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Abstract. For positive q, the q-exchangeability is introduced as quasi-invariance under
permutations, with a special cocycle. This allows us to extend the q-analogue of de
Finetti’s theorem for binary sequences [GO2] to the general real-valued sequences. In
contrast to the classical case with q = 1, the order on R plays for the q-analogues a
significant role. An explicit construction of ergodic q-exchangeable measures involves a
random shuffling of N = {1, 2, . . . } by iteration of the geometric choice. For q distinct
from 1, the shuffling yields a probability measure Q that is supported by the group
of bijections of N, and has the property of quasi-invariance under both left and right
multiplications by finite permutations. We establish connections of the q-exchangeability
to certain transient Markov chains on the q-Pascal pyramids and to invariant random
flags over the Galois fields.
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1. Introduction

Let A be a standard Borel space thought of as ‘alphabet’. Consider the infinite product
space A∞, whose elements are written as infinite words w = w1w2 . . . with letters wi ∈ A.
Let N = {1, 2, . . . } and S∞ be the infinite symmetric group of bijections σ : N→ N which
move only finitely many integers. The group S∞ acts on A∞ by operators w 7→ Tσw which
change the succession of letters in a word:

(Tσw)i = wσ−1(i), i = 1, 2, . . . , w ∈ A∞, σ ∈ S∞.
1
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A probability measure P on A∞ is called exchangeable if P is S∞-invariant. By de Finetti’s
theorem (see, e.g., [F, Section 27.4]), all extreme (=ergodic) exchangeable measures on
A∞ are the homogeneous product measures ν⊗∞, and every exchangeable probability
measure is a unique mixture of the extremes. See [Al], [K] for survey of ideas around
exchangeability and multiple generalizations of this fundamental kind of stochastic sym-
metry.

The infinite symmetric group has the structure of inductive limit, that is S∞ = ∪n≥1Sn,
where Sn is the subgroup of bijections satisfying g(i) = i for i > n, so Sn is in essence
the group of permutations of Nn := {1, . . . , n}. Moreover, the action on A∞ is the system
of consistent actions of Sn on An for n = 1, 2, . . . . From a combinatorial perspective,
de Finetti’s theorem appears as a consequence of large-n properties of the binomial coef-
ficients that enter the multivariate hypergeometric distribution in the model of random
sampling without replacement, inherent to the action of Sn. See [DF] for quantitative
aspects of the relation between finite and infinite exchangeability.

Alternative sampling schemes associated with other arrays of combinatorial numbers
can be considered. In particular, it is natural to wonder what is the analogue of de
Finetti’s theorem if the binomial coefficients are replaced by their Gaussian q-analogues,
and what kind of symmetry corresponds to this framework. One obvious (for algebraist!)
direction is to consider the group GL(∞,Fq) of invertible matrices over the Galois field Fq

as a q-analogue of S∞; this makes sense, however, only for q a power of a prime integer.
In our recent paper [GO2] we observed that GL(∞,Fq)-invariant measures on the Grass-

mannian in (Fq)
∞ correspond to certain quasi -invariant measures for the action of S∞

on A∞, for the two-element base space A = {0, 1}. The approach based on the quasi-
invariance is valid for arbitrary q > 0, thus it suggests an attractive way to understand
the ‘q-exchangeability’.

In this paper we continue the line initiated in [GO2] by introducing the q-exchangeability
of random infinite words on arbitrary Borel alphabet A ⊆ R. The order on reals is
essential, and reversing the order changes the type of symmetry by transforming q-
exchangeability into q−1-exchangeability. For finite A the q-exchangeable processes corre-
spond to a class of lattice random walks. We show that for each extreme quasi-invariant
probability measure on A∞ the generic random word w only involves letters from a fixed
finite or countable sub-alphabet (depending on the measure); in the first case only the
maximal letter appears infinitely often, and in the second case none of the letters. We also
give the explicit construction of the extremes by means of a q-shuffle1 which iterates a
single choice by geometric variable. In particular, the q-shuffle of the infinite word 1 2 . . .
is a remarkable probability measure on the group S of all permutations of N, analogous
to the familiar Mallows measures on the finite symmetric groups. In Section 9 we turn
to the algebraic setting and connect the q-exchangeability with random flags in (Fq)

∞

invariant under the natural action of GL(∞,Fq).

1Not to be confused with the notion of a-shuffle with integer parameter a, see [BD], [St], [GO1].
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2. The q-exchangeability

We recall first a general framework and basic facts from [GS]. Let W be a standard
Borel space, and let G be a countable group acting on W on the left by Borel isomorphisms
Tg : W → W , g ∈ G. Then G also acts on the space of all Borel probability measures on
W : namely, Tg transforms such a measure P to TgP := P ◦ T−1

g . We prefer to write this

relation as T−1
g P = P ◦ Tg, which means that (T−1

g P )(X) = P (Tg(X)) for every Borel set
X ⊆ W .

A probability measure P on W is said to be quasi-invariant if T−1
g P is equivalent to P

for all g ∈ G, that is, T−1
g P and P have the same null sets. Then there exists a function

ρ(g, w) on G ×W such that w 7→ ρ(g, w) is Borel and T−1
g P = ρ(g, · )P for each g ∈ G.

That is to say, ρ(g, · ) is the Radon–Nikodým derivative dT−1
g P/dP . The function ρ is

unique modulo P -null sets and satisfies the relation

ρ(gh, w) = ρ(g, Thw)ρ(h, w), g, h ∈ G, w ∈ W

(again modulo null sets). A function ρ with this property is called a multiplicative cocycle.
Conversely, given a multiplicative cocycle ρ, let M(ρ) stand for the set of all quasi-

invariant probability measures on W satisfying the relation dT−1
g P/dP = ρ(g, · ), g ∈

G. The set M(ρ) has itself the structure of a standard Borel space, and if M(ρ) is
nonempty then it is convex and has a nonempty subset Ex M(ρ) of extreme points. The
set of extremes Ex M(ρ) is also Borel. Moreover, every measure M ∈ M(ρ) is uniquely
representable as a mixture of the extreme measures, meaning that there exists a unique
probability measure κ on Ex M(ρ) such that

M(X) =

∫

Ex M(ρ)

P (X)κ(dP )

for every Borel subset X ⊆ W .
Since the generic element of M(ρ) is a unique mixture of extremes, it is important to

describe as explicitly as possible the set of extremes Ex M(ρ). A useful criterion is that
the extreme measures can be characterized as ergodic measures from M(ρ). Recall that a
G-quasi-invariant probability measure P on W is ergodic if every G-invariant Borel subset
of W has P -measure 0 or 1. Since the group G is countable, the ergodicity is equivalent
to the formally stronger condition that every invariant mod 0 subset has measure 0 or 1.

After these general preliminaries we focus on a concrete instance. We shall consider the
action of the group G = S∞ on the infinite product space W = A∞, where A is a Borel
subset of the ordered space (R, <). Although we assume A ⊆ R many considerations
of the present paper remain valid for arbitrary standard Borel space endowed with a
Borel-measurable linear order (for instance, Rk with the lexicographic order).

Given a finite word w = w1w2 . . . wn ∈ An, let

inv(w1 . . . wn) := #{(i, j) | 1 ≤ i < j ≤ n, wi > wj}
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denote the number of inversions in w. For an infinite word w = w1w2 . . . ∈ A∞, let

invn(w) = inv(w1 . . . wn)

be the number of inversions in the n-truncated word w1 . . . wn.
For w ∈ A∞ and σ ∈ S∞, the difference invn(Tσw) − invn(w) stabilizes as n becomes

so large that σ(i) = i for all i ≥ n. We set

c(σ,w) = stable value of the difference invn(Tσw)− invn(w). (2.1)

For instance, if σ is the elementary transposition of i and i + 1 then Tσw differs from w
by transposition of the adjacent letters wi and wi+1 only, and then c(σ,w) equals 1, −1
or 0 depending on whether wi < wi+1, wi > wi+1 or wi = wi+1, respectively.

The function c(σ,w) is an additive cocycle in the sense that

c(στ, w) = c(σ, Tτw) + c(τ, w), σ, τ ∈ S∞.

Equivalently, for q > 0,
ρq(σ,w) := qc(σ,w) (2.2)

is a multiplicative cocycle. In accord with the terminology of ergodic theory, the additive
cocycle c = logq ρq may be also called the ‘modular function’.

Our considerations are based on the following definition.

Definition 2.1. For fixed q > 0, a Borel probability measure P on A∞ is called q-
exchangeable if P is quasi-invariant with respect to the action of the group S∞, with the
multiplicative cocycle given by (2.2).

Note that it is enough to require (2.2) to hold for the elementary transpositions, because
these permutations generate the group S∞.

In the special case q = 1 the order on A plays no role, as the cocycle ρq is identically
equal to 1, hence our definition turns then into the conventional exchangeability.

It is important to understand how the q-exchangeability behaves under transformations.
For f : A→ B let f∞ denote the induced mapping A∞ → B∞ which replaces each letter
wi in a word by f(wi). Consider first the identity mapping from (A, <) to (A, >).

Proposition 2.2. If P is a q-exchangeable measure on words over (A, <) then P is q−1-
exchangeable with respect to (A, >), that is when the order on the basic space is reversed.

Proof. Indeed, the claim is easily checked for the elementary transpositions which swap i
and i + 1. ¤

It is obvious that if f is an injective morphism of ordered Borel spaces then f∞ sends one
q-exchangeable measure to another q-exchangeable measure. This applies, in particular, to
A ⊆ R and strictly increasing function f : A→ R. It is less obvious that q-exchangeability
is preserved by arbitrary monotone transformations:

Proposition 2.3. Let A and B be Borel subsets of R. Suppose f : A → B is weakly
increasing, that is, a < b implies f(a) ≤ f(b). Then the induced Borel map f∞ : A∞ →
B∞ preserves the q-exchangeability.
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This proposition will be reduced to its restricted version involving finite random words
and finite alphabet A (see Proposition 2.5 to follow). In the case q = 1 the assertion turns
into a familiar property of exchangeability, which holds for arbitrary Borel f .

