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Abstract

This paper is devoted to the numerical analysis of abstract semilinear parabolic
problems u/(t) = Au(t) + f(u(t)),u(0) = u°, in some general Banach space E.
We prove a shadowing Theorem that compares solutions of the continuous prob-
lem with those of a semidiscrete approximation (time stays continuous) in the
neighborhood of a hyperbolic equilibrium. We allow rather general discretization
schemes following the theory of discrete approximations developed by F. Stum-
mel, R.D. Grigorieff and G. Vainikko. We use a compactness principle to show
that the decomposition of the flow into growing and decaying solutions persists
for this general type of approximation. The main assumptions of our results
are naturally satisfied for operators with compact resolvents and can be verified
for finite element as well as finite difference methods. In this way we obtain a

unified approach to shadowing results derived e.g. in the finite element context
([19, 20, 21]).
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1 Introduction

Classical shadowing results state that pseudo-trajectories of a finite dimensional
dynamical system can be 'shadowed’ by true trajectories provided the system has



some kind of hyperbolicity. This is usually stated in a more quantitative form as
follows. For any given € > 0 there exists some § > 0 such that for any pseudo-
trajectory, that allows jumps of size § at successive time instances, there exists a
true trajectory within an e-neighborhood of the pseudo-trajectory uniformly in time.
Such statements hold for both time continuous and time discrete dynamical systems
within or in the neighborhood of (suitably defined) hyperbolic sets. We refer to the
monographs [23] and [24] for an excellent account of various shadowing results.

When numerical approximations are to be included into such an approach one
realizes that the concept of a pseudo-trajectory needs a considerable extension for a
shadowing principle to be still valid. For example, discretizing an autonomous ODE
by a one-step method leads to a mapping depending on step-size and shadowing now
means approximation of a discrete time orbit by a true continuous trajectory or vice
versa. A result of this type was derived in [7] near stationary hyperbolic points and
for more general hyperbolic situations in [12].

Shadowing results for numerical approximations of time-dependent partial differ-
ential equations usually involve both time and space discretization, i.e. the continuous
trajectory in an infinite dimensional space should be shadowed by a discrete time tra-
jectory in a finite dimensional space and vice versa.

Such a result was derived in [21] for a finite element method combined with the
backward Euler discretization in time when applied to a nonlinear reaction diffusion
system in the neighborhood of stationary hyperbolic solution. These results extended
earlier work on semidiscretizations with finite elements by the same authos [20]. Shad-
owing results for semi-discretizations in time were shown earlier in [1] near hyperbolic
stationary states and, more recently, for a linear but nonautonomous setting in [22].

The purpose of this paper is to study shadowing properties of rather general spatial
discretizations of a nonlinear evolution equation in some Banach space

u'(t) = Au(t) + f(u(t)),t >0 u(0)=u"€ F, (1.1)

where A is a closed operator that generates an analytic semigroup exp(tA) on E.
For the discretization in space we use the theory of discrete approximations as de-
veloped in [13],[28],[32],[33],[34]. As is known for stationary problems this theory
provides a unified framework for handling such diverse approximations as (conform-
ing and nonconforming) finite elements methods, finite difference methods (see [32])
and perturbations of domains ([4],[29]).

We consider a family of discretized problems indexed by n € N

ul (t) = Apun () + fun(t), t >0, u,(0)=ud € E,, (1.2)

where the spaces are related by discretization maps p, : F — FE, and the closed
operators A, satisfy certain compatibility requirements with respect to the continuous
operator A.

Our main results (see Theorems 4.4 and 4.6 ) show that mild solutions near a
hyperbolic equilibrium of the system (1.1) can be shadowed on arbitrary large time
intervals by corresponding mild solutions of the system (1.2) and vice versa. While
our approach still follows the general idea of constructing shadowing trajectories from
boundary value problems as in [1],[7],[20],[21], we encounter several difficulties that
must be resolved when working in the general framework:



(1) When using the standard interpolation spaces E<, ES (see e.g. [15]) for the
operators f : EY — E, f, : ES — E,, exp(tA) : E — E“, exp(tA,) : E, — EY
it becomes necessary to construct discretization maps pj; : £ — EJ that inherit
properties of p,.

(74) The discretization maps p,, p% need to be adapted to the hyperbolic splitting
of the linear operators obtained by linearizing about the hyperbolic equilibria.

(7t) While the theory of discrete approximations allows to control eigenvalues of
finite multiplicity in a bounded domain it is necessary to assume resolvent es-
timates for A, in a sectorial region of the complex plane (condition (B;) in
Theorem 3.5).

(tv) When shadowing solutions of (1.2) by those of (1.1) one needs to approximate
elements from FE,, by those of E which is not obvious since we avoid the use of
interpolation operators.

Our main tool to solve these problems will be compactness properties of resolvents
as well as of initial values of trajectories to be shadowed. In section 2 and 3 we
collect the main technical tools for proving the shadowing theorems in section 4.
The application to finite element and finite difference approximations is discussed in
section 5. In particular, it turns out that several of the issues raised above are resolved
in a natural way and that we retrieve some shadowing results from [20],[21].

We have limited the current paper to the simplest case where shadowing is possible
in the framework of discrete approximations. We expect that the approach can be
extended substantially to cover systems with more general hyperbolic structures (see
[8] for the case of attractors) to derive error bounds for stable and unstable manifolds
as well as shadowing estimates with weak singularities for noncompact initial values.

2 Preliminaries

Let B(E) denote the Banach algebra of all bounded linear operators on a complex
Banach space E. The set of all linear closed densely defined operators in F will be
denoted by C(E). For B € C(E) let o(B) be its spectrum and p(B) be its resolvent
set. In a Banach space E we consider the following inhomogeneous Cauchy problem:

u'(t) = Au(t) + g(t), t € [0,T],

u(0) — e (2.1)

where A € C(E) generates a Cp-semigroup and g(-) is a function from [0,77] into E.
The problem (2.1) can be considered in various function spaces. The most popu-
lar spaces for which well-posedness can be shown are C([0,7T]; E),C§([0,T]; E), and
LP([0,T]; E) spaces (see [5, 35]).

In general one considers a mild or so-called generalized solution of (2.1), i.e. the
function

u(t) = exp(tA)u’ + /Ot exp((t — s)A)g(s)ds, t > 0. (2.2)
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Now we proceed to the semilinear autonomous parabolic problem

u'(t) = Au(t) + f(u(t)), t = 0,

u(0) =u’ € E, (2:3)

where the function f(-) : E — E is locally Lipschitz, bounded and continuously
Fréchet differentiable. It is well known that under these assumptions the mild solution
of (2.3) exists on a maximal interval. Moreover, writing the solution as u(t) = T'(t)u",
we obtain a nonlinear semigroup 7'(-) on F that satisfies the variation of constants
formula

T(t)u® = exp(tA)u’ + /Ot exp((t — 8)A) f(T(s)u’)ds, t > 0. (2.4)

The equilibria of (2.3) are solutions u € D(A) of the equation
Au+ f(u) =0. (2.5)
Definition 2.1. A solution u* of (2.5) is called hyperbolic if o(A+ f/'(u*)) NiR = ().

In case A has a compact resolvent we can conclude that any hyperbolic solution
is isolated. Moreover, if all solutions of (2.5) are hyperbolic, then there is an odd
number of them [8].

