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uniqueness results are known. We prove, under suitable assump-
tions, existence and uniqueness of a measure valued solution, for the
corresponding Fokker–Planck equation. In particular, we verify the
Chapman–Kolmogorov equations and get an evolution system of tran-
sition probabilities for the stochastic dynamics informally given by the
stochastic differential equation.
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1 Introduction

In recent years there has been a lot of interest in Fokker–Planck and transport
equations with irregular coefficients in finite dimensions (see e.g. [1], [2], [21],
[22], [19], [20] and the references therein and also the fundamental paper
[18]). More recently, also transport equations in infinite dimensions have been
analyzed (see, e.g., [3], [10]). In [8], [9] we have started a study of Fokker–
Planck equations in infinite dimensions, more precisely, on Hilbert spaces. In
the present paper we continue this study by proving existence and uniqueness
results for irregular (even non continuous) drift coefficients. Here we consider
the case of full noise (i.e. the diffusion operator is invertible). Another paper
concerned with degenerate (Hilbert–Schmidt) noise is in preparation. The
case of zero noise, even when the drift coefficients depends (nonlinearly) on
the solutions is treated in finite dimensions in [12] and in infinite dimensions
in [10].

Before we describe our framework and results more precisely, we would
like to stress that we can also prove the Chapman–Kolmogorov equations
for our solutions to the Fokker–Planck equations. This is, of course, a con-
sequence of uniqueness of solutions, which in turn follows from a technique
developed by us in several papers first in finite (see [11] and also [13], [14] for
the elliptic case) and subsequently in infinite dimensions (see [8] and Section
3 below).

Let H be a separable real Hilbert space with inner product 〈·, ·〉 and
corresponding norm | · |. L(H) denotes the set of all bounded linear operators
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on H with its usual norm ‖ · ‖, B(H) its Borel σ-algebra, Bb(H) the set of
all bounded B(H)-measurable functions from H to R and P(H) the set of
all probability measures on H, more precisely on (H,B(H)).

Consider the following type of non-autonomous stochastic differential
equation on H and time interval [0, T ]: dX(t) = (AX(t) + F (t,X(t)))dt+

√
CdW (t),

X(s) = x ∈ H, t ≥ s.
(1.1)

Here W (t), t ≥ 0, is a cylindrical Wiener process on H defined on a stochastic
basis (Ω,F , (Ft)t≥0,P), C is a symmetric positive operator in L(H), D(F ) ⊂
B([0, T ]×H), F : D(F ) ⊂ [0, T ]×H → H, t ∈ [0, T ], is a measurable map,
and A : D(A) ⊂ H → H is the infinitesimal generator of a C0-semigroup
etA, t ≥ 0, in H.

Without further regularity assumptions on F it is, of course, not at all
clear whether (1.1) has a solution in the strong or even in the weak sense. If,
however, there is a weak solution to (1.1), then it is a well known consequence
of Itô’s formula that its transition probabilities ps,t(x, dy), x ∈ H, s ≤ t,
solve the Fokker–Planck equation determined by the associated Kolmogorov
operator. The purpose of this paper is to describe very general conditions
on F above for which one can solve the Fokker–Planck equation directly for
Dirac initial conditions and thus to obtain the transition functions ps,t, s ≤ t,
corresponding to (1.1) though one might not have a solution to it. In partic-
ular, we prove that ps,t, s ≤ t, satisfy the Chapman–Kolmogorov equation
under wide conditions.

The general motivation to study Fokker–Planck equations instead of Kol-
mogorov equations, as done in our previous papers, is that the latter are
equations for functions, whereas the first are equations for measures for which
one has e.g. much better compactness criteria in our infinite dimensional sit-
uation. So, there is a good chance to obtain very general existence results.

Before we write down the Fokker–Planck equation we recall that the Kol-
mogorov operator L0 corresponding to (1.1) reads as follows:

L0u(t, x) = Dtu(t, x) +
1

2
Tr [CD2

xu(t, x)]

+ 〈x,A∗Dxu(t, x)〉+ 〈F (t, x), Dxu(t, x)〉, x ∈ H, t ∈ [0, T ],
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where Dt denotes the derivative in time and Dx, D
2
x denote the first and

second order Fréchet derivatives in space, i.e. in x ∈ H, respectively. The
operator L0 is defined on the space D(L0) := EA([0, T ]×H), the linear span
of all real parts of functions uφ,h of the form

uφ,h(t, x) = φ(t)ei〈x,h(t)〉, t ∈ [0, T ], x ∈ H, (1.2)

where φ ∈ C1([0, T ]), φ(T ) = 0, h ∈ C1([0, T ];D(A∗)) and A∗ denotes the
adjoint of A.

For a fixed initial time s ∈ [0, T ] the Fokker–Planck equation is an equa-
tion for measures µ(dt, dx) on [s, T ]×H of the type

µ(dt, dx) = µt(dx)dt,

with µt ∈ P(H) for all t ∈ [s, T ], and t 7→ µt(A) measurable on [s, T ]
for all A ∈ B(H), i.e., µt(dx), t ∈ [s, T ], is a probability kernel from
([s, T ],B([s, T ]) to (H,B(H)). Then the equation for an initial condition
ζ ∈P(H) reads as follows: ∀ u ∈ D(L0) one has∫

H

u(t, y)µt(dy) =

∫
H

u(s, y)ζ(dy) +

∫ t

s

ds′
∫
H

L0u(s′, y)µs′(dy),

for dt-a.e. t ∈ [s, T ], (1.3)

where a dt-zero set may depend on u. When writing (1.3) (or (1.5), (1.6) or
(1.7) below) we always implicitly assume that∫

[0,T ]×H
(|〈y, A∗h(t)〉|+ |F (t, y)|)µ(dt, dy) <∞ (1.4)

for all h ∈ C1([0, T ];D(A∗)), so that all involved integrals exist in the usual
sense.

Remark 1.1 (Equivalent formulations) (i) We would like to emphasize
that a priori we do not assume any continuity of the map

t 7→
∫
H

ϕ(y)µt(dy), t ∈ [s, T ],

for “sufficiently many” nice functions ϕ : H → R, as e.g. ϕ ∈ EA(H), defined
to be the set of linear combinations of all real parts of functions of the form

H 3 x 7→ ei〈x,h〉, h ∈ D(A∗).
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Nevertheless, one can prove that, under the assumption (1.4), identity (1.3)
is equivalent to the usual “differential form” of the Fokker–Planck equation:
∀ u ∈ D(L0), ∀ ϕ ∈ EA(H) one has

d

dt

∫
H

u(t, y)µt(dy) =

∫
H

L0u(t, y)µt(dy), for dt-a.s. t ∈ [s, t], (1.5)

lim
t→s

∫
H

ϕ(y)µt(dy) =

∫
H

ϕ(y)ζ(dy). (1.6)

Here (since no continuity is assumed on t 7→ µt, t ∈ [s, T ]) the limit
in (1.6) has to be understood in the following sense: there exists a map
t 7→ µ̃t ∈P(H), t ∈ [s, T ], equal to t 7→ µt outside a set of dt-measure zero
so that (1.6) holds with µ̃t in place of µt. That (1.3) and (1.5)+(1.6) are
indeed equivalent, was proved in [9, Remark 1.2]. Considering D(L0) as test
functions and dualizing we then turn (1.5)+(1.6) into the familiar form of
the Fokker–Planck equation

∂

∂t
µt = −L∗0µt, µs = ζ.

