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Introduction

In this paper we study the Cauchy problem for infinite-dimensional Fokker–Planck–Kolmogorov equa-
tions of the form ∂tµ = L∗µ for bounded Borel measures µ on the space R∞ × (0, T0), where R∞ is the
countable power of R with the product topology, and second order operators

Lϕ =
∑
i,j

aij∂xi∂xjϕ+
∑
i

Bi∂xiϕ

defined on smooth functions of finitely many variables. Such equations arise in many applications and have
been intensively studied in the last decades. In particular, they are satisfied by transition probabilities of
infinite-dimensional diffusions, which is an important motivation for this paper. The finite-dimensional
case has been studied in depth by many authors (see the recent surveys [10] and [12]), in particular,
there is an extensive literature on regularity and uniqueness of solutions to Fokker–Planck–Kolmogorov
equations for measures on finite-dimensional spaces, see [3], [8], [9], [10], [12], [18], [27], [33], and the
references there. The infinite-dimensional case is considerably less studied, although there is also a vast
literature devoted to this case (see, e.g., [5], [6], [7], [15], [24], [30], and the references there).

The organization of the paper is as follows. In Section 1 we introduce a general class of Fokker–Planck–
Kolmogorov equations in infinite dimensions and prove some preliminary results. In Section 2 we prove
uniqueness of probability solutions for these equations under a certain approximative condition (which is
a condition on all components of the drift term in a certain uniform way), which considerably generalizes
our previous uniqueness results in [6] and [7]. The main difference with the finite-dimensional case is that
in the latter the global integrability of the coefficients aij and bi with respect to the solution ensures its
uniqueness, but there is no infinite-dimensional analog of this simple sufficient condition. What we prove
is only a partial analog (Example 2.1(ii) formally gives a full analog, but the condition on the norm of
the whole drift is very restrictive in infinite dimensions). More precisely, we establish two uniqueness
results: Theorem 2.3 (nondegenerate diffusion matrices) and Theorem 2.5 that applies also to degenerate
equations, in particular to fully degenerate transport (or continuity) equations including the continuity
equation associated to 2d-Navier–Stokes equation.

In Section 3 we address the question of existence of solutions to our general FPK-equations and prove
Theorem 3.1 which implies existence under quite broad assumptions, in particular, for stochastic Navier–
Stokes equations over domains in Rd for all dimensions d. In Section 2 and Section 3 we also consider
examples that include two other types of SPDEs, namely, stochastic reaction diffusion equations on a
bounded domain in Rd (Example 2.9) and Burgers equation (Example 2.10) on the interval (0, 1); their
mixture is considered in Example 2.11.

The approach and assumptions in this work differ from those in our earlier paper [5], where probabilistic
tools were employed. Here we develop a purely analytic approach without stochastic analysis and (for the
first time in infinite dimension) also include the case of nonconstant diffusion matrices. The techniques
are also different from the ones in [5], [6], and [16], where measures on Hilbert spaces were considered, but
the essential difference is not the type of infinite-dimensional spaces, but rather the method of proof which
could be called approximative Holmgren method, the idea of which is to multiply the original equation by
a solution of a certain equation approximating the adjoint equation (but not the exact adjoint equation
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as in Holmgren’s method) and obtain after integration certain estimates (which replace exact equalities
in the classical Holmgren method).

This work was supported by the RFBR projects 13-01-00332, 11-01-90421-Ukr-f-a, 11-01-12104-ofi-m,
NS-8265.2010.1, 12-01-33009, the Russian President Grant MD-754.2013.1, and by the DFG through the
program SFB 701 at the University of Bielefeld.

1. Framework and preliminaries

Let us describe our framework. Let B = (Bi(x, t)) be a sequence of Borel functions on R∞ × (0, T0),
where T0 > 0 is fixed, and let aij be Borel functions on R∞× (0, T0). Let us consider the Cauchy problem{

∂tµ = L∗µ,
µ|t=0 = ν,

(1.1)

where L∗ is the formal adjoint operator for a differential operator L defined by

Lϕ(x, t) =
∞∑

i,j=1

aij(x, t)∂ei
∂ej

ϕ(x, t) +
∞∑
i=1

Bi(x, t)∂ei
ϕ(x, t)

for every smooth function ϕ depending on finitely many coordinates of x, ∂ei
ϕ denotes the partial

derivative along the vector ei = (0, . . . , 0, 1, 0, . . .). Equations of this form are usually called Fokker–
Planck–Kolmogorov equations.

Throughout this paper a measure means a bounded signed measure (not necessarily nonnegative,
although our principal results will be concerned with probability measures). The total variation of a
measure µ is denoted by |µ|. Let J be an interval in [0,+∞). We use the standard notation C(Rk × J)
and C2,1(Rk × J) for the class of real continuous functions on Rk × J and its subclass consisting of all
functions f having continuous partial derivatives ∂tf , ∂xi

f and ∂2
xixj

f . Let Cb(Rk×J) and C2,1
b (Rk×J)

denote the subclasses in these classes consisting of bounded functions and functions f with bounded
derivatives ∂tf , ∂xi

f and ∂2
xixj

f , respectively, and C2,1
0 (Rk×J) is the subspace in C2,1

b (Rk×J) consisting
of functions with compact support in Rk × J .

The inner product in Rd will be denoted by 〈 · , · 〉; in the case of L2-spaces we write 〈 · , · 〉2 for its
inner product and the corresponding norm is denoted by ‖ · ‖2. The Lp-norm will be denoted by ‖ · ‖p.
The norm ‖ · ‖p,k in the Sobolev space Hp,k(U) of all functions on a domain U belonging to Lp(U) along
with their generalized partial derivatives up to order k is defined as the sum of the Lp-norms of all partial
derivatives up to order k (including k = 0).

Let PN : R∞ → RN , PNx = (x1, . . . , xN ). Given a function ϕ on Rk we denote by the same symbol
the function on R∞ defined by ϕ(x) := ϕ(Pkx).

We shall say that a bounded Borel measure µ = µt(dx) dt on R∞×(0, T0), where (µt)0<t<T0 is a family
of bounded Borel measures on R∞, satisfies the equation

∂tµ = L∗µ

if the functions aij , Bi are integrable with respect to the variation |µ| of µ and for every k ≥ 1 and every
function ϕ ∈ C2,1

0 (Rk × (0, T0)) we have∫ T0

0

∫
R∞

[
∂tϕ+

∞∑
i,j=1

aij∂xi
∂xj

ϕ+
∞∑
i=1

Bi∂xi
ϕ
]
dµt dt = 0.

It is obvious that it is enough to have this identity for all ϕ ∈ C∞
0 (Rk × (0, T0)).

Let ν be a bounded Borel measure on R∞. We say that the measure µ satisfies the initial condition
µ|t=0 = ν if for every k ≥ 1 and ζ ∈ C2

0 (Rk) we have

lim
t→0

∫
R∞

ζ(x)µt(dx) =
∫

Rd

ζ(x) ν(dx).

Clearly, if supt ‖µt‖ <∞, it suffices to have this equality for all ζ ∈ C∞
0 (Rk).

We need the following auxiliary lemma.

Lemma 1.1. Let µ = µt(dx) dt be a solution to (1.1) such that supt∈(0,1) ‖µt‖ < ∞. Assume that
Bk ∈ L1(|µ|) for every k ∈ N and let 0 < T < T0. Then for every number k ≥ 1 and every function
ϕ ∈ Cb(Rk × [0, T ])

⋂
C2,1
b (Rk × (0, T )) the equality∫

R∞
ϕ(x, t)µt(dx) =

∫
R∞

ϕ(x, 0) ν(dx) +
∫ t

0

∫
R∞

[∂sϕ+ Lϕ] dµs ds (1.2)

holds for almost every t ∈ [0, T ]. Conversely, (1.2) implies (1.1).
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Proof. It is enough to prove this equality in the case where ϕ(z, t) = 0 if |z| > R > 0 for almost every
t ∈ [0, T ]. Let η ∈ C∞

0 ((0, T )). According to our definition we have∫ T

0

∫
R∞

[∂t(ϕη) + L(ϕη)] dµt dt = 0.

Thus, we obtain

−
∫ T

0

η′(t)
∫

R∞
ϕ(x, t)µt(dx) dt =

∫ T

0

η(t)
∫

R∞
[∂tϕ+ Lϕ] dµt dt.

Hence the function
t 7→

∫
R∞

ϕ(x, t)µt(dx)

on (0, T ) has an absolutely continuous version for which
d

dt

∫
R∞

ϕ(x, t)µt(dx) =
∫

R∞
[∂tϕ+ Lϕ] dµt.

Therefore, for some constant C ∈ R the equality∫
R∞

ϕ(x, t)µt(dx) = C +
∫ t

0

∫
R∞

[∂sϕ+ Lϕ]µs ds

holds for almost every t ∈ [0, T ]. Note that ϕ(x, t) converges uniformly to ϕ(x, 0) as t → 0. Moreover,
we have

lim
t→0

∫
R∞

ϕ(x, 0)µt( dx) =
∫

R∞
ϕ(x, 0) ν(dx).

It follows that
C =

∫
R∞

ϕ(x, 0) ν(dx),

which completes the proof of one implication. The converse is, however, obvious. �

Remark 1.2. Let k ∈ N. If ϕ( · , t) = ψ ∈ C2
b (Rk) for every t ∈ [0, T ], T < T0, then by (1.2) we have∫

R∞
ψ(x)µt(dx) =

∫
R∞

ψ(x) ν(dx) +
∫ t

0

∫
R∞

Lψ(x, s)µs(dx) ds (1.3)

for almost all t ∈ [0, T ]. Moreover, if Jµψ denotes the set of all t ∈ [0, T ] such that equality (1.3) holds,
then the closure of Jµψ coincides with [0, T ] and the restriction of the mapping

t 7→
∫

R∞
ψ(x)µt(dx)

to Jµψ is continuous, since the right-hand side of (1.3) is continuous in t.

