CONSTRUCTION OF N-PARTICLE LANGEVIN DYNAMICS FOR
H'*.POTENTIALS VIA GENERALIZED DIRICHLET FORMS

FLORIAN CONRAD, MARTIN GROTHAUS

ABSTRACT. We construct an N-particle Langevin dynamics on a cuboid region in R?
with periodic boundary condition, i.e., a diffusion process solving the Langevin equation
with periodic boundary condition in the sense of the corresponding martingale problem.
Our approach works for general H''° potentials allowing N-particle interactions and
external forces. Of course, the corresponding forces are not necessarily continuous.
Since the generator of the dynamics is non-sectorial, for the construction we use the
theory of generalized Dirichlet forms.

Furthermore, for any process constructed by a generalized Dirichlet form, we prove
that it is solving the martingale problem for the corresponding generator. Moreover,
we give a locality condition for the generator ensuring that a process constructed by a
generalized Dirichlet form is a diffusion, i.e., it has continuous sample paths.

1. INTRODUCTION

The Langevin equation (cf. e.g. [Sch04, Section 8.1])

(1.1) dX, = Vidt
2
AV, = —Vidt—VO(X,)dt+ /%dBt
is a stochastic differential equation which describes the evolution of the positions X; =

(Xt(l),--- ’Xt(N)) € (R?)N and velocities V, = (Vt(l),... ’Vt(N)) € (RH)N of N particles

in dimension d. These particles are subject to a stochastic perturbation of the velocities
modelled by an RV?-valued Brownian motion (Bt)i>0 and friction, both e.g. caused by a
surrounding medium with constant temperature. Furthermore, their motion is affected
by an N-particle potential ® : (RV)? — R. This, of course, also covers the case of pair
interactions. y > 0 describes the (constant) magnitude of the influence of the surround-
ing medium. 8 > 0 is defined by 8 := kLT, where T is the (constant) temperature of the
surrounding medium and k is the Boltzmann constant.

Here we consider the case where the motion in “z-direction” is bounded - in particular,
we restrict the motion to a cuboid in R? with a periodic boundary, which means that if a
particle leaves this area “on the right”, it enters it at the same time “on the left”. Clearly,
then also the potential has to be periodic. In order to avoid “jumping” of the particles
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from one side to the other we replace the cuboid in (R¢)Y by the dN-dimensional mani-
fold which results from glueing the respective opposite (hyper)surfaces together.

We prove (cf. Section 3.4) that for bounded potentials having bounded weak derivatives
there exists for many initial distributions v a weak solution of (1.1), considered as equa-
tion on this manifold, in the sense of the corresponding martingale problem. This means
that (the law P, of) the process (Xy, V;)i>0 we construct solves the martingale problem
for the generator

(1.2) L=2TA, — vV, + 0V, — (V,®)V,

p
corresponding to this equation (via It6 formula). Solving the martingale problem for L
on a domain D means that for all f € D, the process

(13) (X0 Vi) — f(Xo, Vo) — / LE(X,,V,) ds

is a martingale w.r.t. P,. We specify later (cf. Sections 4 and 3.4) how large D may be
chosen. It depends on the initial distribution v.

Moreover, we show that our solution process is a diffusion, i.e. it has a.s. continuous paths,
and that is has infinite life time (both again for many initial distributions/points).

In order to prove the existence of the Langevin dynamics we show that L generates
a quasi-regular generalized Dirichlet form. The theory of generalized Dirichlet forms
(GDFs) (cf. [Sta99]), then provides us with the existence of a process which is associated
with this GDF and hence with L. We emphasize that it is not possible to construct a
(sectorial) solution process using the theory of coercive Dirichlet forms (cf. [MR92]) here,
since L is non-sectorial, cf. Remark 3.15(ii).

For proving that L generates a GDF it is crucial to find a domain for L on which
it is essentially m-dissipative, or equivalently, such that the closure of L generates a Cy
contraction semigroup. We moreover have to show that this semigroup is sub-Markovian,
or equivalently, that the closure of L is a Dirichlet operator. Both is done in Section 3.3.
The problem at proving essential m-dissipativity of L is that L is not strictly elliptic,
which makes a direct application of perturbation theory impossible. We use an idea from
[Lei01] to solve this problem. The shape of our domain plays an important role for our
proof, since it enables us to find a complete orthonormal system of subspaces of L? which
is invariant w.r.t. the partial derivatives in the z-directions.

Quasi-regularity of the GDF generated by (the m-dissipative closure of) L is then easily
seen, since the domain of essential m-dissipativity we find for L is an algebra of C'*°-
functions. Hence we only have to consider the question, whether the martingale problem
is solved by the corresponding process and if the process is indeed a diffusion. This is
done in a more general setting in Sections 4 and 5.

In literature, one finds many hints and ideas which help to see that a process with
state space E constructed from a (generalized) Dirichlet form £ on L?(E;m) via [Sta99,
Theorem IV.2.2] (cf. Theorem 2.9 below) solves the martingale problem for its generator
(cf. e.g. [AKRO3, Section 5],[AR95, Section 3],[PR02, Theorem 7.4(ii) and Proposition
8.2]). In Section 4 we combine these hints to give a complete proof in a general setting.
We do not need to restrict to the case of f (cf. (1.3)) being e.g. C§°, but consider any
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bounded £-quasi-continuous f in the domain of the generator. (For the notion of &-
quasi-continuity, cf. Section 2.)

Moreover, we prove in Section 5 that a process Ml = (Q, ., (X¢)¢>0, (P:).cE,) generated
by a generalized Dirichlet form £ is a diffusion for many initial points, if the generator
(L, D(L)) fulfills a locality condition we give in Theorem 5.5. One may find another
proof for the diffusion property by reading [Sta04, Proof of Proposition 1.10] carefully.

Let us briefly summarize our core results:

e Given a bounded N-particle potential having bounded weak derivatives, we
construct for many initial distributions an N-particle Langevin dynamics on a
bounded rectangular area with periodic boundary condition, see Theorem 3.25,
Corollary 3.27 and Remark 3.29.

e We prove that a process which is constructed via the theory of GDFs solves
the martingale problem for the generator L of the associated GDF for many
initial distributions on the subset of bounded functions in the domain D(L) of
L, see Corollary 4.9. This is done by proving a weaker result for the case of
single initial points, see Theorem 4.7. Moreover, we prove that, if the initial
distribution possesses an L2-integrable density w.r.t. the reference measure m,
the martingale problem is solved for any function in D(L), see Corollary 4.11.

e Furthermore, we give a condition for L and its domain D(L) ensuring that such
a process is a diffusion for many initial points/distributions, see Theorem 5.5.

In future work we plan to construct (from the process provided here) a Markov process

solving the Langevin equation (in the sense of the corresponding martingale problem) for
any initial point. This may be done by showing that the associated operator semigroup
(resolvent) has strong Feller properties as used in [Doh05], cf. [AKRO03] and [FG06]. An-
other goal is to use the present results to generalize them to a larger class of potentials
via an approximation. We are having in mind potentials of Lennard-Jones type as used
in the theory of fluids.
The construction of the N-particle Langevin dynamics we consider as a starting point
to construct an infinite particle/infinite volume Langevin dynamics, using similar tech-
niques as used in [GKRO04]. In this context it is important to show that the constructed
process solves the martingale problem, because this property is essential for deriving
scaling limits of the Langevin dynamics, see e.g. [OT03], [Spo86], [GKLRO3].

At first, let us summarize the most important facts from the theory of generalized
Dirichlet forms in Section 2. We then proceed by first considering our application in
Section 3 and finally presenting in Sections 4 and 5 the proofs for the martingale property
and the diffusion property in the case of generalized Dirichlet forms.

2. GENERALIZED DIRICHLET FORMS

Throughout this section let L?(E;m) be the Hilbert space of (classes of) (B(E)-
measurable) L2-integrable functions on a Hausdorff topological space E w.r.t. a o-finite
measure m on the Borel o-field B(E) on E. As usual (cf. [MR92, Chapter VI] and [Sta99,
Chapter IV]) we assume that o(C(E)) = B(£). We denote the inner product and the
norm of L*(E;m) by (,-) 12(mm) and || - | 12(g;m), respectively. We will make use of basic
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knowledge on m-dissipative operators, strongly continuous contraction resolvents and Cjy
semigroups (cf. e.g. [MR92, Sections I.1, 1.2], [RS75, Section X.8], [Dav80]).

Almost everything presented in this section is taken from [Sta99].

The basic setting of a generalized Dirichlet form consists of a coercive closed form (A, V)
on L?(E;m) (cf. [Sta99][Definition 1.1.4] or [MR92, Definition 1.2.4]) and an operator
(A, D(A)) fulfilling
(D1) (A,D(A)) is the generator of a Cy contraction semigroup (T});>o on L?(E;m)
(i.e. (A, D(A)) is m-dissipative) and (7};);>0 can be restricted to a Cp semigroup
on (V]| - [lv)-
Let V' be the dual space of V. By identifying L?(E;m) with its dual we have V C

L?(E;m) C V' densely and continuously. By (-, )y we denote the dualization between
VY and V' (i.e. v (v,w)y :=v(w) forv e V', w € V).

[Dav80, Theorem 1.34] tells us that the adjoint operator (A, D(A)) of (A, D(A)) is also
m-dissipative and the adjoints T, of T, t > 0, form the corresponding Cy contraction
semigroup. In [Sta99, Lemma I1.2.4] it is shown that from (D1) it follows that there
are bounded extensions of T} to V' which form a Cj semigroup. The generator of this
semigroup is clearly an extension of A and it is also denoted by A. We denote its domain
by D(A,V'). [Sta99, Lemma 1.2.3] shows that furthermore the operator A with domain
YV N D(A) is closable as an operator mapping from V to V'. Denote by F the domain of
its closure, which we denote also by A. Clearly F is a Hilbert space if it is equipped with
the graph norm

11 =0 0%+ 1A 5
corresponding to A : V — V. Define moreover F := V N D(A,V'). Then also F,
endowed with the norm || - ||2f = |- I& 4+ IA - |3/, is a Hilbert space, since the operator

A:D(A,V') = V' is (the generator of a Cy contraction semigroup and hence) closed and
V is a Hilbert space.

Definition 2.1. Let (A,V), (A, D(A)) be as above, and assume that (D1) holds. Let F
and F be as above. The mapping

£: FxVUVxF — R
A(u,v) =y (Au,v)y ifue FoeV
(u,0) = { A(u,v) =y (Av,u)y ifue Ve F
is said to be the generalized Dirichlet form (GDF) associated with (A, V) and (A, D(A)),
if
(D2) for all w € F it holds ut A1 €V and E(u,u —ut A1) >0
is fulfilled.

For our application we need the following lemma. For the proof see [Sta99, Proposition
1.4.7].
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Lemma 2.2. Let (A, D(A)) be an m-dissipative Dirichlet operator (i.e. A is m-dissipative
and (Au, (u —1)%)) <0 for all u € D(A)). Then

E: DIA)xHUHxDA) — R
(wv) —([}u,v)Lz(E;m) ifue D(A)w € H
' —(Av,u) 2y ifu € Hyw € D(A)

is a generalized Dirichlet form. Here H := L?>(E;m).

