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a nonlinear perturbation of L.
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1. Introduction

A major difficulty in the stochastic analysis in infinite dimensions is the lack of the
local compactness of the state space. The developments from the last two decades,
in particular the theory of quasi-regular Dirichlet forms (cf. [14]), indicated, as
an adequate substitute, the existence of a nest of compact sets, or equivalently,
the tightness property of the associated capacity. However, in applications it is
sometimes not easy to verify such a property, for example, because the capacity
is not expressed directly in terms of the infinitesimal generator L of the theory. It
happens that a more convenient property is the existence of an L-superharmonic
function having compact level sets; such a function was called compact Lyapunov.

The aim of this paper is to give an overview on the relations between the
existence of a compact Lyapunov function, the path regularity of the process, and
the tightness of the induced capacities. We collect relevant examples where such
functions were constructed and used further as main investigation tools.



2 Lucian Beznea and Michael Röckner

The paper is organized as follows. In Section 2 we first precise the setting
and recall some preliminary results. We then expose the general results relating
the tightness property of the capacity, the existence of the compact Lyapunov
functions, and the path regularity of the associated Markov process. In Section 3
we present as application three situations with explicit constructions of compact
Lyapunov functions.

The first example is a method of finding martingale solutions of stochastic
partial differential equations on Hilbert spaces (cf. [4]). The square of the norm is
the initial natural candidate, but the convenient function is obtained by approxi-
mation.

The second application is given in the frame of the Lévy processes in infinite
dimensions (see [7] for details). It turns out that the square of the continuous linear
functionals are L-subharmonic functions (L denoting the infinitesimal generator of
the Lévy process). The desired function having compact level sets is then obtained
from the potentials of these functions.

The last application is the construction of a compact Lyapunov function for
a measure-valued branching process. This is a main argument in the proof in [1]
of the càdlàg property of the paths of the measure-valued process

2. The general frame

Let E be a metrizable Lusin topological space (i.e., it is homeomorphic to a Borel
subset of a compact metrizable space) endowed with the Borel σ-algebra B = B(E).

We consider a sub-Markovian resolvent of kernels U = (Uα)α>0 on (E,B) and
we denote by E(U) the set of all B-measurable U-excessive functions: u ∈ E(U)
if and only if u is a positive numerical B-measurable function, αUαu ≤ u for all
α > 0 and limα→∞ αUαu(x) = u(x) for all x ∈ E.

If β > 0 we denote by Uβ the sub-Markovian resolvent of kernels (Uβ+α)α>0.
If v is a Uβ-supermedian function (i.e., αUβ+αv ≤ v for all α > 0), its Uβ-excessive
regularization v̂ is given by v̂(x) = supα αUβ+αv(x), x ∈ E.

We assume that:
(2.1) σ(E(Uβ)) = B and all the points of E are non-branch points with re-
spect to Uβ , that is 1 ∈ E(Uβ) and if u, v ∈ E(Uβ) then for all x ∈ E we have
inf(u, v)(x) = ̂inf(u, v)(x).

Recall that a σ-finite measure ξ on (E,B) is called U-excessive provided that
ξ ◦ αUα ≤ ξ for all α > 0.

Remark 2.0.1. (i) Assume that (2.1) holds, let m be a fixed U-excessive measure,
and p ∈ R, p > 1. For every α > 0 we denote by Vα the linear operator on
Lp(E,m) induced by Uα and notice that Vα is sub-Markovian, i.e., if f ∈ Lp(E,m),
0 ≤ f ≤ 1 the 0 ≤ Vαf ≤ 1. It turns out that the family (Vα)α>0 is a C0-resolvent
of contractions on Lp(E,m).
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(ii) Conversely, assume that m is a σ finite measure on (E,B) and (Vα)α>0

is a C0-resolvent of sub-Markovian contractions on Lp(E,m), p ≥ 1. Then there
exists sub-Markovian resolvent of kernels U = (Uα)α>0 on (E,B) which satisfies
(2.1) and such that Uα = Vα as operators on Lp(E,m) for all α > 0; see Remark
2.3 in [5].

(iii) Let (Vα)α>0 and U be as above, and (L, D(L)) be the infinitesimal
generator of (Vα)α>0: D(L) = Vα(Lp(E,m)), L(Vαf) = αVαf − f for all f ∈
Lp(E,m). If u ∈ D(L) and β > 0 then: Lu ≤ βu if and only if there exists a
m-version of u which is a Uβ-excessive function.

