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Abstract We study surface measures on level sets of functions on general probability spaces
with measures differentiable along vector fields and suggest a new simple construction. Our
construction applies also to level sets of mappings with values in finite-dimensional spaces.
The standard surface measures arising for Gaussian measures in the Malliavin calculus can be
obtained on this way.
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Introduction

Surface measures on general spaces have become a popular subject of study in the recent
years due to development of the Malliavin calculus, geometric measure theory and metric mea-
sure spaces, and infinite-dimensional stochastic analysis, see [2], [3], [12], [13], [14], [15], [16],
[18], [21], [23], [24], [33] and [34], where one can find discussions of diverse problems explicitly
or implicitly connected with surface measures in infinite dimensions. A rich theory of surface
measures on infinite-dimensional spaces equipped with differentiable measures was worked out
by A.V. Uglanov in the 70–80s and presented in his book [40] (see also [38], [39], and [41]). In
the same years, an approach to surface measures for Gaussian volume measures was developed in
the Malliavin calculus which provided efficient tools for the study of induced measures. For this
approach, see [1], [26], [5], [6], and [7]; far reaching generalizations to the case of differentiable
measures were obtained in [27], [28], [29], [30], and [31]. A close construction for configura-
tion spaces was presented in [19]. Hausdorff measures associated with Gaussian measures were
studied in [20]; more references for the Gaussian case can be found in [7] and [9].

The goal of our paper is to introduce a construction of surface measures that follows Malliavin’s
idea, but applies to nonlinear spaces and requires less regularity of the function generating
the surface. In the Gaussian case this construction applies to one-fold Malliavin differentiable
functions with gradients having divergences and also contains some novelties when applied to
surfaces of higher codimension. In the nondegenerate case, our surface measures are equivalent
to the standard ones. However, our approach even in the known cases leads to much shorter and
simpler proofs, in particular, the existence of surface measures is proved in few lines. In addition,
we answer a question posed by M. Röckner on continuous dependence of surface measures on
the parameter y determining the level set F−1(y).

Let µ be a bounded nonnegative Radon measure on a completely regular topological space X
defined on the Borel σ-field B (see [8] for definitions). We shall assume that µ is concentrated on a
countable union of metrizable compacts, which is always the case if X is Souslin or metrizable or
if µ is Gaussian. Given a measurable function F : X → R or a measurable mapping F : X → Rd,
we can take the image-measure µ ◦ F−1 defined by the formula

µ ◦ F−1(B) := µ(F−1(B))

on the Borel σ-field in R or Rd, respectively, and find the so-called conditional measures µy on
X such that the function B 7→ µy(B) is µ-measurable for each B ∈ B, µy is concentrated on
F−1(y) for every y (or µ◦F−1-a.e. y) and µ is the integral of µy against µ◦F−1, which is written
as

µ = µy · µ ◦ F−1(dy),
in the sense that ∫

X
f(x)µ(dx) =

∫ ∫
X
f(x)µy(dx)µ ◦ F−1(dy)

for every bounded Borel function f on X, where the integral exists due to the assumption of
measurability for µy, see [8, Chapter 10] or [9, Chapter 1] for details. This classical construction
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competes, however, with another natural concept, that of a surface measure. The latter is
usually defined in a more special situation, where one can consider suitable neighborhoods of
the “surfaces” {F = y} and obtain a reasonable limit after appropriate scaling. For example,
the usual surface measure in Rd arises as a limit of the ratio of the volume of the ε-neighborhood
of the surface and ε, as ε→ 0. The proposed construction of a surface measure σy on the level
set F−1(y) is this: we introduce a certain weight function θF and set∫

f(x)σy(dx) = lim
r→0

1
r

∫
{y<F<y+r}

f(x)θF (x)µ(dx)

for a suitable class of functions f (say, bounded Lipschitzian). Unlike the case of conditional
measures, such constructions require certain constraints on measures and functions in question.
In the case of a Gaussian measure µ on a locally convex space X this construction applies to F
in the first Sobolev class W p,1(µ) and we take θF = |DHF |2, where DHF is the Sobolev gradient
of F along the Cameron–Martin space H of the measure µ. The weight function θF can be later
dismissed provided it is sufficiently nondegenerate; its purpose is to allow degenerate F and
lower the required order of differentiability of F . The approach suggested in this paper can be
also of interest for the study of surface measures on metric measure spaces (see [4], [17], [22],
[25], and [37]).

Why is not it enough to deal with conditional measures that exist in much greater generality?
The reason is essentially the same as in the finite-dimensional case: the Gauss–Ostrogradskii–
Stokes formula and integrations by parts. This explains at once why certain smoothness re-
strictions on the volume measure and the function generating level sets are needed. Another
reason is that conditional measures µy depend not only on the level sets F−1(y), but also on the
image-measure µ ◦ F−1 (though, for induced measures with positive densities this dependence
reduces to a constant factor for each fixed y). Our construction shares this property, but allows
a modification that does not.

We thank A. Lunardi and M. Röckner for useful discussions. This research was supported by
the Russian Science Foundation Grant 14-11-00196.

