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Abstract. We consider a class of particle systems generalizing the β-Ensembles from ran-
dom matrix theory. In these new ensembles, particles experience repulsion of power β > 0
when getting close, which is the same as in the β-Ensembles. For distances larger than zero,
the interaction is allowed to differ from those present for random eigenvalues. We show
that the local bulk correlations of the β-Ensembles, universal in random matrix theory, also
appear in these new ensembles. This result extends the bulk universality classes of random
matrix theory and may lead to a better understanding of the occurrences of random matrix
bulk statistics in several observations which have no obvious connection to random matrices.
The present work is a generalization of [GV12] where a similar result was proved for β = 2.

1. Introduction and Main Results

Random matrix theory is well-known for universality phenomena which means that many
essentially different matrix distributions lead in the limit of growing dimension to the same
spectral statistics.
In the past 15 years or so, much progress has been made in proving universality of local
spectral distributions, especially correlations between neighboring eigenvalues in the bulk of
the spectrum and of the largest eigenvalues. It is known that there is a parameter, usually
denoted β, which determines the universality class of the ensemble. To explain this in more
detail, define for any β > 0 and a continuous function Q : R −→ R of sufficient growth at
infinity, the invariant β-Ensemble PN,Q,β on RN which is given by

PN,Q,β(x) :=
1

ZN,Q,β

∏
i<j

|xi − xj |β e−N
∑N
j=1Q(xj). (1)

(With a slight abuse of notation, we will not distinguish between a measure and its density.)
For β = 1, 2, 4, PN,Q,β is the eigenvalue distribution of a probability ensemble on the space
of (N × N) matrices with real symmetric (β = 1), complex Hermitian (β = 2) or quater-
nionic self-dual (β = 4) entries, respectively. The matrix distributions are invariant under
orthogonal, unitary or symplectic conjugations, respectively, explaining the name “invariant
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ensembles”. For arbitrary β, only for quadratic Q, PN,Q,β is known to be an eigenvalue
distribution.
It has been shown (see [GV12] for references) that the local spectral statistics in the bulk or
at the edges of the spectrum do in many cases not depend on Q or, in other terms, invariant
ensembles with different potentials Q but the same β have the same local statistics. It is
also known that different values of β lead to different limiting (local) distributions. This

is not surprising as the interaction term
∏
i<j |xi − xj |

β has a strong effect on neighboring

eigenvalues whereas e−N
∑N
j=1Q(xj) just confines all eigenvalues independently into a compact

interval. In the limit N → ∞, these two competing forces balance and produce a limiting
measure of compact support.

In [GV12] the question was addressed whether the interaction term
∏
i<j |xi − xj |

β could be
changed without changing the local statistics. To this end, we introduced ensembles with
density proportional to

∏
i<j

ϕ(xi − xj)e−N
∑N
j=1Q(xj), (2)

where Q is a continuous function of sufficient growth at infinity compared to the continuous
function ϕ : R −→ [0,∞). The interaction potential ϕ fulfills

ϕ(0) = 0, ϕ(t) > 0 for t 6= 0 and lim
t→0

ϕ(t)

|t|β
= c > 0 for some β > 0, (3)

or, in other terms, 0 is the only zero of ϕ and it is of order β. It has been conjectured in

[GV12] that the bulk correlations for the ensembles (2) are the same as in the case ϕ(t) = |t|β,
i.e. the same as for the invariant ensembles in random matrix theory. This was proved in
[GV12] for β = 2 and a special class of functions ϕ and Q. In the present work, we prove a
similar result for arbitrary β > 0. This shows that the local bulk correlations (at least in the
considered cases) merely depend on the repulsion exponent β and not on the interaction of
particles at distances larger than 0.
We believe that these results may lead to an explanation for the occurrence of random matrix
bulk statistics in a number of seemingly unrelated observations in real world and science (see
[GV12] for references). Spacings between cars in different situations were found to be fitted
well by the universal spacing statistics from random matrix theory (β = 1 for parking along
one-way streets, β = 2 along two-way streets, β = 4 for waiting in front of traffic signals).
Also spacings between perching birds and between bus arrival times at stops in certain cities
seem to obey (β = 2) random matrix spacing statistics. Gaps between the Riemann zeta
function on the critical line are another famous example from mathematics (also β = 2). In
all these observations, a strong repulsion between consecutive quantities is present.
Furthermore, the ensemble (2) does not seem to have a natural spectral interpretation which
makes our findings a first step in proving universality of random matrix bulk distributions
for more general particle systems.
To state our main results, we first rewrite the ensemble (2). Let h be a continuous even
function which is bounded below. Let Q be a continuous even function of sufficient growth
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at infinity. By P hN,Q,β we will denote the probability density on RN defined by

P hN,Q,β(x) :=
1

ZhN,Q,β

∏
i<j

|xi − xj |β exp{−N
N∑
j=1

Q(xj)−
∑
i<j

h(xi − xj)}, (4)

where ZhN,Q,β denotes the normalizing constant. The density P hN,Q,β can also be written in

the form (2) with ϕ(t) := |t|β exp{−h(t)}.
Furthermore, let for a probability density PN on RN and k = 1, 2, . . . ,

ρN (t1, . . . , tk) :=

∫
RN−k

PN (t1, . . . , tk, xk+1, . . . , xN ) dxk+1 . . . dxN

denote the k−th correlation function of PN . The correlation functions are the marginal den-
sities. The measure ρN (t1, . . . , tk) dt1 . . . dtk is called k−th correlation measure. Denote by

ρh,kN,Q,β the k-th correlation function of P hN,Q,β and by ρkN,Q,β the k-th correlation function of

PN,Q,β from (1). Universality of ensembles is usually defined by universality of their correla-
tion functions or measures as many interesting statistics of the ensembles can be expressed
in terms of correlation functions. Finally, introduce for a twice differentiable convex function
Q the quantity αQ := inft∈RQ

′′(t).

