GIBBS STATES OF AMORPHOUS MEDIA

ALEXEI DALETSKI, YURI KONDRATIEV, TANJA PASUREK, AND YURI KOZITSKY

ABSTRACT. We study a class of Gibbs measures of classical particle spin sys-
tems with unbounded pair interactions on a graph given by a random config-
uration of points distributed according to a random point process in R%. We
prove the existence conditions and study support of these measures. Moreover
we show their measurability with respect to the random parameter and derive
averaged moment estimates.

1. INTRODUCTION

The aim of this paper is to study a class of Gibbs random fields describing
equilibrium states of the following model of interacting particle system. A count-
able collection (configuration) « of point particles is chaotically distributed over a
Euclidean space X = R", with their positions realized by a given random point
process in X. Each of the particles possesses internal structure characterized by a
marks (or spin) o(z) € S, where S = R™ is another Euclidean space. The spin-spin
interaction is supposed to be pair-wise, with the intensity depending on the location
of particles. Such settings corresponds to the physical model called an amorphous
crystal, where the spins are displacements of the anharmonic oscillators from their
random equilibrium positions in X.

To describe possible configurations of spins attached to 7y, we consider the prod-
uct space S7 = Hl_@ Sy, Sy = S, so that any element of S7 has the form
o = (0(x))sey, o(x) € S. The space S7 is endowed with the product topology
and the associated Borel g-algebra B(S7). Our aim is to construct Gibbs mea-
sures v~ on (S7,B(S7)) (for almost all configurations ) which correspond to the
(heuristic) energy function

E(U) = Z Wz,y(a(x)vo(y)) +sz(0($)), (11)

{z,y}Cv €y

where Wy, : § xS — Rand V, : § — R are given interaction potentials satisfying
certain stability assumptions (for a rigorous definition see Section 3). The first sum
in (1.1) runs over all (unordered) pairs of distinct points z, y from v. Actually,
the expression (1.1) makes sense only for finite configurations v (having however
the probability zero). Taking a standard root in equilibrium statistical mechanics,
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Gibbs measures are defined via their conditional finite volume distributions (speci-
fications) and the Dobrushin-Lanford-Ruelle (DLR for short) equation, see Section
3. The fundamental question arising here is whether the set G(S7) of all Gibbs
measures associated with E is non-empty. The answer certainly depends on the
structure of the underlying configuration v and properties of the functions W and
V. To make the situation simpler, we assume that the pair interaction has finite
range, i.e.,

Wey=0if |z—y|>R (1.2)

for some fixed R > 0. In this case, a crucial characteristic of the configuration -y is
the behavior of the number n., g(z) of its elements y # « in the ball of radius R
centred at x.

Observe that the configuration v can be endowed with a natural graph structure
(V, &) by defining the set of vertices V : =y and the set of (unordered) edges

E={{zy}Cv:lz -yl <R} (1.3)

Then n., r(z) represents the degree the vertex « € +, that is, the number of its near-
est neighbors. In this setting, the energy function E describes an infinite system of
classical spins (o(x))ze coupled via the nearest neighbor interaction. There is an
extensive literature on such models in the situation of bounded degree graphs (that
is, when the function n. g is globally bounded), in particular, in the case where 7y
is a regular integer (or group) lattice (see, e.g., the seminal papers [21, 31]). In the
situation of unbounded degree graphs and unbounded spins, the question of exis-
tence of Gibbs measures was first studied in [13], where certain growth conditions
on the function n, z and stability conditions on the potentials V.., W, , were posed.
The next core extension, including the system of our interest, is to consider Gibbs
measures on random graphs. By now, even the initial question about existence of
such measures has been remaining open (except the case of a compact single spin
space S where the answer is always positive, see e.g. Proposition 5.3 in [28]). So far,
there exist only few publications on the mathematically rigorous theory of systems
living on amorphous substances, which are mostly dealing with systems of bounded
spins in the so-called annealed approach (see [10] and references therein).

In the present work, we consider a system of interacting anharmonic oscillators
on a random set vy represented by a typical element of the space I'(X) of locally
finite configurations in X, equipped with a probability measure p (e.g. a Poisson
or, more generally, Gibbs measure). More specifically, we suppose that the pair
potential W, ,, (not necessary attractive) is a bilinear form on S and the one-particle
potential V, has a super-quadratic growth. In general, the random variable n, r
appears to be unbounded and non-stationary for p-a.a. configurations . In Section
2, we study its behavior and derive certain bounds on its growth for a typical
v (under mild condition of boundedness of correlation functions of the measure
1). In Section 3, we prove that the set G(S7) is non-empty; its elements can be
interpreted as quenched states in the terminology commonly accepted in the theory
of disordered systems (see e.g. [4]). Moreover, we describe the support of the
corresponding Gibbs measures and prove uniform estimates of their exponential
moments. As is conventional for systems of unbounded spins, we have to confine
ourselves to a proper subset (latter on denoted by G, ,(S7)) of tempered Gibbs
measures with controlled growth. In Section 4 we comment on the results obtained
and outline their possible extensions.
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To prove the results mentioned above, we develop an analytic method based on
exponential moment bounds for local Gibbs specification and their weak depen-
dence on boundary condition. Such technique is suited well to work with spatially
irregular systems, for its implementations to particular models see [13, 14, 17]. In
view of specific properties of the graph (V, &) associated with a typical configura-
tion v € I'(X), such as the unboundedness of the degree function n, g(z), = € v,
and the lack of spatial transitivity of V = 7 as a subset of X, the two fundamental
approaches to the study of Gibbs random fields in statistical mechanics — Ruelle’s
(super-) stability technique [30, 31] and general Dobrushin’s existence and unique-
ness criteria [8] — are not directly applicable to our model. Moreover, the uniqueness
problem in the considered model remains open except for a special case of the con-
vex attractive interaction discussed in Section 2.4 of [6]. As was shown [6], for
ferromagnetic models with the interaction (1.1) there might exist multiple Gibbs
measures, which means that the map I'(X) 3 v — {v, € G(57)} is set-valued.

In Section 5 we prove that there exist measurable selections I'(X) 3 v +— v, €
G(S7). Such measurability is a key property if one speaks about averages with
respect to disorder, that is about expectations fr( x) ®(B, , F)pu(dy) for appropriate
functions ® : R — R and F': S — R. The measurable maps y — v., are then called
random Gibbs measures, see e.g. Section 6.2 in [4]. The novelty of our situation
is that the measures v, € G, ,(57) live (for different ) on different spaces, and it
is not clear in what sense this measurability can be understood. In this paper, we
will identify the spaces S7 that support measures v, with the fibres of a natural
bundle over I'(X) and extend v, to the total space X of this bundle by setting
vy (X\ S7) = 0. It turns out that the space X can be identified with the marked
configuration space I'( X, S). For the definitions and description of main structures
on marked configuration spaces we refer to [1], [5], [19] . In addition, necessary
information on topological structure of I'(X,S) is given in Appendix; the latter
material may be of independent interest in the theory of marked point processes and
its applications. The mentioned embedding in the extended space I'(X,S) enables
us to give a constructive procedure of obtaining measurable selections v +— v, by
means of Komlds’ theorem. This theorem is a renowned tool in the probability
theory providing a.s.-convergence of Cesaro means for integrable functions. On the
physical level we see here a certain analogy with the Newman—Stein approach which
uses space averaging to control the chaotic size dependence (see [25, 26]). Finally, we
obtain a-priori bounds on the quenched moments of the random Gibbs measures,
with the constants explicitly computable in terms of the model parameters.

2. ESTIMATES FOR A TYPICAL CONFIGURATION.

Let us consider the space I'(X) of locally finite configurations (subsets) of X,

that is,
I'X)={yCcX: N(ynA) < oo for any compact A C X},
where N (A) denotes cardinality of the set A. We equip I'(X) with the vague
topology, that is, the weakest topology that makes continuous all mappings
[(X)3vy = () =) fl2),
rEY

f € Co(X) ( =: the set of continuous functions on X with compact support). It
is known that this topology is completely metrizable, which makes I'(X) a Polish
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space (see. e.g. 15.7.7 in [11] or Proposition 3.17 in [29]). An explicit construction
of the appropriate metric can be found in [16]. By P(I'(X)) we denote the space
of all probability measures on the Borel o-algebra B(I'(X)) of I'(X).

