Large deviation principles for the stochastic
quasi-geostrophic equations

Wei Liu
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
Department of Mathematics, University of Bielefeld, D-33615 Bielefeld, Germany
E-mail: weiliu@math.uni-bielefeld.de

Michael Rockner

Department of Mathematics, University of Bielefeld, D-33615 Bielefeld, Germany
E-mail: roeckner@mathematik.uni-bielefeld.de
Xiang-Chan Zhu
School of Science, Beijing Jiaotong University, Beijing 100044, China
Department of Mathematics, University of Bielefeld, D-33615 Bielefeld, Germany
E-mail: zhuxiangchan@126.com

Abstract

In this paper we establish the large deviation principle for the stochastic quasi-geostrophic
equation with small multiplicative noise in the subcritical case. The proof is mainly based
on the weak convergence approach. Some analogous results are also obtained for the small
time asymptotics of the stochastic quasi-geostrophic equation.
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1 Introduction

The main aim of this work is to establish large deviation principles for the stochastic quasi-
geostrophic equation, which is an important model in geophysical fluid dynamics. We consider
the following two dimensional (2D) stochastic quasi-geostrophic equation in the periodic domain
T? = R?/(2nZ)*:

80(5; r) _ —u(t,z) - VO(t,z) — k(—=A)0(t,z) + (G(0)E)(t, x) (1.1)
with initial condition
0(0,x) = by(x). (1.2)

Here 0 < a < 1,k > 0 are real numbers, 6(t,x) (representing the potential temperature) is
a real-valued function of ¢t and z, {(t,z) is a Gaussian random field, white noise in time and
subject to the restrictions imposed below, u (representing the fluid velocity) is determined by
0 via the following relation:

u = (Ul, 'LLQ) = (—Rge, R19> = RLG, (13)
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where R; is the j-th periodic Riesz transform. The case o = 1 is called the critical case, the

case o > % subcritical and the case a < % supercritical. i

Equation (1.1) is used to describe models arising in meteorology and oceanography. In the
deterministic case (G = 0) such equations are important models in geophysical fluid dynamic-
s. Indeed, they are special cases of general quasi-geostrophic approximations for atmospheric
and oceanic fluid flows with small Rossby and Ekman numbers. These models arise under
the assumptions of fast rotation, uniform stratification and uniform potential vorticity. The
case @ = 1/2 exhibits similar features (singularities) as the 3D Navier-Stokes equations and
can therefore serve as a model case for the latter. For more details about the geophysical
background, see for instance [7, 24]. In the deterministic case, this equation has been already
intensively investigated because of both its intrinsic mathematical importance and its applica-
tions in geophysical fluid dynamics (see e.g. [5, 8, 17, 18, 19, 27] and the references therein).
For example, the global existence of weak solutions has been obtained in [27] and one very
remarkable result in [5] proved the existence of a classical solution for o = % and the other in
[19] proved that solutions for o = % with periodic C* data remain C'* for all time.

Recently, in [28] the two last named authors and Rongchan Zhu have studied the 2D stochas-
tic quasi-geostrophic equation on T? for general parameter a € (0, 1) and for both additive as
well as multiplicative noise. For the subcritical case o > % the authors obtained a (probabilis-
tically strong) solution. In this paper, we want to establish the large deviation principles for
stochastic quasi-geostrophic equation both for small noise and for short time in the subcritical
case.

The large deviation theory concerns the asymptotic behavior of a family of random variables
{6.} and we refer to the monographs [9, 31] for many historical remarks and extensive references.
It asserts that for some tail or extreme event A, P(f. € A) converges to zero exponentially
fast as ¢ — 0 and the exact rate of convergence is given by the so-called rate function. The
large deviation principle was first established by Varadhan in [34] and he also studied the small
time asymptotics of finite dimensional diffusion processes in [35]. Since then, many important
results concerning the large deviation principle have been established. For results on the large
deviation principle for stochastic differential equations in finite dimensional case we refer to
[15]. For the extensions to infinite dimensional diffusions or SPDE, we refer the readers to
3, 6, 12, 21, 22, 26, 30, 32, 36] and the references therein.

The large deviation principle for the stochastic quasi-geostrophic equation with small mul-
tiplicative noise is proved in Section 3 and the small time large deviations for this equation in
Section 4 in the subcritical case (i.e. & > 3). The proof of small noise LDP is mainly based on
the weak convergence approach from [2]. Compared to some recent works on LDP for SPDE
(cf.[6, 21, 26]), the main difficulty here lies in dealing with the nonlinear term in (1.1) since the
solution to the stochastic quasi-geostrophic equation is not as regular as in the case of SPDE
within the variational framework (see [6, 21, 26] for many examples). For example, for 2D
Navier-Stokes equation, the solution lies in the first order Sobolev space by which the nonlinear
term can be dominated. Compared with this, the solution of the stochastic quasi-geostrophic
equation only lies in H® (see definition below) and the nonlinear term cannot be handled as for
2D Navier-Stokes equation. Here we use the regularity of solutions of the deterministic equa-
tion to control the nonlinear term. Indeed, the solution of the deterministic quasi-geostrophic
equation will be in H? if the initial value lies in H? (see Theorem A.1). Our main result on
small noise large deviations for equation (1.1) is formulated in Theorem 3.9. The small time
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large deviation principle describes the behavior of the temperature of the fluid when time is
very small. The proof is mainly inspired by the approach from [36]. We first establish the large
deviation principle on L>([0, 7], H) if the initial value is smooth (see Theorem 4.1). However,
since the solution to the stochastic quasi-geostrophic equation is very irregular, we cannot ap-
proximate the initial value similarly as in [36] for the 2D Navier-Stokes equation to obtain the
result for more general initial value. In order to overcome this difficulty, we establish the small
time large deviation principle with general initial value on a larger state space (see Theorem
4.2). Here we use the LP-norm estimate to control the nonlinear term. But these LP-norm
estimates we cannot prove by Galerkin approximation, instead we use another approximation
which can be seen as a piecewise linear equation on small subintervals (see (4.11)).

2 Notations and preliminaries

In the following, we will restrict ourselves to flows which have zero average on the torus, i.e.

Odz = 0.
T2
Thus (1.3) can be restated as
9 oy 1
=(———, — — AV = 6.
(g pe) and (~2)V2 = -

Set
H={f e L*T? :/ fdr =0}
T2

and let |-| and (-, -) denote the usual norm and inner product in H respectively. On the periodic
domain T?, it is well known that

{sin(kx)|k € Z2} U {cos(kx)|k € Z*}

form an eigenbasis (we denote it by {ex}) of —A and the corresponding eigenvalues are |k|2.
Here

Zi_ = {(k‘l,k}2> € Z2|k’2 > 0} U {(k’l,O) € ZQ|]€1 > 0}, Z2_ = {(kﬁl,kg) € Z2|(—]€1, —kfg) € Zi}

Now we define

/]

He= Y IR (e’
k

and let H® denote the (Sobolev) space of all f such that || f| g is finite.
Set A = (—A\)'/2, then we have

1fllms = |A%F].

By the singular integral theory of Calderén and Zygmund (cf.[29, Chapter 3]), for any
p € (1,00), there exists a constant C'(p) such that

[ullr < C(p)[|6]] - (2.1)
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For fixed a € (0, 1), we define the linear operator
Ay D(A,) = H*(T?) C H — H, Agu = k(—A)"u.

It is well known that A, is positive definite and self-adjoint with the same eigenbasis as that
of —A mentioned above. We denote the eigenvalues of A, by 0 < A\; < Ay < --- and renumber
the above eigenbasis correspondingly as e, eg, - - -.

We first recall the following product estimate (cf.[27, Lemma A.4]).