1. Non-normalized surface measures

The measure µ mentioned above is fixed throughout. Let F be a class of bounded B-
measurable functions. We assume throughout that F satisfies the following conditions:

(F1) F is a linear space and ϕ(f) ∈ F for all f ∈ F and all Lipschitzian functions ϕ on R.
(F2) the space P(X) of Radon probability measures on B is sequentially complete in the

topology on the space of bounded measures generated by duality with F and the corresponding
convergence yields weak convergence, which means that, whenever {µn} is a sequence in P(X)
such that the integrals of every function in F against the measures µn have a finite limit, there
is a measure µ ∈ P(X) such that for each bounded continuous function f we have∫

X
f(x)µ(dx) = lim

n→∞

∫
X
f(x)µn(dx).

For example, if X is a complete separable metric space, then the class of all bounded Lips-
chitzian functions on X satisfies both conditions (F1) and (F2) (see [8, Corollary 8.6.3]). We
recall that weak convergence of a sequence of Radon probability measures to a Radon probability
measure µ is equivalent to the relation µ(W ) ≤ lim infn→∞ µn(W ) for every open set W (see [8,
Section 8.2]). In case of metric spaces it suffices to have convergence of the integrals of bounded
Lipschitzian functions.

For many applications, it is possible to take for F exactly the class of all bounded Lipschitzian
functions.

It follows from (F1) that 1 ∈ F and that fg ∈ F for all f, g ∈ F . Indeed, f2 ∈ F for all
f ∈ F , because we can take for ϕ a function in C∞

b (R) that coincides with x2 on the bounded
range of f , so it remains to use the equality 2fg = (f + g)2 − f2 − g2.

It follows from (F2) that F separates Radon measures on X, i.e., two measures coincide
provided that they assign equal integrals to each f ∈ F .
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Let v be a vector field on X understood as a linear mapping

v : F → L1(µ), f 7→ ∂vf,

such that
∂v(ϕ ◦ f) = ϕ′(f)∂vf µ-a.e. (1.1)

for all f ∈ F and all Lipschitzian functions ϕ on the real line. Similarly we can define more
general vector fields for which functions ∂vf belong to the space L0(µ) of µ-measurable functions.

Applying this relation to ϕ such that ϕ(t) = t on a sufficiently large interval we obtain the
Leibniz rule

∂v(fg) = f∂vg + g∂vf ∀ f, g ∈ F . (1.2)

It is worth noting that ∂v1 = 0, because we can take ϕ = 1 in (1.1) or, alternatively, we can
take f = g = 1 in (1.2).

Suppose that µ is Skorohod differentiable along v in the following sense: there is a bounded
measure dvµ on B, called the Skorohod derivative of µ along v, such that∫

X
∂vf(x)µ(dx) = −

∫
X
f(x)dvµ(dx) ∀ f ∈ F . (1.3)

We say that µ is Fomin differentiable along v if dv � µ; in that case the Radon–Nikodym density
of dvµ with respect to µ is denoted by βv and is called the logarithmic derivative of µ along v
or divergence of v with respect to µ.

For example, if µ is a measure on Rd with a smooth density % and v is a nonzero constant
vector, then dvµ is given by density ∂v% and βv = (∂v%)/%, which explains the terminology. For
a survey of the theory of differentiable measures, see [9].

The original definition of Fomin dealt with constant vector fields on linear spaces. Differ-
entiability of measures along non-constant vector fields was considered already in the 80–90s
(sometimes implicitly) in the Malliavin calculus and its modifications (see [36], [35], [5], and [19]).

Observe that dvµ(X) = 0, which follows by (1.3) applied to f = 1, so dvµ is necessarily a
signed measure.

We need an extension of ∂v to functions outside of F .

Definition 1.1. We say that a function Ψ ∈ L1(µ) belongs to Dv if Ψ ∈ L1(dvµ) and there is a
sequence of functions fn ∈ F converging to Ψ in L1(µ) and in L1(dvµ) such that the functions
∂vfn converge in L1(µ) to some function w and the functions fn∂vg are uniformly integrable for
each g ∈ F (the latter holds if {fn} converges to Ψ in Lp(µ) for some p > 1 and all functions
∂vg for g ∈ F belong to Lq(µ), q = p/(p− 1)). Then we set ∂vΨ := w.

The function w (if exists) is uniquely defined. Indeed, for each g ∈ F we have∫
X
g(x)w(x)µ(dx) = lim

n→∞

∫
X
g(x)∂vfn(x)µ(dx)

= lim
n→∞

∫
X

[∂v(gfn)(x)− fn∂vg]µ(dx) = − lim
n→∞

∫
X

(gfn)(x)dvµ(dx)−
∫

X
Ψ∂vgµ(dx)

= −
∫

X
(gΨ)(x)dvµ(dx)−

∫
X

Ψ∂vgµ(dx).

We shall assume that F : X → R is a B-measurable function such that

(F3) ψ(F ) ∈ Dv for each Lipschitzian function ψ on R with compact support.