Let Exc(U) be the set of all U-excessive measures on E and denote by Pot(U)
the set of all potential U-excessive measures: if ξ ∈ Exc(U) then ξ ∈ Pot(U) if
ξ = µ ◦ U , where µ is a σ-finite measure on (E,B). If β > 0 then the energy
functional Lβ : Exc(Uβ)× E(Uβ) −→ R+ is defined by

Lβ(ξ, u) := sup{ν(u) : Pot(Uβ) 3 ν ◦ Uβ ≤ ξ}.

Let E1 be the set of all extreme points of the set {ξ ∈ Exc(Uβ) : Lβ(ξ, 1) = 1},
endowed with the σ-algebra B1 generated by the functionals ũ, ũ(ξ) := Lβ(ξ, u)
for all ξ ∈ Exc(Uβ) and u ∈ E(Uβ). Then (E1,B1) is a Lusin measurable space,
the map x 7−→ εx ◦ Uβ identifies E with a subset of E1, E ∈ B1, B = B1|E
and there exists a Markovian resolvent of kernels U1 = (U1

α)α>0 on (E1,B1) such
that σ(E(U1

β)) = B1, every point of E1 is a non-branch point with respect to U1
β ,

U1
β(1E1\E) = 0, and U is the restriction of U1 to E.

If M ∈ B and u ∈ E(Uβ), then the reduced function (with respect to Uβ) of
u on M is the function RM

β u defined by

RM
β u := inf

{
v ∈ E(Uβ) : v ≥ u on M

}
.

The reduced function RM
β u is a universally B-measurable Uβ-supermedian func-

tion.

In the sequel λ will be a finite measure on (E,B).

Let
uo := Uβfo,

where fo is a bounded, strictly positive B-measurable function. Consider the func-
tional M 7−→ cλ(M), M ⊂ E, defined as

cλ(M) := inf{λ(RG
β uo) : G ∈ T ,M ⊂ G}.

By [2] it follows that cλ is a Choquet capacity on E.
The fine topology on E is the topology generated by E(Uβ). We assume that

the Lusin topology of E is smaller than the fine topology.
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2.1. Compact Lyapunov functions and tightness of capacities

We assume for simplicity that there exists a strictly positive constant k such that
k ≤ uo. Clearly, this happens if the resolvent U is Markovian, taking uo = 1.

Proposition 2.1.1. The following assertions are equivalent.
(i) The capacity cλ is tight, i.e., there exists an increasing sequence (Kn)n

of compact sets such that infn cλ(E \Kn) = 0.
(ii) There exists a strictly positive Uβ-excessive u such that for every in-

creasing sequence (Dn)n of open sets with
⋃

n Dn = E we have infn R
E\Dn

β u = 0
λ-a.e.

(iii) There exists a Uβ-excessive function v which is λ-integrable, such that
the set [v ≤ α] is relatively compact for all α > 0. Such a function v is called
compact Lyapunov function.

Proof. For the proof of the equivalence between (i) and (ii) see [2] and [3], while
for the proof of (i) ⇐⇒ (iii) see [8] and Remark 3.3 from [4]. �

Remark. The function u in assertion (ii) of the above Proposition 2.1.1 may be con-
sidered as the analogue, in this general frame, of a potential from the P-harmonic
space context (in the sense of [10]); cf. the discussion in [3].

2.2. Path regularity and compact Lyapunov functions

Let X = (Ω,F ,Ft, θt, Xt, P
x) be a fixed Borel right Markov process with state

space E and (Pt)t≥0 be the transition semigroup of X,

Ptf(x) = Ex(f ◦Xt; t < ζ)

(see, e.g., [15]). Notice that if U = (Uα)α>0 is the resolvent of kernels associated
with the process X, i.e.,

Uαf =
∫ ∞

0

e−αtPtfdt for all f ∈ pB and α > 0,

then condition (2.1) is verified; here pB denotes the set of all positive numerical B-
measurable functions on E. In this case, by a theorem of Hunt we have in addition

RM
β u(x) = Ex(e−βDM u ◦XDM

; DM < ∞),

R̂M
β u(x) = Ex(e−βTM u ◦XTM

; TM < ∞),

where DM (ω) := inf
{
t ≥ 0 : Xt(ω) ∈ M

}
, TM (ω) := inf

{
t > 0 : Xt(ω) ∈ M

}
,

ω ∈ Ω.
The right process X is called λ-standard if:
– X has càdlàg trajectories Pλ-a.e., i.e., it possesses left limits in E Pλ-a.e.

on [0, ζ); ζ is the life time of X;
– X is quasi-left continuous up to ζ Pλ-a.e., i.e., for every increasing sequence

(Tn)n of stopping times with Tn ↗ T we have XTn
−→ XT Pλ-a.e. on [T < ζ].

