
CONSTRUCTION OF N-PARTICLE LANGEVIN DYNAMICS FORH1;1-POTENTIALS VIA GENERALIZED DIRICHLET FORMSFLORIAN CONRAD, MARTIN GROTHAUSAbstrat. We onstrut an N-partile Langevin dynamis on a uboid region in Rdwith periodi boundary ondition, i.e., a di�usion proess solving the Langevin equationwith periodi boundary ondition in the sense of the orresponding martingale problem.Our approah works for general H1;1 potentials allowing N -partile interations andexternal fores. Of ourse, the orresponding fores are not neessarily ontinuous.Sine the generator of the dynamis is non-setorial, for the onstrution we use thetheory of generalized Dirihlet forms.Furthermore, for any proess onstruted by a generalized Dirihlet form, we provethat it is solving the martingale problem for the orresponding generator. Moreover,we give a loality ondition for the generator ensuring that a proess onstruted by ageneralized Dirihlet form is a di�usion, i.e., it has ontinuous sample paths.1. IntrodutionThe Langevin equation (f. e.g. [Sh04, Setion 8.1℄)dXt = Vt dt(1.1) dVt = �Vt dt�r�(Xt) dt+r2� dBtis a stohasti di�erential equation whih desribes the evolution of the positions Xt =(X(1)t ; � � � ;X(N)t ) 2 (Rd )N and veloities Vt = (V (1)t ; � � � ; V (N)t ) 2 (Rd)N of N partilesin dimension d. These partiles are subjet to a stohasti perturbation of the veloitiesmodelled by an RNd -valued Brownian motion (Bt)t�0 and frition, both e.g. aused by asurrounding medium with onstant temperature. Furthermore, their motion is a�etedby an N -partile potential � : (RN )d ! R. This, of ourse, also overs the ase of pairinterations.  > 0 desribes the (onstant) magnitude of the inuene of the surround-ing medium. � > 0 is de�ned by � := 1kT , where T is the (onstant) temperature of thesurrounding medium and k is the Boltzmann onstant.Here we onsider the ase where the motion in \x-diretion" is bounded - in partiular,we restrit the motion to a uboid in Rd with a periodi boundary, whih means that if apartile leaves this area \on the right", it enters it at the same time \on the left". Clearly,then also the potential has to be periodi. In order to avoid \jumping" of the partilesDate: February 22, 2006.Key words and phrases. Non-setorial di�usion proesses, interating ontinuous partile systems,periodi boundary ondition, martingale problem.2000 AMS Mathematis Subjet Classi�ation. 60K35, 60H10, 60J40, 60J60, 82C21.1



2 FLORIAN CONRAD, MARTIN GROTHAUSfrom one side to the other we replae the uboid in (Rd )N by the dN -dimensional mani-fold whih results from glueing the respetive opposite (hyper)surfaes together.We prove (f. Setion 3.4) that for bounded potentials having bounded weak derivativesthere exists for many initial distributions � a weak solution of (1.1), onsidered as equa-tion on this manifold, in the sense of the orresponding martingale problem. This meansthat (the law P� of) the proess (Xt; Vt)t�0 we onstrut solves the martingale problemfor the generator(1.2) L = ��v � vrv + vrx � (rx�)rvorresponding to this equation (via Itô formula). Solving the martingale problem for Lon a domain D means that for all f 2 D, the proess(1.3) f(Xt; Vt)� f(X0; V0)� Z t0 Lf(Xs; Vs) dsis a martingale w.r.t. P� . We speify later (f. Setions 4 and 3.4) how large D may behosen. It depends on the initial distribution �.Moreover, we show that our solution proess is a di�usion, i.e. it has a.s. ontinuous paths,and that is has in�nite life time (both again for many initial distributions/points).In order to prove the existene of the Langevin dynamis we show that L generatesa quasi-regular generalized Dirihlet form. The theory of generalized Dirihlet forms(GDFs) (f. [Sta99℄), then provides