Then ∂vF can be defined as follows: this a measurable function such that ∂v(ψ ◦F ) = ψ′(F )∂vF
a.e. for each Lipschitzian function with compact support.

Let us assume that

(F4) ∂vF ∈ L1(µ).

Set
ν =: (∂vF ) · µ, η := dvµ ◦ F−1.
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The conditional measures on the level sets F−1(y) generated by the measure ν will be denoted
by νy.

Let us assume that dvµ vanishes on each set F−1(y). This is automatically true in the case
of Fomin’s differentiability if µ ◦ F−1 has no atoms.

Another concept coming along with surface measures is capacity. Suppose that F is equipped
with a norm ‖ · ‖F such that convergence in this norm yields convergence in L1(µ). In practical
situations, this will be often the norm of a suitable Sobolev space W p,1(µ), but so far no Sobolev
spaces are needed. This norm generates a capacity (about capacities, see [9]). Namely, for every
open set U ⊂ X we define its capacity associated with F by the formula

CF (U) = inf{‖f‖F : f ∈ F , f ≥ 0, f ≥ 1 µ-a.e. on U}.
For any set B ⊂ X let

CF (B) = inf{CF (U) : U ⊃ B is open}.
Typically, capacities of the sort we consider are tight (see [32], [30], [31]), i.e., for each ε > 0
there is a compact set Kε such that CF (X\Kε) < ε. However, we do not assume this property.

Recall that a function f is called CF -quasi-continuous if, for each n, there is a closed set An

such that CF (X\An) < 1/n and f |An is continuous.
It is known that each function f ∈ F has a CF -quasi-continuous version (see [9, Section 8.13]),

provided that the norm ‖ · ‖F is strictly convex, as is the case of the Lp-norm with p ∈ (1,+∞),
and, more generally, with any norm of the form ‖f‖F = ‖T−1f‖Lp(m), where m is a probability
measure and T is a bounded linear operator from Lp(m) to L1(µ); in particular, the latter case
covers most of Sobolev classes. However, in place of such assumptions we simply assume that

(F5) F has a quasi-continuous version.

We now fix a quasi-continuous version of F ; the results below refer to this version!
By using (F1)–(F4), for any ψ ∈ C∞

0 (R) we have∫
ψ′(t)ν ◦ F−1(dt) =

∫
X
ψ′(F (x))∂vF (x)µ(dx) =

∫
X
∂v(ψ ◦ F )(x)µ(dx)

= −
∫

X
ψ(F (x))dvµ(dx) = −

∫
ψ(t)η(dt).

Therefore, (ν ◦ F−1)′ = η in the sense of distributions. It follows that the measure ν ◦ F−1 on
the real line has a density %1 of bounded variation and

%1(t) = η((−∞, t)) = dvµ(x : F (x) < t).

By our assumption that dvµ vanishes on each set {F = t} this density is continuous. In
particular, this holds if µ is Fomin differentiable along v.

The same holds if we replace ν by the measure f · ν, where f ∈ F . Indeed, in that case∫
ψ′(t)(f · ν) ◦ F−1(dt) =

∫
X
∂v(ψ ◦ F )(x)f(x)µ(dx)

= −
∫

X
ψ(F (x))f(x)dvµ(dx)−

∫
X
ψ(F (x))∂vf(x)µ(dx),

so that
((f · ν) ◦ F−1)′ = (f · dvµ) ◦ F−1 + (∂vf · µ) ◦ F−1

and
‖((f · ν) ◦ F−1)′‖ ≤ ‖f · dvµ+ (∂vf · µ)‖.

As above, the measure (f · ν) ◦ F−1 on the real line has a continuous density %f of bounded
variation. Therefore,

|%f (y)| ≤ ‖f · dvµ+ (∂vf · µ)‖ ≤ ‖dvµ‖ · ‖f‖∞ + ‖µ‖ · ‖∂vf‖L1(µ). (1.4)

We need also a similar estimate with an Lp-norm of f , which holds if dvf = βv · µ, where
βv ∈ Lq(µ), q = p/(p− 1). Then

|%f (y)| ≤ ‖βv‖Lq(µ)‖f‖Lp(µ) + ‖µ‖ · ‖∂vf‖L1(µ). (1.5)
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We now introduce non-normalized surface measures σy. The definition employs only the
differentiability of the distribution functions

Φf (t) =
∫
{F<t}

f(x)ν(dx)

at a given point. However, for deriving further properties of our surface measures we shall need
some additional assumptions.

Definition 1.2. Given y ∈ R, suppose that Φf is differentiable at y for each f ∈ F . The
measure σy on X is defined as follows:∫

X
f(x)σy(dx) = %f (y), f ∈ F . (1.6)

The hypothesis of differentiability of Φf is fulfilled if µ is Fomin differentiable along v and F
satisfies the aforementioned assumptions (F1)–(F4).