Lemma 2.1 Suppose that s > 0 and p € (1,00). If f, g € C(T?) , then

1A ()l < C (I f 1l 1A gl ez + [|gllzes [A°Fl[ra) (2.2)
where p; € (1,00),i = 1, ..., 4 satisfy that
1 1 1 1 1
—=—+—=—+—.
p pP1 P2 P3 P4
For the reader’s convenience we also recall the following standard Sobolev inequality (cf.[29,
Chapter V]):
Lemma 2.2  Suppose that ¢ > 1,p € [¢,00) and
1 o 1

-4 = = -,
p 2 q

If Af € L% then we have f € LP and there is a constant C' > 0 (independent of f) such that

1flle < CIIAf]|a.

3 Freidlin-Wentzell’s large deviations in the subcritical
case

In this section, we consider the large deviation principle for the stochastic quasi-geostrophic
equation with small multiplicative noise. Here we will use the weak convergence approach
introduced by Budhiraja and Dupuis in [2]. Let us first recall some standard definitions and
results from large deviation theory (cf.[11]).

Let {X¢} be a family of random variables defined on a probability space (2, F, P) taking
values in some Polish space E.

Definition 3.1 (Rate function) A function I : E — [0, 00] is called a rate function if [ is
lower semicontinuous. A rate function I is called a good rate function if the level set {z € E :
I(z) < M} is compact for each M < oo.

Definition 3.2 (I)(Large deviation principle) The sequence {X*} is said to satisfy the large
deviation principle with rate function I if for each Borel subset A of E

— inf I(z) < 111rniglf610gP(XE € A) <limsupelog P(X® € A) < — inf I(x),
e—

TEA° e—0 €A

where A° and A denote the interior and closure of A in E respectively.
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(IT)(Laplace principle) The sequence {X¢} is said to satisfy the Laplace principle with rate
function [ if for each bounded continuous real-valued function h defined on E

i < log E{expl—h(X°)]} = ~ inf {A(o) + I(z)}.

It is well known that the large deviation principle and the Laplace principle are equivalent if
FE is a Polish space and the rate function is good. The equivalence is essentially a consequence
of Varadhan’s lemma and Bryc’s converse theorem (cf.[11]).

Suppose W (t) is a cylindrical Wiener process on a Hilbert space U (with inner product
(-,-)v and norm | - |7) defined on a probability space (2, F, F;, P) (i.e. the paths of W take
values in C([0,7],Y), where Y is another Hilbert space such that the embedding U C Y is
Hilbert-Schmidt). Now we define

T
A= {¢ : ¢ is a U-valued {F; }-predictable process s.t./ |p(s)|5ds < oo a.s.} ;
0

su={ver@nv: [ s <o
Ay ={p € A: d(w) € Sy, P-a.s.}.

Here we remark that we will always refer to the weak topology on the set S}, in this paper.
Suppose g° : C([0,T],Y) — E is a measurable map and X¢ = ¢°(W). Now we formulate the
following sufficient conditions for the Laplace principle (equivalently, large deviation principle)
of X¢ase— 0.
Hypothesis 3.3 There exists a measurable map ¢° : C([0,7],Y) — E such that the following
conditions hold:
1) Let {v® : € > 0} C Ay for some M < oo. If v® converge to v as Sy-valued random
elements in distribution, then ¢=(W (-)+ \/Lg J, v°(s)ds) converge in distribution to g°( [, v(s)ds).
2) For every M < oo, the set Ky = {¢°(f, v(s)ds) : v € Sy} is a compact subset of E.

The following crucial result was proven in [2] (see also [1] for finite dimensional case).

Theorem 3.4 ([2, Theorem 4.4]) If {¢g°} satisfies Hypothesis 3.3, then {X¢} satisfies the
Laplace principle (hence large deviation principle) on £ with the good rate function I given by

1 T
I(f) = inf {—/ lv(s)|? ds}. (3.1)
weL2(0.T10): f=°(f;v(s)d»} | 2 Jo v

Now we reformulate (1.1)-(1.3) in the following form of an abstract stochastic evolution
equation:
{ do(t) + A,0(t)dt + u(t) - VO(t)dt = G(0)dW (t), (3.2)

9(0) =0y, € H,

where u satisfies (1.3).
We first need to impose some assumptions on G such that (3.2) has a unique solution. Let
Ly(U, H) be the space of all Hilbert-Schmidt operators from U to H and {f,} be an ONB of

U. Recall that we only consider the subcritical case (i.e. a > %) in this work. Let 5 > 3 be
some fixed constant.
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Hypothesis 3.5 Suppose that G satisfies the following conditions:
i) There exist some positive real numbers Cy, Cy, C3 and p; < 2k such that

||G(‘9)||%2(U,H) < G110 + p1|AO)* + Cy, 0 € H*;
HG(9>H%2(U,H—/3) < C3(|9|2 +1),0 € H°.
ii) If 6,,,60 € H* and 6, — 0 in H, then for all v € C*°(T?),
Jim [G(0,)"(v) = G(O)" (v)|o = 0,

where the asterisk denotes the adjoint operator.
iii) For some p with 0 < 1/p < a — %, there exists some constant C' such that

/TZ(Z |G(0)(f;)|?)2dx < C ( 5 0Pdz + 1) , 0 € H*N LP(T?); (3.3)

iv) There exist some constants C' and (; < 2k such that

IATY2(G(6)) = GO 17y < CIAT2(61 = 62) P + BilATE (01 — 05)2, 01,0, € H. (3.4)

Now we give the definition of the (probabilistically) strong solution to (3.2).

Definition 3.6 We say that there exists a (probabilistically) strong solution to (3.2) on
[0, T if for every probability space (2, F, {F;}icpo,r), P) with an Fi-cylindrical Wiener process
W, there exists an Fi-adapted process 6 : [0, 7] x  — H such that for P-a.s. w € Q

6(,w) € L>([0,T; H) 0 LA([0, T); ) 1 C([0, T); HP)
and P-a.s.
t t t
60 )+ [ (AY006), AY)ds ~ [ (u(s) - Vip,6(5))ds = (6o o) + | Glo(s)AW (),
0 0 0
for all ¢ € [0,T] and all p € C'(T?).
Remark Note that divu = 0, so for regular functions 6 and ¢ we have

(u(s) - V(0(s) + ¢),0(s) + ) = 0.

Hence,
(u(s) - VO(s), p) = =(u(s) - Vi, 0(s)).

This relation justifies the integral equation in Definition 3.6.

We recall the following existence and uniqueness result from [28].

Theorem 3.7 ([28, Theorem 4.3]) Assume o > % and Hypothesis 3.5 hold. Then for each

initial condition 6y € LP, there exists a pathwise unique probabilistically strong solution 6 of
equation (3.2) on [0, 7] with initial condition 6(0) = 6y such that

E sup |A™Y20(t)2 < oo.
te[0,7
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Moreover, the solution 6 satisfies

T
E sup Ilf)(t)ll’zp+E/ |A“0()|2dt < oco.
0

te[0,7

Now we consider the stochastic quasi-geostrophic equation driven by small multiplicative
noise:

do® () + An0°(t)dt +us(t) - VO (t)dt = /eG(6°)dW (t) (3.5)

with 6°(0) = 6y € LP. Here u® satisfies (1.3) with 6 replaced by 6°. By Theorem 3.7, un-
der Hypothesis 3.5, there exists a pathwise unique strong solution of (3.5) in L*([0,7], H) N
L%([0,T), H*) N C([0,T], H=?). Therefore, there exist Borel-measurable functions

g C([0,T],Y) — L>([0,T), H) n L*([0,T], H*) N C([0,T], H")

such that 6°(-) = ¢°(W (-)).

Now the aim is to prove the large deviation principle for 6°. For this purpose we need to
impose some further assumptions on G.

Hypothesis 3.8 Assume G satisfies the following conditions:
i) G(0) is a bounded operator from U to H° for some § > 2 — 2« such that

IGOw,msy < ClOllms+a +1), 6 € H*® (3.6)
and for r := (2 — 2a) V
IGO)Izw.ary < C10llgs+a +1), 0 € HF. (3.7)

ii)
1G(01) — G(2) |,y < CllOL — a1, 01,02 € H®.

