
CONSTRUCTION OF N-PARTICLE LANGEVIN DYNAMICS FORH1;1-POTENTIALS VIA GENERALIZED DIRICHLET FORMSFLORIAN CONRAD, MARTIN GROTHAUSAbstra
t. We 
onstru
t an N-parti
le Langevin dynami
s on a 
uboid region in Rdwith periodi
 boundary 
ondition, i.e., a di�usion pro
ess solving the Langevin equationwith periodi
 boundary 
ondition in the sense of the 
orresponding martingale problem.Our approa
h works for general H1;1 potentials allowing N -parti
le intera
tions andexternal for
es. Of 
ourse, the 
orresponding for
es are not ne
essarily 
ontinuous.Sin
e the generator of the dynami
s is non-se
torial, for the 
onstru
tion we use thetheory of generalized Diri
hlet forms.Furthermore, for any pro
ess 
onstru
ted by a generalized Diri
hlet form, we provethat it is solving the martingale problem for the 
orresponding generator. Moreover,we give a lo
ality 
ondition for the generator ensuring that a pro
ess 
onstru
ted by ageneralized Diri
hlet form is a di�usion, i.e., it has 
ontinuous sample paths.1. Introdu
tionThe Langevin equation (
f. e.g. [S
h04, Se
tion 8.1℄)dXt = Vt dt(1.1) dVt = �
Vt dt�r�(Xt) dt+r2
� dBtis a sto
hasti
 di�erential equation whi
h des
ribes the evolution of the positions Xt =(X(1)t ; � � � ;X(N)t ) 2 (Rd )N and velo
ities Vt = (V (1)t ; � � � ; V (N)t ) 2 (Rd)N of N parti
lesin dimension d. These parti
les are subje
t to a sto
hasti
 perturbation of the velo
itiesmodelled by an RNd -valued Brownian motion (Bt)t�0 and fri
tion, both e.g. 
aused by asurrounding medium with 
onstant temperature. Furthermore, their motion is a�e
tedby an N -parti
le potential � : (RN )d ! R. This, of 
ourse, also 
overs the 
ase of pairintera
tions. 
 > 0 des
ribes the (
onstant) magnitude of the in
uen
e of the surround-ing medium. � > 0 is de�ned by � := 1kT , where T is the (
onstant) temperature of thesurrounding medium and k is the Boltzmann 
onstant.Here we 
onsider the 
ase where the motion in \x-dire
tion" is bounded - in parti
ular,we restri
t the motion to a 
uboid in Rd with a periodi
 boundary, whi
h means that if aparti
le leaves this area \on the right", it enters it at the same time \on the left". Clearly,then also the potential has to be periodi
. In order to avoid \jumping" of the parti
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2 FLORIAN CONRAD, MARTIN GROTHAUSfrom one side to the other we repla
e the 
uboid in (Rd )N by the dN -dimensional mani-fold whi
h results from glueing the respe
tive opposite (hyper)surfa
es together.We prove (
f. Se
tion 3.4) that for bounded potentials having bounded weak derivativesthere exists for many initial distributions � a weak solution of (1.1), 
onsidered as equa-tion on this manifold, in the sense of the 
orresponding martingale problem. This meansthat (the law P� of) the pro
ess (Xt; Vt)t�0 we 
onstru
t solves the martingale problemfor the generator(1.2) L = 
��v � 
vrv + vrx � (rx�)rv
orresponding to this equation (via Itô formula). Solving the martingale problem for Lon a domain D means that for all f 2 D, the pro
ess(1.3) f(Xt; Vt)� f(X0; V0)� Z t0 Lf(Xs; Vs) dsis a martingale w.r.t. P� . We spe
ify later (
f. Se
tions 4 and 3.4) how large D may be
hosen. It depends on the initial distribution �.Moreover, we show that our solution pro
ess is a di�usion, i.e. it has a.s. 
ontinuous paths,and that is has in�nite life time (both again for many initial distributions/points).In order to prove the existen
e of the Langevin dynami
s we show that L generatesa quasi-regular generalized Diri
hlet form. The theory of generalized Diri
hlet forms(GDFs) (
f. [Sta99℄), then provides us with the existen
e of a pro
ess whi
h is asso
iatedwith this GDF and hen
e with L. We emphasize that it is not possible to 
onstru
t a(se
torial) solution pro
ess using the theory of 
oer
ive Diri
hlet forms (
f. [MR92℄) here,sin
e L is non-se
torial, 
f. Remark 3.15(ii).For proving that L generates a GDF it is 
ru
ial to �nd a domain for L on whi
hit is essentially m-dissipative, or equivalently, su
h that the 
losure of L generates a C0
ontra
tion semigroup. We moreover have to show that this semigroup is sub-Markovian,or equivalently, that the 
losure of L is a Diri
hlet operator. Both is done in Se
tion 3.3.The problem at proving essential m-dissipativity of L is that L is not stri
tly ellipti
,whi
h makes a dire
t appli
ation of perturbation theory impossible. We use an idea from[Lei01℄ to solve this problem. The shape of our domain plays an important role for ourproof, sin
e it enables us to �nd a 
omplete orthonormal system of subspa
es of L2 whi
his invariant w.r.t. the partial derivatives in the x-dire
tions.Quasi-regularity of the GDF generated by (the m-dissipative 
losure of) L is then easilyseen, sin
e the domain of essential m-dissipativity we �nd for L is an algebra of C1-fun
tions. Hen
e we only have to 
onsider the question, whether the martingale problemis solved by the 
orresponding pro
ess and if the pro
ess is indeed a di�usion. This isdone in a more general setting in Se
tions 4 and 5.In literature, one �nds many hints and ideas whi
h help to see that a pro
ess withstate spa
e E 
onstru
ted from a (generalized) Diri
hlet form E on L2(E;m) via [Sta99,Theorem IV.2.2℄ (
f. Theorem 2.9 below) solves the martingale problem for its generator(
f. e.g. [AKR03, Se
tion 5℄,[AR95, Se
tion 3℄,[PR02, Theorem 7.4(ii) and Proposition8.2℄). In Se
tion 4 we 
ombine these hints to give a 
omplete proof in a general setting.We do not need to restri
t to the 
ase of f (
f. (1.3)) being e.g. C10 , but 
onsider any



N-PARTICLE LANGEVIN DYNAMICS 3bounded E-quasi-
ontinuous f in the domain of the generator. (For the notion of E-quasi-
ontinuity, 
f. Se
tion 2.)Moreover, we prove in Se
tion 5 that a pro
ess M = (
;F�; (Xt)t�0; (Pz)z2E�) generatedby a generalized Diri
hlet form E is a di�usion for many initial points, if the generator(L;D(L)) ful�lls a lo
ality 
ondition we give in Theorem 5.5. One may �nd anotherproof for the di�usion property by reading [Sta04, Proof of Proposition 1.10℄ 
arefully.Let us brie
y summarize our 
ore results:� Given a bounded N -parti
le potential having bounded weak derivatives, we
onstru
t for many initial distributions an N -parti
le Langevin dynami
s on abounded re
tangular area with periodi
 boundary 
ondition, see Theorem 3.25,Corollary 3.27 and Remark 3.29.� We prove that a pro
ess whi
h is 
onstru
ted via the theory of GDFs solvesthe martingale problem for the generator L of the asso
iated GDF for manyinitial distributions on the subset of bounded fun
tions in the domain D(L) ofL, see Corollary 4.9. This is done by proving a weaker result for the 
ase ofsingle initial points, see Theorem 4.7. Moreover, we prove that, if the initialdistribution possesses an L2-integrable density w.r.t. the referen
e measure m,the martingale problem is solved for any fun
tion in D(L), see Corollary 4.11.� Furthermore, we give a 
ondition for L and its domain D(L) ensuring that su
ha pro
ess is a di�usion for many initial points/distributions, see Theorem 5.5.In future work we plan to 
onstru
t (from the pro
ess provided here) a Markov pro
esssolving the Langevin equation (in the sense of the 
orresponding martingale problem) forany initial point. This may be done by showing that the asso
iated operator semigroup(resolvent) has strong Feller properties as used in [Doh05℄, 
f. [AKR03℄ and [FG06℄. An-other goal is to use the present results to generalize them to a larger 
lass of potentialsvia an approximation. We are having in mind potentials of Lennard-Jones type as usedin the theory of 
uids.The 
onstru
tion of the N -parti
le Langevin dynami
s we 
onsider as a starting pointto 
onstru
t an in�nite parti
le/in�nite volume Langevin dynami
s, using similar te
h-niques as used in [GKR04℄. In this 
ontext it is important to show that the 
onstru
tedpro
ess solves the martingale problem, be
ause this property is essential for derivings
aling limits of the Langevin dynami
s, see e.g. [OT03℄, [Spo86℄, [GKLR03℄.At �rst, let us summarize the most important fa
ts from the theory of generalizedDiri
hlet forms in Se
tion 2. We then pro
eed by �rst 
onsidering our appli
ation inSe
tion 3 and �nally presenting in Se
tions 4 and 5 the proofs for the martingale propertyand the di�usion property in the 
ase of generalized Diri
hlet forms.2. Generalized Diri
hlet FormsThroughout this se
tion let L2(E;m) be the Hilbert spa
e of (
lasses of) (B(E)-measurable) L2-integrable fun
tions on a Hausdor� topologi
al spa
e E w.r.t. a �-�nitemeasurem on the Borel �-�eld B(E) on E. As usual (
f. [MR92, Chapter VI℄ and [Sta99,Chapter IV℄) we assume that �(C(E)) = B(E). We denote the inner produ
t and thenorm of L2(E;m) by (�; �)L2(E;m) and k � kL2(E;m), respe
tively. We will make use of basi




4 FLORIAN CONRAD, MARTIN GROTHAUSknowledge on m-dissipative operators, strongly 
ontinuous 
ontra
tion resolvents and C0semigroups (
f. e.g. [MR92, Se
tions I.1, I.2℄, [RS75, Se
tion X.8℄, [Dav80℄).Almost everything presented in this se
tion is taken from [Sta99℄.The basi
 setting of a generalized Diri
hlet form 
onsists of a 
oer
ive 
losed form (A;V)on L2(E;m) (
f. [Sta99℄[De�nition I.1.4℄ or [MR92, De�nition I.2.4℄) and an operator(�;D(�)) ful�lling(D1) (�;D(�)) is the generator of a C0 
ontra
tion semigroup (Tt)t�0 on L2(E;m)(i.e. (�;D(�)) is m-dissipative) and (Tt)t�0 
an be restri
ted to a C0 semigroupon (V; k � kV).Let V 0 be the dual spa
e of V. By identifying L2(E;m) with its dual we have V �L2(E;m) � V 0 densely and 
ontinuously. By V 0h�; �iV we denote the dualization betweenV and V 0 (i.e. V 0hv; wiV := v(w) for v 2 V 0, w 2 V).[Dav80, Theorem 1.34℄ tells us that the adjoint operator (�̂;D(�̂)) of (�;D(�)) is alsom-dissipative and the adjoints T̂t of Tt, t � 0, form the 
orresponding C0 
ontra
tionsemigroup. In [Sta99, Lemma I.2.4℄ it is shown that from (D1) it follows that thereare bounded extensions of T̂t to V 0 whi
h form a C0 semigroup. The generator of thissemigroup is 
learly an extension of �̂ and it is also denoted by �̂. We denote its domainby D(�̂;V 0). [Sta99, Lemma I.2.3℄ shows that furthermore the operator � with domainV \D(�) is 
losable as an operator mapping from V to V 0. Denote by F the domain ofits 
losure, whi
h we denote also by �. Clearly F is a Hilbert spa
e if it is equipped withthe graph norm k � k2F := k � k2V + k� � k2V 0
orresponding to � : V ! V 0. De�ne moreover F̂ := V \ D(�̂;V 0). Then also F̂ ,endowed with the norm k � k2̂F := k � k2V + k�̂ � k2V 0 , is a Hilbert spa
e, sin
e the operator�̂ : D(�̂;V 0)! V 0 is (the generator of a C0 
ontra
tion semigroup and hen
e) 
losed andV is a Hilbert spa
e.De�nition 2.1. Let (A;V), (�;D(�)) be as above, and assume that (D1) holds. Let Fand F̂ be as above. The mappingE : F � V [ V � F̂ ! R(u; v) 7! � A(u; v)�V 0 h�u; viV if u 2 F ,v 2 VA(u; v)�V 0 h�̂v; uiV if u 2 V,v 2 F̂is said to be the generalized Diri
hlet form (GDF) asso
iated with (A;V) and (�;D(�)),if (D2) for all u 2 F it holds u+ ^ 1 2 V and E(u; u� u+ ^ 1) � 0is ful�lled.For our appli
ation we need the following lemma. For the proof see [Sta99, PropositionI.4.7℄.