The right process X is called standard if it is λ-standard for every finite mea-
sure λ.
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The set M ∈ B is called polar (resp. µ-polar ; where µ is a σ-finite measure
on (E,B)) if R̂M

β 1 = 0 (resp. R̂M
β 1 = 0 µ-a.e.).

(2.2) By Sections 1.7 and 1.8 in [2] and Theorem 1.3 in [4] we get that the
following assertions are equivalent:

(2.2a) Every Uβ-excessive measure dominated by a potential is also a po-
tential.

(2.2b) There exists a right process with state space E having U as associated
resolvent.

If β > 0 then a Ray cone associated with Uβ is a cone R of bounded Uβ-
excessive functions such that: Uα(R) ⊂ R for all α > 0, Uβ

(
(R − R)+

)
⊂ R,

σ(R) = B, it is min-stable, separable in the supremum norm and 1 ∈ R. A Ray
topology on E is the topology generated by a Ray cone.

Remark 2.2.1. Any Ray topology is smaller than the fine topology and the resol-
vent U1 is always the resolvent of a right process with state space E1 endowed
with a Ray topology; see [2].

The following two propositions indicate the connection between the path
regularity of a right Markov process and the tightness of the associated capacities
(or equivalently, the existence of the compact Lyapunov functions; cf. Proposition
2.1.1).

Proposition 2.2.2. Suppose that U is the resolvent family of a right process which
has càdlàg trajectories Pλ-a.e. Then there exists a compact Lyapunov function
which is finite λ-a.e.

Proof. By [13] (see also [3] for a different approach) the càdlàg property of the
trajectories implies that tightness property of the capacity cλ. The assertion follows
now using Proposition 2.1.1, the implication (i) =⇒ (iii). �

The next result shows that a converse of the assertion in Proposition 2.2.2
holds. It is a particular case of Theorem 5.2 from [8] and a version of Proposition
2.2 in [9].

Proposition 2.2.3. Assume that E is endowed with a Ray topology and there exists
a compact Lyapunov function which is finite λ-a.e. Then there exists a λ-standard
process with state space E such that its resolvent equals U λ-quasi everywhere.

Sketch of the proof. By Proposition 2.1.1, the implication (iii) =⇒ (i), the capacity
cλ is tight with respect to the Ray topology. By Lemma 3.5 from [4] it follows that
the set E1 \ E is λ-polar. The claimed process is the restriction to E of the right
process with state space E1 given by Remark 2.2.1.
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3. Applications: explicit constructions of Lyapunov functions

3.1. Martingale solutions for stochastic PDE on Hilbert spaces

We consider the stochastic differential equation on a Hilbert space H (with inner
product 〈 , 〉 and norm | · |) of type

(3.1.1) dX(t) =
[
AX(t) + F0

(
X(t)

)]
dt +

√
CdW (t) ;

see [11] and Section 5 in [4] for a complete treatment. Here W (t), t ≥ 0, is a cylin-
drical Brownian motion on H, C is a positive definite self-adjoint linear operator
on H and A : D(A) ⊂ H → H the infinitesimal generator of a C0-semigroup on H.
Furthermore, F0(x) := y0, x ∈ D(F ), where y0 ∈ F (x) such that |y0| = min

y∈F (x)
|y|,

and F : D(F ) ⊂ H → 2H is an m-dissipative map. This means that D(F ) is a
Borel set in H and 〈u− v, x− y〉 ≤ 0 for all x, y ∈ D(F ), u ∈ F (x), v ∈ F (y), and
Range(I − F ) :=

⋃
x∈D(F )

(
x − F (x)

)
= H. Since for any x ∈ D(F ) the set F (x)

is closed, non-empty and convex, F0 is well-defined.