Remark (i) (3.6) can also be replaced by the following condition:
GO pw,iro-ey < CUION 7o + 1)

(ii) Typical examples for G satisfying Hypothesis 3.5 and 3.8 have the following form: for
0ec H

GO)y =Y bily, fr)vg(0),y € U,

where g € C}(R) and by, are C* functions on T? satisfying

Yo <c, Y ML <c
k=1 k=1

For v € L*([0,T],U), we consider the following skeleton equation

d6,(t)
dt

= —Aub,(t) — uy(t) - VO, () + G(6,)v(t) (3.8)
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with 6,(0) = 6y € H° N LP. Here u, satisfies (1.3) with 6 replaced by 6,. Then by Hypothesis
3.5 and 3.8 we have
IGO)vllze < Clolu(l|0]lz» + 1); (A.1)
IGO)vllzs < Clolu(]|0]ms+e +1); (4.2)
[AT(G(61) — G(82))0] < [vlu(CIAT2(01 — 6a)] + V/BiA®T2 (61 — Ba)]).  (A3)
By a similar argument as in [27, Theorems 3.5 and 3.7], we know that (3.8) has a unique
solution 6, € L>=([0,T], H® N L?) N L2([0, T], H***) N C([0,T], H=?). For the completeness we
include the proof of this result in the Appendix.
Remark Here we want to emphasize that although by Theorem A.1 in Appendix if 6, €
H° N LP, then we have 6, € L*°([0,T], H° N LP) N L2([0, T], H***) N C([0,T], H~?). However,
this might be not true for #°. This is the reason why we establish the large deviation principle
for 6 on L*°([0,T), H) N L2([0, T], H*) N C([0, T], H=") (which is the state space of 6¢) instead
of L>([0,T], H°) N L*([0, T], H***) n C([0, T], H~F).

Define ¢° : C([0,T],Y) — L*([0,T], H) N L3([0, T, H*) N C([0,T], H=?) by

PO(h) = { 0., if h = [ v(s)ds for some v € L*([0,T1,U),

0, otherwise.

Now we formulate the main result concerning the large deviation principle for 6°.

Theorem 3.9 Suppose that Hypothesis 3.5 and Hypothesis 3.8 hold. Then for any 6, €
H°N LP with p in Hypothesis 3.5 iii), {6} satisfies the Laplace principle (hence large deviation
principle) on L>([0,T], H) N L%([0,T], H*) N C([0,T], H~?) with a good rate function given by
(3.1).

Proof To prove the theorem it suffices to verify the two conditions in Hypothesis 3.3 so that
Theorem 3.4 is applicable to obtain the large deviation principle for 6°.

[Step 1] First we show that the set Ky = {g°( [, v(s)ds) : v € Sy} is a compact subset of
L>([0,T], H) N L([0, T], H*) N C([0, T], H=").

Let {6, } be a sequence in K, where 6,, corresponds to the solution of (3.8) with v,, € Sy, in
place of v. By the weak compactness of Sy in L?([0,T],U), there exists a subsequence (which
we still denote it by {v,}) converging to a limit v weakly in L?([0,T],U).

Let w, = 6, — 0,, it suffices to show that w, — 0 (in fact, a subsequence is enough) in
L>=([0,T), H) N L3([0, T], H*) n C([0, T, H=#) as n — 0.

Note that w, - Vw,, € H™®, where u,, satisfies (1.3) with 6 replaced by 6,,. In fact, we have
uniform L? norm bound for 6, w, by Theorem A.1. And we also have

|-t + Vwn, @) ga| = |g-oV + (unn), 9) ga| < |Aa90||A1_a(Un © Wy )|
< [Al(|A = * 7w, [|6n] 2o + [ATF05 [l s),

where o = 2 < 20— 1 and we use divu,, = 0 in the first equality and Lemmas 2.1, 2.2 and (2.1)
in the last 1nequahty Thus by divu,, = 0, we obtain

H-o{Up - Vwy, wy)ga = 0. (3.9)


Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮


If 6 <1 we get

[{(tn, = 1) - VO, wi)| = (V- ((Un — %)05), wn)| < lAawnHAl_a((un — Uy) - 0,)]
S C|Aawn’(|A2—a—6wnHA60v‘ + ‘Al—a-&-é—(l—a)ez}"A2—a—5wn’>
< C|A%w, || A%w, [ wa|'|A%, | (3.10)
< §|A°‘wn\2 + C|A%, N [w,?,

where v = 2_%_5, N = 2(13—(;4-5 and we use div(u, — u,) = 0 in the first equality, Lemmas 2.1,

2.2 and (2.1) in the second inequality, the interpolation inequality and § > 2 — 2« in the third
inequality and Young’s inequality in the last inequality.
Similarly, if 6 > 1 we get
[((un = uy) - VO, wi)| = (V- ((un — p)0y), wn)| < |Aawnl|Alia((un — Uy) - 0,)]
< C|A%w, || AL o1, || A%, |
< C|A%w,, | [A%wy | |w, |7 |A%6,|

< E{A, P+ O, s

where 0 < 07 < 2a — 1,71 = 1‘”@%,]\& = Qaff‘_al and we use div(u, — u,) = 0 in the first

equality, Lemmas 2.1, 2.2 and (2.1), § > 1 in the second inequality, the interpolation inequality
in the third inequality and Young’s inequality in the last inequality.
In the following we only prove the result for § < 1 and the argument for 6 > 1 is similar.
By (3.8) we have

fwn(£)[2 + 2% /0 " |, Pds
9 /Ot ., OSigmm Deelln, 55 o, s
i /0 (GO — G(B)0, w,)ds
__ 2/0t((un ) - V8, w,)ds
42 /0 (G(6) — G(62))vm, wn)ds
i /0 (GO (v — ), w,)ds
< [ Al + A0 + onl ol

+ 2(G(6,)(vn — v), w,)} ds,

where in the second equality we use (3.9) and in the last inequality we use (3.10), Hypothesis
3.8 ii) and Young’s inequality.
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Let .
hn(t) = /0 G(6,) (v, — v)ds,

then we have

T
sup || Pehn(t) = hn(t)[ e < / I(Px = DGO L iry[vn = vllwdt
0

te[0,T
1/2

T
< (2M)/? (/0 (P, — ])G(@U)H%(U’Hr)dt) — 0 as k — oo.

Here Py is the orthogonal projection in H onto the space spanned by ey, ..., and we use (3.7)
and 6, € L%([0,T]; H**) which follows from Theorem A.1 in the last step.

Since P,H" C H" is compact and v, — v weakly in L*([0, T]; U), by (3.7) it is easy to show
that Pgh, — 0 in C([0,T], H") as n — oo (see e.g. [21, Lemma 3.2]) using the Arzela-Ascoli
theorem (since for any subsequence the limit is the same, this convergence holds for the whole
sequence). Hence we obtain that h, — 0 in C([0,T], H") as n — 0.

And we also have

/0 (G(6.)(0n(s) — v(5)), wa(5))ds

—(wn(t), hn(1)) — / (w(5), hu(s))ds

t
=00 h0) + [ A+ V0= V0 I (3.11)
0

t
—/ (G(0,)v, — G(0,)v, hy)ds
0
::[1 + IQ + [3.
Note that
I < elw, ()P + Clha ()
and by Hypothesis 3.5 i) and (A.4)
T
I3 < sup Ihn(S)I/O (IGO) Lo, mvale + GO Low,m 0] ds

s€[0,7

T
<C sup ||hn(s)||HT(/ (IA“0,|? + |A°‘0n|2+(])ds)1/2 < C sup ||ha(s)||zr
0

s€[0,T] s€[0,T]
For p € H*™?* we obtain

|(un - VO, — uy - VO, 0)| = (V- (unthy — uuby), @)
< C|A2a71(un«9n — UUQU)HA272O‘Q0|
< C(IAG, [ 4 |A0, )| A 2],

where we use divu,, = 0 and divu, = 0 in the first equality and Lemmas 2.1, 2.2 and (2.1) in
the last inequality.
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Hence
ltn - VO, — wy - VO, || 2200 < C (|Aa9n]2 + \Aa01,|2) .

