
GIBBS STATES OF AMORPHOUS MEDIA

ALEXEI DALETSKI, YURI KONDRATIEV, TANJA PASUREK, AND YURI KOZITSKY

Abstract. We study a class of Gibbs measures of classical particle spin sys-
tems with unbounded pair interactions on a graph given by a random con�g-
uration of points distributed according to a random point process in Rd. We
prove the existence conditions and study support of these measures. Moreover
we show their measurability with respect to the random parameter and derive
averaged moment estimates.

1. Introduction

The aim of this paper is to study a class of Gibbs random �elds describing
equilibrium states of the following model of interacting particle system. A count-
able collection (con�guration) 
 of point particles is chaotically distributed over a
Euclidean space X = Rn; with their positions realized by a given random point
process in X. Each of the particles possesses internal structure characterized by a
marks (or spin) �(x) 2 S, where S = Rm is another Euclidean space. The spin-spin
interaction is supposed to be pair-wise, with the intensity depending on the location
of particles. Such settings corresponds to the physical model called an amorphous
crystal, where the spins are displacements of the anharmonic oscillators from their
random equilibrium positions in X.
To describe possible con�gurations of spins attached to 
, we consider the prod-

uct space S
 :=
Q
x2
 Sx, Sx = S; so that any element of S
 has the form

� = (�(x))x2
 ; �(x) 2 S. The space S
 is endowed with the product topology
and the associated Borel �-algebra B(S
). Our aim is to construct Gibbs mea-
sures �
 on (S
 ;B(S
)) (for almost all con�gurations 
) which correspond to the
(heuristic) energy function

E(�) :=
X

fx;yg�


Wx;y(�(x); �(y)) +
X
x2


Vx(�(x)); (1.1)

where Wx;y : S � S ! R and Vx : S ! R are given interaction potentials satisfying
certain stability assumptions (for a rigorous de�nition see Section 3). The �rst sum
in (1.1) runs over all (unordered) pairs of distinct points x, y from 
. Actually,
the expression (1.1) makes sense only for �nite con�gurations 
 (having however
the probability zero). Taking a standard root in equilibrium statistical mechanics,
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Gibbs measures are de�ned via their conditional �nite volume distributions (speci-
�cations) and the Dobrushin-Lanford-Ruelle (DLR for short) equation, see Section
3. The fundamental question arising here is whether the set G(S
) of all Gibbs
measures associated with E is non-empty. The answer certainly depends on the
structure of the underlying con�guration 
 and properties of the functions W and
V . To make the situation simpler, we assume that the pair interaction has �nite
range, i.e.,

Wx;y � 0 if jx� yj > R (1.2)

for some �xed R > 0. In this case, a crucial characteristic of the con�guration 
 is
the behavior of the number n
;R(x) of its elements y 6= x in the ball of radius R
centred at x.
Observe that the con�guration 
 can be endowed with a natural graph structure

(V; E) by de�ning the set of vertices V : =
 and the set of (unordered) edges

E := ffx; yg � 
 : jx� yj � Rg : (1.3)

Then n
;R(x) represents the degree the vertex x 2 
, that is, the number of its near-
est neighbors. In this setting, the energy function E describes an in�nite system of
classical spins (�(x))x2
 coupled via the nearest neighbor interaction. There is an
extensive literature on such models in the situation of bounded degree graphs (that
is, when the function n
;R is globally bounded), in particular, in the case where 

is a regular integer (or group) lattice (see, e.g., the seminal papers [21, 31]). In the
situation of unbounded degree graphs and unbounded spins, the question of exis-
tence of Gibbs measures was �rst studied in [13], where certain growth conditions
on the function n
;R and stability conditions on the potentials Vx,Wx;y were posed.
The next core extension, including the system of our interest, is to consider Gibbs
measures on random graphs. By now, even the initial question about existence of
such measures has been remaining open (except the case of a compact single spin
space S where the answer is always positive, see e.g. Proposition 5.3 in [28]). So far,
there exist only few publications on the mathematically rigorous theory of systems
living on amorphous substances, which are mostly dealing with systems of bounded
spins in the so-called annealed approach (see [10] and references therein).
In the present work, we consider a system of interacting anharmonic oscillators

on a random set 
 represented by a typical element of the space �(X) of locally
�nite con�gurations in X, equipped with a probability measure � (e.g. a Poisson
or, more generally, Gibbs measure). More speci�cally, we suppose that the pair
potentialWx;y (not necessary attractive) is a bilinear form on S and the one-particle
potential Vx has a super-quadratic growth. In general, the random variable n
;R
appears to be unbounded and non-stationary for �-a.a. con�gurations 
. In Section
2, we study its behavior and derive certain bounds on its growth for a typical

 (under mild condition of boundedness of correlation functions of the measure
�). In Section 3, we prove that the set G(S
) is non-empty; its elements can be
interpreted as quenched states in the terminology commonly accepted in the theory
of disordered systems (see e.g. [4]). Moreover, we describe the support of the
corresponding Gibbs measures and prove uniform estimates of their exponential
moments. As is conventional for systems of unbounded spins, we have to con�ne
ourselves to a proper subset (latter on denoted by G�;p(S
)) of tempered Gibbs
measures with controlled growth. In Section 4 we comment on the results obtained
and outline their possible extensions.
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To prove the results mentioned above, we develop an analytic method based on
exponential moment bounds for local Gibbs speci�cation and their weak depen-
dence on boundary condition. Such technique is suited well to work with spatially
irregular systems, for its implementations to particular models see [13, 14, 17]. In
view of speci�c properties of the graph (V; E) associated with a typical con�gura-
tion 
 2 �(X), such as the unboundedness of the degree function n
;R(x); x 2 
;
and the lack of spatial transitivity of V = 
 as a subset of X; the two fundamental
approaches to the study of Gibbs random �elds in statistical mechanics �Ruelle�s
(super-) stability technique [30, 31] and general Dobrushin�s existence and unique-
ness criteria [8] �are not directly applicable to our model. Moreover, the uniqueness
problem in the considered model remains open except for a special case of the con-
vex attractive interaction discussed in Section 2.4 of [6]. As was shown [6], for
ferromagnetic models with the interaction (1.1) there might exist multiple Gibbs
measures, which means that the map �(X) 3 
 ! f�
 2 G(S
)g is set-valued.
In Section 5 we prove that there exist measurable selections �(X) 3 
 7! �
 2

G(S
). Such measurability is a key property if one speaks about averages with
respect to disorder, that is about expectations

R
�(X)

�(E�
F )�(d
) for appropriate
functions � : R! R and F : S
 ! R. The measurable maps 
 7! �
 are then called
random Gibbs measures, see e.g. Section 6.2 in [4]. The novelty of our situation
is that the measures �
 2 G�;p(S
) live (for di¤erent 
) on di¤erent spaces, and it
is not clear in what sense this measurability can be understood. In this paper, we
will identify the spaces S
 that support measures �
 with the �bres of a natural
bundle over �(X) and extend �
 to the total space X of this bundle by setting
�
(X n S
) = 0. It turns out that the space X can be identi�ed with the marked
con�guration space �(X;S). For the de�nitions and description of main structures
on marked con�guration spaces we refer to [1], [5], [19] . In addition, necessary
information on topological structure of �(X;S) is given in Appendix; the latter
material may be of independent interest in the theory of marked point processes and
its applications. The mentioned embedding in the extended space �(X;S) enables
us to give a constructive procedure of obtaining measurable selections 
 7! �
 by
means of Komlós� theorem. This theorem is a renowned tool in the probability
theory providing a.s.-convergence of Cesàro means for integrable functions. On the
physical level we see here a certain analogy with the Newman�Stein approach which
uses space averaging to control the chaotic size dependence (see [25, 26]). Finally, we
obtain à-priori bounds on the quenched moments of the random Gibbs measures,
with the constants explicitly computable in terms of the model parameters.

2. Estimates for a typical configuration.

Let us consider the space �(X) of locally �nite con�gurations (subsets) of X,
that is,

�(X) := f
 � X : N (
 \ �) <1 for any compact � � Xg ;
where N (A) denotes cardinality of the set A. We equip �(X) with the vague
topology, that is, the weakest topology that makes continuous all mappings

�(X) 3 
 7! hf; 
i :=
X
x2


f(x);

f 2 C0(X) ( =: the set of continuous functions on X with compact support). It
is known that this topology is completely metrizable, which makes �(X) a Polish
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space (see. e.g. 15.7.7 in [11] or Proposition 3.17 in [29]). An explicit construction
of the appropriate metric can be found in [16]. By P(�(X)) we denote the space
of all probability measures on the Borel �-algebra B(�(X)) of �(X).
Let us �x some � 2 P(�(X)). A measurable symmetric (w.r.t. permutations of

its coordinate) function

0 � km : Xm ! R; m 2 N;

is called the m-th order correlation function of � if for any non-negative measurable
symmetric function f : Xm ! R the following equality holdsZ

�(X)

X
fx1;:::;xmg�


f(x1; :::; xm)�(d
) (2.1)

=
1

m!