us with the existene of a proess whih is assoiatedwith this GDF and hene with L. We emphasize that it is not possible to onstrut a(setorial) solution proess using the theory of oerive Dirihlet forms (f. [MR92℄) here,sine L is non-setorial, f. Remark 3.15(ii).For proving that L generates a GDF it is ruial to �nd a domain for L on whihit is essentially m-dissipative, or equivalently, suh that the losure of L generates a C0ontration semigroup. We moreover have to show that this semigroup is sub-Markovian,or equivalently, that the losure of L is a Dirihlet operator. Both is done in Setion 3.3.The problem at proving essential m-dissipativity of L is that L is not stritly ellipti,whih makes a diret appliation of perturbation theory impossible. We use an idea from[Lei01℄ to solve this problem. The shape of our domain plays an important role for ourproof, sine it enables us to �nd a omplete orthonormal system of subspaes of L2 whihis invariant w.r.t. the partial derivatives in the x-diretions.Quasi-regularity of the GDF generated by (the m-dissipative losure of) L is then easilyseen, sine the domain of essential m-dissipativity we �nd for L is an algebra of C1-funtions. Hene we only have to onsider the question, whether the martingale problemis solved by the orresponding proess and if the proess is indeed a di�usion. This isdone in a more general setting in Setions 4 and 5.In literature, one �nds many hints and ideas whih help to see that a proess withstate spae E onstruted from a (generalized) Dirihlet form E on L2(E;m) via [Sta99,Theorem IV.2.2℄ (f. Theorem 2.9 below) solves the martingale problem for its generator(f. e.g. [AKR03, Setion 5℄,[AR95, Setion 3℄,[PR02, Theorem 7.4(ii) and Proposition8.2℄). In Setion 4 we ombine these hints to give a omplete proof in a general setting.We do not need to restrit to the ase of f (f. (1.3)) being e.g. C10 , but onsider any



N-PARTICLE LANGEVIN DYNAMICS 3bounded E-quasi-ontinuous f in the domain of the generator. (For the notion of E-quasi-ontinuity, f. Setion 2.)Moreover, we prove in Setion 5 that a proess M = (
;F�; (Xt)t�0; (Pz)z2E�) generatedby a generalized Dirihlet form E is a di�usion for many initial points, if the generator(L;D(L)) ful�lls a loality ondition we give in Theorem 5.5. One may �nd anotherproof for the di�usion property by reading [Sta04, Proof of Proposition 1.10℄ arefully.Let us briey summarize our ore results:� Given a bounded N -partile potential having bounded weak derivatives, weonstrut for many initial distributions an N -partile Langevin dynamis on abounded retangular area with periodi boundary ondition, see Theorem 3.25,Corollary 3.27 and Remark 3.29.� We prove that a proess whih is onstruted via the theory of GDFs solvesthe martingale problem for the generator L of the assoiated GDF for manyinitial distributions on the subset of bounded funtions in the domain D(L) ofL, see Corollary 4.9. This is done by proving a weaker result for the ase ofsingle initial points, see Theorem 4.7. Moreover, we prove that, if the initialdistribution possesses an L2-integrable density w.r.t. the referene measure m,the martingale problem is solved for any funtion in D(L), see Corollary 4.11.