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1. Introduction

This work is continuation of our paper [1], where we studied parabolic equations
of the form

L∗µ = 0 (1.1)

for Borel measures µ on (0, 1)× Rd. Here L is a second order parabolic operator

Lu(t, x) :=
∂u(t, x)

∂t
+ aij(t, x)∂xi

∂xj
u(t, x) + bi(t, x)∂xi

u(t, x),

and the interpretation of our equation is the following. We shall say that a family
of Radon measures µ = (µt)t∈[0,1) on Rd satisfies the weak parabolic equation (1.1)
if the functions aij and bi are integrable on every compact set in (0, 1) × Rd with
respect to the measure µ(dt dx) := µt(dx) dt and, for every u ∈ C∞

0 ((0, 1)×Rd), one
has ∫ 1

0

∫
Rd

Lu(t, x)µt(dx) dt = 0. (1.2)

We shall say that µ satisfies the initial condition µ0 := ν at t = 0 if ν is a measure
on Rd and

lim
t→0

∫
Rd

ζ(x)µt(dx) =

∫
Rd

ζ(x) ν(dx) (1.3)

for all ζ ∈ C∞
0 (Rd). In this case we write µ = (µt)t∈[0,1).

The same definitions are introduced in the case where Rd is replaced by an open
set Ω ⊂ Rd or by an open set in a Riemannian manifold. In particular, in (1.2) we
take u ∈ C∞

0 ((0, 1)× Ω) and in (1.3) we take ζ ∈ C∞
0 (Ω).

Equation (1.1) is satisfied for the transition probabilities of the diffusion process

with the diffusion matrix
√

2A and drift b provided such a diffusion exists and the
coefficients A and b satisfy certain conditions. However, (1.1) can be considered
regardless of any probabilistic assumptions. Moreover, a study of this equation in
a purely analytic setting may be useful for constructing an associated diffusion (see
[10], [14], [15]).

As compared to [1], the principal novelty of this work is a considerably weaker
sufficient condition for the existence of solutions. Namely, in addition to certain mild
local restrictions on the coefficients A and b it is only required that the estimate
LΨ ≤ C+CΨ should hold for some compact positive function Ψ. In [1, Theorem 3.1],
a much more restrictive additional assumption was imposed that, for each τ ∈ (0, 1),
there is a compact function Vτ with LVτ (t, x) → −∞ as |x| → ∞. Also, our
approach in this work differs considerably from that of [1], where the time-dependent
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coefficients A and b were approximated by piece-wise constant (in t) coefficients and
the results from [2], [3] and [8] on the semigroups generated by time-independent
elliptic operators were employed. Here we obtain solutions as limits of solutions
to boundary value problems in bounded domains. To this end, certain a priori
estimates for such solutions are obtained. In this respect, our approach is closer to
that of [4], [5], [6] and [9] in the elliptic case.

2. Auxiliary results

Let us recall some standard notation for various Sobolev classes on Rd or on open
sets U ⊂ Rd. The class Hp,1(U) consists of all functions f ∈ Lp(U) with generalized
partial derivatives ∂xi

f ∈ Lp(U). This space is equipped with its natural Sobolev
norm ‖f‖p,1.

For a function u on (0, 1)× Rd, we set ∂tu(t, x) := ∂u(t, x)/∂t.
We shall say that a function V on Rd is compact if lim

|x|→+∞
V (x) = +∞.

Lemma 2.1. If µ = (µt)t∈[0,1) satisfies (1.1) and (1.3), then, for every ζ ∈ C∞
0 (Rd),

for almost all t ∈ [0, 1) one has∫
Rd

ζ(x)µt(dx)− lim
ε→0

∫ t

ε

∫
Rd

Lζ(s, x)µs(dx) ds =

∫
Rd

ζ(x) ν(dx). (2.1)

If, for each ζ ∈ C∞
0 (Rd), the function

∫
Rd

ζ(x)µt(dx) is continuous on [0, 1), then

(2.1) holds for all t ∈ [0, 1) and is equivalent to (1.1) and (1.3). The same is true in
the case when our equation is considered on an open set.

This lemma was stated in [1] with the integral over [0, t] in place of the limit of the
integrals over [ε, t], but the proof only gives the above assertion (which is sufficient
for the subsequent application of the lemma in [1]). Note that the function

h : s 7→
∫

Rd

Lζ(s, x)µs(dx)

is integrable on [0, t] (so that the limit of the integrals over [ε, t] equals the integral
over [0, t]) provided that there is a µ-integrable function Θ such that Lζ(s, x) ≤
Θ(s, x) µ-a.e. Indeed, in this case the function h, which coincides with the derivative
of the function

f(s) :=

∫
Rd

ζ(x)µs(dx)

on (0, 1), is majorized by the integrable function s 7→
∫

Rd

Θ(s, x)µs(dx), which yields

that f is absolutely continuous provided it is continuous. If we do not assume the
continuity of f , then we conclude that f has an absolutely continuous modification.
Certainly, all this is true if the functions aij and bi are µ-integrable on every set
[0, 1]×B, where B is a ball in Rd.

It is worth noting that one of the reasons why we require that all measures µt

(and not just almost all) be probabilities is that this is the case when one deals with
transition probabilities. From the analytic point of view, this is not essential, of
course. Another reason is that, as we shall see, this assumption simplifies certain
technical issues (see also [7]).