This construction is close to the one described in [5], [6], [7] and later developed in [29] in the
case of measures on locally convex spaces differentiable along constant vectors, but it requires
only one-fold differentiability of F ; in [29] the membership of F in the second Sobolev class is
required and in [18], in the Gaussian case, also the second derivative is used (the function F is
in the first Sobolev class, but its normalized Malliavin gradient must be also in the first Sobolev
class).

By our construction,

%f (y) = lim
n→∞

n

∫
y<F<y+1/n

f(x)ν(dx) = lim
n→∞

n

∫ y+1/n

y
%f (s)ds. (1.7)

It is worth noting that we have another version of (1.4), namely, for each n we have the estimate∣∣∣∣n ∫
y<F<y+1/n

f(x)ν(dx)
∣∣∣∣ ≤ ‖dvµ‖ · ‖f‖∞ + ‖µ‖ · ‖∂vf‖L1(µ)). (1.8)

Obviously,
f 7→ %f (y)

is a linear functional, so we have to show that this functional is represented by a bounded
measure. As we have seen, this follows immediately by our assumption about F provided that
µ is Fomin differentiable along v and F satisfies the stated assumptions.

It should be noted that the “non-normalized” surface measures introduced above are still not
true “surface measures”, since they depend not only of the level sets F−1(y), but also on the
whole function F . For example, it we replace F by 2F , the set F−1(0) does not change, but our
measure σ0 obviously does: it will be multiplied by 4, because the sets {0 < 2F < r} are the
old sets {0 < F < r/2}, so when evaluating the derivative of the distribution function at zero
we get the factor 2; another factor 2 comes from ∂v(2F ). Obviously, the whole thing depends
also on our choice of the vector field v. This is a certain disadvantage of our definition, which
will be partially overcome below (by passing to surface measures normalized by weights), but
one should bear in mind that even dealing with very nice functions F on infinite-dimensional
spaces, the known constructions do not really define surface measures on individual level sets
F−1(y), as it happens with usual nice surfaces in Rd, it is still necessary that each fixed surface
be included in a special family of level sets. On the other hand, by using weight functions
one can obtain “geometric surface measures” on the basis of our surface measures in case of a
reasonable individual surface.

Lemma 1.3. Suppose that there is p > 1 such that

‖f‖Lp(µ) + ‖∂vf‖L1(µ) ≤ ‖f‖F , f ∈ F . (1.9)

Assume also that βv ∈ Lp/(p−1)(µ). Then, for every open set W ⊂ X and any r > 0, we have

ν(W ∩ {y < F < y + r}) ≤ rC(µ)CF (W ), C(µ) = ‖µ‖+ ‖βv‖Lq(µ). (1.10)
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Proof. Let f ∈ F , f ≥ 0 and f ≥ 1 µ-a.e. on W . Then f ≥ 1 ν-a.e. on W , hence on account
of (1.5) and (1.9) we obtain

ν(W ∩ {y < F < y + r}) ≤
∫

W∩{y<F<y+r}
f(x)ν(dx)

≤
∫

y<F<y+r
f(x)ν(dx) ≤ rC(µ)(‖f‖Lp(µ) + ‖∂vf‖L1(µ)) ≤ rC(µ)‖f‖F ,

which yields the announced estimate by taking inf in f . �

Theorem 1.4. Suppose that the assumptions of the previous lemma hold along with (F1)–(F5).
For each y ∈ R, the measure σy on B exists, is concentrated on the set F−1(y) and vanishes on
all sets of CF -capacity zero. In addition, for ν ◦ F−1-a.e. y, we have the equality

σy = %1(y)νy.

Proof. We can assume that y = 0. We know that for every f ∈ F the distribution function of
the measure (f · ν) ◦ F−1 is differentiable at zero and its derivative is %f (0), which must be the
integral of f with respect to the desired surface measure. Clearly, this value is the limit of the
integrals of f over the sets Bn = {0 < F < n−1} with respect to the measure n · ν. Such an
integral can be written as the integral of f against the measure νn := nIBn · ν. The nonnegative
measures νn are uniformly bounded, since their values on the whole space X converge to %1(0).
It follows from our condition on F that there is a bounded nonnegative measure σ0 on X such
that the aforementioned integrals converge to the integral of f against σ0. Indeed, this is true
in the class of probability measures, to which everything reduces if %1(0) > 0, but in case of
%1(0) = 0 we have convergence to zero in variation.

It follows from the definition of %f (y) that∫ +∞

−∞

∫
X
f(x)σy(dx)dy =

∫
X
f(x)ν(dx) =

∫
R

∫
X
f(x)νy(dx)ν ◦ F−1(dy).

The integral on the left can be written as∫ +∞

−∞

∫
X
f(x)

1
%1(y)

σy(dx)%1(y)dy =
∫

R

∫
X
f(x)

1
%1(y)

σy(dx)ν ◦ F−1(dy),

hence the measure σy/%1(y) coincides with the conditional measure νy for ν ◦ F−1-a.e. y due
to our assumption that F separates measures on B and the essential uniqueness of conditional
measures.

