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Abstract

An error in the above paper is corrected. All main results of the
paper remain correct except for one: we get a slightly modified state-
ment concerning the path regularity of the constructed Markov process
at t = 0.

1 Introduction

We place ourselves entirely into the framework of the above paper [DPR02]
and assume the reader to be familiar with the notation introduced there.

There is an error in the proof of Lemma 5.5 which seems impossible
to be corrected without a further assumption. This slightly affects the path
continuity at t = 0 of the Markov process constructed subsequently. However,
Theorem 7.4, which is the only main result relying on Lemma 5.5, remains
correct just by changing the topology on the state space to the one naturally
given by the Markov process in question. More precisely, the Markov process
constructed in Theorem 7.4 which solves the desired martingale problem has
the following property for its path space measures Px :

(1.1) Px[C([0,∞); (H0, τS2)] = 1, ∀x ∈ H0
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where H0 := supp ν, with ν as in [DPR02, Hypothesis 2.1], is equipped
with the topology τS2 generated by the cone S2 of α-supermedian continuous
functions on H0 defined in [DPR02, Section 5].

If H0 is equipped with the norm topology induced by H, we only have

(1.2) Px[C((0,∞);H0)] = 1 ∀x ∈ H0,

The original slightly stronger claim in [DPR02, Theorem 7.4] that

(1.3) Px[C([0,∞);H0)] = 1

for x ∈ H0 remains unproven in general, unless dimH <∞. In this note we
prove (1.1) and (1.2) (cf. Theorem 7.4’ below) and, under the assumption
that dimH <∞, also (1.3) (see Proposition 2.1).

Finally, we take the opportunity to correct a misprint in the statement
of [DPR02, Lemma 5.6] and present a polished version of the proof of the
crucial [DPR02, Proposition 5.7]. Both are included in the appendix. All
applications in [DPR02, Section 9] are still valid, but if dimH = ∞, path
continuity at t = 0 is to be understood with respect to the topology τS2 .

2 Description of the problem

In the proof of Lemma 5.5 it cannot be concluded from the last inequality
that xn → x in H0. Hence {gn|n ∈ N}, though being point separating on H0,
may not generate the topology on H0 inherited from H. The proof, however,
can trivially be modified to prove that {gn|n ∈ N} generates this topology if
the following condition holds:

(C.1) lim
m→∞

mRmfk = fk uniformly on H0 for all k ∈ N,

with fk as defined in [DPR02, (5.5)]. This condition on the other hand can
be hard to check, in particular, if H is infinite dimensional.

Let us now list all places where Lemma 5.5 is mentioned or used in the
subsequent part of the paper. In the proof of Lemma 5.6 the map i : H0 →
i(H0) is clearly continuous, but Lemma 5.5 is quoted there to conclude that
it is a homeomorphism. Fortunately, only the continuity of i is used in the
rest of the proof, so Lemma 5.5 is not used here. In Corollary 6.4 assertion
(i) relies on Lemma 5.5 and should, therefore, be deleted.

The proof of Proposition 7.2 uses Lemma 5.5 in its last line. Its assertion
must be modified. The correct formulation is as follows.
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Proposition 7.2’. Let x ∈ H0. Then Px-a.s.

(2.1) lim
t→0
t>0

gn(X0
t ) = gn(x) ∀n ∈ N.

Because the gn do not generate the topology on H0 induced by the norm
| · | on H, we cannot in general conclude from here that

(2.2) lim
t→0
t>0

X0
t = x Px-a.s..

(So, only the very last line of the proof of Proposition 7.2 is erroneous.) (2.2)
is, however, true, if dimH <∞.

Proposition 2.1. Assume

(C.2) dimH <∞,

and let x ∈ H0. Then (2.2) holds and thus [DPR02, Theorem 7.4] holds.

Proof. Suppose we can prove that there exists V : H0 → R+ with relatively
compact level sets (with respect to |·|) which for some α > 0 is α-supermedian
for (p)t>0, i.e. eαtptV ≤ V on H0∀t > 0. Then as in the first part of the proof
of [DPR02, Proposition 7.2] the martingale convergence theorem implies that
Px-a.s.

lim
t→0
t>0

V (X0
t ) exists in R.

