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Abstract. We show that any strictly quasi-regular generalized Dirichlet form that satisfies the
mild structural condition D3 is associated to a Hunt process, and that the associated Hunt
process can be approximated by a sequence of multivariate Poisson processes. This also gives a
new proof for the existence of a Hunt process associated to a strictly quasi-regular generalized
Dirichlet form that satisfies SD3 and extends all previous results.
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1 Introduction

The theory of Dirichlet forms is a powerful tool in the study of Markov processes, since it
combines different areas of mathematics such as probability, potential, and semigroup theory,
as well as the theory of partial differential equations (see monographs [2], [3] and references
therein). For instance, the classical energy calculus in combination with the potential theory of
additive functionals allows to obtain an extension of Itô’s formula for only weakly differentiable
functions, i.e. functions in the domain of the form. This celebrated extension of Itô’s formula
where the martingale and the possibly unbounded variation drift part are controlled through the
energy is well-known as Fukushima’s decomposition of additive functionals (see e.g. [2, Theorem
5.2.2]).
Until recent years the applicability of Dirichlet form theory was limited to symmetric Markov
processes (see [2]) or, more generally, to Markov processes satisfying a sector condition (cf.
[3]). Within the theory of generalized (non-sectorial) Dirichlet forms (see [10], and [11] for the
associated stochastic calculus including the extension of [2, Theorem 5.2.2] to the non-sectorial
case) this limitation has been overcome since in this generalized framework only the existence
of a positive measure µ is required for which the transition semigroup of the Markov process
operates as a C0-semigroup of contractions on L2(µ). In particular, as no sector condition has
to be verified, the theory of generalized Dirichlet forms is robust and well-suited for far-reaching
perturbation methods.
In this note we are concerned with several questions related to probabilistic and analytic potential
theory of generalized Dirichlet forms. A particular aim is to find general analytic conditions
for non-sectorial Dirichlet forms that ensure the existence of an associated Hunt process. The
question whether the associated process is a Hunt process is crucial for localizing purposes (see
e.g. introduction of [12]).

1Supported by the research project ”Advanced Research and Education of Financial Mathematics” at
Seoul National University, and the CRC 701 and the BIBOS-Research Center at Bielefeld University.
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A fundamental consequence of [12, Theorem 2] and [8, Theorem 3.2(ii)] is that any transient
Hunt process M on a metrizable and separable state space is strictly properly associated in the
resolvent sense with a strictly quasi-regular generalized Dirichlet form. This is relevant because
we can then apply all the fine results from the potential theory of generalized Dirichlet forms
w.r.t. the strict capacity (see [12] for some strict potential theory, and [8, Remark 3.3(iv)] which
applies also to strictly quasi-regular generalized Dirichlet forms and Hunt processes). Moreover,
if the state space is only slightly less general, namely (for tightness reasons) a metrizable Lusin
space, then by [5, Theorem 2.1] the Hunt process can be approximated by multivariate Poisson
processes and the approximation works for all Px, i.e. for all x in the state space. The canonical
approximation of the Hunt process by Markov chains is useful as it provides an additional tool
for its analysis and for the analysis of the underlying generalized Dirichlet form. Note that the
just mentioned line of arguments is not valid for sectorial Dirichlet forms, which underlines a
strength of generalized Dirichlet form theory. In fact, for a given arbitrary Hunt process we first
do not know how to check whether it is associated to a sectorial Dirichlet form, and second this
is clearly is not true in general.
Here, we establish the “quasi converse” of the above with nearly no restriction on the state space.
We consider two problems, which, due to the method, are in fact solved simultaneously. The first
problem is to establish the existence of an associated Hunt process to a strictly quasi-regular
generalized Dirichlet form on a general state space, and the second is the approximation of this
Hunt process in a canonical way through Markov chains. The second problem goes back to an
original idea of S. Ethier and T. Kurtz. In fact, it is shown in [1, Chapter 4.2] that for nice
state spaces such as locally compact and separable state spaces and nice transition semigroups
like Feller ones, the Yoshida approximation via multivariate Poisson processes converges for
all starting points to a Markov process with the given semigroup. This was generalized in [6]
where it is shown that the Yoshida approximation of the generator together with some tightness
arguments that result from the strict quasi-regularity leads to the approximation via multivariate
Poisson processes of any Hunt process that is associated with a strictly quasi-regular sectorial
Dirichlet form. This also led to a new proof for the existence of an associated Hunt process.
However, the price for the increased generality is that the approximation only works for strictly
quasi-every starting point x of the state space. We have to pay the same price, and even more
we have to assume the additional structural condition D3 that is however trivially satisfied for
any sectorial Dirichlet form (see Proposition 2.3). Nonetheless, since the class of generalized
Dirichlet forms is much larger than the class of sectorial Dirichlet forms our results represent a
considerable generalization. In particular time-dependent processes and processes corresponding
to large perturbations of symmetric forms, are covered.
Besides the canonical approximation scheme through Markov chains we want to emphazise that
our main result Theorem 4.11 is an improvement of [12, Theorem 3]. We were able to relax
condition SD3 to the weaker one D3 of W. Stannat which was used to show the existence
of an associated standard process (see [10, IV. Theorem 2.2]). Therefore our general analytic
conditions for non-sectorial Dirichlet forms to ensure the existence of an associated Hunt process
are just D3 and the strict quasi-regularity. The state space is only assumed to be a Hausdorff
topological space such that its Borel σ-algebra is generated by the set of continuous functions on
the state space. It should also be noted that our conditions, when applied to the symmetric case
on a locally compact and separable metric state space, are weaker than the regularity assumed
in [2, Chapter 7] (see [12, Corollary 1], [3, Corollary 2.16]).
Finally let us very briefly summarize the main contents of this paper. Section 2 contains the
preliminaries and the fundamental technical results. In particular our way of defining the strict
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capacity (cf. Definition 2.4 and [12, Definition 1]) is simpler than in [3, V.2], [6, Section 2], but
still equivalent (see Remark 2.5). The strict capacity is defined w.r.t. some reference function ϕ,
but it turns out to be independent of that function (see Remark 2.6). One of the most important
technical results is the construction of the modified functions ên in Lemma 2.13 in comparison
to the functions en of [6, Lemma 3.5]. This makes the difference and allows to handle the non-
sectorial case (see also Remark 2.14 for some related explanations). Lemma 2.13 allows to get the
crucial tightness result of Lemma 4.4. Note that we also correct an inaccuracy that appears in
the proof of the statements corresponding to Lemma 4.4 in both papers [6] and [5] (see Remark
4.3). Having developed the fundamental results of potential theory in Section 2, the results of
Sections 3 and 4 follow similarly to the line of arguments in [6].

