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Abstract

One proves the existence and uniqueness in (Lp(R3))3, 3
2 < p < 2,

of a global mild solution to random vorticity equations associated
to stochastic 3D Navier-Stokes equations with linear multiplicative
Gaussian noise of convolution type, for sufficiently small initial vor-
ticity. This resembles some earlier deterministic results of T. Kato
[15] and are obtained by treating the equation in vorticity form and
reducing the latter to a random nonlinear parabolic equation. The
solution has maximal regularity in the spatial variables and is weakly
continuous in (L3 ∩ L

3p
4p−6 )3 with respect to the time variable. Fur-

thermore, we obtain the pathwise continuous dependence of solutions
with respect to the initial data.
Keywords: stochastic Navier-Stokes equation, vorticity, Biot-Savart
operator.
MSC: 60H15, 35Q30.

1 Introduction

Consider the stochastic 3D Navier–Stokes equation
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dX−∆X dt + (X · ∇)X dt =
N∑

i=1

(Bi(X) + λiX)dβi(t)+∇π dt

on (0,∞)× R3,
∇ ·X = 0 on (0,∞)× R3,

X(0) = x in (Lp(R3))3,

(1.1)

where λi ∈ R, x : Ω → R3 is a random variable. Here π denotes the pressure
and {βi}N

i=1 is a system of independent Brownian motions on a probability
space (Ω,F ,P) with normal filtration (Ft)t≥0, x is F0–measurable, and Bi

are the convolution operators

Bi(X)(ξ) =

∫

R3

hi(ξ − ξ̄)X(ξ̄)dξ̄ = (hi ∗X)(ξ), ξ ∈ R3, (1.2)

where hi ∈ L1(R3), i = 1, 2, ..., N, and ∆ is the Laplacian on (L2(R3))3.
It is not known whether (1.1) has a probabilistically strong solution in

the mild sense for all time. Therefore, we shall rewrite (1.1) in vorticity form
and then transform it into a random PDE, which we shall prove, has a global
in time solution for P-a.e. fixed ω ∈ Ω, provided the initial condition is small
enough.

Consider the vorticity field

U = ∇×X = curl X (1.3)

and apply the curl operator to equation (1.1). We obtain (see e.g. [4], [8])
the transport vorticity equation

dU −∆U dt + ((X · ∇)U − (U · ∇)X)dt =
N∑

i=1

(hi ∗ U + λiU)dβi

in (0,∞)× R3,

U(0, ξ) = U0(ξ) = (curl x)(ξ), ξ ∈ R3.

(1.4)

The vorticity U is related to the velocity X by the equation

X(t, ξ) = K(U(t))(ξ), t ∈ (0,∞), ξ ∈ R3, (1.5)

where K is the Biot–Savart integral operator

K(u)(ξ) = − 1

4π

∫

R3

ξ − ξ̄

|ξ − ξ̄|3 × u(ξ̄)dξ̃, ξ ∈ R3. (1.6)
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Then one can rewrite the vorticity equation (1.4) as

dU −∆U dt + ((K(U) · ∇)U − (U · ∇)K(U))dt

=
N∑

i=1

(hi ∗ U + λiU)dβi in (0,∞)× R3,

U(0, ξ) = U0(ξ), ξ ∈ R3.

(1.7)

Equivalently,

U(t) = et∆U0 −
∫ t

0

e(t−s)∆((K(U(s))·∇)U(s)−(U(s)·∇)K(U(s)))ds

+

∫ t

0

N∑
i=1

e−(t−s)∆(hi ∗ U(s)) + λi(U(s))dβi(s), t ≥ 0.

(1.8)

Now, we consider the transformation

U(t) = Γ(t)y(t), t ∈ [0,∞), (1.9)

where Γ(t) : (L2(R3))3 → (L2(R3))3 is the linear continuous operator defined
by the equations

dΓ(t) =
N∑

i=1

(Bi + λiI)Γ(t)dβi(t), t ≥ 0, Γ(0) = I, (1.10)

where (see (1.2))

Biu = hi ∗ u, ∀u ∈ (Lp(R3))3, i = 1, ..., N, p ∈ (1,∞). (1.11)