Let us fix some g € P(I'(X)). A measurable symmetric (w.r.t. permutations of
its coordinate) function

0<kp: X"—>R, meN,

is called the m-th order correlation function of u if for any non-negative measurable
symmetric function f: X™ — R the following equality holds

/F(X) N S @ zm)uldy) (2.1)

From now on we assume that all correlation functions of p up to some order M € N
exist and are bounded, i.e.,

[[km|loo := €ss sup kpy(z1,...,0m) <00, 1<m< M. (2.2)
X’IYL

Remark 2.1. The condition (2.2) holds for a wide class of measures on I'(X). In
statistics of point processes, correlation functions k,, appear as densities (w.r.t.
dzy...dxy,) of the so-called m-th factorial moment measures for i (see e.g. Section
5.4 of [7]). According to (2.1), k. (21, ..., Ty )dxy ...dx,, can be interpreted as the
p(dry)-expectation for finding particles from v € I'(X) in each of the infinitesimal
volumes dz1 , ..., dz,, (see e.g. §4.1.1 in [30] and Section 3 in [22]). For a standard
Poisson point process p := m, with the activity parameter z > 0 and Lebesgue
intensity measure zdx, the correlation functions k., (x1, ..., Z,) are just constants
2™, m € N. If there exists ¢ > 0 such that ||k;,||cc < ¢ for all m € N, we say that
the correlations functions k,, are sub-Poissonian or satisfy Ruelle’s bound. Such
measures typically arise in classical statistical mechanics as Gibbs modifications of
the Poisson measure 7, by means of stable interactions, see [30, 31]. Note that any
probability measure p on T'(X) obeying the Ruelle bound is uniquely determined
by its correlation functions (k,)men and has all local moments finite, i.e.,

/ FIN wdy) < oo,  feCo(X), NeN.
(X)

General criteria allowing for reconstruction of the state p € P(I'(X)) from a given
system of correlation functions (k,)men are established in [1, 15, 22].

Recall that for each = € v, being considered as a vertex of the associated graph
(V, &) (cf. (1.3)), we have defined its degree as

nyr(@)=N{yev: y~a})€Zy :=NU{0}, (2.3)

where y ~ = means that {z,y} € &, ie, 0 < |y—2| < R. For a,r > 0 to be
specified below, we introduce the weights

wo(z) := e 2 e X,
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and consider the following functions on I'(X)

tar() = Y wal@)[nym(@)ny,rm )], (2.4)

{z,y}Cy
ly—z|<R

S wa (@) = (wa, ) (2.5)

xrey

ba (’Y)

One can prove that as,, and b, are B(I'(X))-measurable by using expansion of v
over its n-particle subsets (n € Z,) in finite volumes A C X.

Proposition 2.2. Let p satisfy condition (2.2) with some integer M > 2. Then
for any a >0 and 0 <7 < M/2 — 1, we have inclusions aq r, by € L*(T(X), ).

Proof. 1) Let us first check that b, € LY(I'(X),u). Applying (2.1) to the
function w, € L'(X) we obtain

ba d = We (T d
/F(X) (7) p(dv) /F(X)Z (z) pu(dv)

TEY
- /wa(x)kl(x)dxgﬂkl”oo/ el dy < 00, (2.6)
X X

2) Now we proceed to proving the inclusion a,, € L'(I'(X),u). Observe that,
because 1y g(x)ny r(y) is either 0 or > 1, we have aq . (y) < G, (y) whenever
r < r’. Thus it is sufficient to prove the inclusion a,, € L'(I'(X),u) just for
r=M/2-1.

Let us fix some z € . Clearly, for any y € v such that |z — y| < R we have

Ny, R (Y) < Ny 2r(T),
which yields
Y r@nm@®)) < 0y r(@) [0y, R(@)0,0R(@)]

yey\{z}
M-1

IN

Ny 2r(2) ! = ny o ()
Observe that

nyor(@) =N({y€v:0<|z—y|<2R}) = 1p,,(y—2),
yi"/
y#x

where By is the closed ball of radius 2R centred at 0 and 1p,,, is the corresponding
indicator function. Thus, we have the multinomial expansion

Z 1BQR(y - (,E)

yey\{z}

M-1
Z H 1B2R (yk - JL‘)

Ylyeens ym-1€7\{z} k=1

= ¢ > 1Bk —2) (2.7)

=1 A{yi,...y; e\ {z} k=1

M—-1

Ny 2r(x)M
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with the coefficients

(M —1)! _
¢ = Z SRR 1<j<M-1. (2.8)
1yeeyi EN J
i1t ij=M—1

Let us introduce notations g; := (yo, y1,...,y;) € ¥ and {g;} :== {vo,v1,...,y;} C
«v for the vector and configuration with components yo, y1,...,¥; € 7, respectively,
and consider functions

£3@5) = wa(o) [ | 1sn (yk — v0)
k=1

> Fils(@)

s€Sj41

and

where S; is the permutation group of order i. By construction fj is a symmetric
function that dominates f; and hence it satisfies Eq. (2.1), that is,

A 1 a _ _

/ > Fi@)uldy) = m/ Sk (95)dy;
T(X) (7. 7cH J s J X+t

Thus we have the following estimates

M—

Aar(7) < E :wa T)ny2r(T Cj (95)
TeEy

,_.

.
—
_—
$\
ﬂ
2

and
—1

M . R
/F(X) o, (V) 1(dy) < 3 (j%—jl)!/)ml Fi()kj+1(95)dy;.

Finally, because of the symmetricity of the correlation functions, we obtain the
estimate
M—-1

c; |S ] N
/ o, (V)p(dy) < (J |+J1rl| v W (Yo) H 15,5 Yk — Yo)kj+1(Y;)dy;
r'(Xx) = J Xi+1 -1
M-1 .
< e SO chol(BgR)j/ =17l dg < oo, (2.9)
j=1 X

where Vol(Bsg) is the volume of the ball Bor and ||k||s = 1<ma<XM||k:m||oo, and
the proof is complete. o |

Corollary 2.3. Under the conditions of Proposition 2.2 we have aq (%), ba(7y) <
oo for p-a.a. 7.

Remark 2.4. For the Poisson measure f := 7, on I'(X) there is an alternative way of
proving Proposition 2.2 based on the Mecke identity (see e.g. Proposition 13.1.VII
in [7]). The later states that for any measurable function F': X x I'(X) — R4

[ Srevm= [ [ oot

wE’Y
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By the translation invariance of . this immediately yields

/ bo(y) T (dy) = z/ el gy
r(X) X

and

2r+1
/F e < / o 2 @) b an () )

Tey
= / Iy 2R ()" m(czw/ e “ldz,
(X) X

which are finite for any «,r > 0. Similar reasonings work also for Gibbs measures
1 of Ruelle’s type by applying the Georgii-Nguyen-Zessin identity for them.

3. CONSTRUCTION OF GIBBS MEASURES

The aim of this section is to construct a class of quenched Gibbs measures on
the product space S7. Following the standard Dobrushin-Lanford-Ruelle approach
in statistical mechanics, see e.g. the monographs [9, 28], the Gibbs random fields
are described through a system of their local conditional distributions constituting
the so-called Gibbsian specification. In the practical realization of this approach
for our model, the main technical problem is to control the spatial irregularity of
the configuration v and unboundedness of the interaction. To illustrate the key
ideas, we focus our attention on the case of pair interactions having finite radius
and quadratic growth. Possible generalizations are discussed in Section 4.

In what follows, we will write |- | for the corresponding Euclidean norms in both
X and S. Let

J: X—->85®8

be a bounded continuous matrix-valued mapping with

supp J C Bp={z € X : |z| <R}. (3.1)
Set

|| := sup,ex ||J(95)HS®S
and assume that it is finite. For any z,y € X define a pair potential
Wyy:SxS—=R

by the formula

Wy y(u,v) =J(@ —y)u-v, u,ves,

where - denotes the Euclidean inner product in S. Let V : § — R be a continuous
function satisfying the super-quadratic growth estimate

V(u) > ay |ul* = by, ueS, (3.2)

for some constants ay,by > 0 and ¢ > 2. The latter condition is aimed to com-
pensate the destabilizing effects caused by the unbounded pair interactions W
by means of the strong enough growth of the one-particle potentials V. := V. Note
that the case ¢ = 2 cannot be covered by our scheme because of the absence of the
uniform bound on vertex degrees in the underlying graph (V, ).
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Let F(y) be the family of all finite subsets of v. For any n € F(y), o, =
(0(z))gen € S" and € = (&(y ))ye»y € S7 define the relative local interaction energy

Ey(og§) = Y Waylo + ) Waylo V) +>_ Valo( 3.3)

{z,y}Cn z€N z€n
yEY\n

The corresponding specification kernel II,)(do |£) € P(S7) is given by the formula

/f J(dole) = 2(6) ! /S Hoyx Egep [FEy(oy[€))doy  (3.4)

where f € L>°(S7) ( =: the set of bounded Borel function on S7) and

2= [ e (B0 o)) do,

is a normalizing factor. Observe that the integral in the right-hand side of (3.4)
is well-defined because of estimate (3.2). For each fixed £ € S7, II,(dol¢) is a
probability measure on S7 and, for each fixed B € B(S7), the map S7 5 ¢ —
IL,(B[¢§) € [0,1] is measurable. The family IL, := {IL;(do[)},c 7)) cesv cOD-
stitutes a Gibbsian specification (see e.g. [9, 28]) In particular, it satisfies the
consistency property

[ T (Bl (€)= 11, (Bl6). (55)

which holds for any B € B(S7), £ € S7 and n,,1n, € F(7) such that 1, C n,.

