µ(A) = R(λ;−q)(QR(λ;−q))nµ(A)

holds. For n = 0 this follows from

R(0)(λ)µ(A) =

∫
Γ0

1

λ+ q(η)
1A(η)µ(dη) = R(λ;−q)µ(A).

Assume that this assertion holds for some n ≥ 0. The induction hypothesis and (4.2)
imply the relation

P̂ (n)(λ, η, A) =

∫
Γ0

P̂ (n)(λ, ξ, A)δη(dξ) = (R(n)(λ)δη)(A)

= R(λ;−q)(QR(λ;−q))nδη(A) = (R(λ;−q)Q)nR(λ;−q)1A(η).
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Finally by (4.2) and (4.5) this yields

R(n+1)(λ)µ(A) =

∫
Γ0

1

λ+ q(η)

∫
Γ0

P̂ (n)(λ, ξ, A)Q(η, dξ)µ(dη)

=

∫
Γ0

1

λ+ q(η)

∫
Γ0

(R(λ;−q)Q)nR(λ;−q)1A(ξ)Q(η, dξ)µ(dη)

=

∫
Γ0

(R(λ;−q)Q)n+1R(λ;−q)1A(η)µ(dη)

= R(λ;−q)(QR(λ;−q))n+1µ(A).
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spaces: the Gibbsian case. J. Funct. Anal., 157(1):242–291, 1998.

[ALMK11] L. Arlotti, B. Lods, and M. Mokhtar-Kharroubi. On perturbed substochastic semigroups in
abstract state spaces. Z. Anal. Anwend., 30(4):457–495, 2011.

[Bez15] V. Bezborodov. Spatial birth-and-death markov dynamics of finite particle systems.
arXiv:1507.05804 [math.PR], 2015.

[BK03] V. P. Belavkin and V. N. Kolokoltsov. On a general kinetic equation for many-particle systems
with interaction, fragmentation and coagulation. R. Soc. Lond. Proc. Ser. A Math. Phys.
Eng. Sci., 459(2031):727–748, 2003.

[BKK15] C. Berns, Y. Kondratiev, and O. Kutoviy. Markov Jump Dynamics with Additive Intensities
in Continuum: State Evolution and Mesoscopic Scaling. J. Stat. Phys., 161(4):876–901, 2015.

[Che04] M. Chen. From Markov chains to non-equilibrium particle systems. World Scientific Publish-
ing Co., Inc., River Edge, NJ, second edition, 2004.

[EW03] A. Eibeck and W. Wagner. Stochastic interacting particle systems and nonlinear kinetic
equations. Ann. Appl. Probab., 13(3):845–889, 2003.

[Fel40] W. Feller. On the integro-differential equations of purely discontinuous Markoff processes.
Trans. Amer. Math. Soc., 48:488–515, 1940.

[FKK09] D. Finkelshtein, Y. Kondratiev, and O. Kutoviy. Individual based model with competition
in spatial ecology. SIAM J. Math. Anal., 41(1):297–317, 2009.

[FKK12] D. Finkelshtein, Y. Kondratiev, and O. Kutoviy. Semigroup approach to birth-and-death
stochastic dynamics in continuum. J. Funct. Anal., 262(3):1274–1308, 2012.

[FKK13] D. Finkelshtein, Y. Kondratiev, and O. Kutoviy. Establishment and fecundity in spatial
ecological models: statistical approach and kinetic equations. Infin. Dimens. Anal. Quantum
Probab. Relat. Top., 16(2):1350014, 24, 2013.

[FKK15] D. Finkelshtein, Y. Kondratiev, and O. Kutoviy. Statistical dynamics of continuous systems:
perturbative and approximative approaches. Arab. J. Math. (Springer), 4(4):255–300, 2015.

[FKKK15] D. Finkelshtein, Y. Kondratiev, Y. Kozitsky, and O. Kutoviy. The statistical dynamics of
a spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci.,
25(2):343–370, 2015.

[FKKO15] D. Finkelshtein, Y. Kondratiev, O. Kutoviy, and M. J. Oliveira. Dynamical Widom-Rowlinson
model and its mesoscopic limit. J. Stat. Phys., 158(1):57–86, 2015.

[FKKZ14] D. Finkelshtein, Y. Kondratiev, O. Kutoviy, and E. Zhizhina. On an aggregation in birth-
and-death stochastic dynamics. Nonlinearity, 27(6):1105–1133, 2014.

20



[FKO09] D. Finkelshtein, Y. Kondratiev, and M. J. Oliveira. Markov evolutions and hierarchical
equations in the continuum. I. One-component systems. J. Evol. Equ., 9(2):197–233, 2009.

[FKO12] D. Finkelshtein, Y. Kondratiev, and M. J. Oliveira. Kawasaki dynamics in the continuum
via generating functionals evolution. Methods Funct. Anal. Topology, 18(1):55–67, 2012.
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