We also set
B̃i = Bi + λiI, i = 1, ..., N, (1.12)

where I is the identity operator.
Since BiBj = BjBi, equation (1.10) has a solution Γ and can be equiva-

lently expressed as (see [9], Section 7.4)

Γ(t) =
N∏

i=1

exp

(
βi(t)B̃i − t

2
B̃2

i

)
, t ≥ 0. (1.13)
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Here (1.10) is meant in the sense that, for every z0 ∈ (L2(R3))3, the conti-
nuous (Ft)–adapted (L2(R3))3–valued process z(t) := Γ(t)z0, t ≥ 0, solves
the following SDE on H := (L2(R3))3,

dz(t) =
N∑

i=1

B̃iz(t)dβi(t), z(0) = z0,

where H is equipped with the usual scalar product 〈, ·, 〉.
Applying the Itô formula in (1.7) (the justification for this is as in [2]),

we obtain for y the random differential equation

dy

dt
(t)− Γ−1(t)∆(Γ(t)y(t)) + Γ−1(t)(K(Γ(t)y(t)) · ∇)(Γ(t)y(t))

−(Γ(t)y(t) · ∇)(K(Γ(t)y(t))) = 0, t ∈ [0,∞),

y(0) = U0.

(1.14)

Taking into account that, for all i, Bi∆ = ∆Bi on H2(R3), it follows by
(1.10), (1.13) that ∆Γ(t) = Γ(t)∆ on H2(R3), ∀t ≥ 0.

In what follows, equation (1.14) will be taken in the following mild sense

y(t) = et∆U0 +

∫ t

0

e(t−s)∆Γ−1(s)M(Γ(s)y(s))ds, t ∈ [0,∞), (1.15)

where

(et∆u)(ξ) =
1

(4πt)
3
2

∫

R3

exp

(
−|ξ − ξ̄|2

4t

)
u(ξ̄)dξ̄, t ∈ [0,∞), ξ ∈ R3, (1.16)

and M is defined by

M(u) = −[(K(u) · ∇)(u)− (u · ∇)(K(u))], t ∈ [0,∞). (1.17)

We note that U(t) = Γ(t)y(t) is the solution to the equation

U(t) = et∆Γ(t)U0 +

∫ t

0

e(t−s)∆Γ(t)Γ−1(s)M(U(s))ds, (1.18)

which may be viewed as the random version of the stochastic vorticity equa-
tion (1.8).
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Our aim here and the principal contribution of this work is to show that,
for every ε ∈ (0, 1), there exists Ωε ∈ F such that P(Ωε) ≥ 1 − ε and, for
all ω ∈ Ωε, we have the existence and uniqueness of a solution (in the mild
sense) for (1.15) if the vorticity of x, i.e., U0 = curl x, is P-a.s. sufficiently
small in a sense to be made precise in Theorem 1.1 below. We recall that,
for a deterministic Navier–Stokes equation, such a result was first established
by T. Kato [15] (see also T. Kato and H. Fujita [16]) and extended later to
more general initial data by Y. Giga and T. Miyakawa [14], M. Taylor [21],
H. Koch and D. Tataru [17]. However, the standard approach [15], [16] cannot
be applied in the present case for one reason: the nonlinear inertial term
(X ·∇)X cannot be conveniently estimated in the space Cb([0,∞); Lp(Ω×Rd))
and similarly for the nonlinearity arising in (1.7). As regards the stochastic
3D Navier-Stokes equations, to best of our knowledge all global existence
results were limited to martingale solutions. Since the fundamental work
[11], the literature on (global) martingale solutions for stochastic 3D-Navier-
Stokes equations has grown enormously. We refer, e.g., to [6], [10], [12], [13],
[18], and the references therein.

In the following, we denote by Lp, 1 ≤ p ≤ ∞, the space (Lp(R3))3 with
the norm |·|p, by W 1,p the corresponding Sobolev space and by Cb([0,∞); Lp)
the space of all bounded and continuous functions u : [0,∞) → Lp with the
sup norm. We also set Di = ∂

∂ξi
, i = 1, 2, 3, and denote by∇·u the divergence

of u, while

((u · ∇)v)j = uiDivj, j = 1, 2, 3, u = {ui}3
i=1, v = {vj}3

j=1.

As usual
q′ =

q

q − 1
for q ∈ (1,∞).