2 Strict quasi-regularity, strict capacity, and the con-

struction of Rα

In this section we recall basic notions and consequences related to strict notions and generalized
Dirichlet forms. For notations that might not be defined here we refer to [12].

2.1 Quasi-regular generalized Dirichlet forms and the conditions
D3 and SD3

Let E be a Hausdorff space such that its Borel σ-algebra B(E) is generated by the set C(E) of all
continuous functions on E. Let m be a σ-finite measure on (E,B(E)) such that H = L2(E,m) is
a separable (real) Hilbert space with inner product (·, ·)H. Let (A,V) be a real valued coercive
closed form on H, i.e. V is a dense linear subspace of H, A : V × V → R is a positive definite
bilinear map, V is a Hilbert space with inner product Ã1(u, v) := 1

2(A(u, v)+A(v, u))+ (u, v)H,
and A satisfies the weak sector condition

|A1(u, v)| ≤ KA1(u, u)1/2A1(v, v)1/2,

u, v ∈ V, with sector constant K. Identifying H with its dual H′ we have that V ⊂ H ⊂ V ′
densely and continuously. Since V is a dense linear subspace of H, (V, Ã1(·, ·)1/2) is again a
separable real Hilbert space. Let ‖ · ‖V be the corresponding norm.

For a linear operator Λ defined on a linear subspace D of one of the Hilbert spaces V, H
or V ′ we will use from now on the notation (Λ, D). Let (Λ, D(Λ,H)) be a linear operator on H
satisfying the following conditions:

D1 (i) (Λ, D(Λ,H)) generates a C0-semigroup of contractions (Ut)t≥0.
(ii) (Ut)t≥0 can be restricted to a C0-semigroup on V.

Denote by (Λ, D(Λ,V)) the generator corresponding to the restricted semigroup. From [10,
Lemma I. 2.3, p.12] we know that Λ : D(Λ,H) ∩ V → V ′ is closable as an operator from V into
V ′ if (Λ, D(Λ,H)) satisfies (i) and (ii). Let (Λ,F) denote its closure, then F is a real Hilbert
space with corresponding norm

‖u‖2
F := ‖u‖2

V + ‖Λu‖2
V ′ .
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By [10, Lemma I. 2.4, p.13] the adjoint semigroup (Ût)t≥0 of (Ut)t≥0 can be extended to a
C0-semigroup on V ′ and the corresponding generator (Λ̂, D(Λ̂,V ′)) is the dual operator of
(Λ, D(Λ,V)). Let F̂ := D(Λ̂,V ′) ∩ V. Then F̂ is a real Hilbert space with corresponding norm

‖u‖2bF := ‖u‖2
V + ‖Λ̂u‖2

V ′ .

Let the form E be given by

E(u, v) :=
{
A(u, v)− 〈Λu, v〉 for u ∈ F , v ∈ V
A(u, v)− 〈Λ̂v, u〉 for u ∈ V, v ∈ F̂

and Eα(u, v) := E(u, v) + α(u, v)H for α > 0. E is called the bilinear form associated with
(A,V) and (Λ, D(Λ,H)) (that satisfies D1). Here, 〈·, ·〉 denotes the dualization between V ′ and
V. Note that 〈·, ·〉 restricted to H× V coincides with (·, ·)H and that E is well-defined.

It follows, from [10, Proposition I. 3.4, p.19], that for all α > 0 there exist continuous, linear
bijections Wα : V ′ → F and Ŵα : V ′ → F̂ such that Eα(Wαf, u) = 〈f, u〉 = Eα(u, Ŵαf),
∀f ∈ V ′, u ∈ V. Furthermore (Wα)α>0 and (Ŵα)α>0 satisfy the resolvent equation

Wα −Wβ = (β − α)WαWβ and Ŵα − Ŵβ = (β − α)ŴαŴβ.

Restricting Wα to H we get a strongly continuous contraction resolvent (Gα)α>0 on H satisfying
limα→∞ αGαf = f in V for all f ∈ V. The resolvent (Gα)α>0 is called the (L2-)resolvent associ-
ated with E . Let (Ĝα)α>0 be the adjoint of (Gα)α>0 in H. (Ĝα)α>0 is called the (L2-)coresolvent
associated with E .

A bounded linear operator G : H → H is called sub-Markovian if 0 ≤ Gf ≤ 1 for all f ∈ H with
0 ≤ f ≤ 1. Consider the following condition

D2 αGα is submarkovian for any α > 0.

The bilinear form E associated with (A,V) and (Λ, D(Λ,H)) is called a generalized Dirichlet
form if the resolvent associated with E is submarkovian, i.e. if D2 holds.

The class of generalized Dirichlet forms contains in particular symmetric and coercive Dirichlet
forms (choose Λ = 0) (cf. [2], [3], and [4]) and also time dependent Dirichlet forms (choose
Λ = ∂

∂t) as in [7], [13]. But generalized Dirichlet forms contain also the following important
example:

Example 2.1 Let A = 0 on V := H and (Λ, D(Λ)) be a Dirichlet operator (cf. e.g. [3]) gen-
erating a C0-semigroup of contractions on H. In this case F = D(Λ), F̂ = D(Λ̂) and the
corresponding bilinear form E(u, v) = (−Λu, v)H if u ∈ D(Λ), v ∈ H, and E(u, v) = (u,−Λ̂v)H
if u ∈ H, v ∈ D(Λ̂), is a generalized Dirichlet form.

An element u of H is called 1-excessive (resp. 1-coexcessive) if βGβ+1u ≤ u (resp. βĜβ+1u ≤ u)
for all β ≥ 0. Let P (resp. P̂) denote the 1-excessive (resp. 1-coexcessive) elements of V. Let
C,D ⊂ H. We define DC := {u ∈ D | ∃f ∈ C, u ≤ f}. For an arbitrary Borel set B ∈ B(E)
and an element u ∈ H such that {v ∈ H | v ≥ u · 1B} ∩ F 6= ∅ (resp. û ∈ P̂ bF ) let uB := eu·1B
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be the 1-reduced function (resp. ûB := êû·1B
be the 1-coreduced function) of u · 1B (resp. û · 1B)

as defined in [10, Definition III. 1.8, p.65]. Here we use the notation 1B for the characteristic
function of B. If B = E we rather use the notation eu instead of uE .
The following is useful (cf. [10, Proposition III. 1.6 and proof of Proposition III. 1.7] for some
intermediate steps in the sequel): for û ∈ P̂ bF , B ∈ B(E) there exists ûα

B ∈ F̂ ∩ P̂ such that
ûα

B ≤ ûβ
B, 0 < α ≤ β, ûα

B → ûB, α →∞, strongly in H and weakly in V, and

E1(v, ûα
B) = α((ûα

B − û · 1B)−, v)H for any v ∈ V

where f− denotes the negative part of f . Similarly for u ∈ PF there exists uα
B ∈ F ∩ P such

that uα
B ≤ uβ

B, 0 < α ≤ β, uα
B → uB, α →∞, strongly in H and weakly in V and

E1(uα
B, v) = α((uα

B − u · 1B)−, v)H for any v ∈ V.