The following lemma is a straightforward extension of [1, Lemma 2.2] whereM = 0
and Θ is a constant.
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Lemma 2.2. Let µ = (µt)t∈[0,1) be a family of probability measures on Rd satis-
fying (1.1) and (1.3), where ν is a probability measure on Rd. Suppose that there
exist a nonnegative function Ψ ∈ C2(Rd) and a number M such that Ψ ∈ L1(ν),
lim
|x|→∞

Ψ(x) = +∞, and

LΨ(t, x) ≤ Θ(t, x) +MΨ(x) µt dt-a.e. (2.2)

for some µ-integrable function Θ. Then, for a.e. t ∈ [0, 1), one has∫
Rd

Ψ dµt ≤
∫

Rd

Ψ dν +

∫ t

0

∫
Rd

Θ dµs ds

+M exp(Mt)

∫ t

0

exp(−Ms)
[∫

Rd

Ψ dν +

∫ s

0

∫
Rd

Θ dµr dr
]
ds

≤ (MeM + 1)
[
‖Ψ‖L1(ν) + ‖Θ‖L1(µ)

]
. (2.3)

If M = 0 and Θ = K is constant, then, for a.e. t ∈ [0, 1), one has∫
Rd

Ψ(x)µt(dx) ≤ tK +

∫
Rd

Ψ(x) ν(dx). (2.4)

Furthermore, if the functions

t 7→
∫
ζ(x)µt(dx), ζ ∈ C∞

0 (Rd),

are continuous on [0, 1), then (2.3) and, in the case M = 0, (2.4) are true for all
t ∈ [0, 1). Finally, if (1.1) and (1.3) are fulfilled on the open set {Ψ < c}, then the
same assertions with Rd replaced by {Ψ < c} are true.

Proof. It is clear that (2.1) remains true also for any function ζ ∈ C∞
b (Rd) such

that ζ(x) = q = const outside some ball. Indeed, the function ζ0 := ζ(x) − q is of
compact support, Lζ0 = Lζ and∫

Rd

q µt(dx) =

∫
Rd

q ν(dx) = q.

Furthermore, due to the local integrability of the functions aij and bi with respect
to µ, (2.1) is clearly still true for ζ ∈ C2

b (Rd) (in place of C∞
0 ) such that ζ(x) = q =

const outside some ball. Now let us fix k ∈ N and take a function θk ∈ C2(R) such
that θk(r) = r if r ≤ k, θk(r) = k+ 1 if r ≥ k+ 2, 0 ≤ θ′k(r) ≤ 1, and θ′′k(r) ≤ 0. By
our assumption on Ψ, θk ◦ Ψ is constant outside a sufficiently large ball. Hence, as
explained above, (2.1) is true with ζ(x) = ζk(x) := θk(Ψ(x)). We observe that

Lζk = θ′k(Ψ)LΨ + θ′′k(Ψ)〈A∇Ψ,∇Ψ〉 ≤ θ′k(Ψ)LΨ.

Hence, for a.e. s, one has∫
Rd

Lζk(s, x)µs(dx) ≤
∫

Rd

[|Θ(s, x)|+Mθ′k(Ψ(x))Ψ(x)]µs(dx)

≤ (k + 1)M +

∫
Rd

|Θ(s, x)|µs(dx).

By our hypothesis, the right-hand side is integrable in s over [0, 1]. Note also that
θ′k(Ψ)Ψ ≤ θk(Ψ). Indeed, (θ′k(t)t)

′ = θ′k(t) + θ′′k(t)t ≤ θ′k(t). Therefore, for a.e.
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t ∈ [0, 1) one has∫
Rd

θk ◦Ψ dµt =

∫
Rd

θk ◦Ψ dν +

∫ t

0

∫
Rd

Lζk dµs ds

≤
∫

Rd

θk ◦Ψ dν +

∫ t

0

∫
Rd

(θ′k ◦Ψ)LΨ dµs ds

≤
∫

Rd

Ψ dν +

∫ t

0

∫
Rd

(θ′k ◦Ψ)[Θ +MΨ] dµs ds

≤
∫

Rd

Ψ dν +

∫ t

0

∫
Rd

[(θ′k ◦Ψ)Θ +Mθk ◦Ψ] dµs ds.

By Gronwall’s inequality we find∫ t

0

∫
Rd

θk◦Ψ dµs ds ≤ exp(Mt)

∫ t

0

exp(−Ms)
[∫

Rd

Ψ dν+

∫ s

0

∫
Rd

(θ′k◦Ψ)Θ dµr dr
]
ds.

Hence∫
Rd

θk ◦Ψ dµt ≤
∫

Rd

Ψ dν +

∫ t

0

∫
Rd

(θ′k ◦Ψ)Θ dµs ds

+M exp(Mt)

∫ t

0

exp(−Ms)
[∫

Rd

Ψ dν +

∫ s

0

∫
Rd

(θ′k ◦Ψ)Θ dµr dr
]
ds.

By Fatou’s lemma we obtain the integrability of Ψ with respect to µt and finally
arrive at the desired estimates.