Let v be a probability measure on S7. We say that v is a quenched Gibbs
measure associated with the (heuristic) energy functional (1.1) if it satisfies the
DLR equation

v(B) = /S 11, (Bléw(de) (3.6)

for all B € B(S7) and € F(v). For a given v € T'(X), we denote by G(S7) the
set of all such measures.

Observe that S7 = 71 x S72 for any disjoint decomposition v = v, U 7y,y. If,
moreover, the distance between configurations v, and 7, is greater than R, we have
the following simple result.

Lemma 3.1. Let v = v, U7y, 71 Nvy =0, and infz ey, |21 — 22| > R. Consider
T2EYo

Gibbs measures vV € G(S71) and v?) € G(S72). Then
v=vW e cgs).

Proof. It follows directly from definition (3.4) that the specification II splits
into the product of the corresponding specifications II") and IIPon the spaces S71
and S72 respectively, that is,

I, (do|¢) = TI{) (doy [€,) @ TIP) (dos€,),

where 1, := 1N v, ok = (0(2))een,, &k = (§(y))y@,k € S, k=1,2. A direct
calculation shows that the measure v := vV @ v(?) satisfies the DLR equation (3.6)
if and only if (¢, TIM) and (v(?,T1(?) satisfy the corresponding DLR equations
on S7 and S72 respectively. |

Our next goal is to prove the existence of Gibbs measures supported on certain
spaces of tempered sequences from S7 for p-a.a. v € I'(X). Let us assume that
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the measure p satisfies condition (2.2) with an integer M (cf. Proposition 2.2) such

that
2q

M> s, (3.7)
where ¢ is the same as in (3.2). Fix a parameter
2M
, 3.
pE [ =3 q} (3.8)
Setting
p=20-2"", (3.9)

we then have
q_% <p <M/2-1.
Thus, according to Proposition 2.2, aq p,be € L' (I'(X),u) for any a > 0, and
therefore
ap (7), baly) < o0 (3.10)
for p-a.a. v € T'(X).
For o € S7 define the norm

1/p
lollq,p = (Z o ()" wa($)> (3.11)

S
and consider the Banach space

2(7,8) = {0 €8 o, < oo}

We will denote by G,.,(S7) C G(S7) the set of all Gibbs measures associated with
E, which are supported on 2 (7, .S). These measures are called tempered.

Theorem 3.2. Assume that conditions (3.7) and (3.8) are satisfied. Then the
following statements hold for p-a.a. v € T(X):

1) the set Go ,(S7) is not empty and weakly compact (in the topology inherited from
P(57));

2) for any X\ € Ry the exists a constant Z(X) > 0 such that every v € G, ,(S7)
satisfies the estimate

[ (Mol } vido) < e =0 612

The proof requires some technical preparations. We say that a configuration
v € T'(X) is connected if n, g(z) # 0 for any = € v. Obviously, for any v € I'(X)
there exists a unique (finite of countable) decomposition

v = U'yk, where v, are maximal (disjoint) connected components of . (3.13)
k

To prove the existence of v € G, ,(S7) a key issue is to check that the family of spec-
ification kernels (IL,(do|£)), c 7., with a fixed boundary condition & € I£(, S), is
tight (cf. Proposition 3.7 below). As all its accumulation points certainly will be
supported by [2(v,S) and solve the DLR equation, this immediately yields that
Gap(S7) # 0. To that end, in Proposition 3.3 we first establish the exponential
moment bound for II,(do|¢), which is uniform with respect to all finite configu-
rations 1 € F(vy). We fix a non-empty configuration v € T'(X) such that (3.10)
holds.
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Proposition 3.3. For any £ € (v,S) and A € Ry there exists a constant
O, (X, &) < oo (depending also on a,p > 0) such that

SUP; e 7 () /bw e’\”"”Z»PHn(da |€) <exp O,(), ). (3.14)

Proof. The proof is quite technical and we split it into 3 steps. First, we assume
that 7 is connected and prove estimate (3.14) for a one-point configuration n = {z}.
Then we extend it to a general n € F(y) using the consistency property of speci-
fication II, and finally, pass to a general (not necessarily connected) configuration
5.

Step 1. One-point estimate. Let us assume that v € I'(X) is connected (i.e.,
n+.r(y) > 1 for any y € v) and fix an o € y. For an arbitrary constant > > 0, any
y € v and u,v € S we have by Young’s inequality

Wy (w,0)] < 1 los ul o] < 52 (Jul” + [o]") + Cpyse™ (3.15)
where p’ = 2(p — 2)~! and

Cpri= (M=) T (3.16)

Let us fix 0,( € S7 and set u := o(x), » = ,B[n%R(x)n%R(y)]_l, where 3 €

(0,e*ftX/2) and A > 0 are arbitrary. Inequalities (3.2) and (3.15) imply the follow-
ing estimate

_ﬁzw CoB S [y m (@) n @) — V) (3.17)

Ny, R(T)Ny R(Y)

Yy~

=5 Way (u,C(y)) = V(w)

y~z

< 5y “'*'“y)') GBS [ (@) m (@) — av Jul? + by

Ny, m(T)1, R (Y

Y~z

IN

y~z Yy~

By the definition of II,(do |£) := Iz (do |€), cf. (3.3) and (3.4), we have

/mexw@wﬂz(dﬂ@ — Z.(6) / exp {Alulp S Wy (0, C(0)) — <u>}du,

Yy~

/exp{ ZW’yuC ()}du

Yy~

Elementary calculations based on (3.17) show that

ul? + P ' %
240 = [ew {6 D e P 5 (el - vw} du
)l —p' '
= ©€xp { B;M —CpuB y;v[n%R(I)n'y,R(y)] }

x /S exp {8 |ul’ — V(u)} du
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and

/SeXp {/\ [ul” =Y Wy (u, ((y) - V(U)} du

y~z

< exp {bV + 5 Z n%(),'l,R(y) + Cp,Jﬂ_p, Z [n%R(w)n%R(y)]p/}

Y~z Yy~x

x / exp {(A + B) [ul” — av [u]?) du.
S

This yields the following one-point estimate

Ao (z)|? (y)|p
e II(do|¢) < exp {Cr+28 E —_— (3.18)
S

n'y,R( )n’y,R(y)

y~z

—+2czhjﬁp’jij[nw,3<x>nqg3<yﬂp’},

y~z

where

Jsexp {A+8) [ul” — ay [u|*} du

= !
O = by Ao LBl — V(0)]} du

(3.19)

because of the condition ¢ > p. Since S > 0 can be taken arbitrary small, (3.19)
states a weak dependence of the one-point exponential moments on boundary con-
ditions.

Step 2. We still suppose that v € I'(X) is connected and extend the estimate
(3.18) to an arbitrary n € F(y). Let us fix a tempered boundary condition £ €
I%.(7,5) and define €.\ ,, := (§(y))ye\y- Integrating both sides of (3.18) with respect
to IT, (- |€) and taking into account the identity

memmmPMW)

that holds for every x € n (cf. (3.5)), we get

/ A|cr :c)|p (ClO' ‘5) (320)

S

< exp S C\+28 yXN; m + QCp,Jﬁfp/ yZN; [n%R(Z‘)n%R(y)]p/ X
yEY\n

P
me’wgwmmmommm

Yyen
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The integral in the right-hand side can be estimated with the aid of the multiple
Holder inequality

/Sexp 2/32717()' I, (d¢ |€)

2@ n )
ye’l
= [T e ey i )
v
P w0
A P1TI (d Y ' .
< [[{/S exp N CW)I] n(<£)}
yen

Introducing the notation

My (n;€) == log { /S ] M@, (d¢ |£>} (3.21)

we obtain
0 < Mo <Crr2s Y — O (3.22)
Yy~x n’YvR(x)n'%R(y)
yEY\n
+2C ,Jﬁip ; [n%R(x)nA, R\Y + yzw /\n—() A,y(77§ £).
Yy~ o
We will estimate the Weighted sum
||M>\ 77, Z M)\ T 777 wa )

xren
Formula (3.22) implies that

MmOl < Cx D wal®) +2C, 087" Y wal(@) Y [ny,r(@)ny r(y)]