Hence for Px-a.e. ω ∈ Ω, X0
t (ω) is in a compact subset of H0 ∀t ≥ t(ω).

But all its accumulation point must coincide by (2.1) since the gn are point
separating. Hence (2.2) follows.
Claim. V := (1 + | · |)1/2 is α-supermedian for (pt)t>0 for some α > 0.
Indeed, for n ∈ N let χn ∈ C2

b (R), 0 ≤ χ′n ≤ 1, χn(s) = s ∀s ∈ [−n, n],
|χn(s)| = n+ 1 if |s| ≥ n+ 2, supn χ

′′
n =: c <∞, χn ≤ χn+1. Then it is easy

to see that χn(| · |) ∈ D(N2) and that for ν-a.e. y ∈ H.

N2χN(| · |2)(y) = χ′n(|y|2)N2| · |2(y) + χ′′n(|y|2)|C1/2D| · |2|2(y)

≤ (Tr C + 2〈Ay, y〉+ 2〈F0(y), y〉) + c4‖C‖ |y|2 ≤ αu
(2.3)

where u := 1 + | · |2 (∈ L2(H0, ν)) and α := max(Tr C + |F0(0)|2, 4c‖C‖+ 1)
and we used both Hypothesis 1.1(i) (which can, however, be avoided since
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dimH < ∞, so A is bounded) and the dissipativity of F0. Hence for un :=
1 + χn(| · |2) and all λ > 0 we have ν-a.e.

λRλ+αun = λRλ+α(Rα(α−N2)un)

= (Rα −Rλ+α)((α−N2)un)

= un −Rλ+α(αun −N2un)

= un −Rλ+α(αu−N2un)− αRλ+αun + αRλ+αu

≤ un + αRλ+αu− αRλ+αun,

where we used (2.3) in the last step. Consequently,

(λ+ α)Rλ+αun ≤ un + αRλ+αu, ν − a.e.

und letting n→∞ by monotone convergence

(λ+ α)Rλ+αu ≤ u+ αRλ+αu,

i.e. (since all involved functions are finite ν-a.e.)

λRλ+αu ≤ u ν-a.e..

We conclude that by Jensen’s inequality ν-a.e.

λRλ+αu
1/2 ≤ λ

λ+ α
((λ+ α)Rλ+αu)1/2 =

(
λ

λ+ α

)1/2

(λRλ+αu)1/2 ≤ u1/2.

But since u1/2 ∈ Lip(H) and since it easily follows from (5.3) by approxi-
mation that Rλ+αf ∈ Lip(H0) for all f ∈ Lip(H), it follows by continuity
that

λRλ+αu
1/2 ≤ u1/2 (everywhere) on H0.

Clearly, this is equivalent with the claim.

3 The correctly modified version of Theorem

7.4

In this section we will state and prove the correctly modified version of
[DPR02, Theorem 7.4].
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We first recall that our standing assumptions in [DPR02], namely Hy-
potheses 1.1 and 1.2, are still in force as well as Hypothesis 7.3 (i.e., A is
self-adjoint) and the assumption that C−1 ∈ L(H). Furthermore, we consider
the countable cone S2 of Lipschitz-continuous bounded functions, which are
α-supermedian (for (Rλ)λ>0) for some α ∈ Q+ \ {0}, introduced in prepara-
tion of [DPR02, Lemma 5.6]. By Proposition 5.2 we know that

lim
λ→∞

λRλ+αf(x) = f(x) ∀x ∈ H0, f ∈ S2

and this limit is in fact a supremum by the resolvent equation. Such α-
supermedian functions are called α-excessive functions, so S2 consists of α-
excessive (with respect to (pt)t>0 or equivalently to (Rλ)λ>0) functions. Let
τS2 be the topology generated by S2 onH0 (:= supp ν with ν as in Hypothesis
1.2).

Theorem 7.4’. (i) There exists a conservative (normal) strong Markov
process M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈H0) with τS2-continuous sam-
ple paths having transition semigroup (pt)t≥0 (as defined in [DPR02,
Proposition 5.7(iii)]). In particular, ν is an invariant measure for ν.