(ii) Setting t = T and recalling that u(T, ·) ≡ 0 for all u ∈ D(L0) we see that
(under assumption (1.4)) equation (1.3) is obviously also equivalent to∫

[s,T ]×H
L0u(s′, y)µ(ds′, dy) = −

∫
H

u(s, y)ζ(dy), ∀ u ∈ D(L0). (1.7)

(iii) By an easy approximation argument it follows that if (1.3) holds for all
u ∈ D(L0), then it holds for all u of the form (1.2) with h ∈ C([0, T ];D(A∗))
and h = h1 + · · · + hN with hi ∈ C1([si−1, si];D(A∗)), 1 ≤ i ≤ N , and
0 = s0 < s1 < · · · < sN = T.

Solving (1.3) (if this is possible) with ζ = δx (:=Dirac measure in x ∈ H) for
x ∈ H and s ∈ [0, T ) and expressing the dependence on x, s in the notation,
we obtain probability measures ps,t(x, dy), t ∈ [s, T ], such that the measure
ps,t(x, dy)dt on [s, T ] × H is a solution of (1.3). We shall see in Section
3 below, that if we have uniqueness for (1.3) and a “sufficient continuity”
of the functions t 7→ ps,t(x, dy), then these measures satisfy the Chapman–
Kolmogorov equations, i.e. for 0 ≤ r < s < t ≤ T and x ∈ H (or in a
properly chosen subset thereof)∫

H

ps,t(x
′, dy)pr,s(x, dx

′) = pr,t(x, dy), (1.8)
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where the left hand side is a measure defined for A ∈ B(H) as∫
H×H

1lA(y)ps,t(x
′, dy)pr,s(x, dx

′).

The theoretical component of the paper consists of two parts. In the first
part (see Section 2 below) we shall prove existence of solutions to (1.3) under
very general assumptions on coefficients A,F and C. There is a well known
generic difference between the case when C has finite trace or not. We shall
concentrate on the latter, more precisely, even on the extreme situation when
C−1 ∈ L(H) (hence including the “white noise” case). The reason is that if
Tr C <∞, there are a number of known existence results (cf. [7] and also [5],
[6]) based on the method of constructing Lyapunov functions with weakly
compact level sets for the Kolmogorov operator L0, which does not apply
when Tr C =∞. We refer to Theorem 2.5 below for the precise formulation
of our result and to Remark 2.3(ii) for the relations of our method with
Lyapunov functions. We only emphasize here that under the assumptions of
Theorem 2.5, on the one hand we are very far away from being allowed to
apply Girsanov–Maruyama’s theorem to weakly solve (1.1), whereas, on the
other hand, the proof of Theorem 2.5 heavily relies on applying Girsanov–
Maruyama’s transformation to a proper approximation. Furthermore, we
only need the continuity of the components x 7→ 〈h, F (x)〉, h ∈ H, of F (but
see also Remark 2.6(ii) below).

The second part of the paper (see Section 3) is devoted to uniqueness of
solutions to (1.3) and to deriving the Chapman–Kolmogorov equations (1.8).
Here additional dissipativity (not continuity) conditions on F are needed and
we rely heavily on the uniqueness results in [8], which hold no matter whether
C is of trace class or not, hence also apply in case of the existence results of
[7].

In the last part (see Section 4) we present applications which, in par-
ticular include reaction-diffusion equations with polynomially growing, time
dependent nonlinearities.

Finally, we would like to mention that some of our results in Section 2
have been announced (though in a weaker formulation) in [9] with rough
sketches of the proofs.
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2 Existence of solutions of the Fokker–Plank

equation

Let us first introduce some assumptions to be used below.

Hypothesis 2.1

(i) A is self-adjoint and such that there exists ω ∈ R such that

〈Ax, x〉 ≤ ω|x|2, x ∈ D(A).

(ii) C ∈ L(H) is symmetric, nonnegative and such that C−1 ∈ L(H).

(iii) There exists δ ∈ (0, 1/2) such that (−A)−2δ is of trace class.

Let us notice that it follows from (iii) that the embedding D(A) ⊂ H is
compact.

It is well known that, under Hypothesis 2.1, the stochastic convolution

WA(t) =

∫ t

0

e(t−s)A
√
CdW (s), t ≥ 0,

is a well defined mean square continuous process inH with values inD((−A)δ)
and that

sup
t∈[0,T ]

E|(−A)δWA(t)|2 ≤ ‖C‖ Tr [(−A)−2δ] := cδ. (2.1)

Hypothesis 2.2 There exist bounded measurable maps Fα : [0, T ]×H → H,
α ∈ (0, 1], such that for all (t, x) ∈ D(F ) and all h ∈ D(A)

lim
α→0
〈h, Fα(t, x)〉 = 〈h, F (t, x)〉,

|Fα(t, x)| ≤ |F (t, x)|, (2.2)

|〈h, F (t, x)− Fα(t, x)〉| ≤ αc(h)|F (t, x)|, (2.3)

for some constant c(h) > 0.
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Now we consider the following approximating stochastic equations for fixed
s ∈ [0, T ]:  dXα(t) = [AXα(t) + Fα(t,Xα(t))]dt+

√
CdW (t),

Xα(s) = x, s ≤ t.
(2.4)

Since C−1 ∈ L(H), by Girsanov’s theorem it follows that for every x ∈ H
equation (2.4) has a martingale solution which we denote by Xα(·, s, x) (see
e.g. [17, Proposition 10.22]). Let W (t), t ≥ s, denote the corresponding
cylindric Wiener process on H and set

WA(t, s) =

∫ t

s

e(t−s′)A
√
C dW (s′), t ≥ s.

Let us introduce the transition evolution operator

Pα
s,tϕ(x) = E[ϕ(Xα(t, s, x))], 0 ≤ s < t ≤ T, ϕ ∈ Bb(H).

The Kolmogorov operator Lα corresponding to (2.4) is given by the following
expression for u ∈ D(L0):

Lαu(t, x) = Dtu(t, x) +
1

2
Tr [CD2

xu(t, x)]

+ 〈x,A∗Dxu(t, x)〉+ 〈Fα(t, x), Dxu(t, x)〉, x ∈ H, t ∈ [0, T ].

From now on we fix s ∈ [0, T ) and set

µαt (dx) := (Pα
s,t)
∗ζ(dx),

where ζ ∈P(H) is the initial condition. So,∫
H

ϕ(y)µαt (dy) =

∫
H

Pα
s,tϕ(y)ζ(dy), ∀ ϕ ∈ Bb(H).

