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Let us a consider a diffusion process ξt in Rd with jumps (see, e.g., [3], [15], [16], and
[26]) having time-dependent generator

Lu(x, t) = L0u(x, t) +

∫
Rd\{0}

[u(x+ y, t)− u(x, t)− 〈y,∇xu(x, t)〉] νx,t(dy),

where

L0u(x, t) = aij(x, t)∂xi∂xju(x, t) + bi(x, t)∂xiu(x, t)

with summation over repeated indices, 〈 · , · 〉 is the inner product in Rd, ∇xu(x, t) =
(∂x1u(x, t), . . . , ∂xdu(x, t)). The result of this work gives a simple sufficient condition for
the absolute continuity of the transition probabilities P (t, dy) of this diffusion (distri-
butions of ξt) with respect to Lebesgue measure for almost all t. It says that, under
minimal natural assumptions about the diffusion matrix A = (aij), the drift b = (bi), and
the intensity measure νt, the space-time measure (detA)1/(d+1)P (t, dy) dt is absolutely
continuous on Rd × (0, T ). Hence P (t, dy) is absolutely continuous for almost every t if
detA > 0. Moreover, our result is concerned with a parabolic inequality related to the
Fokker–Planck–Kolmogorov equation

∂tP = L∗P

satisfied by the transition probabilities. In particular, it even does not assume existence of
a diffusion. The case without jumps (ν = 0) was considered in [7]. The main feature of our
hypotheses (as in [7]) is that they allow rather singular coefficients, no local boundedness
or Lebesgue integrability is assumed. Informally the conclusion is that the condition
known to be sufficient for absolute continuity without jumps remains sufficient in the
presence of jumps. Certainly, this conclusion does not come as a surprise and is quite
expected for the experts, but the main point is to justify this under minimal possible
assumptions, which is not straightforward, as we shall see. Under considerably less general
assumptions (in particular, including existence of certain stochastic integrals) a result of
this type for the space-time measure can be derived from [1], [2], and [21] (although
formally is not stated there), where Krylov-type estimates of stochastic integrals were
derived; another difference of a more principal character between our framework and that
of [1], [2], and [21] is the fact that we deal with an inequality (in place of equations)
defined in the weak sense and involving only the second order part of the operator. It
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should be noted that there are other types of sufficient conditions that are expressed either
entirely in terms of the jump part and apply without A or involve the Malliavin calculus
(which requires smoothness of the coefficients) to give absolute continuity in the case of
degenerate A (see [4], [6], [9], [10], [12], [13], [19], [20], [22], [23], [24], and [27]). Existence
of densities in the case of absolutely continuous initial distributions is considered in [28];
in our setting no initial distribution is involved since the parabolic equation (or inequality)
is considered on Rd × (0, T ).

We consider a more general situation. Why it covers the previous case will be explained
in Example 2. Let T > 0 be fixed. Suppose that for every (x, t) ∈ Rd × (0, T ) we are
given a nonnegative symmetric matrix A(x, t) = (aij(x, t))1≤i,j≤d and a locally bounded
nonnegative Borel measure K(x, t, dy) on Rd \ {x}.

We assume that for every (x, t) ∈ Rd × (0, T ) and every ψ ∈ C∞0 (Rd) the mapping

(x, t) 7→
∫
Rd\{x}

(|x− y| ∧ 1)2 ψ(y)K(x, t, dy)

is Borel measurable, where α ∧ β = min(α, β) and | · | is the norm in Rd.
A function ϕ ∈ C∞(Rd × Rd) with 0 ≤ ϕ ≤ 1 is called a local unit if

(i) ϕ(x, y) = 1 for every (x, y) in a neighborhood of the diagonal x = y,

(ii) for every ball U ⊂ Rd there exists a ball U ′ ⊂ Rd such that the mappings
y 7→ ϕ(x, y), where x ∈ U , have support in U ′.

Let us fix such a function ϕ. Note that ϕ need not be symmetric.
Let U(x,R) denote the closed ball of radius R centered at x in Rd.
For every u ∈ C∞0 (Rd × (0, T )) let

Au(x, t) =
d∑

i,j=1

aij(x, t)∂xi∂xju(x, t),

Ku(x, t) =

∫
Rd\{x}

[u(y, t)− u(x, t)ϕ(x, y)− 〈y − x,∇xu(x, t)〉ϕ(x, y)]K(x, t, dy).

