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Abstract

After recalling basic features of the theory of symmetric quasi regu-
lar Dirichlet forms we show how by applying it to the stochastic quan-
tization equation, with Gaussian space-time noise, one obtains weak
solutions in a large invariant set. Subsequently, we discuss non sym-
metric quasi regular Dirichlet forms and show in particular by two
simple examples in infinite dimensions that infinitesimal invariance,
does not imply global invariance. We also present a simple example of
non-Markov uniqueness in infinite dimensions.

1 Introduction

The theory of symmetric Dirichlet forms is the natural extension to higher
dimensional state spaces of the classical Feller theory of stochastic processes
on the real line. Through ground breaking work by Beurling and Deny (1958-
59), [BD58], [BD59], [Den70], [Sil74], [Sil76], and Fukushima (since 1971),
[Fu71a], [Fu71b], [Fu80], [FOT11], [CF12], it has developed into a powerful
method of combining analytic and functional analytic, as well as poten-
tial theoretic and probabilistic methods to handle the basic construction of
stochastic processes under natural conditions about the local characteris-
tics (e.g., drift and diffusion coefficients), avoiding unnecessary regularity
conditions.

Such processes arise in a number of applied problems where coefficients
can be singular, locally or at infinity. For detailed expositions of the gen-
eral theory, mainly concentrated on finite dimensional state spaces, see
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[Fu80], [F82], [FOT11], [Ma95] and, e.g., [Alb03], [BBCK09], [E99], [Fu10],
[GriH08], [Hi10], [KaYa05], [KKVW09], [KT91]. For further new develop-
ments, e.g. concerning boundary conditions, or non symmetric processes,
or processes with jumps, see, e.g., [CF12], [CMR94], [AFH11], [AMU98],
[AU00], [Sta99a], [Sta99b], [BiT07], [Bou03], [KS03], [LW99], [Osh04], [Jac01],
[JS00], [SU07]. An extension of the theory to processes with infinite dimen-
sional state spaces of Lusin type has been first described indirectly, by a
suitable map into a larger locally compact space and consequent reduc-
tions to the finite dimensional case, by Fukushima [Fu71a], [Fu71b] and
then further developed in [Fu80], [Fu92], [FH01], [FOT11], [ST92]. This has
been called “regularization method” (see [Fu80], [AMR93], [ST92], [Alb03]).
Another approach on Wiener space has been developed by [BH91] and on
certain Banach spaces by [FeyLa91]. Mainly motivated by applications to
infinite dimensional processes connected with SPDE’s, like those arising
in quantum field theory, see, e.g., [Gro76], [AHK74], [AHK76], [AHK77a],
[AHK77b], [AHKS77], [Alb97], [N73], [PaWu81], an extension of Dirichlet
form theory to infinite dimensional state spaces of more general type, in-
cluding spaces of distributions, has been developed in [AHK76], [AHK77a],
[AHK77b], [AM91], [AM92], [AMR92a], [AMR92b], [AMR92c], [AMR93],
[AFHMR92], [AR89a], [AR90b], [Ku92], [Kus82].

This theory is now known as the theory of quasi-regular Dirichlet forms
and a systematic exposition of it is in [MR92]. For newer developments
see also [AFHMR92], [Aid00], [Alb03], [ARü05], [ARW01], [Fu84], [DG97],
[E99], [Ma95], [Kol06].

One main example of applications of the theory has been the construc-
tion of processes which arise in certain problems of quantum mechanics
with singular potentials (for which we refer to [KaStr14]) and quantum field
theory (stochastic quantization equations for invariant measures and Hamil-
tonians for P (ϕ)2, exp(ϕ)2, sin(ϕ)2, ϕ4

3 and other models). Recently there
arose a renewed interest in SPDE’s related to such problems, particularly in
connection with Hairer’s theory of regularity structures [Hai14] and related
work by, a.a., Guminelli, Zambotti, see references in [Hai14].

Since the strength of results obtained by the theory of (quasi-regular)
Dirichlet forms in connection with (infinite dimensional) processes has often
not been fully realized in the literature, one of the aims of the present paper
is to both recall main results and clarify both solved and not yet solved
problems.
The structure of the paper is as follows.

In Section 2 we shall recall the basic setting of the theory of symmetric
quasi regular Dirichlet forms and associated processes, including invariant
measures and ergodicity questions.

Section 3 recalls the setting for classical infinite dimensional Dirichlet
forms given by a probability measure, and its relation to infinite dimensional
diffusion processes, their generators, associated Kolmogorov equations, and
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invariant probability measures.
Section 4 is devoted to the study of the stochastic quantization equation

for the P (ϕ)2 model, with remarks on related models. We distinguish clearly
between the problem in a bounded domain and the global problem. We also
recall our result on the ergodicity of the solution.

Section 5 is devoted to the discussion of further developments concerning
non symmetric Dirichlet forms. It is pointed out by two examples in infinite
dimension that local invariance is indeed weaker than invariance of measures.
On the way we also give a new presentation of an example of non-Markov
uniqueness (in fact in the language of SPDE), first constructed in [E99].

2 Symmetric quasi regular Dirichlet forms

We first recall some basic notations of the theory of symmetric quasi regular
Dirichlet forms, for later use.

Let E be a Hausdorff topological space, m a σ-finite measure on E,
and let B the smallest σ-algebra of subsets of E with respect to which all
continuous functions on E are measurable.

Let E be a symmetric Dirichlet form acting in the real L2(m)-space i.e.
E is a positive, symmetric, bilinear, closed form with domain D(E) dense
in L2(m), and such that E(Φ(u),Φ(u)) ≤ E(u, u), for any u ∈ D(E), where
Φ(t) = (0 ∨ t) ∧ 1, t ∈ R. The latter condition is known to be equivalent
with the condition that the associated C0-contraction semigroup Tt, t ≥ 0,
is submarkovian (i.e. 0 ≤ u ≤ 1 m-a.e. implies 0 ≤ Ttu ≤ 1 m-a.e., for
all u ∈ L2(m); association means that limt↓0

1
t (u − Ttu, v)L2(m) = E(u, v),

∀u, v ∈ D(E).
These conditions are also equivalent to other conditions expressed either

in terms of E or the associated infinitesimal generator L of Tt, t ≥ 0, resp.
the resolvent, see, e.g., [Alb03] (Theorem 9). One observation which is im-
portant for an analytic construction is that for having the above contraction
property in terms of Φ it is enough to verify it on a domain where the form
is still closable and with Φ replaced by a regularized version Φε of it (see,
e.g., Definition 18 and Theorem 9 in [Alb03]).
A symmetric Dirichlet form is called quasi-regular if the following holds:

1. There exists a sequence (Fk)k∈N of compact subsets of E such that⋃
kD(E)Fk is E

1
2
1 -dense in D(E) (where D(E)Fk := {u ∈ D(E)|u =

0 m-a.e. on E − Fk}; E
1
2
1 is the norm given by the scalar product in

L2(m) defined by E1, where

E1(u, v) := E(u, v) + (u, v)L2(m),

( , )L2(m) being the scalar product in L2(m). Such a sequence (Fk)k∈N
is called an E-nest;
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2. there exists an E
1
2
1 -dense subset of D(E) whose elements have E-quasi-

everywhere m-versions (where “quasi” is relative to the potential the-
ory associated with E , i.e. quasi-everywhere (noted q.e.) means with
the possible exception of some E-exceptional subset of E, i.e. a sub-
set N ⊂

⋂
k(E − Fk) for some sequence Fk of the above type; this is

equivalent with N having E1-capacity 0, see [Alb03], [MR92]);

3. there exists un ∈ D(E), n ∈ N, with E-quasi continuous m-versions ũn
and there exists an E-exceptional subset N of E s.t. {ũn}n∈N separates
the points of E −N (a real function u on E is called quasi continuous
when there exists an E-nest s.t. u is continuous on each Fk, and is
defined on a domain in E containing

⋃
k Fk; for this it is sufficient

that given ε > 0 there exists an Uε open in E, s.t. cap Uε < ε and u is
continuous on E − Uε ([MR92])).