N-PARTICLE LANGEVIN DYNAMICS 5Lemma 2.2. Let (�;D(�)) be an m-dissipative Diri
hlet operator (i.e. � is m-dissipativeand (�u; (u � 1)+)) � 0 for all u 2 D(�)). ThenE : D(�)�H [H�D(�̂) ! R(u; v) 7! � �(�u; v)L2(E;m) if u 2 D(�),v 2 H�(�̂v; u)L2(E;m) if u 2 H,v 2 D(�̂)is a generalized Diri
hlet form. Here H := L2(E;m).Let E be a GDF asso
iated with a 
oer
ive 
losed form (A;V) and an operator(�;D(�)). By [Sta99, Proposition I.3.4℄ for ea
h � > 0 there exists a mapping W� :V 0 ! F ful�lling(2.1) E�(W�v; w) =V 0 hv; wiV for all v 2 V 0; w 2 V ;where E�(f; g) := �(f; g)L2(E;m) + E(f; g) for (f; g) 2 F � V [ V � F̂ :The restri
tions G� of W� to L2(E;m), � > 0, form a strongly 
ontinuous 
ontra
tionresolvent (G�)�>0 in H (
f. [MR92℄[De�nition I.1.4℄). Hen
e there exists an asso
iatedm-dissipative generator L = � � G�1� with domain D(L) � L2(E;m) and also a C0
ontra
tion semigroup (Tt)t�0 generated by L.De�nition 2.3. (G�)�>0 as above is 
alled the strongly 
ontinuous 
ontra
tion resolventasso
iated with E , and (Tt)t�0 and (L;D(L)) are said to be the semigroup and generatorasso
iated with E , respe
tively.Remark 2.4. If A = 0, the generator (L;D(L)) 
oin
ides with (�;D(�)) (
f. [Sta99,Remark I.4.10℄).It is possible (
f. [Sta99, Se
tion III℄) to de�ne the notions of E-nests, E-ex
eptionalsets, properties whi
h hold E-quasi-everywhere (E-q.e.), E-quasi-uniformly 
onvergentsequen
es, E-quasi-
ontinuity (E-q.
.) similar to the 
ase of 
oer
ive Diri
hlet forms (
f.[MR92, Se
tion III℄), and there also are Choquet 
apa
ities 
hara
terizing E-nests andE-ex
eptional sets as in [MR92, Se
tion III.2℄. Again quasi-regularity of a (generalized)Diri
hlet form is de�ned as follows:De�nition 2.5. A generalized Diri
hlet form E is 
alled quasi-regular, if it ful�lls:(q1) There exists an E-nest (Ek)k2N 
onsisting of 
ompa
t sets.(q2) There exists a dense subset of F whose elements have E-q.
. m-versions.(q3) There exist un 2 F , n 2 N, having E-q.
. m-versions ~un and an E-ex
eptionalset N � E su
h that f~unjn 2 Ng separates the points of E nN .We summarize some properties of generalized Diri
hlet forms whi
h are also in prin
i-ple known from/similar as in the theory of 
oer
ive Diri
hlet forms. They are importantfor our further 
onsiderations, espe
ially in Se
tions 4 and 5:Remark 2.6. (i) Countable unions of E-ex
eptional sets are E-ex
eptional. More-over every E-ex
eptional set is 
ontained in a null set w.r.t. m (
f. [Sta99,Remark III.2.6℄).



6 FLORIAN CONRAD, MARTIN GROTHAUS(ii) A suÆ
ient 
ondition for an in
reasing sequen
e (Fk)k2N of 
losed subsets of Eto be an E-nest is given by[k2NFFk is dense in Fwhere we de�ne FA := ff 2 Fjf = 0 on E nAg for F � L2(E;m) and A � E,A 
losed. (
f. [Sta99, Remark III.2.11℄)(iii) Let (un)n2N � F and assume that for ea
h n 2 N there exists an E-quasi-
ontinuous m-version ~un of un. Assume in addition that un ! u in F . Thenthere exists a subsequen
e (unk)k2N and an E-q.
. m-version ~u of u su
h thatlimk!1 ~unk ! ~u E-quasi-uniformly. (
f. [Sta99, Corollary III.3.8℄)(iv) If E is quasi-regular, then by (iii) and (q2) every f 2 F possesses a quasi-
ontinuous m-version ~f .(v) Let E be quasi-regular and let f , g be two E-quasi-
ontinuous fun
tions whi
h
oin
idem-a.e.. Then they 
oin
ide even E-q.e. (
f. [Sta99, Corollary III.3.4 andLemma III.3.5℄). In parti
ular, any two E-q.
. m-versions of the same elementin L2(E;m) 
oin
ide E-q.e..For the de�nition of an m-tight spe
ial standard pro
ess (and the de�nition of a rightpro
ess et
.) M = (
;F�; (Xt)t�0; (Pz)z2E�) with state spa
e E and life time � : 
 ![0;1℄ we refer to [Sta99, Se
tion IV.1℄ or [MR92, Se
tion IV.1℄. Here E� := E [ f�gdenotes the extension of E by an isolated point � (the 
emetery), whi
h is used as thestate of the pro
ess at times greater or equal �. Any fun
tion f : E ! R is extended toE� by setting f(�) := 0. As mentioned in [MR92, Remark IV.1.10℄ (and [Sta99, RemarkIV.1.3(i)℄) we 
an 
hoose as 
orresponding �ltration (Ft)t�0 the natural �ltration of Mfor any su
h pro
ess and we may assume that F� is the smallest �-�eld 
ontaining allFt, t � 0.In [MR92, p. 91℄ the transition semigroup (pt)t>0 of a right pro
ess M as above isde�ned by(2.2) ptf(x) := Ex[f(Xt)℄for x 2 E, t > 0 and nonnegative B(E)-measurable real-valued fun
tions f . As in[MR92, Se
tion II.4a℄ we de�ne ptf(x) := ptf+(x) � ptf�(x), x 2 E, t > 0, for anyB(E)-measurable f for whi
h ptf+(x) or ptf�(x) is �nite. Here f+, f� denote thepositive and negative part of f , respe
tively. Moreover (see [MR92, p.91℄) the transitionresolvent (R�)�>0 of M is de�ned by(2.3) R�f(x) := Ex �Z 10 e��tf(Xt) dt�for � > 0, x 2 E and B(E)-measurable nonnegative f (or B(E)-measurable f su
h thatR�f+(x) or R�f�(x) is �nite).Like in the theory of 
oer
ive Diri
hlet forms a quasi-regular generalized Diri
hlet formE 
an be used to 
onstru
t a sto
hasti
 pro
ess, but an additional 
ondition has to be



N-PARTICLE LANGEVIN DYNAMICS 7ful�lled by E (
f. (D3) in Theorem 2.9 below). Let us �rst dis
uss the notion of properasso
iation of sto
hasti
 pro
esses with GDFs.De�nition 2.7. Let M = (
;M; (Xt)t�0; (Px)x2E�) be a right pro
ess with transitionresolvent (R�)�>0. Let E be a generalized Diri
hlet form with asso
iated strongly 
on-tinuous 
ontra
tion resolvent (G�)�>0. M is said to be properly asso
iated with E inthe resolvent sense, if for every � > 0, f 2 L2(E;m), with bounded m-version f̂ , thefun
tion R�f̂ is an E-quasi-
ontinuous m-version of G�f .In the sequel we sometimes need the following lemma.Lemma 2.8. Let M , E, (R�)�>0, (G�)�>0 be as in De�nition 2.7 and denote by (pt)t>0the transition semigroup of the right pro
ess M and by (Tt)t�0 the C0 
ontra
tion semi-group asso
iated with E. Then it holds (
f. [MR92, Exer
ise 2.7 and Exer
ise 2.9℄)(i) For every t > 0 and f 2 L2(E;m) with bounded m-version f̂ , the fun
tion ptf̂is an m-version of Ttf .(ii) For every t > 0 (� > 0) and for every f 2 L2(E;m) with m-version f̂ thefun
tion ptf̂ (R�f̂) is an m-version of Ttf (G�f). Moreover, R�f̂ is quasi-
ontinuous.Proof. Let f; fn 2 L2(E;m) with nonnegative m-versions f̂ ; f̂n (n 2 N), su
h that f̂n "f̂ . Assume that ptf̂n is an m-version of Ttfn for ea
h n 2 N and for some t > 0.Then by the monotone 
onvergen
e theorem it holds ptfn " ptf pointwise and again bythe monotone 
onvergen
e theorem we �nd that ptf 2 L2(E;m) and from Lebesgue'sdominated 
onvergen
e theorem we 
on
lude 
onvergen
e in L2(E;m). Moreover, it
learly holds Ttfn ! Ttf in L2(E;m), hen
e ptf is an m-version of Ttf .Let us now prove (i): By the 
onsiderations above and a monotone 
lass argument (andsin
e �(C(E)) = B(E)) we may assume that f̂ 2 C(E). Moreover, we 
an 
learly restri
tour 
onsiderations to the 
ase when f̂ � 0.Note that by 
ontinuity and boundedness of f̂ and right 
ontinuity of M Lebesgue'sdominated 
onvergen
e theorem implies that for x 2 E, t � 0 and for any sequen
e tn # tit holds limn!1(ptn f̂)(x) = limn!1Ex[f̂(Xtn)℄ = Ex[f̂(Xt)℄ = (ptf̂)(x)Consequently, the mapping t 7! (ptf̂)(x) is right 
ontinuous for every x 2 E.Let v be a bounded nonnegative measurable fun
tion on E ful�lling m(fv > 0g) < 1.Then for � > 0 it holds by our assumption and by Fubini's theoremZ 10 e��t(v; ptf̂)L2(E;m) dt = �v;Z 10 e��t(ptf̂)(�) dt�L2(E;m) = (v;R�f̂)L2(E;m)= (v;G�f)L2(E;m) = �v;Z 10 e��tTtf dt�L2(E;m)The integral on the right-hand side is 
onsidered as a Riemann integral; 
learly theright-hand side is equal to Z 10 e��t(v; Ttf)L2(E;m) dt



8 FLORIAN CONRAD, MARTIN GROTHAUSBy the inje
tivity of the Lapla
e transform (
f. [DS58, Lemma VIII.1.15℄) and by right
ontinuity of the mappings t 7! (v; ptf̂)L2(E;m) (here we again use Lebesgue's theo-rem) and t 7! (v; Ttf)L2(E;m) we 
on
lude that for all t > 0 it holds (v; Ttf)L2(E;m) =(v; ptf̂)L2(E;m).Sin
e the measure m is �-�nite and sin
e the linear span of the set of fun
tions v asabove is dense in L2(E;m), we easily �nd that ptf̂ is L2-integrable and an m-version ofTtf , whi
h we desired to prove.To prove (ii) let f 2 L2(E;m) with m-version f̂ . W.l.o.g. we may assume that f̂ � 0.We de�ne f̂n := f̂ ^ n. Then by the 
onsiderations at the beginning of this proof andby (i) it follows that ptf̂ is an m-version of Ttf . In the same way we 
an prove the
orresponding result for R� and G�.Finally, to prove the last assertion we note that G�fn 
onverges to G�f not only inL2(E;m), but also in F , sin
e L2(E;m) � V 0 
ontinuously and G� is the restri
tionof the 
ontinuous operator W� : V 0 ! F to L2(E;m). Hen
e by Remark 2.6(iii) thepointwise limit R�f of (R�fn)n2N is E-quasi-
ontinuous. �Now we state the existen
e theorem, whi
h 
an be found in [Sta99, Theorem IV.2.2℄.Theorem 2.9. Let E be a quasi-regular generalized Diri
hlet form and let F be de�nedas above. Assume that it holds(D3) There exists a linear subspa
e Y � L2(E;m) \ L1(E;m) su
h that Y \ F isdense in F and lim�!1(�G�u� u)E = 0 in L2(E;m) for all u 2 Y. Moreover,for all � � 0, it holds u^� 2 Y, where Y denotes the 
losure of Y in L1(E;m).Then there exists an m-tight spe
ial standard pro
ess M whi
h is properly asso
iated inthe resolvent sense with E.Remark 2.10. (�G�u � u)E in Theorem 2.9 above denotes the 1-redu
ed fun
tion of�G�u� u (
f. [Sta99, De�nition III.1.8℄). We do not need to 
onsider details about thisnotion here, sin
e we use the following proposition (
f. [Sta99, Proposition 2.1℄).Proposition 2.11. In the situation of Theorem 2.9 assume that there exists a linearsubspa
e Y � F \L1(E;m), whi
h is dense in F and 
losed under multipli
ation. Then(D3) holds for Y.In the sequel we make use of the following result (
f. [Sta99, Lemma IV.3.10℄), whi
htells us that a pro
ess M as in Theorem 2.9 \does not hit" E-ex
eptional sets. For U � E,U open, we de�ne �U := infft > 0jXt 2 Ug = infft � 0jXt 2 Ug. �U is 
alled the �rsthitting time of U . We set �U :=1, if ft � 0jXt 2 Ug is empty.Lemma 2.12. Let M be an m-tight m-spe
ial standard pro
ess with life time � properlyasso
iated in the resolvent sense with a GDF E. Then for any E-nest (En)n2N it holdsPx � limn!1�EnEn < �� = 0 for E-q.e. x 2 EHen
e if N � E is E-ex
eptional, then Px(9t � 0 : Xt 2 N) = 0 for E-q.e. x 2 E.