One should note that even in case of (2.2) and analyticity of the Cy-semigroup
exp(-A) the function u(-) is not necessarly differentiable if g(-) € C([0,T]; E), i.e. (2.1)
is not classically well-posed in C'([0, T]; E) for a general Banach space E. However, the
problem (2.1) is classically well-posed in C([0,T]; E%), (see |9, 10, 27]), where E¢ =
(E,D(A)), is a suitable interpolation space. Moreover, if one has in mind applications
like the space E = LP(Q2) and needs Fréchet differentiability of the function f(-) :
L?*(Q)) — L*(Q), then the function f(-) must be linear, cf. [2]. To cover more general
nonlinearities one would like to work with the weaker assumption that f(-) maps
H} () into L?(2) and is differentiable. The difficulties caused by these facts can be
resolved by considering the problem (2.3) in a Banach space E* 0 < o < 1, and
assume that f(-) : E* — F is Fréchet differentiable with derivative at the equilibrium
f'(u*) € B(E®, E). In case of E = L?*(Q) and A = A one normally has E'/2 = H}(Q)
for the a = 1/2 case.

In the following let A : D(A) C E — E be a closed linear operator, such that

I = A) e <

M
STT for any Re\ > 0. (2.6)

In such a situation we have §(A) = sup{ReX : A € 0(4)} < 0. Let (—A)%, a €

RT, denote the fractional power operators (see |15, 18|) associated to A and let

E® := D((—A)%) be the corresponding spaces endowed with the graph norm ||z|| g =

I(—A)*z||g. Let Uga(0; p) denote the ball with center 0 and radius p > 0in E* space.
For some 0 < « < 1 consider the semilinear equation (2.3) in the space E“

W/ (t) = Au(t) + f(ult)), t > 0,

u(0) = u’ € E°, (2.7)

where f(-): E* C E — E satisfies the following condition:



(F1) For some p > 0 the function f : Uge(u*; p) — E is continuously Fréchet differ-
entiable and for any ¢ > 0 there is a § > 0 such that || f'(w) — f'(2)l|p(ge,p) < €
for all w,z € Uga(u*; p) with [|Jw — z||ga < 6.

Here and in what follows u* always denotes a hyperbolic equilibrium of (2.3).
By the change of variables v(-) = u(-) — u* problem (2.7) may be written in the
form
V' (t) = Apv(t) + Fye(v(t)), v(0) = 0%, t >0, (2.8)

0 0

where vY = " — v* and

Ay = A+ J/(u"), P (w) = Fw+ ') = f(u?) = /() for [ullpe < p. (29)

Note that Fy«(w) = f(w + u*) — f(u*) — f/(u*)w is of order o(||w||g«) and that
the operator A« = A+ f/(u*) generates an analytic Cy-semigroup since f’(u*) €
B(E“,E).

We assume that the part o of the spectrum of A+ f’(u*) which is located strictly
to the right of the imaginary axis consists of a finite number of eigenvalues with finite
multiplicity. This assumption is satisfied, for instance, if the resolvent of the operator
A is compact. In case of a hyperbolic point u* there is no spectrum of A,» on iR. Let
U(cT) C {\ € C:ReX > 0} be an open connected neighborhood of o with a closed
rectifiable curve QU (o) as boundary. We decompose E® using the Riesz projection

-1
P(o") := P(o*, Ays) = QLM o (gf_ Au*) d¢ (2.10)

defined by o. Due to this definition and analyticity of the Cp—semigroup exp(tA,)
we have positive constants My, 3 > 0, such that (cf. [15])

Mye ?|lv||ga, t>0, ve(I—P(oh))E,
* o < - .
H exp(tAu )U”E > { MleBtHUHE% t< 07 = P(U+)Ea. (2 11)
Without loss of generality we can adapt the norm in E% such that
[0l pe = max(||P(o+)v| g, [(I — P(o+))v]g«). (2.12)

If 0 is close to 0, i.e. say v0 € Upa(0; p), then the mild solution v(t;v%) of (2.8) can
stay in the ball Uga (0; p) for some time. We will recognize such a solution as a solution
of a boundary value problem where the stable part is prescribed at the beginning and
the unstable part at the end. More precisely, for any two v~,v" € Uga(0; p) and for
any 0 < T' < oo we consider the boundary value problem

{ V'(t) = Apu(t) + Fur (0(t), 0<t<T, (2.13)

(I —P(o™))v(0) = (I —P(ot))v—, P(c™)v(T) = P(o™)vt.

In case T' = oo the second boundary condition is empty and the differential equation
holds on [0,00). A mild solution of problem (2.13) satisfies the integral equation

v(t) = exp((t — T) Ay )P(o vt + exp(tAy)(I — P(o™))v™ + (2.14)



T
—i—/ Lp(t, s)Fyx(v(s))ds, 0 <t <T,
0
where we define the Green’s function I'r by

[ exp((t —8)Au)I — P(c™)), 0<s<t<T,
Lr(t,s) = { exg((t —8)Ayu)P(o™), 0<t<s<T. (2.15)

Note that (2.11) implies

6713|t78‘
IPr(t, s)zl|lpe < My

el (2.16)

Again, in case T' = oo we set the term involving v in (2.14) equal to zero. Existence
and uniqueness of solutions to (2.14) is established by the following Proposition.

Proposition 2.2. Let A and f satisfy the conditions above, in particular, let (F'1) be
satisfied. Then there exists p > 0 such that for any 0 < pa < p we find a 0 < p1 < po
with the property that equation (2.14) has a unique solution v(-) = v(u™,u™,-) €
C ([0, T);Uga(0; p2)) for all vE € Uga(0,p1) and all 0 < T < co. If T = oo, then
lo(®)]|ge — 0 as t — oc.

Proof. We apply Lemma 6.1 with the setting Y = Z = C([0,T]; E“) which is to be
understood as the space of continuous and bounded functions in case T' = co. We
further set yo = 0, F(v) = v—G(u~,ut;v), where the operator G(v™—,v";v) is defined
by the right hand side of (2.14). First note that F'(0) = I — G)(u~,u™;0) = I, so
that we can take o = 1 in Lemma 6.1. For any two v, w € Uy (0, p2) we have by (2.16)
and (F'1)
I(Guo™,v™0) = G vt w) Jullz <
T

< sup || [ Trltys) (Bl (0(s)) = Fie o (w(s)) ) uls)ds| g <
0<t<T 0

r e_ﬁlt_s‘ !/ * / *
<o swp [T () + ) = () ) () s <

1 1
< Miglluly — sup 1 (01) = f'(w2)llB(e )y < 5 llully (2.17)

v1,v2€U ga (0,p2)

for po sufficiently small. Finally choose p; = fWQI and obtain

IFO)lge < sup (Mie™ (I = P(e*))u™ |lge + My D[P ut || e ) <
0<t<T

o1
< Mi2p; < 5h2
Consider now the case T' = co. where we write (2.14) as

(t) = exp(tAu)(I — P(0™))o(0)+ (2.18)



[e.9]

+ /O exp((t - ) Ay ) (I — Po)) Fye (0(s))ds + / exp((t— ) Ay ) P(0) Fye (0(s))ds,

Now, we argue as above with the space C(]0,00); E%) replaced by
Co([0,00); E*) = {u € C([0,00); EY) : |Ju(t)]|g« — 0ast — oo}. Note that
G(u~,u™,-) maps this space into itself since ||v(t)||ga — 0 as t — oo implies

[ (v() |z — 0 as ¢ — oo. (2.19)

The operator G(v™;v) defined on the right of (2.18) is continuous in both argu-
ments and maps the space Cy([0;00); E%)) into itself. Indeed, for ¢ > T we have

I(=A)* G5 0)(t)lle < Mie™ (I — P(o™))o™ || po+ (2.20)

) T ,—B(T—s) —B[t—sl
+Mie /0 WHFM( ( ||E d5+/ Ml t|a||FU*(U(S))||E ds.