Let £ be a GDF associated with a coercive closed form (A,V) and an operator
(A, D(A)). By [Sta99, Proposition 1.3.4] for each a > 0 there exists a mapping W, :
V' — F fulfilling

(2.1) EaWov,w) =y (v,w)y forallv € V' iw eV,

where
Ealf.9) == alf,9)r2(mm) + E(f.9)  for (f,g) € Fx VUV x F.

The restrictions G, of W, to L?(E;m), a > 0, form a strongly continuous contraction
resolvent (Gg)a>0 in H (cf. [MR92][Definition I.1.4]). Hence there exists an associated
m-dissipative generator L = a — G,! with domain D(L) C L?(E;m) and also a Cy
contraction semigroup (73);>0 generated by L.

Definition 2.3. (G)a>0 as above is called the strongly continuous contraction resolvent
associated with £, and (T});>0 and (L, D(L)) are said to be the semigroup and generator
associated with £, respectively.

Remark 2.4. If A = 0, the generator (L, D(L)) coincides with (A, D(A)) (cf. [Sta99,
Remark 1.4.10]).

It is possible (cf. [Sta99, Section III]) to define the notions of £-nests, £-exceptional
sets, properties which hold £-quasi-everywhere (€-qg.e.), £-quasi-uniformly convergent
sequences, £-quasi-continuity (£-q.c.) similar to the case of coercive Dirichlet forms (cf.
[MR92, Section III]), and there also are Choquet capacities characterizing £-nests and
E-exceptional sets as in [MR92, Section II1.2]. Again quasi-regularity of a (generalized)
Dirichlet form is defined as follows:

Definition 2.5. A generalized Dirichlet form £ is called quasi-regular, if it fulfills:

(ql) There exists an E-nest (Ej)gen consisting of compact sets.

(q2) There exists a dense subset of F whose elements have £-q.c. m-versions.

(q3) There exist u, € F, n € N, having £-q.c. m-versions 4, and an £-exceptional
set N C E such that {u,|n € N} separates the points of E'\ N.

We summarize some properties of generalized Dirichlet forms which are also in princi-
ple known from/similar as in the theory of coercive Dirichlet forms. They are important
for our further considerations, especially in Sections 4 and 5:

Remark 2.6. (i) Countable unions of £-exceptional sets are £-exceptional. More-
over every E-exceptional set is contained in a null set w.r.t. m (cf. [Sta99,
Remark I11.2.6]).
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(ii) A sufficient condition for an increasing sequence (Fjy)ren of closed subsets of E
to be an £-nest is given by

U Fr, is dense in F
keEN

where we define Fu := {f € F|f =0on E\ A} for F C L?(E;m) and A C E,
A closed. (cf. [Sta99, Remark IT1.2.11])

(iii) Let (up)neny C F and assume that for each n € N there exists an £-quasi-
continuous m-version 4, of u,. Assume in addition that u,, — v in F. Then
there exists a subsequence (up, )ren and an £-q.c. m-version @ of u such that
limy_, o0 Uy, — @ E-quasi-uniformly. (cf. [Sta99, Corollary I11.3.8])

(iv) If € is quasi-regular, then by (iii) and (q2) every f € F possesses a quasi-
continuous m-version f .

(v) Let £ be quasi-regular and let f, g be two £-quasi-continuous functions which
coincide m-a.e.. Then they coincide even £-q.e. (cf. [Sta99, Corollary I11.3.4 and
Lemma II1.3.5]). In particular, any two £-q.c. m-versions of the same element
in L2(E;m) coincide &-q.e..

For the definition of an m-tight special standard process (and the definition of a right
process etc.) M = (Q, F, (X¢)i>0, (P:).cE,) With state space E and life time ¢ : Q —
[0, 00] we refer to [Sta99, Section IV.1] or [MR92, Section IV.1]. Here Fa := E U {A}
denotes the extension of E by an isolated point A (the cemetery), which is used as the
state of the process at times greater or equal (. Any function f : E — R is extended to
Ea by setting f(A) := 0. As mentioned in [MR92, Remark IV.1.10] (and [Sta99, Remark
IV.1.3(i)]) we can choose as corresponding filtration (F;);>o the natural filtration of M
for any such process and we may assume that F, is the smallest o-field containing all
Fi, t > 0.

In [MR92, p. 91] the transition semigroup (p;)¢~o of a right process M as above is
defined by

(2.2) puf(z) = B[ f(Xy)]

for x € E, t > 0 and nonnegative B(F)-measurable real-valued functions f. As in
[MR92, Section I1.4a] we define p;f(z) := pif T (z) — pif ~(z), x € E, t > 0, for any
B(E)-measurable f for which p;f*(z) or p;f~(z) is finite. Here f*, f~ denote the

positive and negative part of f, respectively. Moreover (see [MR92, p.91]) the transition
resolvent (R, )a>0 of M is defined by

(2.3) Rof(z) := E, [/UOO e M F(Xy) dt]

for « > 0, z € E and B(F)-measurable nonnegative f (or B(E)-measurable f such that
RofT(z) or Ryf~(x) is finite).

Like in the theory of coercive Dirichlet forms a quasi-regular generalized Dirichlet form
£ can be used to construct a stochastic process, but an additional condition has to be
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fulfilled by &€ (cf. (D3) in Theorem 2.9 below). Let us first discuss the notion of proper
association of stochastic processes with GDF's.

Definition 2.7. Let M = (Q, M, (X;);>0, (Pr)zcr,) be a right process with transition
resolvent (Ry)a>0. Let € be a generalized Dirichlet form with associated strongly con-
tinuous contraction resolvent (G,)as0. M is said to be properly associated with £ in
the resolvent sense, if for every a > 0, f € L?(E;m), with bounded m-version f, the
function R, f is an &£-quasi-continuous m-version of G f.

In the sequel we sometimes need the following lemma.

Lemma 2.8. Let M, &, (Ra)a>0; (Ga)a>o be as in Definition 2.7 and denote by (pt)i>o
the transition semigroup of the right process M and by (T});>o the Co contraction semi-
group associated with €. Then it holds (cf. [MR92, Exercise 2.7 and Exercise 2.9])

(i) For every t > 0 and f € L2(E;m) with bounded m-version f, the function p.f
is an m-version of Ty f.

(ii) For every t > 0 (a > 0) and for every f € L2(E;m) with m-version f the
function pf (Raf) is an m-version of T,f (Gof). Moreover, R.f is quasi-
continuous.

Proof. Let f, fn € L2(E;m) with nonnegative m-versions f, fn (n € N), such that f, 1
f. Assume that p,f, is an m-version of T, f, for each n € N and for some ¢t > 0.
Then by the monotone convergence theorem it holds p;f, T p:f pointwise and again by
the monotone convergence theorem we find that p;f € L?(E;m) and from Lebesgue’s
dominated convergence theorem we conclude convergence in L?(F;m). Moreover, it
clearly holds T} f, — T;f in L?(E;m), hence p;f is an m-version of T} f.

Let us now prove (i): By the considerations above and a monotone class argument (and
since 0(C(E)) = B(E)) we may assume that f € C(E). Moreover, we can clearly restrict
our considerations to the case when f > 0.

Note that by continuity and boundedness of f and right continuity of M Lebesgue’s

dominated convergence theorem implies that for z € E, ¢ > 0 and for any sequence %, | ¢
it holds

lim (py, ) (@) = Tim E,[f(X,,)] = Blf(X0)] = (0f) ()

n— 00

Consequently, the mapping ¢ — (p,f)(z) is right continuous for every z € E.
Let v be a bounded nonnegative measurable function on E fulfilling m({v > 0}) < oc.
Then for a > 0 it holds by our assumption and by Fubini’s theorem

/ e_at(vaptf)L2(E;m) dt = <’U,/ e_at(ptf)(') dt) = (’U, Raf)L2(E;m)
0 0 L2(E;m)

= (v, Gaf)L2(E;m) = <Ua/ eiatth dt)
0 L2(E;m)

The integral on the right-hand side is considered as a Riemann integral; clearly the
right-hand side is equal to

/ e (v, Ty f ) r2(mym) dt
0
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By the injectivity of the Laplace transform (cf. [DS58, Lemma VIII.1.15]) and by right
continuity of the mappings ¢ — (v,ptf)Lz(E;m) (here we again use Lebesgue’s theo-
rem) and t = (v,T;f)r2(p,m) We conclude that for all ¢ > 0 it holds (v, Tif)r2(gm) =
(Uaptf)LQ(E;m)'

Since the measure m is o-finite and since the linear span of the set of functions v as
above is dense in L?(E;m), we easily find that ptf is L2-integrable and an m-version of
T;f, which we desired to prove.

To prove (i) let f € L2(E;m) with m-version f. W.lLo.g. we may assume that f > 0.
We define fn = f A n. Then by the considerations at the beginning of this proof and
by (i) it follows that p.f is an m-version of T.f. In the same way we can prove the
corresponding result for R, and G,,.

Finally, to prove the last assertion we note that G,f, converges to G,f not only in
L?(E;m), but also in F, since L?(E;m) C V' continuously and G, is the restriction
of the continuous operator W, : V' — F to L?(E;m). Hence by Remark 2.6(iii) the
pointwise limit R, f of (Rafn)nen is £-quasi-continuous. O

Now we state the existence theorem, which can be found in [Sta99, Theorem IV.2.2].

Theorem 2.9. Let £ be a quasi-reqular generalized Dirichlet form and let F be defined
as above. Assume that it holds

(D3) There exists a linear subspace Y C L*(E;m) N L®(E;m) such that Y N F is
dense in F and limy_s o0 (aGou —u)g = 0 in L?(E;m) for all u € Y. Moreover,
for all a > 0, it holds uANa € Y, where Y denotes the closure of Y in L*>°(E;m).

Then there exists an m-tight special standard process M which is properly associated in
the resolvent sense with €.

Remark 2.10. (aGou — u)g in Theorem 2.9 above denotes the 1-reduced function of
aGau—u (cf. [Sta99, Definition I11.1.8]). We do not need to consider details about this
notion here, since we use the following proposition (cf. [Sta99, Proposition 2.1]).

Proposition 2.11. In the situation of Theorem 2.9 assume that there exists a linear
subspace Y C FNL*®(E;m), which is dense in F and closed under multiplication. Then
(D3) holds for Y.

In the sequel we make use of the following result (cf. [Sta99, Lemma IV.3.10]), which
tells us that a process M as in Theorem 2.9 “does not hit” £-exceptional sets. For U C F,
U open, we define oy := inf{t > 0| X; € U} = inf{t > 0|X; € U}. oy is called the first
hitting time of U. We set oy := oo, if {t > 0|X; € U} is empty.

Lemma 2.12. Let M be an m-tight m-special standard process with life time  properly
associated in the resolvent sense with a GDF £. Then for any E-nest (Ep)nen it holds

P, ( lim op\p, < C) =0 for&-qe x€eFE
n—oo

Hence if N C E is E-exceptional, then Py(3t > 0: X, € N) =0 for E-qe. x € E.
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3. AN N-PARTICLE LANGEVIN DYNAMICS

We now construct a solution to (1.1) in the sense of the corresponding martingale
problem, where we consider (1.1), as we mentioned in the Introduction, to be an equation
on the manifold resulting from considering the cuboid area of motion in R? to have
periodic boundary. We first make this setting more precise.

3.1. The setting.

3.1.1. The state space E. As we mentioned in the Introduction we consider the Langevin
equation for N particles moving in a rectangular area in R?. To simplify notations with-
out losing generality we may assume that the Langevin equation describes the motion of
1 particle moving in [0,71] X - - x [0,7nxg] C RV?. We set n := Nd.