Z
Xm

f(x1; :::; xm)km(x1; :::; xm)dx1:::dxm:

From now on we assume that all correlation functions of � up to some orderM 2 N
exist and are bounded, i.e.,

jjkmjj1 := ess sup
Xm

km(x1; :::; xm) <1; 1 � m �M: (2.2)

Remark 2.1. The condition (2.2) holds for a wide class of measures on �(X). In
statistics of point processes, correlation functions km appear as densities (w.r.t.
dx1:::dxm) of the so-called m-th factorial moment measures for � (see e.g. Section
5.4 of [7]). According to (2.1), km(x1; :::; xm)dx1 :::dxm can be interpreted as the
�(d
)-expectation for �nding particles from 
 2 �(X) in each of the in�nitesimal
volumes dx1 ; :::; dxm (see e.g. §4.1.1 in [30] and Section 3 in [22]). For a standard
Poisson point process � := �z with the activity parameter z > 0 and Lebesgue
intensity measure zdx, the correlation functions km(x1; :::; xm) are just constants
zm; m 2 N. If there exists � > 0 such that jjkmjj1 � �m for all m 2 N, we say that
the correlations functions km are sub-Poissonian or satisfy Ruelle�s bound. Such
measures typically arise in classical statistical mechanics as Gibbs modi�cations of
the Poisson measure �z by means of stable interactions, see [30, 31]. Note that any
probability measure � on �(X) obeying the Ruelle bound is uniquely determined
by its correlation functions (km)m2N and has all local moments �nite, i.e.,Z

�(X)

jhf; 
ijN �(d
) <1; f 2 C0(X); N 2 N:

General criteria allowing for reconstruction of the state � 2 P(�(X)) from a given
system of correlation functions (km)m2N are established in [1, 15, 22].

Recall that for each x 2 
, being considered as a vertex of the associated graph
(V; E) (cf. (1.3)), we have de�ned its degree as

n
;R(x) := N (fy 2 
 : y � xg) 2 Z+ := N [ f0g; (2.3)

where y � x means that fx; yg 2 E , i.e., 0 < jy � xj � R. For �; r > 0 to be
speci�ed below, we introduce the weights

w�(x) := e
��jxj; x 2 X;
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and consider the following functions on �(X)

a�;r(
) =
X

fx;yg�

jy�xj�R

w�(x) [n
;R(x)n
;R(y)]
r
; (2.4)

b�(
) =
X
x2


w�(x) = hw�; 
i : (2.5)

One can prove that a�;r and b� are B(�(X))-measurable by using expansion of 

over its n-particle subsets (n 2 Z+) in �nite volumes � � X:

Proposition 2.2. Let � satisfy condition (2.2) with some integer M � 2. Then
for any � > 0 and 0 � r �M=2� 1, we have inclusions a�;r, b� 2 L1(�(X); �).

Proof. 1) Let us �rst check that b� 2 L1(�(X); �). Applying (2.1) to the
function w� 2 L1(X) we obtainZ

�(X)

b�(
) �(d
) =

Z
�(X)

X
x2


w�(x) �(d
)

=

Z
X

w�(x)k1(x)dx � jjk1jj1
Z
X

e��jxjdx <1: (2.6)

2) Now we proceed to proving the inclusion a�;r 2 L1(�(X); �). Observe that,
because n
;R(x)n
;R(y) is either 0 or � 1, we have a�;r(
) � a�;r0(
) whenever
r � r0. Thus it is su¢ cient to prove the inclusion a�;r 2 L1(�(X); �) just for
r =M=2� 1 .
Let us �x some x 2 
. Clearly, for any y 2 
 such that jx� yj � R we have

n
;R(y) � n
;2R(x);

which yieldsX
y2
nfxg

[n
;R(x)n
;R(y)]
r � n
;R(x) [n
;R(x)n
;2R(x)]

r

� n
;2R(x)
2r+1 = n
;2R(x)

M�1:

Observe that

n
;2R(x) = N (fy 2 
 : 0 < jx� yj � 2Rg) =
X
y2

y 6=x

1B2R
(y � x);

where B2R is the closed ball of radius 2R centred at 0 and 1B2R
is the corresponding

indicator function. Thus, we have the multinomial expansion

n
;2R(x)
M�1 =

0@ X
y2
nfxg

1B2R
(y � x)

1AM�1

=
X

y1;:::;yM�12
nfxg

M�1Y
k=1

1B2R
(yk � x)

=

M�1X
j=1

cj
X

fy1;:::;yjg2
nfxg

jY
k=1

1B2R
(yk � x) (2.7)
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with the coe¢ cients

cj :=
X

i1;:::;ij2N
i1+:::+ij=M�1

(M � 1)!
i1!:::ij !

; 1 � j �M � 1: (2.8)

Let us introduce notations �yj := (y0; y1; :::; yj) 2 
j+1 and f�yjg := fy0; y1; :::; yjg �

 for the vector and con�guration with components y0; y1; :::; yj 2 
, respectively,
and consider functions

fj(�yj) = w�(y0)

jY
k=1

1B2R
(yk � y0)

and
f̂j(�yj) =

X
s2Sj+1

fj(s(�yj));

where Si is the permutation group of order i. By construction f̂j is a symmetric
function that dominates fj and hence it satis�es Eq. (2.1), that is,Z

�(X)

X
f�yjg�


f̂j(�yj)�(d
) =
1

(j + 1)!

Z
Xj+1

f̂j(�yj)kj+1(�yj)d�yj :

Thus we have the following estimates

a�;r(
) �
X
x2


w�(x)n
;2R(x)
M�1 =

M�1X
j=1

cj
X

f�yjg�


f̂j(�yj)

and Z
�(X)

a�;r(
)�(d
) �
M�1X
j=1

cj
(j + 1)!

Z
Xj+1

f̂j(�yj)kj+1(�yj)d�yj :

Finally, because of the symmetricity of the correlation functions, we obtain the
estimateZ
�(X)

a�;r(
)�(d
) �
M�1X
j=1

cj jSj+1j
(j + 1)!

Z
Xj+1

w�(y0)

jY
k=1

1B2R
(yk � y0)kj+1(�yj)d�yj

� jjkjj1
M�1X
j=1

cjVol(B2R)
j

Z
X

e��jxjdx <1; (2.9)

where Vol(B2R) is the volume of the ball B2R and jjkjj1 := max
1�m�M

jjkmjj1, and
the proof is complete. �

Corollary 2.3. Under the conditions of Proposition 2.2 we have a�;r(
); b�(
) <
1 for �-a.a. 
.

Remark 2.4. For the Poisson measure � := �z on �(X) there is an alternative way of
proving Proposition 2.2 based on the Mecke identity (see e.g. Proposition 13.1.VII
in [7]). The later states that for any measurable function F : X � �(X)! R+Z

�(X)

X
x2


F (x; 
)�z(d
) =

Z
�(X)

Z
X

F (x; 
 [ fxg)zdx�z(d
):
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By the translation invariance of �z this immediately yieldsZ
�(X)

b�(
) �z(d
) = z

Z
X

e��jxjdx

and Z
�(X)

a�;r(
)�z(d
) �
Z
�(X)

X
x2


w�(x) [n
;2R(x)]
2r+1

�z(d
)

= z

Z
�(X)

[n
;2R(0)]
2r+1

�z(d
)

Z
X

e��jxjdx;

which are �nite for any �; r > 0: Similar reasonings work also for Gibbs measures
� of Ruelle�s type by applying the Georgii-Nguyen-Zessin identity for them.

3. Construction of Gibbs measures

The aim of this section is to construct a class of quenched Gibbs measures on
the product space S
 . Following the standard Dobrushin-Lanford-Ruelle approach
in statistical mechanics, see e.g. the monographs [9, 28], the Gibbs random �elds
are described through a system of their local conditional distributions constituting
the so-called Gibbsian speci�cation. In the practical realization of this approach
for our model, the main technical problem is to control the spatial irregularity of
the con�guration 
 and unboundedness of the interaction. To illustrate the key
ideas, we focus our attention on the case of pair interactions having �nite radius
and quadratic growth. Possible generalizations are discussed in Section 4.
In what follows, we will write j � j for the corresponding Euclidean norms in both

X and S. Let

J : X ! S 
 S
be a bounded continuous matrix-valued mapping with

supp J � BR = fx 2 X : jxj � Rg : (3.1)

Set

jjJ jj1 := supx2X kJ(x)kS
S
and assume that it is �nite. For any x; y 2 X de�ne a pair potential

Wx;y : S � S ! R

by the formula

Wx;y(u; v) = J(x� y)u � v; u; v 2 S;
where � denotes the Euclidean inner product in S. Let V : S ! R be a continuous
function satisfying the super-quadratic growth estimate