The following theorem deals with the global or macroscopic behavior of the ensemble P hN,Q,β.

Theorem 1. Let h be a real analytic and even Schwartz function. Then there exists a
constant αh ≥ 0 such that for all real analytic, strongly convex and even Q with αQ > αh,
the following holds:

The first correlation measure ρh,1N,Q,β converges weakly to a compactly supported probability

measure µhQ,β which has a non-zero and continuous density on the interior of its support.
Weak convergence means that for any bounded and continuous f : R −→ R, we have

lim
N→∞

∫
f(t) ρh,1N,Q,β(t) dt =

∫
f(t)µhQ,β(t)dt.

Remark 2.

• In general, µhQ,β depends on h, i.e. changing the interaction term has an influence on

the (limiting) global density of the particles.
• If h is positive semi-definite, then αh in Theorem 1 may be explicitly chosen as αh =

supt∈R−h′′(t).
• For k = 2, 3, . . . , the k−th correlation measure converges weakly to the k-fold product(

µhQ,β
)⊗k

. This has been shown in [GV12] for β = 2 but the same proof goes through
for arbitrary β > 0. As a proof of this statement would lengthen the presentation, we
will not pursue it here.
• Note that the dependence of µhQ,β on β can be eliminated if the prefactor β is put in

front of Q and h.

The next theorem states the local universality in the bulk. We use the notion of universality
by Erdős, Yau et al. (see e.g. [EY12] and the references therein). Let G be the Gaussian
potential G(t) := x2 and recall that the corresponding limiting measure µQ,β is the semicircle
distribution (with a certain variance depending on β). Recall that under mild assumptions on
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Q, there is a measure µQ,β of compact support which is the weak limit of the first correlation
measure of PN,Q,β. Consider the scaled correlation functions

1

µhQ,β(a)k
ρh,kN,Q,β

(
a+

t1

NµhQ,β(a)
, . . . , a+

tk

NµhQ,β(a)

)
, (5)

where a is a point with µhQ,β(a) > 0 and t1, . . . , tk are contained in an N -independent com-
pact interval. Under this scaling, the local density around a will be asymptotically one, in
particular independent of a. For N → ∞, h = 0 and Q = G, the limit of (5) exists and has
been described in terms of a stochastic process in [VV09]. As for general β no nice formula
for this limit is known, we state the following theorem as universality result, comparing the
local correlations of P hN,Q,β with those of the Gaussian β-Ensemble PN,G,β.

Theorem 3. Let h and Q satisfy the assumptions of Theorem 1. Let 0 < ξ ≤ 1/2 and set
sN := N−1+ξ. Then for k = 1, 2, . . . , we have for any a in the interior of the support of
µhQ,β, any a′ in the interior of the support of the semicircle law µG,β and any smooth function

f : Rk −→ R with compact support

lim
N→∞

∫
f(t1, . . . , tk)

[∫ a+sN

a−sN

1

µhQ,β(a)k
ρh,kN,Q,β

(
u+

t1

NµhQ,β(a)
, . . . , u+

tk

NµhQ,β(a)

)
du

2sN

−
∫ a′+sN

a′−sN

1

µG,β(a′)k
ρkN,G,β

(
u+

t1
NµG,β(a′)

, . . . , u+
tk

NµG,β(a′)

)
du

2sN

]
dt1 . . . dtk

= 0.

Remark 4.

• If the inner integrations were not present, the convergence in Theorem 3 would be vague
convergence of the scaled correlation measures. Here an additional small (uniform)
average around the points a and a′ is performed.
• If h is positive semi-definite, then αh in Theorem 3 may be explicitly chosen as αh =

supt∈R−h′′(t).
• The choice of the Gaussian β-Ensemble PN,G,β is just for definiteness, in fact any other

ensemble belonging to the same universality class could be chosen. So far, these are
known to be basically all PN,Q,β with the same β and real analytic Q which leads to a
limiting measure µQ,β of connected support [BEY12].

These results should be compared to those of [GV12]. There we could show for β = 2 under
the same conditions on Q and h a much stronger type of convergence as in Theorem 3. We
proved in [GV12]

lim
N→∞

1

µhQ,β=2(a)k
ρh,kN,Q,β=2

(
a+

t1

NµhQ,β=2(a)
, . . . , a+

tk

NµhQ,β=2(a)

)

= det

[
sin (π(ti − tj))
π(ti − tj)

]
1≤i,j≤k
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uniformly in t1, . . . , tk from any compact subset of Rk and uniformly in the point a from any
compact proper subset of the support of µhQ,β=2. This locally uniform convergence of the

marginal densities was inherited from strong results on universality of unitary invariant (i.e.
β = 2) ensembles (cf. [LL08]). In order to apply these results, we developed a method to
express the correlation functions of the model P hN,Q,β=2 as a probabilistic mixture of unitary