’

TEN TeEn y~zx
&)
128 wale) Y — P
zen ny’Y\U n'y,R(x)n'y,R(y)
My (1 &)
+28 wa() Y —’y :
=l 55;1 Ay ()N, r(Y)

Recall that the functions a, s and b, are defined by formulae (2.4) and (2.5). Then

/ P
IMA(E) . < Orba(y) +2Cp 187 a0y (1) + 28> walz) > [€(y)]

Ny, k()14 R(Y)

xen yyer;y;n
My (1;6)
2 N #. 3.23
+26) wa () ) Ny ()1 R (4) (3.23)
TEN gsg

The triangle inequality |y| < |z| + |y — | implies that

wo () = ezl < galy—zlg—alyl — ealyﬂlwa(y) < eaRwa(y)
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provided |y — x| < R. Changing the order of summation in the last two terms of
(3.23), we obtain

IMA(: )]s < Cobal(y) +2Cp 187t (7)
o o) €@ 1
reetag 37 VRS

)|
yeY\n "R ne.1 (%)

zen N
]

+eaR% Z o (y) My (15 §) Z 1
A

ny.r(Y) Lo nyr(@)
x~y

yen

Taking into account that Z < ny gr(y) for any y € v, we see that the

1
wen ) p(a) =
T~y

following inequality holds

IMA: )|, < Caba(7) +2Cp 087" ay (7) (3.24)
£ 283 way) @) + e Y waly) My (:€)
yeY\n yEeN

IN

Cba () + 2Cp,Jﬂ7p,aa’p/ (v) + e*B2p8 Hgv\nH:p
e 2 0 )
which yields

IMA(m; )], < (1—e*P2pA~) ™ (3.25)

, P
X [C’,\ba(v) +2Cy 877 an,py (v) + 2 Hg’v\ﬁ a p:| <

Observe that 1 — e*®28A~" > 0 because of the condition 8 € (0,e*F\/2).
To finish the proof we use Holder’s inequality and obtain the estimate

e (Mol ol = e Aygnmy)ma(y) (3.26)
ox oz Py Awa () /8 o
[, L tew Bl e e

IN

e (Aol + 5 13501}

where ¢ := Ab, (7). By virtue of (3.25) applied to || M;(n;€)||,, we conclude that for
any n € F(v) and 8 € (0,e*Ab,(7)/2) the following estimate holds

/S exp {)\ ||U||Z7p} IL,(do |€) < exp O (N, &,n) < o0,

where

0, (n&m) =Z,(0) + 0,0 €1, (3:27)

p
o,p
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with
Cs\by 2C, 187" N
50 = = wizi(ﬂp—"fea%a -, (3.28)
2
Uy(A) = - (3.29)

Aba(7) — 2R3’
and Cj is defined by (3.19). It is clear now that estimate (3.14) holds with
0,(X,§) == sup O,(\&n) =E,(A) + T, (N €5, - (3.30)
neF(v)

Step 3. For a general (disconnected) configuration ~, consider its decomposi-
tion (3.13). The result follows from Steps 1, 2 applied to all connected components
of v and Lemma 3.1. ]

Remark 3.4. The application of Jensen’s inequality to the right-hand side of formula
(3.21) shows that [, |o()|" IL,(do ) < £ M2 (n; ) for any 2 € ~, which together
with (3.25) implies in turn the bound

1
| el ) < S In@mel,

A

< AMO=BM e ey G
with
Crba 2C, 7877 au
B0y = & (v)ﬂ;;;ﬁw Gap (7)’ (3.32)
aR2
ch) = %, (3.33)

which holds for any A > 0, 3 € (0,e*f*\/2) and p’ = 2(p—2)~!. Here the constants
Cp.7, Cy are defined by formulae (3.16), (3.19) respectively. For further applications
(see the proof of Proposition 5.5 below) it is important that B+ () depends linearly
on b () and aa,p (), which by Proposition 2.2 are integrable with respect to the
underlying measure p on T'(X).

Remark 3.5. Observe that A, (), §) and ©,(), &) depend on the parameters § and
A. We do not discuss the question of their optimal choice here.

The constants in the right-hand sides of (3.14) and (3.31) depend on the bound-
ary condition £. However, we can get rid of this dependence in the “thermody-
namic” limit by choosing a particular sequence of configurations 7 exhausting -.
We have the following statement.

Proposition 3.6. For any A € R and the constant =,(\) = E4(\, a,p) < o0
defined by formula (3.28) we have the estimate

n—oo

limsup/ eAHGHZ’PH,,n(dJ\{) < exp Z,(N), (3.34)
s

n—oo

timsup [ ol T, (dole) < exp B, (M),
Yy

which holds for all boundary conditions & € IE(~,S) and any increasing sequence
(M) pen C F () that exhausts v, that is, U, cyMn = 7-
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Proof. Observe that lim,, . H{

= 0 for each & € [2(v,S5). Thus, the

Nia ],

second term in the right-hand side of (3.27)pand (3.31) vanishes as n — oo and the

claim follows. ]
Recall that C},(S7) stands for the set of bounded continuous functions f : S7 —

R, whereas S7 is endowed with the Polish topology of coordinate convergence. The

weak topology on the set P(S7) of Borel probability measures on S7 is defined as

the coarsest topology making each of the following mappings continuous

P(S) 3 p p(f) = /S fdu, feC(S7).

Proposition 3.7. For any & € I8(v,S), the family {11, (do [£)}
relatively weakly compact.

neF(y) C P(S7) is

Proof. By Prokhorov’s criterion (see e.g. Theorem 5.1 in [3] or 15.4.4 in [11])
the claim is equivalent to showing that for any & € 2 (v, .S) the family of measures
{IL,(do \5)}7]6]_.@) is tight. Let B,(r) be the ball of radius r in £ (v, S), centered

at 0. It is a compact subset of S7 and denote by (B,(r))¢ its complement. By
Chebyshev’s inequality and (3.31) we have that

c 1 p A’Y ()‘7 f)
LB, ) )< 75 [ ol T, () < 220
for any r > 0. Given £ > 0 we can set
b\ 1/p
— {‘A’Y( 75)} , (3.35)
€
and obtain the estimate
sup 1L,[(B,(r))°[¢] <, (3.36)
neF(v)
which implies the tightness in question, and the result follows. |

Proof of Theorem 3.2. Proposition 3.7 says that for any & € [2(y,S) one
finds an exhausting sequence n = (n,,),cy C F(v) such that (I, (-|§))nen is
weakly converging to a certain probability measure 1/§7 on S7. To check that 1/%
satisfies the DLR equation (3.6), we will use the Feller property of the specification
I, := {H7l(d0|€)}7]6}'('y),§€57' The later means that, for any n € F(v) and f €
C(S57), the function II,, f defined by

ST 3= 10, f(§) = . f(o)y(do [§) (3.37)

belongs to Cy(S7) as well. The proof of this property is quite standard and crucially
exploits the continuity of the local interaction energy E, (o, |£) subject to boundary
conditions £ € S7. For more details we refer to the proof of Lemma 2.10 in [18].

Note that a measure v € P(S7) solves (3.6) if and only if for all n € F(vy) and
fe Cb(SV)

/ 11, f(o)v(do) = / Fo)w(da). (3.38)
S S

For any n € F(v) one finds n, € N such that n C n,, for all n > n,. For such n, by
the consistency property (3.5) we have

[ s, (i) = [ s, o)
S S
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Due to the inclusion IT,, f € C},(S7), we can pass to the limit n — oo and thus prove
(3.38) for v := 1/%.

Next, we will show that 1/§7 obeys the exponential moment estimate (3.12) for
any A > 0, which immediately implies that this measure is supported on 2 (v, S).
Note that the function

§7 30 F(0) = exp {/\ ||a||§7p} €R, U{+o0} (3.39)

is lower semi-continuous (i.e, its lower level sets {0 € S7 |F (o) < ¢} are closed for

all c € Ry ). By (3.34) and the weak convergence II,, (-|£) — v, n — oo, we have

n—oo

/m Mellarpé (do) < liminf /S Mol (do|¢) < exp Z,(N), (3.40)

which implies that 1§ € Go ,(S57).