Remark 1.3. Let ϕ be as in Lemma 1.1. and assume that T ∈ Jµϕ( · ,T ). Then equality (1.2) holds with
t = T . Indeed, ϕ(x, t) converges uniformly to ϕ(x, T ) as t → T . Let I be the set of all t ∈ [0, T ] such
that equality (1.2) holds. Let us take a sequence tn ∈ Jµϕ( · ,T )

⋂
I such that lim

n→∞
tn = T . Then we have

lim
n→∞

∫
R∞

ϕ(x, tn)µtn(dx) =
∫

R∞
ϕ(x, T )µT (dx)

and equality (1.2) holds for each tn. Letting n→∞, we obtain equality (1.2) with t = T .

2. Uniqueness of probability solutions

In this section two establish two different uniqueness results: first we consider nondegenerate diffusion
matrices and then turn to the general case that includes fully degenerate equations. We start with stating
our assumptions about A and b.

(A) aij = aji, each function aij depends only on the variables t, x1, x2, . . . , xmax{i,j} and is continuous
and for every natural number N the matrix AN = (aij)1≤i,j≤N satisfies the following condition:

there exist positive numbers γN , λN and βN ∈ (0, 1] such that for all x, y ∈ RN and t ∈ [0, T0] one has

γN |y|2 ≤ 〈AN (x, t)y, y〉 ≤ γ−1
N |y|2, ‖AN (x, t)−AN (y, t)‖ ≤ λN |x− y|βN ,

where ‖ · ‖ is the operator norm and | · | is the standard Euclidean norm.
Let ν be a Borel probability measure on R∞ and let Pν be some convex set of probability solutions

µ = µt(dx) dt to (1.1), i.e., µt ≥ 0 and µt(R∞) = 1 for every t ∈ (0, T0), such that |Bk| ∈ L2(µ) for each
k ∈ N and the following condition holds:
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(B) for every ε > 0 and every natural number d there exist a natural number N ≥ d and a C2,1
b -

mapping (bk)Nk=1 : RN × [0, T0] → RN such that∫ T0

0

∫
R∞

|AN (x, t)−1/2(BN (x, t)− b(x1, . . . , xN , t))|2 µt(dx) dt < ε,

where BN = (B1, . . . , BN ).
Let us illustrate condition (B) by several examples.

Example 2.1. (i) Let Bk depend only on the variables t, x1, x2, . . . , xk. Then in order to ensure
our condition (B) we need only the inclusion |Bk| ∈ L2(µ) for all k ≥ 1. Indeed, we set N = d and
approximate each function Bk separately.

(ii) Let αk be a positive number for each k ∈ N and

l21/α =
{

(zk) :
∞∑
k=1

α−1
k z2

k <∞
}
, ‖x‖1/α =

( ∞∑
k=1

α−1
k z2

k

)1/2

.

Suppose that aij satisfy condition (A) and there exists a positive number C independent of N such that

|AN (x, t)−1/2y| ≤ C‖y‖l1/α

for all x, t and y = (y1, y2, . . . , yN , 0, 0, . . .). For example, this is true if aij = 0 for i 6= j and aii = αi.
Let (Bk(x, t)) ∈ l21/α for µ-almost every (x, t) and let ‖B‖1/α ∈ L2(µ). For every ε > 0 and every

natural number d we pick a number M > d such that
∞∑

k=M+1

∫ T0

0

∫
R∞

α−1
k |Bk|2 dµt dt < ε/2.

Then for every Bk we find a smooth function bk depending on the first nk variables such that∫ T0

0

∫
R∞

α−1
k |Bk − bk|2 dµt dt < ε(2M)−1, k = 1, . . . ,M.

Set N = max{M,n1, n2, . . . , nM} and bk ≡ 0 for k > M . Then

N∑
k=1

∫ T0

0

∫
R∞

α−1
k |Bk − bk|2 dµt dt

=
M∑
k=1

∫ T0

0

∫
R∞

α−1
k |Bk − bk|2 dµt dt+

N∑
k=M+1

∫ T0

0

∫
R∞

α−1
k |Bk|2 dµt dt < ε.

(iii) Finally, for aij as in (ii), we can combine both examples. Let B = G+F , where Gk, F k ∈ L2(µ),
Gk(x, t) = Gk(x1, x2, . . . , xk, t), F (x, t) ∈ l21/α and ‖F‖1/α ∈ L2(µ). Obviously, for given Bk of this type
the set of all probability solutions µ = µt(dx)dt to (1.1) satisfying the previous integrability conditions
is convex.

Remark 2.2. (i) Obviously, condition (B) is equivalent to the following: there exist an increasing
sequence Nl → +∞ and C2,1

b -mappings bl = (bl,k)Nl

k=1 on RNl × [0, T0] such that

lim
l→∞

∫ T0

0

∫
R∞

|ANl
(x, t)−1/2(BNl

(x, t)− bl(x1, . . . , xNl
, t))|2 µt(dx) dt = 0.

(ii) Assume that aij = δij . Let P̃N (x, t) = (PNx, t) and let Eµ[ · |P̃N = (x, t)] be the corresponding
conditional expectation. Then condition (B) is equivalent to the following: for every ε > 0 and every
natural number d there exists a natural number N ≥ d such that∫ T0

0

∫
R∞

N∑
k=1

∣∣∣Bk(x, t)− Eµ[Bk|P̃N = (x, t)]
∣∣∣2 µt(dx) dt < ε.

This condition is known in Euclidian quantum field theory as the Høegh-Krohn condition (see [1]) and
has been used, e.g., to prove Markov uniqueness for semigroups (see [31]).

Theorem 2.3. Assume that condition (A) holds. Then the set Pν contains at most one element.
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Proof. Assume that two measures σ1 = σ1
t dt and σ2 = σ2

t dt belong to Pν . By our assumption about Pν ,
σ = (σ1 + σ2)/2 ∈ Pν . Let d ∈ N, ψ ∈ C∞

0 (Rd) and |ψ(x)| ≤ 1 for all x ∈ Rd. By condition (B) for every
ε > 0 there exist a natural number N ≥ d and a C2,1

b -mapping (bk)Nk=1 on RN × [0, T0] such that∫ T0

0

∫
R∞

|A−1/2
N (x, s)(BN (x, s)− b(x1, . . . , xN , s))|2 σs(dx) ds < ε.

Fix t ∈ Jσ1

ψ

⋂
Jσ

2

ψ

⋂
Jσ

1

ψ2

⋂
Jσ

2

ψ2 . Let f be a solution to the finite-dimensional Cauchy problem{
∂tf +

∑N
i,j=1 a

ij∂xi
∂xj

f +
∑N
i=1 b

i∂xi
f = 0 on RN × (0, t),

f(t, x) = ψ(x).
(2.1)

It is known (see, e.g., [29, Theorem 1.3] and also [17], [22], and [34]) that a solution exists and belongs to
the class Cb(RN × [0, t])

⋂
C2,1
b (RN × (0, t)). Moreover, according to the maximum principle |f(x, s)| ≤ 1

for all (x, s) ∈ RN × [0, t]. Set µ = σ1 − σ2. The measure µ solves the Cauchy problem (1.1) with zero
initial condition. Applying Lemma 1.1 and Remark 1.3 with ϕ = f , we obtain∫

R∞
f(x, t)µt(dx) =

∫ t

0

∫
R∞

[
∂sf +

N∑
i,j=1

aij∂xj
∂xi

f +
N∑
i=1

Bi∂xi
f
]
dµs ds.

Therefore, ∫
R∞

ψ dµt =
∫ t

0

∫
R∞
〈B − b,∇f〉 dµs ds. (2.2)

Let us estimate the following expression:∫ t

0

∫
R∞

|
√
AN∇f |2 dσs ds.

Using (1.2) for σ and ϕ = f2, taking into account that (∂s + L)(f2) = 2f(∂s + L)f + 2|
√
AN∇f |2, and

recalling that t ∈ Jσ1

ψ2

⋂
Jσ

2

ψ2 , we obtain from (2.1) (again by Remark 1.3) that∫
R∞

ψ2 dσt −
∫

R∞
f2(x, 0) ν(dx) = 2

∫ t

0

∫
R∞

[
|
√
AN∇f |2 + f

N∑
i=1

(Bi − bi)∂xif
]
dσs ds.

Therefore,∫ t

0

∫
R∞

|
√
AN∇f |2 dσs ds ≤ 2 +

∫ T0

0

∫
R∞

|A−1/2
N (x, s)(BN (x, s)− b(x1, . . . , xN , s))|2 σs(dx) ds.

Thus we obtain the estimate ∫ t

0

∫
R∞

|
√
AN∇f |2 dσs ds ≤ 2 + ε. (2.3)

Applying (2.2) and (2.3) and the fact that |µ| ≤ σ1 + σ2 = 2σ we have∫
R∞

ψ dµt ≤ 2
√
ε(2 + ε).

Since ε > 0 was arbitrary, we obtain ∫
R∞

ψ dµt ≤ 0.

Replacing ψ with −ψ we arrive at the equality∫
R∞

ψ dµt = 0.

Therefore, ∫
R∞

ψ dσ1
t =

∫
R∞

ψ dσ2
t

for every t ∈ Jσ1

ψ

⋂
Jσ

2

ψ

⋂
Jσ

1

ψ2

⋂
Jσ

2

ψ2 , hence for almost every t ∈ [0, T0]. Thus, σ1 = σ2. �

We now consider a typical example to which the previous theorem applies, namely, the Fokker–Planck–
Kolmogorov equations associated with stochastic partial differential equations of reaction diffusion type
on a domain D ⊂ Rd, i.e.,

du(t) = σ(u(t), t)dW (t) +B(u(t), t)dt, t ∈ [0, T0],

where σσ∗ = A and u(t) ∈ L2(D). Furthermore, W (t), t ≥ 0, is a cylindrical Wiener process in L2(D) on
a stochastic basis (Ω,F , (Ft),P) and u(0) has ν as given law. Below we denote by u generic elements of
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functional spaces such as L2(D) which we embed into R∞ (e.g., by using a suitable orthonormal basis)
to be able to apply our framework above.