invariant ensembles with potential V +f/N , where V was fixed and f was random. However,
this representation was only possible for negative semi-definite h and an argument involving
complex analysis had to be used to extend the universality for more general h.
So far, the local relaxation flow approach due to Erdős, Schlein and Yau (refined by others)
[ESY11] and applied to β-Ensembles by Bourgade, Erdős and Yau [BEY11, BEY12] is the
only method for showing bulk universality for general β-Ensembles. A remark on some crucial
points of this method is included in Section 4. Their approach actually addresses universality
of gap distributions which implies the weaker form of universality of the correlation measures
as stated in Theorem 3. As we use their method, we obtain the same form of convergence.
If other sufficiently general universality results on β-Ensembles yielding stronger types of
convergence were available, the method of [GV12] could be used to prove Theorem 3 with
stronger forms of convergence. One advantage of the local relaxation flow approach is the
possibility to compare local statistics of eigenvalue ensembles and other, not necessary spectral
ensembles, directly. This allows us to give a short proof of Theorem 3.
Similar in both [GV12] and the present work is the identification of the global behavior of
P hN,Q,β, e.g. Theorem 1. The limiting measure is identified in Section 2 as a (unique) solution
of a certain recursive equation. Using this measure, from Q and h a new potential V is defined
and to P hN,Q,β an invariant ensemble PN,V,β is associated for which P hN,Q,β ∼ exp{U}PN,V,β
holds. In Section 3, a concentration of measure result is shown for U , furthermore Theorem 1
is proved. Section 4 contains the proof of Theorem 3 via the local relaxation flow approach.
We finish with an appendix on some results about equilibrium measures which are needed in
Section 2.

2. The associated invariant ensemble

In this section we determine the limiting measure for our particle system and use this to
construct an ensemble of eigenvalues with the same global and local behaviour. This is
analogous to [GV12]. In order to keep the presentation on the new features of P hN,Q,β self-
contained, we include it here.
Let β > 0, h be a continuous even function, Q a strictly convex symmetric function and
assume that

P hN,Q,β(x) :=
1

ZhN,Q,β

∏
1≤i<j≤N

|xi − xj |β e−N
∑N
j=1Q(xj)−

∑
i<j h(xi−xj), (6)

defines the density of a probability measure on RN , where

ZhN,Q,β :=

∫
RN

∏
1≤i<j≤N

|xi − xj |β e−N
∑N
j=1Q(xj)−

∑
i<j h(xi−xj)dx
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denotes the normalizing constant. We will use the notation

fµ(s) :=

∫
f(t− s)dµ(t), fµµ :=

∫ ∫
f(t− s)dµ(t)dν(s) (7)

for an even function f : R −→ R of sufficient integrability. For the statement of the next
lemma, M1

c will denote the set of compactly supported (Borel) probability measures on R.
Recall that the unique minimizer of the functional

IQ,β(µ) :=

∫
Q(t)dµ(t) +

β

2

∫ ∫
log |s− t|−1 dµ(s)dµ(t)

is called equilibrium measure to the external field Q and β > 0.

Lemma 5. Let h : R −→ R be even, twice differentiable, bounded and such that h′′(t) ≥ −αQ
for all t. Define Th,β : M1

c −→ M1
c , Th,β(µ) as the equilibrium measure to the external field

t 7→ Q(t) + hµ(t) and β.

Then Th,β has a fixed point, i.e. there exists a probability measure µhQ,β which is the equilib-

rium measure to the external field t 7→ Q(t) +
∫
h(t− s)dµhQ,β(s).

Proof. Without loss of generality we only consider the standard case β = 2 and omit the
index β, the general case can be reduced to this case by considering Q/β and h/β.
Recall Schauder’s Fixed Point Theorem which states that each continuous mapping T : C −→ C
of a compact, convex and non-empty subset C of a Hausdorff topological vector space has a
fixed point.
Consider the Hausdorff topological vector spaceM(K) of all signed finite Borel measures on
some compact interval K of R, equipped with the topology of vague convergence. The subset
M1

s(K) of all symmetric Borel probability measures on K is non-empty, convex and compact
by Helly’s Selection Theorem.
The first step in the proof is to show that it follows from h′′(t) ≥ −αQ and the boundedness
of h, that the support of the equilibrium measure to the external field Q(t) + hµ(t) is for all
µ included in a compact interval of R. By Theorem A.6 (in the appendix), the support of
the equilibrium measure for Q(t) + hµ(t) is the smallest compact set K of positive capacity
maximizing the functional

K 7→ FQ+hµ(K) = log cap(K)− 2

∫
Q(t)dωK(t)− 2

∫
hµ(t)dωK(t) (8)

= FQ(K)− 2

∫
hµ(t)dωK(t).

Choosing for K the support suppµQ of the equilibrium measure µQ, we get using |hµ| ≤ ‖h‖∞
the simple inequality

FQ+hµ(suppµQ) ≥ FQ(suppµQ)− 2‖h‖∞ ∈ R. (9)

It is easy to see that we have (hµ)′′ = (h′′)µ. By the condition h′′(t) ≥ −αQ, Q(t) + hµ(t)
is convex for each compactly supported µ. By Theorem A.6, the support of Th(µ) is a
symmetric interval, say [−lµ, lµ]. Using Lemma A.1, we can rewrite (8) for an arbitrary
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symmetric interval [−l, l] as

FQ+hµ([−l, l]) = log(l/2)− 2

∫ l

−l
Q(t)

1

π
√
l2 − t2

dt− 2

∫ l

−l
hµ(t)

1

π
√
l2 − t2

dt. (10)

Since Q is strictly convex and symmetric, we have Q(t) ≥ αQt2 +C for some C ∈ R and (10)
implies (using that the variance of ω[−l,l] is l2/2) the inequality