Our main result is the following theorem. Let C∞0 (Rd × (0, T )) denote the class of all
infinitely differentiable functions on Rd × (0, T ) with compact support.

Theorem 1. Assume that a nonnegative locally finite Borel measure µ on Rd × (0, T ) is
such that aij ∈ L1

loc(µ), for every ψ ∈ C∞0 (Rd) the mapping

(x, t) 7→
∫
Rd\{x}

(|x− y| ∧ 1)2ψ(y)K(x, t, dy)

is integrable with respect to µ on Rd × (0, T ), and for every compact set Q ⊂ Rd × (0, T )
there exists a constant C > 0 such that∫

Rd×(0,T )
[∂tu+Au+Ku] dµ ≤ C

(
max
x,t
|∇xu(x, t)|+ max

x,t
|u(x, t)|

)
(1)

for all nonnegative functions u ∈ C∞0 (Rd × (0, T )) with suppu ⊂ Q. Then we have

(detA)1/(d+1) ·µ = % dx dt, where % ∈ L(d+1)′

loc (Rd× (0, T )), (d+ 1)′ := (d+ 1)/d = 1 + 1/d.

Proof. The method of our proof is similar to [7, Theorem 3.1], but some additional tech-
nicalities arise. Let us fix a nonnegative function ζ ∈ C∞0 (Rd × (0, T )) of the form
ζ(x, t) = η(x)θ(t), where η ∈ C∞0 (Rd), θ ∈ C∞0 ((0, T )), supp η ⊂ U(x0, R

′), x0 ∈ Rd,
supp θ ⊂ J , J is a closed interval in (0, T ), positive numbers R > R′ are such that for
every x in the ball U(x0, R

′) the support of y 7→ ϕ(x, y) belongs to U(x0, R).



3

Set u(x, t) = h(x, t)ζ(x, t), where h is a nonnegative function in C∞(U(x0, R)×J), i.e.,
h is C∞ in a neighborhood of the compact set W := U(x0, R)× J . Note that

u(y, t)− u(x, t)ϕ(x, y)− 〈y − x,∇xu(x, t)〉ϕ(x, y) =

= [h(y, t)− h(x, t)− 〈y − x,∇xh(x, t)〉]ϕ(x, y)ζ(x, t)+

+ h(y, t)ζ(y, t)(1− ϕ(x, y))+

+ h(y, t)ϕ(x, y)[ζ(y, t)− ζ(x, t)− 〈y − x,∇xζ(x, t)〉]+
+ (h(y, t)− h(x, t))ϕ(x, y)〈y − x,∇xζ(x, t)〉.

Let us now assume that h is convex with respect to x in U(x0, R). This means that

h(y, t)− h(x, t)− 〈y − x,∇xh(x, t)〉 ≥ 0.

Therefore,

u(y, t)− u(x, t)ϕ(x, y)− 〈y − x,∇xu(x, t)〉ϕ(x, y) ≥
≥ −ζ(y, t)(1− ϕ(x, y)) max

(x,t)∈W
|h(x, t)|−

− ϕ(x, y)|ζ(y, t)− ζ(x, t)− 〈y − x,∇xζ(x, t)〉| max
(x,t)∈W

|h(x, t)|−

− |x− y|2ϕ(x, y)|∇xζ(x, t)| max
(x,t)∈W

|∇xh(x, t)|.

The next step is to show that there exists a constant C1 > 0 such that∫
Rd×(0,T )

Ku(x, t) dµ ≥ −C1

(
max

(x,t)∈W
|∇xh(x, t)|+ max

(x,t)∈W
|h(x, t)|

)
. (2)

To this end we observe that there is a nonnegative function ψ ∈ C∞0 (Rd) such that

ζ(y, t)(1− ϕ(x, y)) + ϕ(x, y)|ζ(y, t)− ζ(x, t)− 〈y − x,∇xζ(x, t)〉|+
+ |x− y|2ϕ(x, y)|∇xζ(x, t)| ≤ (|x− y| ∧ 1)2ψ(y).