We set for p ∈ (
3
2
, 3

)

η(t) = ‖Γ(t)‖L(Lp,Lp)‖Γ(t)‖
L(L

3p
3−p ,L

3p
3−p )

‖Γ−1(t)‖Lq ,Lq), t ≥ 0, (1.19)

where for q ∈ (1,∞), ‖ · ‖L(Lq ,Lq) is the norm of the space L(Lq, Lq) of linear
continuous operators on Lq.

For p ∈ [1,∞), we denote by Zp the space of all functions y : (0,∞) ×
R3 → R3 such that

t1−
3
2p y ∈ Cb([0,∞); Lp),

t
3
2(1− 1

p)Diy ∈ Cb([0,∞); Lp), i = 1, 2, 3.
(1.20)
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The space Zp is endowed with the norm

‖y‖p,∞ = sup
{

t1−
3
2p |y(t)|p + t

3
2(1− 1

p)|Diy(t)|p; t ∈ (0,∞), i = 1, 2, 3
}

. (1.21)

In the following, we take λi ∈ R such that

|λi| > (
√

12 + 3)|hi|1, ∀i = 1, 2, ..., N. (1.22)

We note that
‖Bi‖L(Lq ,Lq) ≤ |hi|L1 , ∀i = 1, ..., N.

Theorem 1.1 is the main result.

Theorem 1.1. Let p, q ∈ (1,∞) such that

3

2
< p < 2,

1

q
=

2

p
− 1

3
· (1.23)

Let Ω0 =
{
supt≥0 η(t) < ∞}

and consider (1.15) for fixed ω ∈ Ω0. Set
Γ(t) := Γ(t)(ω), η(t) := η(t, ω). Then P(Ω0) = 1 and there is a positive

constant C∗ independent of ω ∈ Ω0 such that, if U0 ∈ L
3
2 is such that

sup
t≥0

η(t)|U0| 3
2
≤ C∗, (1.24)

then the random equation (1.15) has a unique solution y ∈ Zp which satisfies

M(Γ(t)y) ∈ L1(0, T ; Lq). (1.25)

Moreover, for each ϕ ∈ L3 ∩ Lq′, the function t → ∫
R3 y(t, ξ)ϕ(ξ)dξ is conti-

nuous on [0,∞). The map U0 → y is Lipschitz form L
3
2 to Zp.

In particular, the random vorticity equation (1.18) has a unique solution
U such that Γ−1U ∈ Zp.

Remark 1.2. Concerning condition (1.24), we note that an elementary cal-
culation shows that

η(t) ≤
N∏

i=1

exp(3|βi(t)|(|hi|1|+ |λi|)− tαi), t ∈ [0,∞),

where αi := 1
2

λ2
i − 3

2
(|hi|21 + 2|λi| |hi|1), which is strictly positive by (1.22).
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By the law of the iterated logarithm, it follows that

sup
t≥0

η(t) < ∞, P-a.e.,

hence for Ωr := {supt≥0 η(t) ≤ r} we have P(Ωc
r) → 0 as r →∞.

But, taking into account that, for each r > 0 and all ν > 0, i = 1, ..., N,
we have (see Lemma 3.4 in [1])

P
[
sup
t≥0

{exp(βi(t)− νt)} ≥ r

]
= r−2ν ,

and, more explicitly, we get that

P(Ωc
r) ≤ 2Nr

−Nα
γ2 , ∀r > 0,

where α = min1≤i≤N αi, γ = 3 max{(|hi|1 + |λi|); i ≤ N}. Therefore, if
ω ∈ Ωr and U0 = U0(ω) satisfies

|U0| 3
2
≤ C∗

r
, (1.26)

then condition (1.24) holds. It is trivial to define such an F -measurable

function U0 : Ω → L
3
2 , for instance,

U0 :=
∞∑

n=1

C∗

n
1{n−1≤supt≥0 η(t)<n}u0,

for some u0 ∈ L
3
2 . But, of course, U0 is not F0-measurable and so the process

U(t), t ≥ 0, given by Theorem 1.1, is not (Ft)t≥0-adapted. Therefore, U =
Γ(t)y is not a solution to the stochastic vorticity equation (1.8). However, it
can be viewed as a generalized solution to (1.8).