Since by [10, Proposition III. 1.7(ii)] ûB · 1B = û · 1B, uB · 1B = u · 1B we then have

lim
α→∞

E1(uα
B, û) = lim

α→∞
E1(u, ûα

B). (1)

Both sides of (1) exist as increasing and bounded limits. In particular (by our definition of
reduced functions for not necessarily open sets) [10, Lemma III. 2.9] extends to general Borel
sets, i.e. E1(fB, f̂) = E1(f, f̂B) for any (f, f̂) ∈ F ∩ P × F̂ ∩ P̂, B ∈ B(E).
Let A ⊂ E. We set Ac := E \A, i.e. the complement of A in E. An increasing sequence of closed
subsets (Fk)k≥1 is called an E-nest, if for every function u ∈ P ∩F it follows that uF c

k
→ 0 in H

and weakly in V. Equivalently, a sequence of closed subsets (Fk)k≥1 is an E-nest, if

Capϕ(F c
k ) =

∫
E
(G1ϕ)F c

k
ϕ dm −→ 0 as k →∞

for some (and hence all) ϕ ∈ L2(E,m), ϕ > 0 (see [10, IV. Proposition 2.10]).
A subset N ⊂ E is E-exceptional if there is an E-nest (Fk)k≥1 such that N ⊂ ∩k≥1E \ Fk. A
property of points in E holds E-quasi-everywhere (E-q.e.) if the property holds outside some
E-exceptional set. A function f defined up to some E-exceptional set N ⊂ E is called E-
quasi-continuous (E-q.c.)(resp. E-quasi-lower-semicontinuous (E-q.l.s.c.)) if there exists an E-nest
(Fk)k∈N, such that

⋃
k≥1 Fk ⊂ E \N and f|Fk

is continuous (resp. lower-semicontinuous) for all
k. We denote by f̃ an E-q.c. m-version of f , conversely f denotes the m-class represented by an
E-q.c. m-version f̃ of f .
The quasi-regularity of a generalized Dirichlet form is defined similarly to [3] as follows

Definition 2.2 The generalized Dirichlet form E is called quasi-regular if:

(i) There exists an E-nest (Ek)k≥1 consisting of compact sets.

(ii) There exists a dense subset of F whose elements have E-q.c. m-versions.

(iii) There exist un ∈ F , n ∈ N, having E-q.c. m-versions ũn, n ∈ N, and an E-exceptional set
N ⊂ E such that {ũn | n ∈ N} separates the points of E \N .

In contrast to the theory of sectorial Dirichlet forms in [3] and [4] it is not known whether quasi-
regularity alone implies the existence of an associated standard process in case of a generalized
Dirichlet form. Therefore the following condition
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D3 There exists a linear subspace Y ⊂ H ∩ L∞(E,m) such that Y ∩ F is dense in F ,
limα→∞ eαGαu−u = 0 in H for all u ∈ Y and for the closure Y of Y in L∞(E;m) it
follows that u ∧ α ∈ Y for u ∈ Y and α ≥ 0.

is introduced in [10, IV. 2, D3] and it is shown in [10, IV. Theorem 2.2] that a quasi-regular
generalized Dirichlet form satisfying D3 is associated with an m-tight special standard process.
By an algebra of functions we understand a linear space that is closed under multiplication. The
following condition

SD3 There exists an algebra of functions G ⊂ H∩L∞(E,m) such that G ∩F is dense in F and
limα→∞ eαGαu−u in H for every u ∈ G.

was introduced in [12].

Proposition 2.3 It holds:

(i) SD3 implies D3.

(ii) SD3 holds for any (sectorial semi-)Dirichlet form.

Proof (i) The proof is the same as in [10, IV. Proposition 2.1].
(ii) If (E , D(E)) be a (sectorial semi-)Dirichlet form we can choose G = D(E) ∩ L∞(E,m).

�
Up to the end of this subsection we fix a quasi-regular generalized Dirichlet form and an m-tight
special standard process M = (Ω, (Ft)t≥0, (Yt)t≥0, (Pz)z∈E∪{∆}) with lifetime ζ such that the
resolvent Vαf of M is an E-q.c. m-version of Gαf for all α > 0, f ∈ H ∩ L∞(E,m). M is then
said to be properly associated in the resolvent sense with E .
Note that u ∈ P not necessarily admits an E-q.c. m-version. However, under the quasi-regularity
we know that there exists an E-q.c. m-version ˜αGα+1u of αGα+1u. Since αGα+1u increases m-a.s.
if α increases we know from [10, Corollary III. 3.3] that ˜αGα+1u increases E-q.e. if α increases.
Hence we may define an E-q.l.s.c. m-version of u by

u := sup
α>0

˜αGα+1u

u is called an E-q.l.s.c. regularization of u ∈ P. Since any two E-q.l.s.c. regularizations of u ∈ P
coincide E-q.e. it follows that any E-q.l.s.c. regularization of u ∈ P coincides E-q.e. with the
“canonical” regularization u = supα>0 αVα+1u.

2.2 Strict capacities and strictly quasi-regular generalized Dirich-
let forms

In this subsection we introduce strict notions corresponding to a generalized Dirichlet form, as
well as simple consequences of our definitions and we revise results from [12]. In case of Dirichlet
forms similar (slightly more general) strict notions were introduced in [3, Chapter V] (cf. Remark
2.5 and the definition of the strict capacity in [3, Chapter V.2]).

Let (E ,F) be a generalized Dirichlet form as defined in the previous subsection. We fix ϕ ∈
L1(E,m) ∩ B with 0 < ϕ(z) ≤ 1 for every z ∈ E.
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Definition 2.4 For U ⊂ E, U open, set

Cap
1, bG1ϕ

(U) :=
∫

E
eUϕ dm

where eU := limk→∞(G1(kϕ) ∧ 1)U exists as a bounded and increasing limit in L∞(E,m). If
A ⊂ E arbitrary then Cap

1, bG1ϕ
(A) := inf{Cap

1, bG1ϕ
(U)|U ⊃ A,Uopen}.