If the functions t 7→
∫
ζ dµt, where ζ ∈ C∞

0 (Rd), are continuous on [0, 1], then
such functions are continuous also with ζ ∈ Cb(Rd), which yields that our estimates
are pointwise. Indeed, the right-hand side R(t) of the first inequality in (2.3) is
continuous in t. Let Ψn := min(Ψ, n) and let Jn(t) and J(t) be the integrals of Ψn

and Ψ against µt, respectively. We have Jn(t) ≤ R(t) for a.e. t. By the continuity
of both sides this inequality holds for all t ∈ [0, 1). By Fatou’s theorem, one has
J(t) ≤ R(t) also pointwise.

The reasoning is similar in the case of the open set Ω = {Ψ < c} in place of Rd.
Namely, we fix ε > 0 and find a function θ ∈ C2(R1) such that θ(r) = r if r ≤ c− ε,
θ(t) = c if t ≥ c+ ε, 0 ≤ θ′ ≤ 1, and θ′′ ≤ 0. Then, letting ζ := θ ◦Ψ, we obtain as
above∫ t

0

∫
Ω

θ ◦Ψ dµs ds ≤ exp(Mt)

∫ t

0

exp(−Ms)
[∫

Ω

Ψ dν +

∫ s

0

∫
Ω

(θ′ ◦Ψ)Θ dµr dr
]
ds.

Letting ε→ 0 we obtain our claim. �

Corollary 2.3. Let µ = (µt)t∈[0,1) be a family of probability measures on Rd satis-
fying (1.1) and (1.3), where ν is a probability measure on Rd. Let Ψ ∈ C2(Rd) be a
nonnegative function such that

lim
|x|→∞

Ψ(x) = +∞ and LΨ(t, x) ≤ C +MΨ(x) µt dt-a.e.,

where C ≥ 0 and M ≥ 0 are constants. Then one can find a nonnegative function
Ψ0 ∈ C2(Rd) such that

Ψ0 ∈ L1(ν), lim
|x|→∞

Ψ0(x) = +∞ and LΨ0(t, x) ≤ C +M µt dt-a.e.

Moreover, if M is a uniformly tight family of probability measures on Rd and for
every ν ∈ M there exists a solution µν = (µν

t )t∈[0,1) of the problem L∗νµ
ν = 0, µν

0 = ν
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in the sense of (1.1), (1.3) and for some nonnegative compact function Ψ ∈ C2(Rd)
one has

LνΨ(t, x) ≤ C +MΨ(x) µν
t dt-a.e.,

then one can find a function Ψ0 as above such that

sup
ν∈M

esssup
t∈[0,1)

∫
Rd

Ψ0 dµ
ν
t ≤ C +M + sup

ν∈M

∫
Rd

Ψ0 dν <∞.

If the functions t 7→
∫
ζ dµt, where ζ ∈ C∞

0 (Rd), are continuous on [0, 1], then
esssup can be replaced by sup. The same is true in the case where Rd is replaced by
a bounded open set.

Proof. Indeed, one can find a function θ ∈ C2(R) such that θ(0) = 0, θ is nonnegative
on R+, Ψ1 := θ ◦Ψ ∈ L1(ν), lim

r→+∞
θ(r) = +∞, 0 ≤ θ′ ≤ 1, and θ′′ ≤ 0. To this end,

it suffices to find a function θ with the listed properties such that it is integrable
with respect to the measure σ = ν ◦Ψ−1. We find increasing numbers Tk such that
Tk+1 − Tk ≥ Tk − Tk−1 ≥ 1 and σ([Tk,∞)) ≤ 2−k. Let θ(Tk) = k − 1. Interpolating
between Tk and Tk+1 we obtain a σ-integrable increasing concave function θ0, which
is not C2, however. But now we take for θ(t) the integral over [0, t] of a smooth
function g chosen as follows: g(t) = θ′0(t) if t ∈ (Tk, Tk+1 − k−1), g′(t) ≤ 0. It is
readily seen that we obtain a required function. Then

LΨ1 ≤ θ′(Ψ)LΨ ≤ θ′(Ψ)(C +MΨ) ≤ C +Mθ(Ψ) = C +MΨ1

because θ′(Ψ)Ψ ≤ θ(Ψ) as explained above. Replacing Ψ1 by Ψ0 := log(Ψ1 + 1), we
find that

LΨ0 = (Ψ1 + 1)−1LΨ1 − (Ψ1 + 1)−2〈A∇Ψ1,∇Ψ1〉 ≤ C +M.

Moreover, for any uniformly tight family of probability measures M, such a function
θ can be found with the property that

sup
ν∈M

∫
Rd

Ψ0 dν <∞.

This is seen from the above reasoning. Now we apply (2.4) with K = C +M . If the
functions t 7→

∫
ζ dµt, where ζ ∈ C∞

0 (Rd), are continuous on [0, 1], then esssup can
be replaced by sup because (2.4) holds pointwise in this case. �

Remark 2.4. It is obvious from the proof that the condition LΨ ≤ C in Lemma
2.2 can be relaxed as follows: there exists a measurable set E ⊂ Rd such that
LΨ(t, x) ≤ C + CΨ(x) µt dt-a.e. on (0, 1)× (Rd\E) and

C ′ :=

∫ 1

0

∫
E

|LΨ(t, x)|µt(dx) dt <∞.