Example 2.4. (“Reaction diffusion equations in dimension d with infinite trace”) Suppose that D ⊂ Rd
is an open bounded set and {ek} is an eigenbasis of the Laplacian on L2(D) with zero boundary condition,
i.e., ∆ek = −λ2

kek. Let f : D×R× [0, T0] → R be a Borel function. Set B(u, t)(z) = ∆u(z)+f(z, u(z), t),
z ∈ D, i.e.,

Bi(u, t) = −λ2
iui + 〈f( · , u(·), t), ei〉2, u ∈ L2(D), ui = 〈u, ei〉2.

Assume that the coefficients aij satisfy (A) with γN = γ > 0 independent on N . For instance, the last
assumption is true if aij = 〈Sei, ej〉2 for some invertible symmetric positive operator S on L2(D).

Assume also that there exist a Borel function C ≥ 0 and a number m ≥ 1 such that

|f(z, u, t)| ≤ C(t) + C(t)|u|m.

Set

Lϕ =
∞∑

i,j=1

aij∂ei∂ejϕ+
∞∑
i=1

Bi∂eiϕ.

Then there is at most one probability solution µ = µt(du) dt, i.e., µt ≥ 0 and µt(R∞) = 1 for every
t ∈ (0, T0), to the Cauchy problem (1.1) such that∫ T0

0

C(t)2
∫
L2(D)

‖u‖2m
2m µt(du) dt <∞.

Proof. The mapping u 7→ (ui) defines an embedding L2(D) → R∞. Extending Bi and aij to all of
R∞× [0, T0] by zero we end up in the framework described above. Set F i(u, t) = 〈f( · , u(·), t), ei〉2. Note
that

∞∑
i=1

|F i(u, t)|2 = ‖f( · , u(·), t)‖2
L2 ≤ C(t)2 + C(t)2‖u‖2m

2m.

Thus we have Bi = Ai +F i, where Ai(u) = −λ2
iui and ‖F‖l2 ∈ L2(µ), and Example 2.1(iii) applies with

αk = 1. �

Let now d = 1, D = (0, 1) and ∆ = d2

dz2 . We recall that according to [6] and [7] if aij = αδij with
α > 0 and if

f(z, u, t) = f1(z, u, t) + f2(z, u, t),

where (u, t) 7→ fi(z, u, t) are continuous for each z and for some nonnegative functions c1, c3 ∈ L2((0, T0)),
c2 ∈ L1((0, T0)) and all t, z, u we have

(i) |f1(z, u, t)| ≤ c1(t)(1 + |u|m),
(ii) (f1(z, u, t)− f1(z, v, t))(u− v) ≤ c2(t)|u− v|2,
(iii) |f2(z, u, t)| ≤ c3(t)(1 + |u|),

then for every initial value ν with ‖u‖2m
2m ∈ L1(ν) there exists a probability solution µ of the Cauchy

problem (1.1) such that (1 + c1(t) + c3(t))2(1 + ‖u‖2m
2m) ∈ L1(µ). It follows from the previous example

that such a solution is unique, which improves the uniqueness result from [6] and [7].

We now present another uniqueness condition that applies to degenerate (even zero) diffusion matrices.
Let us list our new assumptions (A′) and (B′).

(A′) A(x, t) = (aij(x, t)), where each function aij is bounded and depends only on the variables
x1, x2, . . . , xmax{i,j}, t and for every natural number N the matrix AN is symmetric nonnegative and the
elements σijN of the matrix σN :=

√
AN are in the class C∞(RN × [0, T0]).

Let ν be a Borel probability measure on R∞ and let Pν be some convex set of probability solutions
µ = µt(dx) dt of (1.1), i.e., µt ≥ 0 and µt(R∞) = 1 for every t ∈ (0, T0), such that |Bk| ∈ L1(µ) for each
k ∈ N and the following condition holds:

(B′) for every ε > 0 and every natural number d there exist a natural number N ≥ d, a C∞-mapping
b = (bk)Nk=1 : RN × [0, T0] → RN , a function θ on RN , a function V ∈ C2(RN ) with V ≥ 1, and numbers
C0 ≥ 0 and δ > 0 such that

(i)
√
V (PNx), |BN (x, t)− b(PNx, t)|

√
V (PNx) ∈ L1(µ) and∫ T0

0

∫
R∞

|BN (x, t)− b(PNx, t)|
√
V (PNx)eC0(T0−t)/2 µt(dx) dt < ε,

where BN = (B1, . . . , BN );
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(ii) the matrix B = (∂xj
bi) and the operator

La,bϕ(x, t) =
∑
i,j≤N

aij(x, t)∂xi
∂xj

ϕ(x, t) +
∑
i≤N

bi(x, t)∂xi
ϕ(x, t)

satisfy the estimates

〈B(x, t)h, h〉 ≤ θ(x)|h|2 ∀h ∈ RN , La,bV (x, t) ≤ (C0 − Λ(x, t))V (x),

where
Λ(x, t) := 4

∑
i,j,k≤N

∣∣∣∂xk
σijN (x, t)

∣∣∣2 + 2θ(x) + δ(1 + |x|2)−1|b(x, t)|2)

for every (x, t) ∈ RN × [0, T0].
In the notation for N, b, θ, V, C0, δ we omit indication of the fact that they depend on ε and d. Recall

also that | · | is the standard Euclidean norm.

Theorem 2.5. If (A′) holds, then the set Pν contains at most one element.

Remark 2.6. (i) If A = (aij) is a constant matrix and |b(x, t)| ≤ C1(N) + C1(N)|x|, then condi-
tion (B′)(ii) can be replaced by

La,bV (x, t) ≤ (C0 − 2θ(x))V (x) ∀ (x, t) ∈ RN × [0, T0].

(ii) If A = (aij) is a constant matrix and |b(x, t)| ≤ C1(N) + C1(N)|x|2, then condition (B′)(ii) can
be replaced by

La,bV (x, t) ≤ (C0 − 2θ(x)− δ|x|2)V (x)
for every (x, t) ∈ RN × [0, T0] and some δ > 0.

(iii) Let aij = 0 if i 6= j and aii(x, t) = αi(x1, x2, . . . , xi, t) ≥ 0. Suppose also that we have
|b(x, t)| ≤ C1(N) + C1(N)|x|2. Then condition (B′)(ii) can be replaced by

La,bV (x, t) ≤ (C0 − Λ(x, t))V (x), Λ(x, t) := 4
N∑
i=1

∑
k≤i

∣∣∂xk
αi(x, t)

∣∣2
αi(x, t)

+ 2θ(x) + δ|x|2.

(iv) We note that (B′) is a substantial generalization of a corresponding condition in [30].

Let us illustrate condition (B′).
For a sequence {λ2

k}k, we write

‖x‖2
l2λ

=
∑
k

λ2
kx

2
k, (x, y)l2λ =

∑
k

λ2
kxkyk.

Example 2.7. We assume here that A = (aij)i,j≥1 is a constant matrix, AN := (aij)i,j≤N is symmetric
nonnegative.

(i) Let bk(x, t) = −λ2
kxk + fk(x, t), x ∈ RN . Then the estimate 〈Bh, h〉 ≤ θ(x)|h|2, x, h ∈ RN , follows

from the estimate
〈F(x, t)h, h〉 ≤ θ(x)|h|2 + ‖h‖2

l2λ
, x, h ∈ RN ,

where F = (∂xj
f i)i,j≤N .

(ii) Set V (x) = exp
(
κ

∑N
k=1 x

2
k

)
, where κ > 0. Then the condition on θ required in (B′) is this: for

some numbers C0 and δ > 0 (dependent on ε and d) one has

θ(x) ≤ C0 − κ
(
trAN + 2κ〈ANx, x〉+ 〈b(x, t), x〉

)
− 2−1δ(1 + |x|2)−1|b(x, t)|2, x ∈ RN . (2.4)

Let us consider a more specific case: bk(x, t) = −λ2
kxk + fk(x, t), f(x, t) = (fk(x, t))Nk=1, 〈f(x, t), x〉 ≤ 0

and |fk(x, t)| ≤ C1 + C2|x|2, where x ∈ RN . Assume that for some ε0 > 0 and every N ≥ 1 one has

ε0
(
〈ANx, x〉+ |x|2

)
≤ ‖x‖2

l2λ
, x ∈ RN .

Then condition (B′)(ii) can be rewritten in the following form:

〈F(x, t)h, h〉 ≤ θ(x)|h|2 + ‖h‖2
l2λ
, x, h ∈ RN ,

where F = (∂xj
f i)i,j≤N , and for every x ∈ RN

Θ(x) ≤ C0 − κtrAN + 2−1κ(ε0 − κ)‖x‖2
l2λ
.

Note that in this case we take V (x) with κ < ε0/4.
This assertion follows from (2.4) if we choose δ > 0 such that

δ(1 + |x|2)−1|b(x, t)|2 ≤ ε0κ|x|2 + 1.
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(iii) Let V (x) = exp
(
κ‖x‖2

l2λ
). Then the condition on θ required in (B′) is this: for some constants

C0 and δ > 0 one has

θ(x) ≤ C0−κ
( N∑
i=1

aiiλ2
i+2κ

∑
i,j≤N

aijλ2
iλ

2
jxixj+〈b(x, t), x〉l2λ

)
−2−1δ(1+|x|2)−1|b(x, t)|2, x ∈ RN . (2.5)

Let us consider a more specific case: bk(x, t) = −λ2
kxk + fk(x, t), f(x, t) = (fk(x, t))Ni=1, 〈f(x, t), x〉l2λ ≤ 0

and |fk(x, t)| ≤ C1 + C2|x|2, where x ∈ RN . Assume that for some ε0 > 0 and every N ≥ 1 one has

ε0
∑
i,j≤N

aijλ2
iλ

2
jxixj + ε0|x|2 ≤

∑
i≤N

λ4
ix

2
i .

Then condition (B′)(ii) can be rewritten in the following form:

〈F(x, t)h, h〉 ≤ θ(x)|h|2 + ‖h‖2
l2λ
, x, h ∈ RN ,

where F = (∂xj
f i)i,j≤N , and for every x ∈ RN

θ(x) ≤ C0 − κ
N∑
i=1

aiiλ2
i + 2−1κ(ε0 − κ)

∑
i≤N

λ4
ix

2
i .