Therefore,
t
I S/ (1 Aawn($) - + [[tn - VOy — 1y - VO || gr-2-20 ) [ 2 () || rr s
0

t
<C sup ||hn(3)||Hr/ ([wall e + 110l Fa + [160[[7)ds
s€[0,7T 0

<C sup |ha(s)|ar,
s€[0,7T

where in the last step we use (A.4).
Then the Gronwall lemma and (3.11) yield that

T T
sup [un0+5 [ 1A% <€ s o) (e {C [ (2001 + ) as} +1)).
0 ] 0

t€[0,7) 2 tel0,T
Then by (A.4) we have

T
sup |w, (t)|* + E/ |A%w, [*ds — 0, n — oo.
t€[0,7] 2 Jo

[Step 2] Suppose that {v. : € > 0} C Ay for some M < oo and v, converge to v as Sy-valued
random elements in distribution. Then, by Girsanov’s theorem, 0, = ¢°(W(-) + \/LE Jo v (s)ds)
solves the following equation

d,, (t) + Anb,, (t)dt + ug, (t)- Vo, (t)dt = G (0, )v-(t)dt + /G (0,,)dW (t). (3.12)

Here ug, satisfies (1.3) with ¢ replaced by 0, .

Since Sy is a Polish space, by the Skorohod theorem, we can construct processes (v, 0, We)
such that the joint distribution of (9., W.) is the same as that of (v., W), the distribution of v
coincides with that of v and v, — v a.s. as S)s-valued random elements.

Setting w, = 05, — 0, it suffices to prove that w. — 0 in probability in L>([0, 7], H) N
L*([0,T], H*) N C([0,T), H F). For w. and ug,_ we also have similar estimates as (3.9) and

(3.10). In the following we write v. = 0., W = WE for simplicity.
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[t6’s formula and (3.9) imply that

a0 + 25 [ |8

=2 /Ot (—(ug, - Vo, we) + (uy - VOy, w.)) ds

+2 [ (G0 (6)rls) = GO o)), wels))ds

#2VE [ nGOIW) +< [ 16 s
=—2AFW%—myvmﬂ@@+24%0@4@%4ﬂ&wm%@m%@ws -
2 [ (GO0 = o). (s

#2VE [ nGOIW) +< [ 16 s
< [ A+ OO + o] s

2 [ (GO 0:05) — v wels)is

t t
+m@/«%awwmm+e/nmmmmmm@7
0 0

where in the last inequality we use (3.10), Hypothesis 3.8 ii) and Young’s inequality.
Similarly we define

M@=AG%MW$%me

Then by the same argument as [Step 1] we know h.(t) — 0 in C([0,T], H") a.s. as ¢ — 0.
By It6’s formula and a similar argument as in (3.11) we have

{66 we(5) = w66 (e
w-(t)|?> + C t A0, *ds ) sup ||he(s)||gr — t he, G(0,.)dW).
<elw (B + O+A| | )@%n<m VE [ the, G )am)

Define .
7pe =T Ainf{t : |0,,(t)|? +/ |A“0,_(s)|*ds > L}.
0

Since 91,5 is weakly continuous in H, 77, is a stopping time with respect to F4 = Ny Fs and
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0,.(t A 71.)| < L. By the Burkholder-Davis-Gundy inequality one has

vED @ | / G(6,,)dW)|

tEOTLE

) 1/2
<oves ([* 0. - e—hwawvguawﬂ)ds)
1/2

<Cy/eE (/ ’E(|Aa§vs|2 + l)ds) < Cy/e.
0

Combining the above estimates with (3.13) and applying Gronwall’s lemma we have

sup |we(s) / |A%w,|*ds

s€[0,t]

t
S{C(Pr/ A0, [*ds) sup [lhe(s)llz- +2v/E sup | [ (we = he, G(6,,)dW)]
0

s€[0,T te[o, 7] Jo
t ~ T
—1—5/ 1G(6,.) %2(U7H)d51 exp {C/ (IA%6, [ + [v.]2) dr} .
0 0
Then we have

TL,e
sup |w.(t)]* + E/ |A“w,|?ds — 0
0

tel0,7p,.] 2

in probability as ¢ — 0.
By It6’s formula and standard argument (cf. [28, Theorem 3.3]) we have

T
sup B[ sup [f,(6) + / A%, (1) Pdf] < oo
0

e€l0,1)  te[0,T]

Let L be fixed. Then for a suitable constant C'

sup P(rp.=1T)>1-—
€€[0,1)

SES

Therefore, we have

T
sup |w.(t)|* + E/ |A%w,[*ds — 0
tefo,7] 2 Jo

in probability as € — 0.
Now the proof of Theorem 3.9 is complete.

O

4 The small time large deviations in the subcritical case

In this section, we establish some small time large deviations results for the stochastic quasi-
geostrophic equation. The proof is mainly inspired by the approach used in [36]. We consider
the stochastic quasi-geostrophic equation (3.2) again and assume that G satisfies Hypothesis
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3.5. Then by Theorem 3.7, for 6, € L” there exists a pathwise unique strong solution of (3.2)
in L>°([0,T), H) N L*([0,T], H*) N C([0,T], H=?) for B > 3.

We assume the following additional conditions on G:

S.1) There exists a constant L such that for some ¢ > 0
||G(9)||%2(U,H6) < L1+ [011%s), 6 € H;

S.2) There exists a constant L, such that

1G(61) = GO 7, .00) < Lalbr — 62, 61,6, € H.

Let ¢ > 0. By the scaling property of the Wiener process, it is easy to see that 6(et)
coincides in law with the solution of the following equation

dOF(t) + e A0° (t)dt + eut(t) - VO (t)dt = /=G (6°)dW (t) (4.1)

(
with 0°(0) = 0. Here u® satisfies (1.3) with 6 replaced by 6°.
Let pf be the law of 6% on L>°([0,T], H). Now we formulate the small time large deviation
principle for (4.1) on L*>([0, 7], H) for regular initial value 6.
Theorem 4.1  Suppose that S.1) for some § > « and § > 2 — 2«, S.2) and Hypothesis 3.5
hold. Then for §, € H° N LP with p in Hypothesis 3.5 iii), p° satisfies the large deviation
principle on L*°([0, 7], H) with rate function I given by

1 T
I(f) = in {- / |v(s)]%]ds}. (4.2)
(weL2([0,T],U): f(t)=00+ [ G(f(s))u(s)ds} L2 Jo

Proof Let v be the solution of the stochastic equation

vE(t) = 6y + \/E/O G(v°(s))dW (s) (4.3)

and v° be the law of v* on L*([0,7], H). Then by [21] we know that v° satisfies the large
deviation principle with rate function I given by (4.2). Now it is sufficient to show that the
two families of probability measures p° and v° are exponentially equivalent, i.e. for any n > 0,

limelog P( sup |6°(t) —v°()]* > n) = —oo. (4.4)
e—0 0<t<T
Then the conclusion in Theorem 4.1 follows directly from [11, Theorem 4.2.13].
In the following we assume that § < 1 and for § > 1 the proof is similar.
For M > 0, we define the following stopping times:

Ter = inf{t >0 : ||o° ()% > M.

Then we have ) )
P( sup |0°(t) — v*(t)|]" > n, sup [[v*(¢)||5s < M)
0<t<T 0<t<T
<P( sup  |6°(t) = v (D)2 > m).

0<t<TAT- M

(4.5)
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Applying It0’s formula to [v°(t A 7oar) — 0°(t A Toar)|* We get
tATe M
[V (EA Teps) — O (EATepr) ]2+ 25/4;/ |A*(v(s) — 6°(s))|*ds
t/\T;M ’ tATe M
:25/ (A v°(s), (v°(s) — 6°(s)))ds + 25/ (u® - VO, (v° — 60°))ds
0 tATe M °
12y [ - 0, (G) - GEaw)
0

tATe M
+€A IGW) = GO, ds.