In the sequel we often consider functions on the sets M : = (0,71) X -+ x (0,7y), R"
and E := M x R". Throughout the whole section we denote

e an element of E (or R?") usually by (z,v), which is to be understood in the
sense that z = (21, -+ ,2,) € M (or R") and v = (v, - ,v,) € R7.

e by 0y, f, -, 0z, f the (weak) partial derivatives of f : M - R

e by 0y, f, -+, 0y, f the (weak) partial derivatives of f : R" — R.

e by Oy, f, + ,0u, fsOp, [y + , Oy, f the (weak) partial derivatives of f : E R
We moreover define the formal differential operators V,, V,, Ay, vV, :=v10,, + -+ +
vpOy, etc. in the obvious way.
For z € BM, which means z; € {0,r;} for some 1 < i < n, we define the opposite point
T =(Z1, - ,3y) by

r; ifx;=0

T; = 0 ifx;=mr; 1<:<n
x; else
We define
Cper(M) := {f|37|f € C*(R"), f(z) = /(&) Yz € OM,
and the same holds for any derivative of f}
(3.1) Tero(E) i={[|j |f € C*(R"), f(w,0) = f(2,v)V(z,v) € IE,

and the same holds for any derivative of f}

and moreover

Hyer (M) = {f € H"(M)|f(z) = f(z)Vz € OM}

where H'>°(M ) denotes the Sobolev space of once weakly differentiably functions f :

M — R, such that f and its weak partial derivatives are elements of L°°(M dzx) (cf.
[A1t02, 1.23]). Note that by [Alt02, Satz 8.5] the elements of H'*> have Lipschitz con-

tinuous dz-versions, thus f(z) is well-defined for = € OM, f € Hl’oc(ﬁ).
We need to know the following (obvious) facts about H'*°(M):
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Lemma 3.1. (i) H-°(M) is an algebra of functions and the product rule holds.
The same is true for Hll)’eoﬁ(M)

(11) Let f € HI’W(M). Then ef € HY°(M) and Vae! = (Vyf)ef. The same is
true for Hll)’eoﬁ(M)

We define an n-dimensional manifold M with the help of the equivalence relation ~,
given by z ~ 2/ &z — 2" € {(z171,-++ ,20m)| (21,00, 2n) € 27} for z, 2" € R*. We
define M := R*/ ~. Let ¥ : R® — M be the mapping which assigns to every z € R"
its equivalence class 7 (z) = [z] € M w.r.t. ~ (which we also denote by x in the sequel).
If we equip M with the quotient topology w.r.t. ¥, M is a second countable Hausdorff
space.

We define for every z° = (2, -+, 20) € R" the restriction 725 of 7 to (zf, 2] +7r1) % - - x
(z0, 20 + ). We can use the charts (7))~ to define a (quite natural) differentiable
structure on M. We define the global vector fields 8%, e ,8% to be the images of
Oz, ,0g, under the differential mappings of w%, 0 € R*. Of course, we denote by
C°°(M) the space of infinitely often differentiable functions on M.

Moreover, we define the manifold E to be the product manifold £ := M x R™. This

manifold is the state space for our process. We define 7 := 7™ x id®" : R*» — E
(i.e. (z,v) := ([z],v), (z,v) € R?") and moreover for z° € R" we define 7,0 := W%Xian.
mgo is the restriction of 7 to (2¥, 29 +71) x -+ x (20,22 + r,) x R*. The global vector

fields 851, e ,Bfn, 85, e ,Bﬁ are defined in the same way as the corresponding vector
fields on M. We define VI, VI VM AL etc. in the same way as the notations we
fixed above. Let C§°(E) denote the set of all infinitely often differentiable functions on

E having compact support.

We consider any mapping ® on M also as a mapping on £ = M x R" by defining
O(z,v) :==P(z), z € M, v eR".

Remark 3.2. It is easy to see that there is a countable set G of nonnegative functions
in C§°(E) such that the open sets {z € E|u(z) > 0}, u € G form a base of the topology
on E. Of course, this implies that o(C(E)) = B(FE).

3.1.2. L%-spaces on E and M. With the help of the mappings ﬂ%, z0 € R™, it is also
possible to transfer the Lebesgue measure dx on R" to the manifold M, or, to be precise,
to the measurable space (M, B(M)):

Definition 3.3. Let 2° € R". For A € E we define dz (A) := dz ((7}f)71(4)), i.e. we
M

define dz™ to be the image measure of dz under T,0-

Clearly, this definition is independent of the choice of zV.

By the definition of dz™ the set FM(M) contains already the total mass. Hence, if
we define for any function f : M — R another function My . ﬂ'M(M) — R by
fIMf = fo (Wé\/‘[)*l, the mapping M leads to a bijection TIM between dz-classes of
functions on M and dzM-classes of functions on M.

Moreover, it is clear that TI™ : L2(M;dz) — L?(M;dz™) is a unitary transformation.
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Note that IT™ maps Cf’,‘ér(ﬁ) bijectively onto C°°(M) (in the obvious sense: each func-

tion in COO( ) is uniquely determined by its restriction to WM(M)), hence TIM maps
Cf)%r( ) C LQ(M dz) bijectively onto C®°(M) c L*(M;dzM).

We define on (E,B(E)) the measure d(x,v)” to be the product measure d(z, v)E =
dzM ® dv, where dv denotes the Lebesgue measure on R”. We define mappings II, 11
for £ analogously to IIM and IIM for M , and clearly we get similar results as above.
Moreover, note that II also gives a one-to-one-correspondence between measures p on

(E, B(FE)) which are absolutely continuous w.r.t. d(z,v)¥ with m = d(xd%, and measures

fi on (E, B(E)) which are absolutely continuous w.r.t. d(z, v) such that m = %, in the
sense that TI(m) = m. For such a pair y, /i of measures clearly 11 : L2(E; i) — L2(F; )
is also a unitary transformation. Clearly TT and TT™ (and their inverses) transform any
m-dissipative operator into an m-dissipative operator, the semigroup corresponding to
the former one into the semigroup corresponding to the latter one etc. Moreover they
transform Dirichlet operators into Dirichlet operators, positivity preserving operators
into positivity preserving operators etc.

Remark 3.4. For [i, 1 as above any considerations about (differential operators on) the
spaces L2 (F; i), ‘per,o(E) are also valid for (the corresponding differential operators on)
L%*(E; ) and C{°(E), as long as we do not have to include global topological properties

of E or E., which is e.g. important to prove quasi-regularity of a generalized Dirichlet
form on L%(E; ) (cf. Definition 2.5).

We define -
HY>®(M) = TIM Hygp (M)

Remark 3.5. The above definition of H“(M) is easily verified to be independent of
the choice of the natural chart used in the definition of II and hence of II. It consists
exactly of those functions f : M — R in L>®(M,dz™) which fulfill

(3.2) /M fOF 4 da = — /M fip dz™ for all ¢ € C®(M)

for some fi, -, fn € L®(M, dz™).

3.1.3. The Langevin equation on E. We consider the stochastic differential equation
(3.3) d(Xy, Vi) = =V, V,dt — (V.M (X)) V,dt + V,V, dt+z1/ 7 dB}

which has to be understood in the sense of [Swa00]. (B;);>0 = (B}, , B");>0 denotes
n-dimensional Brownian motion. We have to choose a connection on F to state this Ito
stochastic equation properly. Of course, we use the connection resulting from the natural
Riemannian metric d on E defined by d(9;,0;) = 0;; when 4,5 € {z1, -+ ,zp,v1, - ,0p}.
To stay consistent with [Swa00] we would have to use C* potentials. But a solution
of (3.3) in the sense of the corresponding martingale problem (see below) can also be
defined for more general potentials. We later specify the type of potentials ®¥ we want
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to consider.

Let (X¢,V;)i>0 be an E-valued stochastic process with law P defined on a measurable
space (2, M), equipped with a filtration (F;);>0. P is said to solve (3.3) in the sense of
the corresponding martingale problem if it fulfils the martingale problem for the operator
(LE,C§°(E)), which is defined by

(34) (Lf)(z,v) = %Aff(xa v) =V f(z,0) + Vg f(,0) = (V3 @ (2)Vy f(2,v)

for f € C§°(FE). This means, that for any f € C§°(E) the process (th)tzo defined by

M= F(Xy) = F(Xo) - /Uth(Xs)ds

is an (F;);>0-martingale wrt. P. The image measure P o (X, Vo)~ of P under (Xq, Vo)
is called the initial distribution of the solution. Our aim is to find solutions of (3.3) in
the sense of the corresponding martingale problem for many initial distributions.

Remark 3.6. Assume that ® : R" — R is such that its (weak) partial derivatives (exist
and) are measurable and bounded. If we consider the Langevin equation on R?*" (cf.
(1.1)), we find that the operator corresponding to it via the It6 formula (cf. [Dur96,
2.10.2]) is given by

(3.5) L= %AU — OV + 0V — (V,8)V,.

Let us (also in the sequel) consider this operator to be acting on Cgo)%r,o(E)- Then, if

d = (ITM)~1®M it corresponds to (LF,C$°(E)) in the sense of Remark 3.4. Thus we
can assume that (3.3) is a reasonable formulation of the Langevin equation on E.

The type of potentials ®, ®" we want to deal with is described by the following
condition:

Condition 3.7. ® € Hyey (M) and &M = IV (e HY(M)).

Below, ®, ®M always denote functions as in 3.7. Note that when considering the
operator L¥ (or L) on L?*(E;p) (or L?(E;fi)) such that p (or Ji) is equivalent to the
measure d(z,v)" (or d(z,v)), we do not need to fix versions of ®M (or ®) and its weak
partial derivatives to obtain well-definedness of the operator L¥ (or L).

We have to choose an appropriate measure to fix the L? space on which we consider
the generator L¥ to be defined. We use the measure y, defined by
du 2 M
3.6 — P (z,0) = e PV 27O (@)
(3.6) T .0)
Except for normalization, u is the canonical Gibbs measure, which is well-known as a
candidate for being an invariant measure for the dynamics.

In order to apply Theorem 2.9 to obtain a generalized Dirichlet form corresponding to
L¥ we have to prove that (L¥, C§°(E)) is an m-dissipative operator on L2(E; ), with p
given as in (3.6), and that its closure is a Dirichlet operator.
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Clearly, by Remark 3.4 we can as well consider the operator (L, CI%T’U(E)), defined as

in (3.5), on L%(E; Ji), where d((iﬁv) = =0V /2=B%()

It is moreover easy to see that we can define M = (0,71) X - - - x (0, 7,), B = M x R" and
®: M — R such that the problem of proving essential m-dissipativity of (L, Ce, o(F))
and the Dirichlet property of its closure is equivalent to proving these properties for

(Ay — vV + 0V, — (Vi ®)Vy, ]3%,4’0(177)) in L2(E, ji), where d(i”‘v) = ¢ V*/2-%(®@) This

shows that we may assume that =1 and v = 1.

3.2. Perturbations of essentially m-dissipative operators. Before going on we
make some considerations about perturbations of essentially m-dissipative operators.
Let H be a Hilbert space with inner product (+,-)% and corresponding norm || - ||;. We
call an operator (L, D(L)) on H essentially m-dissipative, if its closure is m-dissipative
(and thus generates a Cy contraction semigroup). This means that its closure (L, D(L))
fulfills (Lu,u)y < 0 for all u € D(L) (dissipativity) and Range(l — L) = H. Essen-
tial m-dissipativity of (L, D(L)) is equivalent to (Lu,u)y < 0 for all u € D(L) and
Range(l — L) = H.