Note that in this case we take V (x) with κ < ε0/4.
This assertion follows (2.5) if we choose δ > 0 such that

δ(1 + |x|2)−1|b(x, t)|2 ≤ ε0κ|x|2 + 1.

For the proof of Theorem 2.5 we need the following lemma.
Let η ∈ C∞

0 (R1) be such that η(x) = 1 if |x| ≤ 1 and η(x) = 0 if |x| > 2, 0 ≤ η ≤ 1 and there exists a
number C > 0 such that |η′(x)|2η−1(x) ≤ C for every x.

Lemma 2.8. Assume that there exist a function θ on RN , a function V ∈ C2(RN ) with V ≥ 1, and
numbers C0 ≥ 0 and δ > 0 such that for all (x, t) ∈ RN × [0, T0], h ∈ RN one has

〈B(x, t)h, h〉 ≤ θ(x)|h|2, B = (∂xj b
i)i,j≤N ,

La,bV (x, t) ≤ (C0 − Λ(x, t))V (x), Λ(x, t) := 4
∑

i,j,k≤N

∣∣∂xk
σijN (x, t)

∣∣2 + 2θ(x) + δ(1 + |x|2)−1|b(x, t)|2).

Let s ∈ (0, T0). Then there exists a number κ > 0 such that for every M > 0 the Cauchy problem

∂tf + ζMLa,bf = 0, f |t=s = ψ,

where ψ ∈ C∞
b (RN ), ζM (x) = η

(
(1 + |x|2)κ/M

)
, has a smooth solution f such that

|f(x, t)| ≤ max
x

|ψ(x)|, |∇f(x, t)|2 ≤ e(C0+1)(s−t)V (x) max
x

|∇ψ(x)|2/2.

Proof. The existence of a smooth bounded (with bounded derivatives) solution f is well known (see
[28, Theorem 2], [34, Theorem 3.2.4, Theorem 3.2.6]). The maximum principle implies that |f(x, t)| ≤
maxx |ψ(x)|. Set u = 2−1

∑N
k=1 |∂xk

f |2. Differentiating the equation ∂tf + ζMLa,bf = 0 with respect to
xk and multiplying by ∂xk

f , we obtain

∂tu+ ζMLa,bu+ ζM 〈B∇f,∇f〉+ 〈∇ζM ,∇f〉〈b,∇f〉+ ζM∂xk
aij∂2

xixj
f∂xk

f+

+ aij∂2
xixj

f∂xk
f∂xk

ζM − ζMa
ij∂2

xkxj
f∂2

xkxj
f = 0.

Note that 〈B∇f,∇f〉 ≤ 2θu and 〈∇ζM ,∇f〉〈b,∇f〉 ≤ 2|∇ζM ||b|u. Let us consider the expression

ζM∂xk
aij∂2

xixj
f∂xk

f + aij∂2
xixj

f∂xk
f∂xk

ζM − ζMa
ij∂2

xkxj
f∂2

xkxj
f.

Recall that A = σ2
N . We have∑

i,j,k

∂xk
aij∂2

xixj
f∂xk

f = 2
∑
i,j,m,k

∂xk
σimσmj∂2

xixj
f∂xk

f ≤

≤ 2
∑
i,m

(∑
k

|∂xk
σim|2

)1/2(∑
k

|∂xk
f |2

)1/2∣∣∣∑
j

σmj∂2
xixj

f
∣∣∣,

which is estimated by

4u
∑
i,m,k

|∂xk
σim|2 + 2−1

∑
i,m

∣∣∣∑
j

σmj∂2
xixj

f
∣∣∣2.
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Note that ∑
i,m

∣∣∣∑
j

σmj∂2
xixj

f
∣∣∣2 =

∑
i,j,k

aij∂2
xkxj

f∂2
xkxj

f.

Applying the inequality xy ≤ (4 + 4trA)−1x2 + (1 + trA)y2 we obtain

aij∂2
xixj

f∂xk
f∂xk

ζM ≤ |∇ζM |2

ζM
(1 + trA) + (4 + 4trA)−1

(
aij∂2

xixj
f
)2

.

Note that the following inequality is true:( N∑
i,j=1

aij∂xi
∂xj

f
)2

≤
( N∑
i=1

aii
)( N∑

i,j,k

aij∂xi
∂xk

f∂xj
∂xk

f
)
.

This follows by the inequality
|tr (AB)|2 ≤ trA tr (AB2)

valid for symmetric matrices A and B, where A is nonnegative. The latter is due to the Cauchy inequality
applied to the inner product 〈X,Y 〉 = tr (XY ∗) on the space of N × N -matrices and the matrices
X = A1/2, Y = BA1/2, for which tr (Y Y ∗) = tr (BA1/2A1/2B) = tr (AB2). Applying the above inequality
it is easy to verify that

∂tu+ ζMLa,bu+Qu ≥ 0,
where

Q =
|∇ζM |2

ζM
(1 + trA) + |∇ζM ||b|+ 2ζMθ + 4ζM

∑
i,j,k≤N

∣∣∂xk
σijN

∣∣2.
We have

|∇ζM (x)| ≤ 4κ(1 + |x|2)−1/2
∣∣η′((1 + |x|2)κ/M

)∣∣.
Hence

Q ≤ 4κ2C(1 + trA) + 16κC + ζM

(
4

∑
i,j,k≤N

∣∣∂xk
σijN

∣∣2 + 2θ + 2κ(1 + |x|2)−1|b|2
)
.

Let us choose κ > 0 such that

Q ≤ 1 + ζM

(
4

∑
i,j,k≤N

∣∣∂xk
σijN

∣∣2 + 2θ + δ(1 + |x|2)−1|b|2
)
.

Let us set u = wV . Then w satisfies the inequality

∂tw + ζMLa,b̃w + Q̃w ≥ 0,

where

b̃k = bk + 2
akj∂xjV

V
, Q̃ = Q+ ζM

La,bV

V
.

By our assumptions we have Q̃ ≤ C0 + 1. Since u(x, s) = |∇f(x, s)|2/2 = |∇ψ(x)|2/2, we have

w(x, s) = V (x)−1|∇ψ(x)|2/2 ≤ |∇ψ(x)|2/2.
Applying the maximum principle (see [34, Theorem 3.1.1]) we obtain

max
x

|w(x, t)| ≤ e(C0+1)(s−t) max
x

|∇ψ(x)|2/2,

which completes the proof. �

We can now prove our theorem.

Proof. Assume that σ1 = σ1
t dt and σ2 = σ2

t dt belong to Pν . By our assumption about Pν we have
σ = (σ1+σ2)/2 ∈ Pν . Let d ∈ N, ψ ∈ C∞

0 (Rd) and |∇ψ(x)|+|ψ(x)| ≤ 1 for all x ∈ Rd. For every ε > 0 and
every natural number d we find a natural number N ≥ d, a C∞-mapping b = (bk)Nk=1 : RN×[0, T0] → RN ,
a function θ on RN , a function V ∈ C2(RN ), V ≥ 1, and numbers C0 ≥ 0 and δ > 0 such that (i) and
(ii) in condition (B′) are fulfilled.

Let a function η ∈ C∞
0 (R1) be such that η(x) = 1 if |x| ≤ 1 and η(x) = 0 if |x| > 2, 0 ≤ η ≤ 1 and

there exists a number C > 0 such that |η′(x)|2η−1(x) ≤ C for every x. Let κ > 0 be as in Lemma 2.8.
Set ϕK(x) = η(|x|2/K) and ζM (x) = η

(
(1 + |x|2)κ/M

)
.

Let us fix a number K > 0 and find a number M such that ζM (x) = 1 if |x|2 < 2K.
Fix t ∈

⋂
K(Jσ

1

ψϕK

⋂
Jσ

2

ψϕK
). Let f be a smooth bounded solution to the finite-dimensional Cauchy

problem {
∂tf + ζM (x)

∑N
i,j=1 a

ij∂xi
∂xj

f + ζM (x)
∑N
i=1 b

i∂xi
f = 0 on RN × (0, t),

f(t, x) = ψ(x).
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Set µ = σ1− σ2. The measure µ solves the Cauchy problem (1.1) with zero initial condition. Recall that
ζM (x) = 1 if ϕK(x) 6= 0. Therefore,∫

R∞
ψϕK dµt =

∫ t

0

∫
R∞

[
ϕK〈B − b,∇xf〉+ fLϕK + 2〈A∇xf,∇xϕK〉

]
dµs ds.

Applying Lemma 2.8 we have the estimate

|f(x, s)| ≤ 1, |∇xf(x, s)|2 ≤ e(C0+1)(T0−s)V (x)/2.

Hence∫
R∞

ψ dµt ≤ 2
∫ t

0

∫
R∞

[
|B − b|V 1/2e(C0+1)(T0−s)/2 + |LϕK |+ 2|A∇ϕK |e(C0+1)(T0−s)/2V 1/2

]
dσs ds.

Letting K → +∞ we find that∫
R∞

ψ dµt ≤ 2
∫ t

0

∫
R∞

|B − b|V 1/2e(C0+1)(T0−s)/2 dσs ds < 2ε.

Since ε > 0 was arbitrary, we obtain ∫
R∞

ψ dµt ≤ 0.

Replacing ψ by −ψ we arrive at the equality∫
R∞

ψ dµt = 0.

Therefore, ∫
R∞

ψ dσ1
t =

∫
R∞

ψ dσ2
t

for almost every t. Thus, σ1 = σ2. �

Example 2.9. (”Reaction diffusion equations”) Let us return to the situation of Example 2.4, but now
we assume that there exists a sequence of smooth bounded functions fn(z, u, t) such that lim

n→∞
fn(z, u, t) =

f(z, u, t) for every u, t, z and

|fn(z, u, t)| ≤ C1 + C1|u|m, (fn(z, u, t)− fn(z, v, t))(u− v) ≤ C2|u− v|2,
where C1 and C2 do not depend on n. Assume also that aij = (Sei, ej)2 for some symmetric nonnegative
operator S on L2((0, 1)), which can be degenerate unlike in Example 2.4. Then there exists at most one
probability solution µ of the Cauchy problem for the Fokker–Planck–Kolmogorov equation ∂tµ = L∗µ
such that ∫ T0

0

∫
L2((0,1))

‖u‖m2m µt(du) dt <∞.