Definition 2.1 has a straightforward counterpart for finite random words w ∈ An. We
say that a probability measure Pn on An is finitely q-exchangeable if for each σ ∈ Sn the
measure T−1

σ Pn is equivalent to Pn and the Radon–Nikodým derivative dT−1
σ Pn/dPn is

given by the function qinv(Tσw)−inv(w). If A is finite or countable, then Pn is purely atomic
and this condition means that for w = w1 . . . wn ∈ An

Pn(Tσw) = qinv(Tσw)−inv(w)Pn(w), σ ∈ Sn . (2.3)

Consider the canonical projection A∞ → An assigning to an infinite word w = w1w2 . . .
its n-truncation w1 . . . wn, n = 1, 2, . . . . Given a probability measure P on A∞, let Pn

stand for the push-forward of P under the projection. Easily from the definitions we have:

Lemma 2.4. A probability measure P on A∞ is q-exchangeable if and only if Pn is
finitely q-exchangeable for every n = 1, 2, . . ..

In principle, the structure of the set of finitely q-exchangeable measures on An is clear:
by finiteness of the group Sn every such measure is a unique mixture of the extreme
measures, and every extreme (=ergodic) measure is supported by a single Sn-orbit in An.
Moreover, every Sn-orbit carries a unique q-exchangeable probability measure, hence the
extreme measures are in the bijective correspondence with the set of Sn-orbits in An. Each
Sn-orbit in An contains exactly one inversion-free word v1 . . . vn ∈ An, that is satisfying
v1 ≤ · · · ≤ vn. Thus the collection of inversion-free words of length n parameterizes the
orbits of Sn and all finitely q-exchangeable measures on An.

Now we can state a simplified version of Proposition 2.3:

Proposition 2.5. Let A and B be finite ordered alphabets and let f : A→ B be a weakly
increasing map. Then the induced map fn : An → Bn preserves the finite q-exchangeability
of measures.

We show first how to deduce Proposition 2.3 from Proposition 2.5. To this end, let
A, B and f be as required in Proposition 2.3. Furthermore, let P be a q-exchangeable
probability measure on A∞ and f∞(P ) be its push-forward under f∞. Observe that
(f∞(P ))n = fn(Pn) for all n = 1, 2, . . . . By the virtue of Lemma 2.4, it suffices to
prove that if a measure Pn on An is finitely q-exchangeable then so is its push-forward
fn(Pn). This in turn shows that it suffices to inspect the particular case of extreme Pn.
As pointed out above, every extreme measure Pn is concentrated on a single Sn-orbit, so
that Pn actually lives on words from a finite alphabet. This provides the desired reduction
to Proposition 2.5.

Proof of Proposition 2.5. Let Pn be a finitely q-exchangeable measure on An and P̃n =
fn(Pn) be its push-forward on Bn. Since the alphabets are finite, the measures are purely
atomic, supported by finite sets, so that we may deal with probabilities of individual
words.
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It suffices to prove that for every word u ∈ Bn and every elementary transposition
σ = (i, i + 1), one has

P̃n(u∗) = qinv(u∗)−inv(u)P̃n(u), u∗ := Tσu.

Let us fix u and i. There are three possible cases: ui = ui+1, ui < ui+1, and ui > ui+1.
In the first case, u∗ = u, and the desired relation is trivial. By symmetry between the
second and third cases, it suffices to examine one of them, say, the second case. Then
inv(u∗) − inv(u) = 1. Consider the inverse images X = (fn)−1(u) and X∗ = (fn)−1(u∗).
Then we have P̃n(u) = Pn(X) and P̃n(u∗) = Pn(X∗). Thus, we are reduced to showing
that

Pn(X∗) = qPn(X).

Since f is weakly increasing, ui < ui+1 implies that wi < wi+1 for every w ∈ X, hence
P (Tσw) = qP (w). It remains to note that the transformation Tσ : An → An maps X
bijectively onto X∗. This concludes the proof. ¤

Another proof will be given in the end of Section 3.

Proposition 2.6. Let f : A→ B be as in Proposition 2.3. If a probability measure P on
A∞ is q-exchangeable and extreme then so is its push-forward f∞(P ).

Proof. By Proposition 2.3, f∞(P ) is q-exchangeable, hence quasi-invariant under the ac-
tion of S∞. Obviously, the map f∞ commutes with that action. Recall that extremality
of quasi-invariant measures is equivalent to their ergodicity, so that it suffices to show that
f∞(P ) is ergodic if P is such, but this follows straightforwardly from the definitions. ¤

3. The finite q-shuffle

We fix a positive parameter q (later on we will assume 0 < q < 1). For a finite
permutation σ ∈ Sn we denote by inv(σ) the number of inversions, meaning the number
of inversions in the permutation word σ(1) . . . σ(n). It is well known that

∑

σ∈Sn

qinv(σ) = [n]q! ,

where

[n]q! := [1]q[2]q . . . [n]q, [n]q :=
n−1∑
i=0

qi

(this is a particular case of formula (5.4) below).

Definition 3.1. For n = 1, 2, . . . , the Mallows measure Qn is the probability measure on
Sn defined by

Qn(σ) =
qinv(σ)

[n]q!
, σ ∈ Sn.



q-EXCHANGEABILITY VIA QUASI-INVARIANCE 7

The Mallows measure and its relatives, introduced in [M], have been studied in statistics
in the context of ranking problems. See recent work [DR], [BBHM] for connections with
card shuffling and exclusion processes, and [Sta] for a scaling limit of Qn.

If q = 1 then Qn is just the uniform measure on Sn. Thus, for general q > 0, Qn may
be viewed as a deformation of the uniform measure.

The Mallows measure is the unique finitely q-exchangeable measure supported by the set
of permutation words of length n, i.e. corresponding to the inversion-free word 1 2 . . . n.

The measure Qn can be characterized by means of important independence property
partly mentioned in [M] 2. To prepare, we need more notation. For n = 1, 2, . . . we denote
by Gq,n the n-truncated geometric distribution on Nn = {1, . . . , n} with parameter q:

Gq,n(i) =
qi−1

[n]q
, i ∈ Nn.

For a permutation σ ∈ Sn (or the corresponding permutation word σ(1) . . . σ(n)) define
backward ranks

βj = βj(σ) := #{i ≤ j | σ(i) ≤ σ(j)}, j = 1, . . . , n. (3.1)

For instance, the permutation word 1324 has β1 = 1, β2 = 2, β3 = 2, β4 = 4. The
correspondence σ 7→ (β1(σ), . . . , βn(σ)) is a well-known bijection between Sn and the
Cartesian product N1 × · · · × Nn.

Proposition 3.2. Mallows measure Qn is the unique measure on Sn under which the
backward ranks are independent, with each variable j − βj + 1 distributed according to
Gq,j.

Proof. Decompose the number of inversions as inv(σ) =
∑n

j=1(j − βj), and multiply
probabilities of the truncated geometric distribution to see that Qn coincides with the
product measure. ¤

The following shuffling algorithm is central for our construction of finitely q-exchangeable
measures. The procedure is a variation of ‘absorption sampling’ which was studied under
various guises in [B], [Ke1], [R].

Definition 3.3. Given an arbitrary finite word v1 . . . vn, its q-shuffle is the random word
w1 . . . wn obtained by a random permutation of the letters v1, . . . , vn, determined by the
following n-step algorithm. Let ξ1, . . . , ξn be independent random variables, with ξj having
distribution Gq,n−j+1.

At step 1 take for w1 the ξ1th letter from the word v(1) := v1 . . . vn. Then remove the
letter vξ1 from v(1) and denote by v(2) the resulting word of length n − 1. Iterate. So at
each following step m = 2, . . . , n there is a word v(m) which was derived from the initial

word by deleting some m− 1 letters, a new letter wm = v
(m)
ξm

is then chosen, and if m < n

the word v(m+1) is obtained by removing this letter from v(m).

2On top of page 125 in [M] substitute q−1/2 for Mallows’ φ.
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Proposition 3.4. Let v = v1 . . . vn be an inversion-free word on the ordered alphabet A,
so v1 ≤ · · · ≤ vn. Let w be the random word obtained from v by the q-shuffle algorithm,
and let Pn be the distribution of w, which is a probability measure concentrated on the
Sn-orbit of v. Then Pn is finitely q-exchangeable.

Proof. First of all, observe that the probability Pn(w) of any word w from the Sn-orbit
of v is strictly positive. By the very definition of the finite q-exchangeability, it suffices
to prove that if σ is an elementary transposition (i, i + 1), i = 1, . . . , n − 1, then the
ratio Pn(Tσ(w))/Pn(w) equals q, q−1 or 1 depending on whether wi < wi+1, wi > wi+1 or
wi = wi+1. The latter case being trivial, we may assume by symmetry that wi < wi+1.

For w1 < w2 suppose a word starts with w1w2 and examine the transposition σ = (1, 2),
which swaps w1 and w2. Let I and J denote the sets of indices i and j for which vi = w1

and vj = w2, respectively. If the q-shuffle algorithm results in the word w, then the first
chosen letter is vi for some i ∈ I and the second chosen letter is vj for some j ∈ J .
Likewise, if the resulting word starts with w2w1, then we have to choose first vj with some
j ∈ J and afterwards vi with some i ∈ I. Let Pvivj

and Pvjvi
stand for the corresponding

probabilities.
If we fix i ∈ I and j ∈ J then the word v(3) obtained from the initial word v at the

third step of the algorithm does not depend on the order in which vi and vj were chosen.
Thus, it suffices to prove that Pvivj

/Pvjvi
= 1/q.