� Furthermore, we give a ondition for L and its domain D(L) ensuring that suha proess is a di�usion for many initial points/distributions, see Theorem 5.5.In future work we plan to onstrut (from the proess provided here) a Markov proesssolving the Langevin equation (in the sense of the orresponding martingale problem) forany initial point. This may be done by showing that the assoiated operator semigroup(resolvent) has strong Feller properties as used in [Doh05℄, f. [AKR03℄ and [FG06℄. An-other goal is to use the present results to generalize them to a larger lass of potentialsvia an approximation. We are having in mind potentials of Lennard-Jones type as usedin the theory of uids.The onstrution of the N -partile Langevin dynamis we onsider as a starting pointto onstrut an in�nite partile/in�nite volume Langevin dynamis, using similar teh-niques as used in [GKR04℄. In this ontext it is important to show that the onstrutedproess solves the martingale problem, beause this property is essential for derivingsaling limits of the Langevin dynamis, see e.g. [OT03℄, [Spo86℄, [GKLR03℄.At �rst, let us summarize the most important fats from the theory of generalizedDirihlet forms in Setion 2. We then proeed by �rst onsidering our appliation inSetion 3 and �nally presenting in Setions 4 and 5 the proofs for the martingale propertyand the di�usion property in the ase of generalized Dirihlet forms.2. Generalized Dirihlet FormsThroughout this setion let L2(E;m) be the Hilbert spae of (lasses of) (B(E)-measurable) L2-integrable funtions on a Hausdor� topologial spae E w.r.t. a �-�nitemeasurem on the Borel �-�eld B(E) on E. As usual (f. [MR92, Chapter VI℄ and [Sta99,Chapter IV℄) we assume that �(C(E)) = B(E). We denote the inner produt and thenorm of L2(E;m) by (�; �)L2(E;m) and k � kL2(E;m), respetively. We will make use of basi



4 FLORIAN CONRAD, MARTIN GROTHAUSknowledge on m-dissipative operators, strongly ontinuous ontration resolvents and C0semigroups (f. e.g. [MR92, Setions I.1, I.2℄, [RS75, Setion X.8℄, [Dav80℄).Almost everything presented in this setion is taken from [Sta99℄.The basi setting of a generalized Dirihlet form onsists of a oerive losed form (A;V)on L2(E;m) (f. [Sta99℄[De�nition I.1.4℄ or [MR92, De�nition I.2.4℄) and an operator(�;D(�)) ful�lling(D1) (�;D(�)) is the generator of a C0 ontration semigroup (Tt)t�0 on L2(E;m)(i.e. (�;D(�)) is m-dissipative) and (Tt)t�0 an be restrited to a C0 semigroupon (V; k � kV).Let V 0 be the dual spae of V. By identifying L2(E;m) with its dual we have V �L2(E;m) � V 0 densely and ontinuously. By V 0h�; �iV we denote the dualization betweenV and V 0 (i.e. V 0hv; wiV := v(w) for v 2 V 0, w 2 V).[Dav80, Theorem 1.34℄ tells us that the adjoint operator (�̂;D(�̂)) of (�;D(�)) is alsom-dissipative and the adjoints T̂t of Tt, t � 0, form the orresponding C0 ontrationsemigroup. In [Sta99, Lemma I.2.4℄ it is shown that from (D1) it follows that thereare bounded extensions of T̂t to V 0 whih form a C0 semigroup. The generator of thissemigroup is learly an extension of �̂ and it is also denoted by �̂. We denote its domainby D(�̂;V 0). [Sta99, Lemma I.2.3℄ shows that furthermore the operator � with domainV \D(�) is losable as an operator mapping from V to V 0. Denote by F the domain ofits losure, whih we denote also by �. Clearly F is a Hilbert spae if it is equipped withthe graph norm k � k2F := k � k2V + k� � k2V 0orresponding to � : V ! V 0. De�ne moreover F̂ := V \ D(�̂;V 0). Then also F̂ ,endowed with the norm k � k2̂F := k � k2V + k�̂ � k2V 0 , is a Hilbert spae, sine the operator�̂ : D(�̂;V 0)! V 0 is (the generator of a C0 ontration semigroup and hene) losed andV is a Hilbert spae.De�nition 2.1. Let (A;V), (�;D(�)) be as above, and assume that (D1) holds. Let Fand F̂ be as above. The mappingE : F � V [ V � F̂ ! R(u; v) 7! � A(u; v)�V 0 h�u; viV if u 2 F ,v 2 VA(u; v)�V 0 h�̂v; uiV if u 2 V,v 2 F̂is said to be the generalized Dirihlet form (GDF) assoiated with (A;V) and (�;D(�)),if (D2) for all u 2 F it holds u+ ^ 1 2 V and E(u; u� u+ ^ 1) � 0is ful�lled.For our appliation we need the following lemma. For the proof see [Sta99, PropositionI.4.7℄.