V (u) � aV jujq � bV ; u 2 S; (3.2)

for some constants aV ; bV > 0 and q > 2. The latter condition is aimed to com-
pensate the destabilizing e¤ects caused by the unbounded pair interactions Wx;y

by means of the strong enough growth of the one-particle potentials Vx := V: Note
that the case q = 2 cannot be covered by our scheme because of the absence of the
uniform bound on vertex degrees in the underlying graph (V; E).
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Let F(
) be the family of all �nite subsets of 
. For any � 2 F(
); �� =
(�(x))x2� 2 S� and � = (�(y))y2
 2 S
 de�ne the relative local interaction energy

E�(�� j� ) =
X

fx;yg��

Wx;y(�(x); �(y))+
X
x2�
y2
n�

Wx;y(�(x); �(y))+
X
x2�

Vx(�(x)): (3.3)

The corresponding speci�cation kernel ��(d� j� ) 2 P(S
) is given by the formulaZ
S

f(�)��(d�j�) = Z(�)�1

Z
S�
f(�� � �
n�)exp [�E�(�� j� )] d��; (3.4)

where f 2 L1(S
) ( =: the set of bounded Borel function on S
) and

Z(�) =

Z
S�
exp [�E�(�� j� )] d��

is a normalizing factor. Observe that the integral in the right-hand side of (3.4)
is well-de�ned because of estimate (3.2). For each �xed � 2 S
 , ��(d�j�) is a
probability measure on S
 and, for each �xed B 2 B(S
), the map S
 3 � !
��(Bj�) 2 [0; 1] is measurable. The family �
 := f��(d�j�)g�2F(
);�2S
 con-
stitutes a Gibbsian speci�cation (see e.g. [9, 28]). In particular, it satis�es the
consistency property Z

S

��1(B j� )��2(d� j� ) = ��2(B j� ); (3.5)

which holds for any B 2 B(S
), � 2 S
 and �1; �2 2 F(
) such that �1 � �2.
Let � be a probability measure on S
 . We say that � is a quenched Gibbs

measure associated with the (heuristic) energy functional (1.1) if it satis�es the
DLR equation

�(B) =

Z
S

��(Bj�)�(d�) (3.6)

for all B 2 B(S
) and � 2 F(
). For a given 
 2 �(X), we denote by G(S
) the
set of all such measures.
Observe that S
 = S
1 � S
2 for any disjoint decomposition 
 = 
1 t 
2. If,

moreover, the distance between con�gurations 
1 and 
2 is greater than R, we have
the following simple result.

Lemma 3.1. Let 
 = 
1 [ 
2, 
1 \ 
2 = ;, and infx12
1
x22
2

jx1 � x2j > R. Consider

Gibbs measures �(1) 2 G(S
1) and �(2) 2 G(S
2). Then
� := �(1) 
 �(2) 2 G(S
):

Proof. It follows directly from de�nition (3.4) that the speci�cation � splits
into the product of the corresponding speci�cations �(1) and �(2)on the spaces S
1
and S
2 respectively, that is,

��(d�j�) = �(1)�1 (d�1j�1)
�
(2)
�2
(d�2j�2);

where �k := � \ 
k, �k := (�(x))x2�k ; �k := (�(y))y2�k 2 S
k , k = 1; 2. A direct
calculation shows that the measure � := �(1)
�(2) satis�es the DLR equation (3.6)
if and only if (�(1);�(1)) and (�(2);�(2)) satisfy the corresponding DLR equations
on S
1 and S
2 respectively. �
Our next goal is to prove the existence of Gibbs measures supported on certain

spaces of tempered sequences from S
 for �-a.a. 
 2 �(X). Let us assume that
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the measure � satis�es condition (2.2) with an integerM (cf. Proposition 2.2) such
that

M >
2q

q � 2 > 2; (3.7)

where q is the same as in (3.2). Fix a parameter

p 2
�
2M

M � 2 ; q
�
: (3.8)

Setting
p0 := 2 (p� 2)�1 ; (3.9)

we then have
2

q � 2 < p
0 �M=2� 1:

Thus, according to Proposition 2.2, a�;p0 ; b� 2 L1(�(X); �) for any � > 0, and
therefore

a�;p0(
); b�(
) <1 (3.10)
for �-a.a. 
 2 �(X).
For � 2 S
 de�ne the norm

k�k�;p :=
 X
x2


j�(x)jp w�(x)
!1=p

(3.11)

and consider the Banach space

lp�(
; S) :=
n
� 2 S
 : k�k�;p <1

o
:

We will denote by G�;p(S
) � G(S
) the set of all Gibbs measures associated with
E, which are supported on lp�(
; S). These measures are called tempered.

Theorem 3.2. Assume that conditions (3.7) and (3.8) are satis�ed. Then the
following statements hold for �-a.a. 
 2 �(X):
1) the set G�;p(S
) is not empty and weakly compact (in the topology inherited from
P(S
));
2) for any � 2 R+ the exists a constant �
(�) > 0 such that every � 2 G�;p(S
)
satis�es the estimateZ

S

exp

n
� k�kp�;p

o
�(d�) � exp �
(�): (3.12)

The proof requires some technical preparations. We say that a con�guration

 2 �(X) is connected if n
;R(x) 6= 0 for any x 2 
. Obviously, for any 
 2 �(X)
there exists a unique (�nite of countable) decomposition


 =
[
k


k; where 
k are maximal (disjoint) connected components of 
. (3.13)

To prove the existence of � 2 G�;p(S
) a key issue is to check that the family of spec-
i�cation kernels (��(d�j�))�2F(
), with a �xed boundary condition � 2 lp�(
; S), is
tight (cf. Proposition 3.7 below). As all its accumulation points certainly will be
supported by lp�(
; S) and solve the DLR equation, this immediately yields that
G�;p(S
) 6= ;. To that end, in Proposition 3.3 we �rst establish the exponential
moment bound for ��(d�j�), which is uniform with respect to all �nite con�gu-
rations � 2 F(
): We �x a non-empty con�guration 
 2 �(X) such that (3.10)
holds.
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Proposition 3.3. For any � 2 lp�(
; S) and � 2 R+ there exists a constant
�
(�; �) <1 (depending also on �; p > 0) such that

sup�2F(
)

Z
S

e�k�k

p
�;p��(d� j� ) � exp �
(�; �): (3.14)

Proof. The proof is quite technical and we split it into 3 steps. First, we assume
that 
 is connected and prove estimate (3.14) for a one-point con�guration � = fxg.
Then we extend it to a general � 2 F(
) using the consistency property of speci-
�cation �, and �nally, pass to a general (not necessarily connected) con�guration

.
Step 1. One-point estimate. Let us assume that 
 2 �(X) is connected (i.e.,

n
;R(y) � 1 for any y 2 
) and �x an x 2 
. For an arbitrary constant { > 0, any
y 2 
 and u; v 2 S we have by Young�s inequality

jWx;y(u; v)j � jjJ jj1 juj jvj � { (jujp + jvjp) + Cp;J{�p
0
; (3.15)

where p0 = 2(p� 2)�1 and

Cp;J :=

�
jjJ jj1
p

� p
p�2

(p� 2): (3.16)

Let us �x �; � 2 S
 and set u := �(x), { := � [n
;R(x)n
;R(y)]
�1, where � 2

(0; e�R�=2) and � > 0 are arbitrary. Inequalities (3.2) and (3.15) imply the follow-
ing estimate

��
X
y�x

jujp + j�(y)jp

n
;R(x)n
;R(y)
� Cp;J��p

0 X
y�x

[n
;R(x)n
;R(y)]
p0 � V (u) (3.17)

� �
X
y�x

Wx;y(u; �(y))� V (u)

� �
X
y�x

jujp + j�(y)jp

n
;R(x)n
;R(y)
+ Cp;J�

�p0
X
y�x

[n
;R(x)n
;R(y)]
p0 � aV jujq + bV :

By the de�nition of �x(d� j� ) := �fxg(d� j� ), cf. (3.3) and (3.4), we haveZ
S

e�j�(x)j

p

�x(d� j� ) = Zx(�)
�1
Z
S

exp

(
� jujp �

X
y�x

Wx;y(u; �(y))� V (u)
)
du;

Zx(�) =

Z
S

exp

(
�
X
y�x

Wx;y(u; �(y))� V (u)
)
du:

Elementary calculations based on (3.17) show that

Zx(�) �
Z
S

exp

(
�
X
y�x

jujp + j�(y)jp

n
;R(x)n
;R(y)
� Cp;J��p

0 X
y�x

[n
;R(x)n
;R(y)]
p0 � V (u)

)
du

= exp

(
��

X
y�x

j�(y)jp

n
;R(x)n
;R(y)
� Cp;J��p

0 X
y�x

[n
;R(x)n
;R(y)]
p0

)

�
Z
S

exp f�� jujp � V (u)g du
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and

Z
S

exp

(
� jujp �

X
y�x

Wx;y(u; �(y))� V (u)
)
du

� exp

(
bV + �

X
y�x

j�(y)jp

n
;R(x)n
;R(y)
+ Cp;J�

�p0
X
y�x

[n
;R(x)n
;R(y)]
p0

)

�
Z
S

exp f(�+ �) jujp � aV jujqg du:

This yields the following one-point estimate

Z
S

e�j�(x)j

p

�x(d� j� ) � exp

(
C� + 2�

X
y�x

j�(y)jp

n
;R(x)n
;R(y)
(3.18)

+2Cp;J�
�p0
X
y�x

[n
;R(x)n
;R(y)]
p0

)
;

where

C� := bV + log

R
S
exp f(�+ �) jujp � aV jujqg duR
S
exp f�� jujp � V (u)g du <1 (3.19)

because of the condition q > p. Since � > 0 can be taken arbitrary small, (3.19)
states a weak dependence of the one-point exponential moments on boundary con-
ditions.
Step 2. We still suppose that 
 2 �(X) is connected and extend the estimate

(3.18) to an arbitrary � 2 F(
). Let us �x a tempered boundary condition � 2
lp�(
; S) and de�ne �
n� := (�(y))y2
n�. Integrating both sides of (3.18) with respect
to ��(� j� ) and taking into account the identityZ

S

�x(� j� )��(d� j� ) = ��(� j� )

that holds for every x 2 � (cf. (3.5)), we getZ
S

e�j�(x)j

p

��(d� j� ) (3.20)

� exp

8><>:C� + 2�
X
y�x
y2
n�

j�(y)jp

n
;R(x)n
;R(y)
+ 2Cp;J�

�p0
X
y�x

[n
;R(x)n
;R(y)]
p0

9>=>;�

�
Z
S

exp

8>><>>:2�
X
y�x
y2�

j�(y)jp

n
;R(x)n
;R(y)

9>>=>>;��(d� j� ):
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The integral in the right-hand side can be estimated with the aid of the multiple
Hölder inequality

Z
S

exp

8>><>>:2�
X
y�x
y2�

j�(y)jp

n
;R(x)n
;R(y)

9>>=>>;��(d� j� )
=

Z
S


Y
y�x
y2�

fexp [� j�(y)jp]g
2�

�n
;R(x)n
;R(y) ��(d� j� )

�
Y
y�x
y2�

�Z
S


exp [� j�(y)jp] ��(d� j� )
� 2�

�n
;R(x)n
;R(y)

:

Introducing the notation

M�;x(�; �) := log

�Z
S

e�j�(x)j

p

��(d� j� )
�
; (3.21)

we obtain

0 � M�;x(�; �) � C� + 2�
X
y�x
y2
n�

j�(y)jp

n
;R(x)n
;R(y)
(3.22)

+2Cp;J�
�p0
X
y�x

[n
;R(x)n
;R(y)]
p0
+
X
y�x
y2�

2�

�n
;R(x)n
;R(y)
M�;y(�; �):

We will estimate the weighted sum

kM�(�; �)k� :=
X
x2�

M�;x(�; �)w�(x):

Formula (3.22) implies that

kM�(�; �)k� � C�
X
x2�

w�(x) + 2Cp;J�
�p0
X
x2�

w�(x)
X
y�x

[n
;R(x)n
;R(y)]
p0

+2�
X
x2�

w�(x)
X
y2
n�
y�x

j�(y)jp

n
;R(x)n
;R(y)

+2�
X
x2�

w�(x)
X
y2�
y�x

M�;y(�; �)

�n
;R(x)n
;R(y)
:

Recall that the functions a�;p0 and b� are de�ned by formulae (2.4) and (2.5). Then

kM�(�; �)k� � C�b�(
) + 2Cp;J�
�p0a�;p0(
) + 2�

X
x2�

w�(x)
X
y2
n�
y�x

j�(y)jp

n
;R(x)n
;R(y)

+2�
X
x2�

w�(x)
X
y2�
y�x

M�;y(�; �)

�n
;R(x)n
;R(y)
: (3.23)

The triangle inequality jyj � jxj+ jy � xj implies that
w�(x) = e

��jxj � e�jy�xje��jyj = e�jy�xjw�(y) � e�Rw�(y)
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provided jy � xj � R. Changing the order of summation in the last two terms of
(3.23), we obtain

kM�(�; �)k� � C�b�(
) + 2Cp;J�
�p0a�;p0(
)

+e�R2�
X
y2
n�

w�(y) j�(y)jp

n
;R(y)

X
x2�
x�y

1

n
;R(x)

+e�R
2�

�

X
y2�

w�(y)M�;y(�; �)

n
;R(y)

X
x2�
x�y

1

n
;R(x)
:

Taking into account that
X

x2�
x�y

1
n
;R(x)

� n
;R(y) for any y 2 
, we see that the

following inequality holds

kM�(�; �)k� � C�b�(
) + 2Cp;J�
�p0ap0(
) (3.24)

+e�R2�
X
y2
n�

w�(y) j�(y)jp + e�R
2�

�

X
y2�

w�(y)M�;y(�; �)

� C�b�(
) + 2Cp;J�
�p0a�;p0(
) + e

�R2�



�
n�


p

a;p

+e�R
2�

�
kM�(�; �)k� ;

which yields

kM�(�; �)k� �
�
1� e�R2���1

��1
(3.25)

�
�
C�b�(
) + 2Cp;J�

�p0a�;p0 (
) + e
�R2�




�
n�


p
a;p

�
< 1:

Observe that 1� e�R2���1 > 0 because of the condition � 2 (0; e�R�=2).
To �nish the proof we use Hölder�s inequality and obtain the estimate

Z
S

exp

n
� k�kp�;p

o
��(d� j� ) = exp

8<:� X
y2
n�

j�(y)jp w�(y)

9=; (3.26)

�
Z
S


Y
x2�

fexp [� j�(x)jp]g�w�(x)=� ��(d� j� )

� exp

�
�



�
n�


p

�;p
+
�

�
kM�(�; �)k�

�
;

where � := �ba(
). By virtue of (3.25) applied to kM�(�; �)k� we conclude that for
any � 2 F(
) and � 2 (0; e�R�ba(
)=2) the following estimate holdsZ

S

exp

n
� k�kp�;p

o
��(d� j� ) � exp�
(�; �; �) <1;

where

�
(�; �; �) = �
(�) + 	
(�)



�
n�


p

�;p
(3.27)
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with

�
(�) =
C��ba(
) + 2Cp;J�

�p0�a�;p0 (
)

�ba(
)� 2e�R�
; (3.28)

	
(�) =
�2ba(
)

�ba(
)� 2e�R�
; (3.29)

and C� is de�ned by (3.19). It is clear now that estimate (3.14) holds with

�
(�; �) := sup
�2F(
)

�
(�; �; �) = �
(�) + 	
(�) k�kp�;p : (3.30)

Step 3. For a general (disconnected) con�guration 
, consider its decomposi-
tion (3.13). The result follows from Steps 1, 2 applied to all connected components
of 
 and Lemma 3.1. �

Remark 3.4. The application of Jensen�s inequality to the right-hand side of formula
(3.21) shows that

R
S

j�(x)jp��(d� j� ) � 1

�M�;x(�; �) for any x 2 
, which together
with (3.25) implies in turn the boundZ

S

k�kp�;p��(d� j� ) � 1

�
kM�(�; �)k�

� A
(�; �) := B
(�) + C(�)



�
n�


p

�;p
(3.31)

with

B
(�) =
C�b�(
) + 2Cp;J�

�p0a�;p0 (
)

�� e�R2� ; (3.32)

C(�) =
e�R2�

�� e�R2� ; (3.33)

which holds for any � > 0, � 2 (0; e�R�=2) and p0 = 2(p�2)�1. Here the constants
Cp;J , C� are de�ned by formulae (3.16), (3.19) respectively. For further applications
(see the proof of Proposition 5.5 below) it is important that B
(�) depends linearly
on b�(
) and a�;p0 (
), which by Proposition 2.2 are integrable with respect to the
underlying measure � on �(X).

Remark 3.5. Observe that A
(�; �) and �
(�; �) depend on the parameters � and
�. We do not discuss the question of their optimal choice here.

The constants in the right-hand sides of (3.14) and (3.31) depend on the bound-
ary condition �. However, we can get rid of this dependence in the �thermody-
namic� limit by choosing a particular sequence of con�gurations � exhausting 
.
We have the following statement.

Proposition 3.6. For any � 2 R and the constant �
(�) = �
(�; �; p) < 1
de�ned by formula (3.28) we have the estimate

lim sup
n!1

Z
S

e�k�k

p
�;p��n(d� j� ) � exp �
(�); (3.34)

lim sup
n!1

Z
S

k�kp�;p��n(d� j� ) � exp B
(�);

which holds for all boundary conditions � 2 lp�(
; S) and any increasing sequence
(�n)n2N � F(
) that exhausts 
, that is,

S
n2N �n = 
.
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Proof. Observe that limn!1




�
n�n


p�;p = 0 for each � 2 lp�(
; S). Thus, the
second term in the right-hand side of (3.27) and (3.31) vanishes as n!1 and the
claim follows. �
Recall that Cb(S
) stands for the set of bounded continuous functions f : S
 !