Remark 2.5 From [12, Theorem 1] we know that Cap
1, bG1ϕ

is a finite Choquet capacity. More-
over, we have Capϕ ≤ Cap

1, bG1ϕ
(see [12, Remark 1]). Thus the strict notions defined below are

indeed “stricter”. Moreover, if (E ,F) is quasi-regular then

Cap
1, bG1ϕ

(U) = µ
( bG1ϕ)U

(E) (2)

where µ
( bG1ϕ)U

is the smooth measure associated to the 1-coexcessive function (Ĝ1ϕ)U (see [11,
Theorem 2.3]). If (E ,F) is a quasi-regular Dirichlet form and Cap

1, bG1ϕ
is the strict capacity as

defined in [3, Chapter V.2], then (2) clearly also holds. Therefore, if (E ,F) is a Dirichlet form
and at least quasi-regular, then our notion of strict capacity coincides with the strict capacity
defined in [3, Chapter V.2].

Adjoining the cemetery ∆ to E we let E∆ := E∪{∆} and B(E∆) = B(E)∪{B∪{∆}|B ∈ B(E)}.
We will consider different topologies on E∆. If E is a locally compact separable metric space but
not compact, E∆ will be the one point compactification of E, i.e. the open sets of E∆ are the
open sets of E together with the sets of the form E∆ \K, K ⊂ E, K compact in E. Otherwise
we adjoin the cemetery ∆ to E as an isolated point. We extend m to (E∆,B(E∆)) by setting
m({∆}) = 0. Any real-valued function u on E is extended to E∆ by setting u(∆) = 0.
Given an increasing sequence (Fk)k∈N of closed subsets of E, we define

C({Fk}) = {f : A → R |
⋃
k≥1

Fk ⊂ A ⊂ E, f|Fk
is continuous ∀k},

C∞({Fk}) = {f : A → R |
⋃
k≥1

Fk ⊂ A ⊂ E, f|Fk∪{∆} is continuous ∀k},

Cl,∞({Fk}) = {f : A → R |
⋃
k≥1

Fk ⊂ A ⊂ E, f|Fk∪{∆} is lower semicontinuous ∀k}.

Obviously C∞({Fk}) ⊂ C({Fk}) and C∞({Fk}) only differs from C({Fk}) if E∆ is the one point
compactification since otherwise ∆ is an isolated point of E.

A subset N ⊂ E is called strictly E-exceptional if Cap
1, bG1ϕ

(N) = 0. An increasing sequence
(Fk)k∈N of closed subsets of E is called a strict E-nest if Cap

1, bG1ϕ
(F c

k ) ↓ 0 as k →∞. A property
of points in E holds strictly E-quasi-everywhere (s.E-q.e.) if the property holds outside some
strictly E-exceptional set. A function f defined up to some strictly E-exceptional set N ⊂ E
is called strictly E-quasi-continuous (s.E-q.c.) if there exists a strict E-nest (Fk)k∈N, such that
f ∈ C∞({Fk}).

Remark 2.6 It follows by [12, Lemma 1] that the strict notions do not depend on the special
choice of ϕ if (E ,F) is associated with a m-tight m-special standard process. More precisely, in
that case the strict capacity and hence the strict E-nests do not depend on the special choice of
ϕ.
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Definition 2.7 The generalized Dirichlet form E is called strictly quasi-regular if:

(i) There exists a strict E-nest (Ek)k≥1 such that Ek ∪ {∆}, k ≥ 1, is compact in E∆.

(ii) There exists a dense subset of F whose elements have strictly E-q.c. m-versions.

(iii) There exist un ∈ F , n ∈ N, having strictly E-q.c. m-versions ũn, n ∈ N, and a strictly
E-exceptional set N ⊂ E such that {ũn | n ∈ N} separates the points of E∆ \N .

From now on we fix a generalized Dirichlet form (E ,F) that is strictly quasi-regular. For some
consequences of this we refer to [12]. For instance, by [12, Proposition 2(i)] every f ∈ F admits
a s.E-q.c. m-version f̃ .
Most of the related statements in [10] remain true if we replace Capϕ by Cap

1, bG1ϕ
, C({Fk})

by C∞({Fk}), and add strict or strictly to quasi-regular, E-nest, E-quasi-uniformly, E-quasi-
continuous, etc. We shall refer to these statements as “strict versions”. However, some statements
are not easily seen to have strict versions (cf e.g. Lemma 2.10(ii) below). These shall be proved
here in detail. First we give some complements to results in [12]. Using (1) as main ingredient
[12, Proposition 2(i)] can easily be modified (with proof remaining nearly the same) as follows.

Proposition 2.8 Let u ∈ H with s.E-q.c. m-version ũ and suppose further that eu exist. Then
for any ε > 0

Cap
1, bG1ϕ

({ũ > ε}) ≤ ε−1

∫
E

eu ϕ dm.

Next we have the following strict versions:

Lemma 2.9 (i) Let S be a countable family of s.E-q.c. functions (resp. s.E-q.l.s.c. functions).
Then there exists a s.E-nest (Fk)k≥1 such that S ⊂ C∞({Fk}) (resp. S ⊂ Cl,∞({Fk}) ).

(ii) If f is s.E-q.s.l.c. and f ≤ 0 m-a.e. on an open set U ⊂ E, then f ≤ 0 s.E-q.e. on U. If
f, g are s.E-q.c. and f = g m-a.e. on an open set U ⊂ E, then f = g s.E-q.e. on U.

(iii) Let un ∈ H with s.E-q.c. m-version ũn, n ≥ 1, such that eun−u + eu−un → 0 in H as
n → ∞ for some u ∈ H. Then there is a subsequence (ũnk

)k≥1 and a s.E-q.c. m-version
ũ of u such that limk≥1 ũnk

= ũ s.E-quasi-uniformly.

(iv) Let un ∈ F with s.E-q.c. m-version ũn, n ≥ 1, and un → u in F . Then there is a
subsequence (ũnk

)k≥1 and a s.E-q.c. m-version ũ of u such that limk≥1 ũnk
= ũ s.E-quasi-

uniformly.

Proof (i) The proof is similar to the corresponding one in [10].
(ii) By strict quasi-regularity we obtain the existence of a strict E-nest of compact metrizable
sets as in [10, IV. Lemma 1.10]. Then, we may apply the strict versions of [10, III. Lemma 2.1,
Corolarry 3.4, and Corollary 3.4] in order to conclude.
(iii) For any s.E-q.c. m-version ũ of u (which exists) we have

{|ũn − ũm| > ε} ⊂
{

ũn − ũ >
ε

2

}
∪

{
ũ− ũn >

ε

2

}
∪

{
ũ− ũm >

ε

2

}
∪

{
ũm − ũ >

ε

2

}
.