Note that by similar arguments as in (3.9) and (3.10), we have
|{(u® - VO, v° — 6°)|
=|[(u® - V(6° — v°), 0° — v°)
+ ((u® — upe) - VO£, 0° — v°)
+ (Uye - VV°©, 65 — 0°)]|

SglAa(es _ Us)|2 4 C|A6UE‘N’98 _ 716’2 4 C|A6UE|4,

where u,, satisfies (1.3) with 6 replaced by v.. Here for the last term we use the following
estimate:

[{(uye - VU©,0° — 0%)| = |[{V « (upev®), 0° — )|
< ClA%(6° = o) || A% (w0, v%))|
< [A%(85 — D)||A% 7,
where in the first equality we use divu,, = 0 and in the last inequality we use Lemmas 2.1, 2.2

and 0 > (2 —2a) V a.
Therefore, by S.2) and Young’s inequality we get

tATe M
[VS(E A Te ) — 05 (E A 7‘,57M)|2 + 25/@/ A% (v°(s) — 95(3))|2ds
tATe M K ) 9 \
< MiAa e pe a, e
_25/0 <2|A (v® — 6°)| +C|Av|>ds
tATe M K
+ 28/ <§]A°‘(0€ — )2 + O|A5?}€|N|9€ — v + C|A5v5\4) ds
0
tATe M
+2vE [ - 5, (600) - Geaw)
0

t/\Ts,M
o 60/ v — 6°|%ds.
0

Then by Gronwall’s lemma and 6 > « we have

t/\Ts,M
|U€(t A\ 7_57M) — ee(t A\ TE,M)|2 < |:2€/ (C|A5U€‘2 + C|A§v5|4)ds
0
t/\Ts,M tATS . .
+ 2\/§|/ (v° — 6°, (G(v°) — G(es))dwﬂ} 50 Jo M |ASvE N dst-Cte.
0
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To estimate the stochastic integral term, we will use the following result from [4, 10], namely
that there exists a universal constant ¢ such that for any ¢ > 2 and for any continuous martingale
M, with My = 0, one has
M} ||a < cq'/? 12 4.6
[ M{ || Le < eq =1 (M); || s, (4.6)
where M} = supgc,<; | M.
By this result and S.2) we have

(B[ sup |v%(s) — 6°(s)[]9)%/1

0<s<tATe M1

tATe, M
<CesOM e Cte {(5Mt +eM?t)? + qe (B / [0 (r) — 6 () |*dr) /%) ‘1]
0

t
<l [(th +eM?*t)? + qe/ (E[ sup |v°(r) — 98(7’)\2]‘7)2/’1(13] :
0

0<r<sAT:, m
Then Gronwall’s lemma yields that
(B[ sup  |v°(s) — 6°(s) "))
0<s<T'ATe, s

<C«eaC’MN/2T+CTe<EMT X 8MQT)2 exp [CngeaCMN/QT-i-CTa} ‘

Fixing M and taking ¢ = 2/ we obtain
elogP( sup |0°(t) —v°(t)]> > n)
0<t<TAT
E[suPo<scrnr, 5, [V (s) — 05(5)[*]
77‘1
<log C(eMT +eM?T)* — 2logn + CT oMY *T+CTe O MN/2T 4+ CTe
— — 00, as € — 0.

<elog

Therefore, by (4.5) there exists gy such that for every e satisfying 0 < ¢ < &,

P( sup |6°(t) = v*()]” > n, sup |lv*(t)Fs < M) < e . (4.7)
0<t<T

0<t<T
By the same argument as in [36, Lemma 3.2] and S.1) we have

lim sup elog P( sup [[v°(t)||%s > M) = —c0. (4.8)

M—00 g<e<1 0<t<T
Then for any R > 0, there exists a constant M such that for every ¢ € (0, 1] the following
inequality holds:
P(sup o (O)l%s > M) < e e, (4.9)
0<t<T

By (4.7) and (4.9), we know that there exists ¢y such that for every e satisfying 0 < ¢ < gy we
have

P( sup |65(t) — v°(2)|* > ) < 2e~ B/,
0<t<T
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Since R is arbitrary, we obtain (4.4).
Hence the proof of Theorem 4.1 is complete. O

Note that the solution of (4.1) is not as regular as in the case of the 2D stochastic Navier-
Stokes equation. In Theorem 4.1 we use the regularity of v* to control the nonlinear term,
but we can not approximate the initial value in (4.1) to obtain the large deviation principle on
L>([0,T], H) for general initial value in L? as Xu and Zhang did in [36] for the 2D stochastic
Navier-Stokes equation since the nonlinear term can not be dominated. To overcome this
difficulty, now we enlarge the state space of the solution and use L? norm estimate to control
the nonlinear term. Then we establish the large deviation principle on L>([0,T], H~/2).

We consider the following condition on G.
S.3) There exists a constant Ly such that

IAY2(G(61) — GOy < LolA™2(60 — O, 61,6, € HO,

Remark Typical examples for G satisfying Hypothesis 3.5 and S.1)-S.3) have the following
form: for 6 € H*

G(O)y = bily, fe)ub,y €U,
k=1
where by, are C* functions on T? satisfying >, , b2(§) < M and > | [A**b|* < M for some
e > 0.

Let i be the law of #° on L>([0,T], H~'/?). Now we formulate our main result about the
small time large deviation principle for (4.1).
Theorem 4.2  Suppose that S.1) for § > (2—49)V(a—3) and Hypothesis 3.5, S.3) hold. Then
for 6y € LP, ii° satisfies the large deviation principle on L>([0,T], H~'/?) with rate function /
given by (4.2).

It is sufficient to show that the two families of probability measures i and v (for simplicity
we still use the same notation) are exponentially equivalent, i.e. for any n > 0,

11m510gP( sup |[ATY2(05(t) — v (1))|* > 1) = —c0. (4.10)

0<t<T

Then the conclusion in Theorem 4.2 follows directly from [11, Theorem 4.2.13].
In order to show (4.10) we prove a few lemmas in below.

Lemma 4.3
lim sup elog P( sup 105 ()|, > M) = —oo.

M—00 g<e<1 0<t<

Proof We consider the same approximation #=™ to 6° as in [28, Theorem 3.3]. We pick a
smooth function ¢ > 0 such that supp ¢ C [1,2] and [;° ¢ = 1. Then for o > 0 we define

UL10](¢) = /O () ke + REO)(1 — o7)dr,

where k, is the periodic Poisson kernel in T? given by l;;;((’) = e77lKl ¢ € 72, and we set O(t) = 0
for t < 0.
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We take a sequence 6,, converging to 0 and consider the following equation:
dO=" (t) + e A 07" (t)dt + eu"(t) - VO (t)dt = /eks, » G(6°")dW (t) (4.11)
with initial data 6°"(0) = ks, * 6y and u=" = Us, [#="]. For a fixed n, this is a linear equation

in 0™ on each subinterval [t} t}, ] with ¢} = ké,, since u=" is determined by the values of ="
on the two previous subintervals.

Then by [28, Theorem 3.3, Step 2] , there exists a weak solution to (4.11) which converges
in distribution to 6° in L*([0,T], H) N C([0,T], H=?).

By [20, Lemma 5.1] we have (here we write 0(t) = 6°"(t),u(t) = u*"(t) to simplify the
notation)

16|70 =lIks, * Ooll7s +€/t [—p/ 16()[P~20(s)(A**0(s) + u(s) - VO(s))dx
p— 1) / 10(s \MZ\;@; £ GOE) ()] )dx]ds
+ pve / / 10(5)[P720(s) ks, * G(0(s))dxdW (s)
£||90\|Lp+ 3PP / / 16(s)|P~%( Z|k5 « G(0(s))(f;)?)dads
#ovE [ [ 06200 ks, = G daa (s

§|!90\|’2p+e/ </ 6(s rpdasw/Z\kg el >|>/2d:v>d

Ve / [ 10265}k, = GUO(s))daaWV (),

where in the first inequality we used divu = 0 and [ |0P720A**0 > 0 (cf. [27, Lemma 3.2]) as
well as Young’s inequality in the second inequality.
Then by Hypothesis 3.5 (iii) we have

T
sup [|6(t)[|7, <[|6oll7» +CT + Oe/ sup [|6(t)[7.ds
te[0,7) 0

te(0,s]

+py/e sup | . 10(s)I"=20(s) ks, * G(0(s))dzdW (s)].