If E is a locally compact separable metric space then E regular implies
E quasi-regular (but not viceversa, in general).
The relation between these analytic notions and the probabilistic notions
goes as follows. A submarkovian semigroup pt acting in Bb(E) ∩ L2(m) is
associated with a symmetric Dirichlet form (E , D(E)) on L2(m) if ptu is an
m-version of Ttu, where Tt, t ≥ 0 is the C0-contraction semigroup associated
with (E , D(E)).

A stochastic sub-Markov process M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Pz)z∈E)
with state space E and transition semigroup pt, in the sense that (ptu)(z) =
Ezu(Xt), ∀z ∈ E, t ≥ 0, u ∈ Bb(E)∩L2(m), is said to be associated with E
or (Tt, t ≥ 0) if pt is associated with E . pt is m-symmetric (i.e. a symmetric
semigroup in L2(m)) and, in the Markov case, i.e. when (Pt1)(z) = 1, has m
has an invariant measure. If ptu is E-quasi-continuous for all t > 0 then M is
said to be properly associated with E (this is a substitute of the strong Feller
property in the present case, where E is non necessarily locally compact).
It turns out that

1. E is quasi-regular iff M is an m-tight special standard process (in the
sense of, e.g., [MR92]);

2. E is a local (in the sense that E(u, v) = 0 for all u, v ∈ D(E) with
supp(|u|·m)∩supp(|v|·m) = ∅ and supp(|u|·m), supp(|v|·m) compact)1

and quasi regular iff M is an m-tight special standard process and it
is a diffusion i.e. Pz{t → Xt continuous on [0, ζ)} = 1 for all z ∈ E
(for some random variable ζ, with values in [0,+∞], the life time of
X).

1These supports are well defined since E can be assumed, without loss of generality,
to be a Lusin space, see [MR92] (p. 101).
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A rough description of m-tight special standard processes is that they
are right processes “concentrated on compacts”, with almost-sure left limits
and are almost-surely quasi left continuous. Right processes are adapted,
strong Markov, normal (i.e. Pz(X0 = z) = 1, for all z = E∪{∆}, {∆} being
the 1-point set describing the “cemetery” for the process), and have right
continuous paths (see [MR92], [Alb03] for details).
The connection of quasi regular Dirichlet forms with stochastic analysis goes
beyond potential theory inasmuch as it permits an extension to the infinite
dimensional case of Fukushima’s decomposition.

Theorem 2.1. Let M be a right process associated with a quasi regular
symmetric Dirichlet form (E , D(E)) on a Hausdorff topological space E. If
u ∈ D(E) then there exists a martingale additive functional of finite energy
M [u] and a continuous additive functional of zero energy N s.t. for any
quasi-continuous version ũ of u we have

ũ(Xt) = ũ(X0) +M
[u]
t +N

[u]
t .

For the proof of this theorem see [Fu80], [FOT11] in the locally compact
case and [AMR92c], [MR92] (Chapter VI, Theorem 2.5) in the general case.
For the notions of martingale resp. continuous zero-energy additive func-

tional see [MR92], [Alb03] (roughly Ez
((

M
[u]
t

)2
)
< ∞, Ez

(
M

[u]
t

)
= 0,

E-q.e. z ∈ E, ∀t ≥ 0; M
[u]
t is a martingale under Px for any x ∈ E−N , with

N a properly exceptional set; limt↓0
1
2tE

m

((
N

[u]
t

)2
)

= 0, Ez
(∣∣∣N [u]

t

∣∣∣) <∞
q.e. z ∈ E).
Let us conclude this section with a short discussion of problems of stochastic
dynamics.
Given a probability measure µ on some space E one can ask the question
whether there exists a Markov process M with Markov transition semi-
group pt, t ≥ 0, µ-symmetric (in the sense that the adjoint p∗t of pt in L2(µ)
coincides with pt, for all t ≥ 0). In particular, then µ is pt invariant i.e.∫

ptudµ =

∫
u dµ, ∀u ∈ L2(µ). (2.1)

One calls then pt the “stochastic dynamics” associated with µ.
A probability measure µ is said to be infinitesimal invariant under a C0-
semigroup Tt, t ≥ 0, if

∫
Ludµ = 0 for all u in a subset of the domain D(L)

of L, which is dense in L2(E;µ), where L is the infinitesimal generator of
Tt.

In general, however, infinitesimal invariance of µ does not imply its in-
variance for the corresponding semigroup, i.e. does not imply (2.1). There
are many counterexamples known (see e.g. [BRSt00] or [BKRS14]). In Sec-
tion 5 we shall give an explicit (Gaussian) counterexample with state space
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being a Hilbert space, in which even the underlying martingale problem is
well-posed.
For references on invariant and infinitesimally invariant measures see, e.g.,
[ABR99], [AFe04], [AFe08], [AKR97a], [AKR97b], [AKR98], [AKR02], [ARW01],
[ARü02], [MR10], [MZ10], [ARZ93b], [BoRöZh00], [DPZ92], [E99], [BKRS14].
To the above “inverse problem” there exists a direct problem: given a
(Markov) stochastic process M , find (if possible) a probability measure µ
s.t. µ is is an invariant measure for µ in the sense that (2.1) holds.

We shall see in Section 4 how these problems are solved in the case of the
processes associated with a special class of Dirichlet forms, namely classical
Dirichlet forms (in the sense of [AR90a], [MR92], [Alb03], [AKR02]).

A further general question related with stochastic dynamics concerns the
uniqueness of the invariant measure for a given stochastic process M , see,
e.g., [DPZ92], [PeZ07], [Eche82] for results on this problem.
Let us now briefly recally the relation of Dirichlet forms with martingale
problems, related uniqueness problems, and large time asymptotic behaviour
of associated semigroups.
Let us consider a topological space E, a set A of real-valued functions on
E and a linear operator L defined on A. A probability measure P on a
probability space Ω consisting of continuous paths on E with possible finite
life time is said to be a solution of the martingale problem for (L,A) relative
to a coordinate stochastic processXt, t ≥ 0 on E∪{∆} (∆ being the terminal
point and Xt(ω) = ω(t), ω ∈ Ω, with some initial distribution µ) if for all
f ∈ A and t ≥ 0 we have that f(Xt) and Lf(Xt) are in L1(P ), the function
(ω, s)→ (Lf)(Xs(ω)) is in L1(P ⊗ ds) for all 0 ≤ s ≤ t, and

M
[f ]
t := f(Xt)−

∫ t

0
(Lf)(Xs)ds

is a martingale with the given initial probability measure µ with respect to
the filtration generated by Xs, for all 0 ≤ t <∞.
For a general discussion of martingale problems see [StV06], [EK86], [MR92],
[AR89a], [AR90b], [ARZ93b], [E99], [BhK93].

The Markov uniqueness problem concerns the question whether in the
class of Markov processes Xt, t ≥ 0 the solution of the martingale problem
with generator L acting in L2(µ) is already determined by restricting the
generator to a subset A strictly contained in the L2(µ)-domain of L, but
still dense in L2(µ). See [AHK82], [E99], [AR90b], [BK95], [AuR02], [SS03],
[Tak92]. An example that Markov uniqueness can fail to hold is given in
Section 5, which is originally from [E99], but which is presented here in an
updated form.
The strong uniqueness problem concerns the question whether L is already
essentially self-adjoint on A in L2(µ), see [AKR02], [AKR92], [AKR93],
[LR98].
The large time asymptotics of processes associated with Dirichlet forms can
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be discussed in terms of properties of the associated Dirichlet forms.
We recall some basic results in this direction.
Let (Tt), t ≥ 0, be a submarkovian C0-contraction semigroup in L2(m). Tt
is called irreducible if Tt(uf) = uTtf , for all f ∈ L∞(m) and all t > 0
implies u = constant m-a.e.. A submarkovian C0-contraction semigroup Tt
in L2(m) is called L2(m)-ergodic if Ttu →

∫
udm as t → ∞ in L2(m), for

all u ∈ L2(m).
Let E be a symmetric Dirichlet form associated with an m-symmetric

submarkovian C0-contraction semigroup Tt in L2(m). Then the statement
that Tt is L2(m)-ergodic is equivalent with Tt being irreducible and is also
equivalent with E irreducible. These properties are also equivalent with the
statement that u ∈ D(L) and Lu = 0 imply u = const m-a.e., where L is
the infinitesimal generator of Tt.
For the proof of these results see [AKR97a] (and also [AHK76], [AKR97b]).
For the connection of the above properties with properties of the right pro-
cess associated to Tt resp. E via Dirichlet forms theory see Section 4.3 (and,
for related problems, in the case of non local Dirichlet forms, e.g., [ARü02],
[ARü05]).