Using Proposition 2.8 the proof now follows as in [10, III. Proposition 3.7].
(iv) Follows immediately from (iii) and [10, III. Lemma 2.2(i)].
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Let
Y1 :=

⋃
k∈N

Ek

where (Ek)k≥1 is a strict E-nest of compact metrizable sets as in the proof of Lemma 2.9(ii). Then
Y1 is a Lusin space. Since E \Y1 is strictly E-exceptional it is E-exceptional, hence m(E \Y1) = 0
and we may identify L2(E;m) with L2(Y1,m) canonically.
By [12, Lemma 2] we know that for any α > 0 there exists a kernel R̃α from (E,B(E)) to
(Y1,B(Y1)) such that

(R1) αR̃α(z, Y1) ≤ 1 for all z ∈ E.

(R2) R̃αf is a s.E-q.c. m-version of Gαf for all (measurable) f ∈ H.

Moreover, the kernel R̃α is unique in the sense that, if K is another kernel from (E,B(E)) to
(Y1,B(Y1)) satisfying (R1) and (R2), it follows that K(z, ·) = R̃α(z, ·) s.E-q.e.

Proposition 2.10 (i) Let (un)n≥1 ⊂ H densely. Then {R̃1u
+
n , R̃1u

−
n ;n ≥ 1} separates the

points of E∆ \N , where N is some s.E-exceptional set.

(ii) There is some ϕ ∈ L1(E,m) ∩ B such that 0 < ϕ(z) ≤ 1 for every z ∈ E, and such that
R̃1ϕ > 0 s.E-q.e.

Proof (i) Using Lemma 2.9(iv) the proof is the same as in [10, IV. Proposition 1.9].
(ii) Choose (un)n≥1 ⊂ L1(E,m)∩Bb such that (un)n≥1 ⊂ H densely. Then by (i) {R̃1u

+
n , R̃1u

−
n ;n ≥

1} separates the points of E∆ \N , where N is some s.E-exceptional set. Define

h(x) :=
∑
n≥1

cnR̃1(u+
n + u−n )(x), with cn := 2−n(1 + ‖un‖L1(E,m) + ‖un‖L∞(E,m)).

Since {R̃1u
+
n , R̃1u

−
n ;n ≥ 1} separates the points of E∆ \N we have h(x) > 0 for all x ∈ E \N .

Since gk :=
∑k

n=1 cn(u+
n + u−n ) converges in L1(E,m) to some g with 0 ≤ g ≤ 1 and R̃1 is a

kernel we obtain h = R̃1g. Now choose ρ ∈ L1(E,m) with 0 < ρ ≤ 1. Then ϕ := ρ ∨ g is the
desired function.

�

From now on we assume that the strictly quasi-regular generalized Dirichlet form E satis-
fies D3.
Using Lemma 2.9, Proposition 2.10, and the strict version of [10, IV. Proposition 2.8] we obtain
the following:

Lemma 2.11 There exists a countable family J0 of bounded strictly E-quasi-continuous 1-
excessive functions and a Borel set Y ⊂ Y1 satisfying:

(i) If u, v ∈ J0, α, c1, c2 ∈ Q∗
+, then R̃αu, u ∧ v, u ∧ 1, (u + 1) ∧ v, c1u + c2v are all in J0.

(ii) N := E \ Y is strictly E-exceptional and R̃α(x,N) = 0, for all x ∈ Y, α ∈ Q∗
+.
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(iii) J0 separates the points of Y∆.

(iv) If u ∈ J0, x ∈ Y , then βR̃β+1u(x) ≤ u(x) for all β ∈ Q∗
+,

R̃αu(x)− R̃βu(x) = (β − α)R̃αR̃βu(x) for all α, β ∈ Q∗
+,

limQ∗+3α→∞ αR̃α+1u(x) = u(x).

Next, we extend the kernel R̃α to the point ∆. Define for α ∈ Q∗
+, A ∈ B(Y∆) := B(E∆) ∩ Y∆

Rα(x,A) :=

{
R̃α(x,A ∩ Y ) +

(
1
α − R̃α(x, Y )

)
1A(∆), if x ∈ Y

1
α1A(∆), ifx = ∆

(3)

and set
J := {u + c1Y∆

| u ∈ J0, c ∈ Q+}. (4)

Since J0 separates the points of Y∆, so does J . The following lemma is also clear.

Lemma 2.12 Let (Rα)α∈Q∗+ and J be as in (3), (4). Then the statements of Lemma 2.11 remain

true with J0, Y and R̃α replaced by J, Y∆ and Rα respectively.

2.3 The construction of nice excessive functions

Since strict quasi-regularity implies quasi-regularity by [12, Proposition 2 (ii)] we obtain by [10,
IV. Theorem 2.2] that (E ,F) is associated with some m-tight m-special standard process. We
denote the process resolvent by

Vαf(z) = Ez

[∫ ∞

0
e−αtf(Yt)dt

]
, α > 0, f ∈ H ∩ L∞(E,m),

just as at the end of subsection 2.1.
By Remark 2.6 the strict capacity does not depend on the special choice of ϕ. We may and will
hence from now on assume that ϕ is as in Proposition 2.10(ii).
The following two lemmas are crucial for the later study of weak limits.

Lemma 2.13 Let Un ⊂ E, n ≥ 1 be a decreasing sequence of open sets such that Cap
1, bG1ϕ

(Un) →
0, as n →∞. Then we can find m-versions en of eUn such that:

(i) en ≥ 1 E-q.e. on Un, n ≥ 1. In particular, there are E-exceptional sets Nn ∈ B(E),
Nn ⊂ Un, such that

ên(x) := en(x) + 1Nn(x) ≥ 1 ∀x ∈ Un, n ≥ 1.

(ii) αR̃α+1en ≤ en and αR̃α+1ên ≤ ên s.E-q.e. for any α ∈ Q∗
+, n ≥ 1.

(iii) en ↘ 0 and ên → 0 s.E-q.e. as n →∞.
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Proof Define for n ≥ 1
en := sup

α≥1
sup
l≥1

αR̃α+1 (V1(lϕ) ∧ 1)Un
. (5)

where (V1(lϕ) ∧ 1)Un
is some everywhere bounded measurable m-version of (G1(lϕ) ∧ 1)Un

.
Clearly en is an m-version of eUn . Since (G1(lϕ) ∧ 1)Un

is 1-excessive, and R̃α+1f is s.E-q.c.
for any (measurable) f ∈ H by (R2), by Lemma 2.9(ii) it is clear that the first part of (ii) holds.
The second part of (ii) similarly also holds once we have shown that Nn is E-exceptional, hence
in particular m-negligible. This is done at the end of the proof.
Obviously en is s.E-q.l.s.c, s.E-q.e. decreasing in n, limn→∞ en exists s.E-q.e. and limn→∞ en ≥ 0
s.E-q.e. We have (for the intermediate steps (1) is the main ingredient, cf. e.g. [12])

Cap
1, bG1ϕ

(
{ lim

n→∞
en > 0}

)
≤

∑
k≥1

Cap
1, bG1ϕ

(
∩n≥1

{
en > k−1

})
,

and

Cap
1, bG1ϕ

(
∩n≥1

{
en > k−1

})
≤ k inf

n≥1

∫
E

enϕdm = 0.