Then by Itô’s formula this gives a solution to the corresponding Fokker–
Planck equation∫

H

u(t, x)µαt (dx) =

∫
H

u(s, x)ζ(dx) +

∫ t

s

ds

∫
H

Lαu(s′, x)µαs′(dx),

for all t ∈ [s, T ], ∀ u ∈ D(L0). (2.5)

Now we introduce our crucial assumption.
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Hypothesis 2.3 There exist K > 0 and a lower semicontinuous function
V : [s, t]×H → [1,∞] such that |F | ≤ V on [s, T ]×H, where here and below
|F | =∞ on ([s, T ]×H) \D(F ), and

Pα
s,tV

2(t, ·)(x) ≤ KV 2(t, x) <∞, ∀ (t, x) ∈ D(F ), t ∈ [s, T ], α ∈ (0, 1]
(2.6)

Remark 2.4 (i) Since we can always add a constant to V preserving all its
properties, the assumption that V ≥ 1 is not a restriction. Furthermore,
(2.6) implies that

Pα
s,t1lH\D(F (t,·))(x) = 0 ∀ (t, x) ∈ D(F ), t ∈ [s, T ], α ∈ (0, 1], (2.7)

where

D(F (t, ·)) = {x ∈ H : ∃ t ∈ [0, T ] such that (t, x) ∈ D(F )}.

(ii) Roughly speaking to satisfy Hypothesis 2.3 means that we have to
find a function which is a Lyapunov function for Pα

s,t (not for L0 as in [7])
uniformly in α, and whose square root dominates the nonlinear part of the
drift of (1.1).

Lemma 2.5 Assume that Hypotheses 2.1 and 2.3 hold. Then for all α ∈
(0, 1], ζ ∈P(H), t1, t2 ∈ [s, T ] one has∫ t2

t1

∫
H

V 2(s′, x)µαs′(dx)ds′ ≤ K

∫ t2

t1

∫
H

V 2(s′, x)ζ(dx)ds′.

In particular, if ∫ T

s

∫
H

V 2(s′, x)ζ(dx)ds′ <∞,

then ∫ T

s

∫
H

Pα
s,t1lH\D(F (t,·))(s

′, x)ζ(dx)dt = 0, ∀ α ∈ (0, 1].

Proof. The first assertion is an immediate consequence of (2.6). The second
then follows from (2.7) since V =∞ on ([s, t]×H) \D(F ). Hence∫ T

s

∫
H

1l([s,T ]×H)\D(F )(s
′, x)ζ(dx)ds′ = 0

by our assumption. �
Now we can state and prove our main existence result.
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Theorem 2.6 Assume that Hypotheses 2.1-2.3 hold and that

(t, x) 7→ 〈h, Fα(t, x)〉 is continuous on [s, T ]×H, ∀ h ∈ D(A), α ∈ (0, 1].
(2.8)

Let ζ ∈P(H) be such that∫ T

s

∫
H

(V 2(s′, x) + |x|2)ζ(dx)ds′ <∞. (2.9)

Then there exists a solution µt(dx)dt to the Fokker-Planck equation (1.3)
such that

sup
t∈[s,T ]

∫
H

|x|2µt(dx) <∞

and

t 7→
∫
H

u(t, x)µt(dx)

is continuous on [s, T ] for all u ∈ D(L0). In particular, (1.3) holds for all
t ∈ [s, T ]. Finally, for some C > 0 one has∫ T

s

∫
H

(
V 2(s′, x) + |(−A)δx|2 + |x|2

)
µs′(dx)ds′

≤ C

∫ T

s

∫
H

(
V 2(s′, x) + |x|2

)
ζ(dx)ds′

(2.10)

and hence µt(D(F (t, ·))) = 1 for all dt-a.e. t ∈ [s, T ].

Remark 2.7 (i) The idea to prove the above result is to show that the
measures µαt (dx)dt, α ∈ (0, 1], on [0, T ] ×H are uniformly tight and that a
limit point solves (1.3). Only for the latter part (i.e. Claim 3 of the proof of
Theorem 2.6 below) condition (2.8) is needed.

(ii) We believe that, in fact, condition (2.8) is superfluous. This was proved
in [16, Theorem 5.2] in the time independent case. Some of the ingredients
of the proof have, however, not yet been proved in the time dependent case
though they are very likely to hold also here. A corresponding paper is in
preparation.
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(iii) If the continuity condition (2.8) can be dropped, then so can Hypothesis
2.2. Simply define for α ∈ (0, 1]

Fα(t, x) =


F (t,x)

1+α|F (t,x)| if (t, x) ∈ D(F ),

0 otherwise.

Then obviously Fα enjoys all properties in Hypothesis 2.2.

Proof of Theorem 2.6. Below we shall use the weak topology τw on H
and weak convergence of a sequence of measures νn ∈ P(H) on (H, | · |)
and on (H, τw). To avoid confusion we shall use the terminology “weak
convergence of νn” as usual if we refer to the norm topology of H and “τw-
weak convergence of νn” if we refer to τw. Here we recall that since H
is always assumed to be separable, the Borel σ-algebra with respect to τw
coincides with B(H).

The proof is structured in three claims.

Claim 1. For any given sequence in (0, 1] convergent to zero there exists a
subsequence αn → 0 and measures µt, t ∈ [0, T ], such that the measures µαn

t

converge τw-weakly to µt for all t ∈ [0, T ]. Furthermore,

sup
t∈[s,T ]

∫
H

|x|2µt(dx) <∞

and for all u ∈ D(L0) the map

t 7→
∫
H

u(t, x)µt(dx)

is continuous on [s, T ]. In particular, µt(dx), t ∈ [s, T ], are probability
kernels from ([s, T ],B([s, T ])) to (H,B(H).

Claim 2. Selecting another subsequence we may assume that the measures
µαn
t (dx)dt converge weakly to µt(dx)dt on [0, T ]×H where µt(dx), t ∈ [0, T ],

is defined as in Claim 1. Furthermore, (2.10) holds.

Claim 3. The measure µt(dx)dt from Claim 2 solves the Fokker–Planck
equation (1.3).

Proof of Claim 1. Let α ∈ (0, 1], set Xα(t) := Xα(t, s, x), x ∈ H, and

Yα(t) := Xα(t)−WA(t, s), t ≥ s. (2.11)
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Then in the mild sense

d

dt
Yα(t) = AYα(t) + Fα(t,Xα(t)), t > s.

Multiplying both sides by Yα(t) for t > s we obtain

1

2

d

dt
|Yα(t)|2 + |(−A)1/2Yα(t)|2 = 〈Fα(t,Xα(t)), Yα(t)〉.