3 Classical Dirichlet forms on Banach spaces
and weak solutions to SDE

Let E be a separable real Banach space with dual E
′

and dualization

E′ 〈 , 〉E . Let B(E) denote its Borel σ-algebra and let µ be a finite positive

measure on (E,B(E)) with supp[µ] = E. Define for K ⊂ E
′

the linear
spaces

FC∞b (K) := {f(l1, . . . , lm)|m ∈ N, f ∈ C∞b (Rm), l1, . . . , lm ∈ K}. (3.1)

Set FC∞b := FC∞b (E
′
). Compared with the finite dimensional case we

have that E, µ, FC∞b (K) replace Rd, dx, C∞0 (Rd) respectively, where
dx = Lebesgue measure. We want to define a gradient ∇. To this end fix
u = f(l1, . . . , lm) ∈ FC∞b , z ∈ E and define for k ∈ E, s ∈ R:

∂u

∂k
(z) :=

d

ds
u(z + sk)s=0 =

m∑
i=0

∂f

∂xi
(l1(z), . . . , lm(z))

E
′ 〈li, k〉E . (3.2)

Furthermore, we assume that we are given a “tangent space” H to E at
each point, in the sense that H is a separable real Hilbert space such that
H ⊂ E continuously and densely. Thus, identifying H with its dual H

′
we

have
E
′ ⊂ H ⊂ E continuously and densely. (3.3)
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We define ∇u(z) to be the unique element in H such that

〈∇u(z), h〉H =
∂u

∂h
(z) for all h ∈ H(⊂ E).

Now it is possible to define a positive definite symmetric bilinear form
(henceforth briefly called form) on (real) L2(E;µ) by

E0
µ(u, v) :=

1

2

∫
E
〈∇u,∇v〉Hdµ; u, v ∈ FC∞b , (3.4)

which is densely defined, since FC∞b is dense in L2(E;µ) (cf. [MR92, Chap.
4, Sect.b)]). An element k ∈ E is called well-µ-admissible if there exists
βµk ∈ L

2(E;µ) such that∫
E
u dµ = −

∫
E
u βµk dµ for all u ∈ FC∞b . (3.5)

Assume:

There exists a linear subspace K of E
′
(⊂ H ⊂ E), (3.6)

point separating on E and consisting of well-µ-admissible elements in E.

which we fix from now on in this section. Then it is easy to see that the
form (E0

µ,FC∞b ) defined in (3.4) is closable on L2(E;µ) and that its closure
(Eµ, D(Eµ)) is a Dirichlet form on L2(E;µ) (cf. [AR90a], [MR92, Chap.II,
Subsection 3b]). We also denote the closure of ∇ with domain D(Eµ) by ∇,
hence

Eµ(u, v) =
1

2

∫
E
〈∇u,∇v〉H dµ; u, v ∈ D(Eµ). (3.7)

The Dirichlet form in (3.7) is called classical (gradient) Dirichlet form given
by µ (see [AR90a], [MR92]). Let Lµ with domain D(Lµ) be its generator (i.e.
Eµ(u, v) = (u, (−Lµ)v), with ( , ) the scalar product in L2(E;µ), u ∈ D(Eµ),
v ∈ D(Lµ)) (cf. [MR92, Chap. I]). (Lµ, D(Lµ)) is a Dirichlet operator,
i.e., (etLµ)t≥0 is sub-Markovian. It is immediate that if u = f(l1, . . . , lm) ∈
FC∞b (K) and K0 ⊂ K is an orthonormal basis of H having l1, . . . , lm in its
linear span, then u ∈ D(Lµ) and

Lµu =
1

2

∑
k∈K0

(
∂

∂k
(
∂u

∂k
) + βµk

∂u

∂k
). (3.8)

Theorem 3.1. The Dirichlet form (Eµ, D(Eµ)) defined in (3.7) is local and
quasi-regular.

Proof. See [MR92, Chap. 5, Example 1.12 (ii)] for the locality and for the
quasi-regularity see [RS92] and also [MR92, Chap. 4, Sect. 4b].
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Hence by Section 2 there exists a (Markov) diffusion process Mµ =
(Ω,F , (Ft), (Xt), (Pz)z∈E) properly associated with the Dirichlet form Eµ, D(Eµ)),
i.e., for all u ∈ L2(E;µ), t > 0,∫

u(Xt) dPz = Ttu(z) for µ− a.e. z ∈ E (3.9)

where Ttu := exp(tLµ)u, and the function on the left hand side of (3.9) has
an Eµ-quasi continuous version. Mµ is easily seen to be conservative (i.e., has
infinite lifetime) and to have µ as an invariant measure. By [MR92, Chap.
4, Sect. 4b] it follows that there is a point separating countable Q-vector
space D ⊂ FC∞b (K). It is easy to see that there exists an ONB K0 ⊂ K of
H such that the linear span of K0 separates the points in E. Let us make
for what follows a fix choice of such sets K0 and D. Then as an immediate
consequence of (a special case of) the Fukushima decomposition (see Sect.2)
(in particular we use the version of [MR92], Chapter VI, Theorem 2.5), we
obtain the following result concerning the martingale problem for (Lµ, D):

Theorem 3.2. There exists a set S ∈ B(E) such that E\S is properly
Eµ-exceptional, i.e. µ(E\S) = 0 and Pz[Xt ∈ S ∀t ≥ 0] = 1 for all z ∈ S,
and for all u ∈ D (see above)

u(Xt)−
∫ t

0
Lµu(Xs) ds, t ≥ 0,

is an (Ft)-martingale under Pz for all z ∈ S.

As a consequence of Theorem 3.2 and the results in [AR91] we obtain
that Mµ yields weak solutions to the corresponding stochastic differential
equation (SDE) on E. More precisely, we have:

Theorem 3.3. Let S be as in Theorem 3.2 and assume that there exists a
B(E)/B(E)-measurable map βµ : E −→ E such that

(i)
E′ 〈k, β

µ〉E = βµk µ-a.e for each k ∈ K;

(ii)
∫
E ||β

µ||2E dµ <∞.

Then there exists an E-valued (Ft)t≥0-Wiener process Wt, t ≥ 0, on (Ω,F , P )
such that (

E′ 〈k,Wt〉E)k∈K0 is a cylindrical Wiener process in H and for ev-
ery z ∈ S

Xt = z +
1

2

∫ t

0
βµ(Xs) ds+Wt, t ≥ 0,

Pz-a.s. (where the integral is an E-valued Bochner integral).