N-PARTICLE LANGEVIN DYNAMICS 93. An N-parti
le Langevin dynami
sWe now 
onstru
t a solution to (1.1) in the sense of the 
orresponding martingaleproblem, where we 
onsider (1.1), as we mentioned in the Introdu
tion, to be an equationon the manifold resulting from 
onsidering the 
uboid area of motion in Rd to haveperiodi
 boundary. We �rst make this setting more pre
ise.3.1. The setting.3.1.1. The state spa
e E. As we mentioned in the Introdu
tion we 
onsider the Langevinequation for N parti
les moving in a re
tangular area in Rd . To simplify notations with-out losing generality we may assume that the Langevin equation des
ribes the motion of1 parti
le moving in [0; r1℄� � � � � [0; rNd℄ � RNd . We set n := Nd.In the sequel we often 
onsider fun
tions on the sets fM := (0; r1) � � � � � (0; rn), Rnand eE := fM � Rn . Throughout the whole se
tion we denote� an element of eE (or R2n) usually by (x; v), whi
h is to be understood in thesense that x = (x1; � � � ; xn) 2 fM (or Rn) and v = (v1; � � � ; vn) 2 Rn .� by �x1f; � � � ; �xnf the (weak) partial derivatives of f : fM ! R.� by �v1f; � � � ; �vnf the (weak) partial derivatives of f : Rn ! R.� by �x1f; � � � ; �xnf; �v1f; � � � ; �vnf the (weak) partial derivatives of f : eE ! R.We moreover de�ne the formal di�erential operators rv, rx, �v, vrv := v1�v1 + � � � +vn�vn et
. in the obvious way.For x 2 �fM , whi
h means xi 2 f0; rig for some 1 � i � n, we de�ne the opposite point�x = (�x1; � � � ; �xn) by �xi := 8<: ri if xi = 00 if xi = rixi else 1 � i � nWe de�ne C1per (fM ) := ff jfM jf 2 C1(Rn); f(x) = f(�x)8x 2 �fM;and the same holds for any derivative of fgC1per ;0( eE) := ff j eE jf 2 C10 (R2n); f(x; v) = f(�x; v)8(x; v) 2 � eE;(3.1) and the same holds for any derivative of fgand moreover H1;1per (fM) := ff 2 H1;1(fM )jf(x) = f(�x)8x 2 �fMgwhere H1;1(fM) denotes the Sobolev spa
e of on
e weakly di�erentiably fun
tions f :fM ! R, su
h that f and its weak partial derivatives are elements of L1(fM;dx) (
f.[Alt02, 1.23℄). Note that by [Alt02, Satz 8.5℄ the elements of H1;1 have Lips
hitz 
on-tinuous dx-versions, thus f(x) is well-de�ned for x 2 �fM , f 2 H1;1(fM).We need to know the following (obvious) fa
ts about H1;1(fM ):



10 FLORIAN CONRAD, MARTIN GROTHAUSLemma 3.1. (i) H1;1(fM) is an algebra of fun
tions and the produ
t rule holds.The same is true for H1;1per (fM ).(ii) Let f 2 H1;1(fM). Then ef 2 H1;1(fM) and rxef = (rxf)ef . The same istrue for H1;1per (fM).We de�ne an n-dimensional manifold M with the help of the equivalen
e relation �,given by x � x0 :, x � x0 2 f(z1r1; � � � ; znrn)j (z1; � � � ; zn) 2 Zng for x; x0 2 Rn . Wede�ne M := Rn= �. Let �M : Rn ! M be the mapping whi
h assigns to every x 2 Rnits equivalen
e 
lass �M (x) = [x℄ 2M w.r.t. � (whi
h we also denote by x in the sequel).If we equip M with the quotient topology w.r.t. �M , M is a se
ond 
ountable Hausdor�spa
e.We de�ne for every x0 = (x01; � � � ; x0n) 2 Rn the restri
tion �Mx0 of �M to (x01; x01+r1)�� � ��(x0n; x0n + rn). We 
an use the 
harts (�Mx0 )�1 to de�ne a (quite natural) di�erentiablestru
ture on M . We de�ne the global ve
tor �elds �Mx1 ; � � � ; �Mxn to be the images of�x1 ; � � � ; �xn under the di�erential mappings of �Mx0 , x0 2 Rn . Of 
ourse, we denote byC1(M) the spa
e of in�nitely often di�erentiable fun
tions on M .Moreover, we de�ne the manifold E to be the produ
t manifold E := M � Rn . Thismanifold is the state spa
e for our pro
ess. We de�ne � := �M � idRn : R2n ! E(i.e. �(x; v) := ([x℄; v), (x; v) 2 R2n) and moreover for x0 2 Rn we de�ne �x0 := �Mx0�idRn .�x0 is the restri
tion of � to (x01; x01 + r1) � � � � � (x0n; x0n + rn) � Rn . The global ve
tor�elds �Ex1 ; � � � ; �Exn ; �Ev1 ; � � � ; �Evn are de�ned in the same way as the 
orresponding ve
tor�elds on M . We de�ne rEv , rEx , rMx , �Ev et
. in the same way as the notations we�xed above. Let C10 (E) denote the set of all in�nitely often di�erentiable fun
tions onE having 
ompa
t support.We 
onsider any mapping � on M also as a mapping on E = M � Rn by de�ning�(x; v) := �(x), x 2M , v 2 Rn .Remark 3.2. It is easy to see that there is a 
ountable set G of nonnegative fun
tionsin C10 (E) su
h that the open sets fx 2 Eju(x) > 0g, u 2 G form a base of the topologyon E. Of 
ourse, this implies that �(C(E)) = B(E).3.1.2. L2-spa
es on E and M . With the help of the mappings �Mx0 , x0 2 Rn , it is alsopossible to transfer the Lebesgue measure dx on Rn to the manifoldM , or, to be pre
ise,to the measurable spa
e (M;B(M)):De�nition 3.3. Let x0 2 Rn . For A 2 E we de�ne dxM (A) := dx �(�Mx0 )�1(A)�, i.e. wede�ne dxM to be the image measure of dx under �Mx0 .Clearly, this de�nition is independent of the 
hoi
e of x0.By the de�nition of dxM the set �M (fM) 
ontains already the total mass. Hen
e, ifwe de�ne for any fun
tion f : fM ! R another fun
tion �̂Mf : �M (fM) ! R by�̂Mf := f Æ (�M0 )�1, the mapping �̂M leads to a bije
tion �M between dx-
lasses offun
tions on fM and dxM -
lasses of fun
tions on M .Moreover, it is 
lear that �M : L2(fM ; dx) ! L2(M ; dxM ) is a unitary transformation.



N-PARTICLE LANGEVIN DYNAMICS 11Note that �̂M maps C1per(fM) bije
tively onto C1(M) (in the obvious sense: ea
h fun
-tion in C1(M) is uniquely determined by its restri
tion to �M (fM)), hen
e �M mapsC1per(fM) � L2(fM ; dx) bije
tively onto C1(M) � L2(M ; dxM ).We de�ne on (E;B(E)) the measure d(x; v)E to be the produ
t measure d(x; v)E :=dxM 
 dv, where dv denotes the Lebesgue measure on Rn . We de�ne mappings �̂, �for E analogously to �̂M and �M for M , and 
learly we get similar results as above.Moreover, note that � also gives a one-to-one-
orresponden
e between measures � on(E;B(E)) whi
h are absolutely 
ontinuous w.r.t. d(x; v)E withm = d�d(x;v)E , and measurese� on ( eE;B( eE)) whi
h are absolutely 
ontinuous w.r.t. d(x; v) su
h that em = de�d(x;v) , in thesense that �(em) = m. For su
h a pair �; e� of measures 
learly � : L2( eE; e�)! L2(E;�)is also a unitary transformation. Clearly � and �M (and their inverses) transform anym-dissipative operator into an m-dissipative operator, the semigroup 
orresponding tothe former one into the semigroup 
orresponding to the latter one et
. Moreover theytransform Diri
hlet operators into Diri
hlet operators, positivity preserving operatorsinto positivity preserving operators et
.Remark 3.4. For e�; � as above any 
onsiderations about (di�erential operators on) thespa
es L2( eE; e�), C1per;0( eE) are also valid for (the 
orresponding di�erential operators on)L2(E;�) and C10 (E), as long as we do not have to in
lude global topologi
al propertiesof E or eE, whi
h is e.g. important to prove quasi-regularity of a generalized Diri
hletform on L2(E;�) (
f. De�nition 2.5).We de�ne H1;1(M) := �MH1;1per (fM )Remark 3.5. The above de�nition of H1;1(M) is easily veri�ed to be independent ofthe 
hoi
e of the natural 
hart used in the de�nition of �̂ and hen
e of �. It 
onsistsexa
tly of those fun
tions f :M ! R in L1(M;dxM ) whi
h ful�ll(3.2) ZM f�Exi dxM = �ZM fi dxM for all  2 C1(M)for some f1; � � � ; fn 2 L1(M;dxM ).3.1.3. The Langevin equation on E. We 
onsider the sto
hasti
 di�erential equation(3.3) d(Xt; Vt) = �
Vtrvdt� (rx�M (Xt))rvdt+ Vtrxdt+ nXk=1r2
� �EvkdBktwhi
h has to be understood in the sense of [Swa00℄. (Bt)t�0 = (B1t ; � � � ; Bnt )t�0 denotesn-dimensional Brownian motion. We have to 
hoose a 
onne
tion on E to state this Itôsto
hasti
 equation properly. Of 
ourse, we use the 
onne
tion resulting from the naturalRiemannian metri
 d on E de�ned by d(�i; �j) = Æij when i; j 2 fx1; � � � ; xn; v1; � � � ; vng.To stay 
onsistent with [Swa00℄ we would have to use C1 potentials. But a solutionof (3.3) in the sense of the 
orresponding martingale problem (see below) 
an also bede�ned for more general potentials. We later spe
ify the type of potentials �M we want
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onsider.Let (Xt; Vt)t�0 be an E-valued sto
hasti
 pro
ess with law P de�ned on a measurablespa
e (
;M), equipped with a �ltration (Ft)t�0. P is said to solve (3.3) in the sense ofthe 
orresponding martingale problem if it ful�ls the martingale problem for the operator(LE; C10 (E)), whi
h is de�ned by(3.4) (LEf)(x; v) = 
��Ev f(x; v)� 
vrEv f(x; v) + vrEx f(x; v)� (rMx �M (x))rEv f(x; v)for f 2 C10 (E). This means, that for any f 2 C10 (E) the pro
ess (M [f ℄t )t�0 de�ned byM [f ℄t := f(Xt)� f(X0)� Z t0 Lf(Xs) dsis an (Ft)t�0-martingale wrt. P . The image measure P Æ (X0; V0)�1 of P under (X0; V0)is 
alled the initial distribution of the solution. Our aim is to �nd solutions of (3.3) inthe sense of the 
orresponding martingale problem for many initial distributions.Remark 3.6. Assume that � : Rn ! R is su
h that its (weak) partial derivatives (existand) are measurable and bounded. If we 
onsider the Langevin equation on R2n (
f.(1.1)), we �nd that the operator 
orresponding to it via the Itô formula (
f. [Dur96,2.10.2℄) is given by(3.5) L := 
��v � 
vrv + vrx � (rx�)rv:Let us (also in the sequel) 
onsider this operator to be a
ting on C1per ;0( eE). Then, if� = (�̂M )�1�M , it 
orresponds to (LE ; C10 (E)) in the sense of Remark 3.4. Thus we
an assume that (3.3) is a reasonable formulation of the Langevin equation on E.The type of potentials �, �M we want to deal with is des
ribed by the following
ondition:Condition 3.7. � 2 H1;1per (fM) and �M = �M�(2 H1;1(M)).Below, �, �M always denote fun
tions as in 3.7. Note that when 
onsidering theoperator LE (or L) on L2(E;�) (or L2( eE; e�)) su
h that � (or e�) is equivalent to themeasure d(x; v)E (or d(x; v)), we do not need to �x versions of �M (or �) and its weakpartial derivatives to obtain well-de�nedness of the operator LE (or L).We have to 
hoose an appropriate measure to �x the L2 spa
e on whi
h we 
onsiderthe generator LE to be de�ned. We use the measure �, de�ned by(3.6) d�d(x; v)E (x; v) = e��v2=2e���M (x):Ex
ept for normalization, � is the 
anoni
al Gibbs measure, whi
h is well-known as a
andidate for being an invariant measure for the dynami
s.In order to apply Theorem 2.9 to obtain a generalized Diri
hlet form 
orresponding toLE we have to prove that (LE ; C10 (E)) is an m-dissipative operator on L2(E;�), with �given as in (3.6), and that its 
losure is a Diri
hlet operator.