R, whereas S
 is endowed with the Polish topology of coordinate convergence. The
weak topology on the set P(S
) of Borel probability measures on S
 is de�ned as
the coarsest topology making each of the following mappings continuous

P(S
) 3 � 7! �(f) :=

Z
S

fd�; f 2 Cb(S
):

Proposition 3.7. For any � 2 lp�(
; S), the family f��(d� j� )g�2F(
) � P(S
) is
relatively weakly compact.

Proof. By Prokhorov�s criterion (see e.g. Theorem 5.1 in [3] or 15.4.4 in [11])
the claim is equivalent to showing that for any � 2 lp�(
; S) the family of measures
f��(d� j� )g�2F(
) is tight. Let B
(r) be the ball of radius r in lp�(
; S), centered
at 0. It is a compact subset of S
 and denote by (B
(r))c its complement. By
Chebyshev�s inequality and (3.31) we have that

��[(B
(r))
c j� ] � 1

rp

Z
S

k�kp�;p��n(d� j� ) �

A
(�; �)
rp

for any r > 0. Given " > 0 we can set

r =

�
A
(�; �)

"

�1=p
; (3.35)

and obtain the estimate

sup
�2F(
)

��[(B
(r))
c j� ] � "; (3.36)

which implies the tightness in question, and the result follows. �
Proof of Theorem 3.2. Proposition 3.7 says that for any � 2 lp�(
; S) one

�nds an exhausting sequence � = (�n)n2N � F(
) such that (��n(� j� ))n2N is
weakly converging to a certain probability measure ��� on S


 : To check that ���
satis�es the DLR equation (3.6), we will use the Feller property of the speci�cation
�
 := f��(d�j�)g�2F(
);�2S
 . The later means that, for any � 2 F(
) and f 2
Cb(S


); the function ��f de�ned by

S
 3 � 7! ��f(�) :=

Z
S

f(�)��(d� j� ) (3.37)

belongs to Cb(S
) as well. The proof of this property is quite standard and crucially
exploits the continuity of the local interaction energy E�(�� j� ) subject to boundary
conditions � 2 S
 : For more details we refer to the proof of Lemma 2.10 in [18].
Note that a measure � 2 P(S
) solves (3.6) if and only if for all � 2 F(
) and

f 2 Cb(S
) Z
S

��f(�)�(d�) =

Z
S

f(�)�(dx): (3.38)

For any � 2 F(
) one �nds n� 2 N such that � � �n for all n � n�. For such n, by
the consistency property (3.5) we haveZ

S

��f(�)��n(d�j�) =

Z
S

f(�)��n(d�j�):
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Due to the inclusion ��f 2 Cb(S
), we can pass to the limit n!1 and thus prove
(3.38) for � := ���.
Next, we will show that ��� obeys the exponential moment estimate (3.12) for

any � > 0, which immediately implies that this measure is supported on lp�(
; S):
Note that the function

S
 3 � 7! F (�) := exp
n
� k�kp�;p

o
2 R+ [ f+1g (3.39)

is lower semi-continuous (i.e, its lower level sets f� 2 S
 jF (�) � cg are closed for
all c 2 R+ ). By (3.34) and the weak convergence ��n(� j� )! ���; n!1, we haveZ

S

e�k�k

p
�;p���(d�) � lim inf

n!1

Z
S

e�k�k

p
�;p��n(d� j� ) � exp �
(�); (3.40)

which implies that ��� 2 G�;p(S
).
Let us prove that the à-priori estimate (3.12) holds for every � 2 G�;p(S
), with

the constant �
(�) being the same as in (3.34). Let us consider a family of cut-o¤
functions

FN (�) := min fF (�);Ng = min
n
e�k�k

p
�;p ; N

o
; N 2 N:

Then there is a bound Z
S

FN (�)��(d�j�) � N

for all � 2 F(
) and � 2 S
 . By Fatou�s lemma and estimate (3.34) we have

lim sup
n!1

Z
S


�Z
S

FN (�)��n(d�j�)

�
�(d�)

�
Z
S


�
lim sup
n!1

Z
S

FN (�)��n(d�j�)

�
�(d�)

�
Z
S


�
lim sup
n!1

Z
S

e�k�k

p
�;p��n(d�j�)

�
�(d�)

�
Z
S

[exp �
(�)] �(d�) = exp �
(�)

(because �
(�) is independent of �). It follows from the DLR equation (3.6) thatZ
S


Z
S

FN (�)��n(d�j�)�(d�) =

Z
S

FN (�)�(d�); n 2 N;

which implies that Z
S

FN (�)�(d�) � exp �
(�); N 2 N:

As � is supported on lp�(
; S) and FN (�)% F (�) as N !1 for each � 2 lp�(
; S),
we can apply B. Levi�s monotone convergence theorem yielding thatZ

S

exp

n
� k�kp�;p

o
�(d�) = lim

N!1

Z
lp�(
;S)

FN (�)�(d�) � exp �
(�):

A similar reasoning can be used to prove the compactness of G�;p(S
). Indeed,
the uniform moment bound (3.12) implies that the set G�;p(S
) is tight and thus
(by Prokhorov�s theorem) relatively compact, whereas by the Feller property all its
accumulation points solve the DLR equation and hence are Gibbs measures. �
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Remark 3.8. We have proved that G�;p(S
) is nonempty at least for all 
 2 �(X),
for which both b�(
) and a�;p0 (
) are �nite. Using inequality (3.31) and applying
the arguments similar to those used in the proof of estimate (3.12), we can verify
that for any � 2 G�;p(S
) the following moment estimate holds:Z

S

k�kp�;p �(d�) � B
 := inf

�;�

C�b�(
) + 2Cp;J�
�p0a�;p0 (
)

�� e�R2� : (3.41)

Here the constants Cp;J , C� are de�ned by formulae (3.16), (3.19) respectively,
p0 = 2(p � 2)�1, and the in�mum is taken over all � > 0, � 2 (0; e�R�=2). Note
(cf. Proposition 3.4) that B
 depends linearly on b�(
) and a�;p0 (
), which are
integrable with respect to the underlying measure � on �(X).

4. Some remarks and extensions

1. Condition (3.7) establishes certain relation between the growth rate q of
the self-interaction potential V and the number of bounded correlation functions
km; 1 � m � M , of �. In the case where � has bounded correlation functions of
arbitrary order, condition (3.7) holds for any q > 2 and thus p can be any number
from the interval (2; q]. In turn, higher values of q guarantee the existence of Gibbs
measures with the smaller support set lp�(
; S) (that corresponds to higher values
of p). However, by our method we cannot control the case of q = 2; even when
the particles x 2 
 are distributed according to the homogeneous Poisson random
�eld � := �z on �(X). In particular, the existence problem is still open for the
important class of ferromagnetic harmonic systems on S
 that are described by the
energy functional (3.3) with J(x� y) � 0 and V (u) = aV juj2 ; aV > 0:
2. The above assumptions on the potentials W and V can be weaken in the

following way. First observe that the results of the previous section are in fact
based only on estimate (3.15) and condition (3.1). Therefore Theorem 3.2 holds
for any continuous Wx;y : S � S ! R satisfying the at most polynomial growth
estimate

jWx;y(u; v)j � C1 (jujp + jvjp) + C2; u; v 2 S; (4.1)

and the �nite range condition Wx;y � 0 if jx� yj � R, for all x; y 2 X and some
constants C1; C2; R > 0. Furthermore, we can consider the one-particle potentials
Vx varying with x, provided all of them satisfy the same lower bound 3.2.
Second, we can drop the assumption of the continuity of the potentials Vx :

S ! R and Wx;y : S � S ! R. Note that in this case the speci�cation will be
no longer Feller. Consequently, the topology of weak convergence could not help
us to construct Gibbs measures � 2 G�;p(S
) as accumulation points of the family
f��(d� j� )g�2F(
) with a �xed � 2 lp�(
; S). Instead, we can use the topology of
set-wise convergence on the algebra B0(S
) = [�2F(
)B0(S�) of local subsets of S
 .
A key observation is that the moment bound (3.14) implies the local equicontinuity
of the family f��(d� j� )g�2F(
) (cf. De�nition 4.6 in [9]) and hence its relative
compactness in the last-named topology. This again ensures the existence of ac-
cumulation points ��� 2 P(S
), each of them ought to be Gibbs due to the �nite
range condition (1.2) imposed on the interaction. For systems of unbounded spins
on general graphs, a similar approach was realized in [13].
3. As already mentioned in the Introduction, in this paper we do not touch

the question of uniqueness of � 2 G(S
). This is a highly non-trivial problem and
general conditions that guarantee that N(G(S
)) = 1 due to the small interaction
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strength jjJ jj1 � 1 are not known. On the other hand, in [6] we studied a class
of models with ferromagnetic pair interaction living on Poisson random graphs
and showed the existence multiple Gibbs states, that is, that N(G(S
)) > 1 (and
therefore =1) for a.a. 
 2 �(X).