The best known result on perturbations of (essentially) m-dissipative operators is Theo-
rem 3.9 below (we slightly changed the “usual” assertion in order to be able to apply it
directly below). We need the following definition.

Definition 3.8. Let (A, D(A)), (B,D(B)) be linear operators on H. B is said to be
A-bounded, if D(B) D D(A) and there exist real numbers a,b > 0 such that

(3.7) IBfln < allAflla + bl fllo
for all f € D(A). The number inf {a > 0/(3.7) holds for some b > 0} is then called the
A-bound of B.

Theorem 3.9. Let (A, D) be an essentially m-dissipative operator on H and (B, D) be
dissipative. Assume that B is A-bounded with A-bound less than 1. Then (A + B, D) is
essentially m-dissipative.

For the proof of Theorem 3.9 we refer to [Dav80, Corollary 3.8, Lemma 3.9 and Prob-
lem 3.10].

A sufficient condition for A-boundedness is given in the following lemma, which is easy
to prove.

Lemma 3.10. Let (A, D(A)),(B,D(B)) be linear operators on H such that D(B) D
D(A) and for some M > 0 it holds

IBfl3 < (Af, fyu + M| fl13,  for all f € D(A).
Then B is A-bounded with A-bound 0.

The idea for Lemma 3.12 below is taken from [Lei0l, Lemma 2.1]. The situation we
consider is that H can be represented as the direct sum of orthogonal subspaces in a way
which allows A, B to be restricted to these subspaces such that for the restrictions we
can apply Theorem 3.9.
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Definition 3.11. A sequence (P,)nen of continuous linear operators on H is called a
complete orthogonal family, if every P,, n € N, is an orthogonal projection such that for
n,m € N, n # m, it holds P,,P,,, = 0 and for every f € H it holds f = > >° | P, f.

Lemma 3.12. Let (A, D) be an essentially m-dissipative operator and (B, D) be dissi-
pative. Suppose that there is a complete orthogonal family (Pp)nen C L(H) such that for
allm € N

P,D C D,
P,A = AP,
P,B = BP,.

Define A, := AP,, B, := BP,, both with domain D,, := P,D C (P,H)N D, as operators
in P,H. Assume that each By, is Ap-bounded with A, -bound less than 1. Then (A+B, D)
is essentially m-dissipative.

Proof. Let n € N. Clearly A, and B, are dissipative. Define C, := A, + B,, and
denote in the sequel by I,, the identity operator on P,H. Let f € H,e > 0, then by
essential m-dissipativity of A there is ¢ € D such that ||(I — A)g — f||lx < . Hence
I(In = An)Pag — Pufllse = | Pal(I — A)g — fl|% < e. Thus Range(L, — A,) is dense
in P,H, which proves that A, is essentially m-dissipative. Consequently each (C,,, D,),
n € N, is an essentially m-dissipative operator on P,’H by Theorem 3.9.

To show essential m-dissipativity of (A + B, D) let f € H,e > 0, then f =3 " | P,f.
We have to find g € D such that ||(I —(A+ B))g— f|l% < e. Choose N € N large enough
such that

N
(3.8) Hf =Y Puf|| <e/2
n=1 H
Clearly, by essential m-dissipativity of (C,,, D,) we find g, € D,, 1 < n < N, such that
€
. P,f— (I, — < —.
(3.9) | Pof — (In — Cn)gnlln < ON
Let g := Y\, gn, then g € D and (I — (A+B))g = SN (I - (A+ B))Pug = N (I, —
Ch)gn. Hence by (3.8) and (3.9) we obtain ||[(I — (A + B))g — fllu <e. O

3.3. The generator for the generalized Dirichlet form. In this section we show
that, if the potential @ fulfills condition 3.7, the differential operator L = A, — vV, +
vVy = Ve®(2)V, with domain Cpe,. o (E) C L?(E;Ji), where d(i’jv) = ¢ ""/2¢7? s essen-
tially m-dissipative and its closure is a Dirichlet operator. Clearly, by the considerations
in section 3.1 the same then holds for (L¥, C$°(E)) (on L?(E; i), where L¥ is defined as
in (3.4) and p is given by (3.6)). We find it considerably easy to prove in Section 3.4 that
the associated GDF is quasi-regular and fulfills condition (D3) in Theorem 2.9, since we

have that the space C§°(FE) is a core for the generator.

Theorem 3.13. Let @ be as in condition 3.7, and define the measure [ by d(iﬁv) =m,

where m : E — R is given by m(z,v) = e *"/2e 2@ for (z,v) € E.
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Then the operator L : I%Oer,o(E) — L2(E; i), defined by
(3.10) L=A,—-vV,+vV,;—(V,P)V,
is essentially m-dissipative and its closure is a Dirichlet operator.

Theorem 3.13 is shown in the course of this section.

At first we state some basic properties of L and its summands:

Lemma 3.14. Define (L, ;)%T‘,O(E)) as in Theorem 3.13. We decompose L by L =

S + A, where (S, I%%T’O(E)) and (A, Cpero(E)) are defined by S = A, — vV, and
A= 0V, — (Vo®)V,. It holds

(i) S is symmetric and dissipative.

(ii) A is antisymmetric.

(i1i) L is dissipative.
Proof. Clearly, (iii) follows from (i) and (ii).
To show (i), let f,g € Clep o(E). We can use the Gaussian integral formula (cf. [Alt02,
A 6.8]) and the fact that f and g have bounded support to obtain (Sf,g)p(é,ﬁ) =
—(Vuf, va)LQ(E,ﬁ) = (f, Sg)LQ(E,m. Thus S is symmetric. Moreover, for all for f €

Chero(E) it holds (Sf,f)p(g;m = —(Vuf, VUf)L?(E;ﬁ) < 0, which shows that S is

dissipative.

Let us now prove (ii). Again by the Gaussian integral formula we find for f,g € C]C;(ér,o(E)

(3-11) ((V:L’(I))vaag)p(é;g) = _(fa (VI¢)Vv9)L2(E;ﬁ) + /E(UVIQ)f(a:,v)g(fE,U)dﬁ
and moreover, using Lemma 3.1(i),

312 Vel = ~(F0Va)+ [0V, (o 0)g(a,0)df

+/n (/xzvvf(fgeé)(xav) dm) e dv
— —(f,vig)+/E(vvxé)f(x,v)g(x,v)dﬁ,

since for fixed v € R” the mapping z — f(x,v)g(z,v)e”**) is periodic. By (3.11) and
(3.12) we obtain that (Af,g) = —(f, Ag). O

Remark 3.15. (i) We find by the above proof that neither vV, nor (V,®)V, is
antisymmetric, but vV, — (1/2)v(Vy®) and —(V,P)V, + (1/2)v(V,P) are.

(ii) Tt is well-known (cf. Lemma 3.17 below) that the closure of the symmetric

operator S = A, — vV, is an m-dissipative (Dirichlet) operator. Hence we start

with the operator S and consider the rest of L as a perturbation. This seems

to be easy as far as we think about the last summand in (3.10) (we may use

Theorem 3.9 for this). But vV, is not bounded by S, not even if it would be

possible to keep v bounded. This indicates that the lack of strict ellipticity of L
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causes difficulties. (One of these difficulties is the fact that L cannot generate
a coercive closed form (which is not difficult to prove). This fact forces us to
apply the theory of generalized Dirichlet forms instead of [MR92].)

(iii) In order to use a strategy as mentioned in (ii), it may be natural first to consider
the case of potential free motion and then to add the influence of the potential.
Intuitively, if we “fix the positions” and just consider the changes the potential
(and of course friction and stochastic perturbation) causes to the velocities, the
introduction of motion in z-direction (this direction did not even play any role
before) does not seem to be a small perturbation. So the question arises which
part of L represents the free motion. Clearly, since we are acting on LQ(E; 1),
and since i1 depends on @, this part can not be the operator A, — vV, + vV,.

The above remarks motivate us to define a unitary transformation 7" which enables us
to get rid of . Consider

T LAE:f) - LA(Bdv)
f o= Vmf
It is easily seen that it formally holds
1 ) v n
TLT " =L :=A, - ” + El—i—vvx — VPV,

(We do not need to check this here, cf. Lemma 3.21.) Instead of thinking about how to
make this equation rigorous now, we find a domain of essential m-dissipativity for L'.

Remark 3.16. (i) By Lemma 3.1 the unitary transformation 7' defined above maps
the space Hll)eoﬁ( ) @ C§°(R™) := span{f ® ¢|f € Hll)eo;?(M), @ € C§°(R™)} onto
itself.

If we can prove essential m-dissipativity of L' on a domain D C H[l,’eoﬁ(ﬁ) ®
C§°(R™), essential m-dissipativity of L', defined on Hzl,eoﬁ( ) @ C§°(R™), fol-
lows directly. In order to show essential m-dissipativity of (L, per(E)) we are
then left to prove that the domain of its closure (L, D(L)) contains Hper(M) ®

C§°(R™) and that it indeed holds TLT'f = L'f for f € Hzl,gﬁ( ) ® C§°(R™).
This is essentially what we do in Lemma 3.21 below.

(ii) Note that the last two summands of L' are both antisymmetric, when we define
L' e.g. on a subset of %T(E) or Hzl,eo;’( ) ® C§°(R™). This can be seen by
arguments as in the proof of Lemma 3.14. Moreover, note that now V,®V, is
exactly the part corresponding to the potential.

Of course, we follow the strategy explained in Remark 3.15(ii),(iii) to prove essential
m-dissipativity of L' on a suitable domain.
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The basis functions for invariant subspaces of the operators d,,, ¢ = 1,--- ,n, turn out
to be useful. For z € Z, 1 <1 < n, define
'([),Zz : (Oa Ti) - R

ifz=0

cos(zcix) if z>0

=
I
ERETER

—sin(zez) if 2 <0

where ¢; := 27 /r; for 1 <i < n (here 7 denotes the Ludolph number). Note that
(3.13) (¥2)'(z) = ciz 9, (x)
for all z € Z,z € (0,7;). Define for z = (21, - ,2n) € Z" the function 1, : M — R by
b2 (@) =45, (1) - Y2 (2n), @ = (21, 20) € M. N
Clearly the functions v, z € Z", form a complete orthonormal system in L?(M,dz) and
D : = span{y, @ |z € Z",p € C5°(R")}
= span{(z,v) = ¥z (z)p(v)|z € Z", ¢ € C5°(R")}
forms a dense linear subspace of L2(E; d(z, v)).

The following is a well-known fact (it may be seen e.g. by [Tri80, §24] and [RSS80,
Theorem VIII.33]).

Lemma 3.17. The operator S’ : D — LQ(E;d(a:,v)) defined by S' = A, — % + 51, is
essentially m-dissipative.

In the sequel we denote by (S', D(S’)) the closure of (S', D).

Let us now consider the potential-free case:

Lemma 3.18. The operator Ly : D — L2(E;dz) defined by Ly=A, - % + 51 + vV,
s essentially m-dissipative.

Proof. By || - ||z, and (-, )z, We denote the norm and inner product of L2(E;d(z,v))
and denote by | - ||, and (-, ), the norm and inner product of L?(R"; dv).