The probabilities in question are easily computed. Note that i < j, because vi < vj. It
follows that

Pvivj
= Gq,n(i)Gq,n−1(j − 1) =

qi+j−1

[n]q[n− 1]q
,

because after the first step the letter vj acquires number j − 1. On the other hand,

Pvjvi
= Gq,n(j)Gq,n−1(i) =

qj+i

[n]q[n− 1]q
,

because now the position of the second letter does not change after the first step. There-
fore, the ratio in question is indeed equal to 1/q.

Finally, transpositions σ = (i, i + 1) with i = 2, 3, . . . are handled in the same way: the
key point being that each of the words v(2), v(3) . . . is inversion-free. ¤
Remark 3.5. Note that the claim of Proposition 3.4 fails if one drops the assumption
that v is inversion-free. For instance, if v1 ≥ · · · ≥ vn then the resulting probability
measure on the orbit will be q−1-exchangeable and hence not q-exchangeable, except the
trivial cases when v1 = · · · = vn or q = 1.

The connection between Definitions 3.1 and 3.3 is established by the following

Corollary 3.6. The q-shuffle, as introduced in Definition 3.3, coincides with the action
of the random permutation σ ∈ Sn distributed according to the Mallows measure Qn.

Proof. As is seen from the description of the q-shuffle, it actually acts on positions of the
letters rather than on letters themselves. Thus, it is given by the action of the random
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permutation σ ∈ Sn distributed according to some probability measure Q′
n on Sn, which

does not depend on the word to be q-shuffled. Let us identify permutations σ ∈ Sn with
the corresponding permutation words σ(1) . . . σ(n). Then Q′

n can be characterized as the
outcome of q-shuffling of the inversion-free word v = 12 . . . n. By Proposition 3.4, Q′

n is
a finitely q-exchangeable probability measure concentrated on the Sn-orbit of v. Such a
measure is unique, and the orbit can identified with the group Sn itself. On the other
hand, Qn is q-exchangeable, thus Q′

n = Qn. ¤
As yet another application of Proposition 3.4 we obtain an alternative proof of Propo-

sition 2.5.

Second proof of Proposition 2.5. We will show that if Pn is an extreme q-exchangeable
measure on An then so is fn(Pn). This will imply the claim of the proposition.

By Proposition 3.4, Pn is obtained by the q-shuffle applied to an inversion-free word
v ∈ An. Therefore, the same holds for the measure fn(Pn) and the word f(v) :=
f(v1) . . . f(vn), because the q-shuffle commutes with the map fn. Since f is weakly
increasing, the word f(v) is inversion-free. Applying again Proposition 3.4 we get the
desired result. ¤

4. The infinite q-shuffle and statement of the main result

The above discussion of the finite q-exchangeability can be summarized as follows:
the extreme finitely q-exchangeable probability measures are parameterized by finite
inversion-free words and can be obtained by application of the q-shuffle procedure to
these words. Now our aim is to find a counterpart of this result for measures on infinite
words. As in Section 2, we are dealing with an ordered alphabet (A, <), where A is a
Borel subset of R. So far the parameter q was an arbitrary positive number, and

• throughout the rest of the paper we assume 0 < q < 1.

By Proposition 2.2, this restriction does not lead to loss of generality, because the case
q > 1 is reduced to the case q < 1 by inverting the order on the alphabet.

Let N = {1, 2, . . . } and Gq be the geometric distribution on N with parameter q:

Gq(i) = (1− q)qi−1, i ∈ N.

Definition 4.1. Let v = v1v2 · · · ∈ A∞ be an arbitrary infinite word. The infinite q-
shuffle of v is the infinite random word w = w1w2 . . . produced by the algorithm similar
to that in Definition 3.3. The only changes are that (i) the independent variables with
varying truncated geometric distributions should be replaced by the independent variables
ξ1, ξ2, . . . with the same geometric distribution Gq, and (ii) the number of steps becomes
infinite.

Although the infinite q-shuffle involves countably many steps, the first n letters in the
output word w are specified after n steps of the algorithm. This shows, in particular, that
the law of the random word w is well defined as a Borel probability measure on A∞.
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Lemma 4.2. The output random word w is a random permutation of the letters of the
input word v. That is to say, all letters of v appear in w, with probability 1.

Proof. The probability that the first letter v1 will not be chosen at the first m steps of
the algorithm is equal to qm. As m →∞, this quantity goes to 0, so that v1 will appear
in w with probability 1. Iterating this argument we arrive to the same conclusion for all
other letters. ¤

As above, we say that an infinite word v ∈ A∞ is inversion-free if it has no inversions,
that is, v1 ≤ v2 ≤ . . . .

Proposition 4.3. If v ∈ A∞ is an inversion-free word then its q-shuffle produces a q-
exchangeable Borel probability measure on A∞.

Proof. Let P (v) denote the measure in question. For any n = 1, 2, . . . , let P
(v)
n be the

nth marginal measure of P , as in Lemma 2.4. The same argument as in the proof of

Proposition 3.4 shows that each of the measures P
(v)
n is q-exchangeable. Consequently, by

virtue of Lemma 2.4, P (v) is q-exchangeable, too. ¤
Let S stand for the set of all permutations (i.e., bijections) of the set N. We will often

identify permutations σ ∈ S with the corresponding infinite words σ(1)σ(2) · · · ∈ N∞. In
this way we get an embedding S ↪→ N∞. It is easy to check that S is a Borel subset of
N∞, so that one can speak about Borel measures on S.

On the other hand, S is a group containing S∞ as a proper subgroup. The group S acts
on A∞ in the same way as S∞ does. Namely, if σ ∈ S and w ∈ A∞ then (Tσw)i = wσ−1(i).

Definition 4.4. By virtue of Proposition 4.3 and Lemma 4.2, an application of the
infinite q-shuffle to the inversion-free word v = 1 2 · · · ∈ N∞ produces a q-exchangeable
Borel probability measure on N∞, which is concentrated on the group S. We call this
measure the Mallows measure on S, and denote it Q.

Remark 4.5. In accordance with our definition of the action of permutations on words,
the permutation word σ(1)σ(2) . . . corresponding to an element σ ∈ S coincides with
Tσ−1(12 . . . ), and not with Tσ(12 . . . ). It follows that the infinite q-shuffle of any infinite
word coincides with the action on it by the random permutation Tσ with σ ∈ S distributed
according to the push-forward of Q under the inversion map σ 7→ σ−1. However, as will be
shown in Section 10, Q is actually preserved by this map, so that we may simply choose
random σ distributed itself according to the Mallows measure Q.

Given a word v ∈ A∞, its support , denoted supp(v), is the subset of A comprised of all
distinct letters that appear in v, without regard to their multiplicities. If no assumption
on v is made, supp(v) may be any finite or countable subset of R and the letters from
supp(v) may enter v with arbitrary multiplicities, finite or infinite. This is not the case,
however, if v is inversion-free, as is demonstrated by the following evident proposition.

Proposition 4.6. The inversion-free words v ∈ R∞ belong to one of the following two
types, depending on whether the support supp(v) is finite or infinite:
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(I) The finite type: supp(v) is a finite set a1 < · · · < ad. Then for each i = 1, . . . , d−1,
the letter ai enters v with a finite nonzero multiplicity lai

, while the last letter ad

has infinite multiplicity, and

v = a1 . . . a1︸ ︷︷ ︸
la1

. . . ad−1 . . . ad−1︸ ︷︷ ︸
lad−1

adad . . .︸ ︷︷ ︸
lad

=∞
.

(II) The infinite type: supp(v) is a countable set a1 < a2 < . . . . Then for each
i = 1, 2, . . . , the letter ai enters v with a finite nonzero multiplicity lai

, and

v = a1 . . . a1︸ ︷︷ ︸
la1

a2 . . . a2︸ ︷︷ ︸
la2

. . .

For both types, the finite multiplicities lai
may take arbitrary positive integer values.

For an inversion-free word v ∈ R∞, let Ω(v) denote its S-orbit, Ω(v) := {Tσv | σ ∈ S},
which is a Borel subset in R∞. By the very definition, the measure P (v) is concentrated
on Ω(v).

Remark 4.7. If supp(v) is finite then Ω(v) coincides with the S∞-orbit of v and hence is
countable (except when supp(v) is a singleton). Therefore, in this case the measure P (v)

is purely atomic: for w ∈ Ω(v), P (v)(w) is proportional to qinv(w). Note that here inv(w),
the total number of inversions in w, is finite. Moreover, the number

I(v)(k) := #{w ∈ Ω(v) | inv(w) = k}
has polynomial growth in k as k → ∞, so that the series

∑
k I(v)(k)qk converges, which

explains why the measure does exist. (Note that in the situation of the conventional de
Finetti’s theorem there are no finite invariant measures supported by a nontrivial S∞-
orbit.) In contrast to that, if supp(v) is infinite then Ω(v) has cardinality continuum and
the measure P (v) is diffuse.

Now we are in a position to state the main result of the paper.

Theorem 4.8. Let A be an arbitrary Borel subset of R with the order inherited from R.
The extreme q-exchangeable Borel probability measures on A∞ are parameterized by the
infinite inversion-free words v with support contained in A. The measure P (v) correspond-
ing to such a word v is obtained by application of the infinite q-shuffle to v, as described
in Proposition 4.3.

Observe that the orbits Ω(v) with different v’s are pairwise disjoint. It follows that
Theorem 4.8 is reduced to the following seemingly weaker claim.

Proposition 4.9. For A as in Theorem 4.8, the extreme q-exchangeable measures on
A∞ belong to the family of measures {P (v)}, where v ranges over the set of inversion-free
words in A∞.
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Indeed, combining this proposition with the above observation, we see that none of the
measures in the family {P (v)} can be written as a nontrivial mixture of other measures,
which implies that each P (v) is extreme. A proof of Proposition 4.9 will be given in the
next sections.