The same conclusion is true if A = (aij) is a nonconstant matrix satisfying condition (A′) and there exists
a constant C1 such that for every natural number N and every (x, t) ∈ RN × [0, T0] we have∑

i,j,k≤N

∣∣∂xk
σijN (x, t)

∣∣2 ≤ C1.

Proof. Set F i(u, t) = 〈f( · , u(·), t), ei〉2, F in(u, t) = 〈fn( · , u(·), t), ei〉2, Fn(u, t) = (F in(u, t))
∞
i=1, and ex-

tend all these maps to all of R∞ × [0, T0] by zero. According to our assumptions and the dominated
convergence theorem we have

lim
n→∞

∫ T0

0

∫
L2((0,1))

‖F (u, t)− Fn(u, t)‖l2 µt(du) dt = 0.

Let PNu := u1e1+ . . .+uNeN . The above equality shows that for each ε > and d ≥ 1 there exist numbers
n and N > d such that ∫ T0

0

∫
L2((0,1))

‖F (u, t)− Fn(PNu, t)‖l2 µt(du) dt < ε.

Note that the condition
(fn(z, u, t)− fn(z, v, t))(u− v) ≤ C2|u− v|2

implies that ∑
i,j≤N

∂ui
F jn(PNu, t)hihj ≤ C2|h|2, h = (hi) ∈ RN .

Hence Theorem 2.5 with V ≡ 1 implies uniqueness. �
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Below for simplicity the integral of the product of an integrable function f1 and a bounded function
f2 is denoted by (f1, f2)2.

Example 2.10. (“Stochastic Burgers equation”) Suppose that {ek} is an eigenbasis of the Laplacian on
L2[0, 1] with zero boundary condition, i.e., D2ek = −λ2

kek. Set B(u)(z) = D2u(z) +D(u2(z)), that is,

Bi(u) = −λ2
iui − 〈u2, Dei〉2, u ∈ L2[0, 1], ui = 〈u, ei〉2.

Assume that aij = 〈Sei, ej〉2 for some symmetric nonnegative operator S on L2[0, 1] with finite trace
(trS <∞). Set

Lϕ =
∞∑

i,j=1

aij∂ei
∂ej

ϕ+
∞∑
i=1

Bi∂ei
ϕ.

Let H1
0 be the space of all absolutely continuous functions u on [0, 1] such that u(0) = u(1) = 0 and

‖u‖H1
0

:= ‖u′‖2 < ∞. Then there exists at most one probability solution µ of the Cauchy problem for
the Fokker–Planck–Kolmogorov equation ∂tµ = L∗µ such that∫ T0

0

∫
L2[0,1]

‖u‖2
H1

0
eδ‖u‖

2
2 µt(du) dt <∞

for some δ > 0.

Proof. We apply Example 2.7(ii). Recall that the matrix (aij) has to satisfy the following condition for
some ε0 > 0:

ε0
(
〈ANx, x〉+ |x|2

)
≤ ‖x‖2

l2λ
, x ∈ RN .

This is equivalent to
ε0

(
〈Su, u〉2 + ‖u‖2

2

)
≤ ‖u‖2

H1
0
,

which is true for sufficiently small ε0. We fix ε0 ∈ (0, δ). Set F i(u) := 〈u2, Dei〉2 for u ∈ L2 and extend
F i by zero to all other u = (uk) in R∞. Let F (u) = (F i(u))∞i=1, PNu := u1e1 + . . .+ uNeN ,

bk(u1, . . . , uN ) := −λ2
kuk + F k(PNu), k ≤ N.

Note that
‖F (u)‖l2 = ‖(u2)′‖2 = 2‖uu′‖2 ≤ 2‖u‖2

H1
0
.

Hence

lim
N→∞

∫ T0

0

∫
L2[0,1]

‖F (u)− F (PNu)‖l2eδ‖u‖
2
2 µt(du) dt = 0

It is easy to see that |bk(u)| ≤ C1(N) + C2(N)‖PNu‖2
2 and 〈F (PNu), PNu〉2 ≤ 0. Moreover, for every

γ ∈ (0, 1) we have the inequalities∑
i,k≤N

∂ui
F k(PNu)hihk ≤ ‖h‖l2λ + (γ‖PNu‖2

H1
0

+ Cγ)|h|2, h = (hi) ∈ RN .

Set θ(PNu) = γ‖PNu‖2
H1

0
+ Cγ and C0 = Cγ + trS (we recall that trS < ∞). In order to apply

Example 2.7(ii) we choose γ < 2−1δ(ε0 − δ). �

Example 2.11. (“Mixed Burgers/reaction diffusion type equations”) (i) In the situation of the previous
example we consider the operator L with the drift coefficient of the form

B(u)(z) = D2u(z) +D(u2(z))− u2m+1(z), m ∈ N,

that is,
Bi(u) = −λ2

iui − 〈u2, Dei〉2 − 〈u2m+1, ei〉2.
Assume that aij satisfies the assumptions in the previous example. Then there exists at most one
probability solution µ of the Cauchy problem for the Fokker–Planck–Kolmogorov equation ∂tµ = L∗µ
such that ∫ T0

0

∫
L2[0,1]

[
‖u‖2m+1

4m+2 + ‖u‖2
H1

0

]
eδ‖u‖

2
2 µt(du) dt <∞

for some δ > 0.
(ii) In the situation of Example 2.10 we consider the operator L with the drift coefficient of the form

B(u)(z) = D2u(z) +D(um(z))− u2l+1(z), 2 ≤ m ≤ l + 2, m, l ∈ N

that is,
Bi(u) = −λ2

iui − 〈um, Dei〉2 − 〈u2l+1, ei〉2.
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Assume also that aij = 0 if i 6= j and that
∑∞
i=1 a

ii < ∞. Then there exists at most one probability
solution µ of the Cauchy problem for the Fokker–Planck–Kolmogorov equation ∂tµ = L∗µ such that∫ T0

0

∫
L2((0,1))

[
‖u‖2l+1

4l+2 + ‖um‖H1
0

]
exp

(
κ′‖u‖2m−2

2m−2

)
µt(du) dt <∞

for some κ′ > 0. This partially improves the results in [25].

Proof. (i) We apply Example 2.7(ii). Note that as in the above example the matrix (aij) satisfies all
conditions in Example 2.7(ii). Let ψM ∈ C∞(R1), ψ(s) = −ψ(−s), 0 ≤ ψ′ ≤ 1, ψM (s) = s if |s| ≤M − 1
and ψM (s) = M if s > M + 1. Set

F i(u) := −〈u2, Dei〉2 − 〈u2m+1, ei〉2, F iM (u) := −〈u2, Dei〉2 − 〈ψM (u)2m+1, ei〉2,

PNu := u1e1 + . . .+ uNeN , bk(u1, . . . , uN ) := −λ2
kuk + F kM (PNu).

As above, we define all these functions by zero if u is not in L2[0, 1]. Note that ‖F (u)‖l2 ≤ 2‖u‖2
H1

0
+

‖u‖2m+1
4m+2. and the same is true for FM (u) in place of F (u). Hence

lim
N→∞

(
lim
M→∞

∫ T0

0

∫
L2[0,1]

‖F (u)− FM (PNu)‖l2eδ‖u‖
2
2 µt(du) dt

)
= 0.

It is easy to see that |bk(u)| ≤ C1(N) + C2(N)‖PNu‖2
2. Recall that ψ′M ≥ 0 and ψM (s) = −ψM (−s).

Hence 〈FM (PNu), PNu〉2 ≤ 0. For every γ ∈ (0, 1) we have∑
i,k≤N

∂ui
F kM (PNu)hihk ≤ ‖h‖l2λ + (γ‖PNu‖2

H1
0

+ Cγ)|h|2, h = (hi) ∈ RN .

Set θ(PNu) = γ‖PNu‖2
H1

0
+ Cγ and C0 = Cγ + trS (we recall that trS < ∞). In order to apply

Example 2.7(ii) we choose γ < 2−1δ(ε0 − δ).
(ii) We check the condition (B′). Set F k(u) = −〈um, Dek〉2 − 〈u2l+1, ek〉2, PNu = u1e1 + . . .+ uNeN

and
bk(u1, u2, . . . , uN ) = −λ2

kuk + F k(PNu).

For each N ≥ 1 and p ≥ 1 there exist positive numbers C1(N, p) and C2(N, p) such that

C1‖PNu‖2p
2 ≤ ‖PNu‖pLp ≤ C2‖PNu‖2p

2 .

Hence there exists a number C3(N) such that

|b(PNu)|(1 + ‖PNu‖2
2)
−1 ≤ C3(N) + C3(N)

(∫ 1

0

|PNu(z)|m−2 dz +
∫ 1

0

|PNu(z)|2l−1 dz
)
.

It is easy to see that for every γ ∈ (0, 1) there exists a number Cγ > 0 (independent of N) such that∑
i,k≤N

∂uiF
k(uN )hihk ≤ γ‖h‖l2λ + (γ‖(PNu)m−1‖2

H1
0

+ Cγ)|h|2, h = (hi) ∈ RN .

Set V (u) = exp(κ‖u‖2m−2
2m−2), where 0 < κ < κ′ (the number κ′ comes from our assumptions). Using the

inequalities
∑∞
i=1 a

iiu2
i ≤ c0

∑∞
i=1 for some c0 > 0 and all u ∈ L2([0, 1]),

∑∞
i=1 a

ii < ∞, m ≤ l + 2 and
choosing a sufficiently small number κ, we obtain

La,bV (PNu) =
(
C(m)− 2−1κ‖(PNu)m−1‖2

H1
0
− 2−1κ‖PNu‖2m+2l−2

2m+2l−2

)
V (PNu).

for some number C(m) > 0 which does not depend on N . Note that m − 2 ≤ 2m + 2l − 2 and
2l − 1 ≤ 2m+ 2l − 2. Choosing γ < κ/2 we have

La,bV (PNu) ≤ (C0 − γ‖(PNu)m−1‖2
H1

0
− δ|b(PNu)|(1 + ‖PNu‖2

2)
−1)V (PNu)

for some C0 > 0 and δ > 0. Note that C0 does not depend on N and we can omit the term eC0(T−t)/2 in
the condition (B′)(i). Finally we note that ‖F (u)‖l2 ≤ ‖um‖H1

0
+ ‖u‖2l+1

4l+2 and

lim
N→∞

∫ T0

0

∫
L2((0,1))

‖F (u)− F (PNu)‖l2 exp
(
κ‖u‖2m−2

2m−2

)
µt(du) dt = 0.