Given € > 0 we first take 7" so large that the first term and the second integral are

below ¢/3 for all ¢ > T then we choose t large so that the first integral is below €/3.
So there is a unique solution of the equation v(-) = G(v—;v) in Cy([0;00); E<)

and the result follows by uniqueness. |

3 Discretization of operators and semigroups

In the papers [13, 28, 31, 32, 33, 36| a general framework was developed that al-
lows to analyze convergence properties of numerical discretizations in a unifying way.
This approach is able to cover such diverse approximations as (conforming and non-
conforming) finite elements, finite differences, collocation methods and perturbation
of domains. Our paper aims at showing that one can derive shadowing properties
within this framework.

3.1 General approximation scheme

We first describe the general approximation scheme as developed in [13, 28, 32, 33, 34].
Let E, and E be Banach spaces and {p,} be a sequence of bounded linear operators
n:E— E,,p, € B(E,E,),n e N={1,2,---}, with the property:

lpnz|lE, — ||z||E as n — oo for any = € E. (3.1)

Definition 3.1. The sequence of elements {x,},x, € E,,n € N, is said to be P-

convergent to x € E iff ||xn, — pn|g, — 0 as n — oco. We write this as Ty,

Definition 3.2. The sequence of bounded linear operators B, € B(E,),n € N, is
called PP-convergent to the bounded linear operator B € B(FE) if for every x € E and

for every sequence {x,},x, € En,n € N, such that wnlx one has annLBa:. We
. PP
then write B,— B.



The simplest case is F, = E and p, = I for each n € N, where I is the iden-
tity on E. Then Definition 3.1 leads to the traditional pointwise convergence of
bounded linear operators which we denote by B,, — B. For various notions related to
P—convergence and for several applications we refer to [28],[32],[33]. An elementary
consequence of Definition 3.2 is the following (see [28], [32])

Lemma 3.3. Let B,,, B be as above. Then BnE»B 18 equivalent to boundedness of

||Br|| and the condition Bnpnxi»Bx Vr € E. If this holds then for any compact set
K C E we have

sup || Bppnx — pp Bzl — 0 as n — oo. (3.2)
zeK

Proof. For the first statement we refer to [28], [32]. The proof of (3.2) is by contra-
diction. Assume ||Bpppz™ — pp,Bx"™|| > € > 0 for some sequence 2" € K,n € N, and
some € > 0. Then take a subsequence z",n € N’ C N, with 2" — x for some x € K
and find a contradiction from

| Bnpnz™ — pnBx"|| < || Bullllpn(z™ — )|l + | Bupnz — pnBz|| + |lpn B(x — 2™)|| — 0

asn € N. [ |
For unbounded operators that occur as infinitesimal generators of PDE’s the no-
tion of compatibility turns out to be useful.

Definition 3.4. The sequence of closed linear operators A, € C(Ey,),n € N, is called
compatible with a closed linear operator A € C(E) iff for each x € D(A) there is a
sequence {xn},x, € D(A,) C En,n € N| such that xnim: and AnanAx. We
write (A, A) are compatible.

For analytic Cyp-semigroups the following ABC Theorem holds, see [25].

Theorem 3.5. Let the operators A and A, generate analytic Cy-semigroups. The
following conditions (A) and (By) are equivalent to condition (C1).
(A) Compatibility. There exists a A € p(A) N(\,en P(An) such that the resolvents
converge (AT — A,) L E5 (A — A)~L;

(By) Stability. There are constants My > 1 and we € R such that

My

M, — A, < ——
II( )l < = o)

, Re\ > wo,n € N;

(C1) Conwergence. For any finite 1 > 0 and some 0 < § < 5 we have

max : | exp(nA,)ul — p,exp(nA)u’]| — 0 as n — co whenever ugiuo.

neEX (0,

In (Cy) we denote by X(0, ) = {z € C: |z| < u,|arg(z)| < 0} the sector of angle 20
and radius (.

As a simple corollary we obtain uniform convergence on compact sets (the proof
follows in the same way as (3.2))



Corollary 3.6. Under the assumptions (A) and (B1) of Theorem 3.5 we have for
any compact set K C E

max max ||(exp(ndn)pn — pnexp(nA))u’|| — 0 as n — oo. (3.3)
uleK neXx(0,u)

The semidiscrete approximation of (2.1) are the following Cauchy problems in

Banach spaces E,:
ul (t) = Apun(t) + gn(t), t € [0,T],

1 (0) = . (3.4)

with operators A,, which generate Cy-semigroups, A,, and A are compatible, u%LUO

and gn()Lg() in an appropriate sense. It is natural to assume for a typical semidis-
cretization that conditions like (A) and (Bj) are satisfied.

Definition 3.7. The region of stability Ay = As({4n}), An € C(By), is defined
as the set of all A € C such that X € p(Ay,) for almost all n and such that the
sequence {||(M, —Ap) Y| }nen is bounded. The region of convergence A, = A.({An}),
A, € C(Ey), is defined as the set of all A\ € C such that X € As({An}) and such
that the sequence of operators {(\,, — Ap) ™ }nen is PP-convergent to some operator
S(\) € B(E).

Definition 3.8. A sequence of operators {L,}, L,, € C(E,), is called regularly com-
patible with an operator L € C(E) if the following conditions hold

(1) (Ln,L) are compatible,

(73) for any bounded sequence ||x,|| g, = O(1) such that x, € D(L,,) and {L,x,} is
P-compact, it follows that {x,} is P-compact;

(791) the P-convergence of {x,} to some element x and convergence of {Lnx,} to
some element y as n — oo imply that x € D(L) and Lz = y.

Definition 3.9. The region of reqularity A, = A.({Ay}, A), is defined as the set of
all X € C such that (L,(X\), L(X\)) are regularly compatible, where L, (\) = A, — Ay,
and L(A\) =X — A .

The relationships between these regions are given by the following result, see [34].

Proposition 3.10. Suppose that A, # O and N'(S(N\)) = {0} for at least one point
X € Ac. Then (An, A) are compatible and

A.=AsNp(A) = AsNA,.

Note that A, # 0 and N'(S(\)) = {0} imply S(A) = (A — A)~L.

Let A C C be some open connected set. For an isolated point A € o(A) we
denote the corresponding generalized eigenspace by W(\; A) = Q(M\)E, where Q(\) =
zim' [ (¢I—A)7'd¢ and § is small enough so that there are no points of o(A) in

I¢=A|=0
the disc {¢ : |¢ — A| < ¢} different from A. The isolated point A € o(A) is called a



Riesz point of A if A\I — A is a Fredholm operator of index zero and Q(\) is of finite
rank. In a similar way we define the invariant subspace

W()\aé; An) = @ W()‘naAn)7

An€a(An),
[An—X|<6&

where W(A, 0; Ay,) = Qn(N)E,, and the projector @, (A) is given by

@) =5r [ (-t

T omi
c-X=5

The following theorem gives rather complete information about the approximation of
the spectrum, see [32].

Theorem 3.11. Assume that L,(\) = A\, — A, and L(\) = X\ — A are Fredholm
operators of index zero for all X € A. Suppose that L,(\) — L(\) regularly for any
A €A and p(B) N A # 0. Then the following assertions hold

(7) for any Ao € o(A) NA, there exists a sequence {\,}, \n € 0(Ay), n € N, such
that A, — Ay as n — oo;

(ii) if for some sequence {\,}, \p, € 0(4,), n €N, one has A, — Ao € A asn — oo,
then Ao € o(A);

(7it) for any x € W(\g, A), there exists a sequence {x,}, x,, € W(Xo,0; An), n € N,
such that v, — T as n — oo;

(iv) there exists ng € N such that dim W (g, 0; A,,) = dimW(\g, A) for all n > ny;

(v) any sequence {xp}, x, € W(Xo,0; An), n € N, with ||x,||g, = 1 is P-compact
and any limit point of this sequence belongs to W(\g, A).

It is shown in [34] that this theorem holds for closed operators as well.