Then in the left-hand side of (2.4) one should add C ′.
It is also worth mentioning that if in the situation of Lemma 2.2 the functions

aij are bounded on bounded subsets of [0, 1]×Rd and (2.2) holds only for x outside
some bounded set, then one can find another nonnegative function Ψ0 ∈ C2(Rd)
such that Ψ0 coincides with Ψ outside some bounded set and LΨ0 ≤ C0 µt dt-a.e.,
where C0 is a positive constant. Indeed, let θ ∈ C∞(R1) be such that θ(s) = 0 if
s ≤ −1, θ(s) = s if s ≥ 1, 0 ≤ θ′ ≤ 1. There exists k such that LΨ ≤ C µt dt-a.e.
if |x| ≥ k. Let

M := sup
s
|θ′′(s)| sup

t∈[0,1],|x|≤k+2

〈A(t, x)∇Ψ(x),∇Ψ(x)〉, Ψ0(x) := θ(Ψ(x)− k).
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Then

LΨ0(t, x) = θ′(Ψ(x)− k − 1)LΨ(t, x) + θ′′(Ψ(x)− k − 1)〈A(t, x)∇Ψ(x),∇Ψ(x)〉
≤ C +M,

since θ′(Ψ(x)−k−1) = 0 if |x| ≤ k, LΨ(x) ≤ C if |x| ≥ k, and θ′′(Ψ(x)−k−1) = 0
if |x| ≤ k + 2.

Let us consider examples of how (2.2) can be verified in terms of the coefficients
of L.

Example 2.5. (i) Suppose that

|aij(t, x)| ≤ c1 + c2|x|2, 〈b(t, x), x〉 ≤ c3 + c4|x|2

for some constants ci. Then, letting Ψ(x) := |x|2k, k > 0, we obtain LΨ ≤ C + CΨ
for a sufficiently large C > 0. Consequently, if a solution µ exists and |x|2k ∈ L1(µ0),
then, for a.e. t, we have∫

Rd

|x|2k µt(dx) ≤ eC

∫
Rd

|x|2k µ0(dx) + CeC .

(ii) Suppose that

|aij(t, x)| ≤ c1 + c2 ln(|x|2 + 1), 〈b(t, x), x〉 ≤ c3 + c4|x|2 + c5|x|2 ln(|x|2 + 1),

for some constants ci. Then, letting Ψ(x) := ln(|x|2 + 1), we find

∂xi
Ψ(x) = 2xi(|x|2 + 1)−1,

∂xj
∂xi

Ψ(x) = 2δij − 4xixj(|x|2 + 1)−2,

which yields

LΨ(t, x) = 2 traceA(t, x)− 4(|x|2 + 1)−2〈A(t, x)x, x〉+ 2(|x|2 + 1)−1〈b(t, x), x〉
≤ C + CΨ(x)

for a sufficiently large C > 0. Consequently, if a solution µ exists and ln(|x|2 + 1) ∈
L1(µ0), then, for a.e. t, we have∫

Rd

ln(|x|2 + 1)µt(dx) ≤ eC

∫
Rd

ln(|x|2 + 1)µ0(dx) + CeC .

Moreover, letting Ψ(x) = | ln(|x|2 + 1)|2, we also have LΨ ≤ C + CΨ, hence∫
Rd

| ln(|x|2 + 1)|2 µt(dx) ≤ eC

∫
Rd

| ln(|x|2 + 1)|2 µ0(dx) + CeC .

(iii) Suppose that

〈A(t, x)x, x〉 ≤ γ1 + α|x|2β, 〈b(t, x), x〉 ≤ γ2 − (2αck + ε)|x|2k+2β−2

with some positive constants γ1, γ2, α, β, c, k, ε. Let Ψ(x) = exp
(
c|x|2k

)
. Then

LΨ(t, x) = 2ck traceA(t, x)|x|2k−2Ψ(x) + 4ck(k − 1)〈A(t, x)x, x〉|x|2k−4Ψ(x)

+ (2ck)2〈A(t, x)x, x〉|x|4k−4Ψ(x) + 2ck|x|2k−2Ψ(x)〈b(t, x), x〉
≤ c0 − ε|x|2k+2β−2Ψ(x)

with some constant c0. Hence, if β ≥ 1 and Ψ ∈ L1(µ0), then

esssup
t∈[0,1)

∫
Rd

exp
(
c|x|2k

)
µt(dx) <∞.
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Let us introduce the following conditions on A, b, p ∈ [1,+∞), and an open ball
B ⊂ Rd:

(C1) there exist two constants M1 = M1(B) and M2 = M2(B) such that for all
i, j one has

det
(t,x)∈[0,1]×B

A(t, x) ≥M1 and sup
t∈[0,1]

‖aij(t, · )‖Hp,1(B) ≤M2.

(C2) there exists M3 = M3(B) such that for all i one has

sup
t∈[0,1]

‖bi(t, · )‖Lp(B) ≤M3.

It follows from (C1) and the Sobolev embedding theorem that if p > d, then every
function aij has a jointly measurable version such that all functions x 7→ aij(t, x),
t ∈ (0, 1), are Hölder continuous of order 1− d/p and bounded on B uniformly in t
(their Hölder and sup-norms on B are estimated by a constant depending on p, d,
B and M2). Below we use the same notation aij for these particular versions.

The main result of this work is based on the following lemma.
Set

b0 := A−1/2(b− Γ), Γ := (Γ1, . . . ,Γd), Γj = ∂xi
aij.