Integrating over [s, T ] and applying Young’s inequality we get that for t ≥ s

|Yα(t)|2 + 2

∫ t

s

|(−A)1/2Yα(s′)|2ds′

≤ |x|2 +

∫ t

s

(|Yα(s′)|2 + |Fα(s′, Xα(s′))|2)ds′. (2.12)

The above derivation of (2.12) is a bit informal since A is in general un-
bounded. This can, however, easily be made rigorous by approximation (see
[15, Section 3.27]). Dropping the term involving A and applying Gronwall’s
lemma we deduce from (2.12) that for t ≥ s

|Yα(t)|2 ≤ et−s|x|2 +

∫ t

s

et−s
′|Fα(s′, Xα(s′))|2ds′. (2.13)

Taking expectation and applying (2.2) and Hypothesis 2.3, yields

E|Yα(t)|2 ≤ et−s|x|2 +K

∫ t

s

et−s
′ |V 2(s′, x)|2ds′, t ≥ s

and after resubstituting according to (2.11) it follows that for s ≤ t ≤ T

E|Xα(t, s, x)|2 ≤ 2eT−s|x|2 + 2KeT−s
∫ T

s

|V 2(s′, x)|2ds′ + 2κ,

where
κ := sup

t∈[s,T ]

E|WA(t)|2(<∞).

Now we integrate with respect to ζ over x ∈ H and obtain for s ≤ t ≤ T∫
H

|x|2µαt (dx) ≤ C

[
1 +

∫ T

s

∫
H

(V 2(s′, x) + |x|2)ds′ζ(dx)

]
, (2.14)
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for some C > 0. By (2.9) the right hand side of (2.14) is finite. But it is
also independent of α ∈ (0, 1]. Consequently, since closed balls in H are
τw-compact and metrizable we can apply a version of Prohorov’s theorem on
completely regular topological spaces (see [4, Theorem 8.6.7]) which implies
that given any sequence in (0, 1] convergent to zero, for each t ∈ [s, T ], there
exists a sub-sequence {αn} (dependent on t) such that the measures µαn

t

converges τw-weakly to a measure µ̃t ∈P(H) as n→∞.
To prove that this sequence {αn} can indeed be chosen independently of

t ∈ [s, T ] we need to prove that for each ϕ ∈ EA(H) and

µαt (ϕ) :=

∫
H

ϕ(x)µαt (dx), t ∈ [s, T ], α ∈ (0, 1]

we have:

the maps t 7→ µαt (ϕ), α ∈ (0, 1], are equicontinuous on [s, T ]. (2.15)

Suppose (2.15) is true for all ϕ ∈ EA(H), then we can proceed as follows. By
a diagonal argument we can choose {αn} such that µαn

t → µ̃t τw-weakly as
n→∞ for every rational t ∈ [s, T ]. We note that since | · |2 is an increasing
(double) limit of bounded weakly continuous functions it follows that (2.14)
holds for µ̃t in place of µ̃αt for each t ∈ [s, T ] ∩ Q. Hence [4, Theorem 8.6.7]
also applies to this family in P(H). In particular, for each t ∈ [s, T ]\Q there
exist rn(t) ∈ [s, T ] ∩ Q, n ∈ N, converging to t and µt ∈ P(H) such that
µ̃rn(t) → µt τw-weakly as n→∞. We claim:

µαn
t → µt τw-weakly as n→∞ ∀ t ∈ [s, T ] \Q. (2.16)

So, fix t ∈ [s, T ] \Q and suppose that {µαn
t } does not weakly converge to µt.

Then by (2.14) and [4, Theorem 8.6.7] there exists a subsequence {αnk
} and

ν ∈P(H) \ {µt} such that µ
αnk
t → ν τw-weakly as k → ∞. Since EA(H) is

measure separating there exists ϕ ∈ EA(H) such that µt(ϕ) 6= ν(ϕ). On the
other hand for all n, k ∈ N one has

|ν(ϕ)− µt(ϕ)| ≤ |ν(ϕ)− µαnk
t (ϕ)|+ sup

l∈N
|µαnl
t (ϕ)− µαnl

rn(t)(ϕ)|

+ |µαnk

rn(t)(ϕ)− µ̃rn(t)(ϕ)|+ |µ̃rn(t)(ϕ)− µt(ϕ)|.

Since ϕ is weakly continuous, letting first k →∞ and then n→∞ it follows
by (2.15) that µt(ϕ) = ν(ϕ). This contradiction proves (2.16). Letting
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µt := µ̃t for t ∈ [s, T ] ∩ Q, by construction the first assertion in Claim 1
follows for this family µt, t ∈ [s, T ], in P(H). Furthermore, (2.14) then
implies that

sup
t∈[s,T ]

∫
H

|x|2µt(dx) <∞. (2.17)

We have lim
n→∞

µαn
t (ϕ) = µt(ϕ) for all t ∈ [s, T ] and all ϕ ∈ EA(H). Hence

from (2.15) the second assertion in Claim 1 follows first for ϕ ∈ EA(H), but
then by (2.17) and Lebesgue’s dominated convergence theorem, this remains
true for all u ∈ D(L0). By a monotone class argument, the last assertion
in Claim 1 is then an easy consequence. Hence to complete the proof of
Claim 1 it remains to prove (2.15). So, fix ϕ ∈ EA(H). Then by (2.5), (2.2),
Hypothesis 2.3 and Lemma 2.5 for s ≤ t1 ≤ t2 ≤ T

|µαt2 − µ
α
t1
| ≤ 1

2
‖Tr [CD2ϕ]‖∞|t2 − t1|

+ |t2 − t1|1/2‖ADϕ‖∞
(∫ t2

t1

∫
H

|x|2µαs′(dx)ds′
)1/2

+ |t2 − t1|1/2K‖Dϕ‖∞
(∫ t2

t1

∫
H

V 2(s′, x)ζ(dx)ds′
)1/2

, (2.18)

where ‖ · ‖∞ denotes sup-norm on H. Since obviously all three sup-norms in
(2.18) are finite, (2.15) now follows from (2.9) and (2.14). �

Proof of Claim 2. For δ ∈ (0, 1
2
) as in Hypothesis 2.1(iii) from (2.12) and

(2.13) with t = T we obtain for some C > 0∫ T

s

|(−A)δYα(t)|2dt

≤ C‖(−A)−1/2+δ‖
(
|x|2 +

∫ T

s

|Fα(s′, Xα(s′))|2(x)ds′
)
.