Remark 3.12. A Riesz point Ao € o(A) is called strongly stable in Kato’s sense if
dim W( Ao, 0; A,) < dimW (N, A) for all n > ng. It was shown in [34] that a Riesz
point N\g € o(A) is strongly stable in Kato’s sense iff \o € AN A, No(A).

In the case of operators which have compact resolvent it is natural to consider
approximate operators which 'preserve’ the property of compactness.

Definition 3.13. A sequence of operators {B,}, B, : E, — E,, n € N, converges

compactly to an operator B : E — E if Bnt and the following compactness
condition holds:
lznllE, = O(1) = {Bnhx,} is P-compact.

Definition 3.14. The region of compact convergence of resolvents, Aqe = Ace(Ap, A),
where A, € C(Ey,) and A € C(E) is defined as the set of all A € A.N p(A) such that

(A, — An)_lm()\l — A)~! compactly.

10



The region of compact convergence A.. can be characterized as follows, see [26].

Theorem 3.15. Assume that A.. # (). Then for any ( € Ay the following implication
holds:

|lxnllE, = O() & ||(CLy — Ap)zy||B, = O(1) = {z,} is P-compact. (3.5)
Conversely, if for some ¢ € A.N p(A) implication (3.5) holds, then A # 0.

The condition A.. # () has many consequences, for example [8§]

Ao 20 = (—An)_o‘m(—A)_o‘ compactly for all 0 < o < 1. (3.6)

One can compare the conditiion A.. # () with regular compatibility (ii) of Defi-
nition 3.8 and see that A.. # () implies regular compatibility. Moreover, by [14] we
have

A 20 = A,e.=A.Np(A) and A, =C. (3.7)

Lemma 3.16. Assume that A.. # 0. Let A be a compact subset of p(A). Then there
is a constant ny > 0 such that A C p(A,) for all n > ny and

sup ||(A,, — Ap) 7Y < oo. (3.8)
AEA
n>na

Proof. First select u € A.. and prove that there is a ny > 0 such that A C p(4,)

for all n > mp. Suppose contrary to our claim that we have a subsequence v, €
D(A,),||lvn|| = 1,n € N and A, € A such that A\,v, — A,v, =0. Then \, > XA € A
for some subsequence N” C N’ and from the boundedness of pv, — Apv, = (u —

An)vn, we obtain from Theorem 3.15 that Un—Lov € E,|jv|| =1 for some subsequence

N” c N”. Since A, = C by (3.7) and (M, — An)anO Definition 3.8 leads to
v € D(A), (M — A)v = 0, which contradicts A € p(A).
To prove (3.8) consider Hilbert’s identity

(M, — A = (u, — Ap) ™t = (u = N (ML, — Ay) Y, — Ap)7t
for any A € p(A,,). One can write
()\In - An)il = (In - (,u - )‘)(,U'In - An)il)il(MIn - An)ila

for A € A. Since (u — \)(ul, — A,)~1 converges compactly to (u — \)(ul — A)~*
and I, 25T stably one gets that I,, — (u — A)(ulpn, — An)_lml — (= A)(ul — A7t
regularly which implies that

1(In = (1 = X)(udn — An) ™) 7Y < C for any X € A.

The Lemma is proved. |
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3.2 Estimates for the linear case

The following Lemma gives the crucial linear estimate for our main Theorem 4.4.

Lemma 3.17. Assume that Ac. # 0 and let the conditions (2.6), (B1) be satisfied.
Then there exist constants M > 1,0 > 0 such that for all 0 < a <1

| exp(tAn)| (&, Ba) < Mt~ for allt > 0. (3.9)

Proof. We introduce the sector £(m — ¢,w) = {A € C : |arg(A —w)| < ™ — ¢} for
weRand 0 < ¢ < §. From condition (B;) we obtain suitable w3 € R, n,, € N and
0 < ¢ < 5 such that

M
(AL, — Ap) " < o ‘Z} ‘ for all A € X(r — ¢, ws3) and n > ng,. (3.10)
— w3

From (2.6) it follows that Reo(A) < w’ for some w’ < 0 and moreover |[(Al —A)71|| <

\)\——N{u'\ for ReA > w'. Now let 0 < @ < |w'| and consider the triangular region A =

{AeC:ReX> —w and A\ ¢ X(7m — ¢,ws)}, see Figure 1.

A
G
E¢M3
Gl/
Z ¢
—w / w3
‘/ /
G

Figure 1: Figure 1

Then A is compact and A C p(A). By Lemma 3.16 there is a constant ny > 0
such that A C p(4,) for all n > ny and sup xea ||(AM, — A,) 7| < oo. With the
n>na



contour G composed of {\ : ReA = —@} and part of the boundary 0¥ (7 — ¢, ws) (see
Figure 1) we have the representation

1
exp(td,) = o /G NN, — Ay) .

Using the estimate (3.10) of resolvents ||(Al,, — A,) || and the uniform bound on G
one gets the estimate (3.9) for ¢ > 0, cf. (2.16). [ |
Next we introduce the operators

po = (—A4,) “pr(—A)* € B(E*,EY) (3.11)

and show that they have the property (3.1), but for the spaces E*, E. We then write

Tn s iff |l — ppz||Ee — 0 as n — oco. Obviously we have
|#n — przleg = (= An)"@n — pp(—A)*z| and

Ipnellsg = llpn(=A)*2|E, — I(=A)*2| g, = [z]ps asn — o0

for any x € D((—A)%) so that (3.1) is satisfied.
For the nonlinear result we need a theorem on uniform convergence for linear
inhomogeneous problems with compact data.

Theorem 3.18. Let A: D(A) C E — E be a closed operator satisfying (2.6) (in
particular, A generates an exponentially decreasing semigroup). For the approximate
system (3.4) assume A.. # 0 and let conditions (A) and (By) of Theorem 3.5 hold.
Let K1 C E® and Ky C E be compact sets. Then for any € > 0 there exist ny =
ni(e) € N and 6 = 6(g) > 0 such that the following property holds for all 0 < T < oo.
For any solution u(t) of (2.1) with u(0) = u® € Ky and g(-) € C([0,T); K2) and
for any solution u,(t) of (3.4) with u,(0) = pdu® and g,(-) € C([0,T); E,) with
lgn(t) — Png(t)||E, <6 fort €[0,T],n > ni we have the estimate

lun(t) — pru(t)||pe <€ foralln>mny, 0<t<T. (3.12)

Proof. Let u(t),u(0) = u® and u,(t;u%),u® = p®u® denote the mild solution of (2.1)
and (3.4), respectively and let g, g, be as in the Theorem. Then the following holds

u(t;u®) = exp(tA)u’ + /t exp((t — s)A)g(s)ds, t € [0,T],
0

un (t;u) = exp(tAy)uy + /0 exp((t — s)Ap)gn(s)ds, t € [0,T].

By Lemma 3.17 we have || exp(tA,)|| < Me ! for w > 0, > 0. Therefore for any
€ > 0 there is T such that

I (exp(tAn)pl — piexp(td))ullpg < Me " ||ul|pe < et > T, (3.13)
and by Corollary 3.6 there is n(7) such that

I (—An)a<exp(tAn)pg e exp(tA))uOHEn <ete|0,T]asn>n(T). (3.14)
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We note that in case T, > T we merely need a compactness argument. A similar

remark applies to the following estimates of integrals. For the ease of presentation we

extend ¢(t) and g¢,,(t) as constants for ¢ > T and argue in the following for 0 < t < co.
Consider the Ey-norm of the difference of integrals, i.e.

- | (exp«t ) A)gn(s) — 2 exp((t — s>A>g<s>)ds - @3)

— (—4,)° /Ot exp((t — 8)Ay) (gn(s) - png(s)>ds

+ean [ (= )4, — i exp((t ~ )4)) o(5) d.