N-PARTICLE LANGEVIN DYNAMICS 5Lemma 2.2. Let (�;D(�)) be an m-dissipative Dirihlet operator (i.e. � is m-dissipativeand (�u; (u � 1)+)) � 0 for all u 2 D(�)). ThenE : D(�)�H [H�D(�̂) ! R(u; v) 7! � �(�u; v)L2(E;m) if u 2 D(�),v 2 H�(�̂v; u)L2(E;m) if u 2 H,v 2 D(�̂)is a generalized Dirihlet form. Here H := L2(E;m).Let E be a GDF assoiated with a oerive losed form (A;V) and an operator(�;D(�)). By [Sta99, Proposition I.3.4℄ for eah � > 0 there exists a mapping W� :V 0 ! F ful�lling(2.1) E�(W�v; w) =V 0 hv; wiV for all v 2 V 0; w 2 V ;where E�(f; g) := �(f; g)L2(E;m) + E(f; g) for (f; g) 2 F � V [ V � F̂ :The restritions G� of W� to L2(E;m), � > 0, form a strongly ontinuous ontrationresolvent (G�)�>0 in H (f. [MR92℄[De�nition I.1.4℄). Hene there exists an assoiatedm-dissipative generator L = � � G�1� with domain D(L) � L2(E;m) and also a C0ontration semigroup (Tt)t�0 generated by L.De�nition 2.3. (G�)�>0 as above is alled the strongly ontinuous ontration resolventassoiated with E , and (Tt)t�0 and (L;D(L)) are said to be the semigroup and generatorassoiated with E , respetively.Remark 2.4. If A = 0, the generator (L;D(L)) oinides with (�;D(�)) (f. [Sta99,Remark I.4.10℄).It is possible (f. [Sta99, Setion III℄) to de�ne the notions of E-nests, E-exeptionalsets, properties whih hold E-quasi-everywhere (E-q.e.), E-quasi-uniformly onvergentsequenes, E-quasi-ontinuity (E-q..) similar to the ase of oerive Dirihlet forms (f.[MR92, Setion III℄), and there also are Choquet apaities haraterizing E-nests andE-exeptional sets as in [MR92, Setion III.2℄. Again quasi-regularity of a (generalized)Dirihlet form is de�ned as follows:De�nition 2.5. A generalized Dirihlet form E is alled quasi-regular, if it ful�lls:(q1) There exists an E-nest (Ek)k2N onsisting of ompat sets.(q2) There exists a dense subset of F whose elements have E-q.. m-versions.(q3) There exist un 2 F , n 2 N, having E-q.. m-versions ~un and an E-exeptionalset N � E suh that f~unjn 2 Ng separates the points of E nN .We summarize some properties of generalized Dirihlet forms whih are also in prini-ple known from/similar as in the theory of oerive Dirihlet forms. They are importantfor our further onsiderations, espeially in Setions 4 and 5:Remark 2.6. (i) Countable unions of E-exeptional sets are E-exeptional. More-over every E-exeptional set is ontained in a null set w.r.t. m (f. [Sta99,Remark III.2.6℄).