N-PARTICLE LANGEVIN DYNAMICS 13Clearly, by Remark 3.4 we 
an as well 
onsider the operator (L;C1per ;0( eE)), de�ned asin (3.5), on L2( eE; e�), where de�d(x;v) = e��v2=2e���(x).It is moreover easy to see that we 
an de�ne M̂ = (0; r̂1)�� � �� (0; r̂n), Ê = M̂ �Rn and�̂ : M̂ ! R su
h that the problem of proving essential m-dissipativity of (L;C1per ;0( eE))and the Diri
hlet property of its 
losure is equivalent to proving these properties for(�v � vrv + vrx � (rx�̂)rv; C1per ;0(Ê)) in L2(Ê; �̂), where d�̂d(x;v) := e�v2=2��̂(x). Thisshows that we may assume that � = 1 and 
 = 1.3.2. Perturbations of essentially m-dissipative operators. Before going on wemake some 
onsiderations about perturbations of essentially m-dissipative operators.Let H be a Hilbert spa
e with inner produ
t (�; �)H and 
orresponding norm k � kH. We
all an operator (L;D(L)) on H essentially m-dissipative, if its 
losure is m-dissipative(and thus generates a C0 
ontra
tion semigroup). This means that its 
losure (L;D(L))ful�lls (Lu; u)H � 0 for all u 2 D(L) (dissipativity) and Range(1 � L) = H. Essen-tial m-dissipativity of (L;D(L)) is equivalent to (Lu; u)H � 0 for all u 2 D(L) andRange(1� L) = H.The best known result on perturbations of (essentially) m-dissipative operators is Theo-rem 3.9 below (we slightly 
hanged the \usual" assertion in order to be able to apply itdire
tly below). We need the following de�nition.De�nition 3.8. Let (A;D(A)), (B;D(B)) be linear operators on H. B is said to beA-bounded, if D(B) � D(A) and there exist real numbers a; b � 0 su
h that(3.7) kBfkH � akAfkH + bkfkHfor all f 2 D(A). The number inf fa � 0j(3.7) holds for some b � 0g is then 
alled theA-bound of B.Theorem 3.9. Let (A;D) be an essentially m-dissipative operator on H and (B;D) bedissipative. Assume that B is A-bounded with A-bound less than 1. Then (A+B;D) isessentially m-dissipative.For the proof of Theorem 3.9 we refer to [Dav80, Corollary 3.8, Lemma 3.9 and Prob-lem 3.10℄.A suÆ
ient 
ondition for A-boundedness is given in the following lemma, whi
h is easyto prove.Lemma 3.10. Let (A;D(A)); (B;D(B)) be linear operators on H su
h that D(B) �D(A) and for some M � 0 it holdskBfk2H � hAf; fiH +Mkfk2H for all f 2 D(A):Then B is A-bounded with A-bound 0.The idea for Lemma 3.12 below is taken from [Lei01, Lemma 2.1℄. The situation we
onsider is that H 
an be represented as the dire
t sum of orthogonal subspa
es in a waywhi
h allows A, B to be restri
ted to these subspa
es su
h that for the restri
tions we
an apply Theorem 3.9.



14 FLORIAN CONRAD, MARTIN GROTHAUSDe�nition 3.11. A sequen
e (Pn)n2N of 
ontinuous linear operators on H is 
alled a
omplete orthogonal family, if every Pn, n 2 N, is an orthogonal proje
tion su
h that forn;m 2 N, n 6=m, it holds PnPm = 0 and for every f 2 H it holds f =P1n=1 Pnf .Lemma 3.12. Let (A;D) be an essentially m-dissipative operator and (B;D) be dissi-pative. Suppose that there is a 
omplete orthogonal family (Pn)n2N � L(H) su
h that forall n 2 N PnD � D;PnA = APn;PnB = BPn:De�ne An := APn; Bn := BPn, both with domain Dn := PnD � (PnH)\D, as operatorsin PnH. Assume that ea
h Bn is An-bounded with An-bound less than 1. Then (A+B;D)is essentially m-dissipative.Proof. Let n 2 N. Clearly An and Bn are dissipative. De�ne Cn := An + Bn, anddenote in the sequel by In the identity operator on PnH. Let f 2 H; " > 0, then byessential m-dissipativity of A there is g 2 D su
h that k(I � A)g � fkH � ". Hen
ek(In � An)Png � PnfkH = kPn[(I � A)g � f ℄kH � ". Thus Range(In � An) is densein PnH, whi
h proves that An is essentially m-dissipative. Consequently ea
h (Cn;Dn),n 2 N, is an essentially m-dissipative operator on PnH by Theorem 3.9.To show essential m-dissipativity of (A + B;D) let f 2 H; " > 0, then f = P1n=1 Pnf .We have to �nd g 2 D su
h that k(I� (A+B))g�fkH � ". Choose N 2 N large enoughsu
h that(3.8) 




f � NXn=1Pnf




H � "=2:Clearly, by essential m-dissipativity of (Cn;Dn) we �nd gn 2 Dn, 1 � n � N , su
h that(3.9) kPnf � (In � Cn)gnkH � "2N :Let g :=PNi=1 gn, then g 2 D and (I� (A+B))g =PNi=1(I� (A+B))Png =PNi=1(In�Cn)gn. Hen
e by (3.8) and (3.9) we obtain k(I � (A+B))g � fkH � ". �3.3. The generator for the generalized Diri
hlet form. In this se
tion we showthat, if the potential � ful�lls 
ondition 3.7, the di�erential operator L = �v � vrv +vrx�rx�(x)rv with domain C1per;0( eE) � L2( eE; e�), where de�d(x;v) = e�v2=2e��, is essen-tially m-dissipative and its 
losure is a Diri
hlet operator. Clearly, by the 
onsiderationsin se
tion 3.1 the same then holds for (LE ; C10 (E)) (on L2(E;�), where LE is de�ned asin (3.4) and � is given by (3.6)). We �nd it 
onsiderably easy to prove in Se
tion 3.4 thatthe asso
iated GDF is quasi-regular and ful�lls 
ondition (D3) in Theorem 2.9, sin
e wehave that the spa
e C10 (E) is a 
ore for the generator.Theorem 3.13. Let � be as in 
ondition 3.7, and de�ne the measure e� by de�d(x;v) = em,where em : eE ! R is given by em(x; v) := e�v2=2e��(x) for (x; v) 2 eE.



N-PARTICLE LANGEVIN DYNAMICS 15Then the operator L : C1per;0( eE)! L2( eE; e�), de�ned by(3.10) L = �v � vrv + vrx � (rx�)rvis essentially m-dissipative and its 
losure is a Diri
hlet operator.Theorem 3.13 is shown in the 
ourse of this se
tion.At �rst we state some basi
 properties of L and its summands:Lemma 3.14. De�ne (L;C1per;0( eE)) as in Theorem 3.13. We de
ompose L by L =S + A, where (S;C1per;0( eE)) and (A;C1per;0( eE)) are de�ned by S := �v � vrv andA := vrx � (rx�)rv. It holds(i) S is symmetri
 and dissipative.(ii) A is antisymmetri
.(iii) L is dissipative.Proof. Clearly, (iii) follows from (i) and (ii).To show (i), let f; g 2 C1per ;0( eE). We 
an use the Gaussian integral formula (
f. [Alt02,A 6.8℄) and the fa
t that f and g have bounded support to obtain (Sf; g)L2( eE;e�) =�(rvf;rvg)L2( eE;e�) = (f; Sg)L2( eE;e�). Thus S is symmetri
. Moreover, for all for f 2C1per ;0( eE) it holds (Sf; f)L2( eE;e�) = �(rvf;rvf)L2( eE;e�) � 0, whi
h shows that S isdissipative.Let us now prove (ii). Again by the Gaussian integral formula we �nd for f; g 2 C1per ;0( eE)(3.11) ((rx�)rvf; g)L2( eE;e�) = �(f; (rx�)rvg)L2( eE;e�) + Z eE(vrx�)f(x; v)g(x; v)de�and moreover, using Lemma 3.1(i),(vrxf; g)L2( eE;e�) = �(f; vrxg) + Z eE(vrx�)f(x; v)g(x; v)de�(3.12) +ZRn �ZfM vrx(fge��)(x; v) dx� e�v2 dv= �(f; vrxg) + Z eE(vrx�)f(x; v)g(x; v)de�;sin
e for �xed v 2 Rn the mapping x 7! f(x; v)g(x; v)e��(x) is periodi
. By (3.11) and(3.12) we obtain that (Af; g) = �(f;Ag). �Remark 3.15. (i) We �nd by the above proof that neither vrx nor (rx�)rv isantisymmetri
, but vrx � (1=2)v(rx�) and �(rx�)rv + (1=2)v(rx�) are.(ii) It is well-known (
f. Lemma 3.17 below) that the 
losure of the symmetri
operator S = �v � vrv is an m-dissipative (Diri
hlet) operator. Hen
e we startwith the operator S and 
onsider the rest of L as a perturbation. This seemsto be easy as far as we think about the last summand in (3.10) (we may useTheorem 3.9 for this). But vrx is not bounded by S, not even if it would bepossible to keep v bounded. This indi
ates that the la
k of stri
t ellipti
ity of L
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auses diÆ
ulties. (One of these diÆ
ulties is the fa
t that L 
annot generatea 
oer
ive 
losed form (whi
h is not diÆ
ult to prove). This fa
t for
es us toapply the theory of generalized Diri
hlet forms instead of [MR92℄.)(iii) In order to use a strategy as mentioned in (ii), it may be natural �rst to 
onsiderthe 
ase of potential free motion and then to add the in
uen
e of the potential.Intuitively, if we \�x the positions" and just 
onsider the 
hanges the potential(and of 
ourse fri
tion and sto
hasti
 perturbation) 
auses to the velo
ities, theintrodu
tion of motion in x-dire
tion (this dire
tion did not even play any rolebefore) does not seem to be a small perturbation. So the question arises whi
hpart of L represents the free motion. Clearly, sin
e we are a
ting on L2( eE; e�),and sin
e e� depends on �, this part 
an not be the operator �v � vrv + vrx.The above remarks motivate us to de�ne a unitary transformation T whi
h enables usto get rid of e�. Consider T : L2( eE; e�) ! L2( eE; d(x; v))f 7! pemfIt is easily seen that it formally holdsTLT�1 = L0 := �v � v24 + n2 I + vrx �rx�rv:(We do not need to 
he
k this here, 
f. Lemma 3.21.) Instead of thinking about how tomake this equation rigorous now, we �nd a domain of essential m-dissipativity for L0.Remark 3.16. (i) By Lemma 3.1 the unitary transformation T de�ned above mapsthe spa
e H1;1per (fM)
C10 (Rn) := spanf�
 'j� 2 H1;1per (fM ); ' 2 C10 (Rn)g ontoitself.If we 
an prove essential m-dissipativity of L0 on a domain D � H1;1per (fM) 
C10 (Rn), essential m-dissipativity of L0, de�ned on H1;1per (fM) 
 C10 (Rn), fol-lows dire
tly. In order to show essential m-dissipativity of (L;C1per ( eE)) we arethen left to prove that the domain of its 
losure (L;D(L)) 
ontains H1;1per (fM )
C10 (Rn) and that it indeed holds TLT�1f = L0f for f 2 H1;1per (fM )
 C10 (Rn).This is essentially what we do in Lemma 3.21 below.(ii) Note that the last two summands of L0 are both antisymmetri
, when we de�neL0 e.g. on a subset of C1per ( eE) or H1;1per (fM) 
 C10 (Rn). This 
an be seen byarguments as in the proof of Lemma 3.14. Moreover, note that now rx�rv isexa
tly the part 
orresponding to the potential.Of 
ourse, we follow the strategy explained in Remark 3.15(ii),(iii) to prove essentialm-dissipativity of L0 on a suitable domain.



N-PARTICLE LANGEVIN DYNAMICS 17The basis fun
tions for invariant subspa
es of the operators �xi , i = 1; � � � ; n, turn outto be useful. For z 2 Z, 1 � i � n, de�ne iz : (0; ri) ! Rx 7! 8>>><>>>: q 1ri if z = 0q 2ri 
os(z 
ix) if z > 0q 2ri sin(z 
ix) if z < 0where 
i := 2�=ri for 1 � i � n (here � denotes the Ludolph number). Note that(3.13) ( iz)0(x) = 
iz  i�z(x)for all z 2 Z; x 2 (0; ri). De�ne for z = (z1; � � � ; zn) 2 Zn the fun
tion  z : fM ! R by z(x) :=  1z1(x1) � � � nzn(xn), x = (x1; � � � ; xn) 2 fM .Clearly the fun
tions  z , z 2 Zn, form a 
omplete orthonormal system in L2(fM;dx) andD : = spanf z 
 'jz 2 Zn; ' 2 C10 (Rn)g= spanf(x; v) 7!  z(x)'(v)jz 2 Zn; ' 2 C10 (Rn)gforms a dense linear subspa
e of L2( eE; d(x; v)).The following is a well-known fa
t (it may be seen e.g. by [Tri80, x24℄ and [RS80,Theorem VIII.33℄).Lemma 3.17. The operator S0 : D ! L2( eE; d(x; v)) de�ned by S0 = �v � v24 + n2 I, isessentially m-dissipative.In the sequel we denote by (S0;D(S0)) the 
losure of (S0;D).Let us now 
onsider the potential-free 
ase:Lemma 3.18. The operator L00 : D ! L2( eE; dx) de�ned by L00 = �v � v24 + n2 I + vrx,is essentially m-dissipative.Proof. By k � k(x;v) and (�; �)(x;v) we denote the norm and inner produ
t of L2( eE; d(x; v))and denote by k � kv and (�; �)v the norm and inner produ
t of L2(Rn ; dv).Here we apply Lemma 3.12 to prove essential m-dissipativity.For z = (z1; � � � ; zn) 2 Nn0 we de�ne Iz := fz0 = (z01; � � � ; z0n) 2 Znj jz0ij = zi; i = 1; � � � ; ngand Dz := spanf z0 
 'jz0 2 Iz; ' 2 C10 (Rn)gClearly (Dz)z2Nn0 is a family of orthogonal subspa
es of L2( eE; d(x; v)), su
h that thelinear span of their union is dense. Hen
e the orthogonal proje
tions P z 
orresponding tothe 
losuresDz, z 2 Nn0 , form a 
omplete orthogonal family. It holds P zD = Dz � D andevery summand of (S0;D) 
ommutes with P z. Moreover, note that for z0 = (z01; � � � ; z0n) 2Zn and ' 2 C10 (Rn) it holds by (3.13)vrx( z 
 ') = v1(�x1 z)
 '+ � � � + vn(�xn z)
 '(3.14)