The first term can be estimated in two parts

Can ([ ) = Cane [ et (o -9 - pate - )

+(—An)°‘/0 h exp((t1 +n)An) (gn(t —t1—1n) = pag(t —t1 — n))dn-

By (3.9) the second part can be made smaller than ¢ uniformly in n by taking ¢;
sufficiently large. Then the first part with finite ¢; can be made small by the majorant
term /g, (t) — png(t)||E, < d as n > n;i. The second term in (3.15) for any 0 < ¢; <t
can be re-written in the same way as

(- | t <exp<nAn>pn o exp(nA>>g<t — ) =

(- | ! <exp<nAn>pn g exp(nA>)g<t o)

oA | ((xp(ts-+ ) Au)p = i expl(t2 + 00 ot = 12— .

Again, we first choose t; to make the second term small uniformly in n. Then by
Corollary 3.6 the first term converges to 0 for finite ¢; since g(£) is in the compact set
K5. The second term can be decomposed into two parts:

(A epnan) [ (expmAn)pn e exp(nA>)g<t oty 4 )

and
t—t1
(—Anw(exp(mn)pz - exp<t1A>> A
0

Both parts can be made small by the choice of ¢;, using (3.9), (2.16) and a uniform
bound on the integrals. |
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3.3 Estimates for the nonlinear case

Consider in the Banach spaces EY the family of Cauchy problems

u%(t) = Anun(t) + fn(un(t))’ t >0,

1
un(0) = up € E7, (316)

where ugﬁuo and the operators (4,, A) are compatible. We assume the nonlinear

maps fn(:) : ES — E, to have the following properties

(F2) The mappings f, are continuously differentiable in Uga (phu*, p) and whenever
Ty € Upa (ppu™, p) and xnp—am: then fn(xn)if(x) and fll(xn)m)f’(x)

(F3) For any e > 0 there is § > 0 such that | f}(wn) — f,,(20)llB(Ee,E,) < € as
lwn — zn||ga < 6 for all wy, 2, € Upa (pru®; p).

Under the above assumptions the mild solution of (3.16) exists on a maximal
interval [0,7) in Upga(pQu*, p) (see [15, 35]) and we denote it by up,(-) = Tn(-)ud :
R* — E,. The nonlinear semigroup T},(-) satisfies the variation of constants formula

t
T, (t)ul = exp(tAp)ul + / exp((t — 8)Ap) fu(Th(s)ul)ds, t € [0, 7). (3.17)
0
Similar to (2.5) we consider the family of nonlinear problems

Aptn + fn(un) =0 (3-18)

and define &, = {u;, € D(4,) : Ayu), + fn(u)) = 0}. The following result is taken
from [8].

Proposition 3.19. Assume that the problem (2.5) has a hyperbolic solution u* and
let conditions (F2),(F'3) hold. Then, there exist n* € N and p* > 0, so that equation
(3.18) has a unique solution u;, € D(Ay) NUga(phu*, p*) for each n > n*. Moreover,

uy, is hyperbolic and satisfies |luy, — pru*||ga — 0  as n — oo.

Proof. Define the operators M(w) = Tw—+ A~ f(w), My, (wn) = Lywn+ A1 fo(wy).
The derivative M'(w) = I + A71f'(w) is an operator from E® to E®, since A~!
maps E into D(A) C E®. From (F3) we obtain M, (v,)— M(v) as vp——v and
IM o + put) — Moo lgg < p it Jwalliy < 6 with p = p(3) — 0 as 6 —
0 uniformly in n. From condition (F2) it is also clear that /\/l;l(pnu*)PE>CY "(u¥)
regularly, M/ (p@u*) are Fredholm of index 0 and N{A+ f(u*)) = {0}. Now Theorem

2 from [33] applies and yields the result. Hyperbolicity of u) will follow from the
spectral considerations below, cf. (3.21). [

Remark 3.20. If A.. # 0 and we do not assume continuity of M. (-) uniformly in
n one can still get the existence of solutions w), of equation (3.18) and convergence

P . .
* *
uy —u*, but uniqueness may fail.
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From now on we consider a hyperbolic point ©* and the corresponding fixed points

u,’;ﬁu* from Proposition 3.19. Near the equilibrium ), we set u,(t) = u), + v, (t)
then equation (3.16) reads

v, (t) = Auz nVn(t) + Fux n(vn(t)), v2(0) = vg, t>0, (3.19)
where

Au;},n = An + frlz(u;)a Fu;‘”n(wn) = fn(vn(t) + u;;) - fn(u;;) - frlz(u;;)wn (3'20)
We decompose ES using the spectral projection

1

-1
= I, — Ay~ 21
377 oo (ST~ Auin) 6, 321)

where U (o) is the boundary of the region {\ € C : ReX > 0,\ ¢ X(m — ¢,ws)}
with some 0 < § < § and w; given by (By) for the operator Ay: ,, compare Lemma
3.17. Note that the part of U (o)) on iR does not intersect o(Ayzx ») due to Lemma
3.16. In particular, this implies that the fixed points w are hyperbolic.
By o, we denote the part of o(Ays ) that is inside the contour. From the
representations (2.10) and (3.21) we obtain
P (o7 +
(o )—P(c™) compactly as n — oo. (3.22)

n

In order to see this one first modifies the contour in (2.10) so that it coincides with
that in (3.21), then one uses the convergence (¢I, — A%n)—lﬂ(gf — Ays)t for
¢ € dU (o) (see Proposition 3.10, and (3.7)) and the fact that the convergence
I, — Au;,n)_lpnxL(CI — Ay+) Yo is uniform for ¢ € AU (c"). Moreover, the
condition A.. # () implies compact convergence of projectors and, therefore, by (3.7)
and Theorem 3.11 dim P, (o;}) = dim P(o") for n > ny. )

Applying Lemma 3.17 to the semigroup exp(tAy: ,) we obtain constants Ms, 3 >
0, such that

e_Bt

MQ—a”U HEn7 t>0, vy € (L, — B (U+))E )
lexp(tAu; n)vnllEg < R T (3.2)

n»-n

Similar to (2.13) we consider for vy, v, € Uga(0; p) the boundary value problem
U (t) = Aus nUn(t) + Fuz n(vn(t), 0<t < T, (3.24)
(I, = Po(0;))0n(0) = (In = Pu(og))vy s Pulo)vn(T) = Pa(o, vy,

where the case T' = oo is included in the usual way. Using condition (F'2) one finds
that the mild solution of problem (3.24) satisfies for 0 < ¢ < T the equation

Un(t) = eXp((t — T)Auﬁ,n)Pn(U:)U: + eXp(tAu;(“n)(In . Pn(O':))v;_i_ (325)
T
+/0 FT’n(t7S)FU;‘L,n(Un(S))dS’
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where the Green’s function is

exp((t — 8)Aurn)(In — Po(o})), 0<s<t<T,

Prn(t,s) = { exp((t — 8)Aur n) Pu(0))), 0<t<s<T. (3.26)

In case T = oo the v, term in (3.25) vanishes. The analog of Proposition 2.2 is the
following result.

Proposition 3.21. Let the above assumptions on A, Ay, and conditions (F2), (F'3)
be satisfied. Then there exists p > 0 such that for any 0 < po < p we find 0 < p1 < po
with the property that equation (3.25) has a unique solution v,(-) = vy(v, , v} ,-) €
C([0,T);Uga (05 p2)) for all v, , vt € Uga (0; p1) and for all 0 < T < 0.