Construction of a Markovian C0-resolvent on an Lp space. Let us first write the
underlying Kolmogorov operator L0. A heuristic application of Itô’s formula to
a solution of (3.1.1) implies that the Kolmogorov operator on test functions ϕ ∈
EA(H) := lin. span

{
sin〈h, x〉, cos〈h, x〉

∣∣ h ∈ D(A∗)
}

has the following form:

L0ϕ(x) =
1
2
· Tr

[
CD2ϕ(x)

]
+

〈
x, A∗Dϕ(x)

〉
+

〈
F0(x), Dϕ(x)

〉
, x ∈ H,

where Dϕ(x), D2ϕ(x) denote the first and second Fréchet derivatives of ϕ at
x ∈ H considered as an element in H and as an operator on H, respectively. We
note that by the chain rule Dϕ(x) ∈ D(A∗) for all ϕ ∈ EA(H), x ∈ H. Clearly, L0

is well-defined for all ϕ of the form ϕ(x) = f
(
〈h1, x〉, . . . , 〈hM , x〉

)
, x ∈ H, with

f ∈ C2(RM ), M ∈ N, h1, . . . , hM ∈ D(A∗). As in [11], we make the following
assumptions:

(H1) (i) A is the infinitesimal generator of a strongly continuous semigroup
etA, t ≥ 0, on H, and there exists a constant ω > 0 such that 〈Ax, x〉 ≤ −ω |x|2
for all x ∈ D(A).
(ii) C is self-adjoint, nonnegative definite and such that TrQ < ∞, where Qx :=∫∞
0

etA C etA∗
xdt, x ∈ H.

(H2) There exists a probability measure µ on the Borel σ-algebra B(H) of
H such that
(i)

∫
D(F )

(
|x|2p + |F0(x)|p + |x|2p · |F0(x)|p

)
µ(dx) < ∞.

(ii) For all ϕ ∈ EA(H) we have L0ϕ ∈ Lp(H,µ) and
∫
L0ϕdµ = 0 (‘infinitesimal

invariance’).
(iii) µ

(
D(F )

)
= 1.

In the sequel, for simplicity, we shall treat only the case p = 2.
By assumption (H2) (ii) it is easy to prove that

(
L0, EA(H)

)
is dissipative

on L2(H,µ) (cf. [11, Proposition 2.1]), hence closable. Let
(
L, D(L)

)
denote its
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closure. The first main result in [11], however, is that (H1) and (H2) imply that(
L, D(L)

)
is m-dissipative (cf. [11, Theorem 2.3]), hence generates a C0-semigroup

Pt := etL, t ≥ 0, on L2(H,µ). By [11, Corollary 2.5], (Pt)t≥0 is Markovian, i.e.
positivity preserving and Pt1 = 1 for all t ≥ 0. Clearly, µ is invariant for (Pt)t≥0,
i.e.

∫
Ptfdµ =

∫
fdµ for all t ≥ 0, f ∈ L2(H,µ). For f ∈ L2(H,µ) and α > 0

we define Vαf :=
∫∞
0

e−αt Ptfdt. Then (Vα)α>0 is a Markovian C0-resolvent of
contractions on L2(H,µ).

Compact Lyapunov functions constructed by approximation. We need the follow-
ing additional condition:
(H3) (i) There exists an orthonormal basis {ej | j ∈ N} of H so that

⋃
N∈N EN

with EN := lin. span{ej | 1 ≤ j ≤ N} is dense in D(A∗) with respect to | · |A∗

and such that for the orthogonal projection PN onto EN in H we have that the
function H 3 x 7→ 〈PNx,A∗ PNx〉 converges in L1(H,µ) to H 3 x 7→ 〈x,A∗x〉
(defined to be +∞ if x ∈ H \D(A∗)).
(ii) There exist two increasing functions %1, %2 : [1,∞) → (0,∞) such that

∣∣F0(x)
∣∣2

≤ %1

(
|x|

)
+ %2

(
|x|

) ∣∣〈x,A∗x〉
∣∣ for all x ∈ H, and the function on the right hand

side is in L1(H,µ).
By [11, Theorem 2.3] the set (1−L0) EA(H) is dense in L2(H,µ), hence also

in L1(H,µ). Therefore the closure
(
L1, D(L1)

)
of

(
L0, EA(H)

)
(which exists since(

L0, EA(H)
)

is also dissipative on L1(H,µ)) also generates a C0-semigroup P
(1)
t :=

etL1 , t ≥ 0, on L1(H,µ). Let (V (1)
α )α>0, denote the corresponding resolvent. For

α > 0 by definition Vα = V
(1)
α on (λ − L0)

(
EA(H)

)
, hence Vαf = V

(1)
α f for all

f ∈ L2(H,µ) by continuity.
According with assertion (ii) of Remark 2.0.1, the C0-resolvent (V (1)

α )α>0 on
L1(H,µ) is generated by a resolvent of kernels.