Let us prove that the a-priori estimate (3.12) holds for every v € G, ,(S7), with
the constant =, (\) being the same as in (3.34). Let us consider a family of cut-off
functions

Fy(0) := min {F(0); N} = min {eAHUHZ,p ; N} , NeN.
Then there is a bound

/S (o)L (dol§) < N

for all n € F(v) and £ € S7. By Fatou’s lemma and estimate (3.34) we have

lim sup /S 7 [ /S (o), (dolf)} v(de)

n—00

[ Jimsw [ Fviom,, @olo)| vias)

n—oo

/m [hﬂsogp /S 6)\|U|ﬁ,pnnn(d0€):| ()
< [ o =00 wlde) = exp 2,00

(because = () is independent of £). It follows from the DLR equation (3.6) that

/ Fr (0TI, (doé)v(de) = / Fn(o)v(do), neN,
Sy JSY

S

IN

IN

which implies that

Frn(o)v(do) <exp 24(A), N eN.
S~
As v is supported on 12 (v, S) and Fy (o) / F(o) as N — oo for each o € I2(7,5),
we can apply B. Levi’s monotone convergence theorem yielding that

exp {)\||U||p } v(do) = lim Fy(o)v(do) < exp Z,(N).
s o N=00Jiz(1,9)

A similar reasoning can be used to prove the compactness of G, ,(S7). Indeed,
the uniform moment bound (3.12) implies that the set G, ,(S7) is tight and thus
(by Prokhorov’s theorem) relatively compact, whereas by the Feller property all its
accumulation points solve the DLR equation and hence are Gibbs measures. ]
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Remark 3.8. We have proved that G, ,(S7) is nonempty at least for all v € I'(X),
for which both b, () and aq , () are finite. Using inequality (3.31) and applying
the arguments similar to those used in the proof of estimate (3.12), we can verify
that for any v € G, ,(S7) the following moment estimate holds:

Orba(y) + 265087 aay (1)
p — > P

[ Vel vtdo) < B, = o e -
Here the constants C,, ;, Cy are defined by formulae (3.16), (3.19) respectively,
p’ = 2(p—2)71, and the infimum is taken over all A > 0, 3 € (0,e*%)\/2). Note

(cf. Proposition 3.4) that B, depends linearly on b, (7v) and aqp (), which are
integrable with respect to the underlying measure p on I'(X).

(3.41)

4. SOME REMARKS AND EXTENSIONS

1. Condition (3.7) establishes certain relation between the growth rate ¢ of
the self-interaction potential V' and the number of bounded correlation functions
km, 1 <m < M, of u. In the case where p has bounded correlation functions of
arbitrary order, condition (3.7) holds for any ¢ > 2 and thus p can be any number
from the interval (2, g]. In turn, higher values of ¢ guarantee the existence of Gibbs
measures with the smaller support set [£(v,S) (that corresponds to higher values
of p). However, by our method we cannot control the case of ¢ = 2, even when
the particles x € « are distributed according to the homogeneous Poisson random
field p := 7, on I'(X). In particular, the existence problem is still open for the
important class of ferromagnetic harmonic systems on S” that are described by the
energy functional (3.3) with J(z —y) <0 and V(u) = ay [u*, ay > 0.

2. The above assumptions on the potentials W and V can be weaken in the
following way. First observe that the results of the previous section are in fact
based only on estimate (3.15) and condition (3.1). Therefore Theorem 3.2 holds
for any continuous Wy, : S x S — R satisfying the at most polynomial growth
estimate

Wy (u,0)] < C(Jul” + [v]") + Ca,  w,v €S, (4.1)
and the finite range condition W, , = 0 if |z —y| < R, for all z,y € X and some
constants C1, Cy, R > 0. Furthermore, we can consider the one-particle potentials
V. varying with z, provided all of them satisfy the same lower bound 3.2.

Second, we can drop the assumption of the continuity of the potentials V, :
S — Rand Wy, : S xS — R. Note that in this case the specification will be
no longer Feller. Consequently, the topology of weak convergence could not help
us to construct Gibbs measures v € G, ,(S7) as accumulation points of the family
{IL,(do ‘5)}7767:(7) with a fixed £ € I2(~,S). Instead, we can use the topology of
set-wise convergence on the algebra By(S7) = Uy cr(y)Bo(S") of local subsets of S7.
A key observation is that the moment bound (3.14) implies the local equicontinuity
of the family {IL,(do [{)},c 7, (cf. Definition 4.6 in [9]) and hence its relative
compactness in the last-named topology. This again ensures the existence of ac-
cumulation points 1§ € P(S7), each of them ought to be Gibbs due to the finite
range condition (1.2) imposed on the interaction. For systems of unbounded spins
on general graphs, a similar approach was realized in [13].

3. As already mentioned in the Introduction, in this paper we do not touch
the question of uniqueness of v € G(S7). This is a highly non-trivial problem and
general conditions that guarantee that N(G(S7)) = 1 due to the small interaction
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strength ||J||coc < 1 are not known. On the other hand, in [6] we studied a class
of models with ferromagnetic pair interaction living on Poisson random graphs
and showed the existence multiple Gibbs states, that is, that N(G(S7)) > 1 (and
therefore = 00) for a.a. v € I'(X).

5. MEASURABLE DEPENDENCE ON 1.

We have shown that the set G, ,(S7) is not empty for p-a.a. v € I'(X). In the
proof of Theorem 3.2, a measure ng = Véym € Gap(S7) has been constructed for
each tempered & € T'(X) as a limit of certain sequence of “finite volume” measures
I, (dol§), n € N. The sequence n = (1,,),,c5y C F(7) however depends on the
“randomness” « in some uncontrollable way (the so-called chaotic size dependence,
see the discussion in [25, 26]). This does not answer the question whether there
exist measurable selections I'(X) 3 v — v, € G4 ,(S7). In fact, it is known that for
general models with random interaction the dependence of such limiting measures
on the random parameter can fail to be measurable. An additional difficulty in our
case is that the measures v, € G, ,(S7) live (for different ) on different spaces,
and it is not clear in what sense this measurability can be understood.

In this paper, we will identify the spaces S” that support measures v, € G, ,(S7)
with the fibres of a natural bundle over I'(X') and extend v., to the total space X
of this bundle by setting v.,(X\ S7) = 0. It turns out that X can be identified with
the marked configuration space T'(X,S) (defined by expression (5.2) below). For
basic definitions and description of main structures on marked configuration spaces
we refer to e.g. [1], [5], [19] and Appendix, where we give necessary information on
the topological structure of I'( X, .S). We fix a topology on I'(X, S) (defined below,
see (5.4)), which makes I'(X,S) a Polish space (see [5] for the explicit construc-
tion of the corresponding metric). In what follows, it will be equipped with the
corresponding Borel o-algebra B(I'(X, S)).

Let P(I'(X,S)) stand for the Polish space of all Borel probability measures on
I'(X,S), which is equipped with the topology of weak convergence. By this defin-
ition, the measurability of the map I'(X) 3 v — v, € P(I'(X, 5)) is equivalent to
the measurability of I'(X) 2 v — (f,v,) = fF(X’S) f(M)v~(dn) for each bounded
continuous function f : I'(X,S) — R, which in turn is equivalent to the measura-
bility of I'(X) 3 v — v (A) for each A € B(I'(X, S)).

The main result of this section is the following

Theorem 5.1. There ezists a B(I'(X))/B(P(I'(X, S)))-measurable mapping
INX)>vy~v, e P(I(X,S9)) (5.1)
such that vy € Gy p(S7) for p-a.a. v € T'(X).

The proof will go along the following lines. First, using the moment bound (5.10)
and Prokhorov’s theorem, we will construct an auxiliary measure # on I'(X, S) and
define its conditional distribution (i.e., disintegration) (vy), cpy) € P(S7) with
respect to p, so that the measurability required in (5.1) holds. Then, with the help
of Komlés’ theorem we will prove the inclusion v, € G4 ,(S7).

In order to proceed, we need to introduce the necessary framework. Let us
consider the product space X x S. The canonical projection px : X x § — X can
be naturally extended to the corresponding configuration space I'(X x S). Observe
that the image px (%), ¥ € I'(X x 5), is a configuration in X that in general



GIBBS STATES OF AMORPHOUS MEDIA 19

admits accumulation and multiple points. The marked configuration space I'(X, S)
is defined in the following way

D(X,S) = {§ € D(X x §) : px(3) € T(X)}. (5.2)
We will also use the larger space
(X, 8) = {& e (X x S): px(3) € f(X)} : (5.3)

where I'(X) and I'(X x S) are the spaces of configurations of points with (finite)
multiplicities in X and X x S, respectively. Observe that I'(X) and I'(X x S) can
be equipped with the vague topology defined similarly to the vague topology on
I'(X) and T'(X x S) (see e.g. Section 2.4 in [12]).