Proof. [AR91, Theorem 6.10].
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4 Applications to stochastic quantization
in finite and infinite volume

Quantum field theory has its origin in physics (by work by Born, Dirac,
Heisenberg, Jordan, Pauli, a.a., see, e.g., [Jo95]) as an attempt to quantize
the classical theory of relativistic fields in a similar way as non relativistic
quantum mechanics is the quantization of classical (non relativistic) field
theory, see, e.g., [ASe14].
In contrast to non relativistic quantum mechanics, a mathematical sound
construction of the dynamics encountered difficulties which are still not over-
come. A systematic attempt to perform such a construction was initiated in
the late 60’s and culminated in the early 70’s with the construction of models
describing interactions, in the case of an idealized d-dimensional space-time
world (for d = 1, 2, 3), see [Si74], [GJ81], [AFHKL86]. For the physically
most interesting case d = 4 only partial results have been obtained, see
[AGW97], [AGY05].
In these approaches a non Gaussian probability measure µ on a distribu-
tional space (e.g. S ′(Rd)) is constructed having the heuristic expression:

µ∗(dϕ) = Z−1e−
∫
Rd v(ϕ(x))dxµ∗0(dϕ), with Z =

∫
S′(Rd)

e−
∫
Rd v(ϕ(x))dxµ∗0(dϕ),

(4.1)
ϕ ∈ S ′(Rd) being a symbol for a space-time process connected with the phys-
ical quantum field in d-space-time dimensions. v is a real-valued function,
describing the interaction. µ∗0 is a Gaussian random field, with mean 0 and
covariance E(ϕ(x)ϕ(y)) = (−∆ +m2)−1(x, y), the fundamental solution or
Green function of −∆ +m2, m being a positive constant (in physical terms
m is the mass of particles described by the free field, below we shall always
take for simplicity m = 1).
For v ≡ 0 we have heuristically µ∗ = µ∗0. A particularly well studied case
for v 6≡ 0 is where v(y) = P (y), y ∈ Rd, with P a polynomial with a posi-
tive even highest order term. µ∗ is then called “Euclidean measure for the
P (ϕ)d-field” (for more general v µ∗ yields the “Euclidean measure for the
v(ϕ)d-field”).
The rigorous construction of µ∗ uses tools of probability theory and statis-
tical mechanics, see [Si74], [GRS75], [GJ81], [AFHKL86].
The analogy of the heuristic formula (4.1) with the (canonical, Gibbs) equi-
librium measure in statistical mechanics makes it natural to ask, both from
physics and mathematics, whether it is possible to find a Markov diffusion
process (Xt, t ≥ 0) such that (4.1) appears as equilibrium measure (invariant
measure) for this process. A formal computation can be performed to see
that a solution Xt of the following heuristic stochastic quantization equation

dXt = (∆− 1)Xt dt− v′(Xt)dt+ dWt, t ≥ 0, (4.2)
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would have µ∗ as an (heuristic) invariant measure, where dWt stands for
Gaussian white noise in all variables (t, x), x ∈ Rd. In the physical inter-
pretation, t here is a “computer time”, whereas the Euclidean space-time-
variables x ∈ Rd appear in Xt = Xt(x). Heuristically, X0(x) = ϕ(x), with
ϕ as in (4.1). ∆ = ∆x is the Laplacian in Rd. The physical reason for
asking the above question is to exploit the dynamics of solutions of such
an equation to perform Monte-Carlo simulations of physically relevant av-
erages with respect to the equilibrium measure µ∗ (see [PaWu81], and, e.g.,
[Mi89]). The mathematical interest arises because of the “typicality” of an
equation of the form (4.2) for handling SPDE’s with singular noise. Due to
the singular character of the measure µ∗ (whenever it exists!) one expects
(for d ≥ 2) troubles in giving a meaning to the term v′(Xt) in (4.2). In
this section we shall see that for d = 2 this programme can be rigorously
achieved (the case d = 1 is simpler, since for d = 1, x → Xt(x), x ∈ R, is
continuous). For our discussion we shall separate 2 cases: the “finite volume
case” (Section 4.1), where R2 is replaced by a rectangle Λ and the “infinite
volume case” (Section 4.2), where the “space cut-off” Λ is eliminated and
the problem is considered in the whole space R2.

4.1 Finite volume

Let Λ be an open rectangle in R2. Let (−∆ + 1)N be the generator of
the following quadratic form on L2(Λ; dx) : (u, v) −→

∫
Λ〈∇u,∇v〉Rd dx +∫

Λ u v dx with u, v ∈ {g ∈ L2(Λ; dx)|∇g ∈ L2(Λ; dx)} (where ∇ is in the
sense of distributions, N reminds us to “Neumann boundary conditions”).
Let {en|n ∈ N} ⊂ C∞(Λ̄) be the (orthonormal) eigenbasis of (−∆ + 1)N
and {λn| ∈ N (⊂]0,∞[) the corresponding eigenvalues (cf. [RS75, p. 266]).
Define for α ∈ R

Hα := {u ∈ L2(Λ; dx)|
∞∑
n=1

λαn 〈u, en〉2L2(Λ;dx) <∞}, (4.1)

equipped with the inner product

〈u, v〉Hα :=
∞∑
n=1

λαn 〈u, en〉L2(Λ;dx)〈v, en〉L2(Λ;dx). (4.2)

Clearly, we have that

Hα =

{
completion of C∞(Λ̄) w.r.t. ‖ ‖Hα if α < 0

completion of C∞0 (Λ) w.r.t. ‖ ‖Hα if α ≥ 0
(4.3)

(cf. [LM72, p. 79] for the latter).
To get into the framework of Section 3 we chose

H := L2(Λ; dx), E := H−δ, δ > 0.

11



Then
E
′
( = Hδ) ⊂ H ⊂ E. (4.4)

Remark 4.1. In (4.4) we have realized the dual of H−δ as Hδ using as
usual the chain

Hα ⊂ L2(Λ; dx) ⊂ H−α, α ≥ 0.

Fix δ > 0. Since
∑∞

n=1 λ
−1−δ
n < ∞ (cf. [RS75]), we have, applying

[Y89, Theorem 3.2] (i.e., the Gross-Minlos-Sazonov theorem) with H :=

L2(Λ; dx), || · || := || · ||H−δ , A1 := (−∆ + 1)
− δ

2
N , and A2 := (−∆ + 1)

− 1
2

N ,
that there exists a unique mean zero Gaussian probability measure µ on
E := H−δ (called free field on Λ with Neumann boundary conditions; see
[N73]) such that∫

E
E′ 〈l, z〉

2
E µ(dz) = ||l||2H−1

for all l ∈ E′ = Hδ. (4.5)

Clearly, supp µ = E. For h ∈ H−1 we define Xh ∈ L2(E;µ) by

Xh := lim
n→∞ E′ 〈kn, ·〉E in L2(E;µ), (4.6)

where (kn)n∈N is any sequence in E
′

such that kn −→
n→∞

h in H−1.

Let h ∈ Dom((−∆ + 1)N ) (⊂ L2(Λ; dx) ⊂ E), then

E′ 〈k, h〉E = 〈k, h〉L2(Λ,dx) = 〈k, (−∆ + 1)Nh〉H−1

for each k ∈ E′ . Hence by [AR90a, Proposition 5.5] (4.5), and (4.6), h is
well-µ-admissible and βµh = X(−∆+1)Nh (see (3.5)). Let K be the linear
span of {en|n ∈ N}. Below we shall consider the gradient Dirichlet form
(Eµ̄, D(Eµ̄)) on L2(E; µ̄) as introduced in Section 3, where µ̄ is the P (ϕ)2-
quantum field measure in the finite volume Λ with P being a polynomial,
see below just before Proposition 4.2, for its mathematical description.
To this end we first have to introduce the so-called Wick powers : zn :, n ∈ N,
which are renormalized powers of the Schwartz-Sobolev distribution z ∈ E =
H−δ.
Let h ∈ L2(Λ; dx), n ∈ N, and define : zn : (h) as a limit in Lp(E;µ), p ∈
[1,∞[, as follows (cf., e.g., [GJ81, Sect. 8.5]): fix n ∈ N and let Hn(t), t ∈ R,

be the nth Hermite polinomial, i.e., Hn(t) :=
∑[n/2]

m=0(−1)mαnmt
n−2m, with

αnm := n!/[(n − 2m)!2mm!]. Let d ∈ C∞0 (R2), d ≥ 0,
∫
d(x)dx = 1, and

d(x) = d(−x) for each x ∈ R2. Define for k ∈ N, dk,x(y) := 22kd(2k(x −
y)); x, y ∈ R2. Let zk(x) :=