Here we apply Lemma 3.12 to prove essential m-dissipativity.

For z = (21, -+ ,2p) € Ny wedefine Z, := {2z’ = (2}, -+ ,2}) € Z"||2}| = z;,i = 1,--- ,n}
and

D* :=span{¢»r ® p|z’ € T, € CF°(R")}

Clearly (D?),eny is a family of orthogonal subspaces of L2(E;d(z,v)), such that the
linear span of their union is dense. Hence the orthogonal projections P? corresponding to
the closures D?, z € N2, form a complete orthogonal family. It holds P*D = D? C D and
every summand of (S’, D) commutes with P#. Moreover, note that for 2’ = (2{,--- ,2]) €
Z™ and ¢ € C3°(R") it holds by (3.13)

(3.14) vV (Y. ® p) = Ul(axﬂ/)z) e+---+ 'Un(amnwz) ¢
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n
Z Cizéviwz; Q@
i=1
where we define z] := (2, ,z_y, =2}, 241,
P# also commutes with (vV, D).
Let z € Nj and choose an arbitrary element f := /7 9. ® ©* of D* (with o €
C°(R™), 2’ € I,). For 2’ € T, it holds

,zp) for 1 < i < n. (3.14) shows that

Z lvig™ 12 = (0%, %)y < (02 f, ) @)
and by (3.14) it follows

2

oV flfay = | D D cizitha @ (vig™) <Cy Z‘

2'eT, i=1 (z,0) z'el, 1=1
2

—CZZUZ‘P U<CZ foa:v

Z/EIz 1=1 ’ IEIZ
< (O (v? <4.2m — o1
< 2" C(2f, )y <4-2°C (=S +51) 1.f) -
=4-2"C(=Sf, [)aw) + 2 n2"C| f[{r.0)

where C' := max{|z;¢;|?|1 < i < n}. We can now apply Lemma 3.12 (and we use the
notations from this lemma): We use the complete orthogonal family (Pz)zeNg given
above and define A := S’, B := vV,. By Lemma 3.17 (A, D) is essentially m-dissipative
and since (B, D) is clearly antisymmetric, it is dissipative. Our above considerations and
Lemma 3.10 imply that all the assumptions in Lemma 3.12 are fulfilled. Hence (Lg, D)
is essentially m-dissipative. O

2
1/)z UZ‘P H

Next, we add the potential.

Lemma 3.19. The operator L' : D — L2(E;d(z,v)) defined by L' = A, — % + oV, —
VPV, is essentially m-dissipative.

Proof. Clearly the operator ((V,®)V,, D) is dissipative (because it is antisymmetric).
Let C := maxi<i<n |0, || & (Bod(0))" For f € D it holds

H(V q))v f||L2 Ed )) S 02( A f f)L2 E gj”u)
2 !
<C (( 5+ I) L%( Edmv

)
=02((_L6+_1) >L2Edzv
= O~ Lo, ) pr amny + O3 W Bty

by antisymmetry of vV;. Lemma 3.18, Lemma 3.10 and Theorem 3.9 imply that L' is
essentially m-dissipative. O
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Hence, the closure (L', D(L')) of (L', D) is m-dissipative. Consequently, the same
holds for the closure (T-'L'T, D(T-'L'T)) of (T 'L'T, T 'D). We already mentioned
(though we did not prove it), that 7' L'T behaves formally like L, but we do not know
whether it is an extension of (L, C;,%T o) or not. Lemma 3.21 below answers this question.

But first we need to make some further considerations about Hper( ) We denote by
HY2 (M ) the space of weakly differentiable functions f : M — R, such that f and all
its partial derivatives are contained in LQ(M, de). H' 2(M) is a Hilbert space w.r.t. the
norm || - ly2 := ||l 237,40y + S ||(9;iL ||L2(A7;dz) (or the corresponding inner product,
denoted by (-,-)12) and the set C°°(M) HlQ(M) is dense in H"“2(M ) (cf. [Alt02,
Satz 1.24]). Clearly H[l,eoﬁ(ﬁ) C H'>°(M) c H"“2(M), hence for any f € Hll,eoﬁ(M) we

find an approximating sequence (fx)ren C C°°(M) w.r.t. this norm. But we need the
following (slightly stronger) fact.

Lemma 3.20. CI%%T(M) is dense in H;)eo,?(ﬁ) w.r.t. |- |12

Proof. Assume that there is f € Hll)gﬁ(]ﬂ\\f), such that for all ¢ € Cf,%r(ﬁ) it holds
(¢, f)1,2 =0. We have to show that f = 0.
It holds for all ¢ € Cpey (M)

0 = (/2= (8 F) oiram) + D 0n:b0ui) 1o (i)
i=1

= (¢ - Az, f)LZde

by the Gaussian integral formula (cf. [Alt02, A 6.8.2]) and by periodicity of 0;¢, i =
1,---,n, and f. But the operator (I — A, Cﬁr(ﬁ)) has clearly dense range, since the
functions 9,, z € Z", are contained in its domain and form a complete orthonormal
system of eigenfunctions of I — A, such that the corresponding eigenvalues are strictly
positive. Thus f = 0 and our assertion is shown. 0

Lemma 3.21. (T-'L'T, D(T-'L'T)) is the closure of (L,C er0(~))

Proof. Let (L, D(L)) be the closure of (L, Cher o(E F)). Our assertion is shown, if we can
prove that the closed dissipative operator (L, D(L)) is an extension of the essentially
m-dissipative operator (T~'L'T,T~'D).

It holds T~'D = span{(e 'I)/Qd)z) Rplz € Z™ ¢ € CC(R™)}. Let z € Z™, p € C§°(R").
Since 9, € Cpep (M ), we know by Lemma 3.1(i) that it holds 0 := e'b/gz/)z € Hll)eoﬁ(M)
Hence by Lemma 3.20 there is a sequence (0)ren C Cpep(M) approximating 6 in
HL2 (M). Thus 0, — 6 and 0,.0;, — 0.0 in L? M dx) as k — oo, hence (since ®

per ; :
is essentially bounded) in LQ(]T[; e~%dz). Consequently
(A, — oV, +0V, =V, 0V,) 0, @ ¢p = (Ay, —vV, + 0V, =V, 0V,)0® ¢

in LQ(E; m) when n — co. This does not seem to be a surprising result, but it shows that
T-'D c D(L) and that L looks the same as L on T~ !'D (but, of course, we are dealing
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with weak derivatives of § ® ¢ (in z-direction) now). This argumentation is valid for any
1,00/ 77

0 ¢ HLX(M), o € Cg<(R").

We have to show that A, — vV, + 0V, — (V,®)V, = L|p-1p = L 7=1L'T. For feT™'D

it holds

2
(3.15) T (A,, - UZ + gI> Tf

2 .
= 77! <Av - UZ + g[) (e_”2/4e_¢/2f)

— pl,%2 <V'u (e*”2/4V1,f _ 71,2/4]0) T 71,2/4]0 + ”2/4f>
2
— /4?4 _ me v, vt
T e <Avf Wof =5+ f 4f+2f>
= Ayf—vVyf
Moreover, it holds by Lemma 3.1(ii)
(3.16) TV, Tf =T~} (vvx(e_”2/4e_q>/2f)>

- T—le—v2/4e—¢/2 <_%U(Vm<1))f + vvmf>

1
= <UVIf - EU(VI@)> f
and by an analogous calculation we find that
1
(3.17) TV, 8)V,Tf = ((vxcb)vv - §v(vf,[,xb)) i

The equations (3.15), (3.16) and (3.17) complete our proof. O

We still have to show that the m-dissipative closure of (L, C'per ) is a Dirichlet oper-
ator. Let us first prove the following lemma.

Lemma 3.22. For the closure (L, D(L)) of (L, pero(E E)) it holds 1 € D(T) and T1 = 0.

Proof. Define 1, : M — R by setting 1,(z) := 1 for all z € M. Clearly for all ¢ €
C5°(R™) it holds 1, ® ¢ € Cpey o(M M) and

(3.18) L1y ® @) (z,v) = Ayp(v) — vV 0(v) + (V4@ (2))Vye(v) for (z,v) € E.

For m € N, let 1, be an element of C§°(R) such that n,(f) = 1 for ¢t € [-m,m],
Mm(t) =0 for ¢t ¢ [—m — 2,m + 2] and |y, (¢)| < 1, \%nm(t)\ <1 and |%nm(t)\ <1 for
all t € R We define n™ : R" — R by n™(vi,--- ,vy) := [[iny nm(vi). By Lebesgue’s
dominated convergence theorem we obtain 1, ® n™ — 1 in LQ(E; ). We choose C' > 0
such that C > H@IIQ)HLOO for every 1 = 1,--- ,n. Then

|Ayn™ (v) —oVyn™(v) + Vi @(2)Vyn™(v)] <n+ Z |vi| + Cn
i=1
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holds for ji-a.e. (z,v) € E. Moreover, it holds Ayn™ (v) —vVyn™ (v) + Ve ®(z)Ven™ (v) =
0 forv € [-m,m|", z € M. Consequently, by Lebesgue’s dominated convergence theorem
and (3.18), L(1; ® n,) — 0 in L2(F; 1), and the assertion follows. O

Remark 3.23. Another idea to prove Lemma 3.22 is to consider the operator (L, D(L)),
where D(L) := span({1} U Cpzr(E)) and L1 := 0. If L is dissipative (which is by
dissipativity of L equivalent to (Lg,1) = 0 for all g € Cjpg;(E)), this implies that the

closure of L is a closed dissipative extension of the essentially m-dissipative operator
L and hence equal to L. However, in the proof given above we did not use the m-
dissipativity of (L, D(L)).

Now we prove the Dirichlet property.

Lemma 3.24. With the notations of Lemma 3.14 it holds
(i) (Su,u* )LQ( )y <0 for all u € pero(E)
(i) (Au,u™),, 2 =0 for all u € Cpep o (E)
(#i) (Lu,u )LZ( < 0 for allu € D(L), where (L, D(L)) again denotes the closure
of the opemtor (L, Cpero(E)) in L2(E; ).
(iv) (Lu, (u—1)* )L2(}§;u <0 for all w € D(L)
Proof. For each € > 0 we choose an infinitely often differentiable function y. : R — R
such that x.(§) =0 for £ € (—00,0], 0 < xL(§) < 1forall € R, x.(z) =1 for £ > e.

For u € Of)%r,o(ﬁ) it clearly holds x. ou € Of)%r,o(ﬁ) for all ¢ > 0. Hence by the proof
of Lemma 3.14 we find that

n

(S, Xz 0 ) 2y = = O (Fustts (XL © w)Duy) o iy < O

=1

since x. > 0. But since clearly x. o u — ut in L%(E; i) as € — 0, (i) is shown.
Moreover, Lemma 3.14 shows that

(Au, xe 0 U)LQ(E;ZI) = —(u, A(xe o U))L2(E;m
= _((X(Is © u)uaAu)[p(E;m
Since x. ou — ut and (x. o u)u — ut in L2(E; i) as ¢ — 0, we obtain

(Au ™) oy = = (7 Au) 2 gy = = (Au,u™) o g

hence (Au,u™) =0 and (ii) is shown.

By (i) and (ii) it holds (Lu, u"‘)LQ(E @ <0 for u € Cpero(E). Clearly this property
extends to the closure (L, D(L)). Thus (iii) holds.