6 FLORIAN CONRAD, MARTIN GROTHAUS(ii) A suÆient ondition for an inreasing sequene (Fk)k2N of losed subsets of Eto be an E-nest is given by[k2NFFk is dense in Fwhere we de�ne FA := ff 2 Fjf = 0 on E nAg for F � L2(E;m) and A � E,A losed. (f. [Sta99, Remark III.2.11℄)(iii) Let (un)n2N � F and assume that for eah n 2 N there exists an E-quasi-ontinuous m-version ~un of un. Assume in addition that un ! u in F . Thenthere exists a subsequene (unk)k2N and an E-q.. m-version ~u of u suh thatlimk!1 ~unk ! ~u E-quasi-uniformly. (f. [Sta99, Corollary III.3.8℄)(iv) If E is quasi-regular, then by (iii) and (q2) every f 2 F possesses a quasi-ontinuous m-version ~f .(v) Let E be quasi-regular and let f , g be two E-quasi-ontinuous funtions whihoinidem-a.e.. Then they oinide even E-q.e. (f. [Sta99, Corollary III.3.4 andLemma III.3.5℄). In partiular, any two E-q.. m-versions of the same elementin L2(E;m) oinide E-q.e..For the de�nition of an m-tight speial standard proess (and the de�nition of a rightproess et.) M = (
;F�; (Xt)t�0; (Pz)z2E�) with state spae E and life time � : 
 ![0;1℄ we refer to [Sta99, Setion IV.1℄ or [MR92, Setion IV.1℄. Here E� := E [ f�gdenotes the extension of E by an isolated point � (the emetery), whih is used as thestate of the proess at times greater or equal �. Any funtion f : E ! R is extended toE� by setting f(�) := 0. As mentioned in [MR92, Remark IV.1.10℄ (and [Sta99, RemarkIV.1.3(i)℄) we an hoose as orresponding �ltration (Ft)t�0 the natural �ltration of Mfor any suh proess and we may assume that F� is the smallest �-�eld ontaining allFt, t � 0.In [MR92, p. 91℄ the transition semigroup (pt)t>0 of a right proess M as above isde�ned by(2.2) ptf(x) := Ex[f(Xt)℄for x 2 E, t > 0 and nonnegative B(E)-measurable real-valued funtions f . As in[MR92, Setion II.4a℄ we de�ne ptf(x) := ptf+(x) � ptf�(x), x 2 E, t > 0, for anyB(E)-measurable f for whih ptf+(x) or ptf�(x) is �nite. Here f+, f� denote thepositive and negative part of f , respetively. Moreover (see [MR92, p.91℄) the transitionresolvent (R�)�>0 of M is de�ned by(2.3) R�f(x) := Ex �Z 10 e��tf(Xt) dt�for � > 0, x 2 E and B(E)-measurable nonnegative f (or B(E)-measurable f suh thatR�f+(x) or R�f�(x) is �nite).Like in the theory of oerive Dirihlet forms a quasi-regular generalized Dirihlet formE an be used to onstrut a stohasti proess, but an additional ondition has to be



N-PARTICLE LANGEVIN DYNAMICS 7ful�lled by E (f. (D3) in Theorem 2.9 below). Let us �rst disuss the notion of properassoiation of stohasti proesses with GDFs.De�nition 2.7. Let M = (
;M; (Xt)t�0; (Px)x2E�) be a right proess with transitionresolvent (R�)�>0. Let E be a generalized Dirihlet form with assoiated strongly on-tinuous ontration resolvent (G�)�>0. M is said to be properly assoiated with E inthe resolvent sense, if for every � > 0, f 2 L2(E;m), with bounded m-version f̂ , thefuntion R�f̂ is an E-quasi-ontinuous m-version of G�f .In the sequel we sometimes need the following lemma.Lemma 2.8. Let M , E, (R�)�>0, (G�)�>0 be as in De�nition 2.7 and denote by (pt)t>0the transition semigroup of the right proess M and by (Tt)t�0 the C0 ontration semi-group assoiated with E. Then it holds (f. [MR92, Exerise 2.7 and Exerise 2.9℄)(i) For every t > 0 and f 2 L2(E;m) with bounded m-version f̂ , the funtion ptf̂is an m-version of Ttf .