5. Measurable dependence on 
.

We have shown that the set G�;p(S
) is not empty for �-a.a. 
 2 �(X). In the
proof of Theorem 3.2, a measure ��
 := ��
;� 2 G�;p(S
) has been constructed for
each tempered � 2 �(X) as a limit of certain sequence of ��nite volume�measures
��n(d�j�), n 2 N: The sequence � = (�n)n2N � F(
) however depends on the
�randomness�
 in some uncontrollable way (the so-called chaotic size dependence,
see the discussion in [25, 26]). This does not answer the question whether there
exist measurable selections �(X) 3 
 7! �
 2 G�;p(S
). In fact, it is known that for
general models with random interaction the dependence of such limiting measures
on the random parameter can fail to be measurable. An additional di¢ culty in our
case is that the measures �
 2 G�;p(S
) live (for di¤erent 
) on di¤erent spaces,
and it is not clear in what sense this measurability can be understood.
In this paper, we will identify the spaces S
 that support measures �
 2 G�;p(S
)

with the �bres of a natural bundle over �(X) and extend �
 to the total space X
of this bundle by setting �
(X nS
) = 0. It turns out that X can be identi�ed with
the marked con�guration space �(X;S) (de�ned by expression (5.2) below). For
basic de�nitions and description of main structures on marked con�guration spaces
we refer to e.g. [1], [5], [19] and Appendix, where we give necessary information on
the topological structure of �(X;S). We �x a topology on �(X;S) (de�ned below,
see (5.4)), which makes �(X;S) a Polish space (see [5] for the explicit construc-
tion of the corresponding metric). In what follows, it will be equipped with the
corresponding Borel �-algebra B(�(X;S)).
Let P(�(X;S)) stand for the Polish space of all Borel probability measures on

�(X;S), which is equipped with the topology of weak convergence. By this de�n-
ition, the measurability of the map �(X) 3 
 7! �
 2 P(�(X;S)) is equivalent to
the measurability of �(X) 3 
 7! hf; �
i :=

R
�(X;S)

f(�̂)�
(d�̂) for each bounded
continuous function f : �(X;S) ! R, which in turn is equivalent to the measura-
bility of �(X) 3 
 7! �
(A) for each A 2 B(�(X;S)).
The main result of this section is the following

Theorem 5.1. There exists a B(�(X))=B(P (�(X;S)))-measurable mapping
�(X) 3 
 7! �
 2 P(�(X;S)) (5.1)

such that �
 2 G�;p(S
) for �-a.a. 
 2 �(X).

The proof will go along the following lines. First, using the moment bound (5.10)
and Prokhorov�s theorem, we will construct an auxiliary measure �̂ on �(X;S) and
de�ne its conditional distribution (i.e., disintegration) (�
)
2�(X) � P(S
) with
respect to �, so that the measurability required in (5.1) holds. Then, with the help
of Komlós�theorem we will prove the inclusion �
 2 G�;p(S
).
In order to proceed, we need to introduce the necessary framework. Let us

consider the product space X � S. The canonical projection pX : X � S ! X can
be naturally extended to the corresponding con�guration space �(X�S). Observe
that the image pX(
̂), 
̂ 2 �(X � S), is a con�guration in X that in general
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admits accumulation and multiple points. The marked con�guration space �(X;S)
is de�ned in the following way

�(X;S) := f
̂ 2 �(X � S) : pX(
̂) 2 �(X)g : (5.2)

We will also use the larger space

��(X;S) :=
n

̂ 2 ��(X � S) : pX(
̂) 2 ��(X)

o
; (5.3)

where ��(X) and ��(X � S) are the spaces of con�gurations of points with (�nite)
multiplicities in X and X � S, respectively. Observe that ��(X) and ��(X � S) can
be equipped with the vague topology de�ned similarly to the vague topology on
�(X) and �(X � S) (see e.g. Section 2.4 in [12]).
The spaces �(X;S) and ��(X;S) will be endowed with a (completely metrizable)

topology which is de�ned as the weakest topology that makes the map

�(X;S) 3 
̂ 7! hf; 
̂i (5.4)

continuous for any f 2 Cb(X � S) with supp f � S� := � � S, where � is a
compact subset of X. This topology has been used in e.g. [1], [5] and [19]; for
a short account of its properties see Appendix. We equip �(X;S) and ��(X;S)
with the corresponding Borel �-algebras. Note that �(X;S) is a dense Borel set in
��(X;S):

Both spaces �(X;S) and ��(X;S) have the structure of a �bre bundle over �(X)
and ��(X) respectively, with �bres p�1X (
), which can be identi�ed with the product
spaces

S
 =
Y
x2


Sx; Sx = S:

Thus each 
̂ 2 �(X;S) can be represented by the pair

̂ = (
; �
); where 
 = pX(
̂) 2 �(X); �
 = (�x)x2
 2 S
 :

It follows directly from the de�nition of the corresponding topologies that the map
pX : �(X;S) ! �(X) (resp. ��(X;S) ! ��(X)) is continuous. Thus for any
con�guration 
 the spaces S
 are Borel subsets of �(X;S) (resp. ��(X;S)).
Let us �x u 2 Cb(X ! S) with jjujj1 := supx2X ju(x)j <1 and de�ne the map

�(X) 3 
 7! �
 = (u(x))x2
 2 S
 (5.5)

(in particular, one may take u � const). Obviously, we have the inclusion �
 2
lp�(
; S) for all 
 2 �(X) and any �; p > 0.

Proposition 5.2. Let �
 be given by formula (5.5). Then the map

�(X) 3 
 7! 
̂ = (
; �
) 2 �(X;S)
is continuous.

Proof. According to the de�nition of the topology on �(X;S), the claim is
equivalent to the continuity of the map

�(x) 3 
 7! F (
) := hf; 
̂i ; 
̂ = (
; �
);

for any f 2 Cb(X �S) with supp f 2 S� := ��S, where � is a compact subset of
X. It is clear that F (
) = hg; 
i, where g(x) = f(x; u(x)), so that g 2 C0(X) and
the assertion follows from the de�nition of the topology on �(X). �
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Let Bc(X) denote the collection of all convex compact subsets of X. Let us �x a
set � 2 Bc(X) and de�ne 
� := �\ 
, 
 2 �(X). Obviously 
� 2 F(
). Consider
the measure �̂��(d
̂) on �(X;S) de�ned by the formula

�̂��(d
̂) := �
�(d�

���
 )�(d
); 
 = pX(
̂); (5.6)

or, equivalently, Z
�(X;S)

F (
̂)�̂��(d
̂) =

Z
�(X)

�F (
)�(d
)

for any F 2 Cb(�(X;S)), where

�F (
) :=

Z
S

F (
; �
) �
�(d�


���
 ): (5.7)

The measure �̂�� is well-de�ned because of the next result that is also of its own
interest, stating the following �almost Feller�property for the speci�cation kernels
�
�(d�


���
 ). As will be clear from the proof below, the reason why this prop-
erty only holds �almost� everywhere is that the projection map 
 ! 
� is vague
continuous at some 
 2 �(X) i¤ 
 has no points on the bondary of �:

Proposition 5.3. Let � 2 Bc(X) (in particular, � can be a closed ball or cube):
Then there exists a set M = M(�) � �(X) such that �(M) = 1 and the function
�F : �(X) ! R de�ned by the formula (5.7) is continuous at any 
 2 M; for all
F 2 Cb(�(X;S)).

Proof. For a �xed � 2 Bc(X) consider its R-neighborhood �R := [x2�BR(x),
where BR(x) is the closed ball of radius R centered at x. Obviously, �R is convex
and bounded. Denote by @� and @�R the topological bondary or the sets � and
�R respectively, then @� and @�R both have zero Lebesgue mass (see e.g. [20]).
De�ne

M =M(�) :=
�

 2 �(X) : 
 \

�
@� [ @�R

�
= ;
	
2 B(�(X)):

It follows from the boundedness of the �rst correlation function of the measure �
that �(M) = 1.
Fix 
 2M . Then

�F (
) = Z�1
Z
S
�

F (
; �
� � �
�c ) �

exp

2664� X
fx;yg�
�

J(x� y)�x�y �
X
x2
�
z2
�c

J(x� z)�x�z

3775 O
x2
�

e�U(�x)d�x;

where

Z =

Z
S
�

exp

2664� X
fx;yg�
�

J(x� y)�x�y �
X
x2
�
z2
�c

J(x� z)�x�z

3775 O
x2
�

e�U(�x)d�x:

The condition 
 \ @� = ; implies that there exists a closed set �0 � �R�� such
that


 \ (�R��) � �0
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and


 \ @�0 = ;:

Let


 \� =
n
x(1); :::; x(m)

o
; 
 \�0 =

n
x(m+1); :::; x(N)

o
:

Then, in the particle representation we have

Z = Z(x(1); :::; x(N); �(m+1); ::; �(N))

=

Z
S
�

exp
h
�E(x(1); :::; x(N); �(m+1); ::; �(N))

i mO
k=1

e�U(�k)d�k ;

�F (
) = Z�1
Z
S
�

F
�n
x(1); :::; x(N)

o
[ 
�c ; (�1; : : : ; �m)� (�(m+1); :::; �(N))� �(
��R)

�

�exp
h
�E(x(1); :::; x(N); �(m+1); :::; �(N))

i mO
k=1

e�U(�k)d�k

with �(m+1) := �(x(m+1)); :::; �(N) := �(x(N)) and

E(x(1); :::; x(N); �(m+1); :::; �(N)) :

=
mX

k;j=1
k 6=j

J(x(k) � x(j))�k�j �
mX
k=1

NX
j=m+1

J(x(k) � x(j))�k�(j):

The required result follows now from the continuity of F; J and � and Proposition
6.2. �
Next we will show that for any � of the form (5.5) the family of measuresn
�̂��; � 2 Bc(X)

o
is tight. To this end we need some technical preparations. Let

us introduce a Lyapunov-type function F : �(X;S)! R+ given by the expression

F (
̂) = b�(
) + k�
kp�;p ; 
̂ = (
; �
):

Lemma 5.4. For any R > 0 the set

MR := f
̂ : F (
̂) � Rg (5.8)

is relatively compact in ��(X;S).