This can be verified separately for each term. Since by our choice ζ(y, t) = η(y)θ(t), we can
deal with η(y) in place of ζ(y, t). The first term is estimated by using Taylor’s expansion
and the fact that ϕ− 1 vanishes at the diagonal with all derivatives. Taylor’s expansion
also helps to handle the second term, but here one has to consider x belonging to a ball U
containing the neighborhood of radius 1 around supp η, and in this case condition (ii) on
ϕ applies; for other x and y with |y − x| ≤ 1 the second term vanishes and if |y − x| > 1,
then this term is estimated by η(y) maxt θ(t). The last term is estimated even simpler.
Hence we obtain (2). It is clear that

∂tu+Au = [∂th+Ah]ζ + [∂tζ +Aζ]h+ 2〈A∇xh,∇xζ〉.
Hence there exists a constant C2 > 0 (depending on ζ but not on h) such that∫
Rd×(0,T )

[∂tu+Au] dµ ≥
∫
Rd×(0,T )

[∂th+Ah]ζ dµ−C2

(
max

(x,t)∈W
|∇xh(x, t)|+ max

(x,t)∈W
|h(x, t)|

)
.

Summing the obtained estimates and using condition (1) we obtain∫
Rd×(0,T )

[∂th+Ah]ζ dµ ≤ C3

(
max

(x,t)∈W
|∇xh(x, t)|+ max

(x,t)∈W
|h(x, t)|

)
. (3)

We shall now construct a suitable function h. According to Krylov’s result (see [17,
Theorem 2] or [18, Chapter III, § 2]), there exist constants C(R, d) > 0 and κ(R, d) > 0
such that for every nonnegative function f ∈ C∞0 (U(x0, R) × J) there exists a bounded
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function z ≤ 0 on U(x0, 4R) × R1 such that x 7→ z(x, t) is convex on U(x0, 4R) for each
fixed t ∈ J and has the following two properties: for any smooth probability density g with
support in the centered unit ball of Rd+1, letting gε(y, t) = ε−d−1g(y/ε, t/ε), fε = f ∗ gε,
and zε = z ∗ gε, ε > 0, one has

C(R, d)
(
det(αij)

)1/(d+1)
fε(x, t) ≤ ∂tzε(x, t) + αij∂xi∂xjzε(x, t),

|z(x, t)| ≤ κ(R, d)‖f‖Ld+1(U(x0,R)×J) ∀ (x, t) ∈ U(x0, 2R)× J
for every ε ∈ (0, R) and each nonnegative symmetric matrix (αij). It should be noted
that in [17] there is minus in front of ∂tzε(x, t), but this makes no difference since we can
reverse the variable t. For all sufficiently small ε we have

|zε(x, t)| ≤ 2κ(R, d)‖f‖Ld+1(U(x0,R)×J) ∀ (x, t) ∈ U(x0, 2R)× J.
We observe that zε is nonpositive and convex with respect to x on U(x0, 3R)× J for any
ε < R. Moreover,

max
x∈U(x0,R),t∈J

|∇xzε(x, t)| ≤ 2R−1 max
x∈U(x0,2R),t∈J

|zε(x, t)| ≤ 2R−1κ(R, d)‖f‖Ld+1(U(x0,R)×J).

Substituting h(x, t) = zε(x, t) + max(y,t)∈W |zε(y, t)| in (3), which is possible since h ≥ 0
on W and x 7→ h(x, t) is convex on U(x0, R), we obtain the estimate∫

Rd×(0,T )
| detA|1/(d+1)fεζ dµ ≤ C4‖f‖Ld+1 .

Letting ε→ 0, we obtain the same estimate for f , which yields that

| detA|1/(d+1)ζ dµ = %ζ dx dt, %ζ ∈ Ld+1(U(x0, R)× J).

Since ζ(x, t) = η(x)θ(t), where η and θ were arbitrary smooth functions with compact
support, we arrive at the desired conclusion for the measure | detA|1/(d+1) · µ. �

Remark 1. We observe that the exponent (d + 1)′ = (d + 1)/d cannot be replaced by
a larger one. Indeed, it is well-known that the class W 1,1

loc (Rd × (0, 1)) is embedded into

L
(d+1)′

loc (Rd × (0, 1)), but not into Lploc(Rd × (0, T )) with p > (d + 1)′. So let µ = % dx dt,

where % ∈ W 1,1
loc (Rd × (0, 1)) and % ≥ 0, but % does not belong to any Lploc(Rd × (0, 1))

with p > (d + 1)′. Then, for every compact set Q ⊂ Rd × (0, 1), there exists a constant
C > 0 such that∫

Rd×(0,1)

[
∂tu+ ∆u

]
dµ ≤ C

(
max
x,t
|∇xu(x, t)|+ max

x,t
|u(x, t)|

)
for every nonnegative function u ∈ C∞0 (Rd × (0, 1)) with suppu ⊂ Q, since∫

Rd×(0,1)

[
∂tu+ ∆u

]
dµ ≤

∫
Q

[|u||∂t%|+ |∇xu||∇x%|] dx dt ≤

≤ ‖%‖W 1,1(Q)

(
max
x,t
|∇xu(x, t)|+ max

x,t
|u(x, t)|

)
.