Proof. We repeat the proof of Proposition 2.2 for the space of continuous bounded
functions C([0,T); EY) with the operators Ayx n, Fus n(+), Pu(o;h) and Gy (v, ,v;; )
defined by the right-hand side of (3.25). Note that (F'3) guarantees that the esti-
mates in (3.23) can be done with constants independent of n and, therefore, Lemma
6.1 applies with uniform data. Moreover, the estimates (2.19) and (2.20) hold uni-
formly in n. From (6.7) we find a constant C* > 0 such that for any two v,,w, €

C([0,T],UEa (0; p2)) we have for || - || = || - [[¢(o,7];E2) the estimate
v — wall < C*|vn — Gp(vy, 0,5 00) — (wn — Gr(vy, , v 5 w,))]- (3.27)

n»-n? n
|
4 Shadowing for a general discretization scheme

4.1 Adapted discretization maps

In addition to pn,p5 we need discretizing maps that are adapted to the hyperbolic
splitting. First note that the spectral projectors P = P(o%) and P, = P,(o;)
are finite dimensional and satisfy PHEP compactly, see (3.22). Then define the
discretizing maps p,, : F — E, by
Pn = Papn P + (In - Pn)pn(I - P) (4'1)
and pS : E* — EY by
ﬁaw_ _ { (Au;;,n)_a npn(Au*)ana r € PE?,
" (_Au;lvn)ia(ln — Po)pn(—=Ay)*(I — P)z, =€ (I - P)E".

Note that the spectra of A, = A+ f'(u*) and Ayx , = A, + f)(u;,) are partitioned

in such a way that the fractional powers of the operators are well defined.

(4.2)

Proposition 4.1. The system {p,} is equivalent to the system {p,} on E and the
system {p2} is equivalent to the system {pS} on E®. In particular, we have bounds

1BnllBE,m < C, 150 B(pe,pay < Ca for alln € N (4.3)
and supger, ||(Pn — Pr)z|| — 0, sup,cg, |(05 — P5)z|| — 0 as n — oo for compact

sets Ko C B, K1 C E“.
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Proof. From the equality
(ﬁn - pn)x = 2(Pnpn - PnP)POU - (Pnpn - pnp)%
we find that the system {p,} is equivalent to {p,} on E. In the a-case the following
holds on (I — P)E®
pg—ﬁg = (_An)ia(pn_]an)( A) + )a Au
= (=4n) " "(Pn — Do) (=A)* + ((=4n) ™" = (= Augn)”“)Dn(=4)"
+(_Au;1,n)_a15n(( )a ( Au*)a)
= (= An) (o — o) (= A" + (= A0) 7 = (A )~ (-~ 4)°
- (=
_l’_
(=
(=4

«

(An) (_A _(_ Z,n)iaﬁn(_Au*)a

(—Ausn) " Bul(=A)" = (=A)?)
= (A0 — o) (= A + (A ) (—Au ) (—A) ™ = L) (= A)"
(= Auy ) Bal(— A ) *(—A) = T)(~A)°
= (= An) (o — Bu)(—A)* (~ A )
(= Aug ) (= A0) ™ I)pn Bul(= Ay ) (= 4) ™ = 1)) (A)°.
PP

In the last step we show that (—Ayz ,)*(—An)"*—(=Au)*(=A)~*. To this end
following [15] we consider the formula

(Ap) — (—A)—o = ST /OOO z*a((zf b AT = (2 ¢ A)*l)dz —  (4.4)

T
_ SIH(TM) / 2721+ Ay ) NS () (- A) ) (= A) (=] + A) ) d
0
Since |[(—=A)*(zf +A)7|| = O(|z|*!) as z — oo the integral will converge even if we

—aﬂ(

apply (—Ay+)®. Therefore convergence (—Ayzx ,)*(—Ay) —Au-)*(—=A)"® fol-

lows from fé(u;)A;“mf’(u*)A_a and Lebesgue’s dominated convergence theorem.
The uniform convergence on compact sets follows as in Lemma 3.3. |
Remark 4.2. It is easy to see that (—A)*(—Ayu+)"% is a bounded operator and

—_a PP _ _ _
(—Ap) (= Auz n) "= (=A)* (= Ayr) ™% Indeed, ||(—A)* (2] — Aye) | = O(2]*7)
as z — oo and therefore interchanging A and Ay~ in (4.4) one gets the statements on
boundedness and convergence in the same way as in Proposition 4.1.

Proposition 4.3. Consider 0 < o <y <1 and let (F1) — (F'3) be satisfied, then
sup || Fug n(Brw) — Pnbus (w)l|E, — 0 asn — oo. (4.5)
weld g (0;p)
Proof. First note
Fuz,n(ﬁgw) - ﬁnFu* (w) = fn(u; + ﬁgw) - ﬁnf(U* + w)
- (fn(u;;)—ﬁnf( )+f (up,)Ppw — pnf( Hw )7
and observe that by Proposition 4.1 we can replace the maps p,, p5 by pn,pn From
Proposition 3.19 and (F2) we obtain f(u} +p$§w)£>f(u* +w), fo(u))— f( *) and

fé(u;)mjf’(u*) Following the proof of (3.2) one then shows that the convergence
is uniform on compact sets in £, |
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4.2 Shadowing with discretization in space variables

The first result approximates orbits of the general evolution equation (2.7) by appro-
priate orbits of the ’spatially discretized’ system (3.16).

Theorem 4.4. Let A be the gemerator of an exponentially decreasing analytic Cy-
semigroup and consider 0 < « < vy < 1. For the discretized system (3.16) assume that
the linear parts satisfy A.. # O and condition (By) and the nonlinear parts satisfy
conditions (F'1),(F2),(F3). Then there exists pg > 0 with the following property.
For any g9 > 0 there is an ng = no(eo) € N such that for any mild solution u(t) of
(2.7) satisfying u(t) € Up~y(u*,po),0 <t < T for some 0 < T < oo there exist initial
values ud € E¥,n > ng such that the mild solution u,(t;u®) of (3.16) exists on [0, T]
and satisfies

sup |[[phu(t) — up(t; ug)HES <eg VYn>mnp(e). (4.6)

0<t<T

Proof. We will collect the conditions on ng and py during the proof. Let wu(t),
0 <t < T, be a mild solution of (2.7) such that u(t) € Ug~(u*, pg) for all 0 < ¢ < T.
Then v(t) := u(t) — u* € Ug~(0, pp) is a solution of (2.14) with

v~ = (I — P)v(0), vt = Pv(0). (4.7)
By the choice of norms (2.12) we have

o7 lev < po, 0T llEv < po. (4.8)

We apply Proposition 2.2 with « in place of a and with po = 5. We require pg < p1
which implies py < po as well. Because of uniqueness in C([0,T],Ug~(0, p2)) the
solution v(v~,v",-) from Proposition 2.2 satisfies v(t) = v(v—,v",1),0 < t < T.
Next we define the discrete boundary values

Uy =0T, vy =Pt (4.9)

By the definition (4.2) we have v, = p%v~ = (I,,— BP,)p%v~ and v} = pSot = P,plo™
and from (4.3) i i
il g < Callv™[lge < Capo. (4.10)

Then we apply Proposition 3.21 with go = p and require C’apo < p1(p2). Taking the
corresponding unique solutions of (3.25)

vn(-) = vn(v,,v)() € C((0, T, Upg (0, p2)) (4.11)

we claim that
ud = uf +0,(0),  up(t) = va(t) +u (4.12)

satisfy the assertion of the present Theorem. We require C’apo < p1 so that we can
apply (3.27) to v, (t) and w,(t) = pSv(t). We obtain

sup [lva(t) — prv(t)|gg < C* sup |ng (t) + 5 (t)llpg» (4.13)
0<<T 0<t<T
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where the terms on the right-hand side are given by
N (t) = Ppexp(tAy )l — P)v™ —exp(tAus: n)(Ln — Po)v,

