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Abstract. In this paper we present simple conditions for a Markovian resolvent of kernels on a general state

space to be associated with a right process. We apply this to the construction of Brownian motion on abstract

Wiener space and to identify new potential theoretic properties for it. In particular, we can define natural as-

sociated capacities and obtain new results for the solution of the Dirichlet problem with measurable boundary data.
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1. Introduction

The purpose of this paper is twofold: First, we want to present simple conditions for a Markovian
resolvent U of kernels on a general (Lusin measurable) state space E to be associated with a right process, a
classical problem even on more regular state spaces. As a consequence we can define associated capacities.
Furthermore, various other potential theoretic notions, techniques and results become available for U .
Second, we show that the said conditions are fulfilled for the resolvent of the Brownian semigroup on an
abstract Wiener space. Thus, we obtain a new construction of the classical Brownian motion on abstract
Wiener space first studied by L. Gross in [Gr 67]. But, in addition, we can then apply the powerful
machinery of potential theory to this process, since our construction implies that this Brownian motion
falls into the class of (Borel) right processes (see e.g. [BeBo 04] for the precise definition). In particular,
we have naturally associated capacities as in the finite dimensional case. This positively answers an old
question of R. Carmona from the seventies of last century.

We also adapt and employ a technique, earlier developed by the second named author, for essentially
finite dimensional (more, precisely, locally compact) state spaces, named “controlled convergence”. Thus,
we obtain new results on the boundary behaviour of the Dirichlet problem on an abstract Wiener space,
when the boundary data are merely measurable.

2. Framework and main results

Let (E,B) be a Lusin measurable space (i.e. it is measurable isomorphic to a Borel subset of a metrizable
compact space endowed with the Borel σ-algebra) and L be a vector lattice of bounded B-measurable
real-valued functions on E, 1 ∈ L, and F0 be a countable subset of L+ separating the points of E such
that the topologies on E generated by L and F0 coincide.

Let further U = (Uα)α>0 be a Markovian resolvent of kernels on (E,B), such that

(a) Uα(L) ⊂ L for all α > 0
(b) lim

α→∞
‖αUαf − f‖∞ = 0 for all f ∈ L.

We shall denote by E(U) the set of all B-measurable U-excessive functions: u ∈ E(U) if and only if u
is a positive numerical B-measurable function, αUαu ≤ u for all α > 0 and limα→∞ αUαu(x) = u(x) for
all x ∈ E. If β > 0 we denote by Uβ the sub-Markovian resolvent of kernels (Uβ+α)α>0.

Note that σ(F0) = B and using (b) one obtains that for all β > 0 we have:

(2.1) σ
(
E(Uβ)

)
= B and E(Uβ) is min-stable.

Recall that a Ray cone associated with Uβ is a cone R of bounded Uβ-excessive functions such that:
Uα(R) ⊂ R for all α > 0, Uβ

(
(R −R)+

)
⊂ R, σ(R) = B, it is min-stable, separable in the supremum

norm and 1 ∈ R. The topology on E generated by a Ray cone is called Ray topology.
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If M ∈ B and u ∈ E(Uβ), then the reduced function (with respect to Uβ) of u on M is the function
RM

β u defined by
RM

β u := inf
{
v ∈ E(Uβ)

∣∣ v ≥ u on M
}

.

Then (see e.g. [BeBo 04]) RM
β u is universally B-measurable. Let

R̂M
β u := sup

α>0
αUβ+α(RM

β u).

The set M ∈ B is called polar (resp. µ-polar ; where µ is a σ-finite measure on (E,B)) if R̂M
β 1 = 0

(resp. R̂M
β 1 = 0 µ-a.e.). Recall that if U = (Uα)α>0 is the resolvent associated with a right process

X = (Ω,F ,Ft, Xt, θt, P
x) with state space E, i.e.

Uαf(x) = Ex

∫ ∞

0

e−αtf ◦Xt dt

for all α > 0, x ∈ E and f ∈ pB (:= the set of all positive B-measurable functions on E), then by a
theorem of Hunt we have:

RM
β u(x) = Ex(e−αDM u ◦XDM

; DM < ∞) , R̂M
β u(x) = Ex(e−αTM u ◦XTM

; TM < ∞) ,

where DM (ω) := inf
{
t ≥ 0

∣∣ Xt(ω) ∈ M
}
, TM (ω) := inf

{
t > 0

∣∣ Xt(ω) ∈ M
}
, ω ∈ Ω.