Remark 4.10. Given an element τ ∈ S, let τ̃ ∈ N∞ denote the corresponding permuta-
tion word, τ̃ = τ(1)τ(2) . . . . The Mallows measureQ (Definition 4.4) can be characterized
as the only probability measure on the group S, which is quasi-invariant under the right
shifts τ 7→ τσ−1 by elements σ of the subgroup S∞, with the cocycle ρq(σ, τ̃). This follows
from Theorem 4.8 and the very definition of Q.

We shall inspect next the nature of random word w ∈ A∞ under P (v). The sequence of
truncations ∅, w1, w1w2, . . . has transition probabilities described in the following propo-
sition. To explain the notation: letters a, b range over A; la is the multiplicity of a in v,
as above; u = w1 . . . wn−1 is a finite word; and µa(u) is the multiplicity of a in u.

Proposition 4.11. Let w be the infinite random word distributed according to P (v). The
transition probabilities have the form

P (v)(u → ua) = q
P

b<a(lb−µb(u))(1− qla−µa(u)) = q
P

b<a(lb−µb(u)) − q
P

b≤a(lb−µb(u)). (4.1)

Proof. Assume first n = 1, that is u = ∅. Then the left-hand side of (4.1) is the probability
of w1 = a, as in the first step of the q-shuffling algorithm. The string of a’s in v starts from
position i := 1 +

∑
b<a lb and ends at position j :=

∑
b≤a lb. Therefore, the probability in

question equals
(1− q)(qi−1 + · · ·+ qj−1) = qi−1(1− qj−i+1).

The same quantity appears in the right-hand side of (4.1) when u = ∅, because then
µb(u) = 0 for all b ∈ A.

For n = 2, 3, . . . , the argument is exactly the same, taking into account that we are
dealing with the nth step of the algorithm and the word v(n) is inversion-free, with letter
multiplicities l′b = lb − µb(u). ¤
Remark 4.12. Next are some comments to formula (4.1).

1. If µa(u) = la then (4.1) shows that the transition u → ua has probability zero. This
agrees with the fact that if la < ∞ then the letter a cannot enter the random word more
than la times. In particular, if la = 0 (which means a /∈ supp(v)) then a never appears.

2. The transition probability P (v)(u → ua) depends on u only through the collection
of multiplicities {µa(u)}a∈A. That is, it depends only on the Sn-orbit of u.

3. Recall that the support of v is either of the form a1 < · · · < ad or a1 < a2 < . . . .
Let us set

x0(u) = 1, xi(u) = q
P

j≤i(laj−µaj (u)),

where j = 1, . . . , d or j = 1, 2, . . . for finite or infinite support, respectively. In this
notation, (4.1) can be rewritten as

P (v)(u → uai) = xi−1(u)− xi(u), ai ∈ supp(v). (4.2)
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Now observe that
1 = x0(u) ≥ x1(u) ≥ · · · ≥ xd(u) = 0

or
1 = x0(u) ≥ x1(u) ≥ x2(u) ≥ · · · ≥ 0 with lim

i→∞
xi(u) = 0

for finite or infinite support, respectively. This makes evident the fact that the transition
probabilities given by (4.2) indeed sum to 1.

4. We have deduced the formula (4.1) from the q-shuffling algorithm. Conversely,
starting from (4.1), one can easily recover the algorithm itself.

Proposition 4.11 describes the measures P (v) via transition probabilities. The next

proposition characterizes P (v) in terms of the marginal measures P
(v)
n , which are the joint

distributions of the first n letters. Note that P
(v)
n is a purely atomic measure, because it

is supported by the words u = u1 . . . un with letters ui from the finite or countable set
supp(v), and the set of all such words is finite or countable. Thus, we may speak about

probabilities P
(v)
n (u) of individual words.

We recall some standard q-notation. Denote

(x; q)0 = 1, (x; q)k :=
k−1∏
i=0

(1− xqi), k = 1, 2, . . . .

Likewise, we define (x; q−1)k. Below we use the same notation as in Proposition 4.11.

Proposition 4.13. Let v ∈ R∞ be an inversion-free word, and let u be a word of length
n with letters belonging to the support of v. We have

P (v)
n (u) = qinv(u)q−

P
b<a µb(u)µa(u)

∏
a

(qla ; q−1)µa(u)q
µa(u)

P
b<a lb , (4.3)

where a and b assume values in supp(v).

Note that the product over a ∈ supp(v) is actually finite even if supp(v) is infinite.
This follows from the fact that µa(u) = 0 implies that the corresponding factor equals 1,
and there are only finitely many a’s with µa(u) 6= 0.

Proof. Computing the ratio P
(v)
n+1(ua)/P

(v)
n (u) from (4.3) one sees that the formula agrees

with transition probabilities (4.1). ¤

5. The case of finite alphabet

In this section we prove Proposition 4.9 (and hence Theorem 4.8) for finite alphabet
A with cardinality d = #A ≥ 2. The simplest case d = 2 was examined in [GO2],
and we will apply here the same method. To be definite, we take A = Nd. Following the
formalism due to Kerov and Vershik [VK] it is insightful to interpret the q-exchangeability
as a property of measures on the path space of a graded graph (Bratteli diagram) which
captures the branching of orbits of Sn on An as n varies.
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Let Z+ = {0, 1, 2, . . . } and consider the d-dimensional lattice Zd
+. The lattice points

will be denoted λ or µ. We write lattice points as vectors λ = (λ1, . . . , λd) in the canonical
basis e1, . . . , ed, and we call |λ| = λ1 + · · · + λd the degree of λ. We write µ ≺ λ if µ 6= λ
and λ− µ ∈ Zd

+; in this case there is a nondecreasing lattice path connecting µ with λ.
Each λ of degree n corresponds to an inversion-free word

v(λ) = v1 . . . vn = 1 . . . 1︸ ︷︷ ︸
λ1

2 . . . 2︸ ︷︷ ︸
λ2

. . . d . . . d︸ ︷︷ ︸
λd

, (5.1)

where letter a does not enter if λa = 0. This correspondence yields a bijection between
Sn-orbits in An and vectors λ ∈ Zd

+ of degree n.

Definition 5.1. The q-Pascal pyramid of dimension d, denoted Γ(q, d), is the oriented
graph with the vertex set Zd

+ and directed edges (λ, λ + ea) endowed with weights

weight(λ, λ + ea) := qλa+1+···+λd , a ∈ Nd. (5.2)

Note that weight(λ, λ + ed) = 1 for any λ. The nth level of the graph consists of the
vertices λ ∈ Zd

+ with |λ| = n. Level 0 has a sole root vertex 0̄ := (0, . . . , 0). A standard
path terminating at λ is a lattice path which connects 0̄ to λ and is nondecreasing in each
coordinate. Similarly, we define infinite standard path in Γ(q, d) as an infinite coordinate-
wise nondecreasing path, with the initial vertex 0̄.

Observe that there is a natural bijection between An and standard paths in Γ(q, d) of
length n. By this bijection a word w1 . . . wn is mapped to the path

µ(∅) = 0̄, µ(w1) = ew1 , µ(w1w2) = ew1 + ew2 , . . . , µ(w1 . . . wn) = ew1 + . . . + ewn ,

where the ath coordinate of the terminal vertex is equal to the multiplicity of letter a in
w1 . . . wn. For n = 1, 2, . . . the bijections are consistent, hence define a bijection between
A∞ and the set of infinite standard paths in Γ(q, d): under this bijection wn = a means
that the nth edge of the path connects a vertex µ(w1 . . . wn−1) of degree n−1 with µ+ea.
Fixing the first n vertices of a standard path corresponds to a cylinder [w1 . . . wn] ⊂ A∞.
A measure P on A∞ translates as a measure on the space of infinite standard paths, with
P ([w1 . . . wn]) being the probability of the corresponding initial path of length n.

Definition 5.2. The weight of a standard path with endpoint λ is defined as the product
of weights of the edges comprising the path. Let us say that a probability measure on
the path space of Γ(q, d) is a Gibbs measure if for every λ the conditional measure of a
standard path terminating at λ is proportional to the weight of this path3.

Proposition 5.3. For A = Nd, the q-exchangeable measures on A∞ correspond uniquely
to the Gibbs measures on the space of infinite standard paths in the q-Pascal pyramid
Γ(q, d).

3In the terminology of Kerov and Vershik [VK] such a measure is called ‘central’.
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Proof. Let w ∈ A∞. Under the correspondence between words and paths, qinvn(w) is equal
to the weight of the standard path encoded in w1 . . . wn, as is seen by induction. Indeed, if
the finite word w1 . . . wn−1 corresponds to λ and wn = a is appended, then the number of
inversions increases by invn(w)− invn−1(w) = λa+1 + · · ·+λd, which is the same quantity
that appears in (5.2); then we use the telescoping representation

invn(w) = [invn(w)− invn−1(w)] + [invn−1(w)− invn−2(w)] + · · ·+ [inv1(w)− 0].

On the other hand, the words in An that correspond to standard paths with a given end-
point make up a Sn-orbit. Thus we see that the Gibbs condition for fixed n is equivalent
to finite q-exchangeability. Since this holds for every n, Proposition 2.4 allows to translate
the finite q-exchangeability for n = 1, 2, . . . as the Gibbs property, and conversely. ¤

Now we shall proceed along the lines in [KOO]. Denote by Path(d) the space of all
infinite standard paths in Γ(q, d). With each λ ∈ Zd

+ we associate a unique elementary
probability measure supported by the finite set of standard paths with endpoint λ: this
measure corresponds to an orbital finitely q-exchangeable probability measure on An.
We can understand this measure as a function which assigns to λ value 1 and to each
µ ≺ λ assigns the probability that a path passes through µ. The Martin boundary of
Γ(q, d) consists of probability measures on Path(d) representable as weak limits of these
elementary measures along a sequence of lattice points with |λ| → ∞. We will prove that
under the correspondence of Proposition 5.3, the Martin boundary is exactly the images
of the measures P (v), with v ranging over the set of inversion-free words in A∞. By the
general theory (see [KOO]), the Martin boundary contains all extreme Gibbs measures,
so that this will imply Proposition 4.9.