(ii) For every t > 0 (� > 0) and for every f 2 L2(E;m) with m-version f̂ thefuntion ptf̂ (R�f̂) is an m-version of Ttf (G�f). Moreover, R�f̂ is quasi-ontinuous.Proof. Let f; fn 2 L2(E;m) with nonnegative m-versions f̂ ; f̂n (n 2 N), suh that f̂n "f̂ . Assume that ptf̂n is an m-version of Ttfn for eah n 2 N and for some t > 0.Then by the monotone onvergene theorem it holds ptfn " ptf pointwise and again bythe monotone onvergene theorem we �nd that ptf 2 L2(E;m) and from Lebesgue'sdominated onvergene theorem we onlude onvergene in L2(E;m). Moreover, itlearly holds Ttfn ! Ttf in L2(E;m), hene ptf is an m-version of Ttf .Let us now prove (i): By the onsiderations above and a monotone lass argument (andsine �(C(E)) = B(E)) we may assume that f̂ 2 C(E). Moreover, we an learly restritour onsiderations to the ase when f̂ � 0.Note that by ontinuity and boundedness of f̂ and right ontinuity of M Lebesgue'sdominated onvergene theorem implies that for x 2 E, t � 0 and for any sequene tn # tit holds limn!1(ptn f̂)(x) = limn!1Ex[f̂(Xtn)℄ = Ex[f̂(Xt)℄ = (ptf̂)(x)Consequently, the mapping t 7! (ptf̂)(x) is right ontinuous for every x 2 E.Let v be a bounded nonnegative measurable funtion on E ful�lling m(fv > 0g) < 1.Then for � > 0 it holds by our assumption and by Fubini's theoremZ 10 e��t(v; ptf̂)L2(E;m) dt = �v;Z 10 e��t(ptf̂)(�) dt�L2(E;m) = (v;R�f̂)L2(E;m)= (v;G�f)L2(E;m) = �v;Z 10 e��tTtf dt�L2(E;m)The integral on the right-hand side is onsidered as a Riemann integral; learly theright-hand side is equal to Z 10 e��t(v; Ttf)L2(E;m) dt



8 FLORIAN CONRAD, MARTIN GROTHAUSBy the injetivity of the Laplae transform (f. [DS58, Lemma VIII.1.15℄) and by rightontinuity of the mappings t 7! (v; ptf̂)L2(E;m) (here we again use Lebesgue's theo-rem) and t 7! (v; Ttf)L2(E;m) we onlude that for all t > 0 it holds (v; Ttf)L2(E;m) =(v; ptf̂)L2(E;m).Sine the measure m is �-�nite and sine the linear span of the set of funtions v asabove is dense in L2(E;m), we easily �nd that ptf̂ is L2-integrable and an m-version ofTtf , whih we desired to prove.To prove (ii) let f 2 L2(E;m) with m-version f̂ . W.l.o.g. we may assume that f̂ � 0.We de�ne f̂n := f̂ ^ n. Then by the onsiderations at the beginning of this proof andby (i) it follows that ptf̂ is an m-version of Ttf . In the same way we an prove theorresponding result for R� and G�.Finally, to prove the last assertion we note that G�fn onverges to G�f not only inL2(E;m), but also in F , sine L2(E;m) � V 0 ontinuously and G� is the restritionof the ontinuous operator W� : V 0 ! F to L2(E;m). Hene by Remark 2.6(iii) thepointwise limit R�f of (R�fn)n2N is E-quasi-ontinuous. �Now we state the existene theorem, whih an be found in [Sta99, Theorem IV.2.2℄.Theorem 2.9. Let E be a quasi-regular generalized Dirihlet form and let F be de�nedas above. Assume that it holds(D3) There exists a linear subspae Y � L2(E;m) \ L1(E;m) suh that Y \ F isdense in F and lim�!1(�G�u� u)E = 0 in L2(E;m) for all u 2 Y. Moreover,for all � � 0, it holds u^� 2 Y, where Y denotes the losure of Y in L1(E;m).Then there exists an m-tight speial standard proess M whih is properly assoiated inthe resolvent sense with E.Remark 2.10. (�G�u � u)E in Theorem 2.9 above denotes the 1-redued funtion of�G�u� u (f. [Sta99, De�nition III.1.8℄). We do not need to onsider details about thisnotion here, sine we use the following proposition (f. [Sta99, Proposition 2.1℄).Proposition 2.11. In the situation of Theorem 2.9 assume that there exists a linearsubspae Y � F \L1(E;m), whih is dense in F and losed under multipliation. Then(D3) holds for Y.In the sequel we make use of the following result (f. [Sta99, Lemma IV.3.10℄), whihtells us that a proess M as in Theorem 2.9 \does not hit" E-exeptional sets. For U � E,U open, we de�ne �U := infft > 0jXt 2 Ug = infft � 0jXt 2 Ug. �U is alled the �rsthitting time of U . We set �U :=1, if ft � 0jXt 2 Ug is empty.Lemma 2.12. Let M be an m-tight m-speial standard proess with life time � properlyassoiated in the resolvent sense with a GDF E. Then for any E-nest (En)n2N it holdsPx � limn!1�EnEn < �� = 0 for E-q.e. x 2 EHene if N � E is E-exeptional, then Px(9t � 0 : Xt 2 N) = 0 for E-q.e. x 2 E.