It is even possible to construct a counter-example where the exact equation is fulfilled:
the measure µ = e−|x|

2
dx dt trivially satisfies the equation ∂µ/∂t = L∗µ with K = 0 and

A = α(t)e|x|
2
I, where α ∈ L1[0, 1] is such that its restrictions to all closed intervals J ⊂

(0, 1) belong to no Lp(J) with p > 1; then (detA)1/(d+1)µ = α(t)d/(d+1)e−|x|
2/(d+1) dx dt,

where α(t)d/(d+1)e−|x|
2/(d+1) is not in Lploc(Rd × (0, 1)) whenever p > (d + 1)/d. In this

example the density itself is nice, so the negative effect is due to the factor (detA)1/(d+1),
but it is easy to modify this construction in such a way that also the density of µ will
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not be locally integrable to powers larger that 1: to this end, we take a positive function
β ∈ L1(Rd) belonging to no Lploc(Rd) with p > 1 and pass to the measure β · µ and the
diffusion matrix A/β. For d = 1 another simple example is this: µ = %(x) dx dt, where
% is a probability density such that 1/% ∈ L1

loc(R), but 1/% 6∈ Lploc(R) if p > 1; then µ
satisfies the equation with A = %−1 and A1/2µ has density %−1/2 not belonging to Lploc(R)
if p > 2.

Let us consider some examples.

Example 1. Let
Lu = aij∂xi∂xju+ bi∂xiu+ cu

and let a nonnegative locally bounded Borel measure µ on Rd×(0, T ) satisfy the equation

∂tµ = L∗µ

in the sense of the identity∫
Rd×(0,T )

[∂tu+ Lu] dµ = 0 ∀u ∈ C∞0 (Rd × (0, T )),

where we assume that aij, bi, c ∈ L1
loc(µ). Then the measure | detA|1/(d+1) ·µ has a density

% ∈ L(d+1)′

loc (Rd× (0, T )) with respect to Lebesgue measure on Rd× (0, T ). This result was
obtained in [7, Theorem 3.1]. For the proof it suffices to note that∫

Rd×(0,T )
[∂tu+Au] dµ = −

∫
Rd×(0,T )

[〈b,∇xu〉+ cu] dµ,

and for every compact Q ⊂ Rd × (0, T ) there exists a constant C > 0 such that∣∣∣∣∫
Rd×(0,T )

[〈b,∇xu〉+ cu] dµ

∣∣∣∣ ≤ C
(

max
x,t
|∇xu(x, t)|+ max

x,t
|u(x, t)|

)
.

for every u ∈ C∞0 (Rd × (0, T )) with support in Q.

Example 2. Let µ be a finite nonnegative measure on Rd× (0, T ) satisfying the equation

∂tµ = L∗µ

in the sense of the integral identity∫
Rd×(0,T )

[∂tu+ Lu] dµ = 0 ∀u ∈ C∞0 (Rd × (0, T )),

where

Lu(x, t) = aij(x, t)∂xi∂xju(x, t) + bi(x, t)∂xiu(x, t) + c(x, t)u(x, t)+

+

∫
Rd\{0}

[u(x+ y, t)− u(x, t)− 〈y,∇xu(x, t)〉] νx,t(dy),

aij, bi, c ∈ L1
loc(µ), and, for each t ∈ (0, T ) and x ∈ Rd, νx,t is a nonnegative locally

bounded Borel measure on Rd \ {0} such that the function

M(x, t) :=

∫
Rd\{0}

|y|2 ∧ |y| νx,t(dy)

is µ-integrable (under these hypotheses Lu is µ-integrable for every function u with com-
pact support in Rd×(0, T )). Then the locally finite measure | detA|1/(d+1) ·µ has a density

% ∈ L(d+1)′

loc (Rd × (0, T )) with respect to Lebesgue measure on Rd × (0, T ). Hence µ itself
is absolutely continuous on the set {detA 6= 0}.
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If the measure µ is given by a family of probability measures µt on Rd, i.e., µ = µt(dx) dt,
then a sufficient condition for the µ-integrability of M is the integrability of supxM(x, t)
with respect to Lebesgue measure on (0, T ).