FQ+hµ([−l, l]) ≤ log(l/2)− αQl2 − C + 2‖h‖∞, (11)

which holds for any µ. From (9) and (11) we see that

FQ+hµ(suppµQ) > FQ+hµ([−l, l]),

for all l > L for some µ-independent L. Hence lµ ≤ L for all compactly supported µ.
Thus Th maps the set M1

s(K) into itself, if K is chosen large enough. It remains to show
continuity. We will show that Th maps converging sequences to converging sequences. Let
(µn)n ⊂ M1(K) be a sequence converging vaguely, or equivalently, weakly to a probability
measure µ. Denote Th(µn) =: νn. Then the sequence of external fields Vn(t) := Q(t) +hµn(t)
converges pointwise to V (t) := Q(t) +hµ(t). Since by Theorem A.4, the equilibrium measure
does not depend on values of the external field outside of its support, we can assume this
convergence to be uniform. Indeed, as h′ is bounded on the compact set K by some constant
C, we have

∣∣h′µn∣∣ ≤ C. It follows that the sequence (hµn)n is uniformly Lipschitz and
hence equicontinuous. Thus the sequence (Vn)n is also equicontinuous. Since their domain
is a compact and Vn converges pointwise, the equicontinuity implies uniform convergence by
Arzela-Ascoli’s Theorem.
Because all νn are supported on the same compact set, it follows that (νn)n is tight and hence
has a weakly converging subsequence (νnm)m. We will prove that this limit measure, say ν ′,
is in fact ν = Th(µ), the measure belonging the external field V , and does not depend on the
particular subsequence. It follows that the sequence (νn)n converges to ν weakly. From the
uniform convergence of Vn towards V it follows by Theorem A.5 1. that

Uνnm (s) =

∫
log |t− s|−1 dνnm(t)

converges uniformly (on C) towards Uν(s) :=
∫

log |t− s|−1 dν(t). On the other hand, by
Theorem A.5 we have for all s ∈ C except a set of zero capacity

lim
m→∞

Uνnm (s) = Uν
′
(s) =

∫
log |t− s|−1 dν ′(t),

which yields Uν(s) = Uν
′
(s) almost everywhere on C and hence ν = ν ′ by Theorem A.5,

implying that the sequence (νn)n converges weakly to ν. �

Remark 6 (Uniqueness). Uniqueness of the fixed point will follow for the class of ensem-
bles from Theorem 1. For those ensembles we will prove that the first correlation measure
converges weakly to any fixed point, thereby showing uniqueness.

We will now use Lemma 5 to construct an associated invariant ensemble. Let h be as in
Lemma 5. Choose a fixed point µhQ,β as in Lemma 5. We will stick to this measure from now
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on and write µ instead of µhQ,β. Using notation (7), we make the Hoeffding type decomposition∑
i<j

h(xi − xj)

= −N
2

2
hµµ −

N

2
h(0) +N

N∑
j=1

hµ(xj) +
1

2

( N∑
i,j=1

h(xi − xj)− [hµ(xi) + hµ(xj)− hµµ]
)

= −N
2

2
hµµ −

N

2
h(0) +N

N∑
j=1

hµ(xj)− U(x), where (12)

U(x) := −1

2

( N∑
i,j=1

h(xi − xj)− [hµ(xi) + hµ(xj)− hµµ]
)
. (13)

Now we can rewrite P hN,Q,β as

P hN,Q,β(x) =
1

ZN,V,β,U

∏
1≤i<j≤N

|xi − xj |β e−N
∑N
j=1 V (xj)+U(x), (14)

where we defined the external field

V (t) := Q(t) + hµ(t)

and absorbed the constant exp{−(N2/2)hµµ− (N/2)h(0)} into the new normalizing constant

ZN,V,β,U . We will often use this representation of P hN,Q,β. The proofs of Theorems 1 and 3

rely on comparison of P hN,Q,β with the invariant ensemble

PN,V,β(x) =
1

ZN,V,β

∏
1≤i<j≤N

|xi − xj |β e−N
∑N
j=1 V (xj). (15)

3. Concentration of U

This section is similar to Section 4 in [GV12] except for the proof of Theorem 1. As several
arguments of this section are needed later, we include it in the presentation.
A key tool will be the following well-known concentration of measure inequality ([AGZ10,
Section 4.4]).

Theorem 7. Let Q be two times differentiable with Q′′ ≥ c > 0. Then we have for any
Lipschitz function f and any ε > 0

PN,Q,β
(∣∣ N∑
j=1

f(xj)− EN,Q,β
N∑
j=1

f(xj)
∣∣ > ε

)
≤ 2 exp

{
− cε2

2 |f |L 2

}
and

EN,Q,β exp
{
ε
( N∑
j=1

f(xj)− EN,Q,β
N∑
j=1

f(xj)
)}
≤ exp

{ε2 |f |2L
2c

}
,

where we denote the Lipschitz constant of f by |f |L.

The following is a special case of a result in [Shc11] (see also [KS10]). By µQ,β we will denote
the equilibrium measure to Q (and β).
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Proposition 8. Let Q be a convex external field on R which is real analytic in a neighborhood
of supp(µQ,β). Let f be a function whose third derivative is bounded on a neighborhood of
supp(µQ,β). Then∣∣EN,Q,β N∑

j=1

f(xj)−N
∫
fdµQ,β

∣∣ ≤ C(‖f‖∞ + ‖f (3)‖∞),

where C does not depend on N or f and ‖ · ‖∞ denotes the bound on the neighborhood of
supp(µQ,β).

Theorem 7 and Proposition 8 yield immediately

Corollary 9. Let Q be a real analytic external field with Q′′ ≥ c > 0. Then for any Lipschitz
function f whose third derivative is bounded on a neighborhood of supp(µQ,β), we have for
any ε > 0

EN,Q,β exp
{
ε
( N∑
j=1

f(xj)−N
∫
f(t)dµQ,β(t)

)}
≤ exp

{ε2 |f |2L
2c

+ εC(‖f‖∞ + ‖f (3)‖∞)
}
.