Resubstituting according to (2.11), taking expectation and using (2.1) we
deduce that∫ T

s

E|(−A)δXα(t, s, x)|2dt

≤ 2C‖(−A)−1/2+δ‖
(
|x|2 +

∫ T

s

Pα
s,s′ |Fα(s′, Xα(s′))|2(x)ds′

)
+ 2cδT.
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Hence using (2.2), Hypothesis 2.3 and Lemma 2.5 we find∫ T

s

∫
H

|(−A)δx|2µαt (dx)dt

≤ C1

(∫
H

|x|2ζ(dx) +

∫ T

s

∫
H

V (s′, x)ζ(dx)ds′
)

(2.19)

for some constant C1 independent of α. Since (−A)−δ is compact, (−A)δ has
compact level sets in H, hence by Prohorov’s theorem the sequence of mea-
sures µαn

t (dx)dt with αn from Claim 1 has a subsequence weakly convergent
to a finite measure µ(dt, dx) (of total mass T ) on [0, T ]×H. For simplicity
we denote this subsequence again by {µαn

t (dx)dt}. But for ϕ ∈ EA(H) and
f ∈ Cb([0, T ]; R) we have∫ T

s

∫
H

f(t)ϕ(x)µt(dx)dt =

∫ T

s

f(t) lim
n→∞

∫
H

ϕ(x)µαn
t (dx)dt

= lim
n→∞

∫ T

s

∫
H

f(t)ϕ(x)µαn
t (dx)dt =

∫ T

s

∫
H

f(t)ϕ(x)µt(dx)dt,

where we used the weak continuity of ϕ and Lebesgue’s dominated conver-
gence theorem. From this it follows that µ(dt, dx) = µt(dx)dt. The last part
of Claim 2, i.e. (2.10), follows from Lemma 2.5, (2.14), (2.19) and the lower
semicontinuity of V + |(−A)δ · |2 + | · |2. The proof of Claim 2 is complete. �

Proof of Claim 3. We first note that (1.4) is already verified because of
(2.8). Furthermore, every h ∈ C1([0, T ];D(A)) can be written as a uniform
limit of piecewise affine hn ∈ C([0, T ];D(A)), n ∈ N, uniformly bounded by
‖h′‖∞T , e.g. by simply writing

h(t) = h(0) +

∫ t

0

h′(s)ds

and approximating the integral by Riemannian sums. It then follows by Re-
mark 1.1(iii) and (2.10) by approximation and linearity that µt(dx) satisfies
the Fokker–Planck equation (1.3) or equivalently (1.7) if and only if it does
so for all u ∈ D(L0) such that

u(t, x) = φ(t)ei〈h(t),x〉, x ∈ H, t ∈ [0, T ],

15



with φ ∈ C1([0, T ]; R) and piecewise affine h ∈ C([0, T ];D(A)). So, let us fix
such a function u ∈ D(L0). Since (1.3) and (1.7) are equivalent we know by
(2.5) that for all n ∈ N∫ T

s

∫
H

Lαnu(t, x)µαn
t (dx)dt = −

∫ T

s

u(s, x)ζ(dx)

with αn as in Claims 1, 2. Therefore, by Claim 2, to show that (1.6) holds
for µt(dx)dt it suffices to prove that for all g ∈ Cb([s, T ]×H)

lim
n→∞

∫ T

s

∫
H

F h
αn

(t, x)g(t, x)µαn
t (dx)dt =

∫ T

s

∫
H

F h(t, x)g(t, x)µt(dx)dt,

(2.20)
where

F h
α (t, x) := 〈h(t), Fα(t, x)〉+

〈Ah(t), x〉
1 + α|〈Ah(t), x〉|

,

F h(t, x) : = 〈h(t), F (t, x)〉+ 〈Ah(t), x〉.

We note that F h
α is continuous on [s, T ]×H because of (2.8) and because h

is piecewise affine. For δ ∈ (0, 1] we have

∣∣∣∣∫ T

s

∫
H

F h
αn

(t, x)g(t, x)µαn
t (dx)dt−

∫ T

s

∫
H

F h(t, x)g(t, x)µt(dx)dt

∣∣∣∣
≤ ‖g‖∞

∫ T

s

∫
H

|F h
αn

(t, x)− F h(t, x)|µαn
t (dx)dt

+ ‖g‖∞
∫ T

s

∫
H

|F h(t, x)− F h
δ (t, x)|µαn

t (dx)dt

+ ‖g‖∞
∫ T

s

∫
H

|F h(t, x)− F h
δ (t, x)|µt(dx)dt

+

∣∣∣∣∫ T

s

∫
H

F h
δ (t, x)g(t, x)µαn

t (dx)dt−
∫ T

s

∫
H

F h
δ (t, x)g(t, x)µt(dx)dt

∣∣∣∣ .
(2.21)

By (2.3) and the inequality∣∣∣∣ a

1 + δ|a|
− a
∣∣∣∣ ≤ δ|a|2, ∀ a ∈ R,
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we can find γ(h) > 0 such that for all n ∈ N and all α, β ∈ (0, 1]∫ T

s

∫
H

|F h
β (t, x)− F h(t, x)|µαt (dx)dt

≤ βγ(h)

∫ T

s

∫
H

(|F (t, x)|2 + |x|2)µαt (dx)dt.

(2.22)

By Hypothesis 2.3, Lemma 2.5, (2.14) and (2.9) the integral on the right
hand side of (2.22) is bounded by a constant independent of α. So, letting
n→∞ and δ → 0 the first two terms in (2.21) converge to zero. Using the
last part of Claim 2, by the same arguments we deduce that this also holds
for the third term. The last summand on the right hand side of (2.21) can
be estimated for every δ ∈ (0, 1] by∣∣∣∣∫ T

s

∫
H

F h
δ (t, x)g(t, x)(µαn

t (dx)− µt(dx))dt

∣∣∣∣
+δ‖g‖∞γ(h)

∫ T

s

∫
H

|F (t, x)|2(µαn
t (dx) + µt(dx))dt.

(2.23)

Since, as pointed out above, F h is continuous on [0, T ]×H, the first summand
in (2.23) converges to zero as n→∞ by Claim 2. Arguing as before we see
that the the second summand is bounded by δ times a constant independent
of n. So, letting first n → ∞ and then δ → 0, also the last term on the
right hand side of (2.21) converges to zero and thus (2.20) is proved, which
completes the proof of Claim 3. �

3 Uniqueness and Chapman–Kolmogorov

equations

First let us recall the uniqueness result from [8] on solutions of Fokker–Planck
equations. This result is proved under certain assumptions on the coefficients
A,F and C in equation (1.1) which differ from those in Section 2. We start
with recalling them first.

Hypothesis 3.1

(i) There is ω ∈ R such that 〈Ax, x〉 ≤ ω|x|2, ∀ x ∈ D(A).
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(ii) C ∈ L(H) is symmetric, nonnegative and such that the linear operator

Q
(α)
t :=

∫ t

0

s−2αesACesA
∗
ds

is of trace class for all t > 0 and some α ∈ (0,∞).

(iii) Setting Qt :=
∫ t

0
esACesA

∗
ds, one has etA(H) ⊂ Q

1/2
t (H) for all t > 0

and there is Λt ∈ L(H) such that Q
1/2
t Λt = etA and

γλ :=

∫ +∞

0

e−λt‖Λt‖dt < +∞.