It should also be mentioned that assumption (1.22) is not necessary for
existence of a solution to equation (1.15), but only to make sure that condi-
tion (1.24) is not void.

2 Proof of Theorem 1.1

To begin with, we note below in Lemma 2.1 a few immediate properties of
the operator Γ defined in (1.10)–(1.13).
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Lemma 2.1. We have

|Γ(t)z|q + |Γ−1(t)z|q ≤ Ct|z|q, t ∈ [0,∞), ∀z ∈ Lq, ∀q ∈ [1,∞), (2.1)

and
|∇(Γ(t)z)|q ≤ ‖Γ(t)‖L(Lq ,Lq)|∇z|q, for all z ∈ W 1,q(R3). (2.2)

Proof. By (1.2), (1.11) and by the Young inequality, we see that

|Bi(u)|q ≤ (|hi|1 + |λi|)|u|q, ∀u ∈ Lq, i = 1, ..., N. (2.3)

Recalling (1.13), we see by (2.3) that (2.1), (2.2) hold, as claimed.

Lemma 2.2. Let 1
q

= 1
r1

+ 1
r2

, 3
2

< r1 < ∞, r∗1 = 3r1

3+r1
, 1 < q < ∞. Then, for

some C > 0 independent of ω,

|M(Γ(t)z)|q ≤ C‖Γ(t)‖L(Lr1 ,Lr1 )‖Γ(t)‖L(Lr2 ,Lr2)(|z|r1|z|r2 + |z|r∗1 |∇z|r2),

t ∈ [0,∞),
(2.4)

for all z ∈ Lr1 ∩ Lr2 ∩ Lr∗1 with ∇z ∈ Lr2.

Proof. We have by (1.17) and (2.1)

|M(Γ(t)z)|q ≤ |(K(Γ(t)z) · ∇)(Γ(t)z)|q + |(Γ(t)z · ∇)K(Γ(t)z)|q. (2.5)

On the other hand, by (2.2) and the Hölder inequality we have

|(K(Γ(t)z) · ∇)(Γ(t)z)|q ≤ |K(Γ(t)z)|r1|∇(Γ(t)z)|r2

≤ ‖Γ(t)‖L(Lr1 ,Lr1)‖Γ(t)‖L(Lr2 ,Lr2 )|K(z)|r1|∇z|r2 .
(2.6)

Now, we recall the classical estimate for Riesz potentials (see [20], p. 119)
∣∣∣∣
∫

R3

f(ξ̄)

|ξ − ξ̄|2 dξ

∣∣∣∣
β

≤ C|f |α, ∀f ∈ Lα,

where 1
β

= 1
α
− 1

3
, α ∈ (1, 3). By virtue of (1.6), this yields

|K(u)|β ≤ C|u|α; ∀u ∈ Lα,
1

β
=

1

α
− 1

3
, (2.7)

and so, for β = r1, α = 3r1

3+r1
= r∗1, we get by (2.2) and (2.6) the estimate

|(K(Γ(t)z) · ∇)(Γ(t)z)|q ≤ C‖Γ(t)‖L(Lr1 ,Lr1 )‖Γ(t)‖L(Lr2 ,Lr2 )|z|r∗1 |∇z|r2 . (2.8)
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(Here and everywhere in the following, |∇z|p means sup{|Diz|p ; i = 1, 2, 3}.)
Taking into account that, by the Calderon–Zygmund inequality (see [7],
Theorem 1),

|∇K(z)|p̃ ≤ C|z|p̃, ∀z ∈ Lp̃, 1 ≤ p̃ < ∞, (2.9)

one obtains that

|(Γ(t)z · ∇)(K(t)Γ(t)z)|q ≤ C‖Γ(t)‖L(Lr1 ,Lr1 )‖Γ(t)‖L(Lr2 ,Lr2 )|z|r1|z|r2 . (2.10)

Substituting (2.8), (2.10) in (2.5), one obtains estimate (2.4), as claimed.

Lemma 2.3. Let r1 = 3r2

3−r2
, 3

2
< r2 < 3, q = 3r1

r1+6
. Then, we have, for some

C > 0 independent of ω,

|M(Γ(t)z)|q ≤ C‖Γ(t)‖L(Lr1 ,Lr1 )‖Γ(t)‖L(Lr2 ,Lr2 )|z|r2|∇z|r2 , ∀z ∈ W 1,r2 . (2.11)

Proof. We have by the Sobolev–Gagliardo-Nirenberg inequality (see, e.g.,
[5], p. 278)

|z|r1 ≤ C|∇z|r2 , ∀z ∈ W 1,r2(R3).