18 FLORIAN CONRAD, MARTIN GROTHAUS= nXi=1 
iz0ivi z0i 
 'where we de�ne z0i := (z01; � � � ; z0i�1;�z0i; z0i+1; � � � ; z0n) for 1 � i � n. (3.14) shows thatP z also 
ommutes with (vrx;D).Let z 2 Nn0 and 
hoose an arbitrary element f := Pz02Iz  z0 
 'z0 of Dz (with 'z0 2C10 (Rn), z0 2 Iz). For z0 2 Iz it holdsnXi=1 kvi'z0k2v = (v2'z0 ; 'z0)v � (v2f; f)(x;v)and by (3.14) it followskvrxfk2(v;x) = 





 Xz02Iz nXi=1 
izi z0i 
 (vi'z0)





2(x;v) � C Xz02Iz nXi=1 


 z0i 
 (vi'z0)


2v= C Xz02Iz nXi=1 


vi'z0


2(x;v) � C Xz02Iz(v2f; f)(x;v)� 2nC(v2f; f)(x;v) � 4 � 2nC ���S + n2 I� f; f�(x;v)= 4 � 2nC(�Sf; f)(x;v) + 2 � n2nCkfk2(x;v)where C := maxfjzi
ij2 j1 � i � ng. We 
an now apply Lemma 3.12 (and we use thenotations from this lemma): We use the 
omplete orthogonal family (P z)z2Nn0 givenabove and de�ne A := S0, B := vrx. By Lemma 3.17 (A;D) is essentially m-dissipativeand sin
e (B;D) is 
learly antisymmetri
, it is dissipative. Our above 
onsiderations andLemma 3.10 imply that all the assumptions in Lemma 3.12 are ful�lled. Hen
e (L00;D)is essentially m-dissipative. �Next, we add the potential.Lemma 3.19. The operator L0 : D ! L2( eE; d(x; v)) de�ned by L0 = �v � v24 + vrx �rx�rv, is essentially m-dissipative.Proof. Clearly the operator ((rx�)rv;D) is dissipative (be
ause it is antisymmetri
).Let C := max1�i�n k�xi�kL1( eE;d(x;v)). For f 2 D it holdsk(rx�)rvfk2L2( eE;d(x;v)) � C2(��vf; f)L2( eE;d(x;v))� C2 ���S0 + n2 I� f; f�L2( eE;d(x;v))= C2 ���L00 + n2 I� f; f�L2( eE;d(x;v))= C2(�L00f; f)L2( eE;d(x;v)) + C2n2 kfk2L2( eE;d(x;v))by antisymmetry of vrx. Lemma 3.18, Lemma 3.10 and Theorem 3.9 imply that L0 isessentially m-dissipative. �
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e, the 
losure (L0;D(L0)) of (L0;D) is m-dissipative. Consequently, the sameholds for the 
losure (T�1L0T ;D(T�1L0T )) of (T�1L0T; T�1D). We already mentioned(though we did not prove it), that T�1L0T behaves formally like L, but we do not knowwhether it is an extension of (L;C1per;0) or not. Lemma 3.21 below answers this question.But �rst we need to make some further 
onsiderations about H1;1per (fM ). We denote byH1;2(fM) the spa
e of weakly di�erentiable fun
tions f : fM ! R, su
h that f and allits partial derivatives are 
ontained in L2(fM ; dx). H1;2(fM) is a Hilbert spa
e w.r.t. thenorm k � k1;2 := k � kL2(fM ;dx) +Pni=1 k�xi � kL2(fM ;dx) (or the 
orresponding inner produ
t,denoted by (�; �)1;2) and the set C1(fM) \ H1;2(fM ) is dense in H1;2(fM) (
f. [Alt02,Satz 1.24℄). Clearly H1;1per (fM ) � H1;1(fM) � H1;2(fM ), hen
e for any f 2 H1;1per (fM ) we�nd an approximating sequen
e (fk)k2N � C1(fM ) w.r.t. this norm. But we need thefollowing (slightly stronger) fa
t.Lemma 3.20. C1per(fM) is dense in H1;1per (fM) w.r.t. k � k1;2.Proof. Assume that there is f 2 H1;1per (fM ), su
h that for all � 2 C1per (fM) it holds(�; f)1;2 = 0. We have to show that f = 0.It holds for all � 2 C1per (fM)0 = (�; f)1;2 = (�; f)L2(fM ;dx) + nXi=1(�xi�; �xif)L2(fM ;dx)= (���x�; f)L2(fM ;dx)by the Gaussian integral formula (
f. [Alt02, A 6.8.2℄) and by periodi
ity of �i�, i =1; � � � ; n, and f . But the operator (I ��x; C1per (fM)) has 
learly dense range, sin
e thefun
tions  z, z 2 Zn, are 
ontained in its domain and form a 
omplete orthonormalsystem of eigenfun
tions of I ��x, su
h that the 
orresponding eigenvalues are stri
tlypositive. Thus f = 0 and our assertion is shown. �Lemma 3.21. (T�1L0T ;D(T�1L0T )) is the 
losure of (L;C1per;0( eE)).Proof. Let (L;D(L)) be the 
losure of (L;C1per ;0( eE)). Our assertion is shown, if we 
anprove that the 
losed dissipative operator (L;D(L)) is an extension of the essentiallym-dissipative operator (T�1L0T; T�1D).It holds T�1D = spanf(e�=2 z) 
 ' jz 2 Zn; ' 2 C10 (Rn)g. Let z 2 Zn, ' 2 C10 (Rn).Sin
e  z 2 C1per (fM), we know by Lemma 3.1(i) that it holds � := e�=2 z 2 H1;1per (fM ).Hen
e by Lemma 3.20 there is a sequen
e (�k)k2N � C1per(fM) approximating � inH1;2per(fM ). Thus �k ! � and �xi�k ! �xi� in L2(fM ; dx) as k ! 1, hen
e (sin
e �is essentially bounded) in L2(fM ; e��dx). Consequently(�v � vrv + vrx �rx�rv) �n 
 '! (�v � vrv + vrx �rx�rv) � 
 'in L2( eE; e�) when n!1. This does not seem to be a surprising result, but it shows thatT�1D � D(L) and that L looks the same as L on T�1D (but, of 
ourse, we are dealing



20 FLORIAN CONRAD, MARTIN GROTHAUSwith weak derivatives of �
' (in x-dire
tion) now). This argumentation is valid for any� 2 H1;1per (fM ), ' 2 C10 (Rn).We have to show that �v � vrv + vrx� (rx�)rv = LjT�1D != T�1L0T . For f 2 T�1Dit holdsT�1��v � v24 + n2 I�Tf(3.15) = T�1��v � v24 + n2 I� (e�v2=4e��=2f)= T�1e��=2�rv �e�v2=4rvf � v2e�v2=4f�� v24 e�v2=4f + n2 e�v2=4f�= T�1e��=4e�v2=4��vf � vrvf � n2 f + v24 f � v24 f + n2 f�= �vf � vrvfMoreover, it holds by Lemma 3.1(ii)T�1vrxTf = T�1 �vrx(e�v2=4e��=2f)�(3.16) = T�1e�v2=4e��=2��12v(rx�)f + vrxf�= �vrxf � 12v(rx�)� fand by an analogous 
al
ulation we �nd that(3.17) T�1(rx�)rvTf = �(rx�)rv � 12v(rx�)� fThe equations (3.15), (3.16) and (3.17) 
omplete our proof. �We still have to show that the m-dissipative 
losure of (L;C1per ;0) is a Diri
hlet oper-ator. Let us �rst prove the following lemma.Lemma 3.22. For the 
losure (L;D(L)) of (L;C1per;0( eE)) it holds 1 2 D(L) and L1 = 0.Proof. De�ne 1x : fM ! R by setting 1x(x) := 1 for all x 2 fM . Clearly for all ' 2C10 (Rn) it holds 1x 
 ' 2 C1per ;0(fM) and(3.18) L(1x 
 ')(x; v) = �v'(v) � vrv'(v) + (rx�(x))rv'(v) for (x; v) 2 eE:For m 2 N, let �m be an element of C10 (R) su
h that �m(t) = 1 for t 2 [�m;m℄,�m(t) = 0 for t =2 [�m� 2;m + 2℄ and j�m(t)j � 1, j ddt�m(t)j � 1 and j d2dt2 �m(t)j � 1 forall t 2 R. We de�ne �m : Rn ! R by �m(v1; � � � ; vn) := Qni=1 �m(vi). By Lebesgue'sdominated 
onvergen
e theorem we obtain 1x 
 �m ! 1 in L2( eE; e�). We 
hoose C > 0su
h that C � k�xi�kL1(fM) for every i = 1; � � � ; n. Thenj�v�m(v)� vrv�m(v) +rx�(x)rv�m(v)j � n+ nXi=1 jvij+ Cn



N-PARTICLE LANGEVIN DYNAMICS 21holds for e�-a.e. (x; v) 2 eE. Moreover, it holds �v�m(v)�vrv�m(v)+rx�(x)rv�m(v) =0 for v 2 [�m;m℄n, x 2 fM . Consequently, by Lebesgue's dominated 
onvergen
e theoremand (3.18), L(1x 
 �m)! 0 in L2( eE; e�), and the assertion follows. �Remark 3.23. Another idea to prove Lemma 3.22 is to 
onsider the operator (~L;D(~L)),where D(~L) := span(f1g [ C1per;0( eE)) and ~L1 := 0. If ~L is dissipative (whi
h is bydissipativity of L equivalent to (Lg; 1) = 0 for all g 2 C1per;0( eE)), this implies that the
losure of ~L is a 
losed dissipative extension of the essentially m-dissipative operatorL and hen
e equal to L. However, in the proof given above we did not use the m-dissipativity of (L;D(L)).Now we prove the Diri
hlet property.Lemma 3.24. With the notations of Lemma 3.14 it holds(i) (Su; u+)L2( eE;e�) � 0 for all u 2 C1per;0( eE)(ii) (Au; u+)L2( eE;e�) = 0 for all u 2 C1per;0( eE)(iii) (Lu; u+)L2( eE;e�) � 0 for all u 2 D(L), where (L;D(L)) again denotes the 
losureof the operator (L;C1per;0( eE)) in L2( eE; e�).(iv) (Lu; (u� 1)+)L2( eE;e�) � 0 for all u 2 D(L)Proof. For ea
h " > 0 we 
hoose an in�nitely often di�erentiable fun
tion �" : R ! Rsu
h that �"(�) = 0 for � 2 (�1; 0℄, 0 � �0"(�) � 1 for all � 2 R, �0"(x) = 1 for � � ".For u 2 C1per;0( eE) it 
learly holds �" Æ u 2 C1per;0( eE) for all " > 0. Hen
e by the proofof Lemma 3.14 we �nd that(Su; �" Æ u)L2( eE;e�) = � nXi=1(�viu; (�0" Æ u)�viu)L2( eE;e�) � 0sin
e �0" � 0. But sin
e 
learly �" Æ u! u+ in L2( eE; e�) as "! 0, (i) is shown.Moreover, Lemma 3.14 shows that(Au; �" Æ u)L2( eE;e�) = �(u;A(�" Æ u))L2( eE;e�)= �((�0" Æ u)u;Au)L2( eE;e�)Sin
e �" Æ u! u+ and (�0" Æ u)u! u+ in L2( eE; e�) as "! 0, we obtain(Au; u+)L2( eE;e�) = �(u+; Au)L2( eE;e�) = �(Au; u+)L2( eE;e�)hen
e (Au; u+) = 0 and (ii) is shown.By (i) and (ii) it holds (Lu; u+)L2( eE;e�) � 0 for u 2 C1per;0( eE). Clearly this propertyextends to the 
losure (L;D(L)). Thus (iii) holds.To prove (iv) we use (iii) and Lemma 3.22. Let u 2 D(L). Then also (u � 1) 2 D(L)and hen
e by (iii) it holds (L(u� 1); (u� 1)+)L2( eE;e�) � 0, and sin
e L1 = 0, we 
on
lude(Lu; (u� 1)+)L2( eE;e�) � 0. �



22 FLORIAN CONRAD, MARTIN GROTHAUSProof of Theorem 3.13Follows by Lemma 3.19, Lemma 3.21 and Lemma 3.24(iv). �3.4. An N-parti
le Langevin dynami
s. As we mentioned at the beginning of Se
tion3.3, we 
an now prove the existen
e of an asso
iated pro
ess without mu
h additionale�ort. For the proof of the following theorem we use notations and de�nitions fromSe
tion 2 and Se
tion 3.1 and we refer to 
onsiderations and results from Se
tions 4 and5 below. If A is a subset of an L2-spa
e of real-valued fun
tions, we de�ne Ab := A\L1.Theorem 3.25. Let �M be given as in Condition 3.7 and de�ne � by (3.6). Thenthe 
losure (LE ;D(LE)) of the essentially m-dissipative operator (LE ; C10 (E)) on H =L2(E;�), given by LE = 
��Ev � 
vrEv + vrEx � (rMx �M )rEv is the generator of thequasi-regular GDFE : D(LE)�H [H�D(
LE) ! R(u; v) 7! ( �(LEu; v)H if u 2 D(LE),v 2 H�(
LEv; u)H if u 2 H,v 2 D(
LE)whi
h ful�lls (D3) in Theorem 2.9. Hen
e there exists a �-tight spe
ial standard pro
essM = (
;F�; (Xt; Vt)t�0; (P(x;v))(x;v)2E) whi
h is properly asso
iated in the resolvent sensewith E and whi
h has the following properties:(i) For E-q.e. initial point (x; v) 2 E the pro
ess M has P(x;v)-a.s. in�nite life time.(ii) For E-q.e. (x; v) 2 E the pro
ess M has P(x;v)-a.s. 
ontinuous paths.(iii) For all f 2 D(LE)b the pro
ess (M [f ℄t )t�0 de�ned by(3.19) M [f ℄t := � ~f(Xt; Vt)� ~f(X0; V0)� Z t0 LEf(Xs; Vs) ds�t�0is a martingale w.r.t. P(x;v) for E-q.e. (x; v) 2 E. Here ~f denotes an E-quasi-
ontinuous �-version of f .(iv) For any measure � 2 P(E) whose 
ompletion maps every E-ex
eptional set to0 P� solves the martingale problem for LE on D(LE)b, i.e. for all f 2 D(LE)bthe pro
ess (M [f ℄t )t�0 is an (Ft)t�0-martingale w.r.t. P�. This also holds if ~f in(3.19) is repla
ed by any �-version of f .(v) For any measure � 2 P(E) having an L2-integrable density w.r.t. � P� solves themartingale problem for LE on D(LE). Of 
ourse, this also holds if ~f is repla
edby any �-version of f .(vi) If � in (v) is de�ned by � := 1�(E)�, then for all t � 0 it holds P� Æ X�1t = �,i.e. � is an invariant measure for M .Proof. We know by Theorem 3.13 and our 
onsiderations in Se
tion 3.1 that (LE ;D(LE))is an m-dissipative Diri
hlet operator and hen
e E is a generalized Diri
hlet form byLemma 2.2. By Remark 2.4 LE is the generator of E (
f. De�nition 2.3). Now we provequasi-regularity (
f. De�nition 2.5).For k 2 N we de�ne the 
ompa
t subset Fk :=M�[�k; k℄n � E. If we de�neD(LE)Fk :=fu 2 D(LE)ju(x; v) = 0 for all (x; v) 2 E n Fkg, it holds C10 (E) � SkD(LE)Fk , hen
e



N-PARTICLE LANGEVIN DYNAMICS 23by Remark 2.6(ii) (Fk)k2N is an E-nest 
onsisting of 
ompa
t sets. Hen
e (q1) is shown.(q2) is 
lear, sin
e the fun
tions in C10 (E) are, of 
ourse, E-quasi-
ontinuous and forma dense subset of D(LE) w.r.t. graph norm. Finally, (q3) follows by Remark 3.2.Condition (D3) in Theorem 2.9 follows from the fa
t that C10 (E) is an algebra of boundedfun
tions in D(LE) whi
h is dense in D(LE) w.r.t. the graph norm and from Proposition2.11.The properties (iii)-(v) are shown in Theorem 4.7, Corollary 4.9 and Corollary 4.11 inSe
tion 4 below, and (ii) is seen from Theorem 5.5 in Se
tion 5 below and Remark 3.2.Now we prove (i). By Lemma 3.22 we see that 1 2 D(LE) and LE1 = 0, hen
e, if(Tt)t�0 denotes the C0 
ontra
tion semigroup generated by LE, it holds Tt1 = 1 forall t � 0, hen
e for the transition semigroup (pt)t>0 of M it holds by Lemma 2.8(i)(pt1E)(x; v) = 1 �-a.e. for t > 0, hen
e by E-quasi-
ontinuity of pt1 (
f. Lemma 4.3below) and Remark 2.6(v) we obtain P(x;v)(t < �) = P(x;v)(Xt 2 E) = (pt1E)(x; v) = 1for E-q.e. (x; v) 2 E. Sin
e 
ountable unions of E-ex
eptional sets are E-ex
eptional, we�nd that P(x;v)(� =1) = 1 for E-q.e. (x; v) 2 E.Finally, we prove (vi). By Lemma 3.14 we �nd that C10 (E) � D(
LE) and that it holdsL̂E = �v� vrv � vrx+(rx�M )rv, where L̂E denotes the restri
tion of 
LE to C10 (E).The unitary transformation Tv : L2(E;�) ! L2(E;�), de�ned by Tvf(x; v) := f(x;�v),transforms (LE ; C10 (E)) into (L̂E ; C10 (E)) and maps the 
onstant 1-fun
tion to itself.By Lemma 3.22 we 
on
lude that 1 2 D(
LE) and 
LE1 = 0. If (T̂t)t�0 denotes the adjointsemigroup to (Tt)t�0 (whi
h is the C0 
ontra
tion semigroup generated by 
LE), it followsthat T̂t1 = 1 for all t � 0. Consequently (Ttf; 1)L2(E;�) = (f; T̂t1)L2(E;�) = (f; 1)L2(E;�)for all f 2 L2(E;�). Thus for A 2 B(E); t � 0 it holdsP� ÆX�1t (A) = E� [1A(Xt)℄ = ZE pt1Ad�= (Tt1A; 1)L2(E;�) = (1A; 1)L2(E;�) = �(A);where 1A denotes the indi
ator fun
tion for A. This proves (vi). �Remark 3.26. Of 
ourse the unitary transformation Tv given in the proof of (vi) inthe above theorem enables us to �nd that also (L̂E; C10 ) is essentially m-dissipative andits 
losure is a Diri
hlet operator. Moreover, 
learly the arguments given in the aboveproof are also valid for 
LE (whi
h, being an m-dissipative operator extending (L̂E; C10 ),is equal to the 
losure of this operator) and 
onsequently Theorem 3.25 holds also withLE repla
ed by L̂E .From the above theorem we obtain:Corollary 3.27. Consider the situation of Theorem 3.25. We assume that boundedversions of �i�M , i 2 I := fx1; � � � ; xn; v1; � � � ; vng, are �xed and 
onsider LE as anoperator on C20 (E) (a
ting pointwise). Then for E-q.e. initial point (x; v) 2 E the lawP(x;v) solves the martingale problem for LE on C20 (E).



24 FLORIAN CONRAD, MARTIN GROTHAUSProof. Let K � E be open and relatively 
ompa
t, i.e. bounded in v-dire
tion. We de�nek � kC2(K) := k � k1 +Xi2I k�i � k1 + Xi;j2I k�i�j � k1where kgk1 := maxx2K jg(x)j for g 2 C(K). The spa
e C2(K), equipped with the normk � kC2(K), is a separable Bana
h spa
e. Let Kl � E, l 2 N, be an in
reasing sequen
eof open and relatively 
ompa
t subsets su
h that E = Sl2N Kl. Then we 
an 
hoose a
ountable set X of fun
tions in C20 (E) su
h that X 
ontains a 
ountable dense subsetof C2(Kl) for ea
h l 2 N (in the sense of taking restri
tions). Sin
e 
ountable unionsof E-ex
eptional sets are E-ex
eptional, there is an E-ex
eptional set N � E su
h thatP(x;v) solves the martingale problem for LE on X for all (x; v) 2 E nN , i.e., (M [g℄t )t�0 isa martingale w.r.t. P(x;v) for all (x; v) 2 E nN; g 2 X .Now, let f 2 C20 (E). There exists l 2 N su
h that f 2 C2(Kl). Thus we �nd a sequen
e(fk)k2N in X \ C2(Kl) su
h that fk ! f w.r.t. k � kC2(Kl) as k ! 1. Then it holdsjfk� f j ! 0 and jLEfk�LEf j ! 0 uniformly as k !1. Sin
e the kernels pt, t > 0, aresub-Markovian, also ptjf�fkj ! 0 and R t0 psjLEf�LEfkj(�) ds! 0 uniformly as k !1for any t > 0. By 
onsiderations as in the proof of Corollary 4.11 below we 
on
ludethat also (M [f ℄t )t�0 is a martingale w.r.t. P(x;v) for (x; v) 2 E nN . Thus our assertion isshown. �Remark 3.28. We should 
onsider the question why we do not stay on eE to 
onstru
tthe Langevin dynami
s with periodi
 boundary 
ondition. Of 
ourse, the 
losure of(L;C1per ;0( eE)) (
f. Theorem 3.13) 
an also be used to 
onstru
t a generalized Diri
hletform E 0 as in Theorem 3.25. Let us assume that E 0 is asso
iated with a spe
ial standardpro
ess on eE, [0; r1) � � � � � [0; rn) � Rn or [0; r1℄ � � � � � [0; rn℄ � Rn . We may repla
eeE by one of the latter domains, sin
e this does not a�e
t the 
orresponding L2-spa
es.It is reasonable to assume that (for most initial points) with probability 1 our pro
esshits the periodi
 boundary, and, moreover, that it even 
rosses it, when hitting it e.g.for the �rst time. But then the pro
ess 
annot be both right 
ontinuous and quasi-left
ontinuous. Hen
e it is not spe
ial standard (
f. [MR92, De�nition IV.1.13℄). Thereforewe 
annot expe
t that it is possible to 
onstru
t the Langevin dynami
s dire
tly from E 0using Theorem 2.9.Remark 3.29. We note that the restri
tion �� of � (given in Se
tion 3.1.1) to eE0 :=[0; r1) � � � � � [0; rn) � Rn is a measurable bije
tion, and also its inverse is measurable.Hen
e, using the pro
ess M = (
;F�; (Xt; Vt)t�0; (P(x;v))(x;v)2E�) from Theorem 3.25we 
an de�ne another pro
ess ~M := (
;F�; ( eXt; Vt)t�0; ( eP(x;v))(x;v)2 eE0) on eE0 by settingeP(x;v) := P�(x;v) and ( eXt; Vt) = ��1� (Xt; Vt). Note that as in Se
tion 3.1 we denote forx 2 fM the element [x℄ = �M (x) 2M also by x.Let the measure e� on eE be de�ned by de�d(x;v) := �̂�1 � d�d(x;v)E � (
f. Se
tion 3.1.2). We
an assume e� to be extended to ~E0 by 
ontinuous extension of its density w.r.t. Lebesguemeasure. Sin
e the boundary of eE0 has e�-measure 0, we may identify L2( eE; e�) andL2( eE0; e�).



N-PARTICLE LANGEVIN DYNAMICS 25Then for any f 2 D(L)b � L2( eE0; e�) (where (L;D(L)) is the 
losure of (L;C1per ;0),de�ned by L := 
��v � 
vrv + vrx � (rx�)rv) and for any measure e� on ( eE0;B( eE0))whi
h is absolutely 
ontinuous w.r.t. e� the pro
essf( eXt; Vt)� f( eX0; V0)� Z t0 Lf( eXs; Vs) dsis a martingale w.r.t. the measure ePe� , whi
h is de�ned byePe�(A) := Z eE0 eP(x;v)(A) de�(x; v)= ZE P(x;v)(A) d�(x; v) = P�(A)for A 2 F�, where � is de�ned by d�d� := �̂ de�de� . The martingale property is seen bythe fa
ts that the expe
tations eEe� and E� (
orresponding to ePe� and P� , respe
tively)
oin
ide and that f Æ ��1� = (�f) (�-a.e.). It follows that our pro
ess is a solution of theLangevin equation (1.1) on eE0 in the sense of the 
orresponding martingale problem onD(L)b � C1per ;0( eE). Here, of 
ourse, we have to extend the fun
tions in the latter set toeE0. Note that if e� posseses an L2-integrable density w.r.t. e�, we may repla
e D(L)b byD(L). 4. The martingale problemLet E and m be as in Se
tion 2. Let E be a quasi-regular GDF on L2(E;m) (in thesense of De�nition 2.1) asso
iated with a 
oer
ive 
losed form (A;V) and an operator(�;D(�)). Let M = (
;F�; (Xt)t�0; (Px)x2E�) be an m-tight spe
ial standard pro
esswith life time �, properly asso
iated with E in the resolvent sense (
f. De�nition 2.7). By(Ft)t�0 we denote the natural �ltration for M . Let L, (Tt)t�0 and (G�)�>0 denote the C0
ontra
tion semigroup, the strongly 
ontinuous 
ontra
tion resolvent and the generatorasso
iated with E , respe
tively (
f. De�nition 2.3). Moreover, we denote by (pt)t>0 and(R�)�>0 the transition semigroup and resolvent of M , respe
tively (
f. (2.2) and (2.3)).We remember that proper asso
iation of M with E implies that for any f 2 L2(E;m) withm-version f̂ the fun
tion ptf̂ is an m-version of Ttf and R�f̂ is an E-quasi-
ontinuousm-version of (G�f)�>0 by Lemma 2.8.For any probability measure � on (E;B(E)) the probability measure P� on (
;F�) isde�ned by(4.1) P�(A) := ZE Px(A) d�(x)for A 2 F�.Throughout this se
tion we �x for every f 2 D(L) an E-quasi-
ontinuous m-version ~f off (whi
h exists by Remark 2.6(iv)).In this se
tion we 
onsider the question whether M solves the martingale problem forthe generator (L;D(L)) of E , i.e., we want to know, if for f 2 D(L) the pro
ess (M [f ℄t )t�0