Hypothesis 3.2 There exists a family {F̄ (t, ·)}t∈[0,T ] of m-quasi-dissipative
maps

F̄ (t, ·) : D(F̄ (t, ·)) ⊂ H → 2H , t ∈ [0, T ],

i.e., for each t ∈ [0, T ] the domain D(F̄ (t, ·)) belongs to B(H) and there
exists K > 0 independent of t such that

〈u− v, x− y〉 ≤ K|x− y|2, ∀ x, y ∈ D(F̄ (t, ·)), u ∈ F̄ (t, x), v ∈ F̄ (t, y)

and for every λ > K one has

Range (λ− F̄ (t, ·)) :=
⋃

x∈D(F̄ (t,·))

(λx− F̄ (t, x)) = H,

such that for every t ∈ [0, T ] we have D(F (t, ·)) = D(F̄ (t, ·)) and for all
x ∈ D(F̄ (t, ·) one has

F (t, x) ∈ F̄ (t, x) and |F (t, x)| = min
y∈F̄ (t,x)

|y|. (3.1)

Remark 3.3 We recall that for F̄ (t, ·) as above the set F̄ (t, ·) is convex and
closed, so that the minimum in (3.1) exists and is unique.

To formulate the uniqueness result from [8], let us introduce, for every
ζ ∈P(H) and s ∈ [0, T ], the set Ms,ζ of all finite measures ν on [s, T ]×H
which have the following properties:

(i) ν(dt, dx) = νt(dx)dt, where νt(dx), t ∈ [s, T ], is a kernel from ([s, T ],
B([s, T ])) to (H,B(H)), νt ∈P(H) for every t ∈ [s, T ] and νt(D(F (t, ·)) = 1
for dt-a.e. t ∈ [s, T ];
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(ii)

∫ T

s

∫
H

(|x|2 + |F (t, x)|+ |x|2|F (t, x)|)νt(dx)dt <∞;

(iii) νt(dx)dt satisfies identity (1.3) for all u ∈ D(L0).

We note that (ii) above implies (1.4) so that L0u ∈ L1([0, T ] ×H, ν) for
all u ∈ D(L0), ν ∈Ms,ζ .

Theorem 3.4 ([8, Theorem 3.6]) Suppose Hypotheses 3.1 and 3.2 are ful-
filled and ζ ∈P(H), s ∈ [0, T ]. Then Ms,ζ contains at most one element.

Remark 3.5 (i) As already mentioned in [8], combining the above theorem
with the results in [7] (see, in particular, [7, Corollary 1]), under additional
coercivity conditions on the drift one obtains quite general existence and
uniqueness results for the Fokker–Planck equation (1.3), more precisely, that
Ms,ζ contains exactly one element. From this, in the same way as explained
below, one can obtain the Chapman–Kolmogorov equation (1.8) for the tran-
sition functions, i.e. the solutions ps,t(x, dy)dt of (1.3) for ζ = δx, at least for
Lebesgue’s a.e. (r, s) ∈ [0, T ) × [0, T ), r < s. On the basis of [7], however,
we can only treat cases where Tr C < ∞ (unless one can enlarge the state
space H in an appropriate way). Using our results from Section 2 above, in
the present paper we shall analyze the case Tr C = ∞, more precisely, the
case C−1 ∈ L(H).

(ii) By [15, Remark 2.25] we have that Hypothesis 2.1 implies Hypothesis
3.1.

Theorem 3.6 Let s ∈ [0, T ] and suppose that Hypotheses 2.1, 2.2, 3.2, and
(2.8) are fulfilled. Furthermore, assume that Hypothesis 2.3 is fulfilled with
V satisfying

|x|2 ≤ V (t, x), ∀ (t, x) ∈ D(F ), t ≥ s. (3.2)

Then, for every ζ ∈P(H) satisfying (2.9), the measure µt(dx)dt from The-
orem 2.6 is the only element in Ms,ζ. In particular, for each t ∈ [s, T ] we
have

µαt → µt τw-weakly as α→ 0

and
µαt (dx)dt→ µt(dx)dt weakly as α→ 0
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(rather than only for a subsequence), and also for all ϕ ∈ EA(H)

lim
α→0

sup
t∈[s,T ]

|µαt (ϕ)− µt(ϕ)| = 0,

in particular,

µt(ϕ)→
∫
H

ϕ(x)ζ(dx) as t→ 0.

Proof. By Remark 3.5(ii) we can apply Theorem 2.6 to obtain a measure
µt(dx)dt which, as stated there, satisfies the defining properties (i) and (iii)
of Ms,ζ . But also (ii) holds by (2.10) since by (3.2)

|x|2 |F (t, x)| ≤ V 2(t, x), ∀ (t, x) ∈ [s, T ]×H.

For the proof of the last part of the assertion, we first recall that the family
of measures µαt (dx)dt, α ∈ (0, 1], is a weakly compact set of finite positive
measures of mass T by (2.19) and, for each t ∈ [s, T ], by (2.18) and [4,
Theorem 8.6.7], the family of measures µαt (dx), α ∈ (0, 1], is a τw-weakly
compact set in P(H).

In the proof of Theorem 2.6 it was shown that every sequence converging
to zero in (0, 1] has a subsequence {αn} such that µαn

t , t ∈ [s, T ], satisfy
Claims 1-3. However, as shown above, their corresponding limits µt(dx)dt
must all coincide as measures on [s, T ] ×H. Since all these limits have the
property that t 7→ µt(ϕ) is continuous on [s, T ] for each ϕ ∈ EA(H) and
the latter set is measure separating, it follows that for all these limits also
measures µt, t ∈ [s, T ], are uniquely determined. Hence the last parts of the
assertion also follow. �

As we shall see in the last section the additional assumption (3.2) above
is satisfied in many cases.

Now we turn to the Chapman–Kolmogorov equations (1.8). Let the as-
sumptions in Theorem 3.6 hold for all s ∈ [0, T ] with the same function V
and set

H0 :=

{
x ∈ H :

∫ T

0

V 2(t, x)dt <∞
}

Then H0 ∈ B(H) and by Theorem 2.6 for every x ∈ H0 and s ∈ [0, T ]
there exists a measure ps,t(dx)dt on [0, T ]×H having the properties listed in
Theorem 2.6 with ζ = δx, in particular, solving the Fokker–Planck equation
(1.3) with this initial condition for all t ∈ [s, T ].
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Lemma 3.7 Let the assumptions of Theorem 3.6 hold for all s ∈ [0, T ] with
the same function V and let s ∈ (0, T ]. Then for every f ∈ Bb(H) the map

(t, x) 7→ 1lH0(x)

∫
H

f(y)ps,t(x, dy), t ∈ [s, T ], x ∈ H,

is B([s, T ])×B(H)-measurable and for each ϕ ∈ EA(H)

lim
t→0

∫
H

ϕ(y)ps,t(x, dy) = ϕ(x), ∀ x ∈ H0.

Proof. For all α ∈ (0, 1] and x ∈ H let pαs,t(x, dy) be the probability measure
defined by pαs,t(x,A) := Pα

s,t1lA(x). Then for αn := 1
n
, n ∈ N, it follows by the

last part of Theorem 3.6 that for each t ∈ [s, T ], x ∈ H0 and ϕ ∈ EA(H)∫
H

ϕ(y)ps,t(x, dy) = lim
n→∞

∫
H

ϕ(y)pαn
s,t (x, dy).