Lemma 2.6. Let Ω be an open bounded set in Rd with a smooth boundary and
volume |Ω|, let the functions aij and bi be infinitely differentiable in the second
argument on (0, 1)× Ω1, where Ω1 ⊃ Ω is a bounded open set, and let A(t, x) ≥ αI
for some number α > 0. Suppose that µ = %(t, x) dxdt, where every %(t, · ), t > 0,
is a twice continuously differentiable positive probability density on Ω such that

∂%(t, x)

∂t
= ∂xi

∂xj
(aij%)− ∂xi

(bi%) (2.5)

in (0, 1)×Ω. Suppose also that % is continuous on the closure of [0, 1]×Ω, %(0, x) = %0

with %0 ∈ C1
0(Ω), and

〈A∇%(t, x) + [Γ(t, x)− b(t, x)]%(t, x), n∂Ω(x)〉 = 0, (t, x) ∈ [0, 1]× ∂Ω, (2.6)

where n∂Ω is the outer unit normal on ∂Ω. Then∫ 1

0

∫
Ω

|
√
A∇%(t, x)|2%(t, x)−1 dxdt

≤ 2

∫ 1

0

∫
Ω

|b0(t, x)|2 %(t, x) dxdt+ 2

∫
Ω

%0(x) log %0(x) dx+ 2|Ω|. (2.7)

In addition, there is a constant C(Ω) such that∫ 1

0

(∫
Ω

|%(t, x)|d/(d−2) dx

)(d−2)/d

dt (2.8)

≤ C(Ω)

α

(∫ 1

0

∫
Ω

|b0(t, x)|2 %(t, x) dxdt+

∫
Ω

%0(x) log %0(x) dx+ |Ω|
)

+ 2|Ω|(2d−2)/d.

Finally, for every p > d, there is a constant C(Ω, p) such that∫ 1

0

∫
Ω

|
√
A∇%(t, x)|2%(t, x)−1 dxdt

≤ C(Ω, p) sup
t∈(0,1)

(∫
Ω

|b0(t, x)|p dx
)1/p

+ 2

∫
Ω

%0(x) log %0(x) dx+ C(Ω, p). (2.9)
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Proof. It suffices to consider the case p = d. Let us multiply both sides of (2.5)
by log % and integrate over [0, 1] × Ω. Applying the integration by parts formula,

condition (2.6) and the identity

∫
Ω

%(t, x) dx =

∫
Ω

%0(x) dx = 1, we obtain∫
Ω

%(1, x) log %(1, x) dx−
∫

Ω

%0(x) log %0(x) dx

= −
∫ 1

0

∫
Ω

aij∂xi
%∂xj

%

%
dxdt+

∫ 1

0

∫
Ω

∂xj
%

%
(bj − ∂xi

aij)% dxdt.

Let E :=

∫
Ω

%0 log %0 dx. Note that %(1, x) log %(1, x) ≥ −1. Therefore,

J :=

∫ 1

0

∫
Ω

〈A∇%,∇%〉1
%
dxdt ≤

∫ 1

0

∫
Ω

〈
A1/2∇%√

%
, b0

〉√
% dxdt+ E + |Ω|.

Set

‖b0‖2,µ :=

(∫ 1

0

∫
Ω

|b0|2 %(t, x) dxdt
)1/2

.

Finally, let ‖b0‖p denote the norm of |b0| in Lp([0, 1]× Ω) with respect to Lebesgue
measure. By the Cauchy inequality we find

J ≤
√
J‖b0‖2,µ + E + |Ω|,

which yields
√
J ≤

(
‖b0‖2

2,µ/4 + E + |Ω|
)1/2

+ ‖b0‖2,µ/2 ≤ ‖b0‖2,µ +
√
E + |Ω|.

Let α(t) denote the integral of
√
%(t, x) over Ω. By the Sobolev inequality, there is

a constant C(Ω) such that(∫
Ω

|
√
%(t, x)− α(t)|2d/(d−2) dx

)(d−2)/d

≤ C(Ω)

∫
Ω

|∇√%|2 dx.

Noting that α(t) ≤
√
|Ω|, we arrive at the estimate(∫

Ω

%(t, x)d/(d−2) dx

)(d−2)/2d

≤ 1

2

(
C(Ω)

∫
Ω

|∇%|2%−1 dx
)1/2

+ |Ω|(d−1)/d.

Finally we obtain(∫
Ω

%(t, x)d/(d−2) dx

)(d−2)/d

≤ 1

2
C(Ω)

∫
Ω

|∇%|2%−1 dx+ 2|Ω|(2d−2)/d,

which gives (2.8).
In order to prove the last claim, we observe that, letting q = 2p/(p− 2), for every

ε > 0, one can find a constant C(Ω, p, ε) such that(∫
Ω

ϕ(x)q dx

)1/q

≤ ε

(∫
Ω

|∇ϕ(x)|2 dx
)1/2

+ C(Ω, p, ε)

for every ϕ ∈ W 2,1(Ω) with ‖ϕ‖L2(Ω) ≤ 1. Indeed, the Sobolev inequality gives an es-

timate ‖ϕ‖Lq(Ω) ≤ C
∥∥|∇ϕ|∥∥

L2(Ω)
+C. If our claim is not true, then there is a sequence

of functions ϕn ∈ W 2,1(Ω) with ‖ϕ‖L2(Ω) = 1 and ‖ϕ‖Lq(Ω) ≥ ε
∥∥|∇ϕ|∥∥

L2(Ω)
+ n.