The spaces I'(X, S) and I'(X, S) will be endowed with a (completely metrizable)
topology which is defined as the weakest topology that makes the map

[(X,5) 39— (f,9) (5.4)
continuous for any f € Ch(X x S) with supp f C Sp := A x S, where A is a
compact subset of X. This topology has been used in e.g. [1], [5] and [19]; for
a short account of its properties see Appendix. We equip I'(X,S) and f(X, S)
with the corresponding Borel o-algebras. Note that T'(X, S) is a dense Borel set in
I'(X,S).

Both spaces I'(X, ) and I'(X, S) have the structure of a fibre bundle over I'(X)
and I'(X) respectively, with fibres px* (7), which can be identified with the product
spaces

ST =] Sa S:=6.
TeEY
Thus each 4 € T'(X, S) can be represented by the pair

¥ = (v, 04), where vy =px(y) € I'(X), 04 = (02)zey € 5”.
It follows directly from the definition of the corresponding topologies that the map
px  T'(X,S5) — I'(X) (resp. I'(X,S5) — TI'(X)) is continuous. Thus for any
configuration +y the spaces S7 are Borel subsets of I'(X, S) (resp. I'(X, 5)).
Let us fix u € Cy(X — 5) with ||u||e 1= sup,cx |u(x)| < 0o and define the map
(X)) 37 =¢, = (u(®))sey €57 (5.5)
(in particular, one may take u = const). Obviously, we have the inclusion §, €
I2(v,S) for all v € I'(X) and any a,p > 0.

Proposition 5.2. Let £ be given by formula (5.5). Then the map
[(X)2>y—=%=(7¢) € (X,S9)
18 Continuous.

Proof. According to the definition of the topology on I'(X,S), the claim is
equivalent to the continuity of the map

D)oy = FO) = (£, ¥=¢&),

for any f € Cyp(X x S) with supp f € Sy := A x S, where A is a compact subset of
X. Tt is clear that F(v) = (g,7), where g(z) = f(z,u(x)), so that g € Cy(X) and
the assertion follows from the definition of the topology on I'(X). |
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Let B.(X) denote the collection of all convex compact subsets of X. Let us fix a
set A € B.(X) and define y5 := AN+, v € I'(X). Obviously v, € F(v). Consider
the measure Di(dﬁ/) on I'(X, S) defined by the formula

PR (d4) =1L, (doy [, )u(d), v = px(3), (5.6)
or, equivalently,
[ P@s@n = [ ereu@
I'(X,S) r(X)
for any F' € Cp(I'(X, 5)), where

Br(7) = [P0 T (o €. (5.7
The measure f/iA is well-defined because of the next result that is also of its own
interest, stating the following “almost Feller” property for the specification kernels
I, (do |£7)' As will be clear from the proof below, the reason why this prop-
erty only holds “almost” everywhere is that the projection map v — 7y, is vague
continuous at some v € I'(X) iff v has no points on the bondary of A.

Proposition 5.3. Let A € B.(X) (in particular, A can be a closed ball or cube).
Then there exists a set M = M(A) C T(X) such that u(M) = 1 and the function
Op : T'(X) — R defined by the formula (5.7) is continuous at any v € M, for all
F e C(I'(X,9)).

Proof. For a fixed A € B.(X) consider its R-neighborhood Af := U,ca Br(z),
where Br(x) is the closed ball of radius R centered at . Obviously, A is convex
and bounded. Denote by A and OA® the topological bondary or the sets A and
AR respectively, then A and A both have zero Lebesgue mass (see e.g. [20]).
Define

M=M(A) ={yeT(X): yn (0AUIAR) =0} € B(I'(X)).

It follows from the boundedness of the first correlation function of the measure p

that u(M) = 1.

Fix v € M. Then
(DF(A/) = Z_l / F(77U"/A X f"/Ac) X

S7a
exp | — Z J(x—y)ozoy — ZJm—zanﬁz ®6U(”’”
{z,y}Cya zeeA?A P
ZEYac

where

Z:/exp — Z J(x—y)ozoy — Zja:fzaxﬁ ®6U(U‘

Sya {$7y}C7A .LEE’;YA TEY A
ZEYac

The condition v N OA = () implies that there exists a closed set A’ C AN A such
that

N(ABNA) C A/
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and
yNOA" = 0.
Let
S SR WA SRR )

Then, in the particle representation we have

7 = Z(at(l),...,x(N); f(m+1),..,§(N))
= / exp [fE(:c(l),...,x(N); 5(7'L+1),..,§(N))} e VR doy
R k=1

Bp(y) = Z’l/F({x(l),...,x(N)}UyAc, (01,...,am)><(f(m+1),...,§(N))xg(fy\AR)>

S7a

m
X exp {—E(m(l), V), D) ...,f(N))] ®67U(U’€)d0k
k=1
with €D = g(zm+D), L e@™) . ¢(2(M) and
E(zM, e, gmtl) @)y,
m ) m N _ ‘
= Y Ja® —2D)oro; -3 N J@® — ),
k,j=1 k=1j=m+1
[

The required result follows now from the continuity of F, J and £ and Proposition
6.2. |
Next we will show that for any £ of the form (5.5) the family of measures

{DEA, A€ B.(X )} is tight. To this end we need some technical preparations. Let
us introduce a Lyapunov-type function F : I'(X, S) — R, given by the expression

F(’?) = ba(’Y) + ||0"Y||Z7pu '3/ = (’Vaa'y)-
Lemma 5.4. For any R > 0 the set
Mg :={y: F(y) <R} (5.8)
is relatively compact in f(X, S).

Proof. Let K = {7y € I'(X) : bs(y) < oo}. A direct application of Lemma 6.4
in Appendix shows that the set K is relatively compact in f(X ). By Proposition
6.7, the corresponding set K (S)g defined by (6.5) is relatively compact in I'(X, ).
Observe now that Mr C K(S)g, and the result follows. [ |

Proposition 5.5. For any & of the form (5.5) the family of measures Di, A e

B.(X), is relatively weakly compact in P(T'(X,S))
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Proof. It follows from the definition (5.6) of the measure DA (d¥|£), inequality
(2.6) and moment estimates (3.31)—(3.33) that

/ F(3)oa(d I€) (5.9)
I'(X,S)

N+l 2| T (dory [&, ndy)

—1 p
dy) + (A — e“R2g) " ol ng
r(X) ap

p(dv)

IA
+ \\

(A — enRog)” /F N (€35 (1) + 205,157 a0, ()] ().
Note that by (5.5)

Jo lea
rx) 178 gy

and hence by Proposition 2.2

swp [ F@naife) < o (5.10)
AeB.(X) JT(x,8)

u(dy) < |JullZ, /F o Belrac ),

The application of Chebyshev’s inequality (similar to the proof of Proposition 3.7)
shows that for any € > 0 there exists R > 0 such that

lA/A(MR |€) Z 1—c¢
uniformly for all A € B.(X). By Lemma 5.4 My is relatively compact in f’(X, S),

which implies that the family of measures {f/i, Ae BC(X)} P(I(X, S)) is tight.
Then Prokhorov’s theorem yields the result. |

Corollary 5.6. The family of measures {Dg,A € BC(X)} contains a sequence
ﬁin, n € N, which converges weakly to a probability measure 5 on f(X7 S). With-
out loss of generality we will assume that the sequence of sets A, is increasing.

Observe that the function F':= Fopx, where F € Cy(I'(X)), is continuous. The
limit transition as n — oo in the formula

[ PO @ = [ re ([ ) s = [ PG

shows that
/,, F(3)94(d4) = / Fy)u(dy).
f'(x,s) (x)

)

or equivalently
p=pxb*.
The application of Theorem 8.1 of [27] to the measurable map
px : T(X,8) = I'(X)

yields that there exists the corresponding regular conditional probability distribu-
tion V?Y, v € I'(X), that is, a family of probability measures I/EY on I'(X,S) such



GIBBS STATES OF AMORPHOUS MEDIA 23

that for any measurable set A C T'(X, S) we have

and the map
['(X) 3~ 5(4) (5.11)
is measurable. Moreover, V%(f‘(X, SN\»x (7)) = 0 for pra.a. v e I'(X).
Thus 14 generates (for p-a.a. v € I'(X)) a probability measure on px(y) = S7
(for which we preserve the notation z/?Y) such that the map

HX) iy n F(y,04)V5(do)

is measurable for any F' € Cp(T'(X, S)) and

/NX’S)F(%%)“(CW) = /f<X> < . F(%%)”ﬁ(ﬂ%)) p(dy).

Recall that p is concentrated on I'(X), so that we can replace the spaces I'(X, S),
I'(X) by I'(X,S), T'(X) respectively and obtain the equality

g 05 V)= g l/E oz .
/F(X,S) Fln )2 (d) /F(X)( - F(v,04)v5(d 7)> p(dy) (5.12)
for any F' € Cy(T'(X, S)).