26 FLORIAN CONRAD, MARTIN GROTHAUSde�ned by(4.2) M [f ℄t := ~f(Xt)� ~f(X0)� Z t0 Lf(Xs) ds; t � 0;is an (Ft)t�0-martingale. Clearly, the answer to this question may depend on the initialdistribution we 
hoose. The answer might be `yes' if we 
onsider (M [f ℄t )t�0 w.r.t. to theprobability measures P� with probability measures � on (E;B(E)), whi
h are absolutely
ontinuous w.r.t. m, but `no' if we 
hoose one of the probability measures Px, x 2 E.In fa
t, we 
annot expe
t that (M [f ℄t )t�0 is a martingale w.r.t. all Px, x 2 E, even if ~fis 
ontinuous, sin
e the pro
ess M is 
onstru
ted only E-quasi-everywhere and triviallyextended (
f. [Sta99, p.88℄).We prove that the martingale problem is solved in the P�-
ase (see Corollary 4.11 below)if � has an L2-integrable density w.r.t. m. Moreover, we prove that in the Px-
ase forany bounded f 2 D(L) (i.e. f possesses a bounded m-version) the pro
ess (M [f ℄t )t�0 isan (Ft)t�0-martingale w.r.t. Px for E-q.e. x 2 E (
f. Theorem 4.7 below; this se
tion
onsists mainly of its proof).Note that by now we 
annot even be sure that (M [f ℄t )t�0 is well de�ned, sin
e Lf is onlydetermined up to a set of m-measure zero (
f. [AR95, De�nition 3.1℄). We need to showthat the third summand in (4.2) exists a.s. and is moreover a.s. (w.r.t. to a probabilitymeasure P� or Px) independent of the m-version we 
hoose.The argument we use to prove this is taken from [PR02, Thm 7.4(ii)℄.Lemma 4.1. Let g 2 L2(E;m), with m-version ĝ, t � 0. ThenZ t0 psjĝj(x) ds � etR1jĝj(x); for all x 2 E;In parti
ular, R t0 psĝ(�) ds exists E-q.e. and is independent of the m-version ĝ we 
hoose.More pre
isely, the integrals of two di�erentm-versions di�er at most on an E-ex
eptionalset. Moreover, it is an element of L2(E;m) whi
h 
ontinuously depends on g 2 L2(E;m).Proof. The inequality follows dire
tly from Fubini's theorem and the de�nition of R1 andps, s > 0.Sin
e R1jĝj is by Lemma 2.8(ii) E-quasi-
ontinous, it is �nite E-q.e.. Thus, the E-q.e. ex-isten
e of the integral is proven.For two m-versions ĝ1; ĝ2 of g it holds(4.3) ����Z t0 psĝ1(x)� psĝ2(x) ds���� � etR1jĝ1 � ĝ2j(x); for all x 2 E:This is equal to 0m-a.e., sin
eR1jĝ1�ĝ2j(x) is anm-version ofG1jg1�g2j = 0 2 L2(E;m).Thus by Remark 2.6(v) it is equal to 0 E-q.e.. This proves the E-q.e. independen
e ofthe m-version ĝ.For (di�erent) g1; g2 2 L2(E;m) with m-versions ĝ1; ĝ2 it also holds (4.3). By squaringand integrating w.r.t. m we obtain the last assertion, sin
e G1 is a 
ontinuous linearoperator on L2(E;m). �Remark 4.2. Let g, ĝ be as in Lemma 4.1.



N-PARTICLE LANGEVIN DYNAMICS 27(i) Clearly the mapping (t; !) 7! Xt(!), ! 2 
, t � 0, is B([0;1))
F� measurable,where B([0;1)) denotes the Borel-�-�eld on [0;1). Sin
e by Fubini's theoremEx Z t0 ĝ(Xs) ds = Z t0 psĝ(x) dswhenever the integral on the right-hand side exists, the above lemma shows thatfor E-q.e. x 2 E the integral R t0 ĝ(Xs) ds exists Px-a.s. and is Px-a.s. independentof the m-version we 
hoose (whi
h has to be understood in a similar way as inLemma 4.1).(ii) Note that the E-q.e. existen
e of R t0 psĝ(�) ds for any t � 0 implies that all theintegrals R t0 psĝ(x) ds, t � 0, exist for x outside an E-ex
eptional set (i.e., thisE-ex
eptional set 
an be 
hosen independently of t � 0), sin
e 
ountable unionsof E-ex
eptional sets are E-ex
eptional.(iii) Clearly, by (ii) the integrals R t0 ĝ(Xs) ds, t � 0, exist P�-a.s. for all � 2 P(E�)su
h that any E-ex
eptional set is 
ontained in a null set w.r.t. � (whi
h holdse.g. if � is absolutely 
ontinuous w.r.t. m, see Remark 2.6(i)).We need some more \te
hni
al information" to pro
eed.Lemma 4.3. Let f 2 D(L). Thenps ~f is E-quasi-
ontinuous for all s > 0,and if f is bounded (i.e. f has a bounded m-version), the fun
tion ~f is bounded E-q.e. andthe mapping s 7! ps ~f(x)is for E-q.e. x 2 E right 
ontinuous and bounded on [0;1).Proof. Let h := (I � L)f and 
hoose an m-version ĥ of h. Clearly f = G1h and hen
e~f = R1ĥ holdsm-a.e.. Applying Lemma 2.8(ii) and Remark 2.6(v) we see that this holdseven E-q.e.. Lemma 2.12 implies that for E-q.e. x 2 E the paths (Xt)t�0 do Px-a.s. not hitthe E-ex
eptional set where ~f 6= R1ĥ, hen
e for these x it holds (ps ~f)(x) = Ex[ ~f(Xt)℄ =Ex[R1ĥ(Xt)℄ = (psR1ĥ)(x). Consequently, for s > 0, by Fubini's theorem it holdsps ~f(x) = psR1ĥ(x) = R1psĥ(x) for those x 2 E, for whi
h additionally R1psjĥj(x) <1. But sin
e this fun
tion is E-quasi-
ontinuous by Lemma 2.8(ii), it is �nite E-q.e.,
onsequently ps ~f and the E-q.
. fun
tion R1psĥ 
oin
ide E-q.e.. Thus, ps ~f is E-quasi-
ontinuous.To prove the se
ond assertion, let f have anm-version whi
h is bounded in absolute valueby C > 0. Then 
learly ( ~f ^ C) _ (�C) is a bounded E-quasi-
ontinuous m-version off , hen
e by Remark 2.6(v) it di�ers from ~f only on an E-ex
eptional set. Consequently~f = ( ~f ^ C) _ (�C) E-q.e. proving that j ~f j � C holds E-q.e.Together with quasi-
ontinuity of ~f this enables us to �nd an E-nest (Fk)k2N su
h that~f is 
ontinuous on ea
h Fk, k 2 N, and j ~f(z)j � C for all z 2 Sk2N Fk. By Lemma 2.12we know that for E-q.e. x 2 E it holds(4.4) Px( limk!1�F 
k � �) = 1:



28 FLORIAN CONRAD, MARTIN GROTHAUSNow let ! 2 
 be su
h that limk!1 �F 
k (!) � �(!). Then for any 0 � r < �(!) we �ndk 2 N su
h that r < �F 
k (!), 
onsequently Xs(!) 2 Fk for all s 2 [0; r). But this impliesthat s 7! ~f(Xs(!)) is right 
ontinuous and bounded by C on [0; r), hen
e on [0; �), sin
er < � was 
hosen arbitrarily. Sin
e Xs(!) = � for all s � �(!) (remember that everyfun
tion f : E ! R is extended to E� by f(�) = 0) we obtain right 
ontinuity on [0;1).By this and (4.4) we have shown that for E-q.e. x 2 E the pro
ess ( ~f(Xs))s�0 is right
ontinuous and bounded by C Px-a.s.. Hen
e Lebesgue's dominated 
onvergen
e theoremimplies that for those x the fun
tion s 7! Ex ~f(Xs) = ps ~f(x) is right 
ontinuous. �To prove the martingale property of Mt we �rst observe that for ! 2 
M [f ℄t+s(!)�M [f ℄t (!) = f(Xt+s(!))� f(Xt(!))� Z t+st Lf(Xr(!)) dr(4.5) = M [f ℄s Æ �t(!)if the integral exists. By Remark 4.2(ii),(i) this is true (for all t; s � 0) Px-a.s. for E-q.e. x 2 E. �t : 
! 
 denotes the time shift operator (
f. [Sta99, De�nition IV.1.1℄).Equation (4.5) together with the Markov property of M leads to the following usefullemma.Lemma 4.4. Let f 2 D(L) be bounded. Suppose that for all t > 0 it holds(4.6) ExM [f ℄t = 0 E-q.e. x 2 EThen (M [f ℄t )t�0 is an (Ft)t�0-martingale w.r.t. Pz for E-q.e. z 2 E.Proof. From (4.6) we obtain for E-q.e. x 2 E(4.7) ExM [f ℄t = 0 8t 2 Q \ [0;1)Note that for all t > 0 and for E-q.e. x 2 E it holds ExM [f ℄t = pt ~f(x) � ~f(x) �R t0 psLf(x)ds. This is seen from the de�nition of (pt)t>0 (
f. (2.2)), Remark 4.2(ii)(implying the existen
e of the third summand E-q.e.) and Fubini's theorem.The mapping t 7! pt ~f(x)� ~f(x)�R t0 psLf(x)ds is right 
ontinuous for E-q.e. x 2 E: The�rst summand is right 
ontinuous by Lemma 4.3, the se
ond is 
onstant and the integralfun
tion in the third summand is, of 
ourse, 
ontinuous.Consequently, we obtain from (4.7) that for E-q.e. x 2 E it holds(4.8) ExM [f ℄t = 0 8t 2 [0;1)Now, as mentioned before, by (4.5) and the Markov property of M, it holds for E-q.e. z 2 E Ez[M [f ℄t+s �M [f ℄t jFt℄ = EXt [M [f ℄s ℄ Pz-a.s. for all t; s � 0If this is shown to be 0 Pz-a.s. for E-q.e. z 2 E and all t; s � 0 we are done.But this be
omes 
lear, when we again as in the proof of Lemma 4.3 apply Lemma 2.12:Sin
e (4.8) holds for E-q.e. x 2 E, the ex
eptional set, where it is not ful�lled, is forE-q.e. initial point z 2 E not hit by the pro
ess. �



N-PARTICLE LANGEVIN DYNAMICS 29Now, for a bounded f 2 D(L) and t > 0 it remains to show that for E-q.e. x 2 E itholds(4.9) ExM [f ℄t = pt ~f(x)� ~f(x)� Z t0 (psLf)(x) ds != 0We know that this is true in the sense of L2-fun
tions, if we repla
e \p" by \T":Ttf � f = Z t0 (TsLf) ds:We also know that pt ~f is an m-version of Ttf , so it is reasonable to proveLemma 4.5. Let g 2 L2(E;m) with m-version ĝ. It holdsZ t0 (psĝ)(x)ds = �Z t0 Tsg ds� (x)for m-a.e. x 2 E.Proof. We use a similar argument as in the proof of Lemma 2.8(i) (taken from [FOT94,Proof of Theorem 4.2.3℄). Let v 2 L2(E;m), v � 0. We already know by Lemma 4.1 thatR t0 (psĝ)(�) ds 2 L2(E;m), and this still remains true with psĝ repla
ed by jpsĝj. Sin
e
onsequently �R t0 (jpsĝj)(�) ds; v�L2(E;m) <1, we 
an apply Fubini's theorem to obtain�Z t0 psĝ(�) ds; v�L2(E;m) = Z t0 (psĝ; v)L2(E;m) ds = Z t0 (Tsg; v)L2(E;m) ds;where we used the fa
t that psĝ is an m-version of Tsg. But sin
e R t0 Tsg ds exists asa Riemann integral and the mapping (�; v)L2(E;m) from L2(E;m) to R is a 
ontinuouslinear fun
tional, we obtain�Z t0 psĝ(�) ds; v�L2(E;m) = �Z t0 Tsg ds; v�L2(E;m)for any nonnegative v 2 L2(E;m), hen
e for any v 2 L2(E;m). This implies our asser-tion. �By now we only know that (4.9) is ful�lled for m-a.e. x 2 E. But sin
e the �rst twosummands are E-q.
. (see Lemma 4.3), we are in view of Remark 2.6(v) �nally left toprove the following lemma. The proof is mainly taken from [AKR03, Lemma 5.1(iii)℄.Lemma 4.6. Let f 2 L2(E;m) with m-version f̂ . ThenZ t0 psf̂(�) dsis E-quasi-
ontinuous.Proof. We may assume at �rst for 
onvenien
e that f̂ � 0, su
h that throughout thisproof we only integrate over nonnegative fun
tions.By Remark 4.2(ii) (and E-quasi-
ontinuity of R1f̂), we know that psf̂(x) 2 L1lo
([0;1))and R1f̂(x) < 1 for E-q.e. x 2 E. Let x 2 E be su
h that both holds, then by