I /0 exp((t — 8) Ay )(I — P)Foe (v(s))ds

_ /0 exp((t — 8)Aus ) (I — Po) Fus n (7%0(5))ds,

nt(t) = prexp((t—T)Ay)Pvt —exp((t — T)Aus ) Povy

T n
b /t exp((t — 5) Ay ) PFoe (v(s))ds

T
- /t exp((t — s) Ay n) P Fux n(Dro(s))ds.
We estimate 0t by an application of Theorem 3.18 with the settings E=(I-P)E,
D(A) =D(A)NE, A= Ay, g(t) = (I = P)Fu(v(t)), gu(t) = (In _Pn)Fu;,n(ﬁ%v(t))a
K1 = Ug(0,p0), K2 = {(I = P)Fye(w) : w € Upv(0,p0)}, € = 1%, v’ = v,
E, = (I, — P))E,, E¢ = (I, — P,)E2, u,(0) = 7%u(0) = p%~. Note that by
the continuity of F,« from E“ to E and the compact embedding of E7 in E* the
set K3 is compact in E* and Kj is compact in E. The estimate (3.12) applies for
n > ng = max(n (&), ng) where ny is chosen by Proposition 4.3 such that for n > ny

sup |lgn(t) —=png()llg, < sup [|(I = Po) (Fuzn(ho(t) — prFou (v(t))) &,
0<t<T 0<t<T

+  sup ||(I — Pn)(pnP — Pupn)Fus (W) | E,
weKo

< §=4(2).

Therefore we have |1, ||ge < € and by an analogous reasoning the same estimate
for ||} ||ga and n > ny. Finally, by (4.13) and Proposition 3.19 we obtain for some
ns>ngandall 0 <t <T,n>n;s

& &
un(t) — peu(®)|pe < va(t) — P20t Ba + luh — pou* || pe < 2 + = = &,
2 2

|
In the following Lemma we approximate vectors of a compact sequence in the
discrete spaces by discretizations of continuous elements.

Lemma 4.5. Let 0 < a < < 1 and let {v0} be a bounded sequence in E,,. Then for
any € > 0 there is a number ng(g) such that inf,cge ||V — pov||Ea < € for n > ng(e).
In addition, if 0 < o < 8 <~ < 1 and the sequence {0} lies in P,E,; and satisfies
9]l gy < b then one can find ny(e) and a constant C > 0 such that

inf ] —pyvllEe <€ for alln > ny(e). (4.14)
vEPER |jv]| ;3 <Cb

If 0 € (I, — P,)Ey instead of v € P,Ey then (4.14) holds with the infimum taken
over v € (I — P)EP,||v|lgs < Cb.
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Proof. Proposition 4.1 shows that it is sufficient to prove the assertion with p¢ in
place of p¢. Assume that the statement is not true. Then there exists a sequence {v0},
an € > 0 and a subsequence N’ C N such that ||(—A,)700| < band [[v) — p2v||ge > €
for all n € N';v € E%. First of all, the sequence (—A),*(—A)%% = v? is P-compact
by (3.6) and therefore there are N” C N and v € E such that vgi@ as n € N
Since 0 < a < v < 1 and (—=A4,)* 7 (=4,)") = (-A,)%? we obtain in a similar
way from (3.6) that (—A,)%v? is P-compact. Thus there is N/ C N” such that
P

(—A,)* =z € E as n € N” and we conclude (—An)_o‘(—An)“ng(—A)_o‘z as

n € N”. On the other hand vgi@ as n € N” which implies v = (—A)"%z € E“.
Finally we have [[v) — p@o|pe = [[(—4,)*0) — pnzllp, — 0 as n € N” for some
v € E% which is a contradiction. To prove the second assertion we extend the previous
argument. First by (3.6) and Lemma 3.3 we have for every 0 < A < 1 a constant

C[y > 0 such that

H(_A)_AHB(E,E)a ||(_An)_)\HB(EmEn) <C}y foralneN. (4.15)

Define C' = Cly—g+1. In the proof above we can arrange that (—An)ﬁvgiy € E for
n € N and then obtain o = (—A) Py € EP. Using v € P,E; and the convergence
of projectors (3.22) we find

0= (I, — P’ — Py,

n

hence o € PE®. Moreover for n € N large

1ollgs = llylle < I1(=40)" "7 (=40) "0}, +b < (Cpyp) + 1)b = Cb.

This contradicts |00 — p®v|| > & for all v € PEP with |jv||gs < Cb. |
This Lemma will be used for constructing the appropriate boundary data for the
following inverse shadowing result.

Theorem 4.6. Let the assumptions of Theorem 4.4 hold. Then there exists pg > 0
with the following property. For any ey > 0 there is an ng = ng(eg) € N such that for
any mild solution uy(t), n > ng of (3.16) satisfying u,(t) € Ugy(uy,,p0),0 <t < T
for some 0 < T < oo there exist initial values u™° € E*,n > ng, such that the mild
solution u(t;u™®) of (2.7) exists on [0,T] and satisfies

sup [Jun(t) — plu(t; u™?)|ga < e ¥n > nole). (4.16)
0<t<T

Proof. As in Theorem 4.4 we take some 3 > 0 and list the conditions on ng and
po during the proof. Consider a mild solution u,(t),0 < ¢t < T of (3.16) that lies in
Upgr (uy,, po) and define

vn(t) = un(t) —ut, v, = (I, — Py)va(0), v = P, (T). (4.17)
By the uniform boundedness of projectors we have for some Cy > 1

v 2y < Copos v llsy < Copo. (4.18)
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We apply Proposition 3.21 to the values v® with + instead of o and py = p. We
require Cppp < p1 so that vy, () = v (v, ,v;5,t),0 <t < T holds by the uniqueness of

noYno

solutions in C([0, T],Ug7(0,5)). Now take o < 3 < v and use Lemma 4.5 to construct
boundary values v™~ € (I — P)E® v™* € PE® n > ny(sq) such that

lvn = Bav™ lleg + lvg — av™ "l eg [o"* [l gs < Cpo,  (4.19)

€0
< )
— 16M5C*

see (3.23),(3.27). In the next step we apply Proposition 2.2 with boundary values
v™* and 3 instead of a. Choose pp such that (cf. (4.15),(4.3))

éa C[ﬁ—a} p2 < po,

require (Cly_q) + C)po < p2 and denote the unique solution in C([0,T);Ugs(0; p2))
by v"™(t),0 <t <T. We will show that

un,O — U”(O) + u*’ u(t’unp) — 'Un(t) + ’LL*, 0 S t S T, (420)

satisfies (4.6). For this purpose we insert v, (-) and wy,(+) := p%v™(+) into (3.27). This
inequality is valid since [|v,(t)||pe < Cly—q)p0;

lwon(®)llzg < Callo™(®)llpe < CaCla—of[v" ()]s < CaClp_a)pz < p2

and v | za < Chy—ajllvir |y < Cly—a)Chpo < fr1.
We obtain the estimate

C*lwn = Gn(vy, vt s wa)ll oo B9 (4.21)
C* sup |my, (£) + 05 (8) + ¢, () + ¢ ()| Be, (4.22)
0<t<T

[vn — walleqoee)y <
<
where the terms on the right-hand side are given by

M (t) = Py exp(tAy=)(I — P)o™" — exp(tAuz n)(In — Pa)ppo™™

£ 7 [ expl(t = )40 =PI (07 (5)s

_ /0 exp((t — ) Aus ) (Ln — Po)Fus (%0 (s))ds,

n;f (t) = pyexp((t— T)Am)Pv"’+ —exp((t — T)Auz,n)Pnﬁgv"’*'

T
b /t oxp((t — ) Aus )P Fye (v (5))ds

T
- / exp((t — 8) Aug ) PaFos m (FE0"(5))ds,
t
©n (t) = eXp(tAu;l,n)(In - Pn)(ﬁﬁv"’* - v;),
(pr—’z— (t) = exp((t - T)Auz7n)Pn(ﬁgvn7+ - U+)-

n

We obtain the estimate [|n;f|| < £% by Theorem 3.18 in almost the same way as
in Theorem 4.4, cf. (4.13), the main difference being that v(s) is replaced by v"(s)
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and the compact sets are given by Ko = {(I — P)Fy«(w) : w € Ugs(0,p2)} and
K1 =Ugs(0,Cpp), cf. (4.19).
For the second terms we have from Lemma 3.17 and (4.19)

~(t )| < Mye Pt —20__ < S0
lor, (1) + ¢ @) < Mae 8L, = 80

Using this in (4.21) and Proposition 3.19 we finally have for n large

[ () = piyult, w™) By < llvn(t) = pov" (O)llsg + llus, — phu’lleg < eo.