Thus the first part of (iii) holds. The second part of (iii) is clear since lim supn≥1 1Nn ≤ 1∩n≥1Un =
0 s.E-q.e.
Since R̃α+1f , Vα+1f , f ∈ H ∩ L∞(E,m), are E-q.c. and coincide m-a.e. by (R2), it follows by
[10, III. Corollary 3.4] that Vα+1f = R̃α+1f E-q.e. Using (V1(lϕ) ∧ 1)Un

= V1(lϕ) ∧ 1 m-a.e. on
Un, and V1(lϕ) ∧ 1 ↗ IE as l →∞, it follows E-q.e.

en ≥ sup
α≥1

αVα+1IUn . (6)

By right-continuity and normality of the process Y we obtain for all z ∈ Un

lim
α→∞

αVα+1IUn(z) = lim
α→∞

α

α + 1
Ez

[∫ ∞

0
e−tIUn(Y t

α+1
)dt

]
= 1.

Hence the first part of (i) holds. For the second part of (i) we can find E-exceptional sets
Nn ∈ B(E), Nn ⊂ Un, with en · 1Un\Nn

+ 1Nn ≥ 1 pointwise on Un. But then en ≥ 0 everywhere
since R̃α+1 is a kernel and so we obtain ên ≥ 1 on Un as desired.

�

Remark 2.14 (i) In Lemma 2.13(i) we were not able to show directly

en ≥ 1 s.E-q.e. on Un, n ≥ 1. (7)

(Unfortunately, (V1(lϕ) ∧ 1)Un
has only a s.E-q.l.s.c. m-version in general and the in-

equality in Lemma 2.9(ii) is just the wrong way around.) (7) is used in [6, Lemma 3.5,
Lemma 3.6, proof of Theorem 3.3] in an essential way. Instead, we will use the functions
ên defined in Lemma 2.13(i) which is sufficient (cf. Lemmas 2.15 and 4.2, and Theorem
4.5). We remark that it is even sufficient to only know that en ≥ 1 m-a.e. on Un, so that
the sets Nn in Lemma 2.13(i) are only m-negligible.
It will turn out a posteriori that (7) actually holds. In fact, by our main result Theorem
4.11 below it follows that the process resolvent Vα+1f , f ∈ H ∩ L∞(E,m), is s.E-q.c.
Thus applying Lemma 2.9(ii) Vα+1f = R̃α+1f s.E-q.e. Therefore (6) holds s.E-q.e. and
(7) follows.
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(ii) There are some other, however strong assumptions that imply (directly) the existence of
m-versions en of eUn such that (7) (and of course also Lemma 2.13(ii) and (iii)) holds.
For instance:

(a) Any u ∈ PF admits a s.E-q.c. m-version ũ.

(b) R̃αf ≥ Vαf s.E-q.e. for α > 0 and f ∈ H ∩ L∞(E,m) with f ≥ 0.

(c) lim supα→∞ αR̃α+1IU ≥ IU s.E-q.e.

In case of (a), we may define

en := sup
l≥1

( ˜G1(lϕ) ∧ 1)Un , n ≥ 1.

Then by Lemma 2.9(ii) ( ˜G1(lϕ) ∧ 1)Un = R̃1(lϕ)∧1 s.E-q.e. on Un for any n ≥ 1. Letting
l ↗∞ and noting that both limits are s.E-q.e. increasing we can see by Proposition 2.10(ii)
that (7) holds. (a) holds for instance if (E ,F) is a semi-Dirichlet form. In case of (b) or
(c), we may define en by (5). Then (7) follows similarly to the proof of Lemma 2.13(i).

Lemma 2.15 In the situation of Lemma 2.13 there exists S ∈ B(E), S ⊂ Y such that E \ S is
strictly E-exceptional and the following holds:

(i) R̃α(x, Y \ S) = 0 ∀x ∈ S, α ∈ Q∗
+.

(ii) ên(x) ≥ 1 for x ∈ Un, n ≥ 1, and R̃α1Nn(x) = 0 ∀x ∈ S, α ∈ Q∗
+, n ≥ 1.

(iii) αR̃α+1ên(x) ≤ ên(x), ∀x ∈ S, α ∈ Q∗
+, n ≥ 1.

(iv) ên → 0, ∀x ∈ S.

Proof In view of Lemma 2.13 the proof is similar to [6, Lemma 3.6].
�

3 The approximating forms Eβ and the approximat-

ing processes Xβ

Let J, Y∆ and (Rα)α∈Q∗+ be as in Lemma 2.12.
First we collect some results of [1, Chapter 4 section 2]. For a fixed β ∈ Q∗

+, let {Y β(k), k =
0, 1, . . .} be a Markov chain in Y∆ with initial distribution ν and transition function βRβ. Let
further (Πβ

t )t≥0 be a Poisson process with parameter β and independent of {Y β(k), k = 0, 1, . . .}.
Then it is known that

Xβ
t := Y β(Πβ

t )

is a strong Markov process in Y∆ with transition semigroup

P β
t f := e−βt

∞∑
k=0

(βt)k

k!
(βRβ)kf ∀ t ≥ 0, f ∈ Bb(Y∆), (8)
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i.e. we have for all t, s ≥ 0, f ∈ Bb(Y∆)

E[f(Xβ
t+s) | σ(Xβ

u , u ≤ t)] = (P β
s f)(Xβ

t ). (9)

Here (9) easily follows from [1, Chapter 4 (2.14)]. Furthermore from the formula (8) one can see
that (P β

t )t≥0 is a strongly continuous contraction semigroup on the Banach space (Bb(Y∆), ‖·‖∞).
The corresponding generator is

Lβf(x) =
d

dt
P β

t f(x)
∣∣
t=0

= β(βRβf(x)− f(x)), f ∈ Bb(Y∆). (10)

Define the forms E(β), β > 0, by

E(β)(u, v) := β(u− βGβu, v)H, u, v ∈ H,

where we recall that (Gβ)β>0 is the L2-resolvent of E . It is known (see e.g. [3, Chapter I]), that
the C0-semigroup of submarkovian contractions on L2(E;m) that is associated to E(β) is given
by

T β
t f = e−βt

∞∑
j=0

(βt)j

j!
(βGβ)jf, f ∈ H. (11)

From (8), (9), and (11) it follows that (Xβ
t ) is associated with E(β). Since Rβf is an m-version

of Gβf for any measurable f ∈ H, by Example 2.1 we see that E(β) is a generalized Dirichlet
form and

E(β)(u, v) = (−Lβu, v)H, u, v ∈ H.