It follows by the aforementioned estimate that cn :=
∥∥|∇ϕ|∥∥

L2(Ω)
→ ∞. Hence

ψn := ϕn/cn → 0 in L2(Ω) and ‖ψn‖q ≥ ε. Let us take r ∈ (q, 2d/(d − 2)). The
embedding of W 2,1(Ω) → Lr(Ω) is compact, hence {ψn} contains a subsequence
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convergent in Lr(Ω). Clearly, this subsequence must converge in Lr(Ω) to zero, as
it converges to zero in L2(Ω). This contradicts the fact that ‖ψn‖q ≥ ε and proves
our claim. Now it remains to use the estimate

‖b0‖2
2,µ ≤

∫ 1

0

(∫
Ω

|b0(t, x)|p dx
)2/p(∫

Ω

%(t, x)q dx

)1/q

dt

≤ sup
t∈(0,1)

‖b0(t, · )‖Lp(Ω)[εJ + C(Ω, p, ε)]

and then choose ε < 4−1
[
supt∈(0,1) ‖b0(t, · )‖Lp(Ω) + 1

]−1
. �

Corollary 2.7. Suppose that in Lemma 2.6 there exist a nonnegative compact func-
tion Ψ ∈ C2(Rd) and a constant M such that

LΨ(t, x) ≤M +MΨ(x) and |b0(t, x)|2 ≤ Ψ(x).

Then we have∫ 1

0

∫
Ω

|
√
A∇%(t, x)|2%(t, x)−1 dxdt

≤ 2(MeM + 1)

∫
Ω

Ψ(x)%0(x) dx+ 2M(MeM + 1) + 2

∫
Ω

%0(x) log %0(x) dx+ 2|Ω|.

(2.10)

In particular, this is true for Ψ(x) = |x|2k with k ≥ 1 provided that

traceA(t, x) ≤ C + C|x|2, |b0(t, x)|2 ≤ C + C|x|2k, 〈b(t, x), x〉 ≤ C + C|x|2.

Proof. It suffices to use the version of (2.3) for Ω mentioned in Lemma 2.2 in order
to estimate the integral of |b0|2 ≤ Ψ over [0, 1)× Ω. �

It is worth noting that under some additional assumptions on A and b, much
stronger global bounds of a similar type are established in [7].

3. Main results

Theorem 3.1. Let p > d+ 2 and let A and b satisfy (C1) and (C2) for every ball.
Assume that there exists a nonnegative compact function Ψ ∈ C2(Rd) and a constant
C ≥ 0 such that

LΨ(t, x) ≤ C + CΨ(x) a.e. in (0, 1)× Rd. (3.1)

Then, for every probability measure ν, there exists a family µ = (µt)t∈[0,1) of proba-

bility measures on Rd satisfying (1.1) and (1.3) such that t 7→
∫

Rd

ζ dµt is continuous

on [0, 1) for every ζ ∈ C∞
0 (Rd).

Proof. Step 1. Let us fix a probability density %0 ∈ C∞
0 (Rd) and set ν = %0 dx. Let

Ω be a bounded connected open set in Rd having a smooth boundary and containing
the support of ζ. We prove that there is a Borel function %Ω on [0, 1)×Ω such that
every %Ω(t, · ) is a probability density on Ω and µΩ := %Ω dxdt satisfies (1.1) and
(1.3) on [0, 1) × Ω. First we consider the case when A and b are smooth in x and
there exists a compact set K ⊂ Ω such that, letting Γ = (Γ1, . . . ,Γd), Γj := ∂xi

aij,
one has b(t, x) − Γ(t, x) = 0 if x 6∈ K. It is known that there is a nonnegative
continuous solution %Ω ∈ Lp([0, 1],W p,1(Ω)) of the initial value problem

∂%Ω

∂t
= ∂xi

∂xj
(aij%Ω)− ∂xi

(bi%Ω), %Ω(0, x) = %0(x), (3.2)
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with the boundary condition 〈∇%Ω, An∂Ω〉|∂Ω = 0, where n∂Ω is the outer unit normal
on ∂Ω (see [13]). In addition, one has∫

Ω

%Ω(t, x) dx = 1

for all t ∈ [0, 1) because one has∫
Ω

[∂xi
∂xj

(aij%Ω)− ∂xi
(bi%Ω)] dx =

∫
Ω

div(A∇%Ω + %ΩΓ− %Ωb) dx = 0

by the integration by parts formula and the equalities 〈∇%Ω, An∂Ω〉|∂Ω = 0 and
〈b− Γ, n∂Ω〉 = 0.

Step 2. We shall obtain a solution on [0, 1) × Rd as a limit of solutions %n with
smooth compactly supported initial distributions. In the general case, one can find
connected open sets Ωn with smooth boundaries such that

{Ψ ≤ n} ⊂ Ωn ⊂ {Ψ < n+ 1}.
Let %n,0 ∈ C∞

0 (Ωn) be probability densities such that the measures νn = %n,0 dx

converge weakly to ν and the integrals

∫
Ψ dνn converge to

∫
Ψ dν.