Let us show that σy(X\F−1(y)) = 0. We can assume again that y = 0. It suffices to show
that σ0 vanishes on each set U := {|F | > δ}, where δ > 0. By assumption, for each n, there is
a closed set An such that CF (X\An) < 1/n and F |An is continuous. The sets

Un = U ∩ (X\An)

are open, because {|F | ≤ δ} ∩ An is closed by the continuity of the restriction F |An . We have
U ⊂

⋂∞
n=1 Un. Let k > 1/δ. Then νk(U) = 0, so by the lemma we have

νk(Un) = νk(X\An) ≤ C(µ)n−1,

hence σ0(Un) ≤ C(µ)n−1, which yields that σ0(U) = 0. Note that we could not derive this
directly from the equality νk(U) = 0, because U need not be open.

We now prove that σy(B) = 0 for every set B ∈ B of zero CF -capacity. Again it suffices to
consider the case y = 0. Let ε > 0. By definition, there is an open set U containing B such
that CF (U) < ε. Therefore, there is a function f ∈ F ≥ 0 such that f ≥ 1 on µ-a.e. U and
‖f‖F < ε. It follows by the lemma that |νn(U)| ≤ εC(µ), which yields that |σ0(U)| ≤ εC(µ).
Letting ε→ 0 we arrive at the desired conclusion. �

In the considered situation we have the following version of the Gauss–Ostrogradskii–Stokes
formula with our non-normalized surface measure. Set

Vr = F−1(−∞, r), Sr = F−1(r).
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Proposition 1.5. Let u be another vector field along which µ is differentiable, satisfying the
same hypotheses as v. Then∫

Vr

βu(x)µ(dx) = −
∫

Sr

∂uF (x)
∂vF (x)

σr(dx).

Proof. Let ψh(s) = 1 if s ≤ r, ψh(s) = 0 if s ≥ r + h, ψh(s) = C − s/h if r < s < r + h,
C = 1 + r/h. Then ψ′h(s) = −1/h in the interval (r, r + h) and ψ′h = 0 outside the closure of
this interval. We have ∂u(ψh ◦ F ) = −h−1∂uF on the set {r < F < r + h} and∫

X
ψh(F (x))δµu(x)µ(dx) = −

∫
X
∂uψh(F (x))µ(dx) = h−1

∫
r<F<r+h

∂uF (x)µ(dx).

As h→ 0, the left-hand side of this identity tends to the integral of βu over Vr and the right-hand
side tends to the surface integral of the function ∂uF/∂vF against the surface measure σr. �

Remark 1.6. It follows from our construction that the mapping y 7→ σy is continuous provided
that the space of probability measures is equipped with the weak topology. Indeed, according
to (1.6), whenever yj → y, for each f ∈ F , the integral of f against σyj converges to the integral
of f against σy, which by our assumption yields weak convergence.

In the framework described above there is no natural way of normalizing our non-normalized
surface measures. One way of making the construction more invariant is this: assuming that
∂vF is quasi-continuous and positive quasi-everywhere and that 1/∂vF is µ-integrable, so that
the measure |∂vF |−2 · ν is finite, one can take new measures

σy
0 := |∂vF |−2 · νy

on the same level sets F−1(y). These measures are finite for ν ◦ F−1-a.e. y, hence also for
µ ◦F−1-a.e. y. At the level of conditional measures the difference between our surface measures
and the standard ones is that the former are proportional to conditional measures for ν and
the latter are proportional to conditional measures for µ itself, so in case ∂vF 6= 0 our surface
measures are equivalent to the standard ones.

Let us now recall some concepts related to Gaussian measures (see [7], [9], and [10]). Let X
be a locally convex space and let X∗ be its topological dual. A Radon probability measure µ on
X is called centered Gaussian if, for every functional l ∈ X∗, the induced measure µ◦ l−1 on the
real line is centered Gaussian, i.e., is Dirac’s measure at the origin or has a symmetric Gaussian
density with respect to Lebesgue measure. The Cameron–Martin space H of µ consists of all
vectors h with finite norm

|h|H := sup{l(h) : l ∈ X∗, ‖l‖L2(µ) ≤ 1}.

It is known that H with this norm is a separable Hilbert space compactly embedded into X; the
corresponding inner product is denoted by (·, ·)H . A typical example: µ is the countable power
of the standard Gaussian measure on the real line, X is the space R∞ of all real sequences (the
countable power of the real line), and H = l2.

For every h ∈ H, there is a measurable liner functional ĥ, belonging to the closure of X∗ in
L2(µ), such that

l(h) =
∫

X
l(x)ĥ(x)µ(dx) ∀ l ∈ X∗.

The measure µ is Fomin differentiable along the constant vector field h and βh = −ĥ.
The Sobolev class W p,1(µ), p ∈ [1,+∞), is defined as the completion of the class FC of

functions of the form

f(x) = f0(l1(x), . . . , ln(x)), f0 ∈ C∞
b (Rn), li ∈ X∗,

with respect to the Sobolev norm

‖f‖p,1 = ‖f‖Lp(µ) + ‖DHf‖Lp(µ) = ‖f‖Lp(µ) +
(∫

X
|DHf(x)|pHµ(dx)

)1/p

,
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where the gradient DHf(x) ∈ H is defined by

(DHf(x), h)H = ∂hf(x) = lim
t→0

t−1(f(x+ th)− f(x)).