To determine the boundary we need to identify all asymptotic regimes for λ which
guarantee convergence of the ratios

dim(µ, λ)

dim(λ)
, (5.3)

where dim(λ) = dim(0̄, λ), and dim(µ, λ) is equal to the sum of weights of all nonde-
creasing lattice paths connecting µ and λ (the weight of each such path is defined as the
product of the weights of its edges). We set dim(µ, λ) = 0 if λ− µ /∈ Zd

+. The ratio (5.3)
is the Martin kernel for a certain Markov chain and, by analogy with the Gibbs formalism
in statistical physics, dim λ may be called ‘partition function’.

Recall the notation

[0]q! = 1, [n]q! = [1]q[2]q . . . [n]q =
(q; q)n

(1− q)n
, n = 1, 2, . . . .

For nonnegative integers n1, . . . , nd with n1 + · · ·+ nd = n the number[
n

n1, . . . , nd

]

q

:=
[n]q!

[n1]q! . . . [nd]q!
=

(q; q)n

(q; q)n1 . . . (q; q)nd

is known as the Gaussian multinomial coefficient .
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Lemma 5.4. We have for λ = (λ1, . . . , λd) and µ ≺ λ

dim(λ) =

[ |λ|
λ1, . . . , λd

]

q

, dim(µ, λ) = qN(µ,λ) dim(λ− µ)

where

N(µ, λ) =
∑

a

µa

∑

b: b<a

λb −
∑

b<a

µbµa.

Proof. Recall that the set of finite standard paths ending at λ is encoded by the words
w belonging to the S|λ|-orbit of the inversion-free word v(λ) as defined in (5.1). Let {w}
stand for the set of these paths. MacMahon’s formula for the generating function for the
number of inversions in permutations of a multiset (see [An, Theorem 3.6]) says in our
notation that ∑

{w}
qinv(w) =

[ |λ|
λ1, . . . , λd

]

q

. (5.4)

This yields the formula for dim(λ). The formula for dim(µ, λ) with

N(µ, λ) = (λ1 − µ1)(µ2 + · · ·+ µd) + (λ2 − µ2)(µ3 + · · ·+ µd)

+ · · ·+ (λd−1 − µd−1)µd

follows by counting inversions in the corresponding words, which in turn is done by com-
paring the oriented subgraph rooted at µ with the whole graph Γ(q, d). ¤

A weakly increasing function h : Nd → {0, 1, . . . ,∞} with h(d) = ∞ will be called a
height function on A = Nd. We also set h(0) := 0 where appropriate. There is a natural
bijection h ↔ v between the height functions on Nd and the inversion-free words in N∞d :

v = 1 . . . 1︸ ︷︷ ︸
h(1)

2 . . . 2︸ ︷︷ ︸
h(2)−h(1)

3 . . . 3︸ ︷︷ ︸
h(3)−h(2)

. . . r . . . r︸ ︷︷ ︸
h(r)−h(r−1)

r + 1 r + 1 . . .︸ ︷︷ ︸
h(r+1)=∞

, (5.5)

where for some 0 ≤ r < d each letter 1 ≤ a ≤ r appears h(a) − h(a − 1) < ∞ times (if
any), and infinitely many times for a = r + 1.

Proposition 5.5. The Martin boundary of the graph Γ(q, d) can be parameterized, in a
natural way, by the height functions on Nd.

Proof. Using the identity

(q; q)n

(q; q)n−m

= (qn; q−1)m, n ≥ m ≥ 0,

we derive from Lemma 5.4 for µ ≺ λ, m = |µ| and n = |λ| that

dim(µ, λ)

dim λ
= q−

P
b<a µbµa

(q; q)n−m

(q; q)n

d∏
a=1

(qλa ; q−1)µaq
µa
P

b: b<a λb . (5.6)
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Observe that the constraint µ ≺ λ can be removed; indeed, if it is not satisfied then
dim(µ, λ) = 0 and the right-hand side of (5.6) also vanishes, because (qλa ; q−1)µa = 0 for
λa < µa.

Let us rewrite (5.6) using the notation

hλ(a) := λ1 + · · ·+ λa, a = 1, . . . , d, hλ(0) := 0,

in the form

dim(µ, λ)

dim λ
= q−

P
b<a µbµa

(q; q)n−m

(q; q)n

d∏
a=1

(qhλ(a)−hλ(a−1); q−1)µaq
µahλ(a−1). (5.7)

Now it is easy to analyze the asymptotics of this expression assuming that µ remains fixed
while λ varies so that n = |λ| → ∞. First of all, note that

lim
n→∞

(q; q)n−m

(q; q)n

=
(q; q)∞
(q; q)∞

= 1.

Next, observe that

0 ≤ hλ(1) ≤ · · · ≤ hλ(d− 1) ≤ hλ(d) = n.

Passing to a subsequence, we may assume that there exist finite or infinite limits

lim
n→∞

hλ(a) = h(a) ∈ Z+ ∪ {+∞}, a = 1, . . . , d .

This means that there exists 0 ≤ r < d such that the numbers hλ(1), . . . hλ(r) stabilize for
n large enough, hλ(a) = h(a) < ∞ for 1 ≤ a ≤ r, while hλ(a) → h(a) = +∞ for a > r.
Note that hλ(d) = n always goes to infinity, so that h(d) = ∞ in any case.

Clearly, the product in (5.7) up to a = r stabilizes. Next, we have

(qhλ(r+1)−hλ(r); q−1)µr+1q
µr+1hλ(r) → qµr+1hλ(r),

because qhλ(r+1)−hλ(r) → 0. As for the factors with a > r + 1, we have

(qhλ(a)−hλ(a−1); q−1)µaq
µahλ(a−1) → δµa,0,

with the Kronecker delta in the right-hand side, because hλ(a− 1) →∞.
We conclude that convergence hλ → h implies

dim(µ, λ)

dim λ
→ q−

P
b<a µbµa

d∏
a=1

(qh(a)−h(a−1); q−1)µaq
µah(a−1), (5.8)

with the convention that h(0) = 0 and h(a) − h(a − 1) = 0 if h(a) = h(a − 1) = +∞.
Since for distinct h the limits in (5.8) are all distinct, the Martin boundary can indeed be
parameterized by the height functions. ¤

Observe that if h(a) = h(a − 1) then the limit value (5.8) vanishes unless µa = 0.
Returning to random words w = w1w2 · · · ∈ A∞, this means that if h(a) = h(a− 1), then
the letter a does not occur in w, with probability 1.



18 ALEXANDER GNEDIN AND GRIGORI OLSHANSKI

Proposition 5.6. Under the correspondence h ↔ v, the measures on Path(d) afforded
by Proposition 5.5 correspond exactly to the measures P (v), where v ranges over the set of
inversion-free words on the alphabet Nd.

Proof. Fix a height function h and let P be the corresponding Gibbs measure on Path(d).
Next, let P be the measure on N∞d , which corresponds to P via the bijection of Proposition
5.3. Finally, let v ∈ N∞d be the inversion-free word associated with h. We have to prove

that P = P (v). To do this it suffices to check that Pn = P
(v)
n for all n. Let u ∈ Nn

d .
Then Pn(u) equals qinv(v) times the right-hand side of (5.8), where we set µa = µa(u).

Comparing with (4.3) we see that this coincides with P
(v)
n (u). ¤

This concludes the proof of Proposition 4.9 in the case of finite alphabet A.

6. The case A = N

In this section we assume that A is the countable ordered set (N, <) of positive integers.
Our aim is to prove, for this case, Proposition 4.9 and hence Theorem 4.8.

Definition 6.1. By a height function on N we shall mean a map h : N → Z+ ∪ {+∞}
which is weakly increasing (that is, h(a) ≤ h(b) for a < b) and satisfies lima→∞ h(a) = +∞.
The set of all height functions on N will be denoted H(N).

Obviously, setting

la = h(a)− h(a− 1), a ∈ N,

with the understanding that h(0) = 0 and la = 0 if h(a) = h(a − 1) = +∞, we get a
bijection h ↔ v between H(N) and the set of all inversion-free words v ∈ N∞.

Proof of Proposition 4.9 for A = N. Let P be an extreme q-exchangeable measure on N∞.
We have to show that P = P (v) for some v. The idea is to reduce this claim to the case
A = Nd, which has been examined in Section 5, by using Propositions 2.3 and 2.6.

For d = 1, 2, . . . and a ∈ N, set fd(a) = a∧d = min(a, d). Clearly, this gives us a weakly
increasing map fd : N → Nd. By Proposition 2.6, f∞d (P ) is an extreme q-exchangeable
measure on N∞d . By the result of Section 5, it coincides with some measure P (v(d)) where
v(d) ∈ N∞d is an inversion-free word. Denote by hd the corresponding height function on
Nd.

Let w ∈ N∞ be the random word with law P . For each a = 1, . . . , d − 1, the letter a
enters the random word fd(w) exactly hd(a)− hd(a− 1) times, with probability 1. Since
the map fd does not change the letters a = 1, . . . , d − 1, the same holds for the initial
random word w. This implies that hd(a) = hd+1(a) for all a = 1, . . . , d − 1. Therefore,
for every a ∈ N, the value hd(a) stabilizes as d →∞, starting from d = a + 1; denote by
h(a) this stable value. We claim that h is a height function on N. Indeed, it is obvious
that h weakly increases, so that we only have to check that h(a) →∞ as a →∞. If this
were not the case then h(a) would assume the same (finite) value for all a large enough.
But this would mean that w contained only finitely many letters, each with a prescribed
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finite multiplicity la = h(a)− h(a− 1), which is clearly impossible. Thus, h should be a
height function.