We can find Borel functions aij
n and bjn that are smooth in x and possess the

following properties: for every fixed bounded domain Ω in Rd

1) the functions aij
n are uniformly bounded on [0, 1] × Ω, aij

n (t, · ) → aij(t, · ) in
W p,1(Ω) for every t and supt ‖aij

n (t, · )‖W p,1(Ω) < ∞, the matrices An := (aij
n ) are

positive symmetric and inf(t,x)∈[0,1]×Ω detAn(t, x) > 0,
2) bn(t, · ) → b(t, · ) in Lp(Ω) for every t and supn supt ‖bn(t, · )‖Lp(Ω) <∞,
3) for each n, there exists a compact set Kn ⊂ Ωn such that

bjn(t, x)− ∂xi
aij

n (t, x) = 0 if x 6∈ Kn.

For every n we have a solution %n = %Ω,n of (3.2) on Ωn with the coefficients An

and bn. Clearly, condition (2.6) is fulfilled with %n and Ωn in place of % and Ω.
It follows from Lemma 2.6 that we can find a subsequence in this sequence that
converges almost everywhere on (0, 1)×Rd to a function %Ω. Our conditions on aij

n

and bjn imply on account of results in [3, Section 3] that this convergence is uniform
on compact subsets in (0, 1)× Rd and that %Ω satisfies the required equation.

Now me make use of the Lyapunov function Ψ. We have to show that %(t, · ) is
a probability density and that (1.3) is fulfilled. According to Corollary 2.3 we may
assume that LΨ ≤ 2C, which ensures that for every t, the sequence of probability
measures %n(t, x) dx is uniformly tight on Rd. Hence every %(t, · ) is a probability
density. The only nontrivial thing is to justify (1.3). Let ζ ∈ C∞

0 (Rd). We set

hn(t) :=

∫
Ωn

ζ(x)%n(t, x) dx

It suffices to show that uniformly in n one has

lim
t→0

hn(t) =

∫
Rd

ζ(x) ν(dx).

Let wτ
n be the solution of the backward Cauchy problem

∂wτ
n/∂t+ aij

n ∂xi
∂xj

wτ
n + bjn∂xj

wτ
n = 0, wτ

n(τ, x) = ζ(x), (t, x) ∈ [0, τ ]× Ωn,

with Dirichlet boundary condition. Multiplying the equation for %n by wτ
n and

integrating over [0, τ ]× Ωn we obtain∫
Ωn

wτ
n(0, x)%n,0(x) dx =

∫
Ωn

ζ(x)%n(τ, x) dx = hn(τ). (3.3)
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Indeed, on account of the integration by parts formula and boundary conditions for
wτ

n and %n we have

0 =

∫ τ

0

∫
Ωn

wτ
n

[∂%n

∂t
− ∂xi

∂xj
(aij

n %n) + ∂xi
(bin%n)

]
dx dt

=

∫
Ωn

[wτ
n(0, x)%n,0(x)− ζ(x)%n(τ, x)] dx−

∫ τ

0

∫
Ωn

%n
∂wτ

n

∂t
dx dt

+

∫ τ

0

∫
Ωn

∂xi
wτ

n

[
∂xj

(aij
n ∂xj

%n)− bin%n

]
dx dt

=

∫
Ωn

[wτ
n(0, x)%n,0(x)− ζ(x)%n(τ, x)] dx

−
∫ τ

0

∫
Ωn

%n
∂wτ

n

∂t
dx dt−

∫ τ

0

∫
Ωn

[
aij

n ∂xj
∂xi
wτ

n + bin∂xi
wτ

n

]
%n dx dt

=

∫
Ωn

[wτ
n(0, x)%n,0(x)− ζ(x)%n(τ, x)] dx.

Given δ > 0, one can find a compact set K ⊂ Rd such that νn(K) ≥ 1− δ for all n.
We may assume that K contains the support of ζ. In addition, it is readily seen that
the functions wτ

n are uniformly bounded. Moreover, one has lim
τ→0

wτ
n(0, x) → ζ(x)

uniformly in n ∈ N and x ∈ K, see [12, Ch. III, Theorem 7.1 and Theorem 10.1] or
[11]. Now by weak convergence of νn to ν and (3.3) we complete the proof. �

Remark 3.2. (i) It is clear from the proof of the above theorem that in the case when
the functions bi are bounded on bounded subsets of (0, 1)× Rd, the nondegeneracy
condition on A can be slightly relaxed as follows: it suffices to have

inf
(t,x)∈[τ1,τ2]×K

detA(t, x) > 0

for every [τ1, τ2] ⊂ (0, 1) and every compact set K ⊂ Rd.
(ii) It follows from Remark 2.4 and the above proof that condition (3.1) can be

relaxed as follows: there exists a compact set K ⊂ Rd such that LΨ(t, x) ≤ C a.e.
in (0, 1)× (Rd\K).

(iii) It is also clear that the solution constructed above has the following property:
for a.e. t, the measure µt has a density from the Sobolev class Hp,1

loc (Rd). As shown
in [3], this is true for any solution of (1.1) under our local assumptions on A and b.
Hence, under these assumptions, equation (1.1) can be written in the classical weak
form after integrating by parts in the term with ∂xi

∂xj
u. Below we consider more

general equations whose solutions do not have such a property.