If {en} is an orthogonal basis in H, then the vector DHf(x) has coordinates ∂enf(x). In the
aforementioned case of the standard Gaussian product-measure functions of class FC are just
smooth functions with bounded derivatives in finitely many variables, and DHf(x) = ∇f(x).
Similarly one defines Sobolev classes W p,1(µ,E) of mappings with values in a separable Hilbert
space E; in this case DHf(x) is an operator between H and E and the Hilbert–Schmidt norm
of such operators is used to define the Sobolev norm. This means that in place of |DHf(x)|H in

the previous formula we use
(∑∞

n=1 |∂enf(x)|2E
)1/2

.

As a result of completing, every Sobolev function f ∈W p,1(µ) obtains a gradient DHf , which
is an Lp-mapping with values in H. It satisfies the integration by parts formula∫

X
ψ(x)(DHf(x), h)Hµ(dx) = −

∫
X
f(x)[∂hψ(x)− ψ(x)ĥ(x)]µ(dx)

for all ψ ∈ FC. Actually, this equality extends to ψ ∈ W q,1(µ), q = p/(p − 1). By using this
directional integration by parts formula, one can show that µ is differentiable along vector fields
v ∈W p,1(µ,H). In this case for v(x) =

∑∞
n=1 vn(x)en we have

βv(x) =
∞∑

n=1

(∂env(x)− vn(x)ên(x)),

where the series converges in Lp(µ).
Inductively one defines higher Sobolev classes W p,k(µ,E) with derivatives up to order k. For

example, the class W p,2(µ) consists of functions f ∈ W p,1(µ) such that DHf ∈ W p,1(µ,H).
Therefore, the measure µ is differentiable along the gradient field v = DHF once F ∈W p,2(µ).

In the case of a centered Gaussian measure µ with the Cameron–Martin space H and F
belonging to the Sobolev class W p,2(µ) (or belonging to W p,1(µ) and having the gradient with
divergence) our construction leads to usual surface measures considered in [1], [26], [7], [9],
and [18] by taking v = DHF and ∂vF = |DHF |2H . If X is a Banach space, then we take for F
the class of all bounded Lipschitzian functions. Conditions (F1)–(F5) are known to hold in this
case. The case of a general locally convex space with a Radon Gaussian measure reduces to this
one by the Tsirelson linear isomorphism theorem (see [7]).

We emphasize that for better surfaces (existing individually such as level sets of continuously
Fréchet differentiable functions with nondegenerate derivatives) there is no need to involve vari-
able vector fields DH : it becomes much simpler to define surface measures locally by using only
constant vector fields of differentiability of µ. In that case no second derivatives of F appear at
all and in this way we recover the existence results of [40] (even under weaker assumptions).

In place of a Gaussian measure µ, it is possible to consider a Radon probability measure µ
on a locally convex space X that is Fomin differentiable along a continuously embedded dense
Hilbert space H; then one can also define Sobolev classes. This situation studied in [29], [30],
and [31] has been the most general considered so far in the linear case. In the recent paper [18],
similar results have been reproved in the Gaussian case (note that the proof of the fact that
the constructed surface measures are concentrated on the corresponding level sets, given in [18],
is incorrect if the defining function is not continuous: there might be no nonzero continuous
functions with support in the set {|F | > r}). The approach suggested here leads to much
shorter and simpler proofs than in the cited papers.

Remark 1.7. (i) It is worth noting that the case of a Fréchet space reduces to that of a separable
reflexive Banach space, since every Radon measure on a Fréchet space is concentrated on a
compactly embedded separable reflexive space (see [8, Theorem 7.12.4]). For many measures
on Banach spaces (Gaussian, differentiable), the class of bounded Lipschitzian functions is a
suitable candidate for F , since such functions are almost everywhere differentiable with respect
to such measures.
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(ii) The class FC of bounded Lipschitzian cylindrical functions satisfies condition (F1), but
not always (F2). However, for µ with compact support it suffices to ensure (F1) only on this
compact support, so that FC works well. It should be also noted that it is possible to define
surface measures locally in a suitable sense (for example, on compact sets) by replacing µ by
ζ ·µ, where ζ ≥ 0 is a bump function whose support gives the desired localization. For example,
in the Gaussian case or in the case of a differentiable measure on a Banach space, it is always
possible to choose ζ in a such a way that its support will be compact and contain a given
compact set and the measure ζ · µ will remain Fomin differentiable along the same directions
as µ. This can give local surface measures in more general situations where there are no global
surface measures. A possible way of gluing these local surface measures is based on establishing
their uniform tightness.