Now, let v ∈ N∞ be the inversion-free word corresponding to h. By the very definition

of h, we have f∞d (P ) = f∞d (P (v)) for all d. Clearly, this implies Pn = P
(v)
n for all n, so

that P = P (v), as desired. ¤

Remark 6.2. An alternative proof can be based on the notion of the q-Pascal pyramid
of dimension ∞, denoted Γ(q,∞), which is the graph with the vertex set

{λ ∈ Z∞+ | λ1 + λ2 + · · · < +∞},
the edges (λ, λ + ea), where

ea = ( 0, . . . , 0︸ ︷︷ ︸
a−1

, 1, 0, 0, . . . ), a ∈ N,

and the weight q
P

b>a λb assigned to the edge (λ, λ+ea). Note that the sum in the exponent
is finite because |λ| := ∑

a λa is finite by the definition of Γ(q,∞). The nth level of Γ(q,∞)
consists of vertices with |λ| = n.

The graph Γ(q, d) is embedded in Γ(q,∞) as the set of vertices with λb = 0 for b > d.
Obviously, Γ(q,∞) = ∪d≥1Γ(q, d). The definition of Gibbs measures on the space of
standard paths in Γ(q,∞), and the correspondence with q-exchangeable measures on N∞
extend straightforwardly the definitions from Section 5. Then one can repeat the argu-
ments in Proposition 5.5 to show that the Martin boundary of Γ(q,∞) consists precisely
of the Gibbs measures corresponding to measures P (v).

7. The case A = R

Here we prove Proposition 4.9 and hence Theorem 4.8 for A = R. This will also cover
the seemingly more general case with A an arbitrary Borel subset of (R, <).

Assume measure P on R∞ is q-exchangeable and extreme. Our aim is to show that
there exists a finite or countable subset A ⊂ R, of the form a1 < · · · < ad or a1 < a2 < . . . ,
such that P is supported by A∞. Then the results of Sections 5 and 6 will imply that
P = P (v) for some inversion-free word v.

For an arbitrary word w ∈ R∞, set hw(x) := #{j : wj ≤ x}. The function hw : R →
Z+ ∪ {+∞} is weakly increasing and right-continuous, hence it is completely determined
by its restriction on the set Q of rational numbers.

For x ∈ R let φx : R∞ → {1, 2}∞ be the mapping which replaces each wj ∈ (−∞, x]
by 1 and each wj ∈ (x, +∞) by 2. The measure φ∞x (P ) on {1, 2}∞ is q-exchangeable and
extreme, by the virtue of Proposition 2.6. Since hw(x) is the number of 1’s in φx(w), the
ergodicity implies that the value hw(x) is the same for P -almost all words w. Letting x to
run over Q we see that, outside a P -null set of words, the value hw(x) does not depend on
w for each x ∈ R; we denote h(x) this common value. The function h(x) is again weakly
increasing and right-continuous, and assumes values in Z+ ∪ {+∞}.
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Recall that in the d = 2 case q-exchangeability implies the dichotomy: either 1 appears
finitely many times and 2 appears infinitely often, or 2 does not appear at all. From this,
h(x) ≡ ∞ would imply wj ≤ x for all j, which is impossible. It follows that h(x) cannot
be identically equal to +∞.

By a similar argument, h(x) cannot be identically equal to a finite constant as well.
Defining A to be the set of the jump points of h, we see that A is either a nonempty

finite set a1 < · · · < ad or a countably infinite set of the form a1 < a2 < . . . . In the
latter case we set a∗ = sup{ai} = lim ai ∈ R ∪ {+∞}. By the very definition of h(x), the
function is constant on every interval of the form

(−∞, a1), [ai−1, ai), [a∗, +∞).

Finally, observe that if one ignores a P -null set of words mentioned above, then any
word w does not contain letters from the open intervals

(−∞, a1), (ai−1, ai), (a∗, +∞).

We conclude that P is concentrated on A∞.

Remark 7.1. We note in passing that this argument fails for more general ordered spaces.
For instance, it cannot be applied to Rk (k > 1) with lexicographic order, because the
order is not separable and h cannot be determined by its restriction to a countable set.

8. Quantization

A motivation to study the q-exchangeability is that this property can be viewed as a
quantization of the conventional exchangeability. We comment briefly on this connection.

In the classical setting, each extreme exchangeable P on R∞ is of the form ν⊗∞, where
ν is the limit of empirical measures, meaning that for every Borel B ⊂ R, as n →∞, the
random word satisfies the strong law of large numbers

#{j ≤ n |wj ∈ B} ∼ n ν(B) P−a.s. (8.1)

Trivially, 0 < P (w1 ∈ B) < 1 if and only if 0 < ν(B) < 1, in which case letters from A
appear in w infinitely many times for both A = B and A = Bc.

In the framework of q-exchangeability (with q < 1), the analogue of (8.1) is

#{j ≤ n |wj ∈ B} → νq(B) P−a.s. (8.2)

where νq is a counting measure associated with some height function h, so that the letters
from B are represented in w exactly νq(B) times. Similarly to the above, one sees from
the formula

P (w1 ∈ B) =
∑

{x∈B | ν{x}>0}
qν(−∞,x)(1− qν{x})

that 0 < P (w1 ∈ B) < 1 if and only if 0 < νq(B) < ∞.
There are many ways to approach the exchangeability through q-exchangeability, that

is to obtain independent sampling in the classical limit q → 1. One possible explicit
realization of such limit is the following quantization of homogeneous product measures.
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Let ν be a probability measure on R, with distribution function F (x) := ν(−∞, x]. Let
F−1(p) := inf{x ∈ R : F (x) ≥ p} be the corresponding quantile function, and consider the
countable collection of quantiles αk := F−1(1− qk), k ∈ N, as letters of the inversion-free
word v := α1α2 . . . . The idea is to bridge between independent sampling from ν and the
q-shuffle for the counting measure νq =

∑
j∈N δαj

by means of independent sampling from
the measures

ν̃q =
∑

k∈N
Gq(k) δαk

.

Proposition 8.1. As q → 1, for v = α1α2 . . . the q-shuffle measures P (v) converge, in

the sense of weak convergence of the finite-dimensional marginal measures P
(v)
n , n ∈ N,

to the product measure ν⊗∞.

Proof. For ξ a random variable with geometric distribution Gq, the distribution of ran-
domized quantile αξ is ν̃q. It is convenient to introduce two more random variables: ζ
with uniform distribution on [0, 1], and ζq with the discrete distribution

∑

k∈N
Gq(k) δ1−qk . (8.3)

From standard properties of the quantile function, the distribution of F−1(ζ) is ν, and
the distribution of F−1(ζq) is ν̃q, so that we can identify αξ = F−1(ζq).

Now, measure (8.3) was designed so, that the mass of each interval [0, 1− qk] is 1− qk,
and the largest atom has mass 1−q, which approaches 0 as q → 1. Therefore, ζq converges
in distribution to ζ. On the other hand, the set of discontinuities of the quantile function is
at most countable and so has Lebesgue measure zero, hence F−1 preserves the convergence
relation (see e.g. [Bi, Theorem 5.1]), meaning that F−1(ζq) →d F−1(ζ). The latter is the
same as

P(αξ ≤ x) → F (x) as q → 1,

where x is arbitrary continuity point of F . For any nonnegative integer m, the total
variation distance between ξ and the shift ξ +m equals 1− qm, from which the above can
be strengthened as

P(αξ+m ≤ x) → F (x) as q → 1.

In the like way, if ξ1, ξ2, . . . are independent copies of ξ and m1, . . . , mn are arbitrary fixed
nonnegative integers, then we have

P(αξ1+m1 ≤ x1, . . . , αξn+mn ≤ xn) → F (x1) · · ·F (xn) as q → 1,

where x1, . . . , xn are arbitrary continuity points of F .
Let w1w2 . . . be the q-shuffle of 1 2 . . . , constructed from the independent geometric

ξ1, ξ2, . . ., as in Definition 4.1. Easily from the definition, ξj ≤ wj < ξj + j, whence the
above implies

P(αw1 ≤ x1, . . . , αwn ≤ xn) → F (x1) · · ·F (xn) as q → 1
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for continuity points x1, . . . xn, which is precisely the property of weak convergence of P
(v)
n

we wanted to prove. ¤
The construction offers quantization of homogeneous product measures on R∞. Ex-

tension to the general exchangeable case is straightforward in the light of de Finetti’s
theorem: just randomize ν.

9. Random flags over a Galois field

Fix q ∈ (0, 1) and set q̃ = q−1, so that q̃ > 1. In this section we assume that q̃ is a
power of a prime number.

Let Fq̃ be the Galois field with q̃ elements and let V∞ be an infinitely-dimensional vector
space over Fq̃ with a countable basis {v1, v2, . . . }. Defining Vn to be the linear span of
vectors v1, . . . , vn, we have ∪n≥0Vn = V∞, so that each element of V∞ can be uniquely
written in the basis as an infinite vector with finitely many nonzero components.

For d ∈ N, by decreasing d-flag in V∞ we shall mean a (d + 1)-tuple X = (X(i)) of
linear subspaces in V∞ such that

V∞ = X(0) ⊇ X(1) ⊇ · · · ⊇ X(d− 1) ⊇ X(d) = {0}
Keep in mind that our definition disagrees with the conventional notion of a flag in that
the inclusions are not necessarily strict. In the same way we define decreasing d-flags in
each space Vn. Let Xd(V∞) and Xd(Vn) denote the sets of the decreasing d-flags in V∞
and Vn, respectively.

Lemma 9.1. One can identify Xd(V∞) with the projective limit space lim←−Xd(Vn), where
the projection Xd(Vn+1) → Xd(Vn) is determined by taking intersection with Vn.