To prove (iv) we use (iii) and Lemma 3.22. Let u € D(L). Then also (u —1) € D(L)

and hence by (iii) it holds (L(u — 1), (u — 1)+)L2(E-ﬁ) < 0, and since L1 = 0, we conclude
(Lu, (u—l)"’)Lz( m <0 O
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Proof of Theorem 3.13
Follows by Lemma 3.19, Lemma 3.21 and Lemma 3.24(iv). O

3.4. An N-particle Langevin dynamics. As we mentioned at the beginning of Section
3.3, we can now prove the existence of an associated process without much additional
effort. For the proof of the following theorem we use notations and definitions from
Section 2 and Section 3.1 and we refer to considerations and results from Sections 4 and
5 below. If A is a subset of an L?-space of real-valued functions, we define A; := AN L.

Theorem 3.25. Li{)M be given as in Condition 3.7 and define p by (3.6). Then
the closure (L¥, D(L¥)) of the essentially m-dissipative operator (L¥,C$°(E)) on H =
L*(E; i), given by L¥ = %AUE — VL +oVE — (VMOM)VE s the generator of the
quasi-reqular GDF

£: D(ILF)xHUHxDILF) - R -
—(LPu,v)y ifue D(LF)veH
(u,v) = =
—(LEv,u)y ifue Hwe D(LE)

which fulfills (D3) in Theorem 2.9. Hence there exists a p-tight special standard process
M = (Q, Fi, (X4, Vi) 150, (Pa,0)) (@,0)e E) Wwhich is properly associated in the resolvent sense
with € and which has the following properties:
(i) For E-q.e. initial point (z,v) € E the process M has P ,)-a.s. infinite life time.
(i4) For E-q.e. (z,v) € E the process Ml has P ,)-a.s. continuous paths.

(iii) For all f € D(LF), the process (th)tzo defined by

t
(3.19) m') = (f(Xt,vt) — F(Xo, Vo) - / LEf(Xs,vs>ds>
0 >0
is a martingale w.r.t. P, for £-q.e. (z,v) € E. Here f denotes an E-quasi-
continuous p-version of f.
(iv) For any measure v € P(E) whose completion maps every E-exceptional set to
0 P, solves the martingale problem for LE on D(LE)y, i.e. for all f € D(LF),

the process (th)tzo is an (Fi)i>0-martingale w.r.t. P,. This also holds if fin
(8.19) is replaced by any p-version of f.

(v) For any measure v € P(FE) having an L?-integrable density w.r.t. i P, solves the
martingale problem for L¥ on D(L¥*). Of course, this also holds fo is replaced
by any p-version of f.

(vi) If v in (v) is defined by v := ﬁp, then for all t > 0 it holds P, o X;' = v,
i.e. V 1S an invariant measure for ML

Proof. We know by Theorem 3.13 and our considerations in Section 3.1 that (L¥, D(LF))
is an m-dissipative Dirichlet operator and hence £ is a generalized Dirichlet form by
Lemma 2.2. By Remark 2.4 L is the generator of £ (cf. Definition 2.3). Now we prove
quasi-regularity (cf. Definition 2.5).

For k € N we define the compact subset F, :== M x[—k, k|" C E. If we define D(LF)p, :=

{u € D(LE)|u(z,v) = 0 for all (z,v) € E\ Fy}, it holds C§°(E) C U, D(LF)p,, hence
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by Remark 2.6(ii) (Fj)ren is an E-nest consisting of compact sets. Hence (ql) is shown.
(q2) is clear, since the functions in C§°(E) are, of course, £-quasi-continuous and form

a dense subset of D(L_E) w.r.t. graph norm. Finally, (q3) follows by Remark 3.2.
Condition (D3) in Theorem 2.9 follows from the fact that C§°(F) is an algebra of bounded

functions in D(LF) which is dense in D(LF) w.r.t. the graph norm and from Proposition
2.11.

The properties (iii)-(v) are shown in Theorem 4.7, Corollary 4.9 and Corollary 4.11 in
Section 4 below, and (ii) is seen from Theorem 5.5 in Section 5 below and Remark 3.2.
Now we prove (i). By Lemma 3.22 we see that 1 € D(L?) and L¥1 = 0, hence, if

(T})¢>0 denotes the Cp contraction semigroup generated by LE, it holds T;1 = 1 for
all ¢ > 0, hence for the transition semigroup (p;);~o of M it holds by Lemma 2.8(i)
(pelg)(z,v) = 1 p-a.e. for ¢ > 0, hence by £-quasi-continuity of p;1 (cf. Lemma 4.3
below) and Remark 2.6(v) we obtain Py, ,y(t < () = Pz (Xt € E) = (pilg)(z,0) =1
for £-q.e. (z,v) € E. Since countable unions of £-exceptional sets are £-exceptional, we
find that P, ,)(¢ = 00) =1 for &-q.e. (z,v) € E.

Finally, we prove (vi). By Lemma 3.14 we find that C$°(E) ¢ D(LP) and that it holds

LE=A,—vV, —oV,+ (V,®M)V,, where LE denotes the restriction of LE to C°(E).
The unitary transformation T, : L?(E;u) — L?(E;p), defined by T, f (z,v) := f(z, —v),
transforms (L¥, C§°(E)) into (L¥,C§°(E)) and maps the constant 1-function to itself.
By Lemma 3.22 we conclude that 1 € D(LP) and LE1 = 0. If (Tt)tzo denotes the adjoint

semigroup to (7});>0 (which is the Cy contraction semigroup generated by LE), it follows
that Ttl =1 for all ¢ > 0. Consequently (th, 1)L2(E;u) = (faTtl)L2(E;u) = (f, 1)L2(E;u)
for all f € L2(E; ). Thus for A € B(E),t > 0 it holds

P,oX; Y(4) = E, [1A(Xt)]:/Ept1Ad1/

= (TtlAa 1)L2(E;V) = (114’ 1)L2(E;V) = V(A)a
where 14 denotes the indicator function for A. This proves (vi). O

Remark 3.26. Of course the unitary transformation 7T, given in the proof of (vi) in
the above theorem enables us to find that also (L¥, C§°) is essentially m-dissipative and
its closure is a Dirichlet operator. Moreover, clearly the arguments given in the above

proof are also valid for LF (which, being an m-dissipative operator extending (L, C3).
is equal to the closure of this operator) and consequently Theorem 3.25 holds also with
L¥ replaced by L”.

From the above theorem we obtain:

Corollary 3.27. Consider the situation of Theorem 8.25. We assume that bounded
versions of 0;®M, i € T := {xy,-++ ,x2p,v1, -+ ,0n}, are fived and consider LF as an
operator on C3(E) (acting pointwise). Then for £-q.e. initial point (z,v) € E the law
Py ) solves the martingale problem for LE on C3(E).
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Proof. Let K C E be open and relatively compact, i.e. bounded in v-direction. We define

| engey = - lloo + 3108 oo + 37 10405 e
€T ijeT

where [|g|lo := max_ = |g(z)| for g € C(K). The space C?(K), equipped with the norm
|| - HCQ(F), is a separable Banach space. Let K; C E, | € N, be an increasing sequence
of open and relatively compact subsets such that £ = |J;.yy K;. Then we can choose a
countable set X of functions in C3(E) such that X contains a countable dense subset
of C%(K;) for each | € N (in the sense of taking restrictions). Since countable unions
of £-exceptional sets are £-exceptional, there is an £-exceptional set N C E such that
P(y ) solves the martingale problem for LF on X for all (z,v) € E\N, ie., (Mt[g})tzg is
a martingale w.r.t. P, for all (z,v) € E\ N,g € X.

Now, let f € C2(E). There exists | € N such that f € C?(K;). Thus we find a sequence
(fr)ren in X N C%(K;) such that fr — f w.rt. || - HCQ(E) as k — oo. Then it holds

|fx—f| = 0 and |LP f, — LF f| — 0 uniformly as k — co. Since the kernels p;, t > 0, are
sub-Markovian, also p;|f — fx| — 0 and fot ps|L_Ef —L_Efk\() ds — 0 uniformly as k — oo
for any ¢ > 0. By considerations as in the proof of Corollary 4.11 below we conclude
that also (th) >0 is a martingale w.r.t. P, for (z,v) € E'\ N. Thus our assertion is
shown. 0

Remark 3.28. We should consider the question why we do not stay on E to construct
the Langevin dynamics with periodic boundary condition. Of course, the closure of
(L, Cper o(E)) (cf. Theorem 3.13) can also be used to construct a generalized Dirichlet
form &£’ as in Theorem 3.25. Let us assume that &' is associated with a special standard
process on E, [0,71) X -+ x [0,7,) x R" or [0,71] X --+ x [0,7,,] x R". We may replace
E by one of the latter domains, since this does not affect the corresponding L?-spaces.
It is reasonable to assume that (for most initial points) with probability 1 our process
hits the periodic boundary, and, moreover, that it even crosses it, when hitting it e.g.
for the first time. But then the process cannot be both right continuous and quasi-left
continuous. Hence it is not special standard (cf. [MR92, Definition IV.1.13]). Therefore
we cannot expect that it is possible to construct the Langevin dynamics directly from &’
using Theorem 2.9.

Remark 3.29. We note that the restriction 7, of = (given in Section 3.1.1) to E' :=
[0,r1) X -+ x [0,7,) x R is a measurable bijection, and also its inverse is measurable.
Hence, using the process Ml = (Q, Fs, (X1, Vi)t>0, (Plaw)) (z,0)cE,) from Theorem 3.25

we can define another process M := (Q, Fy, (X1, Vi)i>o0, (P(x’v))( on E' by setting

- v x,v)GE’)
Py = Pr(g) and (X4, V;) = 7, (X, V;). Note that as in Section 3.1 we denote for

2 € M the element [2] = 7™ (z) € M also by z.

Let the measure i on E be defined by dé—ﬁv) =111 (ﬁ) (cf. Section 3.1.2). We

can assume i to be extended to E’ by continuous extension of its density w.r.t. Lebesgue
measure. Since the boundary of E' has fi-measure 0, we may identify L?(E, i) and
(B, fi).
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Then for any f € D(L), C L*(E',[i) (where (L, D(L)) is the closure of (L, per,0):
defined by L := JA, — yvV, + vV, — (V,@)V,) and for any measure v on (£, B(E"))
which is absolutely continuous w.r.t. i the process

~ ~ t_ ~
F(ZV) — (Ko ) —/0 (X, V,) ds

is a martingale w.r.t. the measure ﬁ;;, which is defined by

Bo(a) = /@ Py (A) di(a,v)

- / P(x,v)(A) dv(z,v) = P,(A)
E

for A € F., where v is defined by g—z = ﬁ%. The martingale property is seen by

the facts that the expectations E5 and E, (corresponding to P; and P,, respectively)
coincide and that fon ! = (IIf) (u-a.e.). It follows that our process is a solution of the

Langevin equation (1.1) on E' in the sense of the corresponding martingale problem on

D(L)y > Cper o(E). Here, of course, we have to extend the functions in the latter set to

E'. Note that if 7 posseses an L?-integrable density w.r.t. /i, we may replace D (L), by
D(L).