Since the functions on the right are B([s, T ]) ×B(H)-measurable for each
n ∈ N and H0 ∈ B(H), the first assertion is proved for f = ϕ ∈ EA(H).
For general f ∈ Bb(H) it then follows by a monotone class argument. The
second assertion follows from the last part of Theorem 3.6. �

Theorem 3.8 Let the assumptions of Theorem 3.6 hold for all s ∈ [0, T ]
with the same function V . Let 0 ≤ r < t ≤ T and ps,t(x

′, dy), x′ ∈ H0, be as
above. Then for every x ∈ H0, s ∈ (r, t) such that pr,s(x,H0) = 1 we have∫

H

ps,t(x
′, dy)pr,s(x, dx

′) = pr,t(x, dy), (3.3)

i.e. for all f ∈ Bb(H)∫
H

∫
H

f(y)ps,t(x
′, dy)pr,s(x, dx

′) =

∫
H

f(y)pr,t(x, dy),

i.e. the Chapman–Kolmogorov equation holds.

Remark 3.9 Let us discuss some conditions implying that

pr,s(x,H0) = 1, ∀ x ∈ H0. (3.4)

Suppose that D(F ) = [0, T ] × Y for some set Y ∈ B(H). Then, since
pr,s(x, dy)ds ∈ Mr,δx , we know by its defining property (i) (stated before
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Theorem 3.4) that (3.4) holds for ds-a.e. s ∈ [r, T ]. To have it for all
s ∈ [r, T ] let us assume that V 2(·, x) ∈ L1(0, T ; R) for all x ∈ Y , hence
H0 = Y , which is e.g. the case in our applications in Section 4 below. We
then know by (2.6) that

Pα
r,sV

2(s, ·)(x) ≤ KV 2(s, x) <∞, ∀ x ∈ H0, s ∈ [r, T ], α ∈ (0, 1]. (3.5)

Fix x ∈ H0, s ∈ [r, T ]. By construction (see the proof of Theorem 2.6), for
any sequence αn → 0, we know that

lim
n→∞

pαn
r,s(x, ·) = pαr,s(x, ·) τw-weakly, (3.6)

where pαn
r,s are as defined in the proof of Lemma 3.7. Then we have

(a) If V 2(s, ·) is an increasing limit of a sequence of weakly continuous
functions (which is e.g. the case in our applications in Section 4 below),
then (3.4) holds.

(b) If V 2(s, ·) has compact level sets in the norm topology of H, then (3.4)
holds.

Property (a) follows immediately from (3.5) and (3.6) since we have H \
H0 ⊂ {V (s, ·) = ∞}. In case (b) one only has to note that by Prohorov’s
theorem it follows that the sequence of measures pαn

r,s(x, ·), n ∈ N, is relatively
compact also in the weak topology, so by (3.6) it is even weakly convergent
to pr,s(x, ·).

Since by the assumption in (b) the function V 2(t, ·) is lower semicontin-
uous on H, (3.5) implies by letting n→∞ that∫

H

V 2(s, y)pr,s(x, dy) ≤ KV 2(s, x), ∀ x ∈ H0, s ∈ [r, T ].

Hence (3.4) follows since H \H0 ⊂ {V (s, ·) =∞}.

Proof of Theorem 3.8. Let x ∈ H0 and u ∈ D(L0). Then for all points
x′ ∈ H0 and t ∈ [s, T ] one has∫

H

u(t, y)ps,t(x
′, dy) = u(s, x′) +

∫ t

s

∫
H

L0u(s′, y)ps,s′(x
′, dy)ds′.
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Integrating with respect to pr,s(x, dx
′) and using Fubini’s theorem (which is

justified by Lemma 3.7) we obtain for all t ∈ [s, T ] that∫
H

u(t, y)

∫
H

ps,t(x
′, dy)pr,s(x, dx

′)

=

∫
H

u(s, x′)pr,s(x, dx
′) +

∫ t

s

∫
H

L0u(s′, y)

∫
H

ps,s′(x
′, dy)pr,s(x, dx

′)ds′

= u(r, x) +

∫ s

r

∫
H

L0u(s′, y)pr,s′(x, dx
′)ds′

+

∫ t

s

∫
H

L0u(s′, y)

∫
H

ps,s′(x
′, dy)pr,s(x, dx

′)ds′,

where we used that pr,s(x, dx
′) solves (1.3) in the last equality. Hence defining

the measures

µ
(s)
r,s′(x, dy) := 1l[r,s](s

′)pr,s′(x, dy) + 1l(s,T ](s
′)

∫
H

ps,s′(x
′, dy)pr,s(x, dx

′),

where s′ ∈ [s, T ], we have by the last part of Lemma 3.7 that for all ϕ ∈
EA(H) the function

s′ 7→
∫
H

ϕ(y)µ
(s)
r,s′(x, dy)

is continuous on [r, T ] and µ
(s)
r,s′(x, dy)ds′ satisfies the Fokker–Planck equa-

tion (1.3), with r, δx in place of s, ζ, respectively, and enjoys the defin-
ing properties (i) and (ii) for Mr,δx . But as noted above, we also have
pr,s′(x, dy)ds′ ∈Mr,δx , hence

µ
(s)
r,s′(x, dy) = pr,s′(x, dy), ∀ s′ ∈ [r, T ].

In particular, (3.3) holds. �

4 Applications

Let H = L2(0, 1) := L2((0, 1), dξ) and let A : D(A) ⊂ H → H be defined by

Ax(ξ) = ∂2
ξx(ξ), ξ ∈ (0, 1), D(A) = H2(0, 1) ∩H1

0 (0, 1),

where ∂ξ = d
dξ
, ∂2

ξ = d2

dξ2
.
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We would like to mention here that what is done below generalizes to the
case where (0, 1) is replaced by an open set O in Rd, d ≥ 1. One has only to
replace the operator C below by A−δ with properly chosen δ > 0, depending
on the dimension d.

Let D(F ) := [0, T ]× L2m(0, 1) and for (t, ξ) ∈ D(F )

F (t, x)(ξ) := f(ξ, t, x(ξ)) + h(ξ, t, x(ξ)), ξ ∈ (0, 1).

Here f, h : (0, 1)× [0, T ]×R→ R are functions such that for every ξ ∈ (0, 1)
the maps f(ξ, ·, ·), h(ξ, ·, ·) are continuous on (0, T )×R and have the following
properties:

(f1) (“polynomial bound”). There exist m ∈ N and a nonnegative function
c1 ∈ L2(0, T ) such that for all t ∈ (0, T ), z ∈ R, ξ ∈ (0, 1) one has

|f(ξ, t, z)| ≤ c1(t)(1 + |z|m),

also assuming without loss of generality that m is odd.

(f2) (“quasi-dissipativity”). There is a nonnegative function c2 ∈ L1(0, T )
such that for all t ∈ [0, T ], z1, z2 ∈ R, ξ ∈ (0, 1) one has

(f(ξ, t, z2)− f(ξ, t, z1))(z2 − z1) ≤ c2(t)|z2 − z1|2.