Proof. Indeed, the map Xd(V∞) → lim←−Xd(Vn) is defined by assigning to a flag X = (X(i))
in V∞ the sequence {Xn ∈ Xd(Vn)} of flags with Xn(i) = X(i)∩Vn. Clearly, the flags Xn

are consistent with the projections Xd(Vn+1) → Xd(Vn) and hence determine an element
of the projective limit space. The inverse map assigns to any such sequence {Xn} the flag
X ∈ Xd(V∞) with X(i) = ∪Xn(i). ¤

Using the lemma we endow Xd(V∞) with the topology of projective limit. In other
words, a small neighborhood of a flag X = (X(i)) is formed by the flags Y = (Y (i))
such that X(i) ∩ Vn = Y (i) ∩ Vn for all i and some fixed large n. We will consider the
sigma-algebra of Borel sets in Xd(V∞) relative to this topology.

Let Gn be the group of all invertible linear transformations of the space V∞ that leave Vn

invariant and fix the basis vectors vn+1, vn+2, . . . . We have then {e} = G0 ⊂ G1 ⊂ G2 ⊂ . . .
and we define G∞ := ∪n≥1Gn. The group Gn is finite and isomorphic to the group GL(n,Fq̃)
of invertible n× n matrices over Fq̃. The countable group G∞ is isomorphic to the group
GL(∞,Fq̃) of infinite invertible matrices (gij), such that gij = δij for large enough i + j.

The group Gn acts, in a natural way, on Xd(Vn), and the group G∞ acts on Xd(V∞) by
continuous transformations. The next proposition is an extension of [GO2, Lemma 5.2].
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Proposition 9.2. There exists a natural bijection P ↔ P between q-exchangeable Borel
probability measures on N∞d and G∞-invariant Borel probability measures on Xd(V∞).

Proof. The desired bijection is constructed by understanding P as a Gibbs measure on
the path space Path(d) of the q-Pascal pyramid Γ(q, d), as defined in Section 5.

We assign to P a function ϕ(λ) on the vertices in the following way. Given a vertex
λ ∈ Γ(q, d), the probability of a finite path ending at λ equals the weight of the path
times a quantity that (for given P ) depends on λ only; let us denote this quantity ϕ(λ).

The Gibbs measure is uniquely determined by this function ϕ, which must satisfy the
rule of addition of probabilities along the path:

ϕ(λ) =
d∑

a=1

weight(λ, λ + ea)ϕ(λ + ea) (9.1)

for all λ ∈ Zd
+, where the weight of the edge (λ, λ + ew) is specified in (5.2) as

weight(λ, λ + ea) = qk for k = λa+1 + · · ·+ λd. (9.2)

One has also to add the normalization condition ϕ(0̄) = 1, which implies that
∑

λ∈Zd
+: |λ|=n

dim(λ)ϕ(λ) = 1, n = 1, 2, . . . , (9.3)

so that dim(λ)ϕ(λ) is the probability that a random walk on Γ(q, d) driven by P ever
visits λ.

Conversely, if a nonnegative function ϕ satisfies (9.1) and the normalization condition
then it defines a Gibbs measure4.

Now we wish to show that precisely the same functions are associated with the G∞-
invariant measures. Indeed, there is a one-to-one correspondence between G∞-invariant
probability measures P on Xd(V∞) and sequences {Pn} of probability measures such
that each Pn is a measure on Xd(Vn) invariant under Gn, and various Pn’s are consistent
with respect to the projections Xd(Vn+1) → Xd(Vn). Specifically, the correspondence is
established by letting Pn to be the push-forward of P under the projection Xd(V∞) →
Xd(Vn).

Observe that the Gn-orbit of a d-flag Xn = (Xn(i)) ∈ Xd(Vn) is uniquely determined
by the d-tuple of nonnegative integers 5

λi = dim Vn(i− 1)− dim Vn(i), i = 1, . . . , d,

which determine a vector λ ∈ Zd
+ with |λ| = n. We will say that the vertex λ is the type

of the flag. Conversely, every such λ corresponds to an orbit. Let ψ(λ) be the mass that

4Such functions ϕ play a central role in the work of Kerov and Vershik (see, e.g., [VK]), who called them
‘harmonic’. This is unfortunate terminology which disagrees with the conventional concept of harmonic
function in the literature on Markov processes.

5Warning: the dimension of a linear space over Fq in this formula and below should not be confused
with the combinatorial dimension function in the Pascal pyramid, like e.g. in (9.3).
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Pn gives to each of the flags of type λ. The consistency of the measures Pn with respect
to the projections means that

ψ(λ) =
d∑

a=1

weight′(λ, λ + ea)ψ(λ + ea), λ ∈ Zd
+, (9.4)

where weight′(λ, λ + ea) stands for the number of flags Xn+1 ∈ Xd(Vn+1) of type λ + ea

projecting onto any fixed flag Xn ∈ Xd(Vn) of type λ. Conversely, each function ψ(λ) ≥ 0
satisfying (9.4) and the normalization condition ψ(0̄) = 1 determines a consistent sequence
{Pn} and hence a G∞-invariant probability measure P on Xd(V∞).

We claim that
weight′(λ, λ + ea) = q̃ n−k = qk−n,

where k is the same as in (9.2), that is, k = dim Xn(a). Indeed, if a flag Xn+1 is projected
onto Xn, then it has type λ + ea if and only if

dim Xn+1(i) = dim Xn(i) + 1 for 0 ≤ i ≤ a− 1,

and
dim Xn+1(j) = dim Xn(j) for a ≤ j ≤ d.

This means that there exists a nonzero vector v ∈ Vn+1 \ Vn such that, for every i =
0, . . . , a − 1, the subspace Xn+1(i) is spanned by Xn(i) and v. Such a vector is defined
uniquely up to a scalar multiple and addition of an arbitrary vector from Xn(a). Therefore,
the number of options is equal to the number of lines in Vn+1/Xn(a) not contained in
Vn/Xn(a), which equals

q̃ n+1−k − 1

q̃ − 1
− q̃ n−k − 1

q̃ − 1
= q̃ n−k.

Viewing equations (9.1) and (9.4) as recursions on ϕ, respectively ψ, we see that they
are similar, with the coefficients related as

weight′(λ, λ + ea) = weight(λ, λ + ea)q
−n, n = |λ|.

Setting
ϕ(λ) = qn(n−1)/2ψ(λ)

yields an isomorphism {ϕ} ↔ {ψ} between the convex compact sets of nonnegative
solutions to (9.1) and (9.4), respectively. Note also that the above relation does not affect
the normalization condition. This completes the proof. ¤
Remark 9.3. By the virtue of isomorphism in Proposition 9.2, the extreme measures P
correspond bijectively to extreme measures P .

Remark 9.4. Define a decreasing N-flag in V∞ as an infinite collection X = (X(i)) of
subspaces such that

V∞ = X(0) ⊇ X(1) ⊇ . . . ,
⋂

i∈N
X(i) = {0}.
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The result of Proposition 9.2 remains true when Nd is replaced by N. That is, q-
exchangeable probability measures on N∞ correspond bijectively to G∞-invariant proba-
bility measures on the space of decreasing N-flags. The proof is literally the same, with
Γ(q, d) replaced by Γ(q,∞).

Remark 9.5. Let V ∞ be the dual vector space to V∞. We endow V ∞ with the topology
of simple convergence of linear functionals; then it becomes a compact topological space.
As an additive group, V ∞ is also the Pontryagin dual to V∞ viewed as a discrete additive
group. Passing to the orthogonal complement establishes a bijection between arbitrary
linear subspaces in V∞ and closed linear subspaces in V ∞. Define an increasing d-flag in
V ∞ as a collection of closed subspaces

{0} = Y (0) ⊆ Y (1) ⊆ · · · ⊆ Y (d) = V ∞

and an increasing N-flag in V ∞ as an infinite collection of closed subspaces

{0} = Y (0) ⊆ Y (1) ⊆ . . . ,
⋃

i∈N
Y (i) = V ∞,

where the horizontal line means closure. By duality, the increasing d-flags in V ∞ are in a
one-to-one correspondence with the decreasing d-flags in V∞. Moreover, this correspon-
dence is consistent with the natural action of the group G∞ on V ∞. The same holds for
the N-flags as well. Thus, instead of considering invariant measures on decreasing flags
in V∞ one can equally well deal with invariant measures on the set of increasing flags in
V ∞.

10. Appendix: Mallows’ measure

In this Section we sketch some properties of the Mallows measures Qn and Q. To state
the results we need some preparation. It is convenient to represent a generic permutation
σ ∈ Sn as an n × n permutation matrix σ(i, j), where the entry σ(i, j) equals 1 or 0
depending on whether σ(j) = i or not. Such permutation matrices are strictly monomial ,
in the sense that they have one and only one non-zero element per row and per column.
Note that this realization of permutations by strictly monomial matrices takes the group
multiplication into the conventional matrix multiplication, and the inversion map σ 7→ σ−1

corresponds to the matrix transposition. Likewise, the group S can be realized as the
group of strictly monomial matrices of infinite size.

More generally, a 0-1 matrix of finite or infinite size is weakly monomial if each row
and each column contains at most one 1, the other entries being 0’s. Let M(n) and M
denote the sets of weakly monomial 0-1 matrices of size n× n and ∞×∞, respectively.
Both M(n) and M are semigroups under the matrix multiplication, and Sn ⊂ M(n) and
S ⊂ M are respective subgroups of invertible elements. An additional operation in M(n)
and M is the matrix transposition, which is an involutive antiautomorphism.