(ii) For x ∈ Px the paths t 7→ Xt are | · |-continuous on (0,∞) Px-a.s..

(iii) For every x ∈ H0, Px solves the martingale problem for N2 with test
function space

D0 := {ϕ ∈ D(N2) ∩ Cb(H)| N2ϕ ∈ L∞(H, ν)}

and initial condition x, i.e., under Px

(3.1) ϕ(Xt)−
∫ t

0

N2ϕ(Xs)ds, t ≥ 0,

is an (Ft)–martingale with X0 = x for all ϕ ∈ D0.

Proof. Let D denote the dyadics and Ω := HD
0 . Replacing the metric d in

[DPR02, Section 7] by the one generated by | · | and realizing that by the
same arguments as in the first part of the proof of [DPR02, Proposition 7.2]
we obtain that for all f ∈ S2

lim
t→0

f(X0
t ) = f(x) Px-a.s. ∀x ∈ H0,

the same proof as that of [DPR02, Theorem 7.4] implies (i) - (iii).
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Remark 3.1. It is possible to show that the set of all x ∈ H0, for which the
process Xt, t ≥ 0, is not weakly continuous at t = 0 Px-a.s., is polar, i.e. is
not hit by Xt, t ≥ 0, Py-a.s. for all y ∈ H0. This fact will be proved in a
forthcoming paper.

Appendix

Finally, in [DPR02] there was a mistake in the statement of Lemma 5.6. The
correct formulation and what was actually proved and used in the subsequent
part of the paper is the following

Lemma 5.6’. Let f ∈ S. Then there exists a ν–version ptf of Ptf, t > 0,
such that for all x ∈ H0

t 7→ ptf(x) is right continuous on [0,+∞),

and for λ > 0

(A.1)

∫ ∞
0

e−tλptf(x)dt = Rλf(x).

We also include a polished version of the proof of [DPR02, Proposition
5.7]:

Proof. (iii) and (iv) follow from (i), (ii) by exactly the same arguments used
in the proofs of [DPR02, Proposition 5.2] and [DPR02, Corollaries 5.3, 5.4].
So, we only have to prove (i),(ii).

(i) Let N ∈ N and let YN denote the closed ball of radius
√
N ‖f‖0 in

L2([0, N ], ds) equipped with the weak topology. So, YN is compact. Let
{ln| n ∈ N} be a dense set in L2([0, N ], ds) consisting of bounded functions.
Then

dYN
(h1, h2) : = ds

∑∞
n=1 2−n

(
‖ln‖L∞([0,N ],ds) + ‖ln‖L2([0,N ],ds) + 1

)−1

inf
(
|
∫ N

0
ln(s)(h1(s)− h2(s))ds|, 1

)
, h1.h2 ∈ YN ,

defines a metric on YN generating its topology, which is complete, since YN
is compact.
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Now consider the maps Λα,β
N : H → YN defined for α, β > 0 by

Λα,β
N (x) :=

(
s→ Pα,β

s f(x), s ∈ [0, N ]
)
, x ∈ H.

Then for all x, y ∈ H, α, β > 0, by [DPR02, (4.7)]

(A.2) dYN
(Λα,β

N (x),Λα,β
N (y)) ≤

∫ N

0

s−1/2ds‖C−1‖1/2‖f‖0|x− y|.

Since ν is a probability measure on a polish space there exist K̃n ⊂ H0, n ∈
N, compact and increasing, such that

lim
n→∞

ν(H0\K̃n) = 0.

Defining
Kn := supp [1K̃n

ν], n ∈ N,

it is easy to check (cf. the proof of [MR92, Chapter III, Proposition 3.8]),
that Kn ⊂ K̃n, n ∈ N, and still

lim
n→∞

ν(H0\Kn) = 0

and that, in addition,

(A.3) Kn ∩ U 6= ∅ ⇒ ν(Kn ∩ U) > 0, ∀ open sets U ⊂ H0, ∀ n ∈ N.

By [DPR02, Proposition 4.1] we can find αn,βn > 0, n ∈ N, such that

(A.4) lim
n→∞

R(λ,Nαn,βn

2 )f = R(λ,N2)f, ∀ λ > 0 in L2(H, ν) and ν − a.e..