For an arbitrary subset M ⊂ E∆ let

ΩM := DM [0,∞)

be the space of all càdlàg functions from [0,∞) to M . Let (Xt)t≥0 be the coordinate process
on ΩE∆

, i.e. Xt(ω) = ω(t) for ω ∈ ΩE∆
. ΩE∆

is equipped with the Skorokhod topology (see
[1, Chapter 3]). Let P β

x be the law of Xβ on ΩE∆
with initial distribution δx if x ∈ Y∆, and

if x ∈ E∆ \ Y∆ let P β
x be the Dirac measure on ΩE∆

such that P β
x [Xt = x for all t ≥ 0] = 1.

Finally, let (Fβ
t )t≥0 be the completion w.r.t. (P β

x )x∈E∆
of the natural filtration of (Xt)t≥0.

Proposition 3.1 Mβ := (ΩE∆
, (Xt)t≥0, (Fβ

t )t≥0, (P β
x )x∈E∆

) is a Hunt process associated with
E(β), i.e. for all t ≥ 0 and any m-version of u ∈ L2(E;m), x 7→

∫
u(Xt) dP β

x is an m-version of
T β

t u.

Proof By construction it is clear that Mβ is a right process that has left limits in E∆. So we
only have to prove the quasi-left continuity up to ∞. This can be shown as in [3, IV.3.21], see
also [6, Section 4].

�
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The next aim is to prove the relative compactness of the family {P β
x | β ∈ Q∗

+}. We make use
of the same compactification method as in [6]. Let J = {un | n ∈ N} and

gn := R1un, n ∈ N.

Define for all x, y ∈ Y∆

ρ(x, y) =
∞∑

n=1

1
2n
|gn(x)− gn(y)| ∧ 1.

By Lemma 2.11(ii) and Lemma 2.12 {gn | n ∈ N} separates the points of Y∆ and hence ρ defines
a metric on Y∆. Since Y∆ is a Lusin topological space, it follows by [9, Lemma 18, p.108] that
B(Y∆) = σ(gn | n ∈ N) = (ρ–)B(Y∆). Now define

E := Y
ρ
∆.

(E, ρ) is a compact metric space by Tychonoff’s theorem.

We extend the kernel (Rα)α∈Q∗+ to the space E by setting for α ∈ Q∗
+, A ∈ B(E),

Rα(x,A) :=

{
Rα(x,A ∩ Y∆), x ∈ Y∆

1
α1A(x), x ∈ E \ Y∆.

(12)

We may regard (Xβ
t )t≥0 as a càdlàg process with state space E and use the same notation

as before: P β
x denotes hence the law of (Xβ

t )t≥0 in ΩE with initial distribution δx. Each gn is
ρ-uniformly continuous and extends therefore uniquely to a continuous function on E which we
denote again by gn.

Theorem 3.2 {P β
x | β ∈ Q∗

+} is relatively compact for any x ∈ E.

Proof (cf. [6, Theorem 3.2]) We first show that assumptions of [1, Chapter 4, 9.4 Theorem] are
fulfilled with Ca = C(E) (where Ca is as in [1, Chapter 4, 9.4 Theorem]). Since gn ∈ D(Lβ) it
follows that (

gn(Xβ
t )−

∫ t

0
Lβgn(Xβ

s ) ds

)
t≥0

is an (P β
x , (Fβ

t )t≥0)-martingale for any x ∈ E. Since

Lβgn = 1Y∆
βRβ(gn − un).

we have for all n ∈ N

sup
β∈Q∗+

‖Lβgn‖∞ = sup
β∈Q∗+

‖1Y∆
βRβ(gn − un)‖∞ ≤ ‖1Y∆

(gn − un)‖∞ < +∞.

So, we proved that R1J := {gn | n ∈ N} ⊂ D where D ⊂ C(E) is the linear space from [1,
Chapter 4, 9.4 Theorem].
Since for any u ∈ J

R1J 3 R1 (α(u− αRα+1u))(x) = αRα+1u(x) ↗ u(x), Q∗
+ 3 α →∞,∀ x ∈ Y∆,
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we see by Dini’s theorem that every u ∈ J has a unique (ρ-uniformly) continuous extension to E
that is again denoted by u. Thus we may and do consider J as a subset of C(E). In particular,
if A

‖·‖∞ denotes the uniform closure of A ⊂ C(E), we have

J − J
‖·‖∞ ⊂ R1(J − J)

‖·‖∞ ⊂ D
‖·‖∞ ⊂ C(E).

Since J−J contains the constant functions, is inf-stable and separates the points of E we obtain
that J − J is dense in C(E) by the Stone-Weierstraß theorem. Hence D

‖·‖∞ = C(E) and so by
[1, Chapter 4, 9.4 Theorem] {f ◦ Xβ | β ∈ Q∗

+} is relatively compact for all f ∈ C(E). Since
E is compact, the compact containment condition trivially holds and so by [1, Chapter 4, 9.1
Theorem] {Xβ | β ∈ Q∗

+} is relatively compact as desired.
�

4 Limiting process associated with the strictly quasi-

regular generalized Dirichlet form

For a Borel subset S ⊂ Y , we write S∆ := S ∪ {∆}. The topology on S∆ is, except otherwise
stated, the one induced by the metric ρ. In particular the ρ-topology and the original one
generate the same Borel σ-algebra on S∆.
The proof of Theorem 4.5 below relies on Lemma 4.4 below and on Lemma 2.15 above. Lemma
4.4 tells us that any s.E-nest is a pointwise strict Eβ-nest.
Let Mβ := (ΩE∆

, (Xt)t≥0, (Fβ
t )t≥0, (P β

x )x∈E∆
) be the Hunt process from Proposition 3.1, Rα

and E be as in Section 3, and S and ên be as in Lemma 2.15.

Lemma 4.1 Let S ∈ B(E) be as in Lemma 2.15. Then

P β
x [Xt ∈ S∆, Xt− ∈ S∆ ∀ t ≥ 0] = 1 ∀ x ∈ S∆.

Proof In view of Lemma 2.15(i) the proof is the same as in [6, Lemma 3.7].
�

Lemma 4.2 Let S ∈ B(E) be as in Lemma 2.15. Let β ∈ Q∗
+, β ≥ 2, n ≥ 1. Then ên is a

(P β
t )-2-excessive function on S∆, i.e.

e−2tP β
t ên(x) ≤ ên(x) and

lim
t→0

e−2tP β
t ên(x) = ên(x) ∀ x ∈ S∆.