5 Applications

In this section we show how the assumptions of the Theorems 4.4 and 4.6 can be
satisfied for finite element and finite difference methods.

Example 5.1. Let Q C R? be a bounded smooth domain. Consider the second order
strongly elliptic operator

d d
Lu(z) = Y aij(2)te,z;(x) + > bj()ug, () + c(2)u(z), (5.1)
i,j=1 j=1

where the coefficientes a;;, b;, c are smooth bounded functions. Consider the associated
parabolic problem

ur(t,x) = Lu(t,x) + f(u(t,z)), t>0, ze€q, (5.2)
u(t,z) =0, t>0, z€ o u(0,z)=u’x)c H}(Q).

Let E = L*(Q) and define the operator A : D(A) C E — E by D(A) = H*(Q)NH}(Q)
and Au = Lu for all w € D(A). It is well known that A generates an analytic and
compact Cy-semigroup {exp(tA) : t > 0}. Assume that c(x) is chosen such that
the spectrum of A is located to the left of the imaginary axis. Then, we can define
the fractional powers (—A)Y of —A as before. It is well known that E' = D(A) =
H%(Q) N HL(Q) and EV/? = H}(Q).

As to the nonlinear term f(-), it is known (see [3, 19]) that under some growth con-
ditions, the problem (5.2) is locally well-posed in EY/? and the operator-function f(-)
18 Frechet differentiable as a function from E% to E. For example, these assumptions
are as follows, cf. [19]: the scalar function f(x,-) : R — R, x € Q, is in C?*(R,R)
and one has

£ (@, €)] < O +[€PT) for any € e R,z € Q,

where | = 1,2, and 0 =2 if d =3 and ¢ € [1,00) if d = 2. Then one can show (see
[19]) that
1£'(w) = £ ()l g2 ) < Cp)lw = vl g2 (5.3)

and

1f (@)= f ()= f' (w)(u=v)]| s < Clp)(lu=wllgr/z+[lv—wllgr2)[u—vl grr2 (5.4)
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fork=1,2, and any v,w,u € {z € E : ||z—u*||g1/2 < p}. The inequalities (5.3)-(5.4)
imply condition (F'1).

With the operator A and the function f(-) defined in this way the problem (2.3) is
well posed and has all properties we need for our main Theorems.

Moreover, the approzimation problems (8.16) also have the required properties
when defined by the finite element method.

Indeed, let A, E and E'/? be as before. It is well known (see [17]) that A is in
one-to-one correspondence with a sesquilinear form a : EV/? x EY2 — C such that

la(u, )| < erllull 2ol g1z, uv € BV,

Rea(u,u) > collul|gijz, ue EY?
a(u,v) = (—Au,v), ue D(A), ve EY2

Consider a convez polygon Q C R? and a reqular triangulation where the triangles
have mazimum diameter h. Denote by Sy the space of functions in EY/? that are
linear in each element and vanish on the boundary.

Then Sy, is a family of finite dimensional subspaces of H&(Q) with the standard
approzimation property (see[30])

125 (Hv —xllg + hljv — XHE1/2) < C’h2HvHE1 for v e HQ(Q) N Hol(Q)
XESh,

We denote by Ppu the projection of u € E onto Sy, = Ei/Q with respect to the L*(Q)
inner product. These operators play the role of the connecting mappings {pp}. In this
framework, the finite element approximation Ay : Sy, — Sy, of A is defined by

(~Andn, vn) = a(dn, ¥n),  én,vn € By

In other words, Ay, is the operator associated with the sesquilinear form ap(-,-) which
is the restriction of a(-,-) to E;L/Q X E;L/Q. In this setting one can prove [11] that there
exists a constant C' and an acute angle 0 such that for w € E and 0 < |argz| < 7w we
have

1(z1 = A) " u— (21 — Ap) ™ Pyullp < CR?||ul|p-

This estimate shows P-convergence with uniform convergence of resolvents. Since our
resolvent (\I — A)~! is compact for some \, then the above inequality yields (with u(-)
being the measure of noncompactness)

p((2In = Ap) " tan) < p((2I = A) " ay) +limp o || (21 — A) Loy — (21, — Ap) ol =0

and therefore compact convergence of resolvents as h — 0. In this way, our basic
assumption A # () can be verified.

Finally with fy(vn) = ppf(vn) for vy € Efll/z and Fy: p(vn) = fn(on — up) —
fn(uy) — fi(u))vy the problems (3.18),(3.19) are well-defined. The estimate (5.4)
shows ||Fyu=(0(t)|e < c(p)|v(t))1%,), and, moreover, one has F,.(0) = 0 and condi-
tion (F'3) in the form || Fys: n(vn)llE, < 5(p)||vh\|ijl/2, since ||pp|| is uniformly bounded.

h
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Example 5.2. Resolvent estimates such as (By) were proved for finite element and
finite difference methods for example in [5, 6]. Without going into details we show how
to get compact convergence of resolvents for the finite difference method. Consider,
for exzample, in the space E = L*(0,1) the operator A defined by

_ d*v(x)

Av(x) 12

with D(A) = {v(-) € H}(0,1) N H?(0,1) : v(0) = v(1) = 0}.

We choose step-sizes h = % and approzimate A by the operators

_ 1 -
Apty = Op Opuy = {ﬁ(un,(lwrl)h - 2un,kh + un,(kfl)h) k:%? (55)

where u,,. € E, = L3(0,1) = D(A,) = {{unn}i—1 € R""'}. Note that we set
Un,0 = Unn, = 0 in (5.5). The discretization maps py, are given by (cf. [32])

1 (k-i—%)h
(ppu)kn = E/ u(z)dr, wueE. (5.6)
(k=3)h

With (u,.,vn.)E, = hzz;% Un khUn,kh the summation by parts formula reads (using
U0 = Upnp = 0 again)

Un,(k—1)h )2.

3 = Un,kh —
—{(Oh Ontin, un) b, = (Onim, Optin) 2, = | Optin ||, = h Y ( .

k=1

This implies H(?hunH%n < || Apunl &, |unl &, Hence for any bounded sequence {u,}
such that {Ayun} is also bounded in E, the last inequality shows that ||up| /2 is

bounded. This implies that {u,} is P-compact. Now we can use Theorem 3.15 to get
compact convergence of resolvents.

6 Appendix

We use the following quantitative Lipschitz inverse mapping theorem, cf. [16], [32].

Lemma 6.1. Assume Y and Z are Banach spaces, F € CY(Y,Z) and F'(yo) is a
homeomorphism for some yo € Y. Let k,0,6 > 0 be three constants, such that the
following estimates hold:

|F'(y) = F'(yo)|| <k <o < for any y € Uy (yo; 6),

1 (yo) 21l
I1F (o)l < (o —k)é.

Then F has a unique zero § € Uy (yo;0) and the following inequalities are satisfied

1
IF' )7 < == forall  y €Uy (yo;0),
1
ly1 = yell = ——— [1F'(y1) = Fg2)ll for any  y1,y2 € Uy (yo;9). (6.7)
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