The idea is to reduce concentration of the bivariate statistic U to concentration of linear
statistics. To this end, we give an alternative representation of U using Fourier techniques.
A similar idea is used in [LP08].

Lemma 10. We have

U(x) = − 1

2
√

2π

∫ ∣∣∣◦uN (t, x)
∣∣∣2 ĥ(t)dt, where

◦
uN (t, x) :=

N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s) +
√
−1

N∑
j=1

sin(txj), ĥ(t) :=
1√
2π

∫
R
e−itsh(s)ds.

Proof. Recall from (13) that

U(x) = −1

2

( N∑
i,j=1

h(xi − xj)− [hµ(xi) + hµ(xj)− hµµ]
)
. Note that

1

2

∑
j,k

h(xj − xk) =
1

2
√

2π

∫ ∑
j,k

ei(xj−xk)t ĥ(t)dt =
1

2
√

2π

∫
|uN (t, x)|2 ĥ(t)dt,

with uN (t, x) :=
∑N

j=1 e
itxj . Writing

◦
uN (t, x) := uN (t, x) − N

∫
eitsdµ(s), it is not hard to

check that

U(x) = − 1

2
√

2π

∫ ∣∣∣◦uN (t, x)
∣∣∣2 ĥ(t)dt. (16)

�

A trivial but useful observation is

EhN,Q,βf(x) = (ZN,V,β/ZN,V,β,U )EN,V,βf(x)eU(x).

The next proposition establishes concentration of U .
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Proposition 11. If the constant αQ is large enough, then there exist constants C1, C2 > 0
such that for all N

0 < C1 ≤ ZN,V,β,U/ZN,V,β = EN,V,β exp
{
U(x)

}
≤ C2.

Proof. By Jensen’s inequality we get

EN,V,β exp
{
U(x)

}
≥ exp

{
EN,V,βU(x)

}
.

Using Lemma 10 we show that the expectation of U is bounded in N . Fubini’s Theorem gives

− EN,V,βU(x) =
1

2
√

2π

∫
EN,V,β

∣∣∣◦uN (t, x)
∣∣∣2 ĥ(t)dt

=
1

2
√

2π

∫ EN,V,β
∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣2 + EN,V,β|

N∑
j=1

sin(txj)|2
 ĥ(t)dt.

By Corollary 9, the terms in the parenthesis are bounded by a polynomial in t, as

|cos(t·)|L , |sin(t·)|L ≤ t and ‖cos(t·)(3)‖∞, ‖sin(t·)(3)‖∞ ≤ Ct3. Hence, ĥ being a Schwartz
function, we have EN,V,βU(x) ≥ −C ′ for some C ′ > 0. Thus the lower bound follows choosing
C1 := exp(−C ′).
For the upper bound recall that since h is even, ĥ is real-valued. Define ĥ+(y) := max{0, ĥ(y)}
and ĥ−(y) := max{0,−ĥ(y)} such that ĥ = ĥ+ − ĥ−. For ĥ− = 0, which corresponds to the

case of a positive semi-definite h, there is nothing to prove, so assume that ĥ− 6= 0.

Introducing H− :=
(
ĥ−
)1/2 ≥ 0, Jensen’s inequality and Tonelli’s Theorem give

EN,V,β exp
{
− (2
√

2π)−1

∫
ĥ(t)

∣∣◦uN (t, x)
∣∣2dt} ≤ EN,V,β exp

{
(2
√

2π)−1

∫
H−(t)2

∣∣◦uN (t, x)
∣∣2dt}

= EN,V,β exp
{

(2
√

2π)−1
∥∥H−∥∥L1

∫ (
H−(t)

/∥∥H−∥∥L1

)
H−(t)

∣∣◦uN (t, x)
∣∣2dt}

≤
∫ (

H−(t)
/∥∥H−∥∥L1

)
EN,V,β exp

{
(2
√

2π)−1
∥∥H−∥∥L1H−(t)

∣∣◦uN (t, x)
∣∣2}dt. (17)

Abbreviating Kh := (2
√

2π)−1
∥∥H−∥∥L1 and using the Cauchy-Schwarz inequality, we find

EN,V,β exp
{
KhH−(t)

∣∣◦uN (t, x)
∣∣2} (18)

≤ E1/2
N,V,β exp

{
2KhH−(t)

∣∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣∣2} (19)

× E1/2
N,V,β exp

{
2KhH−(t)

∣∣∣ N∑
j=1

sin(txj)
∣∣∣2}. (20)

Considering only (19), we have by Corollary 9 for any ε > 0,

EN,V,β exp
{
ε ·
√

2KhH−(t)
( N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
)}

≤ exp
{
ε2 · 2KhH−(t)t2(2αV )−1 + ε

√
2KhH−(t)C(1 + t3)

}
, (21)
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where αV := mint V
′′(t) > 0 and C does not depend on t or N . For αQ large enough (hence

αV large enough), we have 2KhH−(t)t2(2αV )−1 < 1/4 for all t. Since H−(t) = ĥ
1/2
− (t) is

decaying rapidly,
√

2KhH−(t)C(1 + t3) is bounded in t. Summarizing, if αQ is large enough,
we can bound (21) by

exp{cε2 + εC}

with 0 < c < 1/4 and c, C do not depend on N or t. Thus we have

EN,V,β exp
{

2KhH−(t)
∣∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣∣2}

=
1

2π

∫
R

exp
{
ε ·
√

2KhH−(t)
( N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
)}

exp{−ε2/4}dε

≤ 1

2π

∫
R

exp{cε2 + εC} exp{−ε2/4}dε ≤ C ′ for some C ′.