Hence Theorem 2.5 implies uniqueness. �
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Example 2.12. (“Stochastic 2d-Navier–Stokes equation”) Let us consider the space V2 of R2-valued
mappings u = (u1, u2) such that uj ∈ H2,1

0 (D) and div u = 0, where D ⊂ R2 is a bounded domain with
smooth boundary. The space V2 is equipped with its natural Hilbert norm ‖u‖V2 defined by

‖u‖2
V2

:=
2∑
j=1

‖∇zu
j‖2

2.

Let H be the closure of V2 in L2(D,R2) and let PH denote the orthogonal projector on H in L2(D,R2).
It is known (see [26]) that there exists an orthonormal basis {ηn} in H formed by eigenfunctions of ∆
with eigenvalues −λ2

n such that ηn ∈ V2. Recall that 〈PHw, ηn〉2 = 〈w, ηn〉2 for any w ∈ L2(D,Rd). Set

Bn(u, t) = 〈u,∆ηn〉2 −
2∑
j=1

〈PHuj∂zju, ηn〉2 = 〈u,∆ηn〉2 −
2∑
j=1

〈∂zju, u
jηn〉2

whenever u ∈ V2 and Bn(u, t) = 0 otherwise. These functions are continuous on balls in V2 with respect
to the topology of L2(D,R2), which easily follows from the compactness of the Sobolev embedding
H2,1(D) → L2(D). Consider the operator

Lϕ(u, t) =
∞∑
i,j

aij∂ηi
∂ηj

ϕ(u, t) +
∞∑
n=1

Bn(u, t)∂ηn
ϕ(u, t).

Assume that aij = 〈Sηi, ηj〉2 for some symmetric nonnegative bounded operator S on H. Suppose also
that

∑
i a
iiλ2

i <∞. Then there exists at most one probability solution µ of the Cauchy problem for the
Fokker–Planck–Kolmogorov equation ∂tµ = L∗µ such that for some δ > 0∫ T0

0

∫
H

(
1 + ‖∆u‖2

2

)
eδ‖u‖

2
V2 µt(du) dt <∞,

where we set ‖∆u‖2 = ∞ if u 6∈ H2,2(D).

Proof. We apply Example 2.7(iii). Recall that the matrix (aij) has to satisfy the following condition for
some ε0 > 0

ε0
∑
i,j≤N

aijλ2
iλ

2
jxixj + ε0|x|2 ≤

∑
i≤N

λ4
ix

2
i

that is equvivalent (if we take u =
∑N
i=1 λixiei) to the estimate

ε0
(
〈Su, u〉2 + ‖u‖2

2

)
≤ ‖u‖2

2,

which is true for sufficiently small ε0. Set

Fn(u) = −
2∑
j=1

〈∂zj
u, ujηn〉2, u ∈ V2.

Note that |Fn(u)| ≤ C1(n) + C2(n)‖u‖2
2, since Fn(u) =

∑
j=1,2〈u, uj∂zj

ηn〉2 due to the condinition
that div u = 0. It is well-known that there exists a constant C1 > 0 such that for every function
g ∈ H2,1

0 (D) ∩H2,2(D) we have
‖g‖2,2 ≤ C1

(
‖∆g‖2 + ‖g‖2

)
.

Moreover, for every g ∈ H2,2(D), every r ≥ 1 and some constant C2 > 0 we have

‖g‖r ≤ C2‖g‖2,1.

Hence

‖F (u)‖2
l2 ≤

∫
D

|∇zu(z)|2|u(z)|2 dz ≤
(∫

D

|∇zu(z)|4 dz
)1/2(∫

D

|u(z)|4 dz
)1/2

≤

≤ C2
1C

4
2 (1 + ‖∆u‖2

2)‖u‖2
V2
.

Let PNu = u1η1 + . . .+ uNηN . We have

lim
N→∞

∫ T0

0

∫
L2((0,1))

‖F (u)− F (PNu)‖l2eδ‖u‖
2
V2
/2 µt(du) dt = 0.

It is known (see, e.g., [14, Proposition 6.3]) that in the considered case d = 2 we have the inequality

〈F (PNu),∆PNu〉2 = 0
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which gives the condition 〈f(x, t), x〉l2λ ≤ 0 in Example 2.7(iii). In addition, for every γ ∈ (0, 1)∑
i,j≤N

∂ui
F j(PNu)hihj ≤

(
Cγ + γ‖∆PNu‖2

l2

)
|h|2 + ‖h‖2

l2λ
, h = (hi).

Set θ(PNu) = Cγ + γ‖∆PNu‖2
l2 and C0 = Cγ +

∑∞
i=1 a

iiλ2
i (we recall that

∑∞
i=1 a

iiλ2
i < ∞). In order

to apply Example 2.7(iii) we choose γ < 2−1δ(ε0 − δ). In Example 3.5 we consider a more general
equation. �

It is worth noting that the last example applies to degenerate coefficients A, in particular, to A
identically zero, which gives uniqueness for the so-called continuity equation corresponding to 2d-Navier–
Stokes equation.

In the next section we show that the considered classes of uniqueness are not empty.

3. Existence of solutions

First we would like to mention that if the stochastic equation associated to our Fokker–Planck–
Kolmogorov equation has a solution in the sense of Stroock–Varadhan’s martingale problem, then one
immediately gets a solution to the FPK-equation. But uniqueness of solutions for a martingale problem
does not imply uniqueness for the corresponding FPK-equation.

In this section we purely analytically prove the following existence result generalizing a result from [4]
(where only a sketch of the proof of a weaker result was given).

Let {en} be an orthonormal basis in l2. The linear span of e1, . . . , en is denoted by Hn.
Let T0 > 0 and let aij : R∞ × [0, T0] → R1 and Bi : R∞ × [0, T0] → R1 be Borel functions. Suppose

that the matrices (aij)i,j≤n are symmetric nonnegative for all n. Set

Lϕ(x, t) :=
n∑

i,j=1

aij(x, t)∂ei∂ejϕ(x, t) +
n∑
i=1

Bi(x, t)∂eiϕ(x, t), (x, t) ∈ R∞ × [0, T0]

for functions ϕ that are smooth functions of the variables x1, . . . , xn, t.
Let Bn := (B1, . . . , Bn) and Pnx = (x1, . . . , xn).
A Borel function Θ: R∞ → [0,+∞] such that the sublevel sets {Θ ≤ R} are compact is called a

compact function. For example, one can take any numbers αi > 0 and set Θ(x) =
∑∞
i=1 α

2
ix

2
i .

Theorem 3.1. Suppose that there exists a compact function Θ: R∞ → [0,+∞], finite on each Hn and
such that the functions aij and Bi are continuous in x on all the sets {Θ ≤ R}, and there exist numbers
M0, C0 ≥ 0 and a Borel function V : R∞ → [1,+∞] whose sublevel sets {V ≤ R} are compact and whose
restrictions to Hn are of class C2 and such that for all x ∈ Hn, n ≥ 1, one has

n∑
i,j=1

aij(x, t)∂ei
V (x)∂ej

V (x) ≤M0V (x)2, LV (x, t) ≤ C0V (x)−Θ(x). (3.1)

Assume also that there exist constants Ci ≥ 0 and ki ≥ 0 such that for all i and j ≤ i one has

|aij(x, t)|+ |Bi(x, t)| ≤ CiV (x)ki(1 + δ(Θ(x))Θ(x)), (x, t) ∈ R∞ × [0, T0], (3.2)

where δ is a bounded nonnegative Borel function on [0,+∞) with lim
s→∞

δ(s) = 0. Then, for every Borel

probability measure ν on R∞ such that Wk := supn ‖V k ◦Pn‖L1(ν) <∞ for all k ∈ N, the Cauchy problem
(1.1) with initial distribution ν has a solution of the form µ = µt dt with Borel probability measures µt
on R∞ such that for all t ∈ [0, T0]∫

R∞
V k dµt + k

∫ t

0

∫
R∞

V k−1Θ dµs ds ≤ NkWk ∀ k ∈ N, (3.3)

where Nk := Mke
Mk + 1, Mk = k(C0 + (k − 1)M0). In particular, µt(V < ∞) = 1 for all t and

µt(Θ <∞) = 1 for almost all t.

Proof. For every fixed n let aijn denote the restriction of aij to Hn × (0, T0) and set An := (aijn )i,j≤n.
Denote by νn the projection of ν on Hn. We show that there exist Borel probability measures µt,n
on Hn such that the measure µn := µt,n dt solves the Cauchy problem with coefficients An and Bn on
Hn × (0, T0) and initial distribution νn. To this end we consider the Lyapunov function Vm(x) = V (x)m

on Hn, where m ≥ 1. Letting Mm := m(C0 + (m− 1)M0), we obtain

LVm = mV m−1
(
LV + (m− 1)V −1

n∑
i,j=1

aii∂ei
V ∂ej

V
)
≤ mV m−1(C0V −Θ + (m− 1)M0V )

≤MmV
m −mV m−1Θ.
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Since the function Vm is νn-integrable, we can apply the existence result from [3] and obtain the desired
probability measures µt,n on Hn such that the function

t 7→
∫
Hn

ζ(x)µt,n(dx)

is continuous on [0, T0) for every ζ ∈ C∞
0 (Hn). Moreover, by [4, Lemma 1] (see also [3, Lemma 2.2]), for

each m ≥ 1 and

Nm := Mme
Mm + 1, Mm = m(C0 + (m− 1)M0)

the following estimate holds for almost all t ∈ (0, T0):∫
Hn

Vm(x)µt,n(dx) +m

∫ t

0

∫
Hn

Vm−1(x)Θ(x)µs,n(dx) ds

≤ Nm

∫
Hn

Vm(x) νn(dx) ≤ Nm +NmWm. (3.4)

Therefore, by Fatou’s theorem and the above stated continuity of t 7→ µt,n it follows that (3.4) holds for
all t ∈ [0, T0). Indeed, we replace Vm and ΘVm−1 in the left-hand side by min(k, Vm) and min(k,ΘVm−1),
obtain the desired estimate for all t ∈ [0, T0) keeping k fixed and then let k →∞.