(h1) (“linear growth”). There exists a nonnegative function c3 ∈ L2(0, T )
such that for all t ∈ [0, T ], z ∈ R, ξ ∈ (0, 1), one has

|h(ξ, t, z)| ≤ c3(t)(1 + |z|).

Finally, let C ∈ L(H) be symmetric, nonnegative and such that C−1 ∈ L(H).
It is worth noting that it is not known whether under these assumptions

the stochastic differential equation (1.1) has a solution.
We set Y := D(F ) = L2m(0, 1) and prove that Hypotheses 2.1-2.3 and

condition (2.8) are fulfilled. So, we can apply Theorem 2.6 to get existence
of solutions to the Fokker-Planck equation (1.3) in this situation.

Note that Hypothesis 2.1 holds with ω = −π2 because A−1 is of trace
class. Furthermore, for α ∈ (0, 1] and (t, x) ∈ [0, T ]×H we set

Fα(t, x) :=
F (t, x)(ξ)

1 + α|F (t, x)(ξ)|
, ξ ∈ (0, 1). (4.1)
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Then Fα has all properties mentioned in Hypothesis 2.2 and (2.8) also holds
by Lebesgue’s dominated convergence theorem. Set

V (t, x) :=

{
2(c1(t) + c3(t))(1 + |x|mL2m(0,1)) if (t, x) ∈ D(F ) = [0, T ]× Y,
+∞ otherwise.

(4.2)
We are going to prove that Hypothesis 2.3 is fulfilled for this function V for
all s ∈ [0, T ]. First observe, that by (f1) and (h1) one has

|F (t, x)| ≤ V (t, x) <∞ ∀ (t, x) ∈ D(F ) = [0, T ]× Y. (4.3)

Furthermore, (2.6) follows for all s ∈ [0, T ) from the next proposition.

Proposition 4.1 Let α ∈ (0, 1], x ∈ Y = L2m(0, 1) and s ∈ [0, T ). Let
Xα(t, s, x), t ∈ [s, T ], be the martingale solution of the approximating stochas-
tic differential equation (2.4) started at x at time s. Then there exists C > 0
such that

E
(
|Xα(t, s, x)|2mL2m(0,1)

)
≤ C

(
1 + |x|2mL2m(0,1)

)
, ∀ t ∈ [s, T ]. (4.4)

Proof. We first note that by (f1), (f2), and (h1), for all y, z ∈ R, t ∈
[0, T ], ξ ∈ (0, 1), one has

f(ξ, t, y + z)y + h(ξ, t, y + z)y

= (f(ξ, t, y + z)− f(ξ, t, z))y + f(ξ, t, z)y + h(ξ, t, y + z)y

≤ c2(t)|y|2 + c1(t)(1 + |z|m)|y|+ c3(t)(1 + |y|+ |z|)|y|

≤ c(t)(1 + |y|2 + |z|m|y|),

(4.5)

where
c = c1 + c2 + 2c3 ∈ L1(0, T ).

Setting
Yα(t) := Xα(t, s, x)−WA(s, t), t ∈ [s, T ], (4.6)

(2.4) reduces to
d

dt
Yα(t) = AYα(t) + Fα(t,Xα(t, s, x)), t ∈ [s, T ],

Yα(s) = x.
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Here the equation is again meant in the mild sense. Now multiplying both
sides of the first equation by (Yα(t))2m−1 we obtain (after integration by
parts) that for t ∈ [s, T ] one has

1

2m

d

dt

∫
O

|Yα(t)|2mdξ + (2m− 1)

∫
O

|Yα(t)|2m−2|∂ξYα(t)|2dξ

=

∫
O

Fα(t, Yα(t) +WA(s, t))Yα(t)2m−1dξ,

where O := (0, 1). Taking into account (4.1) and (4.5) we deduce that for
t ∈ [s, T ] one has

1

2m

d

dt

∫
O

|Yα(t)|2mdξ

≤ c(t)

∫
O

[1 + |Yα(t)|2 + |WA(s, t)|m|Yα(t)|]|Yα(t)|2m−2dξ

≤ c(t)

∫
O

[
1 +

(
1 +

2m− 1

2m

)
|Yα(t)|2m +

1

2m
|WA(s, t)|2m2

]
dξ,

which implies that for cm := 4m and

κ := 1 + sup
(t,ξ)∈[0,T ]×(0,1)

|WA(s, t)(ξ)|

one has

d

dt
|Yα(t)|2mL2m(0,1) ≤ cmc(t)

(
κ2m2

+ |Yα(t)|mL2m(0,1)

)
, t ∈ [s, T ].

Applying a variant of Gronwall’s lemma we arrive at

|Yα(t)|2mL2m(0,1) ≤ exp

(
cm

∫ t

s

c(r)dr

)
|x|2mL2m(0,1)

+ κ2m2

cm

∫ t

s

exp

(
cm

∫ t

r

c(r′)dr′
)
c(r)dr.

Hence

|Yα(t)|2mL2m(0,1) ≤ ecm|c|L1(0,T )

(
|x|2mL2m(0,1) + κ2m2

cm|c|L1(0,T )

)
.

26



However, according to [15, Theorem 4.8(iii)], we have

γM := E(κM) <∞,

hence resubstituting according to (4.6) we obtain

E|Xα(t, s, x)|2mL2m(0,1)

≤ 2m−1γ2m + 2m−1ecm|c|L1(0,T )

(
|x|2mL2m(0,1) + γ2m2cm|c|L1(0,T )

)
,

and (4.4) follows. �
Since c1, c3 ∈ L2(0, T ), Theorem 2.6 now applies to all ζ ∈ P(H) such

that ∫
H

|x|2mL2m(0,1)ζ(dx) <∞. (4.7)

Now let us turn to uniqueness and the Chapman–Kolmogorov equations.
Let h ≡ 0 and c2 ≡ const. Then f is quasi-dissipative; in fact, each F (t, ·)
with domain Y is m-dissipative. Hence Hypothesis 3.2 is also fulfilled. Fur-
thermore, the function V defined in (4.2) satisfies (3.2), hence Theorem 3.6
applies to give us uniqueness for solutions of the Fokker–Planck equation
(1.3) for every initial condition ζ ∈P(H) satisfying (4.7), in particular, for
all ζ = δx, x ∈ Y = L2m(0, 1).

Furthermore, since | · |2mL2m(0,1) is an increasing limit of a sequence of non-

negative weakly continuous functions on L2(0, 1), by Remark 3.9, case (a),
it follows that (3.4) holds for all 0 ≤ r ≤ s ≤ T with H0 := L2m(0, 1).
Hence by Theorem 3.8 the Chapman–Kolmogorov equation (1.8) holds for
all x ∈ L2m(0, 1).
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[11] V. Bogachev, G. Da Prato, M. Röckner, W. Stannat, Uniqueness of
solutions to weak parabolic equations for measures. Bull. Lond. Math.
Soc. 39 (2007), no. 4, 631–640.
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