We conclude that (18) is bounded in N as long as αQ is large enough. Finally, it follows from
(17) that

EN,V,β exp
{
−
∫
ĥ(t)

∣∣◦uN (t, x)
∣∣2dt} ≤ C

for some constant C > 0 independent of N . This proves the upper bound. �

Remark 12. The proof of Proposition 11 actually shows that for each λ > 0 there is a
threshold αh(λ) > 0 and constants C1, C2 (depending on λ and αh) such that

0 < C1 < EN,V,β exp{λU(x)} ≤ C2, if αQ ≥ αh(λ).

Proof of Theorem 1. It remains to show that the fixed point µ, whose existence was obtained
in Lemma 5, is unique and indeed the limit of the first correlation function. We consider a
Lipschitz function f : R −→ R with three continuous derivatives and estimate for any ε > 0

P hN,Q,β(|N−1
N∑
j=1

f(xj)−
∫
fdµ| > ε) = (ZN,V,β/ZN,V,β,U )EN,V,βeU(x)

1{|N−1
∑N
j=1 f(xj)−

∫
fdµ|>ε}.

By Hölder’s inequality and Remark 12, we have

P hN,Q,β(|N−1
N∑
j=1

f(xj)−
∫
fdµ| > ε) ≤ C

(
PN,V,β(|N−1

N∑
j=1

f(xj)−
∫
fdµ| > ε)

)c
for some c, C > 0. By Corollary 9, this last probability converges for any ε > 0 to 0
exponentially fast as N →∞. We conclude with Lebesgue’s Theorem that

lim
N→∞

EhN,Q,β|N−1
N∑
j=1

f(xj)−
∫
fdµ| = 0 and hence lim

N→∞
EhN,Q,βN−1

N∑
j=1

f(xj) =

∫
fdµ.

As convergence for smooth Lipschitz functions determines weak convergence, the weak con-
vergence of the first correlation measure follows. As the limit of weak convergence is unique,
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this shows uniqueness of the fixed point in Lemma 5. The existence and positivity of the
continuous density of µ is clear by Theorem A.7 as V is real-analytic and strictly convex. �

4. Proof of Theorem 3

In this section we use the local relaxation flow approach developed by Erdős, Yau, Schlein et.
al. to establish universality of the local bulk correlations. First we introduce some notation
from [BEY11].
Let k be fixed. Let G : Rk −→ R be a smooth function with compact support and m =
(m1, . . . ,mk) with mj being positive integers. Define

Gi,m(x) := G(N(xi − xi+m1), . . . , N(xi+mk−1
− xi+mk)).

The Dirichlet form of a smooth test function f : RN −→ R w.r.t. a probability measure dω
on RN is defined as

Dω(f) :=
1

2N

N∑
j=1

∫ (
∂xjf

)2
dω.

Let f be a probability density function w.r.t. dω. The (relative) entropy of f w.r.t. dω is
defined as

Sω(f) :=

∫
f log fdω.

We will use the following general theorem.

Proposition 13. [BEY11, Lemma 5.9] Let G : Rk −→ R be bounded and of compact support.
Let dω be a probability measure on {x : x1 < x2 < · · · < xN} ⊂ RN given by

dω =
1

Z
e−βNĤ(x)dx, Ĥ(x) = H0(x)− 1

N

∑
i<j

log |xj − xi|

with the property that ∇2H0 ≥ τ−1 holds for some positive constant τ . Let qdω be another
probability measure with smooth density q. Let J ⊂ {1, 2, . . . , N −mk−1} be a set of indices.
Then for any ε1 > 0 we have∣∣∣∣∣ 1

|J |
∑
i∈J

∫
Gi,m qdω −

1

|J |
∑
i∈J

∫
Gi,mdω

∣∣∣∣∣ ≤ C
√
N ε1

Dω(
√
q)τ

|J |
+ C

√
Sω(q)e−cN

ε1
.

In our application we will choose dω = PN,V,β and q = (ZN,V,β/ZN,V,β,U ) exp{U}. If αQ is

large enough, then V is strongly convex, hence τ = 1/αV . By the symmetry of P hN,Q,β and

PN,V,β, it is equivalent to restrict the measure to the simplex {x : x1 < x2 < · · · < xN} and
multiply by N ! . From [EY12, Theorem 2.3] we have that

Sω(q) ≤ CDω(
√
q).

It is thus sufficient to prove that Dω(
√
q) is bounded in N as J will be chosen such that

|J | ∼ N in order to identify the bulk correlations.
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Remark 14 (On the local relaxation flow approach). To briefly explain the essence of this
method due to Erdős, Schlein, Yau and others (see e.g. [EY12] for references and a complete
review), let us consider two measures as in Proposition 13, dω and qdω and their statistics∫
gdω and

∫
g qdω for some test function g. Assume that one can define a Markov process

on RN in terms of the Dirichlet form Dω (or the formal generator LN := 1
2N∆− 1

2(∇Ĥ)∇),
having dω as stationary distribution. Assume that the process has the initial distribution
qdω and denote the evolution of the density w.r.t. dω by (ft)t≥0, f0 = q, f∞ = 1. Then one
can write ∫

g qdω −
∫
gdω =

( ∫
g qdω −

∫
g ftdω

)
+
( ∫

g ftdω −
∫
gdω

)
,

which corresponds to running the process up to time t. If the process is ergodic and the time
t is large enough,