Suppose now that ζ ∈ C∞
0 (Rd). Let us identify Hn with Rn. If n ≥ d, then ζ regarded as a function

on Rn belongs to the class C∞
b (Rn). Let m = max(k1, . . . , kd). Then we have the estimate

|Lζ(x, t)| ≤ K +KVm(x) +KVm(x)δ(Θ(x))Θ(x), (x, t) ∈ Rn × [0, T0], (3.5)

where K is some number which depends on ζ (but is independent of n since ζ is a function of x1, . . . , xd).
Therefore, by approximation, inequality (3.4) and Lebesgue’s dominated convergence theorem we have∫

Hn

ζ(x)µt,n(dx) =
∫ t

0

∫
Hn

Lζ(x, s)µs,n(dx) ds+
∫
Hn

ζ(x) νn(dx), (3.6)

because according to [3], this identity holds for all ζ ∈ C∞
0 (Rn), hence in our situation it remains valid

also for all ζ ∈ C∞
b (Rn). Letting

ϕn(t) :=
∫
Hn

ζ(x)µt,n(dx), t ∈ [0, T0],

we see from (3.4), (3.6) that the function ϕn is Lipschitzian (one can show that it is everywhere differen-
tiable in (0, T0)) and (3.5) yields that

|ϕ′n(t)| ≤
∫
Hn

|Lζ(x, t)|µt,n(dx) ≤ Kζ

∫
Hn

[1 + Vm−1(x)Θ(x)]µt,n(dx)

with some number Kζ that does not depend on n (but only on ζ). Therefore, by (3.4) the functions
ϕn possess uniformly bounded variations, hence there is a subsequence in {ϕn} convergent pointwise on
[0, T0]. We may assume that this is true for the whole sequence. Moreover, we can do this in a such a
way that this pointwise convergence holds for every function ζ from a fixed countable family F with the
following property: the weak convergence of a uniformly tight sequence of probability measures on R∞

follows from convergence of their integrals of every function in F .
It follows from (3.4) and the compactness of the sets {Vm ≤ R} and {Θ ≤ R} that, for every fixed

t ∈ (0, T0), the sequence of measures µt,n is uniformly tight on R∞ (see [2, Example 8.6.5]). Hence we can
find a subsequence, denoted for simplicity by the same indices n, such that {µt,n} converges weakly on
R∞ for every rational t ∈ (0, T0). However, since we have ensured convergence of ϕn(t) at every t ∈ [0, T0]
for every ζ ∈ F , we see that {µt,n} converges weakly for every t ∈ [0, T0].

Estimate (3.3) follows from (3.4) taking into account that V ≥ 1 and Θ ≥ 0 are lower semicontinuous,
hence V k and V k−1Θ are lower continuous.

The family of measures µt obtained in this way is the desired solution. Indeed, let us fix ζ ∈ C∞
0 (Rd).

We have to show that the integrals of Lζ(x, t) over R∞×[0, T ], T < T0, with respect to µn converge to the
integral with respect to µ = µt dt. This amounts to establishing such convergence for all functions f =
∂xi

ζBi and f = aij∂xj
∂xi

ζ. Suppose we are able to show this for the functions fN = max(min(f,N),−N).
Then (3.2) and (3.4) enable us to extend the same to the original function f , because for every ε > 0
these estimates give a number N such that the integral of |f |I|f |>N with respect to µt,n dt is less than ε.
Indeed, it suffices to show that the integral of G := V k(1 + δ(Θ)Θ) over the set {G ≥ N} with respect
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to µt,n dt does not exceed ε for N sufficiently large. Take n1 such that 1/n1 + δ(s) < cε for all s ≥ n1,
where c > 0 is so small that cNk+1Wk+1 < 1/2. We may assume that δ ≤ 1. We have∫ T0

0

∫
{Θ≥n1}

Gdµt,n dt =
∫ T0

0

∫
{Θ≥n1}

(Θ−1 + δ(Θ))V kΘ dµt,n dt ≤ cε

∫ T0

0

∫
Hn

V kΘ dµt,n dt ≤ ε/2.

For any N ≥ n1 and t < T0 we have∫
{G≥N,Θ≤n1}

Gdµt,n ≤ (1 + n1)
∫
{V k≥N/(1+n1)}

V k dµt,n ≤ N−1(1 + n1)2NkWk,

which can be made smaller than ε/2 uniformly in t < T0 for all N sufficiently large.
Thus, it remains to justify the desired convergence in the case of fN , which will be now denoted by f .

We recall that the restriction of such a function f to every set {Θ ≤ R} × [0, T0] is continuous in the
first variable. Dividing by N we assume that |f | ≤ 1. If f were continuous in x on the whole space, this
would follow at once from the weak convergence of µt,n for every fixed t. Our situation reduces to this
one in the standard way: given ε > 0, we find R so large that the set {Θ ≤ R} × [0, T0] has measure
less than ε with respect to all measures µt,n dt and µt dt. By our assumption the set Ω = {Θ ≤ R}
is compact in R∞. The mapping t 7→ f( · , t) from [0, T0] to C(Ω) is Borel measurable. By Dugundji’s
theorem (see [13, Chapter III, Section 7]), there is a linear extension operator E : C(Ω) → Cb(R∞) such
that Eϕ(x) = ϕ(x) for all ϕ ∈ C(Ω), x ∈ Ω and ‖Eϕ‖∞ = ‖ϕ‖∞. Letting g(x, t) = Ef( · , t)(x), we
obtain a Borel function (since it is Borel measurable in t and continuous in x, see [2, Lemma 6.4.6]) such
that |g| ≤ 1 and g(t, x) = f(t, x) for all x ∈ Ω. The integral of g with respect to µt,n dt converges to
the integral of g with respect to µt dt and the integrals of |f − g| with respect to these measures do not
exceed ε. Therefore, the measure µ = µt dt satisfies our parabolic equation with initial distribution ν. �

The condition that V ≥ 1 is taken just for simplicity of estimates: it can be replaced by V ≥ 0 if we
add constants in the right sides of (3.1) and (3.2).

In typical examples V and Θ are quadratic functions (with added constants). For example, we shall
use V (x) =

∑∞
i=1 βix

2
i + 1 and Θ(x) =

∑∞
i=1 αix

2
i . There is also a version of this theorem applicable to

exponents of quadratic functions (the first inequality in (3.1) is not suitable for such functions).

Theorem 3.2. Suppose that in Theorem 3.1 condition (3.1) is replaced by

LV (x, t) ≤ V (x)− V (x)Θ(x) (3.7)

and (3.2) is replaced by

|aij(x, t)|+ |Bi(x, t)| ≤ Ci(1 + δ(V (x)Θ(x))V (x)Θ(x)), (x, t) ∈ R∞ × [0, T0]. (3.8)

Then, for every Borel probability measure µ0 on R∞ with W1 := supn ‖V ◦ Pn‖L1(µ0) < ∞ the Cauchy
problem (1.1) with initial distribution µ0 has a solution of the form µ = µt dt with Borel probability
measures µt on R∞ such that for t ∈ [0, T0]∫

R∞
V dµt +

∫ t

0

∫
R∞

VΘ dµs ds ≤ 4W1. (3.9)

Proof. The reasoning is much the same as in the previous theorem, but we use only one Lyapunov function
V and use (3.7) in place of (3.4) to obtain the estimate∫

Hn

V (x)µt,n(dx) +
∫ t

0

∫
Hn

V (x)Θ(x)µs,n(dx) ds ≤ (e+ 1)
∫
Hn

V (x)µ0,n(dx) ≤ 4W1.

Another place where some difference arises is the estimate of the integral of fI|f |>N , where |f | is estimated
by C(1 + δ(VΘ)VΘ), but this is easily done by using the previous inequality and the condition that
δ(s) → 0 as s→∞. �

Let us apply the last theorem to the Fokker–Planck–Kolmogorov equation associated with the sto-
chastic Burgers type equations (see Example 2.10).

Example 3.3. (“Stochastic Burgers equation”) Let us return to the situation of Example 2.10. Let u
be from the linear span of {ek}. Note that

〈B(u), u〉2 = −‖u‖2
H1

0
.

Let V (u) = exp
(
δ‖u‖2

2

)
. We have

LV (u) ≤ 2δ
(
trS + 2δ〈Su, u〉2 − ‖u‖2

H1
0

)
V (u).
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Taking δ < ε0/4 we obtain

LV (u) ≤ (1−Θ(u))V (u), Θ(u) = 1− 2δ trS + δ‖u‖2
H1

0
.

In addition, |Bk(u)| ≤ C(k) + C(k)‖u‖2
2. According to Theorem 3.2 for every initial condition ν with

exp(δ‖u‖2
2) ∈ L1(ν) there exists a probability solution µ of the Cauchy problem ∂tµ = L∗µ, µ|t=0 = ν

such that ∫ T0

0

∫
L2((0,1))

‖u‖2
H1

0
exp

(
δ‖u‖2

2

)
µt(du) dt <∞.

According to Example 2.10 this µ is the unique probability solution with this property.

Example 3.4. Let us return to the situation of Example 2.11(i). Assume that aij = 0 if i 6= j and that∑
i a
ii <∞. Let u be from the linear span of {ek}. Set

V (u) = (1 + ‖u‖2m+2
2m+2) exp

(
δ‖u‖2

2

)
Note that for some positive constants C1, C2 and C3 we have

L(1 + ‖u‖2m+2
2m+2) ≤ C1 − C2‖um+1‖2

H1
0
− C3‖u‖4m+2

4m+2.