Lemma 3.1.1. Let u, g : H −→ R+, u, g ∈ L1(H,µ), such that u has compact
level sets and assume that there exist two sequences, (uN )N ⊂ D(L) and (gN )N ⊂
L1(H,µ), such that (β−L)uN ≤ gN for all N ∈ N, the sequence (uN )N converges
µ-a.e to u, and the sequence (gN )N converges in L1(H,µ) to g as N →∞. Then
v = V

(1)
β g is a compact Lyapunov function.

Proof. The assertion follows since uN ≤ V
(1)
β gN for all N and passing to the limit

we get u ≤ v. �

Remark. (i) We can apply Lemma 3.1.1 taking g(x) := 2 |x|2+
(
2+%2(|x|)

) ∣∣〈x,A∗x〉
∣∣

+%1

(
|x|

)
, u(x) := |x|2, x ∈ H; uN := u ◦ PN , gN := g ◦ PN , N ∈ N. Notice that

by (H2) (i) and (H3) (ii) we have g ∈ L1(H,µ) and the required convergence
hypotheses are ensured also by (H3).
(ii) Using the Lyapunov function constructed above, Proposition 2.2.3, and as-
suming (H1)−(H3), it was proved in [4], Section 5, that there exists a right process
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X with state space H (endowed with the weak topology) having (Vα)α>0 as asso-
ciate resolvent and X is a martingale solution of (3.1.1), i.e., for every f ∈ D(L),
the process t 7−→ f(Xt)−

∫ t

0
Lf(Xs)ds is an (Ft)t≥0-martingale under Pµ.

3.2. Lévy processes on Hilbert spaces

Let us now informally describe how one can apply the results in Section 2 in
concrete situations. There is usually given a ”candidate” of a generator L of a
resolvent (Uα)α>0 which was the object we started with in our considerations in
the first section, e.g. a closed linear operator (L,D(L)) on Cu(E) (the space of
all bounded uniformly continuous real valued functions on the Lusin topological
space E) such that

(α− L)−1 = Uα, α > 0.

Generally, L is initially only known for ”nice” functions u : E −→ R. Let us look
at the case where E is real separable Banach space with topological dual E′. Then
often one can check that the given L is defined on the set P of polynomials of
elements in E′, i.e. function u : E −→ R of type

u(x) = p(l1(x), l2(x), . . . , lm(x)), x ∈ E

with m ∈ N arbitrary and l1, . . . lm ∈ E′, p a polynomial in m variables. Further-
more, let us assume that L is a diffusion operator, that is it satisfies the Leibniz rule
and that L l = 0 for all l ∈ E′. This is e.g. the case when L is a differential operator
only involving second derivatives. More precisely, for u ∈ P, u = p(l1, l2, . . . , lm),

(3.2.1) Lu(x) =
∑∞

i,j=1 E′〈lj , A(x)li〉E ∂i∂j p(l1, . . . , lm)

where ∂i denotes derivative with respect to the i-th variable and for x ∈ E, A(x) :
E′ −→ E, linear, bounded and nonnegative, continuous in x. Note that the sum
in (3.2.1) is finite. Then we have for the corresponding semigroup (Pt)t≥0,

Ptu− u =
∫ t

0

PsLu ds, t ≥ 0,

hence in particular for l ∈ E′, t ≥ 0,

(3.2.2) Ptl
2 − l2 =

∫ t

0
Ps(L l2)ds =

∫ t

0
Ps(2lL l + 2E′〈l, A(x)l〉E)ds ≥ 0.

It follows that

(3.2.3) Ptl
2 ≥ l2, for all t > 0 and l ∈ E′.

Hence l2 is L-subharmonic. Then in many cases it is possible to construct a Lya-
punov function, which is the crucial ingredient for the process construction pre-
sented in Section 2, in terms of l ∈ E′. In [7], for simplicity in the concrete case of
Brownian motion on abstract Wiener space, the above ideas are implemented in a
rigorous way, in particular the mentioned construction of the Lyapunov function
in terms of l ∈ E′. For this we only use (3.2.3) and not (3.2.2), more precisely we
argue as follows: the function Uβ(l2) is (L−β)-superharmonic and it has compact
level sets because by (3.2.3) we have

βUβ(l2) ≥ l2.
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Taking this into account one can extend the method to the case where L does no
longer satisfy the Leibniz rule, so it is maybe not a local operator. We therefore
give a new construction of Lévy process in infinite dimensions, based on our results
in Section 2. As a byproduct, using Proposition 2.2.3, we obtain in particular that
infinite dimensional Lévy processes are quasi-left continuous.