Applying the Ascoli theorem and a diagonal argument, selecting a sub-
sequence if necessary, we obtain that there exists a map Λ : ∪nKn →
L∞([0, N ], ds) such that for all N ∈ N

(A.5) Λ(x)|[0,N ] = lim
n→∞

Λαn,βn

N (x) uniformly in x ∈ Kn, ∀ n ∈ N.

We now show that for all λ > 0

(A.6)

∫ ∞
0

e−λsΛ(·)(s)ds is a ν − version of R(λ,N2)f.
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To prove (A.6) let λ > 0. Then by (A.4), (A.5) and dominated convergence
for all g ∈ L∞(H, ν)

ds
∫∞

0
e−λs

∫
H
g(x)Psf(x)ν(dx) =

∫
H
g(x)R(λ,N2)f(x)ν(dx)ds

ds= limn→∞
∫
H
g(x)

∫∞
0
e−λsPαn,βn

s f(x)ds ν(dx)

ds=
∫
H

∫∞
0
g(x)e−λsΛ(x)(s)ds ν(dx) =

∫∞
0
e−λs

∫
H
g(x)Λ(x)(s) ν(dx)ds,

where the interchange of limits is justified, since |Pαn,βn
s f(x)| ≤ ‖f‖0 and

hence |Λ(x)(s)| ≤ ‖f‖0 for ds-a.e. s ∈ [0,∞) and all x ∈
⋃
nKn. So, (A.6)

follows. Obviously, by (A.5)

x 7→
∫ ∞

0

e−λsΛ(x)(s) ds

is continuous on each Kn, n ∈ N. Hence by (A.1) in Lemma 5.6’ and (A.6),
(A.3) for all f ∈ S,∫ ∞

0

e−λsΛ(x)(s) ds =

∫ ∞
0

e−λsp̄sf(x) ds for all x ∈
⋃
n∈N

Kn.

Hence by the uniqueness of the Laplace transform

(A.7) Λ(x)(t) = ptf(x) for a.e. t and all x ∈
⋃
n∈N

Kn.

So, if f ∈ S, and δk ∈ C∞0 (R), k ∈ N, approximate the identity, we obtain
for all x, y ∈

⋃
n∈NKn, that for some subsequence {kl} and a.e. t ∈ (0, N)

(A.8) ptf(x)− ptf(y) = lim
l→∞

∫ N

0

δkl
(t− s)(psf(x)− psf(y))ds.

But for l ∈ N the integral in (A.8) is by (A.7) and (A.5) equal to

lim
n→∞

∫ N

0

δkl
(t− s)(Pαn,βn

s f(x)− Pαn,βn
s f(y))ds,

which by [DPR02, (4.7)] is dominated by∫ N

0

δkl
(t− s)s−1/2ds ‖C−1‖1/2‖f‖0|x− y|

→ t−1/2 ‖C−1‖‖f‖0|x− y|, as l→∞.
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Since t → ptf(x) is right continuous for all x ∈ H0, [DPR02, (5.11)] follows
if f ∈ S. Since S is a vector lattice containing the constants and generating
B(H0), it follows that S is dense in L2(H0, ν). Now [DPR02, (5.11)] follows
for all f ∈ Bb(H0) and thus all f ∈ Bb(H) by approximation since Pt is
continuous on L2(H0, ν).

(ii). Let f ∈ S. Then [DPR02, (5.12)] follows by exactly the same ar-
guments as above, but employing [DPR02, (4.8)] instead of [DPR02, (4.7)].
If f ∈ S0, then mRmf ∈ S, m ∈ N, ‖mRmf‖0 ≤ ‖f‖0 and by [DPR02,
Proposition 5.2], limm→∞mRmf(x) = f(x) for all x ∈ H0 and

‖mRmf‖Lip ≤ ‖f‖Lip, ∀ m ∈ N.

Hence [DPR02, (5.12)] follows by approximation for f ∈ S0. Consequently,
using [DPR02, (5.8)] we can approximate again to obtain [DPR02, (5.12)]
for all f ∈ Lipb(H).
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