Substituting in (2.4) and taking into account that r∗1 = r2, we obtain (2.11),
as claimed.

In the following, we fix p = r2, r1 and q as in Lemma 2.3, (2.11), that is,

3

2
< p < 2, r1 =

3p

3− p
,

1

q
=

2

p
− 1

3
. (2.12)

We write equation (1.15) as

y(t) = G(y)(t) = et∆U0 + F (y)(t), t ∈ [0,∞), (2.13)

where

F (z)(t) =

∫ t

0

e(t−s)∆Γ−1(s)M(Γ(s)z(s))ds, t ∈ [0,∞). (2.14)

By (1.16), we have for 1 < q̃ ≤ p̃ < ∞ the estimates

|et∆u|p̃ ≤ Ct−
3
2(

1
q̃
− 1

p̃)|u|q̃, u ∈ Lq̃, (2.15)

|Dje
t∆u|p̃ ≤ Ct−

3
2(

1
q̃
− 1

p̃)− 1
2 |u|q̃, j = 1, 2, 3. (2.16)
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(Everywhere in the following, we shall denote by C several positive constants
independent of ω and t ≥ 0.)

We apply (2.15), with q̃ = q, p̃ = p. By (2.11)–(2.14), we obtain that

|F (z(t))|p ≤ C

∫ t

0

(t−s)−
1
2(

3
p
−1)|Γ−1(s)M(Γ(s)z(s))|qds

≤ C

∫ t

0

(t−s)−
1
2(

3
p
−1)‖Γ(s)‖

L(L
3p

3−p ,L
3p

3−p )

‖Γ(s)‖L(Lp,Lp)‖Γ−1(s)‖L(Lq ,Lq)|z(s)|p|∇z(s)|p ds.

(2.17)

Similarly, we obtain by (2.16) that

|DjF (z(t))|p ≤ C

∫ t

0

(t−s)−
3
2p‖Γ(s)‖

L(L
3p

3−p ,L
3p

3−p )

‖Γ(s)‖L(Lp,Lp)‖Γ−1(s)‖L(Lq ,Lq)|z(s)|p|∇z(s)|p ds, j = 1, 2, 3.

(2.18)

We consider the Banach space Zp defined by (1.20), that is,

Zp =
{
y; t1−

3
2p y ∈ Cb([0,∞); Lp), t

3
2(1− 1

p)Djy ∈ Cb([0,∞); Lp),
j = 1, 2, 3

}
,

(2.19)

with the norm

‖z‖p,∞ = ‖z‖ =sup
t>0

{(
t1−

3
2p |z(t)|p + t

3
2(1− 1

p)|Diz(t)|p
)

, i = 1, 2, 3
}

. (2.20)

We note that

|z(t)|p|∇z(t)|p ≤ Ct−
5
2
+ 3

p‖z‖2, ∀z ∈ Zp, t ∈ (0,∞). (2.21)

By (2.17) and (2.20) we see that, for z ∈ Zp, we have

|F (z(t))|p ≤
∫ t

0

(t− s)−
1
2(

3
p
−1)‖Γ(s)‖

L(L
3p

3−p ,L
3p

3−p )
‖Γ(s)‖L(Lp,Lp)

‖Γ−1(s)‖L(Lq ,Lq)|z(s)|p|∇z(s)|p ds

≤ C

∫ t

0

(t− s)−
1
2(

3
p
−1)|s|− 5

2
+ 3

p‖Γ(s)‖
L(L

3p
3−p ,L

3p
3−p )

‖Γ(s)‖L(Lp,Lp)‖Γ−1(s)‖L(Lq ,Lq) ds‖z‖2

≤ Ct
3
2p
−1 sup

0≤s≤t
η(s)