Theorem 2.1. (a) The topology on E generated by L is a Ray topology.
(b) Assume that:

(∗) there exists a Uβ-excessive compact function v which is finite U-a.e. and has compact level
sets, i.e. Uβ(1[v=∞]) = 0 and the set [v ≤ α] is compact for all α > 0.

Then the resolvent U is associated with a Borel right (Markov) process with state space E. If v
is real-valued, then the process is càdlàg.

(c) Assume that (∗) holds and let p := Uβf0, with 0 < f0 ≤ 1, f0 ∈ pB, and let µ be a finite measure
on (E,B). Then the following assertions hold:
(i) The functional M 7→ cµ(M), M ⊂ E, defined by

cµ(M) := inf
{
µ(RG

β p)
∣∣ M ⊂ G open

}
is a Choquet capacity on E; see e.g. [BeBo 04]. If the function v is finite µ-a.e., then the
capacity cµ is tight, i.e. there exists an increasing sequence (Kn)n of compact sets such that
infn cµ(E \Kn) = 0.

(ii) Let M ∈ B. Then

cµ(M) = µ(RM
β p) = sup

{
ν(p · 1M )

∣∣ ν ◦ Uβ ≤ µ ◦ Uβ

}
.

The set M will be µ-polar and µ-negligible if and only if cµ(M) = 0.

Remark. A function v as in Theorem 2.1(b) above is also called Lyapunov function.

Sketch of the proof. (For a detailed proof we refer to [BeCoRö 07]). We shall outline two steps of the
proof of (b).

(I) Starting with property (2.1), one can show (cf. [BeBo 04] and [BeBoRö 06]) that there exist a
larger Lusin topological space E1, E ⊂ E1, E ∈ B1 (= the Borel σ-algebra on E1) and a Borel
right process with state space E1 having as associated resolvent an extension U1 = (U1

α)α>0 of U
to E1, U1

α(1E1\E) = 0.
(II) By assumption (∗) it follows that there exists an increasing sequence (Kn)n of Ray compact sets

such that infn R
E1\Kn

β 1 = 0 U1-a.e. Consequently, the set E1 \ E is polar and therefore U is the
resolvent associated with the restriction of the process to E. �

3. Application to the construction of Brownian motion on an abstract Wiener space

Let (E,H, µ) be an abstract Wiener space, i.e.
(
H, 〈 , 〉

)
is a separable real Hilbert space with corre-

sponding norm | · |, which is continuously and densely embedded into a Banach space
(
E, ‖ · ‖

)
, which is

hence also separable; µ is a Gaussian measure on B (= the Borel σ-algebra of E), that is, each ` ∈ E′,
the dual space of E, is normally distributed with mean zero and variance |`|2. Here we use the standard
continuous and dense embeddings

E′ ⊂ (H ′ ≡)H ⊂ E .
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We recall that the embedding H ⊂ E is automatically compact (see Ch.III, Section 2 in [Bo 98]). One
can show that the norm ‖ · ‖ is measurable in the sense of L. Gross (cf. [Gr 67]). Hence also the Gaussian
measures µt, t > 0, exist on B, whose variance are given by t|`|2, ` ∈ E′, t > 0. So,

µ1 = µ .

For x ∈ E, the probability measure pt(x, · ) is defined by

pt(x,A) := µt(A− x) , for all A ∈ B.

Let (Pt)t>0 be the associated family of Markovian kernels:

Ptf(x) :=
∫

E

f(y) pt(x,dy) =
∫

E

f(x + y) µt(dy) , f ∈ pB, x ∈ E.

By Proposition 6 in [Gr 67] it follows that (Pt)t≥0 (where P0 := idE) induces a strongly continuous
semigroup of contractions on the space Cu(E) of all bounded uniformly continuous real-valued functions
on E. Let U = (Uα)α>0 be the associated strongly continuous resolvent of contractions. Taking L = Cu(E)
it follows that U satisfies (a) and (b).

Theorem 3.1. There exists a Borel right (Markov) process with continuous paths and state space E,
having (Pt)t≥0 as transition function.