Proof. We take a function ϕ0 ∈ C∞0 (Rd) such that 0 ≤ ϕ0 ≤ 1 and ϕ0(x) = 1 if |x| ≤ 1.
It is clear that the function ϕ(x, y) := ϕ0(y − x) is a local unit function. Set

b̂i(x, t) = bi(x, t)−
∫
Rd\{0}

yi(1− ϕ0(y)) νx,t(dy),

ĉ(x, t) = c(x, t)−
∫
Rd\{0}

(1− ϕ0(y)) νx,t(dy).

Note that b̂, ĉ ∈ L1
loc(µ). Set K(x, t, B) := νx,t(B − x) and

Ku(x, t) =

∫
Rd\{x}

[u(y, t)− ϕ(x, y)u(x, t)− ϕ(x, y)〈y − x,∇xu(x, t)〉]K(x, t, dy).

Then the function∫
Rd\{x}

(|x− y| ∧ 1)2ψ(y)K(x, t, dy) =

∫
Rd\{0}

(|y| ∧ 1)2ψ(y + x) νx,t(dy)

is µ-integrable if ψ is bounded. In addition,∫
Rd×(0,T )

[∂tu+Au+Ku] dµ = −
∫
Rd×(0,T )

[〈̂b,∇xu〉+ ĉu] dµ.

In order to apply Theorem 1 we should only note that for every compact Q ⊂ Rd× (0, T )
there exists a constant C > 0 such that∣∣∣∣∫

Rd×(0,T )
[〈̂b,∇xu〉+ ĉu] dµ

∣∣∣∣ ≤ C
(

max
x,t
|∇xu(x, t)|+ max

x,t
|u(x, t)|

)
.

for every u ∈ C∞0 (Rd × (0, T )) with support in Q. �

Let us observe that the same proof applies to some other frequently used operators (see
[5] and [26]).

Remark 2. (i) Let us consider the operator

Lu(x, t) = aij(x, t)∂xi∂xju(x, t) + bi(x, t)∂xi(x, t) + c(x, t)u(x, t)+

+

∫
Rd\{0}

[
u(x+ y, t)− u(x, t)− 〈y,∇xu(x, t)〉

1 + |y|2
]
νx,t(dy).

If a finite nonnegative measure µ on Rd × (0, T ) satisfies the equation ∂tµ = L∗µ and∫
Rd×(0,T )

∫
Rd\{0}

|y|2

1 + |y|2
νx,t(dy)µ(dx dt) <∞,

then the locally finite measure | detA|1/(d+1) ·µ has a density % ∈ L(d+1)′

loc (Rd× (0, T )) with
respect to Lebesgue measure on Rd × (0, T ). Hence µ itself is absolutely continuous on
the set {detA 6= 0}. This follows by the same reasoning as in Example 2 letting

b̂i(x, t) = bi(x, t)−
∫
Rd\{0}

yi((1 + |y|2)−1 − ϕ0(y)) νx,t(dy),

ĉ(x, t) = c(x, t)−
∫
Rd\{0}

(1− ϕ0(y)) νx,t(dy).
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(ii) Let us consider the operator

Lu(x, t) = aij(x, t)∂xi∂xju(x, t) + bi(x, t)∂xi(x, t) + c(x, t)u(x, t)+

+

∫
Rd\{0}

[
u(x+ y, t)− u(x, t)− 〈y,∇xu(x, t)〉I{|y|<1}(y)

]
νx,t(dy),

where I{|y|<1} is the indicator of the open unit ball. Let µ be a finite nonnegative measure
on Rd × (0, T ) satisfying the equation ∂tµ = L∗µ. Then the same conclusion holds if∫

Rd×(0,T )

∫
Rd\{0}

|y|2 ∧ 1 νx,t(dy)µ(dx dt) <∞.

Indeed, letting

b̂i(x, t) = bi(x, t)−
∫
Rd\{0}

yi(I{|y|<1}(y)− ϕ0(y)) νx,t(dy),

ĉ(x, t) = c(x, t)−
∫
Rd\{0}

(1− ϕ0(y)) νx,t(dy),

we can also apply the same reasoning as in Example 2. If µ is given by a family of proba-
bility measures µt(dx), then the above condition holds for νx,t(dy) = q(x, t, y)|y|−d−α(x) dy,
where 0 < α(x) < 2 and∫ T

0

sup
x

(∫
Rd\{0}

(|y|2 ∧ 1)q(x, t, y)

|y|d+α(x)
dy

)
dt <∞.