Proposition 5.7. For p-a.a. v € T'(X) and any & of the form (5.5) we have the
inclusion

Ve € Gup(S7).

Proof. Let us first note that the weak convergence of the measures ﬁEAn, n e
N, to 7% does not in general imply convergence of their conditional distributions
IL,, (doy |£v) to V%(do,y) for p-a.a. . However, we can make use of Komlds’
theorem (see e.g. [2]) and prove convergence (for p-a.a. v € I'(X)) of the Cesaro
means Z;‘Vﬂ IL, (doy ‘57) for some subsequence v; := v5, , j € N, which will

- J
allow us show that ¢ satisfies the DLR equation.

Let us fix an indexation i = {i,, v € I'x} in I'x, where i,: v — N is a bijection
for each v € I'x. The indexation i defines a natural bijection

Ix13(y,2) = (1,iy(x)) € T'x xN, (5.13)
where
Ix1:={(y,z) elx x X: z €~}
Moreover, the indexation i can be constructed so that bijection (5.13) is measurable
(see e.g. Lemma 2.3 in [11] or 1.1.4 in [12]). It generates a natural homeomorphism
Z,: 87— SN, yely.
Observe that the space of P(S") of probability measures on the Polish space S™ is

completely metrizable, and there exists a sequence of functions f,,, € Cy(SY), m €
N, which form a separating class for P(S"). Define functions

fmr = fm oL, € Cy(S?), meN.
It is clear that the family {f,, - }men is separating for P(S7) (u-a.s. in 7).
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Consider a family of functions
(m) / fm,—y H'YAn (dO’ |£’Y)’ n € N.

The measurability of the indexation i implies that g, /) € L'(T'x,p). Applying
Komlés’ theorem (similarly to the proof Theorem 3.6 in [14]) and taking into ac-
count formula (5.12), one can show that there exists a subsequence {n;},  such

that
N

1 (m) ; ¢
N z:lgAnj ('Y) - o fm(77 O')V'y(da)a N — 00,
j=

for any m € N and p-a.a. v € I'x. This implies the weak convergence of measures

N
1
N ZHW(- ’67) — V%, N — o0, v, = VA, (5.14)

on S7, for p-a.a. v € I'x.
Now we are in a position to prove that the measure uff satisfies the DLR equation

vi(do) = [ T, (de. €A (). weF). (5.15)

for p-a.a. v € I'x. Indeed, for a fixed v and n € F(7), the relation (5.14) implies
the convergence

/S< IRACLY dM)&ZNJHw(dﬂfV) (5.16)

- < . f(U)Hn(da,§)> VE(dE), N — oo,

where f € Cp(S7). Choose jo € N such that n C v, :=vN A, . Then we have

njO

o ([ o) ol

= 1l o (do IL, (d
w [ ([ somee) 1 S )

Nee Jj=Jo
1 N
= Jm [ JO)F ) (o ]g)
J=Jo
= flo)s(do),

where we used the the consistency property (3.5) of specification II and relation
(5.14). Thus (5.15) holds.

By the arguments similar the proof of Theorem 3.2 one can show that the measure
V¢ satisfies estimate (3.12) and is therefore supported on [2(vy, S). This completes

5
the proof. |

Proof of Theorem 5.1. The result follows directly from formula (5.11) and
Proposition 5.7. ]
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Remark 5.8. Let v, € Gy ,(S7), v € I'(X), be a family of Gibbs measures satisfying

the measurability condition (5.1). For p-a.a. v € I'(X) the measure v, obeys the
moment estimate (3.41). Integrating both sides of this inequality we obtain

p _ _aR -1
S el o < (=g o [ vuuan
+ 26,87 [ aay () u(d).
I'(X)

Estimates (2.6) and (2.9) imply now that

/ / loll, (o) < (h—eRag) ™ [ emelas

M-1
X Callk1lloo +2Cp 1877 ||kllse Y ¢;Vol(Bar)’ |,
j=1
where Vol(Bag) is the volume of the ball Bag, ||k||s = 1<ma<XM|\k:m||oo and the

constants ¢; are given by formula (2.8).

6. APPENDIX: SOME FACTS ON TOPOLOGICAL STRUCTURE OF I'(X,S).

In this Appendix, we discuss topological properties of the marked configuration
spaces ['(X, S) and T'(X, S) defined by expressions (5.2) and (5.3) respectively. Al-
though most of these properties naturally extend those known for the configuration
spaces I'(X) and I'(X), we could not find any adequate presentation in the litera-
ture. Here we work out the necessary topological issues, especially characterization
of convergence and compactness criteria, which also may be of independent interest
in the theory of marked point processes and its applications. As compared to the
spaces I'(X) and T'(X), now we have not only to control the concentration of points
z in bounded domains, but also to exclude the possibility that their marks s, go to
infinity. We suppose that the configuration spaces I'(X x S), I'(X) and I'(X) are
equipped with the corresponding vague topology.

1. Topology. There are two natural topologies on I'(X, S) and I'(X, S).
(i) Our "main" topology has been defined in Section 5. This is the weakest
topology that makes the map

I'(X,5) 29— (f,7) (6.1)

continuous for any f € Cp(X x .S) with supp f € Sp := A x S, where A is a compact
subset of X. The space (I'(X, S), ) is Polish (see Section 2 in [5]). In the rest of
this paper, we will call it the T-topology.

(ii) We will also use the topology induced from I'(X x S). This is the weakest
topology that makes the map (6.1) continuous for any f € Cp(X x S). We will call
it the w-topology. Observe that T'(X,S) is not a closed subset of I'(X x S). The
w-topology. is weaker than the T-topology. Observe that the map px : T'(X,S) —
I['(X) is not w-continuous.

2. Convergence. The following statement is known (see e.g. Proposition 3.13
in [29]):
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Lemma 6.1. A sequence {7,,, n € N} CI'(X) (resp. ['(X)) converges toy € I'(x)
(resp. T(X)) iff for any compact A C X such that y N OA = () , the number of
elements of v,, N A stabilizes and ~v,, N A — v N A pointwise.

Let 4,,, n € N, be a sequence of elements of I'(X, S) and 4 € I'(X, 5).

Proposition 6.2. The following statements are equivalent:
1) 4y = s
2) for any compact A C X such that px () NOA = 0 , the number of elements of
Y N SA stabilizes and 4, NSy — 4 N Sp pointwise;.
3) 4n =4 and px (7,,) — px (%) in T(X).

Proof. 1) <= 2) Similar to the proof of Lemma 6.1.

2) = 3) Direct calculation.

3) = 2) Fix a compact A C X such that px (%) N 9A = (). The convergence
Y = 0x (¥,) — px(¥) =: v implies that 3 ny > 0 such that ¥ n > ng we have

N(y,NA)=N(yNnA) (6.2)

and
(vn NA) = (YN A), n— oo,
pointwise. Observe that for any & € I'(X,S) we have
N (£n8a) = N(px(§) N A) = N (€0 (A x B))
for a compact B C S. Equality (6.2) implies that
N (5, NSA)=N((ENS)) and N (5, N(Ax B)) =N (N (A x B))

for a compact B C S. This together with the convergence 4,, 2 4 implies that
Y N SA — 4N Sy pointwise. [ |

Remark 6.3. It is easy to see that Proposition 6.2 holds for a sequence 4,, € f(X7 S)
converging to 4 € I'(X, S), with I'(X) instead of I'(X) in part 3).

3. Compactness. The following criterion of compactness of a set K in I'(X)
and I'(X) is well-known. Consider the following two conditions: (i) VA € By(X),
sup,e g N(74) < 0o and (ii) VA € By(X), infyexming,, z,3cy, [£1 — 22| > 0.

Lemma 6.4. (see e.g. Propositions 3.2.5 and 3.2.6 in [12] or [16]). The set K is

relatively compact in T(X) (resp. in T(X)) if and only if (i) (resp. (i) and (ii))
hold.

Let now K be a relatively compact subset of I'(X), and consider the correspond-
ing subset K (S) := py' (K) of the marked configuration space I'(X, S):
K(9) ={yeI'(X,5) :px(§) € K}. (6.3)
Lemma 6.5. K(S) is relatively compact in T'(X x S).
Proof.A The proof can be obtained by a direct application Lemma 6.4. Fix a
compact A C X x S. It is sufficient to show that SUPs¢ e (s) YV (&A) < 00. Observe

that A := px(lAX) is a compact subset of X. The relative compactness of K C F(X)
implies that sup,cx N (7,) < 00. Moreover, we have N () < N (§g,) = N (74),
and the assertion follows. |
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Remark 6.6. Tt can be shown by similar arguments that K(S) is relatively compact
in I'(X x S) provided K is relatively compact in I'(X).