0<t<T

Therefore, for ¢ > 2 we obtain

(B s [0 <ol +eOT+Oe<E</O sup [[6()[[2,ds))/2

telo,T te(0,s]

2B suwp | [ 166)P26()ks, * G(B(s))dadW (s)]7) 2

0<t<T Jo JT?
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Using (4.6) and Minkowski’s inequality we have

pVe(E sup \ . 0(s)[P~20(s)ks, * G(0(s))dzdW (s)[1)"/?

0<t<T

< peViEE / / 0(s V”ZI%*G (F)[2)/2dz)?ds)o/2)1/e

< peyGECE( sup (01| ([ (3 i, G061 ()P 2da)?/rds) o)y

s€[0,T7] 0

< pev/eel B sup 1606) / (. (3l = GO ) )

s€[0,T

< 38 swp [0+ cp)ae (B / (32 s+ GO =)y

s€[0,T

< 508 sup I+ cw)lar” | [+ EI ) ds] ,

s€[0,T

where in the last inequality we use Hypothesis 3.5 iii) and Jesen’s inequality.
Hence,

T
(E(sup [[0(6)]75)"" <2]160ll7 +€CT+C€/ (E sup [[0(t)]73)"*ds
0

te[0,T) t€[0,s]
relpaep | [ (1 (103170 a5

Applying Gronwall’s lemma we obtain that
(B( sup [16(¢ TN < [21160][7, + eCT + c(p)(qe)”*T] exp [CTe + c(p)T(ge)""*] .
te[0,T

Letting n — oo we get

<E<t2[%% 16°)172)) " < [2060l 70 + CT + e(p)(ge)*T] exp [CTe + e(p)T(q2)”?] -

Since

P(sup [|0°()[[L, > M) < M™TE( sup [|6°()]|73),

0<t<T t€[0,T]

letting ¢ = 2/ we get
elog P( sup [|6°(t)||, > M) < —2log M + 2log(E( sup 16° () 175)) 1
0<t<T

tel0, T

< —2log M + 2log(2]|6s|/}, +eCT + CT) + 2CTe + QC’T.
Hence the proof is complete.

Since H® N LP is dense in LP, there exists a sequence {65} C H° N LP such that

lim ||96L - 90||Lp =0.
n—oo
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Let 6% be the solution of (4.1) with initial value 6. From the proof of Lemma 4.3, it follows
(4.12)

that
lim sup sup 510gP( sup ||9€( || M) = —o0.

M=o pn 0<e<1
Let v be the solution of (4.3) with initial value 6f. By the same argument as in (4.8) and

Lemma 4.3 we have the following result

Lemma 4.4 For every n € Z*
Po) > M) =—c0.

lim sup slogP( <), (Hv Oz + ln @l

M—o0 0<e<1
Lemma 4.5 For every n > 0,
lim sup elog P( sup [|05(t) — 0°(t)||5,-1/2 > n) = —oc.
=00 0<e<1 0<t<T
Proof For M > 0, we define the following stopping time for N —F:
T =nf{t >0: / 16°(2)||2odt > M}.
Clearly, we have
T
P(sup [|0,(t) = 0°(t)[5-12 > 7 / 16°() || 2o dt < M)
0<t<T 0 (4.13)
<P( sup  [[05(t) = 0°() [5-1/2 > m)-
0<t<TAT: 1
$—. Then applying Ito’s formula to

- 1
a3

=

Let k be a positive constant and Ny
—ke Jo "M N0 RS A12(0 (£ A 7. ) — 05(E A Fenp))]

we get
€ € N
S O B \ATV2 (05 (8 A Tepg) — 05 (EA Tong))]
tATe M s 1 pe No 1
+2€H/ e ke o 10T dr| No=3 (62 (5) — 65 (5))|ds
0

A3 (B0 — )] — ke / T e B 108 e ) Mo A (6 (s) — 6 (s)) s
e / T R IR (4 (5) - VO () — () - V5 (5), A8 (5) — 5 (5)))ls
+2ve / T e IR A 2(g(5) — 05(5)), AVAGE(5)) — G65(5)) W (5)

tATe, M
+ 5/ RS VIR AY2(G6 (5)) — U8 (8)) 120y
0
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where uf satisfies (1.3) with 6 replaced by 65.
Note that

(U - VO — uf - VO, A6 — 67))
=((u5, = u®) - VO, ATHOF, — 7)) + (u - V(05 — 0°), A0, — 69)).

Moreover, we also have (cf.e.g. [27])

((us —u) - VO, A1 (65 — 6°)) =0 (4.14)

n

and

[(uf - V(65 — 6°), A"1(05, — 6°))| = |(u - VATH(OE — 6°), 65 — 6°)|
<[ o 165, — 6° || o [[VATH(85 — 6°)] 1
<O 101165 — 6| s [ VATHES — 6°) | s
<Ol ol A5 = )2 (4.15)
134 —_ 5 15 — £ 2(1—
OO0 o I AT (65 = 6137 1A (65— 69) 117,

<KIAT (0, — 0°) ] + CollF 1221 A (65 — 95)!2,

where ]l) + z% = 1 and we used that divu® = 0 in the first equality and H'/? < L*" in the second
inequality, the interpolation inequality in the forth inequality and Young’s inequality in the
last inequality.

Therefore, by (4.14), (4.15) and S.3)

AT, e
e—kefo Mo S)HLPdS|A 1/2(05<t A TaM) 9 (t A 7__5,M))F

t/\TE M
b 9en / e~k I3 I IIZRAr No=3 (g2 (5) — 6 () [2ds
0
tATe M s pen N )
<|A72 (8 — O3)|? — ke / ek Jo I0%lLpdr |62 (5)]| No | A=z (65 (s) — 65 (s))|Pds
0
t/\7"5’M R _No 1
- 25/ e R IS 10784 (1| A3 (65 (5) — 6°(5)) |2 + Col|6%(s) | 2| A=Y/2(65 () — 6°(s))[2)ds
0
tATe M S ine No
+2y7 / ek lo 10°GIER A (A=V/2 (62 () — 0 (s)), A~V2(G(6°(s)) — G(B5(s))) AW (s))
to/\?E,M s i No
+ CE/ e~he Jo I07IILRdr | A\=1/2(92 () — 05 (s))|ds.
0
Choosing k > 2Cj and using (4.6) we have

(B[ sup et I 10°ONERdr | \=1/2 g2 5) — s (5)) o)/

0<s<tATe 11
<2[A"2 (6, — 67)|*
¢
+C(qe + t€2)/ (B[ sup e ke fo ||9€(7")|Ig3d7"|A*1/2(95(S) . 92(5))|2]q)2/qd&
0

0<r<sATe m
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Applying Gronwall’s lemma we obtain

(E[ sup e —ke [g l6°(r HLpdT‘A 1/2(95( ) — 92(5>>’2]q)2/q < 2’Af§(90 _961)‘4€CT(<15+52T)'

OSSST/\‘T'S’]W
Hence we have

(E[ sup |A—1/2(95<S) _ 92(8)”2}(])2/[1 < 262kM|A—%(00 . 93)|4€CT(qs+52T)‘

0<s<T'ATe, m
Fixing M and taking ¢ = 2/ we get

sup elog P sup  [|65(t) — 6°(t)]|3-12 > 1)

0<e<1 0<t<TATe M
< sup ¢lo E[Supogng/\%g,M |A71/2(Q€<5) - 92<3))|2q}
< 0<€21 g o (4.16)

<2kM + log 2|A"2(6y — 6)|* — 2logn + C

— — 00, as N — 0Q.