Sketch of the proof. (For a detailed proof we refer to [BeCoRö 07]). The proof is based on an application
of Theorem 2.1. The main point is to verify condition (∗) (the existence of a real-valued compact excessive
function). It turns out that it is sufficient to do this on the subspace E0 of E considered in [Ku 82] and
[AlRö 88]. �

Let W = (Ω,F ,Ft,Wt, θt, P
x) be the path continuous Borel right process with state space E, having

(Pt)t≥0 as transition function, given by Theorem 3.1; W is called the Brownian motion on E.
By Remark 3.5 in [Gr 67] it follows that the process W is transient, i.e. the potential kernel

Uf =
∫ ∞

0

Ptf dt

is proper (that is, there exists a bounded strictly positive B-measurable function f such that Uf is finite).
Let M ∈ B and PTM

be the associated hitting kernel,

PTM
f(x) = Ex(f ◦WTM

; TM < ∞) , x ∈ E, f ∈ pB.

If u ∈ E(U), then PTM
u = R̂Mu, and for each x ∈ E \ M the measure f 7→ PTM

f(x) is carried by the
boundary ∂M of M .

Remark. By assertion c) of Theorem 2.1 (since condition (∗) is verified) we obtain a natural capacity
associated with the Brownian motion on an abstract Wiener space, consequently we answer to the question
formulated by R. Carmona in [Ca 80], page 41.

4. Dirichlet problem and controlled convergence

Following [Go 72], a real-valued function f defined on an open set V ⊂ E is called harmonic on V , if
it is locally bounded, Borel measurable, finely continuous and there exists ρ > 0 such that

f(x) = PTE\Br(x)f(x)

for all r < ρ whenever B̄r(x) ⊂ V ; B̄r(x) denotes the closed ball or radius r centered at x, the fine
topology is the topology on E generated by E(Uβ).

We shall denote by HV : pB(∂V ) → pB(V ) the kernel defined by

HV f := PTE\V
f̄ �V , f ∈ pB(∂V ),

where f̄ is a Borel measurable extension of f to E, hence

HV f(x) = Ex(f ◦WTE\V
; TE\V < ∞) , x ∈ V.

HV f is called the stochastic solution of the Dirichlet problem for f (cf. [Go 72]).
By Corollary 1.2 and Remark 3.4 in [Gr 67] it follows that if V is strongly regular (i.e., for each y ∈ ∂V

there exists a cone K in E with vertex y such that V ∩K = ∅; a cone in E with vertex y is the closed
convex hull of the set {y} ∪ B̄r(z) and y /∈ B̄r(z)) and f ∈ Cb(∂V ), then HV f is harmonic on V and
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lim
V 3x→y

HV f(x) = f(y) for all y ∈ ∂V . Furthermore, if f ∈ pB(∂V ) is bounded, then HV f is harmonic

on V . Consequently, for every f ∈ pB(∂V ), HV f is the sum of a series of positive harmonic functions on
V .

Let f : ∂V → R̄ and h, k : V → R be such that k ≥ 0. We say that h converges to f controlled by k, if
the following conditions hold: For every set A ⊂ V and y ∈ ∂V ∩ Ā we have

(c1) If lim sup
A3x→y

k(x) < ∞, then f(y) ∈ R and f(y) = lim
A3x→y

h(x).

(c2) If lim
A3x→y

k(x) = ∞, then lim
A3x→y

h(x)
1+k(x) = 0.

Remark. Following [Co 95] and [Co 98], the controlled convergence intends to offer a new method for
setting and solving the Dirichlet problem for general open sets and general boundary data. In the above
definition the function f should be interpreted as being the boundary data of the harmonic function h.
The function k is controlling the convergence of the solution h to the given boundary data f . Note that
the case k = 0 corresponds to the classical solution: lim

V 3x→y
h(x) = f(y) for any boundary point y.

Theorem 4.1. Let V ⊂ E be a strongly regular open set, λ be a finite measure on V and λ̂ be the measure
on ∂V defined by λ̂ := λ ◦HV . If f ∈ L1

+(λ̂), then there exists g ∈ pB(∂V ) such that k := HV g ∈ L1
+(λ̂)

and HV f converges to f controlled by k on the set [k < ∞].

Proof. See [BeCoRö 07]. �
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