E′ 〈dk,x, z〉E , z ∈ E, x ∈ Λ, and set

: znk : (x) := ck(x)n/2Hn(ck(x)−1/2zk(x)), (4.7)

where ck(x) :=
∫
zk(x)2µ(dz). Then it is known that

: znk : (h) :=

∫
: znk : (x)h(x)dx −→

k→∞
: zn : (h)
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both in every Lp(E;µ), +∞ > p ≥ 1, and for µ-a.e. z ∈ E (cf.,e.g., [R86,
Sect. 3] for the latter and [Si74] for the former). The map z 7→ lim supk→∞ :
znk : (h) is then a µ-version of : zn : (h). From now on : zn : (h) shall denote
this particular version. Since Hn(s + t) =

∑n
m=0

(
n
m

)
Hm(s)tn−m, s, t ∈ R,

we also have that if

z ∈M := {z ∈ E| lim sup
k→∞

: znk (h) : = lim
k→∞

: znk : (h)(∈ R)}

then µ(M) = 1, z + k ∈M for all k ∈ K and

: (z + k)n : (h) =

n∑
m=0

(
n

m

)
: zm : (kn−mh) (4.8)

(cf. [R86, Sect. 3] for details).
Now fix N ∈ N, an ∈ R, 0 ≤ n ≤ 2N with a2N > 0 and define

V (z) :=: P (z) : (1Λ) :=
2N∑
n=0

an : zn : (1Λ), z ∈ E,

where 1Λ denotes the indicator function of Λ. Let

ϕ := exp(−1

2
V ). (4.9)

Then ϕ > 0 µ-a.e. and ϕ ∈ Lp(E;µ) for all p ∈ [1,∞[ (cf., e.g., [Si74, Sect.
5.2] or [GJ81, Sect. 8.6]). Set

µ̄ := ϕ2 · µ.

Proposition 4.2. Each k ∈ K is well-µ-admissible and

βµ̄k = −X[(−∆+1)Nk] −
2N∑
n=1

nan : zn−1 : (k) (4.10)

(cf. (3.5) above for the definition of βµ̄k ).

Proof. [RZ92, Proposition 7.2].

It now follows that Theorem 3.1 applies to the corresponding classical
(gradient) Dirichlet form (Eµ̄, D(Eµ̄)) introduced in Section 3.

So, let Mµ̄ = (Ω,F , (Ft), (Xt)t≥0, (Pz)z∈E) be the corresponding (Markov)
diffusion process as in Section 3. Then Theorem 3.2 applies, i.e. we have
solved the martingale problem (in the sense of Theorem 3.2) for the corre-
sponding operator Lµ̄ given by (3.8) with βµ̄k replacing βµk . Finally, taking
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δ for E = H−δ large enough, there exists βµ̄ : E → E, B(E)/B(E) mea-
surable and satisfying conditions (i) and (ii) in Theorem 3.3 (see [AR91,
Proposition 6.9] ). By construction and (4.10) we have that

βµ̄(z) = −(−∆ + 1)N z − : P
′
(z) :, z ∈ E. (4.11)

Hence Theorem 3.3 implies the existence of a set S ∈ B(E) such that
µ̄(E\S) = 0 and S is invariant under the (Markov) diffusion process (Xt)t≥0,
i.e. Pz[Xt ∈ S ∀t ≥ 0] = 1 for all z ∈ S, and for every z ∈ S

Xt = z − 1

2

∫ t

0
[(−∆ + 1)NXs + : P

′
(Xs) :]ds + Wt, t ≥ 0, (4.12)

Pz-a.e., for some L2(Λ2; dx)-cylindrical (Ft)-Wiener process on (Ω,F , Pz),
i.e. we have a Markov weak solution to the SDE (4.12) (“weak” in the proba-
bilistic sense). The solution to (4.12) is usually called stochastic quantization
process for the P (ϕ)2-quantum field with Neumann boundary condition in
the finite volume Λ (and (4.12) is a rigorous “finite volume” version of the
heuristic stochastic quantization equation (4.2)).

4.2 Infinite volume

For n ∈ Z define the space Sn to be the completion of C∞0 (R2)(= all com-
pactly supported smooth functions on R2) with respect to the norm

‖k‖n :=
[ ∑
|m|≤n

∫
R

(1 + |x|2)n
∣∣∣ ( ∂m1

∂xm1
1

∂m2

∂xm2
2

)
k(x)

∣∣∣2dx
]
,

where m := (m1,m2) ∈ (Z+)2. To get into the framework of Section 3 we
choose

K := C∞0 (R2), H := L2(R2; dx), E := S−n,

where n ∈ N, which later we shall choose large enough. So, we have

E
′ ⊂ H ⊂ E.

Let µ∗0 be the space time free field of mass 1 on R2, i.e. µ∗0 is the unique
centered Gaussian measure on E with covariance operator (−∆ + 1)−1. For
h ∈ L1+ε(R2; dx), with ε > 0, and n ∈ N, let : zn : (h) be defined analogously
as in Section 3, but with µ∗0 taking the role of µ (= the free field of mass 1
on Λ with Neumann boundary condition). From now on we fix N ∈ N, an ∈
R, 0 ≤ n ≤ 2N , and define for h ∈ L1+ε(R2; dx)

: P (z) : (h) :=
2N∑
n=0

an : zn : (h) with a2N > 0. (4.13)
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We have that : P (z) : (h), exp(− : P (z) : (h)) ∈ Lp(E;µ∗0) for all p ∈ [1,∞[,
if h ≥ 0 (cf. e.g.[Si74, §V.2]), hence the following probability measures
(called space-time cut-off quantum fields) are well-defined for Λ ∈ B(R2),Λ
bounded,

µ∗Λ :=
exp(− : P (z) : (1Λ))∫

exp(− : P (z) : (1Λ))dµ∗0
· µ∗0. (4.14)

It has been proven that the weak limit

lim
Λ↗R2

µ∗Λ =: µ∗ (4.15)

exists as a probability measure on (E,B(E)) (see [GJ81] and also [R86],
[R88]) having moments of all orders. Furthermore, by [AR90b, Proposition
2.7] we have that suppµ∗ = E (i.e. µ∗(U) > 0 for each open subset U of E).
It is, however, well-known that µ∗ is not absolutely continuous with respect
to µ∗0 (since µ∗ 6= µ∗0 is invariant under translations in the underlying R2-
space, which act ergodically, see [AHK74], [Si74], [GRS75], [Frö74], [AL08]).
Now we have:

Proposition 4.3. Each k ∈ K is well µ∗-admissible with

βµ
∗

k (z) := −
2N∑
n=1

nan : zn−1 : (k) −
E′ 〈(−∆ + 1)k, z〉E , z ∈ E. (4.16)

Proof. [AR91, Theorem 7.11].

As a consequence of Proposition 4.2, according to Section 3 we obtain
the corresponding classical (gradient) Dirichlet form (Eµ∗ , D(Eµ∗)), which is
quasi regular by Theorem 3.1. So, let Mµ∗ = (Ω,F , (Ft), (Xt)t≥0, (Pz)z∈E)
be the coresponding (Markov) diffusion process as in Section 3. Then Theo-
rem 3.2 applies, i.e. we have solved the martingale problem (in the sense of

Theorem 3.2) for the corresponding operator Lµ∗ given by (3.8) with βµ
∗

k ,
as given by (4.16), replacing βµk .

Finally, taking n large enough, there exists βµ
∗

: E → E, B(E)/B(E)-
measurable and satisfying condition (i) and (ii) in Theorem 3.3 (see [AR91,
Proposition 6.9]). By construction and (4.16) we have that

βµ
∗
(z) = (∆− 1)z − : P

′
(z) :, z ∈ E. (4.17)

Hence Theorem 3.3 implies the existence of a set S ∈ B(E) such that
µ∗(E\S) = 0 and S is invariant under the (Markov) diffusion process (Xt)t≥0,
i.e. Pz[Xt ∈ S ∀t ≥ 0] = 1 for all z ∈ S, and, for every z ∈ S, Xt solves the
stochastic integral equation

Xt = z +
1

2

∫ t

0

[
(∆− 1)Xs − : P

′
(Xs) :

]
ds + Wt, t ≥ 0, (4.18)

15



Pz-a.s. for some L2(R2; dx)-cylindrical (Ft)-Wiener process on (Ω,F , Pz),
i.e. we have a Markov weak solution to the SDE (4.18) (“weak” in the
probabilistic sense). The solution to (4.18) is usually called stochastic quan-
tization process for the P (ϕ)2-quantum field in infinite volume (thus, with
Λ in Section 4.1 replaced by R2).