30 FLORIAN CONRAD, MARTIN GROTHAUS[Wer02, Satz A.1.10℄ we �nd that the fun
tion t 7! et R t0 e�spsf̂(x) ds is lo
ally absolutely
ontinuous and, moreover, that we 
an apply the produ
t rule and the fundamentaltheorem of 
al
ulus (and thus integration by parts) to obtainZ t0 psf̂(x) ds = Z t0 ese�spsf̂(x)ds= �et Z t0 e�spsf̂(x) ds� 0�� Z t0 es Z s0 e�rprf̂(x) dr ds:Sin
e for any s � 0Z s0 e�rprf̂(x) dr = (R1f̂)(x)� Z 1s e�rprf̂(x) dr= (R1f̂)(x)� Z 10 e�(r+s)pr+sf̂(x) dr= (R1f̂)(x)� e�s(R1psf̂)(x);we obtain Z t0 psf̂(x) ds = et(R1f̂)(x)� (R1ptf̂)(x) � Z t0 es(R1f̂)(x) ds(4.10) +Z t0 (R1psf̂)(x) ds= (R1f̂)(x)� (R1ptf̂)(x) + Z t0 (R1psf̂)(x) ds:Clearly, by Lemma 2.8(ii), R1f̂ and R1ptf̂ are E-quasi-
ontinuous. Fubini's theoremimplies Z t0 (R1psf̂)(x) ds = R1�Z t0 psf̂(�) ds� (x)Consequently, sin
e by Lemma 4.1 R t0 psf̂(�) ds 2 L2(E;m), we 
an again apply Lemma2.8(ii) to �nd that also the last summand in (4.10) is E-quasi-
ontinuous.Hen
e we have shown the assertion for f̂ � 0, whi
h immediately extends to the 
ase ofgeneral f̂ . �This 
ompletes the proof of the following theorem.Theorem 4.7. Let f 2 D(L) be bounded and denote by ~f an E-quasi-
ontinuous m-version of f . Then for E-q.e. x 2 E the pro
ess (M [f ℄t )t�0 de�ned by (4.2) is an (Ft)t�0-martingale w.r.t. the probability measure Px.Remark 4.8. Note that the only fa
t keeping us away from extending Theorem 4.7 togeneral f 2 D(L) is that we did not prove right 
ontinuity of t 7! ptf(x) E-q.e. for thosef (
f. Lemma 4.3).This result also yields (in view of (4.1) and Remark 4.2(iii)) a similar result for theP�-
ase for bounded f 2 D(L), but quite general � 2 P(E):



N-PARTICLE LANGEVIN DYNAMICS 31Corollary 4.9. Let � 2 P(E) be su
h that any E-ex
eptional set is 
ontained in a nullset w.r.t. �. Let f 2 D(L) be bounded and denote again by ~f an E-quasi-
ontinuousm-version of f . Then the pro
ess (M [f ℄t )t�0 de�ned by (4.2) is an (Ft)t�0-martingalew.r.t. P�.Before we state the result for the P�-
ase we announ
ed at the beginning of thisse
tion, we make the following remark.Remark 4.10. Let � be a probability measure on E su
h that � has a density w.r.t. mwhi
h is L2-integrable w.r.t. m. Then by the Cau
hy-S
hwarz inequality in L2(E;m) itholds L2(E;m) � L1(E;�) 
ontinuously.Corollary 4.11. Let � 2 P(E) have an L2-integrable density w.r.t. m and let f 2 D(L)with E-quasi-
ontinuous m-version ~f . Then w.r.t. the probability measure P� given as in(4.1) the pro
ess (M [f ℄t )t�0 de�ned by (4.2) is an (Ft)t�0-martingale.Proof. Let s; t � 0. We have to show that(4.11) E�[M [f ℄t+s �M [f ℄t jFt℄ = 0 P�-a.s.:If f 2 D(L) is bounded this is true by Corollary 4.9.So, let f 2 D(L) be unbounded. De�ne g := (I � L)f , then f = G1g, and setting gn :=(g ^ n) _ (�n), n 2 N, the property that G1 is sub-Markovian implies that fn := G1gnis m-a.e. bounded (in absolute value) for all n 2 N. Moreover, sin
e gn ! g 2 L2(E;m)it follows fn = G1gn ! G1g = f in D(L) w.r.t. the graph norm as n!1. (This showsthat the bounded D(L)-fun
tions form a dense subset of D(L).)It holds for n 2 NE�[jE�(M [f ℄t+s �M [f ℄t jFt)j℄= E� h���E�(M [f ℄t+s �M [fn℄t+s � (M [f ℄t �M [fn℄t )jFt)���i� E�[jM [f ℄t+s �M [fn℄t+s j℄ +E�[jM [f ℄t �M [fn℄t j℄;where we applied (4.11) for fn. Let 
Lf , dLfn denote m-versions of Lf;Lfn 2 L2(E;m),n 2 N. For any r � 0 we obtainE�[jM [f ℄r �M [fn℄r j℄ = kE�[jM [f ℄r �M [fn℄r j℄ kL1(E;�)(4.12) � kprj ~f � ~fnj kL1(E;�) + k ~f � ~fnkL1(E;�)+



E� Z r0 j
Lf(Xs)�dLfn(Xs)j ds



L1(E;�)= kprj ~f � ~fnj kL1(E;�) + k ~f � ~fnkL1(E;�)+Z r0 kpsj
Lf �dLfnj kL1(E;�) ds� 2Ckf � fnkL2(E;m) + CrkLf � LfnkL2(E;m) n!1�! 0for some C > 0. Here we used Fubini's theorem, Remark 4.10, and the fa
ts that psĝ isan m-version of Tsg for all g 2 L2(E;m) with m-version ĝ and that Ts is a 
ontra
tionfor s � 0. We 
on
lude that (4.11) holds for general f 2 D(L). �



32 FLORIAN CONRAD, MARTIN GROTHAUSRemark 4.12. Note that in the P�-
ase (with � being absolutely 
ontinuous w.r.t. m)we 
ould 
hoose any m-version f̂ of f 2 D(L) and de�neM [f̂ ℄t := f̂(Xt)� f̂(X0)� Z t0 Lf(Xs) dsfor t � 0, to obtain a martingale, sin
eE�[jE�(M [f̂ ℄t+s �M [f̂ ℄t jFt)j℄= E� h���E�(M [f̂ ℄t+s �M [f ℄t+s � (M [f̂ ℄t �M [f ℄t )jFt)���i� E�[jM [f̂ ℄t+s �M [f ℄t+sj℄ +E�[jM [f̂ ℄t �M [f ℄t j℄and having another look at (4.12) we see that this is equal to 0.5. The diffusion property for lo
al generatorsIn this se
tion we give a 
ondition for the generator (L;D(L)) of a quasi-regulargeneralized Diri
hlet form E on L2(E;m) ensuring that an m-tight spe
ial standardpro
ess M = (
;F�; (Xt)t�0; (Pz)z2E�) with life time �, whi
h is properly asso
iatedwith E in the resolvent sense (
f. De�nition 2.7), is a di�usion in the sense that(5.1) Px( (Xt)t�0 is 
ontinuous on [0; �) ) = 1 for E-q.e. x 2 E:Let again (Tt)t�0 and (G�)�>0 be the C0 
ontra
tion semigroup and the strongly 
ontinu-ous 
ontra
tion resolvent asso
iated with L, and let (pt)t>0 and (R�)�>0 be the transitionsemigroup and resolvent of M . (Ft)t�0 denotes again the natural �ltration for M . Forte
hni
al reasons it makes sense to set X1 := � (as in [MR92, p.89℄).To prove 
ontinuity of (Xt)t�0 w.r.t. Px for an x 2 E, we use the following lemma.Ex
ept of one argument its proof is the same as the proof of [MR92, Theorem V.1.5(p.153)℄.Lemma 5.1. Let U be a base of the topology of E. Suppose that for every U 2 U it holds(5.2) Pz(X�U 2 U) = 0 for E-q.e. z 2 E n U:Then (5.1) is valid.Proof. Let K � E be 
ompa
t and metrizable. Then U \K := fU \KjU 2 Ug formsa base of the topology of K. Sin
e K is se
ond 
ountable, it is strongly Lindel�of (
f.[S
h73, p.104℄) and thus any element of a 
ountable base of K is a 
ountable union ofelements in U \K. Thus there exists a 
ountable subset UK � U su
h that also UK \Kis a base of the topology of K. Hen
e, if (Kj)j2N is an E-nest of 
ompa
t metrizablesubsets of E, whi
h exists by quasi-regularity of E (
f. [MR92, Proof of Theorem V.1.5and Remark IV.3.2(iii)℄), the set Û := Sj2N UKj is su
h that Û \ Kj is a base of thetopology of Kj for every j 2 N and (5.2) holds for every U 2 Û . The rest follows as in[MR92, Theorem V.1.5℄. �



N-PARTICLE LANGEVIN DYNAMICS 33Remark 5.2. Note that, of 
ourse, the argument in the above proof is not ne
essary inthe situation of Se
tion 3, where we know that (5.2) holds for a 
ountable base of thetopology of the se
ond 
ountable manifold E. It is in
luded to avoid a 
ase di�erentiationwhen stating Theorem 5.5 below.The idea to prove the 
ondition given in 5.1 is also taken from [MR92, Lemma V.1.8℄.Sin
e we are dealing with a spe
ial 
ase here (
f. the assumptions in Theorem 5.5 and seealso Remark 5.7), we do not need to transfer the 
omplete argumentation from [MR92,Se
tion V.1℄. We �rst prove the following lemma (
f. [MR92, p. 129℄).Lemma 5.3. Let f 2 L2(E;m) with m-version f̂ , and let � be an (Ft)t�0-stopping time,then it holds for E-q.e. z 2 E(5.3) Ez[e��R1f̂(X�)℄ = Ez �Z 1� e�tf̂(Xt) dt� :Proof. If f̂ is bounded, we 
an use the strong Markov property (
f. [MR92, De�nitionIV.1.8, Exer
ise IV.1.9℄) to deriveEz he��R1f̂(X�)i = Ez �e��EX� �Z 10 e�tf̂(Xt) dt�� = Ez �e�� Z 10 e�tf̂(Xt+�) dt�= Ez �e�� Z 1� e�(t��)f̂(Xt) dt� = Ez �Z 1� e�tf̂(Xt) dt�Consequently, by the monotone 
onvergen
e theorem, (5.3) holds also for fun
tions f̂ 2B+. Sin
e for L2-integrable positive Borel fun
tions f̂ we know thatEz Z 1� e�tf̂(Xt) dt � R1f̂(z) <1 E-q.e. z 2 Eby E-quasi-
ontinuity of R�f (
f. Lemma 2.8), for any f 2 L2(E;m) with m-version f̂the integrals/expe
tations in (5.3) exist E-q.e. and (5.3) holds. �Lemma 5.4. Let U � E, U open, and assume that there exists u 2 D(L) with E-q.
.m-version ~u, su
h that ~u = 0 E-q.e. on E n U , ~u > 0 E-q.e on U and Lu = 0 m-a.e. onE n U .Then it holds Pz(X�U 2 U) = 0 E-q.e. on E n UProof. Let f := (I � L)u. By our assumptions we 
an 
hoose an m-version f̂ of f su
hthat f̂(x) = 0 for all x 2 EnU . A

ording to Remark 2.6(v) we 
an assume that ~u = R1f̂ ,sin
e R1f̂ is E-quasi-
ontinuous by Lemma 2.8(ii). Then by Lemma 5.3 it holdsEz[e��U ~u(X�U )℄ = Ez[e��UR1f̂(X�U )℄(5.4) = Ez Z 1�U e�tf̂(Xt) dt= Ez Z 10 e�tf̂(Xt) dt = R1f̂(z) = ~u(z) = 0



34 FLORIAN CONRAD, MARTIN GROTHAUSfor E-q.e. z 2 E n U . Here we used the fa
t that f̂ = 0 on E n U .By our assumptions the set N := fx 2 Ej~u(x) < 0g[ fx 2 U j~u(x) = 0g is E-ex
eptional.Thus by Lemma 2.12 and (5.4) we know that for E-q.e. z 2 E n U it holdsPz(9s : Xs 2 N) = 0and Ez[e��U ~u(X�U )℄ = 0:Hen
e for those z we obtain e��U ~u(X�U ) > 0 Pz-a.s. on fX�U 2 Ug, but0 � Ez[1fX�U2Uge��U ~u(X�U )℄ � Ez[e��U ~u(X�U )℄ = 0proving that Pz-a.s. it holds X�U =2 U . �The following theorem is just a 
ombination of Lemma 5.4 and Lemma 5.1.Theorem 5.5. Suppose that U is a base of the topology of E and that for any U 2 Uthere exists u 2 D(L) with E-q.
. m-version ~u su
h that(i) ~u = 0 E-q.e. on E n U ,(ii) ~u > 0 E-q.e. on U ,(iii) Lu = 0 m-a.e. on E n U .Then Px((Xt)t�0 is 
ontinuous) = 1 for E-q.e. x 2 E.Remark 5.6. Clearly, if the assumptions of Theorem 5.5 are ful�lled, then (Xt)t�0is also P�-a.s. 
ontinuous for every � 2 P(E�) whose 
ompletion assigns 0 to everyE-ex
eptional set. In parti
ular this holds for � being absolutely 
ontinuous w.r.t. m.Remark 5.7. The 
onditions in Theorem 5.5 are e.g. ful�lled if L is a di�erential operatorwithout terms of order 0 on an open subset of Rn and its domain 
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