By Lemma 4.3, for any R > 0 there exists a constant M such that for every ¢ € (0,1] the
following inequality holds:

P([ 107132 > M) < Psup (00, > (™) < e @)

For such M, according to (4.13) and (4.16), there exists a constant Ny such that for every
n Z N27

T
sup elog P( sup |65 (t) — 6°(t)||y-1/2 > n,/ 16°(t)||Yedt < M) < —R. (4.18)
0

0<e<1 0<t<T

Combining (4.17) and (4.18) we conclude that there exists a positive integer Ny such that for
every n > Ny and ¢ € (0, 1]

P(sup 10;(0) = 0°(D) e > 1) < 2677
t<

Since R is arbitrary, the assertion of the lemma follows. OJ

The next lemma can be proved similarly as Lemma 4.5.
Lemma 4.6 For every n > 0,

lim sup elog P( sup Hv (t) — v () ||3-12 > 1) = —00.

n—00 0<e<1 0<

Lemma 4.7 For every n > 0 and every positive integer n,

hmalogP( sup 105(t) — v, () ||5;-1/2 > 1) = —o0.
0<t<
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Proof For M > 0, we define the following stopping times:

7y = mf{t (o ()15 + [lon (O], > M}
Then we have

Psup, 165(6) = 05Ol > 1, sup (1950l + Wi O1E) < 3)
) . == 4.19
<P sup  OE() — (DI > ). (4.19)

0<t<TAT",,

Applying It6’s formula to |A~Y2(vE (¢ A 2) — 0t AT )) P we get
t/\'rg
AR (A ) = Gae AT )+ 2en [ A5 (s) — (s s
0
EATE o ZASY:
=22 [ a9 A ) — B 22 [ - VO AT 0~ )
’ t/\Tg’fM °
+2 5/ AV (02 —05), ATY2(G(vE) — G(62))dW)
t/\'r

—1—5/0 w [ATY2(G(vg) — G(65 )HL2 v,m)d

)
Note that by similar arguments as in (4.14) and (4.15), we have
[(us - VO, A (v — 05))]
=[{(up, = ug,) - VO, A0, — )
+ (ug, - V(0 —vp), A (07, — )
+(ug, - Vo, AT, — )

K
§§|Aa_%(92 = vp) P+ CllonlIZ IATY2(05, — o) P + CllvgIps,

n))
1(0

where u; satisfies (1.3) with 6 replaced by v;,. Here in the last step for the last term we use
the following estimate:

[{uz, - Vvg, A7 07 — vp))| = [{ug, - VAT, — v3), o] < 1167, — v llzen [lvr 1 Ze,
< IAO‘_i( R = oA,

a— 1/2

where il + pl = l,p1
Therefore, by S.3)

+ = % and we use H*"2 C LP* and H® C LP? since § > (% =3)

t/\7'E 1
A2 (02 (t A ) = On (A T;M))‘Z + 28&/ " |A“"2 (vS — 6°)|ds
0
t/\TE
S25/ Mfm*wzeﬂmf+cmw%m%s
‘ t/\TE’
+2€/ —IAC““< — o) [* + Cllog I IAT2(05, — o)1 + Cllvg || s ds
ravE [ A - 00, A7 G00) - )
t/\TY
+ 80/ |A_1/2(v7i — Qfl)|2ds.
0

23


Administrator
高亮


Then Gronwall’s lemma yields that
t/\T:”’M L
AT A ) - AT < (20 [ AT 4 s
0
AT L1/ 12 CfMT:’M ! EHNOd Lot
avel [ - ). A6 - Gl W) | e Il
0

Using (4.6) we have

(B[ _sup  [A72(03(s) = 07()) 1)

OSSSt/\T::M

t
< CeeOtMNO/+Cte [(eMt +eM?*t)* + qa/ (B[ sup |ATY2(vi(r) — Hi(r))IQ]q)Q/qu] :
0

OSTSS/\T:,]M
By Gronwall’s lemma we obtain that

(E[ sup |A_1/2(UZ(S) N 9;(8))|2]q)2/q

0<s<TAT \s

<Ce€CTMNO/p+CT5(5MT + eM?T)? exp [CqueECTMNO/”CTa} .
Fixing M and taking ¢ = 2/e we have

elogP( sup  [I0;(t) — v (t)[[3-12 > m)

0<t<TA7e,m

E[SupogngATE,M A2 (05 (s) — 65(s)) ]

<elog " (4.20)
<log C(eMT + eM>T)? — 2logn + CTeCTM /" +CTe o copNolv 4 OTe
— — 00, as € — 0.
Therefore, there exists ¢y such that for every e satisfying 0 < ¢ < &,
P(sup [105() = vi (Ol -ve >, sup (Ol + [3Ol15) < M) < e @)

By Lemma 4.4 and (4.21), we know that there exists g such that for every ¢ satisfying 0 < e < ¢
we have

n

P( sup_[|6,(t) - R (O)lIF-12 > 1) < 2e7

Since R is arbitrary, the desired result follows. O
Now we can finish the proof of Theorem 4.2.

Proof of Theorem 4.2 By Lemmas 4.5 and 4.6, we have for every R > 0 there exists N, such
that
P(sup [|0%,(t) — 05 (6)]% -0 > 1) < e7R/% for any e € (0,1];
0<t<T 3
and

P(sup (|05, (t) = 05 ()51 > 1) < e R/ for any £ € (0, 1].
0<t<T 3
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For such Ny, according to Lemma 4.7, there exists £y such that for every ¢ satisfying 0 < e < &,

I3 £ 77 — £
P( sup 105, (t) = 03, (D) 7-12 > ) < e

0<t<T 3
Therefore, for every ¢ satisfying 0 < ¢ < g9 we have

P( sup [|0°(t) = v (t)[5-12 > m) < 3715,
0<t<T

Since R is arbitrary, we have

limelog P( sup |[A"Y2(65(t) — v5(t))]? > n) = —oo,
e—0 0<t<T

i.e. (4.10) holds. Hence the proof of Theorem 4.2 is complete. O

Appendix

Theorem A.1  Suppose that A.1)-A.3) hold. Then for any 6, € H° N LP with p in Hypothesis
3.5 iii), (3.8) has a unique solution

0, € L=([0,T], H’ N L?) N L*([0, T], H***) n C([0,T), H?)

and it has the following estimate:

T
sup (1A%, (&) + 6. (D)[%) + / AP0, (s)[2ds < C, (A4)

te[0,T] 0

where C' is some constant only depending on [A%y|, ||6o]|z», T and fOT lv|3 ds.

Proof In the following we will assume that 6 < 1. The case for § > 1 is similar.
[Step 1] We first establish the existence of solutions of the following equation

%Ef) + A,0(t) +w(t) - VO1) = k, x GO())v(t), (#5)

0(0) = 90 € H3

with a given smooth function w(t) which satisfies divw(t) = 0 and sup;ep 7y [[w(t)]|es < C.
Here k, * G(6) means for y € U, k, x G(0)(y) = ks * (G(0)(y)), where k, is the periodic Poisson
kernel in T? given by /;,(C) =e oKl ¢ € Z2.

Then we have the following apriori estimate

%|A30|2 + 26| AFOG2 < 2|(aw - VO, A9)| + 2|(A36, A%ks + G(O))].

By Lemmas 2.1 and 2.2 we have that

(AP (w - V6), A*20)| < Clwllasers)|A*0]|A%+6] < CIA%H® + K| AZ+6]2,
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where in the last inequality we use the interpolation inequality and Young’s inequality.
Note that we also have

A%k % G(0)v] < C(OGO)|ow.enlvly < Cloly(IA%6] + 1).

Thus,
d
%\A?’ey? + K|A3T20)% < Clo|y(|A%0)2 + 1) 4+ C|A39).

Then by the standard Galerkin approximation we obtain that there exists a solution 6 €
L>([0,T], H®) N L*([0, T], H3™*) n C([0,T], H') of (A.5).