Remark 4.4. All the above results also hold for the “time zero quantum
fields” associated with the P (ϕ)2-quantum field in infinite volume, first dis-
cussed in [AHK74]. For details on this we refer to [AR91, Section 7, II
b)].

4.3 Ergodicity

The use of Dirichlet form techniques is not limited to settling existence ques-
tions for solutions of SDE’s with very singular coefficients. Also important
special properties of solutions can be deduced. As one instance we consider
the situation of the previous subsection, and ask about ergodic properties
of the solution.

To start, we first mention that the construction of the infinite volume
P (ϕ)2-quantum field µ∗, which we took as a reference measure in the pre-
vious section, is quite specific. There is, in fact, quite a large set of possible
reference measures that could replace µ∗, namely all so-called Guerra-Rosen-
Simon P (ϕ)2-quantum fields (see [GRS75]), which are defined as the convex
set G of all Gibbs measures for a certain specification, i.e. they are defined
through the classical Dobrushin-Landford-Ruelle equations appropriate to
P (ϕ)2-quantum fields. We do not go into details here and do not give the
precise definition of the relevant specification, but rather refer to [R86] (see
also [AKR97b, Section 4.3]). We only recall from [R86] that each ν from the
convex set G can be represented as an integral over the set Gex of all extreme
points of G. Furthermore, we recall that by the main result in [AR89a] (see
also [AKR97b]) for every ν ∈ G the corresponding form (3.4), with ν re-
placing µ, is closable on L2(E; ν), so its closure (Eν , D(Eν)) (see (3.7)) is
a classical (gradient) Dirichlet form for which all results from Section 4.2
apply with ν replacing µ∗. Then the following is a special case of [AKR97b,
Theorem 4.14].

Theorem 4.5. Suppose ν ∈ Gex. Then (Eν , D(Eν)) is irreducible and (equiv-
alently) the corresponding (Markov) diffusion process Mν is time ergodic
under

Pν :=

∫
E
Pz ν(dz).

Remark 4.6.

(i) In fact, if we replace (Eν , D(Eν)) by the corresponding “maximal Dirich-
let form” (Emaxν , D(Emaxν )) (see [AKR97b] for the definition), then the
irreducibility of the latter implies that ν ∈ G must be in Gex.
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(ii) The equivalence of the irreducibility of (Eν , D(Eν)) and the time er-
godicity of Mν under Pν follows by the general theory (see [F82]).In
this case the irreducibility of (Eν , D(Eν)) is also equivalent to the L2-
ergodicity of the corresponding semigroup (T νt ), t ≥ 0, i.e.

lim
t→∞
‖T νt f − f‖L2(E;ν) = 0 for all f ∈ L2(E; ν).

For details we refer to [AKR97a, Proposition 2.3]. The latter paper
was dedicated to Professor Masatoshi Fukushima on the occasion of his
60th birthday. A comprehensive study of the above relations between
irreducibility of a Dirichlet form, the time ergodicity of the correspond-
ing Markov process and the L2-ergodicity of the corresponding semi-
group and other related properties is contained in the forthcoming pa-
per [BCR14] in a much more general context, including non-symmetric
coercive and generalized Dirichlet forms.

(iii) Theorem 4.5, stated above for Guerra-Rosen-Simon Gibbs states of
P (φ)2-Euclidean quantum field theory, is valid for many other Gibbs
states of both lattice and continuum systems from statistical mechanics.
We refer to [AKR97a, Section 5], [AKKR09] for lattice systems and
to [AKR98, Section 7] for continuum systems.

4.4 Additional remarks

1. Above we discussed the stochastic quantization equation as it was
first proposed in [PaWu81], where the driving noise is dWt i.e. a Gaus-
sian space-time white noise. The same invariant measure can also be
obtained by considering an SPDE with a space-regularized noise, in
which case the drift term has to be modified accordingly. E.g., in the
ϕ4

2-case the regularized stochastic quantization equation has been dis-
cussed in the finite volume case, with various types of regularizations,
in [DPT00], [HK98], [JLM85], [LR98], [GaGo96], [DPD03].

In particular in this finite volume case a proof of Markov uniqueness
in Lp(µ), 1 ≤ p < ∞ has been achieved in [RZ92]. Strong solutions
have been constructed in suitable Besov spaces [DPD03], and essential
self-adjointness of generators has been proven in [LR98] and [DPT00].
The invalidity of a Girsanov formula has been shown in [MiRo99]. The
discussion of uniqueness and ergodicity questions we sketched in Sec-
tion 4.3 carry over to this case too.
The only papers, where the infinite volume processes which solve the
stochastic quantization equation, in their original or regularized ver-
sion, have been discussed, seem to be [AR89b], [AR91], [BCM88]. The
uniqueness results which hold in the finite volume case do not carry
over to the infinite volume case, where the question of uniqueness of
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generators is still open. See, however, [ARZ93a], [AR89a] for some
partial results.

2. The regularized stochastic quantization equation has also been dis-
cussed for other 2 space-time dimensional models. The starting point
for the construction of solutions by the Dirichlet form method, namely
the measure described heuristically given by (4.1) resp. its analogue in
a bounded volume, has been constructed rigorously for the case, where
e.g. v is an exponential function v(y) = exp(αy) or a superposition of
such functions, of the form v(y) =

∫
exp(αy)νv(dy), with νv a bounded

variation measure with |α| <
√

4π resp. supp νv ∈ (−
√

4π,
√

4π), in
[AHK74], (see also [HK71], [Si74], [FrP77], [AGHK79], [AFHKL86],
and [AHPRS90a], [AHPRS90b], [HKPS93] for an alternative construc-
tion using methods of white noise analysis).
The corresponding regularized stochastic quantization equation has
been discussed in a bounded domain in [Mi06] and [AKMR]. Let us
point out that models of this type are presently under intensive inves-
tigation in regard to their importance in completely different areas of
research, see, e.g., [RhVa13].
For models given in terms of other functions v, e.g., superposition of
trigonometric functions, like the function v appearing in the sinαϕ2-
model (the quantized version of the Sine-Gordon equation in 2 space-
time dimensions) constructions of the measure heuristically given by
(4.1) as well as the definition of the dynamics in terms of Dirichlet
forms have also been discussed, see [AHR01]. In this work the neces-
sity of renormalization has been shown and strong solutions have been
constructed in a suitable distributional setting See also [AHPRS90a],
[AHPRS90b] for a white noise analysis approach to such v’s.

3. Recent work has concerned both the stochastic quantization equation
in space-time dimension d = 1 and d = 3.
For d = 1 the dynamics has been constructed in the strong proba-
bilistic sense and Lp-uniqueness of the generators has been proven,
see [Iwa85], [Iwa87] resp. [KR07], for v of polynomial type, resp.
[AKaRö12], for v exponential or trigonometric type, both in finite
and infinite volume.
In the case d = 3 an integration by parts formula has been estab-
lished for the ϕ4

3-model, as well as the existence of a pre-Dirichlet
form [ALZ06]. However, the (generalized) logarithmic derivative does
not seem to have good enough integrability properties. Therefore, the
closability of this pre-Dirichlet form is an open problem, as is the ex-
istence of a global (Markov) dynamics. This might be put in relation
with a recent approach to the local stochastic dynamics developed for
this model by M. Hairer [Hai14].
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5 Further developments

In applying Dirichlet form techniques to SDEs the symmetry assumption
is, of course, very restrictive. Unfortunately, also the sector condition im-
posed on the (in general non-symmetric) sectorial Dirichlet forms analyzed in
[MR92] is still too restrictive to cover important classes of SDE, in particular
on infinite dimensional state spaces, including stochastic partial differential
equations. Therefore, a theory of “fully non-symmetric” Dirichlet forms
was developed in [Sta99a]. The main feature that this “theory of general-
ized Dirichlet forms” has in common with the symmetric and sectorial case
is that it still requires a “reference measure” µ to be given or constructed be-
forehand. Below, we want to briefly describe an important subclass thereof,
where one is just given an operator L and a measure µ, intrinsically related
to L (see Definition 5.1 below), that will serve as a ”reference measure”.
The underlying idea has been first put forward systematically in [ABR99]
and [R98], and was one motivation that has eventually led to the recent
monograph [BKRS14].