Using the calculations from the previous example we obtain

LV (u) ≤ (1−Θ(u))V (u), Θ(u) = C̃1 + δC̃2‖u‖2
H1

0
+

(
C̃3‖um+1‖2

H1
0

+ C̃4‖u‖4m+2
4m+2

)(
1 + ‖u‖2m+2

2m+2

)−1

for some positive constants C̃1, C̃2, C̃3 and C̃4. According to Theorem 3.2 for every initial condition ν
with

(1 + ‖u‖2m+2
2m+2) exp(δ‖u‖2

2) ∈ L1(ν)
there exists a probability solution µ of the Cauchy problem ∂tµ = L∗µ, µ|t=0 = ν such that∫ T0

0

∫
L2((0,1))

(
‖u‖4m+2

4m+2 + ‖u2‖H1
0

)
exp

(
δ‖u‖2

2

)
µt(du) dt <∞.

According to Example 2.11(i), this µ is the unique probability solution with this property.
In the same way applying Theorem 3.2 with

V (u) = (1 + ‖u‖2
2 + ‖u‖2l+2

2l+2) exp
(
δ‖u‖2m−2

2m−2

)
one can obtain existence of a probability solution in the situation of Example 2.11(ii). Thus, there is a
unique probability solution µ such that∫ T0

0

∫
L2((0,1))

(
‖u‖4l+2

4l+2 + ‖u‖2
H1

0
+ ‖um−1‖2

H1
0

)
exp

(
δ‖u‖2m−2

2m−2

)
µt(du) dt <∞.

We note only that ‖um‖H1
0
≤ ‖u‖2

H1
0

+ ‖um−1‖2
H1

0
, since m ≥ 2 and ‖u‖∞ ≤ ‖u‖H1

0
. This partially

generalizes a result in [30].

Let us apply the existence theorems to the Fokker–Planck–Kolmogorov equation associated with the
stochastic Navier–Stokes equation in any dimension (a special case has been considered in Example 2.12).

Example 3.5. The stochastic equation of Navier–Stokes type is considered in the space V2 of Rd-valued
mappings u = (u1, . . . , ud) such that uj ∈ H2,1

0 (D) and div u = 0, where D ⊂ Rd is a bounded domain
with smooth boundary. The space V2 is equipped with its natural Hilbert norm ‖u‖V2 defined by

‖u‖2
V2

:=
d∑
j=1

‖∇zu
j‖2

2.

Let H be the closure of V2 in L2(D,Rd) and let PH denote the orthogonal projection on H in L2(D,Rd).
The stochastic Navier–Stokes equation is formally written as

du(z, t) =
√

2dW (z, t) + PH

[
∆zu(z, t)−

d∑
j=1

uj(z, t)∂zj
u(z, t) + F (z, u(z, t), t)

]
dt,

where W is a Wiener process of the form W (z, t) =
∑∞
n=1

√
αnwn(t)ηn(z), where

αn ≥ 0,
∞∑
n=1

αn <∞,

wn are independent Wiener processes, and {ηn} is an orthonormal basis in H, and F : D×Rd×(0, T0) →
Rd is a bounded continuous mapping. No interpretation of this equation is needed for the sequel, it should
be regarded only as a heuristic expression leading to a specific form of the corresponding elliptic operator.
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The case F = 0 is the classical stochastic Navier–Stokes equation. Note that the action of PH in the
right-hand side is defined in the natural way: PH∆zu(z, t) := PH∆zu( · , t)(z) and similarly for the other
terms. Since the Laplacian ∆ is not defined on all of V2, this equation requires some interpretation. Our
approach suggests the following procedure. It is known (see [26]) that there exists an orthonormal basis
{ηn} in H formed by eigenfunctions of ∆ with eigenvalues −λ2

n such that ηn ∈ V2. Employing the fact
that 〈PHw, ηn〉2 = 〈w, ηn〉2 for any w ∈ L2(D,Rd), we introduce the “coordinate” functions

Bn(u, t) = 〈u,∆ηn〉2 −
d∑
j=1

〈PH(uj∂zj
u), ηn〉2 + 〈PHF ( · , u( · , t), t), ηn〉2

= 〈u,∆ηn〉2 −
d∑
j=1

〈∂zj
u, ujηn〉2 + 〈F ( · , u( · , t), t), ηn〉2.

These functions are defined by the last line on all of V2. They are continuous on balls in V2 with respect
to the topology of L2(D,Rd), which follows by the compactness of the embedding of H2,1(D) → L2(D).
Choosing a Wiener process of the above form, we arrive at the operator

Lϕ(u, t) =
∞∑
n=1

αn∂
2
ηn
ϕ(u, t) +

∞∑
n=1

Bn(u, t)∂ηn
ϕ(u, t).

Since for every u from the linear span of {ηn} one has
∞∑
n=1

d∑
j=1

〈u, ηn〉2〈∂zju, u
jηn〉2 =

d∑
j=1

〈u, uj∂zju〉2 = −1
2

∫
D

|u(z)|2div u(z) dz = 0

and 〈∆u, u〉2 = −‖u‖2
V2

, we have the estimate
N∑
n=1

〈u, ηn〉2Bn(u, t) ≤ C1 − C1‖u‖2
V2

for all u in the linear span of η1, . . . , ηN , where C1 is a constant independent of N . Clearly, we have also
|Bn(u, t)| ≤ C2(n) + C2(n)‖u‖2

2.
Therefore, by Theorem 3.1 applied with Θ(u) = C1‖u‖2

V2
and V (u) = ‖u‖2

2 + 1 (the above estimates
along with convergence of the series of αn mean that we have (3.1)) there is a probability measure
µ = µtdt on V2 × [0, T0), such that µt(H) = 1 for all t and µt(V2) = 1 for almost all t, and solving the
Cauchy problem (1.1) with any initial distribution µ0 for which ‖u‖k2 ∈ L1(µ0) for all k.

It should be also noted that Flandoli and Gatarek [20] proved (under the stated assumptions) the
existence of a solution to the martingale problem associated with the operator L such that this solution
possesses all moments in H. One can show that the measure generated by this solution satisfies the
Fokker–Planck–Kolmogorov equation in our sense.

Let us consider the 2d-Navier–Stokes equation, i.e., d = 2 and F = 0. Recall that for every u from the
linear span of {ηn} one has

∞∑
n=1

2∑
j=1

〈u,∆ηn〉2〈∂zj
u, ujηn〉2 = 0.

Set V (u) = exp(δ‖u‖2
V2

). Let u be from the linear span of {ηn}. We have

LV (u) = 2δ
(∑

n

αnλ
2
n + 2δ

∑
n

αnλ
4
nu

2
n −

∑
n

λ4
nu

2
n

)
V (u).

Assume that
∑∞
n=1 αnλ

2
n <∞. Hence for sufficiently small δ > 0

LV (u) ≤ (1−Θ(u))V (u), Θ(u) = 1− δ
∞∑
n=1

αnλ
2
n + δ‖∆u‖2

2,

where Θ(u) = +∞ if u 6∈ H2,2(D). According to Theorem 3.2 for every initial condition ν with
exp(δ‖u‖2

V2
) ∈ L1(ν) there exists a probability solution µ of the Cauchy problem ∂tµ = L∗µ, µ|t=0 = ν

such that ∫ T0

0

∫
H

(
1 + ‖∆u‖2

2

)
eδ‖u‖

2
V2 µt(du) dt <∞.

According to Example 2.12 this µ is the unique probability solution with this property.

Finally, we formulate one more existence and uniqueness result which is a combination of Theorem 3.1
and Theorem 2.3.
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Corollary 3.6. Let aij = 0 if i 6= j and aii = αi > 0. Suppose that the hypotheses of Theorem 3.1 are
fulfilled with certain functions V and Θ. If there exists a Borel mapping F = (Fn) : R∞ × [0, T0] → R∞

and numbers p > 0, C > 0 such that ‖F (x, t)‖2
l2α
≤ CV (x)pΘ(x) and for each natural number n the

difference Bn(x, t)−Fn(x, t) depends only on t and x1, x2, . . . , xn, then for every initial condition ν with
V ∈ Lk(ν) for every k ≥ 1 the class Pν consists of exactly one element.

Example 3.7. Let aij = 0 if i 6= j and aii = αi > 0. Suppose that

Bn(x, t) = −βnxn + Fn(x, t), where βn > 0.

Let γn ∈ (0,+∞) be such that
∞∑
n=1

αnγn <∞.

Let

V (x) = 1 +
∞∑
n=1

γnx
2
n, Θ(x) =

∞∑
n=1

βnγnx
2
n.

Let c00 denote the subspace of all vectors x ∈ R∞ with at most finitely many nonzero coordinates.
Suppose that a Borel mapping F ( · , · ) : R∞× [0, T0] → R∞ satisfies the following conditions: for each

t it is continuous in x on every set {Θ ≤ R} and there are numbers ε ∈ (0, 1), C1 > 0, C2 > 0, and p > 0
such that for all t ∈ (0, T ) and x ∈ c00 one has

∞∑
n=1

γnF
n(t, x)xn ≤ εΘ(x) + C1V (x),

∞∑
n=1

α−1
n |Fn(t, x)|2 ≤ C2 (1 + Θ(x))V (x)p,

Then, for every initial condition ν with V ∈ Lk(ν) for every k ≥ 1, the class Pν consists of exactly one
element.

Remark 3.8. As already noted, if the infinite-dimensional stochastic differential equation (SDE) associ-
ated to our Fokker–Planck–Kolmogorov equation has a solution in the sense of Stroock–Varadhan, then
one gets a solution to the FPK-equation (but not vice versa). In contrast to that, uniqueness of solutions
to the martingale problem does not imply the uniqueness of solutions to the FPK-equation, here the
converse is true. Therefore, the existence parts in our Examples 3.3 – 3.5 can partly also be derived by
probabilistic methods. It should also be pointed out that in these examples we always assume that (aij)
is trace class. For existence results by probabilistic means in case of Example 3.3 and the first part of
Example 3.4 without this condition we refer to [23] and its recent improvement [32]. Furthermore, we
believe that by a similar method as in [15] one can also prove uniqueness for the FPK-equation in the
Burgers case (see Example 3.3) without the trace class condition. Finally, we point out that here we
consider the Burgers case only on the bounded domain D = (0, 1) ⊂ R. If D = R existence, however,
also holds. This follows from the probabilistic results in [24].
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