3.3. Measure-valued branching processes

The frame we consider in this subsection is as in [12] and [1]. More precisely, we
assume that U is the resolvent of a right Markov process X with state space E,
called spatial motion.

We fix a branching mechanism, that is, a function Φ : E × [0,∞) −→ R of
the form

Φ(x, λ) = −b(x)λ− c(x)λ2 +
∫ ∞

0

(1− e−λs − λs)N(x, ds)

where c ≥ 0 and b are bounded B-measurable functions and N : pB((0,∞)) −→
pB(E) is a kernel such that N(u ∧ u2) ∈ bpB. Recall that examples of branching
mechanisms are Φ(λ) = −λα for 1 < α ≤ 2 and Φ(λ) = λα for 0 < α < 1.

We present now briefly (cf. [12] and [1]) the construction of the measure-
valued branching Markov process associated with X and Φ, the (X, Φ)-superprocess,
a Borel right process with state space M(E), the space of all positive finite mea-
sures on (E,B), endowed with the weak topology.

For each f ∈ bpB the equation

vt(x) = Ptf(x) +
∫ t

0

Ps(x,Φ(·, vt−s))ds, t ≥ 0, x ∈ E,

has a unique solution (t, x) 7−→ Vtf(x) jointly measurable in (t, x) such that
sup

0≤s≤t
||vs||∞ < ∞ for all t > 0. The mappings f 7−→ Vtf form a nonlinear semi-

group of operators on bpB. Notice that the above equation is formally equivalent
with {

d
dtvt(x) = Lvt(x) + Φ(x, vt(x))

v0 = f,

where L is the infinitesimal generator of the spatial motion X.
For a function f ∈ bpB we shall consider the mappings lf : M(E) −→ R and

ef : M(E) −→ [0, 1] defined by

lf (µ) := 〈µ, f〉 :=
∫

fdµ, µ ∈ M(E), ef := exp(−lf ).

M(E) is endowed with the σ-algebra M(E) generated by {lf |f ∈ bpB}.
For each t ≥ 0 there exists a unique kernel Qt on (M(E),M(E)) such that

Qt(ef ) = eVtf , f ∈ bpB.

Since the family (Vt)t≥0 is a (nonlinear) semigroup on bpB, (Qt)t≥0 is a (linear)
semigroup of kernels on (M(E),M(E)).
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Let U = (Uα)α>0 be the Markovian resolvent of kernels on (M(E),M(E))
generated by the semigroup (Qt)t≥0. It turns out that all the points of M(E) are
non-branch points with respect to U ; cf. Proposition 4.5 from [1]. Let

β := ||b−||∞ and b′ := b + β′ with β′ ≥ β.

Then b′ ≥ 0 and the resolvent Ub′ generated by (P b′

t )t≥0 is sub-Markovian and
bounded if β′ > β. In this case (P b′

t )t≥0 is the transition function of a right
Markov process with state space E (having L − b′ as infinitesimal generator). If
u ∈ bpB then by Corollary 4.3 in [1] we have

(3.3.1) u ∈ E(Ub′) ⇐⇒ lu ∈ E(Uβ′).

A consequence of the equivalence (3.3.1) is the next result on the existence
of the compact Lyapunov functions for the (X, Φ)-superprocess.

Proposition 3.3.1. Assume that X is a Hunt process (i.e., it is quasi-left-continuous
on [0,∞)). Then for every λ ∈ M(E) there exists a compact Lyapunov function
F with respect to the (X, Φ)-superprocess, such that F (λ) < ∞.

Sketch of the proof; see Step III of the proof of Theorem 4.9 in [1] for details.
Consider a Ray topology which is finer than the original topology. It follows that
X has càdlàg trajectories in the Ray topology and by Proposition 2.1.1 we deduce
that there exists a function v ∈ E(Ub′) ∩ L1(E, λ) having Ray-compact level sets.
Taking F = lv we get by (3.3.1) that F ∈ E(Uβ′), clearly we have F (λ) < ∞, and
one can show that it has compact level sets in the weak topology.

Remark. The existence of the compact Lyapunov functions given by Proposition
3.3.1 is the main step in [1] for the proof of the càdlàg property of the paths of
the measure-valued (X, Φ)-superprocess, as Proposition 2.2.3 indicates.
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