∫ 1

0

(1− s)−
1
2(

3
p
−1)s−

5
2
+ 3

p ds ‖z‖2, ∀t > 0,

(2.22)
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where η is given by (1.19). This yields

t1−
3
2p |F (z(t))|p ≤C sup

0≤s≤t
{η(s)}B

(
3

2

(
2

p
− 1

)
,
3

2

(
1− 1

p

))
‖z‖2, ∀t>0, (2.23)

where B is the classical beta function (which is finite by virtue of (1.23)).
Similarly, by (2.16) and (2.21), we have, for j = 1, 2, 3,

|DjF (z)(t)|p ≤ C

∫ t

0

(t− s)−
3
2p s−

5
2
+ 3

p‖Γ(s)‖
L(L

3p
3−p ,L

3p
3−p )

‖Γ(s)‖L(Lp,Lp)‖Γ−1(s)‖L(Lq ,Lq)ds‖z‖2

≤ C sup
0≤s≤t

{η(s)}t− 3
2(1− 1

p)B

(
3

(
1

p
− 1

2

)
, 1− 3

2p

)
‖z‖2, t > 0.

(2.24)

Hence,

t
3
2(1− 1

p)|DjF (z(t))|p ≤ C sup
0≤s≤t

η(s)‖z‖2, ∀z ∈ Zp, t > 0, j = 1, 2, 3. (2.25)

By (2.15)–(2.16), we have

|et∆U0|p ≤ Ct
3
2p
−1|U0| 3

2
, t > 0,

|Dje
t∆U0|p ≤ Ct

3
2p
− 3

2 |U0| 3
2
, t > 0, j = 1, 2, 3.

Therefore, by (2.20) we get

‖et∆U0‖ ≤ C|U0| 3
2
. (2.26)

By (2.20), (2.23), (2.25), (2.26), we get,

‖G(z)‖ ≤ C1

(
|U0| 3

2
+ sup

t≥0
η(t)‖z‖2

)
, ∀z ∈ Zp, (2.27)

where C1 > 0 is independent of ω.
We set

η∞ = sup
t≥0

η(t), (2.28)

and so (2.27) yields

‖G(z)‖ ≤ C1(|U0| 3
2

+ η∞‖z‖2), ∀z ∈ Zp. (2.29)
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We set
Σ = {z ∈ Zp; ‖z‖ ≤ R∗}

and note that, by (2.29), it follows that G(Σ) ⊂ Σ if

|U0| 3
2
η∞ ≤ (4C2

1)−1, (2.30)

(so U0 must depend on ω) and R∗ = R∗(ω) is given by

R∗ = 2C1|U0| 3
2
. (2.31)

(We recall that C1 is independent of ω and U0.) Moreover, by (1.17) and
(2.14), we have, for all z, z̄ ∈ Zp,

G(z)(t)− G(z̄)(t) = −
∫ t

0

e(t−s)∆Γ−1(s)[(KΓ(s)(z(s)− z̄(s)) · ∇)Γ(s)z(s)

+ (K(Γ(s)z̄(s)) · ∇)Γ(s)(z(s)− z̄(s))− Γ(s)(z(s)− z̄(s)) · ∇K(Γ(s)z(s))

− (Γ(s)z̄(s) · ∇)K(Γ(s)(z(s)− z̄(s)))]ds.

Proceeding as above, we get, as in (2.17), (2.22), (2.23), that

|G(z)(t)−G(z̄)(t)|p

≤ C

∫ t

0

(t−s)−
1
2(

3
p
−1)‖Γ(s)‖

L(L
3p

p−3 ,L
3p

p−3 )
‖Γ(s)‖L(Lp,Lp)

‖Γ−1(s)‖L(Lq ,Lq)(|z(s)− z̄(s)|p(|∇z(s)|p + |∇z̄(s)|p)
+|∇z(s)−∇z̄(s)|p(|z(s)|p + |z̄(s)|p))ds

≤ Ct−(1− 3
2p) sup

0≤s≤t
η(s)‖z − z̄‖(‖z‖+ ‖z̄‖), ∀t > 0,

(2.32)

and also (see (2.18), (2.24), (2.25))

|DjG(z)(t)−DjG(z̄(t))|p ≤ Ct−
3
2(1− 1

p) sup
0≤s≤t

η(s)‖z − z̄‖(‖z‖+ ‖z̄‖), ∀t > 0,

for j = 1, 2, 3. Hence, by (2.20) and (2.28), we obtain that

‖G(z)−G(z̄)‖ ≤ C2η∞R∗‖z − z̄‖, ∀z, z̄ ∈ Σ, (2.33)

where C2 is independent of ω.
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Then, by (2.31), (2.33), it follows that, if (2.30) and