4. THE MARTINGALE PROBLEM

Let E and m be as in Section 2. Let £ be a quasi-regular GDF on L?(E;m) (in the
sense of Definition 2.1) associated with a coercive closed form (A, V) and an operator
(A,D(A)). Let M = (2, F, (Xt)t>0, (Pr)zcEa) be an m-tight special standard process
with life time ¢, properly associated with £ in the resolvent sense (cf. Definition 2.7). By
(Ft)i>0 we denote the natural filtration for M. Let L, (T});>0 and (Ga)a>o denote the Cy
contraction semigroup, the strongly continuous contraction resolvent and the generator
associated with &, respectively (cf. Definition 2.3). Moreover, we denote by (p;);>0 and
(Ra)a>o0 the transition semigroup and resolvent of M| respectively (cf. (2.2) and (2.3)).
We remember that proper association of Ml with £ implies that for any f € L?(E;m) with
m-version f the function p; f is an m-version of T;f and R, f is an &-quasi-continuous
m-version of (G, f)a>0 by Lemma 2.8.

For any probability measure p on (E,B(E)) the probability measure P, on (Q,F,) is
defined by

(4.1) Pu4) = [ Pold) du(o)

for A € F..

Throughout this section we fix for every f € D(L) an &-quasi-continuous m-version f of
f (which exists by Remark 2.6(iv)).

In this section we consider the question whether M solves the martingale problem for
the generator (L, D(L)) of £, i.e., we want to know, if for f € D(L) the process (th)tzg
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defined by
(4.2) M= f(x,) - f(Xo) - / "LE(X)ds, t>0,
0

is an (F;);>0-martingale. Clearly, the answer to this question may depend on the initial

distribution we choose. The answer might be ‘yes’ if we consider (th)tzo w.r.t. to the
probability measures P, with probability measures 1 on (E, B(E)), which are absolutely
continuous w.r.t. m, but ‘no’ if we choose one of the probability measures P,, z € F.
In fact, we cannot expect that (th)tzg is a martingale w.r.t. all Py, z € E, even if f
is continuous, since the process M is constructed only £-quasi-everywhere and trivially
extended (cf. [Sta99, p.88]).

We prove that the martingale problem is solved in the P,-case (see Corollary 4.11 below)
if 1 has an L?-integrable density w.r.t. m. Moreover, we prove that in the P,-case for
any bounded f € D(L) (i.e. f possesses a bounded m-version) the process (th)tzg is
an (F;);>o-martingale w.r.t. P, for £-q.e. x € E (c¢f. Theorem 4.7 below; this section
consists mainly of its proof).

Note that by now we cannot even be sure that (Mt[ﬂ)tz[) is well defined, since Lf is only
determined up to a set of m-measure zero (cf. [AR95, Definition 3.1]). We need to show
that the third summand in (4.2) exists a.s. and is moreover a.s. (w.r.t. to a probability
measure P, or P,) independent of the m-version we choose.

The argument we use to prove this is taken from [PR02, Thm 7.4(ii)].

Lemma 4.1. Let g € L?(E;m), with m-version g, t > 0. Then

t
/ps|g|(a:>dssetz~zlg(z), forall v € B,
0

In particular, fg psg(+) ds exists £-q.e. and is independent of the m-version ¢ we choose.
More precisely, the integrals of two different m-versions differ at most on an & -exceptional
set. Moreover, it is an element of L?(E;m) which continuously depends on g € L*(E;m).

Proof. The inequality follows directly from Fubini’s theorem and the definition of R; and
ps, s > 0.

Since R1|g| is by Lemma 2.8(ii) £-quasi-continous, it is finite £-q.e.. Thus, the £-q.e. ex-
istence of the integral is proven.

For two m-versions §i, go of g it holds

t
(4.3) / psg1(z) — psga(z) ds| < etR1|§1 — go|(z), forall z € E.
0

This is equal to 0 m-a.e., since Ry|§1—go|(z) is an m-version of G1|g1—go| = 0 € L%(E;m).
Thus by Remark 2.6(v) it is equal to 0 £-q.e.. This proves the £-q.e. independence of
the m-version g.

For (different) g1, g2 € L?(E;m) with m-versions gy, go it also holds (4.3). By squaring
and integrating w.r.t. m we obtain the last assertion, since GG; is a continuous linear
operator on L?(E;m). O

Remark 4.2. Let g, § be as in Lemma 4.1.
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(i) Clearly the mapping (t,w) — X;(w), w € Q,t > 0, is B([0, o)) ® F, measurable,
where B([0,00)) denotes the Borel-o-field on [0, 0c). Since by Fubini’s theorem

B [ s = [ pateds

whenever the integral on the rlght hand side exists, the above lemma shows that

for £-q.e. x € F the integral fo s) ds exists Py-a.s. and is Py-a.s. independent
of the m-version we choose (whlch has to be understood in a similar way as in
Lemma 4.1).

(ii) Note that the £-q.e. existence of fot psg(+) ds for any ¢ > 0 implies that all the
integrals fotpsg(z) ds, t > 0, exist for z outside an £-exceptional set (i.e., this
E-exceptional set can be chosen independently of ¢ > 0), since countable unions
of £-exceptional sets are &- exceptlonal

(iii) Clearly, by (ii) the integrals fo s)ds, t > 0, exist P,-a.s. for all 4 € P(Ea)
such that any £-exceptional set is contalned in a null set w.r.t. u (which holds
e.g. if p is absolutely continuous w.r.t. m, see Remark 2.6(i)).

We need some more “technical information” to proceed.
Lemma 4.3. Let f € D(L). Then
psf is €-quasi-continuous for all s > 0,

and if f is bounded (i.e. f has a bounded m-version), the function f 1s bounded £-q.e. and
the mapping

s+ psf(x)
is for £-q.e. x € E right continuous and bounded on [0, 00).

Proof. Let h := (I — L)f and choose an m-version h of h. Clearly f = G1h and hence
f = Ryh holds m-a.e.. Applying Lemma 2.8(ii) and Remark 2.6(v) we see that this holds
even £-q.e.. Lemma 2.12 implies that for £-q.e. z € E the paths (X;);>0 do P,-a.s. not hit
the £-exceptional set where f # Ryih, hence for these z it holds (p,f)(z) = E,[f(X;)] =
[Rih(X;)] = (psRih)(z). Consequently, for s > 0, by Fubini’s theorem it holds
psf(x) = psRih(z) = Ripsh(x) for those z € E, for which additionally Ryips|h|(z) <
oo. But since this function is £-quasi-continuous by Lemma 2.8(ii), it is finite &£-q.e.,
consequently psf and the £-q.c. function Rlpsiz coincide £-qg.e.. Thus, psf is £-quasi-
continuous.
To prove the second assertion, let f have an m-version which is bounded in absolute value
by C > 0. Then clearly (f A C)V (=C) is a bounded &-quasi-continuous m-version of
[, hence by Remark 2. 6(v) it differs from f only on an £-exceptional set. Consequently
f=(fAC)V(=C) &E-q.e. proving that |f| < C holds &-q.e.
Together with quasi-continuity of f this enables us to find an E-nest (Fy)ken such that
f is continuous on each F, k € N, and |f(z)| < C for all z € Uken Fr- By Lemma 2.12
we know that for £-q.e. z € E it holds

(4.4) Py(lim ope > ¢) = 1.
k—o00 k
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Now let w € € be such that limy_,o ope(w) > ((w). Then for any 0 < r < ((w) we find
k € N such that r < ope(w), consequently X,(w) € Fj for all s € [0,7). But this implies
that s = f(X,(w)) is right continuous and bounded by C on [0, ), hence on [0, ¢), since
r < ¢ was chosen arbitrarily. Since X (w) = A for all s > ((w) (remember that every
function f : E — R is extended to Ea by f(A) = 0) we obtain right continuity on [0, c0).
By this and (4.4) we have shown that for £-q.e. z € E the process (f(X))s>0 is right
continuous and bounded by C' P,-a.s.. Hence Lebesgue’s dominated convergence theorem
implies that for those # the function s — E, f(X,) = p,f(z) is right continuous. O

To prove the martingale property of M; we first observe that for w € Q

t+s
45 ML) - M W) = f(Xia(w) - F(Xiw)) - / Lf (X, (w)) dr

= M o6 (w)

S

if the integral exists. By Remark 4.2(ii),(i) this is true (for all ¢,s > 0) P,-a.s. for &-
ge. z € E. 0;: Q — Q denotes the time shift operator (cf. [Sta99, Definition IV.1.1]).

Equation (4.5) together with the Markov property of M leads to the following useful
lemma.

Lemma 4.4. Let f € D(L) be bounded. Suppose that for all t > 0 it holds
(4.6) E.MI =0 £qezeE

Then (th) >0 is an (Fy)i>0-martingale w.r.t. P, for £-q.e. z € E.

Proof. From (4.6) we obtain for £-q.e. z € E

(4.7) E,MI =0 vieQn[o,o00)

Note that for all £ > 0 and for &-q.e. z € E it holds E,M = p,f(z) — f(z) —
fotpSLf(x)ds. This is seen from the definition of (p;);~o (cf. (2.2)), Remark 4.2(ii)
(implying the existence of the third summand £-q.e.) and Fubini’s theorem.

The mapping t — ptf(zp) — f(zp) — fot psLf(x)ds is right continuous for £-q.e. z € E: The
first summand is right continuous by Lemma 4.3, the second is constant and the integral
function in the third summand is, of course, continuous.

Consequently, we obtain from (4.7) that for £-q.e. z € E it holds

(4.8) E,MT =0 vie(0,00)
Now, as mentioned before, by (4.5) and the Markov property of M, it holds for &-
qe.z € E
1 _ aylsl — [f] -
E.[M, — M;"|F] = Ex,[M{"!]  P,-as. forallt,5s >0
If this is shown to be 0 P,-a.s. for £-q.e. z € E and all t,s > 0 we are done.
But this becomes clear, when we again as in the proof of Lemma 4.3 apply Lemma 2.12:

Since (4.8) holds for £-q.e. x € F, the exceptional set, where it is not fulfilled, is for
£-q.e. initial point z € FE not hit by the process. O
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Now, for a bounded f € D(L) and ¢ > 0 it remains to show that for £-q.e. z € F it
holds

~ ~ t |
(4.9 BMY = pif(e) = fla) - [ (L) ds L0
We know that this is true in the sense of L?-functions, if we replace “p” by “T”:
¢
T~ = [ (T.Lf)ds
0

We also know that ptf is an m-version of T} f, so it is reasonable to prove

Lemma 4.5. Let g € L?(E;m) with m-version §. It holds
t t
[ iy = ([ 1ds) @)

Proof. We use a similar argument as in the proof of Lemma 2.8(i) (taken from [FOT94,
Proof of Theorem 4.2.3]). Let v € L%(E;m), v > 0. We already know by Lemma 4.1 that

f(f(pgg)(-) ds € L?(E;m), and this still remains true with psg replaced by |psg|. Since

for m-a.e. x € E.

consequently <f0t(|ps§|)() ds,v) . < 00, we can apply Fubini’s theorem to obtain

2(Em)

t t t
(/ psé(-)ds,v> :/ (PsG: V) L2(E:m) ds:/ (Ts9.v)£2(Eym) ds,
0 L2(E:m) 0 0

where we used the fact that psg is an m-version of Tyg. But since fg T,g ds exists as
a Riemann integral and the mapping (-,v)72(gym) from L?(E;m) to R is a continuous
linear functional, we obtain

t t
( | d) - ( | 79 d)
0 L2(E;m) 0 L%(E;m)

for any nonnegative v € L?(E;m), hence for any v € L?(E;m). This implies our asser-
tion. O

By now we only know that (4.9) is fulfilled for m-a.e. z € E. But since the first two
summands are £-q.c. (see Lemma 4.3), we are in view of Remark 2.6(v) finally left to
prove the following lemma. The proof is mainly taken from [AKRO03, Lemma 5.1(iii)].