∫
g ftdω will be close to the equilibrium

∫
g dω. If this t is still “small”,

i.e. the convergence to the stationary distribution is fast, then the distance between
∫
g qdω

and
∫
g ftdω should be not too big. These distances are measured in terms of Dirichlet

form and entropy of dω. These estimates are due to the Bakry-Emery method which yields
ergodicity or relaxation making use of the strict convexity of the Hamiltonian, i.e. of the
bound ∇2H0 ≥ τ−1. It turns out that the constant τ is the time scale for the relaxation
to equilibrium, meaning that e.g. Sω(ft) ≤ e−t/τSω(f0). Here we tacitly used that the

logarithmic part of the Hamiltonian Ĥ is convex, therefore does not increase the relaxation
time. However, one crucial observation is that from the trivial bound

〈v,∇2Ĥ(x)v〉 ≥ 1

τ
‖v‖2 +

1

N

∑
i<j

(vi − vj)2

(xi − xj)2

one can infer that the relaxation is much faster in the directions (vi − vj) provided that xi
and xj are close. Indeed, the mean distance between neighboring eigenvalues is of order 1/N ,
hence the convexity bound for the Hamiltonian should be locally of order N , therefore yielding
a time to the local equilibrium of order 1/N whereas the time to the global equilibrium is of
order 1. This informal reasoning can be captured by choosing test functions like Gi,m which
depend only on eigenvalue differences in the local scaling (i.e. multiplied by N) and vanish
whenever two eigenvalues are not close to each other. By exploiting these features of Gi,m
and some estimates, one arrives at Proposition 13. For arbitrary test functions g, one would
get basically the same estimate except for the quantity |J | ∼ N which divides Dω(

√
q).

One problem with this idea is that the existence of the process associated to the Dirichlet
form is not clear for β ∈ (0, 1). For β ≥ 1, the repulsion is strong enough to prevent
collision between the eigenvalues but for β < 1 the probability of explosion is positive. This
problem was overcome in [EKYY12] by smoothing the singular logarithmic term and using
the approach above for the corresponding process.
In most applications the method sketched above was not directly used to prove bulk univer-
sality because the quantity Dω(

√
q)/ |J | could not be estimated to decay as N → ∞. To

overcome this difficulty, dω was modified by adding another strongly convex potential to the
Hamiltonian which confined the eigenvalues xj near their classical positions γj which are de-
fined by the relation j = N

∫ γj
−∞ dµ, where µ is the equilibrium measure of the ensemble. This

additional convexification was shown to slow down the relaxation time to the global equilib-
rium τ such that τ ∼ N−ε which was then enough to prove bulk universality. To show that
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the local statistics are not influenced by this modification of the ensemble, a strong bound on
the rigidity of the eigenvalues is needed, which means informally speaking concentration of
the eigenvalues around their classical positions. This strategy of proving bulk universality has
proven very useful whenever strong bounds on the rigidity of the eigenvalues are available.
Much effort in the works of Erdős, Yau et al. has been made to establish these bounds.
In our application, no additional convexification of the Hamiltonian is needed as we can
effectively estimate the Dirichlet form in our case. This is due to the fact that dω and qdω
have the same global limit and we have concentration of U under dω = PN,V,β.

Proposition 15. Let DN,V,β denote the Dirichlet form w.r.t. PN,V,β and
q = (ZN,V,β/ZN,V,β,U ) exp{U}. Then there is a constant C such that we have for αQ large
enough

DN,V,β(
√
q) ≤ C for all N.

Proof. The ratio ZN,V,β/ZN,V,β,U is bounded by Proposition 11 and therefore negligible. We
have by Hölder’s inequality for ε > 0

DN,V,β(
√
q) ≤ C 1

2N

N∑
l=1

EN,V,β
(
∂xl exp{1

2
U(x)}

)2
= C

1

8N

N∑
l=1

EN,V,β exp{U(x)}
(
∂xlU(x)

)2
≤ C

(
EN,V,β exp{(1 + ε)U(x)}

)1/(1+ε) 1

8N

N∑
l=1

(
EN,V,β

∣∣∂xlU(x)
∣∣2(ε+1)/ε)ε/(ε+1)

.

Again by Proposition 11,
(
EN,V,β exp{(1 + ε)U(x)}

)1/(1+ε)
is bounded in N . In order to

bound the second term, recall that

U(x) = − 1

2
√

2π

∫ (∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣2 + |

N∑
j=1

sin(txj)|2
)
ĥ(t)dt.

In the following we only treat the cosine term, the term involving the sine can be estimated
analogously. We have

∣∣∂xl ∫ (∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣2ĥ(t)dt

∣∣2(ε+1)/ε

=
∣∣2∫ ( N∑

j=1

cos(txj)−N
∫

cos(ts)dµ(s)
)
t sin(txl)ĥ(t)dt

∣∣2(ε+1)/ε

≤ C
∫ ∣∣ N∑

j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣2(ε+1)/ε |t|2(ε+1)/ε

∣∣ĥ(t)
∣∣dt (22)

where the last inequality is derived by first applying the triangle inequality and then using
Jensen’s inequality.

Taking now expectations, we get from Corollary 9 and the strong decay of ĥ that the expec-
tation of (22) is bounded in N . This gives the claimed bound. �
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Proof of Theorem 3. From Propositions 13 and 15 we have that the statistics 1
|J |
∑

i∈J EhN,Q,βGi,m
and 1

|J |
∑

i∈J EN,V,βGi,m coincide in the limit N →∞, as long as limN→∞
Nε1

|J | = 0 for some

ε1 > 0. It is a standard argument ([ESYY12, Section 7]) to infer from this that also the cor-
relation measures of P hN,Q,β and PN,V,β coincide in the sense of Theorem 3. The universality

of these correlation measures is the universality result [BEY11, Corollary 2.2] which precisely
states that the correlation measures of PN,Q1,β and PN,Q2,β have the same limit (in the sense
of Theorem 3) for any real analytic and strongly convex Q1, Q2 with αQ1 , αQ2 > 0. �

Appendix A. Equilibrium Measures with External Fields

In this appendix, we recall some results about equilibrium measures, mainly from the book
by Saff and Totik [ST97, Section I.1]. The following can be found in [ST97, Section I.1]. Let
M1(Σ) denote the set of Borel probability measures on a set Σ. Define for Σ ⊂ C compact
the logarithmic energy of µ ∈M1(Σ) as

I(µ) :=

∫ ∫
log |z − t|−1 dµ(z)dµ(t) (23)

and the energy V of Σ by V := infµ∈M1(Σ) I(µ). It turns out that V is finite or ∞ and in
the finite case there is a unique measure ωΣ which minimizes (23). This measure ωΣ is called
equilibrium measure of Σ and the quantity cap(Σ) := e−V is called capacity of Σ. For an
arbitrary Borel set Σ we define the capacity of Σ as

cap(Σ) := sup{cap(K) : K ⊂ Σ compact}.

Lemma A.1. If Σ = [−l, l], l ≥ 0, then cap(Σ) = l/2 and the equilibrium measure is the
arcsine distribution with support [−l, l]:

dωΣ(t) =
1

π
√
l2 − t2

dt, t ∈ [−l, l].

ωΣ has mean 0 and variance l2/2.

Proof. See [ST97, Section I.1]. �

Definition A.2. Let Σ ⊂ R be closed. Let Q : Σ −→ [0,∞] satisfy

a) Q is lower semicontinuous,
b) Σ0 := {t ∈ Σ : Q(t) <∞} has positive capacity,
c) if Σ is unbounded, then lim

|t|→∞,t∈Σ
Q(t)− log |t| =∞.

If Q satisfies these properties, we call it external field on Σ and W = e−Q its corresponding
weight function.

Furthermore, define for µ ∈M1(Σ) the energy functional

IQ(µ) :=

∫
Q(t)dµ(t) +

∫ ∫
log |s− t|−1 dµ(s)dµ(t). (24)

Remark A.3. In [ST97] the authors define the energy functional to be (in our notation) I2Q

instead of IQ. It is more convenient for our purposes to use this definition. We note that
under this change qualitative results from [ST97] remain the same but quantitative results
involving Q have to be changed by a factor 2 or 1/2, respectively.
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IQ(µ) might be ∞, but the following theorem holds. The support of a measure µ will be
denoted as supp(µ).

Theorem A.4. Let Q be an external field on Σ.

a) There is a unique probability measure µQ ∈M1(Σ) with

IQ(µQ) = inf
µ∈M1(Σ)

IQ(µ). (25)

b) µQ has a compact support.

c) Let Q̃ be an external field on Σ such that Q̃ = Q on a compact set K with supp(µQ) ⊂ K
and Q̃(t) =∞ for t /∈ K. Then µ

Q̃
= µQ.

Proof. Statements 1) and 2) can be found in [ST97, Theorem I.1.3], 3) follows from [ST97,
Theorem I.3.3] (also see remark on page 48 in [ST97]). �

µQ is called the equilibrium measure for Q. The next theorem summarizes properties of the
logarithmic potential

Uµ(z) :=

∫
log |z − t|−1 dµ(t).

Theorem A.5.

a) Let Q and Q̃ be external fields on Σ such that
∣∣Q− Q̃∣∣ ≤ ε on Σ. Then for all z ∈ C∣∣UµQ(z)− UµQ̃(z)
∣∣ ≤ 2ε.

b) Let K ⊂ R be compact and (µn)n be a sequence in M1(K) converging weakly to a
probability measure µ. Then for a.e. z ∈ C (w.r.t. the Lebesgue measure on C)

lim inf
n→∞

Uµn(z) = Uµ(z).

c) If µ and ν are two compactly supported probability measures and their logarithmic
potentials Uµ and Uν coincide almost everywhere on C, then µ = ν.

Proof. Statement 1. is contained in [ST97, Corollary I.4.2], statement 2. is [ST97, Theorem
I.6.9] and assertion 3. [ST97, Corollary II.2.2]. �

We also need a characterization of the support of the equilibrium measure.

Theorem A.6. Let Q be an external field on Σ.

a) For a compact set K of positive capacity define the functional

FQ(K) := log cap(K)− 2

∫
QdωK .

For any compact K of positive capacity we have FQ(K) ≤ FQ(supp(µQ)). Furthermore,
if K is compact and of positive capacity and such that FQ(K) = FQ(supp(µQ)), then
supp(µQ) ⊂ K.

b) If Q is convex, then supp(µQ) is an interval.
c) If Q is even, then supp(µQ) is even.

Proof. For statement 1. see [ST97, Theorem IV.1.5], for statements 2. and 3. [ST97, Theorem
IV.1.10]. �
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Theorem A.7.

a) Let Q be an external field on Σ. If Q is finite on supp(µQ) and locally of class C1+ε for
some ε > 0 (which means that Q is continuously differentiable and the derivative Q′ is
Hölder continuous with parameter ε), then µQ a continuous density on the interior of
supp(µQ).

b) If Q has two Lipschitz derivatives and is strictly convex, then supp(µQ) =: [a, b] and
the density of µQ can be represented as

dµ(t)

dt
= r(t)

√
(t− a)(b− t)1[a,b](t), (26)

where r can be extended into an analytic function on a domain containing [a, b] and
r(t) > 0 for t ∈ [a, b]. In particular, density is positive on (a, b).

Proof. Statement 1. is [ST97, Theorem IV.2.5], for assertion 2. see e.g. the appendix of the
paper by McLaughlin and Miller [MM08]. �
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