Consider the situation described at the beginning of Section 3, so E is a
(real) separable Banach space, H a (real) separable Hilbert space such that
H ⊂ E continuously and densely, hence

E′ ⊂ (H ′ ≡) H ⊂ E,

continuously and densely. Fix an algebra K ⊂ E′, containing a countable
subset, separating the points of E, thus K generates B(E), i.e.

σ(K) = σ(E′) = B(E). (5.1)

Let L be a linear operator, whose domain contains FC∞b (K) (cf. (3.1)).

Definition 5.1. A probability measure µ on B(E) is called L-infinitesimally
invariant if Lu ∈ L1(E;µ) for all u ∈ FC∞b (K) and∫

E

Lu dµ = 0 for all u ∈ FC∞b (K),

in short: if
L∗µ = 0. (5.2)

We note that for µ as in Definition 5.1, because of (5.1), we have that
FC∞b (K) is dense in Lp(E;µ) for all p ∈ [1,∞). Let us assume that L is an
operator of type (3.8) or more generally a Kolmogorov or a diffusion operator
(in the sense of [E99]). In this case quite general theorems are known to
ensure the existence of measures µ satisfying (5.2) (see [BKRS14] and the
references therein). It then follows immediately, that L is dissipative on
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L1(E;µ) (see [E99, Lemma 1.8]), hence closable on L1(E;µ). Let us denote
its closure by (Lµ, D(Lµ)). It is, however, not true in general, that Lµ
generates a C0-(contraction) semigroup Tµt = etLµ , t ≥ 0, on L1(E;µ). If
it does, then this semigroup is always sub-Markovian (see [E99]). In this
case one can ask whether there exists a (right) continuous Markov process
on E whose transition semigroup is related to Tµt , t ≥ 0, as in (3.9). So,
in summary, one can realize the “Dirichlet form approach” for such general
Kolmogorov operators L to construct a corresponding (right) continuous
Markov process in this “fully non-symmetric” case, if the following three
problems can be solved:

(1) Does there exist a probability measure µ on (E,B(E)) having the
property (5.2) in Definition 5.1?

(2) Does (Lµ, D(Lµ)) then generate a C0-(contraction) semigroup Tµt , t ≥
0, on L1(E;µ)?

(3) Does Tµt , t ≥ 0, come from a transition function pt, t ≥ 0, of a (right)
continuous Markov?

We note that if the answer to (2) is yes, then µ is also invariant for Tµt ,
t ≥ 0, i.e. ∫

E
Tµt u dµ =

∫
E
u dµ (5.3)

for all u ∈ FC∞b (K), equivalently for all u ∈ L1(E;µ). A lot of work
has been done on the three problems above in the past decade. We have
already mentioned [BKRS14] as a good reference for problem (1), but also
problem (2) is discussed there and further references are given in [BKRS14]
concerning both (1) and (2). We only mention here that the answer “yes”
to problem (2) is well-known to be equivalent to the “range condition”, i.e.
that (1− L)(FC∞b (K)) is dense in L1(E;µ) (see e.g. [BRSt00, Proposition
2.6]). But in concrete cases, in particular in infinite dimensions, this is a
very hard problem (see, however, [Sta99b] for a useful characterization of
the range condition if dim E < ∞). Concerning (3) considerable progress
has been made in [BeBoR06], [BeBoR08].

In the remainder of this subsection we want to address two important
points concerning the above discussion, namely:

Questions:

(A) Suppose that all problems (1)-(3) above can be solved for some L-
infinitesimally invariant measure µ := µ1, which is hence invariant
for (pt)t≥0. Is it possible that there exists some other L-infinitesimally
invariant measure µ2 which is not invariant for (pt)t≥0?
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(B) Does there exist an L-infinitesimally invariant measure µ, so that the
closure of (L,FC∞b (K)) in L2(E;µ) does not generate a C0-semigroup,
but there exist two different closed extentions generating two Markov
C0-semigroups on L2(E;µ)? In short: can “Markov uniqueness” fail
to hold?

Indeed, the answer to (A) is yes. There are well-known counterexamples
pt, t ≥ 0, if E = Rd (see [BKRS14] and the references therein, in partic-
ular, [Sta99b]). Below we give two simple examples when E is an infinite
dimensional Hilbert space, µ2 is a Gaussian measure and (pt)t≥0 is even a
strong Feller transition semigroup of an Ornstein-Uhlenbeck process, i.e. is
given explicitely by a Mehler-type formula. Also the answer to Question (B)
is ”yes”. In fact, µ can even be chosen Gaussian and so that (L,FCb(K))
is symmetric in L2(E;µ) and both Markov C0-semigroups consist of self-
adjoint operators in L2(E;µ). We shall, however, not give all details here,
but refer instead to [E99] where these can be found (see Remark 5.2 below).
We rather concentrate on details for the examples to answer Question (A)
by ”yes”.

First example:
Consider the open interval (0, 1) ⊂ R and choose

H = E := L2
(

(0, 1); dx
)
, (5.4)

with the usual inner product 〈 , 〉 and where dx denotes Lebesgue measure.
Define A1 := −∆D, where ∆D denotes the Dirichlet Laplacian on (0, 1),
and A2 := −∆D,N , where ∆D,N denotes the Dirichlet-Neumann-Laplacian
on (0, 1). More precisely, we take Dirichlet boundary condition at ξ = 0 and
Neumann boundary condition at ξ = 1. Define for t ≥ 0, x, y ∈ E,

p
(i)
t (x, dy) = N(e−tAix,Q

(i)
t )(dy), i = 1, 2 , (5.5)

where N denotes the Gaussian measure on E with mean e−tAix and covari-
ance operator

Q
(i)
t :=

t∫
0

e−2sAids . (5.6)

We note that, because we are on the one-dimensional underlying domain

(0, 1), each Qit is indeed trace class. It is well-known that p
(i)
t , t ≥ 0, i =

1, 2, is the transition semigroup of the Ornstein-Uhlenbeck process (X
(i)
t )t≥0

solving in the mild sense the following SDE for i = 1, 2 respectively

dX
(i)
t = −AiX(i)

t dt+ dWt, t ≥ 0, (5.7)

X0 = x,
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where Wt, t ≥ 0, is an H-cylindrical Wiener process, and that

µi := N(0,
1

2
A−1
i ), i = 1, 2 , (5.8)

is its respective invariant measure. Furthermore, it is well-known (and easy

to see) that, for each i ∈ {1, 2}, p(i)
t , t ≥ 0, gives rise to a Markov C0-

semigroup Tµit , t ≥ 0, of symmetric contractions on Lp(E;µi) for all p ∈
[1,∞). Furthermore, for every bounded B(E)-measurable function f : E →
R

p
(i)
t f(x) :=

∫
E

f(z)p
(i)
t (x, dz), x ∈ E , (5.9)

is continuous in x ∈ E, i.e. both p
(1)
t , t ≥ 0, and p

(2)
t , t ≥ 0, are strong Feller

(see [DPZ92]).
Let us now consider K := C2

0 ((0, 1)) and recall that as seen before,
FC∞b (K) is dense in Lp(E,µi) for all p ∈ [1,∞), i = 1, 2. Then it is easy

to check that for i = 1, 2, p
(i)
t , t ≥ 0, extends to a Markov C0-semigroup

Tµit , t ≥ 0, on L2(E;µi) and for the generator (Lµi , D(Lµi)) of Tµit , t ≥ 0,
on L2(E;µi)(but also poinwise, see [BoR95, Theorem 5.3]), we have that
FC∞b (K) ⊂ D(Lµi) and for all u ∈ FC∞b (K), u = F (〈k1, ·〉, . . . , 〈kN , ·〉),
F ∈ C∞b (RN ), i = 1, 2,