2C1C2η∞|U0| 3
2

< 1, (2.34)

hold, then the operator G is a contraction on Σ and so there is a unique
solution U ∈ Σ to (1.15) provided (1.24) holds with C∗ < (2C1C2)

−1.
Now, as seen earlier, by (2.11), (1.15) and (2.21) we have

|M(Γ(t)y(t))|q ≤ C‖Γ(t)‖
L(L

3p
3−p ,L

3p
3−p )

‖Γ(t)‖L(Lp,Lp)|y(t)|p|∇y(t)|p

≤ C‖Γ(t)‖
L(L

3p
3−p ,L

3p
3−p )

‖Γ(t)‖L(Lp,Lp)t
− 5

2
+ 3

p‖y‖2, ∀t > 0.
(2.35)

On the other hand, we have for all ϕ ∈ C∞
0 (R3),

∫

R3

y(t, ξ) · ϕ(ξ)dξ =

∫

R3

(et∆)U0(ξ) · ϕ(ξ)dξ

+

∫ t

0

∫

R3

Γ−1(s)M(Γ(s)y(s)) · e(t−s)∆ϕ(ξ)dξ ds.
(2.36)

Recalling that, for all 1 ≤ p̃ < ∞, |et∆ϕ|p̃ ≤ |ϕ|p̃, it follows by (2.35) that

∣∣∣∣
∫ t

0

∫

R3

Γ−1(s)M(Γ(s)y(s))·e(t−s)∆ϕ(ξ)dξ ds

∣∣∣∣
≤ C sup

0≤s≤t
η(s)

∫ t

0

s−
5
2
+ 3

p ds‖y‖2 |ϕ|q′

≤ C sup
0≤s≤t

η(s) t
3
p
− 3

2‖y‖2 |ϕ|q′ , ∀t ∈ (0,∞).

(2.37)

We also have by (2.26)

∣∣∣∣
∫

R3

et∆U0(ξ)ϕ(ξ)dξ

∣∣∣∣ ≤ C|U0| 3
2
|ϕ|3, ∀t ∈ [0,∞).

Combining the latter with (2.36), (2.37), we obtain that, for T > 0,

∣∣∣∣
∫

R3

y(t, ξ)·ϕ(ξ)dξ

∣∣∣∣ ≤ CT
3
p
− 3

2 (|ϕ|q′ + |ϕ|3), ∀ϕ ∈ Lq′ ∩ L3, t ∈ [0, T ].

Hence, by (2.36) and since t → et∆U0 is continuous on L
3
2 , the function

t → y(t) is L3 ∩ Lq′ weakly continuous on [0,∞), where q′ = 3p
4p−6

.
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If U = y(t, U0) ∈ Zp is the solution to (1.15), equivalently (2.13), we have
for all U0, U0 satisfying (1.24) (see (2.26) and (2.33))

‖y(·, U0)− y(·, U0)‖ ≤ ‖et∆(U0 − U0)‖+ ‖F (y(·, U0))− F (y(·, U0))‖
≤ C|U0 − U0| 3

2
+ η∞R∗C2‖y(·, U0)− y(·, U0)‖.

Recalling that by (2.31) and (2.34) we have R∗C2η∞ < 1, this yields

‖y(·, U0)− y(·, U0)‖ ≤ C

1−R∗C2η∞
|U0 − U0| 3

2
≤ C(ω)|U0 − U0| 3

2
,

and so, the map y → U(·, U0) is Lipschitz from L
3
2 to Zp. This completes

the proof of Theorem 1.1.

It should be noted that, by (2.30) and (2.31), we have by the Fernique
theorem

|U0| 3
2
, R∗ ∈

⋂
r≥1

Lr(Ω),

and so, taking into account that y ∈ Σ, we see by (2.19), (2.20) that

sup
t≥0

{
t1−

3
2p |y(t)|p + t

3
2(1− 1

p)|Diy(t)|p
}
∈

⋂
r≥1

Lr(Ω), i = 1, 2, 3. (2.38)

We have, therefore, the following completion of Theorem 1.1.