Proof. Let K = f
 2 �(X) : b�(
) <1g. A direct application of Lemma 6.4
in Appendix shows that the set K is relatively compact in ��(X). By Proposition
6.7, the corresponding set K(S)R de�ned by (6.5) is relatively compact in ��(X;S).
Observe now that MR � K(S)R, and the result follows. �

Proposition 5.5. For any � of the form (5.5) the family of measures �̂��; � 2
Bc(X), is relatively weakly compact in P(��(X;S))
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Proof. It follows from the de�nition (5.6) of the measure �̂�(d
̂ j� ), inequality
(2.6) and moment estimates (3.31)�(3.33) thatZ

�(X;S)

F (
̂)�̂�(d
̂ j� ) (5.9)

=

Z
�(X)

Z
S


h
b�(
) + k�
kp�;p

i
�
�(d�


���
 )�(d
)
�

Z
�(X)

b�(
)�(d
) +
�
�� e�R2�

��1
e�R2�

Z
�(X)




�
�c


p�;p �(d
)
+
�
�� e�R2�

��1 Z
�(X)

h
C�b�(
) + 2Cp;J�

�p0a�;p0 (
)
i
�(d
):

Note that by (5.5)Z
�(X)




�
�c


p�;p �(d
) � jjujjp1
Z
�(X)

b�(
�c )�(d
);

and hence by Proposition 2.2

sup
�2Bc(X)

Z
�(X;S)

F (
̂)�̂�(d
̂ j� ) <1: (5.10)

The application of Chebyshev�s inequality (similar to the proof of Proposition 3.7)
shows that for any " > 0 there exists R > 0 such that

�̂�(MR j� ) � 1� "

uniformly for all � 2 Bc(X). By Lemma 5.4 MR is relatively compact in ��(X;S),

which implies that the family of measures
n
�̂��;� 2 Bc(X)

o
� P(��(X;S)) is tight.

Then Prokhorov�s theorem yields the result. �

Corollary 5.6. The family of measures
n
�̂��;� 2 Bc(X)

o
contains a sequence

�̂��n
; n 2 N, which converges weakly to a probability measure �̂� on ��(X;S). With-

out loss of generality we will assume that the sequence of sets �n is increasing.

Observe that the function F̂ := F �pX , where F 2 Cb(��(X)), is continuous. The
limit transition as n!1 in the formulaZ
��(X;S)

F̂ (
̂)�̂��n
(d
̂) =

Z
��(X)

F (
)

�Z
S

�
�n (d�


���
 )� �(d
) = Z
��(X)

F (
)�(d
)

shows that Z
��(X;S)

F̂ (
̂)�̂�(d
̂) =

Z
��(X)

F (
)�(d
);

or equivalently

� = p�X �̂
�:

The application of Theorem 8.1 of [27] to the measurable map

pX : ��(X;S)! ��(X)

yields that there exists the corresponding regular conditional probability distribu-
tion ��
 , 
 2 ��(X), that is, a family of probability measures ��
 on ��(X;S) such
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that for any measurable set A � ��(X;S) we have

�̂�(A) =

Z
��(X)

��
(A)�(d
);

and the map
��(X) 3 
 7! ��
(A) (5.11)

is measurable. Moreover, ��
(��(X;S)�pX(
)) = 0 for �-a.a. 
 2 ��(X).
Thus ��
 generates (for �-a.a. 
 2 ��(X)) a probability measure on pX(
) = S


(for which we preserve the notation ��
) such that the map

��(X) : 
 7!
Z
S

F (
; �
)�

�

(d�
)

is measurable for any F 2 Cb(��(X;S)) andZ
��(X;S)

F (
; �
)�̂
�(d
̂) =

Z
��(X)

�Z
S

F (
; �
)�

�

(d�
)

�
�(d
):

Recall that � is concentrated on �(X), so that we can replace the spaces ��(X;S),
��(X) by �(X;S), �(X) respectively and obtain the equalityZ

�(X;S)

F (
; �
)�̂
�(d
̂) =

Z
�(X)

�Z
S

F (
; �
)�

�

(d�
)

�
�(d
) (5.12)

for any F 2 Cb(�(X;S)).

Proposition 5.7. For �-a.a. 
 2 �(X) and any � of the form (5.5) we have the
inclusion

��
 2 G�;p(S
):

Proof. Let us �rst note that the weak convergence of the measures �̂��n
; n 2

N, to �̂� does not in general imply convergence of their conditional distributions
�
�n (d�


���
 ) to ��
(d�
) for �-a.a. 
. However, we can make use of Komlós�
theorem (see e.g. [2]) and prove convergence (for �-a.a. 
 2 �(X)) of the Cesàro
means 1

N

PN
j=1�
j (d�


���
 ) for some subsequence 
j := 
�nj
, j 2 N, which will

allow us show that �̂� satis�es the DLR equation.
Let us �x an indexation i = fi
 ; 
 2 �Xg in �X , where i
 : 
 ! N is a bijection

for each 
 2 �X . The indexation i de�nes a natural bijection
�X;1 3 (
; x) 7! (
; i
(x)) 2 �X � N; (5.13)

where
�X;1 := f(
; x) 2 �X �X : x 2 
g:

Moreover, the indexation i can be constructed so that bijection (5.13) is measurable
(see e.g. Lemma 2.3 in [11] or 1.1.4 in [12]). It generates a natural homeomorphism
I
 : S
 ! SN, 
 2 �X .
Observe that the space of P(SN) of probability measures on the Polish space SN is

completely metrizable, and there exists a sequence of functions fm 2 Cb(SN); m 2
N, which form a separating class for P(SN): De�ne functions

f̂m;
 := fm � I
 2 Cb(S
); m 2 N:

It is clear that the family ff̂m;
gm2N is separating for P(S
) (�-a.s. in 
).
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Consider a family of functions

g
(m)
�n
(
) =

Z
S

f̂m;
(�)�
�n (d�

���
 ); n 2 N:

The measurability of the indexation i implies that g(m)�n
2 L1(�X ; �). Applying

Komlós�theorem (similarly to the proof Theorem 3.6 in [14]) and taking into ac-
count formula (5.12), one can show that there exists a subsequence fnjgj2N such
that

1

N

NX
j=1

g
(m)
�nj

(
)!
Z
S

f̂m(
; �)�

�

(d�); N !1;

for any m 2 N and �-a.a. 
 2 �X . This implies the weak convergence of measures

1

N

NX
j=1

�
j (�
���
 )! ��
 ; N !1; 
j := 
�nj

; (5.14)

on S
 , for �-a.a. 
 2 �X .
Now we are in a position to prove that the measure ��
 satis�es the DLR equation

��
(d�) =

Z
S

��(d�; �)�

�

(d�); � 2 F(
); (5.15)

for �-a.a. 
 2 �X . Indeed, for a �xed 
 and � 2 F(
), the relation (5.14) implies
the convergence Z

S


�Z
S

f(�)��(d�; �)

�
1

N

NX
j=1

�
j (d�
���
 ) (5.16)

!
Z
S


�Z
S

f(�)��(d�; �)

�
��
(d�); N !1;

where f 2 Cb(S
). Choose j0 2 N such that � � 
j0 := 
 \�nj0 . Then we have

lim
N!1

Z
S


�Z
S

f(�)��(d�; �)

�
1

N

NX
j=1

�
j (d�
���
 )

= lim
N!1

Z
S


�Z
S

f(�)��(d�; �)

�
1

N

NX
j=j0

�
j (d�
���
 )

= lim
N!1

Z
S

f(�)

1

N

NX
j=j0

�
j (d�
���
 )

=

Z
S

f(�)��
(d�);

where we used the the consistency property (3.5) of speci�cation � and relation
(5.14). Thus (5.15) holds.
By the arguments similar the proof of Theorem 3.2 one can show that the measure

��
 satis�es estimate (3.12) and is therefore supported on l
p
�(
; S). This completes

the proof. �

Proof of Theorem 5.1. The result follows directly from formula (5.11) and
Proposition 5.7. �
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Remark 5.8. Let �
 2 G�;p(S
), 
 2 �(X); be a family of Gibbs measures satisfying
the measurability condition (5.1). For �-a.a. 
 2 �(X) the measure �
 obeys the
moment estimate (3.41). Integrating both sides of this inequality we obtainZ

�(X)

Z
S

k�kp�;p �
(d�)�(d
) �

�
�� e�R2�

��1
C�

Z
�(X)

b�(
)�(d
)

+ 2Cp;J�
�p0
Z
�(X)

a�;p0 (
)�(d
):

Estimates (2.6) and (2.9) imply now thatZ
�(X)

Z
S

k�kp�;p �
(d�)�(d
) �

�
�� e�R2�

��1 Z
X

e��jxjdx

�

0@C�jjk1jj1 + 2Cp;J�
�p0 jjkjj1

M�1X
j=1

cjVol(B2R)
j

1A ;
where Vol(B2R) is the volume of the ball B2R, jjkjj1 := max

1�m�M
jjkmjj1 and the

constants cj are given by formula (2.8).