Lµiu(z) =
N∑

j,j′=1

〈kj , kj′〉∂jj′F (〈k1, z〉, . . . , 〈kN , z〉) (5.10)

+
N∑
j=1

〈Aikj , z〉∂jF (〈k1, z〉, . . . , 〈kN , z〉),

where ∂j , ∂j,j′ mean partial derivatives in the j-th or in the j-th and j′-th
variable respectivly. Since A1k = A2k for all k ∈ K, it follows that

Lµ1u = Lµ2u (5.11)

for all u ∈ FC∞b (K). Because of (5.11) we may define

Lu := Lµ1u (= Lµ2u), u ∈ FC∞b (K). (5.12)

Then because Tµit , t ≥ 0, are symmetric in L2(Ei;µi), i = 1, 2, it follows
that for i = 1, 2∫

Lu v dµi =

∫
u Lv dµi ∀u, v ∈ FC∞b (K), (5.13)

hence choosing v ≡ 1 ∫
Lu dµi = 0 ∀u ∈ FC∞b (K), (5.14)

i.e. µ1 and µ2 are L-infinitesimally invariant (for L with domain FC∞b (K)).
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Remark 5.2.

(i) We have just seen an infinite dimensional example where “Markov
uniqueness” fails, i.e. two generators of two different Markov C0-
(contraction) semigroups which coincide on a common domain FC∞b (K)
which is dense in L2(E;µi), i = 1, 2. And both semigroups are even
strong Feller in this case. We note, however, that in contrast to the
“classical” Markov uniquess problem, our two C0-semigroups live on
different L2-spaces, namely L2(E;µ1) and L2(E;µ2). However, one
can show that if one considers the Friedrichs extension (Lµ2,F , D(Lµ2,F ))
of the (by (5.13)) symmetric operator (L,FC∞b (K)) on L2(E;µ2),
then the corresponding Dirichlet form does not coincide with the Dirich-
let form corresponding to the symmetric Markov C0-semigroup (Tµ2t )t≥0

introduced above (see [E99, Chap. 5b)1)]). Hence

(Tµ2t )t≥0 6=
(
etLµ2,F

)
t≥0

,

and both are symmetric Markov C0-semigroups on L2(E;µ2) with gen-
erators coinciding on FC∞b (K), with L defined in (5.12). This is
a “true” counter-example to Markov-uniqueness (first discorered in
[E99]) even for symmetric C0-semigroups and (at least) one of the
two semigroups is even strong Feller. We stress that FC∞b (K) is, of
course, not an operator core for any of the generators of (Tµ2t )t≥0 and
(etLµ2,F )t≥0 on L2(E;µ).

(ii) Clearly, the above only occurs, because FC∞b (K) is too small to de-
termine Lµ2, since it does not capture the boundary behaviour of A2,

since K ⊂ C2
0

(
(0, 1)

)
, though FC∞b (K) is dense in L2(E;µ2). For

examples of non-Markov uniqueness avoiding this, we refer to [E99,
Chap. 5b)2)].

It is easy to see that FC∞b (K) is an operator core for (Lµ1 , D(Lµ1)) on
L2(E;µ1), i.e. FC∞b (K) is dense in D(Lµ1) with respect to the graph norm
‖ · ‖1 := ‖ · ‖L2(E;µ1) + ‖Lµ1 · ‖L2(E;µ1). Indeed, consider the Sobolev space

H1
0 := H1

0

(
(0, 1); dx

)
of order 1 in L2((0, 1); dx) with Dirichlet boundary

conditions. Then it is obvious from (5.10) that FC∞b (H1
0 ) is in the closure

of FC∞b (K) with respect to the graph norm ‖ · ‖1. Furthermore, it is also

obvious from the definition of p
(1)
t , t ≥ 0, in (5.5), that p

(1)
t (FC∞b (H1

0 )) ⊂
FC∞b (H1

0 ) for all t ≥ 0, since e−tA1(H1
0 ) ⊂ H1

0 for all t ≥ 0. Hence by
a theorem of Nelson (see [RS75, Theorem X.49]) if follows that FC∞b (H1

0 ),
hence FC∞b (K) is dense in D(Lµ1) with respect to ‖ · ‖1.

We recall that µ2 is L-infinitesimally invariant (for the domain FC∞b (K)).

Now we show that µ2 is, however, not invariant for p
(1)
t , t ≥ 0, hence giving
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the desired example for Question (A). This can be proved as follows. Fix
y ∈ E\{0} and consider the function

f(z) := ei〈y,z〉, z ∈ E. (5.15)

Then ∫
E
f(z) µ2(dz) = e−

1
2
〈 1
2
A−1

2 y, y〉

and
p

(1)
t f(z) = ei〈e

−tA1y,z〉e−
1
2
〈Q(1)

t y, y〉, (5.16)

hence ∫
E
p

(1)
t f(z) µ2(dz) = e−

1
2
〈 1
2
A−1

2 e−2tA1y, y〉 · e−
1
2
〈Q(1)

t y, y〉.

But Q
(1)
t = 1

2A
−1
1 (1− e−2tA1), so in general (just choose y in (5.15) to be an

eigenvector of A1) ∫
E
f(z) µ2(dz) 6=

∫
E
p

(1)
t f(z) µ2(dz) (5.17)

So, we have proved that µ2 is not invariant for p
(1)
t , t ≥ 0.

Remark 5.3. Clearly, the martingale problem for (L,FC∞b (K)) is not well-
posed, because the laws of the solutions X(1) and X(2) of (5.7) are solutions
to this martingale problem, but do not coincide. The reason is explained
in Remark 5.2 (ii). It is, however, interesting to note that since, as ex-
plained above, FC∞b (K) is an operator core for (Lµ1 , D(Lµ1)) in L2(E;µ1),
it can be easily shown, that there exists at most one Markov selection for the
martingale problem for (L,FC∞b (K)) such that the corresponding transition
semigroup (pt)t≥0 extends to a C0-semigroup on L2(E;µ1).

Second Example:
Define the measure µ by

µ := N(1,
1

2
A−1

1 ), (5.18)

i.e. the image of µ1, defined in (5.8), under the translation

E 3 z 7→ z + 1 ∈ E,

with 1 being the constant function equal to one on (0, 1), we obtain a Gaus-
sian (not centered) measure on E such that

L∗µ = 0 (5.19)
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and µ is not invariant for p
(1)
t , t ≥ 0. Indeed, (5.19) follows immediately

from the definition of L (by (5.12), (5.10)) since

〈A1k, 1〉 =

∫ 1

0
−∆k dx = 0 for all k ∈ K.

On the other hand, we have for f as in (5.15)∫
E
f(z) µ(dz) = ei〈y,1〉e−

1
2
〈 1
2
A−1

1 y,y〉 ,

but by (5.16)∫
E
p

(1)
t f(z) µ(dz) =

∫
E
p

(1)
t f(1 + z) µ1(dz)

= ei〈e
−tA1y,1〉

∫
E
p

(1)
t f(z) µ1(dz)

= ei〈e
−tA1y,1〉

∫
E
f(z) µ1(dz)

= ei〈y,e
−tA11−1〉

∫
E
f(z) µ(dz). (5.20)

But, since A1 := −∆D, we know that

e−tA11 6= 1.

Hence µ is not invariant for p
(1)
t , t ≥ 0.

Remark 5.4. It is very easy to check that in the above example p
(1)
t , t ≥ 0,

is symmetric with respect to µ1 and that (L,FC∞b (K)) is symmetric on
L2(E,µ). So, we even have∫

Lu v dµ =

∫
uLv dµ for all u, v ∈ FC∞b (K),

which is stronger than (5.19).
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poshnikov, Fokker-Planck Kolmogorov equations, Monograph,
pp. 490, publication in preparation.
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