Corollary 2.4. Under the assumptions of Theorem 1.1, the solution y =
y(t, ω) to the equation (1.15) satisfies (2.38). The same result holds for the
solution U(t) = Γ(t)y(t) of the random vorticity equation (1.18).

3 The random version of the 3D Navier-Stokes

equation

We fix in (1.1) the initial random variable x by the formula

x = K(U0), (3.1)

where U0 = curl x, U0 = U0(ω) satisfies condition (1.24) for all ω ∈ Ω0 (see
Remark 1.2). If y is the corresponding solution to equation (1.15) given by
Theorem 1.1, we define the process X by formula (1.5), that is,

X(t) = K(U(t)) = K(Γ(t)y(t)), ∀t ∈ [0,∞). (3.2)
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By (2.7), where U is the solution to the vorticity equation (1.1), we have

|X(t)| 3p
3−p

≤ C|U(t)|p, ∀t ∈ [0,∞). (3.3)

(Everywhere in the following, C are positive constants independent of ω ∈ Ω.)
On the other hand, by the Carlderon–Zygmund inequality (2.9), we have

|DiX(t)|p ≤ C|U(t)|p, i = 1, 2, 3. (3.4)

By (3.3) and by Theorem 1.1, it follows that

t1−
3
2p X ∈ Cb([0,∞); L

3p
3−p ), (3.5)

while, by (3.4), we have for i = 1, 2, 3

t
3
2(1− 1

p)DiX ∈ Cb([0,∞); Lp). (3.6)

Now, if in (2.9) we take z = DjX, we get that, for all i, j = 1, 2, 3,

t
3
2(1− 1

p)|DiDjX|p ≤ Ct
3
2(1− 1

p)|DiU |p ≤ C, ∀t ∈ [0,∞).

This yields

t
3
2(1− 1

p)D2
ijX ∈ Cb([0,∞); Lp), i, j = 1, 2, 3. (3.7)

Moreover, by Corollary 2.4, we also have

t1−
3
2p X ∈ Cb([0,∞); Lr(Ω; L

3p
3−p )), ∀r ≥ 1, (3.8)

t
3
2(1− 1

p)DiX ∈ Cb([0,∞); Lr(Ω; Lp)), i = 1, 2, 3, (3.9)

t
3
2(1− 1

p)DijX ∈ Cb([0,∞); Lr(Ω; Lp)), i, j = 1, 2, 3. (3.10)

Now, if in equation (1.18) one applies the Biot–Savart operator K, we
obtain for X the equation

X(t) = K(et∆Γ(t)curl x) +

∫ t

0

K(e(t−s)∆Γ(t)Γ−1(s)M(curl X(s)))ds,

t ≥ 0,
(3.11)

where M is given by (1.17). It should be noted that, by virtue of (3.7)-(3.10),
the right hand side of (3.11) is well defined.
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Equation (3.11) can be viewed as the random version of the Navier-Stokes
equation (1.1). However, since, as seen earlier, U0 is not F0-measurable, the
processes t → y(t), t → U(t) are not (Ft)t≥0-adapted, and so X is not (Ft)t≥0-
adapted, too. Therefore, (3.11) cannot be transformed back into (1.1). By
Theorem 1.1, it follows that

Theorem 3.1. Under assumptions (1.24), the random Navier-Stokes equa-
tion (3.11) has a unique solution X satisfying (3.7)-(3.10).

Remark 3.2. As easily seen from the proofs, Theorem 1.1 extends mutatis-

mutandis to the noises
N∑

i=1

σi(t,X)β̇i(t), where

σi(t, x)(ξ) =

∫

R3

hi(t, ξ − ξ̄)x(ξ̄)dξ̄, ξ ∈ R3, i = 1, ..., N,

where t → hi(t, ξ) is continuous and

|hi(t)|1 ≤ C, ∀t ≥ 0, i = 1, ..., N.

Remark 3.3. The linear multiplicative case Bi(X) := αiX, i = 1, ..., N,
that is hi := δ, where δ is the Dirac measure, can be approximated by taking
hi(ξ) = 1

εd ρ
(

ξ
ε

)
, where ρ ∈ C∞

0 (Rd), support ρ ⊂ {ξ; |ξ|d ≤ 1}, ∫
ρ(ξ)dξ = 1.
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