In particular, it is fulfilled if q(x, t, y) is bounded and 0 < α1 ≤ α(x) ≤ α2 < 2.

In the case where the coefficients of L do not depend on t one can impose somewhat
weaker assumptions.

Example 3. We recall that according to a remarkable theorem of Courrège (see [11])
a linear operator L from C∞0 (Rd) to the space of locally bounded Borel functions satisfies
the positive maximum principle (i.e., Lf(x) ≤ 0 once f ≥ 0 and x is a point of maximum
of f) if and only if it has the form

Lu(x) = aij(x)∂xi∂xju(x) + bi(x)∂xiu(x) + c(x)u(x)+

+

∫
Rd\{x}

[u(y)− ϕ(x, y)u(x)− ϕ(x, y)〈y − x,∇xu(x)〉] ν(x, dy),

where bi and c are locally bounded Borel functions, A(x) = (aij(x)) is a positive symmetric
matrix, ϕ is a local unit function, ν(x, dy) is a Lévy kernel, i.e., ν(x, dy) is a Borel
nonnegative measure on Rd \ {x} for each x and the mapping

x 7→
∫
Rd\{x}

|x− y|2ψ(y) ν(x, dy)

is Borel measurable and locally bounded for every ψ ∈ C∞0 (Rd), ν(x : |x| > δ) < ∞ for
every δ > 0, and

c(x) +

∫
Rd\{x}

(1− ϕ(x, y)) ν(x, dy) ≤ 0.

It is worth noting that generators of Feller processes satisfy the positive maximum prin-
ciple and have the above form.
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Let µ be a finite nonnegative Borel measure on Rd × (0, T ). Assume that aij ∈ L1
loc(µ)

and that the mapping

x 7→
∫
Rd\{x}

|x− y|2ψ(y) ν(x, dy)

is integrable with respect to µ on Rd × (0, T ) for each function ψ ∈ C∞0 (Rd). If µ
satisfies the parabolic equation ∂tµ = L∗µ, then the measure | detA|1/(d+1) · µ has a

density % ∈ L(d+1)′

loc (Rd × (0, T )) with respect to Lebesgue measure on Rd × (0, T ).

These examples show that if there is a diffusion with jumps having generator L, then its
space-time law is absolutely continuous on the set {detA 6= 0}. In the case of a homoge-
neous diffusion (with time independent coefficients) and detA > 0 we obtain the absolute
continuity of the transition probability P (t, dy) for almost every t > 0 (independently
of the initial distribution). However, even for diffusions without jumps and detA > 0
examples are known (see [14], [25]) where P (t, dy) may be singular for some fixed t.

As already noted above, the papers [1], [2], and [21] contain Krylov-type estimates
of certain stochastic integrals involving diffusion and jump parts; from these estimates
one can derive absolute continuity on the set {detA > 0} of the space-time measure of
the process satisfying the corresponding stochastic equation. However, the existence of
such stochastic integrals and processes requires much stronger global assumptions about
all coefficients aij, bi, c, and νx,t. More specifically, in [21] the coefficients aij and bi are
uniformly bounded, c = 0, and there are some uniform bounds for νx; in [1] and [2]
existence of certain stochastic integrals is assumed along with some additional global
estimates, in particular, for bounded A the drift b must be also bounded. The proofs in
the papers cited also use Krylov’s powerful results (more precisely, in [21] and [1] in place
of [17] some earlier results of Krylov are employed), but in a different way.

Clearly, our paper focuses on the extreme case where jumps a posteriori have no influ-
ence; it would be interesting to find other combinations of contributions of the continuous
and jump parts leading to absolute continuity in the case of nonsmooth coefficients.

It would be also interesting to study signed solutions of the Fokker–Planck–Kolmogorov
equation with L as in [7] (see also [8]).

This work was supported by the RFBR projects 13-01-00332, 12-01-33009, 13-01-
92100-JF, 11-01-90421-Ukr-f-a, 11-01-12018-ofi-m, 11-01-12104-ofi-m, the Russian Presi-
dent Grant, and by the DFG through the program SFB 701 at the University of Bielefeld.
We are grateful to S.V. Anulova, W. Hoh and A.Yu. Veretennikov for useful discussions
and also thank the anonymous referee for a number of suggestions and observations which
lead to improvements in our presentation.
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1035–1051 (2006)
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