Corollary 3.3. Suppose that there is a constant C such that

‖A(t, x)‖ ≤ C + C ln(|x|2 + 1), (t, x) ∈ [0, 1)× Rd, (3.4)

and, for every compact set K ⊂ Rd and every [τ1, τ2] ⊂ (0, 1), one has

inf
(t,x)∈[τ1,τ2]×K

detA(t, x) > 0, sup
(t,x)∈[0,1)×K

|b(t, x)| <∞.

Assume also that there is a constant M such that

〈b(t, x), x〉 ≤M(1 + |x|2) ln(|x|2 + 1), (t, x) ∈ [0, 1)× Rd. (3.5)

Then, for every probability measure ν on Rd, there exists a family (µt)t∈[0,1) of proba-

bility measures on Rd satisfying (1.1) and (1.3) such that t 7→
∫

Rd

ζ dµt is continuous
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on [0, 1) for every ζ ∈ C∞
0 (Rd). The same is true if we replace (3.4) and (3.5) by

‖A(t, x)‖ ≤ C + C|x|2, 〈b(t, x), x〉 ≤ C + C|x|2, (t, x) ∈ [0, 1)× Rd. (3.6)

If the functions bi and aij are continuous in x for a.e. fixed t, then the same is
true without the assumption that detA is strictly positive.

Proof. As in [1], we find Borel measurable mappings An on (0, 1) × Rd with values
in the space of nonnegative symmetric operators such that the functions aij

n (t, x) are
smooth in x and satisfy the following conditions: aij

n → aij a.e., An(t, x) ≥ n−1 · I
for every n,

sup
n

sup
t,x

| ln(|x|2 + 1)|−1(|x|2 + 1)−1‖An(t, x)‖ <∞,

for every ball B ⊂ Rd and every closed interval [τ1, τ2] ⊂ (0, 1), one has

sup
n

sup
(t,x)∈[τ1,τ2]×B

‖An(t, x)−1‖ <∞.

One can find An of the form An = n−1 · I+A∗ θn, where θn(x) = ndθ(nx) with some
smooth compactly supported probability density θ. Let Ln denote the operator with
the diffusion matrix An and drift b. Letting Ψ(x) = ln(|x|2 + 1), by the calculations
from Example 2.5(ii) we have for all n and some constant C1

LnΨ(t, x) ≤ C1 + C1|x|2 ln(|x|2 + 1).

For every n we obtain a solution µn with a density %n for the equation with Ln.
By Corollary 2.3 the sequence {µn} is uniformly tight on [0, 1] × Rd. Hence we
can choose a weakly convergent subsequence. Let µ denote its limit. Moreover,
according to [3], we can pick a further subsequence (denoted again by µn) for which
the densities %n converge locally uniformly. Then, similarly to [1], we verify that µ
satisfies (1.2). Finally, (1.3) follows by the fact that for every function ζ ∈ C∞

0 (Rd),
the functions

t 7→
∫

Rd

ζ dµn
t

are uniformly Lipschitzian on [0, 1/2], which is clear from (2.1) and the uniform
boundedness of A and b on [0, 1]× supp, ζ. �

A more general result is valid if A and b are continuous in x. A justification is
similar to the previous corollary (see also the proof of the analogous but a bit weaker
corollary 3.4 in [1]).

Corollary 3.4. Suppose that the functions x 7→ aij(t, x) and x 7→ bi(t, x) are contin-
uous for each t ∈ [0, 1) and are bounded on bounded sets in [0, 1)×Rd. In addition,
suppose that, for every fixed ball U ⊂ Rd, the functions x 7→ aij(t, x), t ∈ [0, 1),
are equicontinuous on U . Finally, assume that there exists a nonnegative compact
function Ψ ∈ C2(Rd) and a constant C ≥ 0 such that

LΨ(t, x) ≤ C + CΨ(x).

Then, for every probability measure ν, there exists a family µ = (µt)t∈[0,1) of proba-

bility measures on Rd satisfying (1.1) and (1.3) such that t 7→
∫

Rd

ζ dµt is continuous

on [0, 1) for every ζ ∈ C∞
0 (Rd).

Moreover, if detA is separated from zero on compact subsets in (0, 1)× Rd, then
the continuity of b in x is not needed.
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It should be noted that the solutions constructed above possess nice global regu-
larity properties. According to [7], if in the situation of Theorem 3.1 one has addi-
tionally that A and A−1 are uniformly bounded, A is uniformly Lipschitzian in x,
|b|, ln(|x|2 +1) ∈ L2(µ), and µ0 = %0 dx with %0 ln %0 ∈ L1(Rd), then µ = %(t, x) dx dt
and ∫ τ

0

∫
Rd

|∇%(t, x)|2

%(t, x)
dx dt <∞

for all τ < 1. The assumption that |b|+ ln(|x|2 + 1) ∈ L2(µ|[0,τ)×Rd) is fulfilled if

‖A(t, x)‖ ≤ α, |b(t, x)| ≤ c0 + c0 exp(c|x|2k/2), 〈b(t, x), x〉 ≤ γ − (2αck + ε)|x|2k

with some α, c0, c, k, γ > 0. If the latter estimate is replaced by

〈b(t, x), x〉 ≤ γ − γ0|x|2k+δ

with positive γ0 and δ and %0 is bounded, then % is uniformly bounded on every set
[0, τ)× Rd, τ < 1. Moreover, certain pointwise bounds on % are obtained in [7].
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