[Step 2] Now we construct an approximation of (3.8).
We pick a smooth ¢ > 0, with supp ¢ C [1,2] and [;~ ¢ =1, and for o > 0 let

UL 10]() = /0 " 81 (ks % RE0)(t — o7)dr,

where k, is the periodic Poisson Kernel in T? given by k/:;(C) = el ¢ € 7%, and we set
6(t) =0 for t < 0.

We take a sequence 6,, | 0 and consider the equation

d0,(t)
dt

with initial data 6,,(0) = ks, * 6y and wu,, = Uy, [0,].

For a fixed n, this is a linear equation in 6, on each subinterval [t},¢},,] with ¢} = kd,,
since u, is determined by the values of 6,, on the two previous subintervals.

By [Step 1], we obtain the existence of a solution to (A.6) for fixed n. Moreover by (A.1)
the solution satisfies the following LP norm estimate:

b AnB(t) + un(t) - VOL(t) = ks, * G(6,)0(?) (A.6)

%uenugp . / 10,720, (s, * G(0)0 — 1, - V6, — A2, )z
< p/ 100726, 5, * G(6r)vdz < Clolo(|6a]2, + 1).

Here in the first inequality we use divu, = 0 and [ ]0,[P~20,A**0,, > 0 (c.f. [27, Lemma 3.2]).
Then Gronwall’s lemma implies that

0] T
sup (16112 < ([16olf%s + / B, e / folod).
0 0

te[0,T

By (2.1) we have

T T
sup [[unllZe < Cl60 |1, + / B o / jolydt).
0 0

te[0,7)

Now we prove the uniform H? estimate:
d
E|A59n|2 + 26| A2T20, 12 < 2[(A°(uy - VO,), A26,)| + 2|(A°0,,, Aks, * G(6,)v)].
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By [27, Proposition 3.6] we have

(A (- V), A%6,)] < ZIA™20,2 4 ZIAP 0 4+ Cllun [§21A%6 ]2 + Ol 1321A %,
where No = —7—.
2 p
By A.2) we also obtain
|<A50n,A5k5n *x G(0,)v)| < C|v\U]A56n|(\A5+°‘9n\ +1) < 5|A5+a9n12 + C(|v|§,\A50n|2 +1).

Thus,
t t
%6, (8)[2 + n/ |A+ag, [2ds < / 120t |22 [ A6, + Cll6u NI A%un? + C (o[ |A%, 2 + 1)] d.
0 0
Note that we have (here we cannot control |A%u,| by |A%,,| pointwisely in time)

t t
/ |A%u,|2ds < C’/ |A%0,,|?ds.
0 0

Using Gronwall’s inequality and L? norm estimate above we obtain the uniform H° estimate
for 0,,.

Then by standard argument we know that 6,, converges to the solution 6, of (3.8), which
implies (A.4). The proof of uniqueness is the same as in [27, Theorem 3.7] by A.3). O

Acknowledgement. The authors would like to thank the referee for many valuable com-
ments and suggestions. The authors also thank Rongchan Zhu for her helpful discussions.

References

[1] M. Boué, P. Dupuis, A variational representation for certain functionals of Brownian mo-
tion. Ann. Probab., 26 (1998), No. 4, 1641-1659.

[2] A. Budhiraja, P. Dupuis, A variational representation for positive functionals of infinite
dimensional Brownian motion, Probab. Math. Statist., 20 (2000),39-61.

[3] A. Budhiraja, P. Dupuis, V. Maroulas, Large deviations for infinite dimensional stochastic
dynamical systems, Ann. Probab. 36 (2008), 1390-1420.

[4] M. T. Barlow, M. Yor, Semi-martingale inequalities via the Garsia-Rodemich-Rumsey
lemma, and applications to local time, J. Funct. Anal., 49 (1982),198-229.

[5] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-
geostrophic equation, Annals of Math., 171 (2010), No. 3, 1903-1930.

[6] 1. Chueshov, A. Millet, Stochastic 2D hydrodynamical type systems: well posedness and
large deviations, Appl. Math. Optim. 61 (2010), 379-420.

[7] P. Constantin, A. Majda, E. Tabak: Formation of strong fronts in the 2-D quasi-geostrophic
thermal active scalar. Nonlinearity 7 (1994), 1495-1533.

27


Administrator
高亮

Administrator
高亮


8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[21]

[22]

[23]

P. Constantin, J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J.
Math. Anal. 30 (1999), 937-948.

G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge Univer-
sity Press, 1992.

B. Davis. On the LP-norms of stochastic integrals and other martingales, Duke Math. J.,
43 (1976),697-704.

A. Dembo, O. Zeitouni. Large Deviations Techniques and Applications. Jones and Bartlett,
Boston, 1993.

J. Duan, A. Millet, Large deviations for the Boussinesq equations under random influences,
Stochastic Process. Appl. 119 (2009), 2052-2081.

F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations,
NoDEA 1 (1994), 403-423.

F. Flandoli, D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes
equations, Probability Theory and Related Fields 102 (1995), 367-391.

M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, Translated
from the Russian by Joseph Szu”cs. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], 260. Springer-Verlag, New York, 1984.

I. Gyongy, N. Krylov, Existence of strong solutions for 1td’s stochastic equations via ap-
proximations, Probab. Theory Relat. Fields 105 (1996), 143-158.

N. Ju, Existence and Uniqueness of the Solution to the Dissipative 2D Quasi-Geostrophic
Equations in the Sobolev Space, Communications in Mathematical Physics 251 (2004),
365-376.

N. Ju, On the two dimensional quasi-geostrophic equations, Indiana Univ. Math. J. 54
No. 3 (2005), 897-926.

A. Kiselev, F. Nazarov, A. Volberg, Global well-posedness for the critical 2D dissipative
quasi-geostrophic equation, Invent. math. 167 (2007), 445-453.

N.V. Krylov, Ito’s formula for the L,-norm of stochastic Wpl—valued processes, Probab.
Theory Relat. Fields 147 (2010), 583-605.

W. Liu, Large deviations for stochastic evolution equations with small multiplicative noise,
Appl. Math. Optim. 61 (2010), 27-56.

U. Manna, S. S. Sritharan, P. Sundar, Large deviations for the stochastic shell model of
turbulence, NoDEA Nonlinear Differential Equations Appl. 16 (2009), 493-521.

M. Ondrejat, Brownian representations of cylindrical local martingales, martingale prob-
lem and strong markov property of weak solutions of spdes in Banach spaces, Czechoslovak
Mathematical Journal 55 (130)(2005), 1003-1039.

28



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

J. Pedlosky: Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987

C. Prévot, M. Rockner, A Concise Course on Stochastic Partial Differential Equations,
Lecture Notes in Math., vol.1905, Springer, 2007.

J. Ren, X. Zhang, Freidlin-Wentzell’s large deviations for stochastic evolution equations.
J. Funct. Anal. 254 (2008), 3148-3172.

S. Resnick, Danymical Problems in Non-linear Advective Partial Differential Equations,
PhD thesis, University of Chicago, Chicago, 1995.

M. Rockner, R.-C. Zhu, X.-C. Zhu, Sub- and supercritical stochastic quasi-geostrophic
equation, arXiv:1110.1984v4.

E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, NJ:
Princeton University Press, 1970.

S.S. Sritharan, P. Sundar, Large deviations for the two-dimensional Navier-Stokes equa-
tions with multiplicative noise, Stoch. Proc. Appl. 116 (2006), 1636-1659.

D.W. Stroock, An Introduction to the Theory of Large Deviations, Springer, New York,
1984.

A. SWiQCh, J. Zabczyk, Large deviations for stochastic PDE with Lévy noise, J. Funct.
Anal. 260 (2011), 674-723.

R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1984.

S.R.S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure. Appl.
Math.. 19 (1966), 261-286.

S.R.S. Varadhan, Diffusion processes in small time intervals, Comm. Pure. Appl. Math..
20 (1967), 659-685.

T.Xu, T.S. Zhang, On the small time asymptotics of the two-dimensional stochastic Navier-
Stokes equations, Ann. Inst. H. Poincaré Probab. Statist. 45 (4) (2009), 1002-1019.

29