Let us introduce the spaces

LY, 8), = {(1.0,) €T(X,9) ¢ |losl,, <7} (6.4)
and
(X, 8), = {(.04) € F(X,9) ¢ llosl,, <7}
Set
K(S), :=K(S)NT'(X,S),, (6.5)
where the set K(5) is defined by (6.3). We have the following statement.

Proposition 6.7. 1) Topologies T and w coincide on T'(X, S),

2)T(X, S), is a closed subset of T(X,S) and I'(X x S).

3) T(X,S), c T'(X,S),, where T'(X, S), is the closure of I'(X, S), in T(X,S) (or,
equivalently, in T(X x §)).

4) K(S), is a compact subset of I'(X,9).

Proof. 1) Tt is sufficient to prove that the map

DX, 8)r 29— (f,9)

is w-continuous for any f € Cy(X x S) with supp f € Sp := A x S, where A is a
compact subset of X. For this, fix an arbitrary function x € Cy(S) such that x(c) =
1if o € By, (the ball in S of radius rg centered at 0), where rg > r max,cawq (),
and define g := xf. Then (i) (f,4) = (g,4) for 4 € I'(X, S),., and (ii) g € Co(X x S)
so that the map 4 — 2 (g, %) is w-continuous, and the result follows.

2) Let 4,,, n =1,2,..., be a sequence of elements of f(X7 S), that converges to
4 € I'(X x S). Fix a compact A C X such that px(v,) NdA = @ for all n and
consider the compact A = A x B,, in X x.S. Then %ma[\ = () for all n. Proposition

6.1 applied to the configuration space f(X x S) shows that N (&n N ]X) stabilizes

and 4,, N A — 4N A pointwise. Observe that ¥, N A= 4, N Sa, which implies that
the number of elements of the sequence ¥, N Sp stabilizes. Thus, by claim 2) of
Proposition 6.2, 4,, — % and N (px (%) N A) < oo, so that 4 € I'(X, S). The bound
loyll,, = (2,9 <1, 4 = (v,04), where ®(z,0) = lo|? e=l#l can be proved
by the limit transition along any monotonically increasing sequence of functions
®,, € Cy(X x S) that approximates ®.

3) The claim follows directly from 2).

4) We have K(5), = K(S)NT'(X,S),, which is w-compact by Lemma 6.5. On
the other hand, K(S),  T(X, S), C I'(X,S), so that w and T topologies on K(S),
coincide, and the result follows. |

ACKNOWLEDGMENTS

Financial support by the DFG through SFB 701 “Spektrale Strukturen und
Topologische Methoden in der Mathematik”, IRTG 1132 “Stochastics and Real
World Models” and the German-Polish research project 436 POL 125/0-1, and by
the ZiF Research Group "Stochastic Dynamics: Mathematical Theory and Appli-
cations" (University Bielefeld) is gratefully acknowledged.



28

ALEXEI DALETSKI, YURI KONDRATIEV, TANJA PASUREK, AND YURI KOZITSKY

REFERENCES

S. Albeverio, Yu. Kondratiev, E. Lytvynov, G. Us, Analysis and geometry on marked con-
figuration spaces. Infinite dimensional harmonic analysis (Kyoto, 1999), 1-39, Grébner, Al-
tendorf, 2000.

E. J. Balder, Infinite-dimensional extensions of a theorem of Komlés, Prob. Th. Rel. Fields
81 (1989) 185-188.

P. Billingsley, Convergence of Probability Measures. 2d edition, New York, NY: John Wiley
& Sons, 1999.

A. Bovier, Statistical Mechanics of Disordered Systems. A Mathematical Perspective. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cam-
bridge, 2006.

F. Conrad, M. Grothaus, N/V-limit for Langevin dynamics in continuum, Reviews in Math.
Physics 23 (2011).

A. Daletskii, Yu. Kondratiev, Yu. Kozitsky, T. Pasurek, Phase Transitions in a quenched
amorphous ferromagnet, Preprint 12142, SFB 701, Universitdt Bielefeld (2012).

D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes Volume I:
Elementary Theory and Methods, 2nd edition (Springer, New York, 2003).

R. L. Dobrushin, Prescribing a system of random variables by conditional distributions,
Theory Probab. Appl. 15 (1970), 101-118.

H.-O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics
Vol. 9. Berlin: de Gruyter 1988.

H.-O. Georgii, O. Higgstrom, C. Maes, The random geometry of equilibrium phases. In: C.
Domb and J.L. Lebowitz (eds.) Phase Transitions and Critical Phenomena Vol. 18, Academic
Press, London 2000, pp. 1-142.

O. Kallenberg, Random Measures, 3rd edition, Berlin, Akademie-Verlag, 1983.

J. Kerstan, K. Matthes, J. Mecke, Infinitely Divisible Point Processes, Wiley & Sons, 1978.
Yu. Kondratiev, Yu. Kozitsky, T. Pasurek, Gibbs random fields with unbounded spins on
unbounded degree graphs, J. Appl. Probab. 47 (2010), 856-875.

Yu. Kondratiev, Yu. Kozitsky, T. Pasurek, Gibbs measures of disordered lattice systems with
unbounded spins, Markov Processes Relat. Fields 18 (2012), 553-582.

Yu. G. Kondratiev, T. Kuna, Harmonic analysis on configuration space I. General theory,
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), 201-233.

Yu. Kondratiev, O. Kutovyi, On the metrical properties of the configuration space, Math.
Nachr. 279, No. 7, 774-783 (2006).

Yu. Kondratiev, T. Pasurek, M. Réckner, Gibbs measures of continuous systems: an analytic
approach, Reviews in Math. Physics 10 (2012),

Yu. Kozitsky, T. Pasurek, Euclidean Gibbs measures of interacting quantum anharmonic
oscillators, J. Stat. Phys. 127 (2007), 985-1047.

T. Kuna, Studies in Configuration Space Analysis and Applications, Ph.D. dissertation,
Rheinische Friedrich-Wilhelms-Universitdt Bonn, 1999, in: Bonner Math. Schrift. 324, Uni-
versitdt Bonn, Math. Inst., Bonn, 1999, 187 pp.

R. Lang, A note on measurability of convex sets, Arch. Math. 47 (1986), 90-92.

J. L. Lebowitz, E. Presutti, Statistical mechanics of systems of unbounded spins, Commun.
Math. Phys. 50 (1976), 195-218.

A. Lenard, Correlation functions and the uniqueness of the state in classical statistical me-
chanics. Commun. Math. Phys. 30 (1973), 35-44.

A. Lenard, States of classical statistical mechanical systems of infinitely many particles. I.
Arch. Rational Mech. Anal. 59 (1975), 219-239.

A. Lenard, States of classical statistical mechanical systems of infinitely many particles. II.
Characterization of correlation measures. Arch. Rational Mech. Anal. 59 (1975) 241-256.
C. M. Newman, Topics in disordered systems. Lectures in Mathematics ETH Ziirich,
Birkhiser Verlag, Basel, 1997.

C. M. Newman, D. L. Stein, Thermodynamic chaos and the structure of the short-range spin
glasses. In Mathematical aspects of spin glasses and neural networks, eds. A. Bovier and P.
Picco, 243-287, Progr. Probab.,41, Birkhéser Boston, Boston MA, 1998.

K.R. Parthasarathy, Probability Measures on Metric Spaces, Probab. Math. Statist., Acad-
emic Press, New York, 1967.



GIBBS STATES OF AMORPHOUS MEDIA 29

(28] Ch. Preston, Random Fields, Lect. Notes Math. 534 (Springer, Berlin, 1976).

[29] S. Resnick, Eztreme Values, Regular Variation, and Point Processes, Applied Probability,
Springer, New York, 1987.

[30] D. Ruelle, Statistical Mechanics. Rigorous Results (Benjamins, New York, 1969).

[31] D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys.
18 (1970), 127-159.

A. DALETSKII, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF YORK,, YORK YO1 5DD, UK
E-mail address: alex.daletskii@york.ac.uk

Yu. KONDRATIEV AND T. PASUREK, FAKULTAT FUR MATHEMATIK, UNIVERSITAT BIELEFELD,,
D-33501 BIELEFELD, GERMANY
E-mail address: kondrat@math.uni-bielefeld.de, tpasurek@math.uni-bielefeld.de

Yu. KozITsKy, INSTYTUT MATEMATYKI, UNIWERSYTET MARII CURIE-SKLODOWSKIEJ, 20-031
LUBLIN, POLAND
E-mail address: jkozi@hektor.umcs.lublin.pl