Lemma 4.6. Let f € L?(E;m) with m-version f. Then
t
| piftras
0

Proof. We may assume at first for convenience that f > 0, such that throughout this
proof we only integrate over nonnegative functions.
By Remark 4.2(ii) (and £-quasi-continuity of Ry f), we know that psf(z) € L ([0,00))

loc

and R, f(z) < oo for E-q.e. z € E. Let z € E be such that both holds, then by

is €-quasi-continuous.
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[Wer02, Satz A.1.10] we find that the function ¢ — e’ fot e_spsf(zp) ds is locally absolutely
continuous and, moreover, that we can apply the product rule and the fundamental
theorem of calculus (and thus integration by parts) to obtain

t t .
/ psf(x)ds / ee *psf(x)ds
0 0

¢
= <et/ e ’psf(x)ds — 0> /
0
Since for any s > 0

p,n x)drds.

\

we obtain

t . R . t .
(4.10) / puf(z)ds = & (Rif)(x) — (Rupef)(z) - / & (Ryf) () ds
+ /0 (Bupof)(a) ds

t
= (Rif)(@) - (Ripef) () + / (Rups f) (z) ds.

Clearly, by Lemma 2.8(ii), le and Rlptf are £-quasi-continuous. Fubini’s theorem

implies
[[midyas =i ([ nferas)

Consequently, since by Lemma 4.1 fo pS )ds € L*(E;m), we can again apply Lemma
2.8(ii) to find that also the last summand in (4.10) is £-quasi-continuous.

Hence we have shown the assertion for f > 0, which immediately extends to the case of
general f O

This completes the proof of the following theorem.

Theorem 4.7. Let f € D(L) be bounded and denote by f an E-quasi-continuous m-

version of f. Then for £-q.e. x € E the process (Mt[ﬂ)tzg defined by (4.2) is an (Fy)i>o0-
martingale w.r.t. the probability measure Pj.

Remark 4.8. Note that the only fact keeping us away from extending Theorem 4.7 to
general f € D(L) is that we did not prove right continuity of ¢t — p,f(z) £-q.e. for those
f (cf. Lemma 4.3).

This result also yields (in view of (4.1) and Remark 4.2(iii)) a similar result for the
P,-case for bounded f € D(L), but quite general u € P(E):
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Corollary 4.9. Let p € P(E) be such that any &-exceptional set is contained in a null
set w.r.t. u. Let f € D(L) be bounded and denote again by f an &-quasi-continuous
m-version of f. Then the process (th)tzo defined by (4.2) is an (F;)i>0-martingale
w.r.t. Py

Before we state the result for the P,-case we announced at the beginning of this
section, we make the following remark.

Remark 4.10. Let p be a probability measure on F such that p has a density w.r.t. m
which is L?-integrable w.r.t. m. Then by the Cauchy-Schwarz inequality in L?(E;m) it
holds L?(E;m) C L'(E; i) continuously.

Corollary 4.11. Let i € P(E) have an L?-integrable density w.r.t. m and let f € D(L)
with €-quasi-continuous m-version f. Then w.r.t. the probability measure P, given as in
(4.1) the process (th)tzo defined by (4.2) is an (Fy)i>0-martingale.

Proof. Let s,t > 0. We have to show that

(4.11) B M — M\ F)=0 P-as.

If f € D(L) is bounded this is true by Corollary 4.9.

So, let f € D(L) be unbounded. Define g := (I — L)f, then f = G1g, and setting g, :=
(9 An)V (—n), n € N, the property that G is sub-Markovian implies that f, := G1g,
is m-a.e. bounded (in absolute value) for all n € N. Moreover, since g, — g € L%(E;m)
it follows f, = G1g, — G1g = f in D(L) w.r.t. the graph norm as n — oco. (This shows
that the bounded D(L)-functions form a dense subset of D(L).)

It holds for n € N

BB (M, — M 7))
= B | Bl = My — il — )

< B MY, - MIP )+ B[ M - M),

where we applied (4.11) for f,. Let f:f, fﬁl denote m-versions of Lf, Lf, € L?(E;m),
n € N. For any r > 0 we obtain

(4.12) B | M = M) = | B = M) g
< HpT|f - fn| HLl(E;u) + ”f - fn”Ll(E;u)

+||E. /OT|E7(XS) ~ITa(Xy)|ds

LY(E;p)

= Hpr|f_ fn| HLl(E;u) + Hf_ anLl(E;u)
T. —_—~ ——
" /0 Dol ZF = EFal 1y s
n—,oo

< 20|f = falle2(mym) + CrIILf = Lfnlli2(gym) — O

for some C' > 0. Here we used Fubini’s theorem, Remark 4.10, and the facts that psg is
an m-version of T,g for all g € L?(E;m) with m-version § and that T} is a contraction
for s > 0. We conclude that (4.11) holds for general f € D(L). 0O
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Remark 4.12. Note that in the P,-case (with p being absolutely continuous w.r.t. m)
we could choose any m-version f of f € D(L) and define

. ¢
M= ) - fx0) = [ E(x)a
for ¢ > 0, to obtain a martingale, since
BullBu (M, - M7

- B, HEM(Mt[ﬂS — M) - - th)\ft)u

< BJMY - M+ B M - M)

and having another look at (4.12) we see that this is equal to 0.

5. THE DIFFUSION PROPERTY FOR LOCAL GENERATORS

In this section we give a condition for the generator (L,D(L)) of a quasi-regular
generalized Dirichlet form & on L?(E;m) ensuring that an m-tight special standard
process M = (Q, i, (X1)i>0, (P)2er,) With life time ¢, which is properly associated
with € in the resolvent sense (cf. Definition 2.7), is a diffusion in the sense that

(5.1) Pp((X¢)¢>0 is continuous on [0,{)) =1 for £-q.e. z € E.

Let again (7})¢>0 and (Ga)a>0 be the Cy contraction semigroup and the strongly continu-
ous contraction resolvent associated with L, and let (p;);~0 and (Rq)a>0 be the transition
semigroup and resolvent of ML (.7-}),520 denotes again the natural filtration for M. For
technical reasons it makes sense to set Xo := A (as in [MR92, p.89]).

To prove continuity of (X;);>9 w.r.t. P, for an z € E, we use the following lemma.
Except of one argument its proof is the same as the proof of [MR92, Theorem V.1.5

(p.153)].

Lemma 5.1. Let U be a base of the topology of E. Suppose that for every U € U it holds
(5.2) P,(Xy, €U)=0 forE-qe. z€ E\U.

Then (5.1) is valid.

Proof. Let K C E be compact and metrizable. Then Y N K := {U N K|U € U} forms
a base of the topology of K. Since K is second countable, it is strongly Lindelof (cf.
[Sch73, p.104]) and thus any element of a countable base of K is a countable union of
elements in U N K. Thus there exists a countable subset Ui C U such that also Ux N K
is a base of the topology of K. Hence, if (K;)jecn is an E-nest of compact metrizable
subsets of F, which exists by quasi-regularity of £ (cf. [MR92, Proof of Theorem V.1.5
and Remark 1V.3.2(iii)]), the set U := UjenUk; is such that Un K is a base of the

topology of K; for every j € N and (5.2) holds for every U € U. The rest follows as in
[MR92, Theorem V.1.5]. O
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Remark 5.2. Note that, of course, the argument in the above proof is not necessary in
the situation of Section 3, where we know that (5.2) holds for a countable base of the
topology of the second countable manifold E. Tt is included to avoid a case differentiation
when stating Theorem 5.5 below.

The idea to prove the condition given in 5.1 is also taken from [MR92, Lemma V.1.8].
Since we are dealing with a special case here (cf. the assumptions in Theorem 5.5 and see
also Remark 5.7), we do not need to transfer the complete argumentation from [MR92,
Section V.1]. We first prove the following lemma (cf. [MR92, p. 129]).

Lemma 5.3. Let f € L?(E;m) with m-version f, and let o be an (Ft)i>0-stopping time,
then it holds for £-q.e. z € E
(5. Bl “Rif(X)] = B |

o0

e f(X)) dt] .

Proof. If f is bounded, we can use the strong Markov property (cf. [MR92, Definition
IV.1.8, Exercise IV.1.9]) to derive

E, e—“le(XU)} =E, [e—“EXC, [ /0 Tetix) dt” =E, [e—“ /0 T et (Xe) dt}
= E, [e—ff /:O e_(t_”)f(Xt)dt] = E, [/:O e_tf(Xt)dt]

Consequently, by the monotone convergence theorem, (5.3) holds also for functions f €
B*. Since for L?-integrable positive Borel functions f we know that

o
E’z/ e ' f(Xy)dt <Rif(z) <oc E-qe.z€E

by £-quasi-continuity of R,f (cf. Lemma 2.8), for any f € L?(E;m) with m-version f
the integrals/expectations in (5.3) exist £-q.e. and (5.3) holds. O

Lemma 5.4. Let U C E, U open, and assume that there exists u € D(L) with £-q.c.
m-version 4, such that t =0 E-q.e. on E\U, 4 >0 E-q.e on U and Lu =0 m-a.e. on
E\U.
Then it holds

P,(X,, €U)=0 &E-qe. on E\U

Proof. Let f := (I — L)u. By our assumptions we can choose an m-version f of f such
that f(z) =0forallz € E\U. According to Remark 2.6(v) we can assume that & = Ry f,

since Ry f is £-quasi-continuous by Lemma 2.8(ii). Then by Lemma 5.3 it holds

(5.4) E.[e™"i(Xyy)] = E.le™"Rif(Xoy)]
= B, | e 'f(X,)dt

_ g /OOO e (X)) dt = Ry f(2) = i(2) = 0
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for £-q.e. z € E\ U. Here we used the fact that f =0 on E\ U.
By our assumptions the set N := {z € El|u(z) < 0} U{z € Ulu(z) = 0} is E-exceptional.
Thus by Lemma 2.12 and (5.4) we know that for £-q.e. z € E'\ U it holds

P,(3s: X, € N) =0
and
B[V (X py)] = 0.
Hence for those z we obtain e V4 (X,,) > 0 P,-a.s. on {X,, € U}, but
0 < E.[lix,,cvye Vi Xoy)] < Exle” 7V a(Xop)] =0
proving that P,-a.s. it holds X,, ¢ U. O

The following theorem is just a combination of Lemma 5.4 and Lemma 5.1.

Theorem 5.5. Suppose that U is a base of the topology of E and that for any U € U
there exists u € D(L) with £-q.c. m-version @ such that
(i) u=0 &-q.e. on E\U,
(11) u >0 E-g.e. on U,
(113) Lu = 0 m-a.e. on E\ U.
Then Pp((X:)i>o0 is continuous) =1 for E-q.e. x € E.

Remark 5.6. Clearly, if the assumptions of Theorem 5.5 are fulfilled, then (X;);>0
is also P,-a.s. continuous for every pu € P(Ea) whose completion assigns 0 to every
E-exceptional set. In particular this holds for p being absolutely continuous w.r.t. m.

Remark 5.7. The conditions in Theorem 5.5 are e.g. fulfilled if L is a differential operator
without terms of order 0 on an open subset of R” and its domain contains the infinitly
often differentiable functions with compact support.
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