If X is equipped with a suitable tangent structure enabling us to consider v not as a differ-
entiation, but as a true vector field possessing the corresponding norm |v(x)|, one might try to
use fields of unit length, but again the question of their choice arises. The choice v = DHF in
the Gaussian case mentioned above is connected with another natural object: H-neighborhoods
of sets. Given a Borel set B, we take the set Br = B + rUH , where UH is the unit ball in
the Cameron–Martin space H. The set Br in general is much smaller than the usual metric
r-neighborhood of B. Then, for certain “surfaces” B, the surface measure of B can be obtained
as a limit of µ(Br)/r as r → 0. However, a precise definition on this way is more involved.

Among various restrictions on µ and F imposed above, certainly, the most stringent one is
the existence of vector fields of differentiability for µ. For example, in many cases, given a
measure µ on a metric space, one can take for F the space of bounded Lipschitzian functions; in
many cases, such functions possess appropriate gradients µ-almost everywhere, so if F is locally
Lipschitzian, then the only problem is to find suitable differentiability fields for the measure. It
is not always possible to build such fields from constant vector fields (this happens already for
distributions of diffusion processes with non-constant diffusion coefficients, see [9, Chapter 4]).
It would be interesting to study vector fields of differentiability of measures in the framework of
metric measure spaces.

2. Surface measures on surfaces of higher codimension

The construction developed in the previous section works also in the case of surfaces of higher
codimension, but requires a bit more regularity of the mapping

F = (F1, . . . , Fd) : X → Rd

on the level sets of which we wish to define surface measures. We recall that conditional measures
are not sensitive at all to this change, they exist even for mappings with values in quite general
infinite-dimensional spaces.

Now we need d vector fields v1, . . . , vd along which the measure µ is differentiable. However,
in the multidimensional case it is reasonable to modify our conditions on F as follows:

ϕ(f1, . . . , fn) ∈ F ∀ f1, . . . , fn ∈ F

for all Lipschitzian functions ϕ on Rn and

∂vi(ϕ(f1, . . . , fn)) =
n∑

j=1

∂xjϕ(f1, . . . , fn)∂vifj .

Suppose that ψ(F ) ∈ Dvi for all Lipschitzian functions ψ on Rd with compact support and each
i = 1, . . . , d. This enables us to define functions ∂viFj as we have done in the one-dimensional
case.

In place of ∂vF we now take the determinant ∆F of the so-called Malliavin matrix

(σij)i,j≤d, σij := ∂viFj .

The minor in the Malliavin matrix corresponding to the element σij(x) is denoted by M ij(x).
If the matrix (σij(x))i,j≤d is invertible, the inverse matrix will be denoted by (γij(x))i,j≤d.
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Suppose that ∆F ∈ L1(µ). Set
ν = ∆F · µ.

Let Ur = {x ∈ Rd : |x| < r} and Wr = {|F | < r}.

Proposition 2.1. Suppose that fM ij ∈ Dvj for all i, j ≤ d and all f ∈ F vanishing outside
of Wr. Then the measure ν ◦ F−1 is absolutely continuous on Ur and has a density % of class
BV (Ur). In particular, % ∈ Ld/(d−1)(Ur).

If ∆F (x) 6= 0 µ-a.e. on Wr, then this density belongs to W 1,1(Ur).
Finally, if

ui :=
IWr

∆F

∑
j≤d

[∂vjM
ij +M ijβvj ] ∈ Ls(ν), where s > d, (2.1)

then this density belongs to W p,1(Ur) with some p > d and has a continuous version.

Proof. Note that ∑
k≤d

M ij(x)σjk(x) = ∆F (x)δik,

where δik is Kronecker’s symbol. Indeed, this is true for invertible matrices, but remains valid
for any matrix by approximation by invertible matrices. Let ψ ∈ C∞

0 (Ur). We have∫
Ur

∂yiψ(y)ν ◦ F−1(dy) =
∫

Wr

∂yiψ(F (x))∆F (x)µ(dx)

=
∫

X

∑
j,k≤d

M ij(x)σjk(x)[∂yk
ψ(F (x))]µ(dx) =

∫
X

∑
j≤d

∂vj (ψ ◦ F )(x)M ij(x)µ(dx)

= −
∑
j≤d

∫
X

(ψ ◦ F )(x)M ij(x)dvjµ(dx)−
∑
j≤d

∫
X

(ψ ◦ F )(x)∂vjM
ij(x)µ(dx)

= −
∑
j≤d

∫
X

(ψ ◦ F )(x)[∂vjM
ij(x) +M ij(x)βvj (x)]µ(dx).

The right-hand side can be written as the integral of ψ with respect to a bounded measure on Ur,
hence the measure ν ◦ F−1 on Ur has a density % of class BV (Ur). By the Sobolev embedding
theorem % ∈ Ld/(d−1)(Ur).

In case the measure ν is equivalent to µ the right-hand side can be written as the integral of
ψgi%, where gi is the conditional expectation of the ν-integrable function −ui with respect to
the measure ν and the σ-field generated by F . Therefore, % ∈W 1,1(Ur).

Note that
∂yi% = gi%.

By Jensen’s inequality for conditional expectations the inclusion |ui|s ∈ L1(ν) yields the inclusion
|gi|s% ∈ L1(Ur) .