6. Appendix: Some facts on topological structure of �(X;S).

In this Appendix, we discuss topological properties of the marked con�guration
spaces �(X;S) and ��(X;S) de�ned by expressions (5.2) and (5.3) respectively. Al-
though most of these properties naturally extend those known for the con�guration
spaces �(X) and ��(X), we could not �nd any adequate presentation in the litera-
ture. Here we work out the necessary topological issues, especially characterization
of convergence and compactness criteria, which also may be of independent interest
in the theory of marked point processes and its applications. As compared to the
spaces �(X) and ��(X), now we have not only to control the concentration of points
x in bounded domains, but also to exclude the possibility that their marks sx go to
in�nity. We suppose that the con�guration spaces �(X � S); �(X) and ��(X) are
equipped with the corresponding vague topology.

1. Topology. There are two natural topologies on �(X;S) and ��(X;S).
(i) Our "main" topology has been de�ned in Section 5. This is the weakest

topology that makes the map

�(X;S) 3 
̂ 7! hf; 
̂i (6.1)

continuous for any f 2 Cb(X�S) with supp f 2 S� := ��S, where � is a compact
subset of X. The space (�(X;S); �) is Polish (see Section 2 in [5]). In the rest of
this paper, we will call it the � -topology.
(ii) We will also use the topology induced from �(X � S). This is the weakest

topology that makes the map (6.1) continuous for any f 2 C0(X �S). We will call
it the w-topology. Observe that �(X;S) is not a closed subset of �(X � S). The
w-topology. is weaker than the � -topology. Observe that the map pX : �(X;S)!
�(X) is not w-continuous.

2. Convergence. The following statement is known (see e.g. Proposition 3.13
in [29]):
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Lemma 6.1. A sequence f
n; n 2 Ng � �(X) (resp. ��(X)) converges to 
 2 �(x)
(resp. ��(X)) i¤ for any compact � � X such that 
 \ @� = ; , the number of
elements of 
n \ � stabilizes and 
n \ �! 
 \ � pointwise.

Let 
̂n; n 2 N; be a sequence of elements of �(X;S) and 
̂ 2 �(X;S).

Proposition 6.2. The following statements are equivalent:
1) 
̂n

�! 
̂;
2) for any compact � � X such that pX(
̂) \ @� = ; , the number of elements of

̂n \ S� stabilizes and 
̂n \ S� ! 
̂ \ S� pointwise;.
3) 
̂n

w! 
̂ and pX(
̂n)! pX(
̂) in �(X):

Proof. 1) () 2) Similar to the proof of Lemma 6.1.
2) =) 3) Direct calculation.
3) =) 2) Fix a compact � � X such that pX(
̂) \ @� = ;. The convergence


n := pX(
̂n)! pX(
̂) =: 
 implies that 9 n0 > 0 such that 8 n � n0 we have
N (
n \ �) = N (
 \ �) (6.2)

and
(
n \ �)! (
 \ �); n!1;

pointwise. Observe that for any �̂ 2 �(X;S) we have

N
�
�̂ \ S�

�
= N (pX(�) \ �) = N

�
�̂ \ (��B)

�
for a compact B � S. Equality (6.2) implies that

N (
̂n \ S�) = N (
̂ \ S�) and N (
̂n \ (��B)) = N (
̂ \ (��B))

for a compact B � S. This together with the convergence 
̂n
w! 
̂ implies that


̂n \ S� ! 
̂ \ S� pointwise. �

Remark 6.3. It is easy to see that Proposition 6.2 holds for a sequence 
̂n 2 ��(X;S)
converging to 
̂ 2 ��(X;S), with ��(X) instead of �(X) in part 3).

3. Compactness. The following criterion of compactness of a set K in �(X)
and ��(X) is well-known. Consider the following two conditions: (i) 8� 2 B0(X),
sup
2KN(
�) <1 and (ii) 8� 2 B0(X), inf
2Kminfx1;x2g�
� jx1 � x2j > 0.

Lemma 6.4. (see e.g. Propositions 3.2.5 and 3.2.6 in [12] or [16]). The set K is
relatively compact in ��(X) (resp. in �(X)) if and only if (i) (resp. (i) and (ii))
hold.

Let now K be a relatively compact subset of ��(X), and consider the correspond-
ing subset K(S) := p�1X (K) of the marked con�guration space ��(X;S):

K(S) = f
̂ 2 �(X;S) : pX(
̂) 2 Kg : (6.3)

Lemma 6.5. K(S) is relatively compact in ��(X � S).

Proof. The proof can be obtained by a direct application Lemma 6.4. Fix a
compact �̂ � X � S. It is su¢ cient to show that sup
̂2K(S)N

�

̂�̂
�
<1. Observe

that � := pX(�̂) is a compact subset of X. The relative compactness of K � ��(X)
implies that sup
2KN (
�) <1. Moreover, we have N

�

̂�̂
�
� N

�

̂S�

�
= N (
�),

and the assertion follows. �
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Remark 6.6. It can be shown by similar arguments that K(S) is relatively compact
in �(X � S) provided K is relatively compact in �(X).

Let us introduce the spaces

�(X;S)r :=
n
(
; �
) 2 �(X;S) : k�
k�;p � r

o
(6.4)

and
��(X;S)r :=

n
(
; �
) 2 ��(X;S) : k�
k�;p � r

o
:

Set
K(S)r := K(S) \ �(X;S)r; (6.5)

where the set K(S) is de�ned by (6.3). We have the following statement.

Proposition 6.7. 1) Topologies � and w coincide on ��(X;S)r
2) ��(X;S)r is a closed subset of ��(X;S) and ��(X � S).
3) �(X;S)r � ��(X;S)r, where �(X;S)r is the closure of �(X;S)r in ��(X;S) (or,
equivalently, in ��(X � S)).
4) K(S)r is a compact subset of ��(X;S).

Proof. 1) It is su¢ cient to prove that the map
��(X;S)r 3 
̂ 7! hf; 
̂i

is w-continuous for any f 2 Cb(X � S) with supp f 2 S� := � � S, where � is a
compact subset ofX. For this, �x an arbitrary function � 2 C0(S) such that �(�) =
1 if � 2 Br0 (the ball in S of radius r0 centered at 0), where r0 > r maxx2�wa(x),
and de�ne g := �f . Then (i) hf; 
̂i = hg; 
̂i for 
̂ 2 ��(X;S)r, and (ii) g 2 C0(X�S)
so that the map 
̂ 7! 2 hg; 
̂i is w-continuous, and the result follows.
2) Let 
̂n; n = 1; 2; :::; be a sequence of elements of ��(X;S)r that converges to


̂ 2 �(X � S). Fix a compact � � X such that pX(
n) \ @� = ; for all n and
consider the compact �̂ = ��Br0 in X�S: Then 
̂n\@�̂ = ; for all n. Proposition
6.1 applied to the con�guration space ��(X � S) shows that N

�

̂n \ �̂

�
stabilizes

and 
̂n \ �̂! 
̂ \ �̂ pointwise. Observe that 
̂n \ �̂ = 
̂n \ S�, which implies that
the number of elements of the sequence 
̂n \ S� stabilizes. Thus, by claim 2) of
Proposition 6.2, 
̂n

�! 
̂ and N (pX(
̂) \ �) <1, so that 
̂ 2 ��(X;S). The bound
k�
k�;p � h�; 
̂i � r, 
̂ = (
; �
), where �(x; �) = j�jp e��jxj, can be proved
by the limit transition along any monotonically increasing sequence of functions
�n 2 C0(X � S) that approximates �.
3) The claim follows directly from 2).
4) We have K(S)r = K(S) \ �(X;S)r, which is w-compact by Lemma 6.5. On

the other hand, K(S)r � �(X;S)r � ��(X;S)r so that w and � topologies on K(S)r
coincide, and the result follows. �
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