Proof In view of Lemma 2.15(i) and (iii) the proof is the same as in [6, Lemma 3.8].
�

Define for n ∈ N the stopping time

τn := inf{t ≥ 0 | Xt ∈ Un},

called the first entry time of (Xt) in Un.
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Remark 4.3 The proof of [6, Lemma 3.7] (resp. [5, Lemma 3.2]) contains an inaccuracy,
namely it is not true that Xτn ∈ Un P β

x -a.s. on {τn < ∞} (by right-continuity Xτn will be
in general in the closure Un of Un). This leads to a wrong argument so that the proof of [6,
Lemma 3.7] (resp. [5, Lemma 3.2]) cannot be maintained. Following the proof of Lemma 4.4
below one can easily see how this inaccuracy can be corrected. Therefore the statement of [6,
Lemma 3.7] (resp. [5, Lemma 3.2]) remains true and no results of [6] (resp. [5]) are affected.

Lemma 4.4 Let S ∈ B(E) and ên be as in Lemma 2.15. Let β ∈ Q∗
+, β ≥ 2 and Mβ :=

(ΩE , (Xt)t≥0, (P β
x )x∈E) be the canonical realization of the Markov process (Xβ

t ). Then

Eβ
x [e−2τn ] ≤ ên(x), ∀ x ∈ S∆.

Proof Since by Lemma 4.1 S∆ is invariant set of Mβ , the restriction Mβ
S∆

of Mβ to S∆ is
still a Hunt process. Since ên is a (P β

t )-2-excessive function on S∆ we have that (e−2tên(Xt))t≥0

is a positive right-continuous (P β
x , (Fβ

t )t≥0)-supermartingale for all x ∈ S∆. By the optional
sampling theorem and normality we have

Eβ
x [e−2τn ên(Xτn)] ≤ ên(x), x ∈ S∆.

By Lemma 2.15(ii) we have that ên(x) ≥ 1 for all x ∈ Un. Hence, by right-continuity for all
x ∈ S∆ we have ên(Xτn) = limQ∗+3tn↓τn ên(Xtn) ≥ 1 P β

x -a.s. on {τn < ∞}. (As usual we let
X∞ := ∆, and f(∆) := 0 for any function f). It follows that for all x ∈ S∆

Eβ
x [e−2τn ] ≤ Eβ

x [e−2τn ên(Xτn)] ≤ ên(x).

�

The following theorem provides two Borel sets Z and Ω with the property that all paths from
Ω take their values and left-limits in Z∆. Z and Ω are big enough, in the sense that E \ Z is
strictly E-exceptional and Px[Ω] = 1. Restricting our process to Ω in Theorem 4.9 we obtain a
Hunt process.

Theorem 4.5 There exists a Borel subset Z ⊂ Y and a Borel subset Ω ⊂ ΩE with the following
properties:

(i) E \ Z is strictly E-exceptional.

(ii) Rα(x, E \ Z∆) = 0, ∀ x ∈ Z∆, α ∈ Q∗
+.

(ii) If ω ∈ Ω, then ωt, ωt− ∈ Z∆ for all t ≥ 0. Moreover, each ω ∈ Ω is cadlag in the original
topology of Y∆ and ω0

t− = ωt− for all t > 0, where ω0
t− denotes the left limit in the original

topology.

(iv) If x ∈ Z∆ and Px is a weak limit of some sequence (P βj
x )j∈N with βj ∈ Q∗

+, βj ↑ ∞, then
Px[Ω] = 1.

Proof In view of Lemma 4.4, Lemma 2.15, the proof is the same as in [6, Theorem 3.3].
�

Since the identities (9) and (10) carry over to Bb(E) the proof of the following Lemma is the
same as in [6, Lemma 4.1].
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Lemma 4.6 Define for α, β ∈ Q∗
+

Rβ
αf(x) := Eβ

x

[∫ ∞

0
e−αtf(Xt) dt

]
, f ∈ Bb(E), x ∈ E.

Then

Rβ
αf =

(
β

α + β

)2

R αβ
α+β

f +
1

α + β
f. (13)

Lemma 4.7 Let x ∈ E and let Px be a weak limit of a subsequence (P βj
x )j≥1 with βj ↑ ∞, βj ∈

Q∗
+. Define the kernel

Ptf(x) := Ex[f(Xt)] ∀ f ∈ Bb(E).

Then ∫ ∞

0
e−αtPtf(x) dt = Rαf(x), ∀ f ∈ Bb(E), α ∈ Q∗

+. (14)

In particular, the kernels Pt, t ≥ 0, are independent of the subsequence (P βj
x )j≥1.

Proof The proof is the same as in [6, Lemma 4.2].
�

Theorem 4.8 Let Z be as specified in Theorem 4.5. For every x ∈ Z∆ the relatively compact
set {P β

x | β ∈ Q∗
+} has a unique limit Px for β ↑ ∞. The process (ΩE , (Xt)t≥0, (Px)x∈Z∆

) is a
Markov process with the transition semigroup (Pt)t≥0 determined by (14). Moreover,

Px[Xt ∈ Z∆, Xt− ∈ Z∆ for all t ≥ 0] = 1

for all x ∈ Z∆.

Proof The proof is the same as in [6, Theorem.3].
�

In what follows let (Px)x∈Z∆
be as in Theorem 4.8. Let Ω and Z∆ be specified by Theorem 4.5.

Since Px[Ω] = 1 for all x ∈ Z∆, we may restrict Px and the coordinate process (Xt)t≥0 to Ω. Let
(Ft)t≥0 be the natural filtration of (Xt)t≥0.

Theorem 4.9 MZ := (Ω, (Xt)t≥0, (Ft)t≥0, (Px)x∈Z∆
) is a Hunt process with respect to both the

ρ-topology and the original topology.

Proof The proof that MZ is a Hunt process is the same as in [6, Theorem 4.4.]
�

Remark 4.10 Let M be the trivial extension of MZ to E∆ (see [3, IV. (3.48)], or [10, IV.
(2.18)]). Then M is again a Hunt process and strictly properly associated in the resolvent sense
with (E ,F) by (R2) and (14). The Hunt process M is unique up to the equivalence described in
[3, IV. 6.3]. I this sense M is the same process as the one constructed in [12, Theorem 3] under
the condition SD3.

Theorem 4.11 Let E be a strictly quasi-regular generalized Dirichlet form satisfying D3. Then
there exists a strictly m-tight Hunt process which is strictly properly associated in the resolvent
sense with E.
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Proof For the existence of the Hunt process which is strictly properly associated in the resolvent
sense with E see Remark 4.10. The m-tightness is a direct consequence of the existence of a strict
E-nest like in Definition 2.7(i) and the representation of the capacity from [12, Lemma 1(i)].

�
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