For k = 1, 2, . . . , the truncation operation θk assigns to a matrix of size ∞×∞ or l× l
with l ≥ k the k× k submatrix comprised of the entries (i, j) with i, j ≤ k. Obviously, θk
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projects M(n) onto M(k) for any n > k. Likewise, θk projects M onto M(k). Using these
projections we may identify M with the projective limit space lim←−M(k). We endow M
with the corresponding projective limit topology; then M becomes a compact topological
space. By the very definition, a fundamental system of neighborhoods of a matrix m ∈ M
is formed by the subsets {m′ ∈ M | θk(m

′) = θk(m)}, k = 1, 2, . . . .
It is readily checked that the restriction of θk : M → M(k) to the subset S ⊂ M is

surjective for every k. It follows that S is dense in M (and even S∞ is dense). Recall that
we endowed S with the sigma-algebra of Borel sets inherited via the embedding S ⊂ N∞.
Clearly, this Borel structure coincides with that induced by the embedding S ⊂ M . Thus,
any Borel probability measure on S or on Sn ⊂ S can be viewed as a measure on M . In
particular, we may view the Mallows measures Qn and Q as probability measures on the
compact space M . This makes sense of the following assertion:

Proposition 10.1. As n →∞, Qn weakly converge to Q.

Proof. Let θk(Qn) and θk(Q) denote the push-forwards of Qn and Q under θk. By the
definition of topology in M and finiteness of M(k), it suffices to prove that for any k and
any fixed matrix m ∈ M(k), θk(Qn)({m}) converges to θk(Q)({m}).

Taking in account Remark 4.5, it is convenient to replace Qn and Q by their push-
forwards under the matrix transposition; let us denote them as Q′

n and Q′, respectively.
Thus, we will prove the equivalent assertion that θk(Q′

n)({m}) converge to θk(Q)({m}).
Let w = w1w2 . . . be the output of the q-shuffling algorithm applied to the infinite

word 12 . . . . As usual, we identify w with the random permutation σ ∈ S by writing
w = σ(1)σ(2) . . . . From this, one sees that the quantity θk(Q′)({m}) is equal to the
probability of the event that for each j = 1, . . . , k, the letter wj either equals some
i ∈ {1, . . . , k} if the matrix m has 1 in the jth column in position (i, j), or wj > k if the
jth column of m consists entirely of 0’s.

For instance, if m =

[
0 1
0 0

]
∈ M(2) then the event in question is that the first step of

the algorithm yields w1 > 2 and the second step yields w2 = 1.
The quantity θk(Q′

n)({m}) admits exactly the same interpretation in terms of the finite
q-shuffle applied to the finite word 1 . . . n.

Now, the desired convergence of the probabilities follows from the fact that, as n →∞,
the truncated geometric distributions directing the finite q-shuffle (Definition 3.3) converge
to the infinite geometric distribution directing the infinite q-shuffle (Definition 4.1). ¤
Corollary 10.2. The Mallows measures Qn and Q are invariant under the group inver-
sion map σ 7→ σ−1.

Proof. Given a matrix m ∈ M(n), let us say that two distinct positions {(i1, j1), (i2, j2)}
occupied by 1’s are in inversion if the two differences i1 − i2 and j1 − j2 have opposite
signs (note that these differences cannot vanish), and denote by inv(m) the total number
of unordered pairs of positions in inversion. Clearly, inv(m) = inv(m′) where m′ stands
for the transposed matrix.
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On the other hand, if σ ∈ Sn and m := [σ(i, j)] is the corresponding permutation matrix
then we obviously have inv(σ) = inv(m). If σ is replaced by σ−1 then m is replaced by
m′. Therefore, inv(σ) = inv(σ−1), which implies the desired symmetry property of Qn.
Now, the similar property of Q follows from Proposition 10.1. ¤
Remark 10.3. The ‘absorption sampling’ mentioned above (see [Ke2] for history and
references) seems to have not been identified with the Mallows measure on M . This
connection along with the invariance of Q under the matrix transposition make obvious
the unexplained symmetry in formulas like [Ke1, Equation (10)] and [B, Equation (2.12)].

Likewise, the number of inversions is also invariant under reflection with respect to the
secondary matrix diagonal, which swaps (i, j) and (n + 1 − j, n + 1 − i), hence Qn is
preserved by this transformation as well. However, this operation has no analogue for the
infinite group S.

Remark 10.4. Observe that the group S∞ acts on S both by left and right shifts:
an element σ ∈ S∞ maps an element τ ∈ S to στ or τσ−1, respectively. Under the
right action, the elementary transposition σi := (i, i + 1) ∈ S∞ swaps the letters of a
permutation word τ̃ in the ith and (i + 1)th positions, while under the left action, the
same element σi swaps the letters i and (i+1) in τ̃ . That is to say, under the right action
on permutation words we look at positions, while under the left action we look at the
letters themselves. The inversion map intertwines the both actions.

We know that Q is a unique probability measure on S that is quasi-invariant under
the right action, with a special cocycle, (2.2). The symmetry property of the measure
Q implies that it is quasi-invariant under the left action as well. To compute the corre-
sponding cocycle, return to the definition (2.1) of the additive cocycle and observe that
instead of taking the n-truncated word with large n we can equally well deal with arbi-
trary finite subwords, provided that they are large enough. Using this re-formulation, one
sees that the additive cocycle is preserved under the group inversion on S, and so is the
corresponding multiplicative cocycle.

It follows that the cocycle corresponding to the left action remains the same. Con-
sequently, Q can be also characterized as a unique probability measure on S, which is
quasi-invariant under the left action of S∞, with the same cocycle as before.

The next proposition describes the finite-dimensional distributions of the Mallows mea-
sure Q viewed as a measure on M = lim←−M(k). We use the following notation: m is an
arbitrary matrix from M(k); I ⊂ {1, . . . , k} is the set of indices of the rows in m containing
1’s; J ⊂ {1, . . . , k} is the set of indices of the columns in m containing 1’s; r = |I| = |J |
is the rank of m; and inv(m) has the same meaning as in the proof of Corollary 10.2.

Proposition 10.5. In the above notation,

θk(Q)({m}) = (1− q)rqk2−2kr−r+inv(m)+
P

i∈I i+
P

j∈J j. (10.1)

Proof. We apply the same method as in Section 6, i.e. reduce the alphabet N to the finite
alphabet Nk+1 using the monotone map fk+1(a) = a ∧ (k + 1). The key idea is that if
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w = w1w2 . . . = σ(1)σ(2) . . . is the random output of the infinite q-shuffle of the word
v = 1 2 . . . then, as is seen from the proof of Proposition 10.1, the truncated matrix θk(σ)
depends only of the first k letters of the word f∞k+1(w) (that is to say, all the letters ≥ k+1
become indistinguishable).

On the other hand, by virtue of Proposition 2.3, the random word f∞k+1(w) is the output
of the infinite q-shuffle applied to the inversion-free word

v′ := 1 . . . k (k + 1)(k + 1) . . .︸ ︷︷ ︸
∞

∈ (Nk+1)
∞.

In the notation of Section 4, the law of the random word f∞k+1(w) is given by the measure

P (v′), and the distribution of the first k letters is given by the marginal P
(v′)
k , for which

we have an explicit expression, see (4.3). In this formula, we need to take

l1 = · · · = lk = 1, lk+1 = ∞, µk+1 = k − r, µa =

{
1, a ∈ I

0, a ∈ {1, . . . , k} \ I,

and then the direct computation gives (10.1). ¤
There is another way of approximating Q by the Qn’s. Namely, we will see that Q

can be represented as the projective limit of the Qn’s. Incidentally, we will realize Q as
a product measure.

As usual, we will identify permutations with the corresponding permutation words.
For any n ≥ 2, we define the projection Sn → Sn−1 as deletion of n from a permutation
word. Using these projections we construct the projective limit space lim←−Sn, which is a
compact topological space in the standard topology. We have a natural embedding

S ↪→ lim←−Sn , (10.2)

which is specified by the projection S → Sn which removes from an infinite permutation
word all letters larger than n.

Note that S is a proper subset of lim←−Sn. Indeed, there is a natural one-to-one cor-
respondence between elements of lim←−Sn and all possible linear orders on the set N, of
which the orders induced by permutation words σ(1)σ(2) . . . comprise a relatively small
part. Still, S is dense in lim←−Sn.

Proposition 10.6. The measures Qn are consistent with the projections Sn → Sn−1,
so that one can define the projective limit Q∞ := lim←−Qn, which is a probability measure
on lim←−Sn. The image of S under the embedding (10.2) has full Q∞-measure, and the
restriction of Q∞ to S coincides with the Mallows measure Q.

Proof. For a permutation σ ∈ Sn (which we identify with the corresponding permutation
word) set

β̃j = β̃j(σ) = #{i < j | i precedes j}+ 1, j = 1, . . . , n,

cf. (3.1). The link with (3.1) is the following: β̃j(σ) = βj(σ
−1).
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The correspondence σ 7→ (β̃1(σ), . . . , β̃n(σ)) is a bijection

Sn → N1 × · · · × Nn, (10.3)

and we have a counterpart of Proposition 3.2: under Qn, the coordinates β̃j are indepen-

dent and j+1− β̃j is distributed according to Gq,j. This can be deduced from Proposition
3.2 taken together with the symmetry property of Qn (Proposition 10.2) or can be easily
checked directly.

Under the bijection (10.3), the projection Sn → Sn−1 is simply the deletion of the last
letter. This enables us to identify lim←−Sn with the infinite product space

∏∞
n=1Nn. Under

this identification, the measure lim←−Qn turns into the product of truncated geometric

distributions. The image of S in
∏∞

n=1Nn consists of those sequences (i1, i2, . . . ) for
which in →∞. From this it is readily checked that S has full measure.

It remains to check that the measure lim←−Qn coincides on S with the measure Q. To
this end we use the characterization of Q in terms of the left action of S∞ as described
in Remark 10.4. It is easy to see that the measure lim←−Qn has the same transformation
property with respect to the left action of elementary transpositions σi. Consequently,
lim←−Qn = Q. ¤

Alternatively, one can use another chain of projections, such that the projection Sn →
Sn−1 first cuts the last letter in σ(1) . . . σ(n) then re-labels the letters σ(1) . . . σ(n−1) by
the increasing bijection with Nn−1. A random element of S under Q is representable by
an infinite sequence of backward ranks (β(1), β(2), . . . ), which are independent and have
distribution as in Proposition 3.2.
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