We now show that ∂yi% is better integrable under the assumptions of the last assertion.
Suppose that % ∈ Lp(Ur) for some p ≥ 1. By Hölder’s inequality we have gi% ∈ Lsp/(p+s)(Ur).
Therefore, % ∈W p1,1(Ur) with p1 = sp/(p+ s), which in case p1 < d by the Sobolev embedding
yields that % ∈ Lp2(Ur) with

p2 =
dp1

d− p1
= p

ds

ds− p(s− d)
≥ p

ds

ds− s+ d
= λp, λ =

ds

ds− s+ d
> 1.

If p1 = d, then % ∈ Lq(Ur) for any q <∞, hence ∂yi% ∈W s−ε,1(Ur) for any ε > 0. Therefore, in
finitely many steps we arrive at the situation where ∂yi% ∈ W p,1(Ur) with some p > d. So the
Sobolev embedding ensures a continuous density. �

We now give a constructive sufficient condition for the continuity of densities of multidimen-
sional distributions related to µ rather than ν. This requires, however, second derivatives of F .
In the next proposition we assume that ∂vk

∂vjFi can be defined in the same sense as ∂vjFi above
by using that ψ(∂vjF ) ∈ Dvk

for Lipschitzian functions on Rd with compact support.
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Proposition 2.2. (i) Suppose that for every r ∈ N there is εr > 0 such that the functions

exp
( εr

∆2
F

)
, exp

(
εr|σijβvk

|
)
, exp

(
εr|∂vk

∂vjFi|
)

are µ-integrable on the set {|F | < r}. Then the measure µ◦F−1 has a continuous density without
zeros.

(ii) Suppose that for every r ∈ N there is pr > d such that the functions

|γijβvk
|pr , |∂vk

γki|pr

are µ-integrable on the set {|F | < r}. Then the measure µ ◦ F−1 has a continuous density.

Proof. (i) We shall use the following result (see [11] or [9, Proposition 6.4.1]): if a nonnegative
function % on a ball U ⊂ Rd belongs to the Sobolev class W 1,1(U) and there is ε > 0 such that
% exp(ε|∇%|/%) ∈ L1(U), where we set ∇%/% = 0 on the set {% = 0}, then % has a continuous
version that is either identically zero or positive.

Let us fix r ∈ N and let U be the open ball of radius r in Rd centered at the origin. Let
ϕ ∈ C∞

0 (U). We have∫
U
∂yiϕ(y)µ ◦ F−1(dy) =

∫
X
∂yiϕ(F (x))µ(dx) =

∫
X

∑
k,j≤d

γikσkj∂yjϕ(F (x))µ(dx)

=
∫

X

∑
k≤d

γik∂vk
(ϕ ◦ F )(x)µ(dx) = −

∫
|F |<r

∑
k≤d

ϕ(F (x))[∂vk
γik + γikβvk

]µ(dx)

= −
∫

U
ϕ(y)ηi(y)µ ◦ F−1(dy),

where η is the conditional expectation of the function
∑

k[∂vk
γik + γikβvk

]I{|F |<r} with respect
to the measure µ and the σ-field generated by F . It follows that the generalized derivative of
the measure µ ◦F−1 on U in the variable yi is the measure ηi · (µ ◦F−1) � µ ◦F−1. Therefore,
µ on U has a density % ∈W 1,1(U) and ∂yi%/% = ηi. By our assumption and Jensen’s inequality
for conditional expectations, we arrive at the condition mentioned above.

(ii) If we are given that µ has a locally bounded density %, then the previous relation can be
written as ∫

U
∂yiϕ(y)%(y)dy = −

∫
U
ϕ(y)ηi(y)%(y)dy,

which means that ∂yi% = ηi% on U in the sense of distributions. We obtain again that
% ∈ W 1,1(U), but now we conclude that ∂yi% ∈ Lpr(U) by the same iteration of the Sobolev
embedding theorem as above. Therefore, by the Sobolev embedding theorem % has a continuous
density (now it is not asserted that it is positive). �

Definition 2.3. The surface measure σy on F−1(y) is defined by the formula∫
X
f(x)σy(dx) = %f (y), f ∈ F .

This definition means that∫
X
f(x)σy(dx) = lim

r→0

1
|Ur|

∫
{|F−y|<r}

f(x)ν(dx),

where |Ur| is the usual volume of the ball Ur. The existence of the limit in the right-hand side
is the only condition required by the definition and this condition is fulfilled in the situation of
Proposition 2.1.

As in the previous section, we have to show that this relation defines a bounded measure.

Theorem 2.4. Under the assumptions of Proposition 2.1, the assertions of Theorem 1.4 hold.

The proof is essentially the same, however, we should note that the assumptions are now
stronger.

Remark 2.5. Since σy = %1(y)νy, every ν-integrable B-measurable function g is σy-integrable
for ν ◦ F−1-almost every y. This enables us to define surface measures for g · ν.
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[32] Röckner M., Schmuland B. Tightness of general C1,p capacities on Banach spaces. J. Funct. Anal.
1992. V. 108, N 1. P. 1–12.
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