N-PARTICLE LANGEVIN DYNAMICS 93. An N-partile Langevin dynamisWe now onstrut a solution to (1.1) in the sense of the orresponding martingaleproblem, where we onsider (1.1), as we mentioned in the Introdution, to be an equationon the manifold resulting from onsidering the uboid area of motion in Rd to haveperiodi boundary. We �rst make this setting more preise.3.1. The setting.3.1.1. The state spae E. As we mentioned in the Introdution we onsider the Langevinequation for N partiles moving in a retangular area in Rd . To simplify notations with-out losing generality we may assume that the Langevin equation desribes the motion of1 partile moving in [0; r1℄� � � � � [0; rNd℄ � RNd . We set n := Nd.In the sequel we often onsider funtions on the sets fM := (0; r1) � � � � � (0; rn), Rnand eE := fM � Rn . Throughout the whole setion we denote� an element of eE (or R2n) usually by (x; v), whih is to be understood in thesense that x = (x1; � � � ; xn) 2 fM (or Rn) and v = (v1; � � � ; vn) 2 Rn .� by �x1f; � � � ; �xnf the (weak) partial derivatives of f : fM ! R.� by �v1f; � � � ; �vnf the (weak) partial derivatives of f : Rn ! R.� by �x1f; � � � ; �xnf; �v1f; � � � ; �vnf the (weak) partial derivatives of f : eE ! R.We moreover de�ne the formal di�erential operators rv, rx, �v, vrv := v1�v1 + � � � +vn�vn et. in the obvious way.For x 2 �fM , whih means xi 2 f0; rig for some 1 � i � n, we de�ne the opposite point�x = (�x1; � � � ; �xn) by �xi := 8<: ri if xi = 00 if xi = rixi else 1 � i � nWe de�ne C1per (fM ) := ff jfM jf 2 C1(Rn); f(x) = f(�x)8x 2 �fM;and the same holds for any derivative of fgC1per ;0( eE) := ff j eE jf 2 C10 (R2n); f(x; v) = f(�x; v)8(x; v) 2 � eE;(3.1) and the same holds for any derivative of fgand moreover H1;1per (fM) := ff 2 H1;1(fM )jf(x) = f(�x)8x 2 �fMgwhere H1;1(fM) denotes the Sobolev spae of one weakly di�erentiably funtions f :fM ! R, suh that f and its weak partial derivatives are elements of L1(fM;dx) (f.[Alt02, 1.23℄). Note that by [Alt02, Satz 8.5℄ the elements of H1;1 have Lipshitz on-tinuous dx-versions, thus f(x) is well-de�ned for x 2 �fM , f 2 H1;1(fM).We need to know the following (obvious) fats about H1;1(fM ):



10 FLORIAN CONRAD, MARTIN GROTHAUSLemma 3.1. (i) H1;1(fM) is an algebra of funtions and the produt rule holds.The same is true for H1;1per (fM ).(ii) Let f 2 H1;1(fM). Then ef 2 H1;1(fM) and rxef = (rxf)ef . The same istrue for H1;1per (fM).We de�ne an n-dimensional manifold M with the help of the equivalene relation �,given by x � x0 :, x � x0 2 f(z1r1; � � � ; znrn)j (z1; � � � ; zn) 2 Zng for x; x0 2 Rn . Wede�ne M := Rn= �. Let �M : Rn ! M be the mapping whih assigns to every x 2 Rnits equivalene lass �M (x) = [x℄ 2M w.r.t. � (whih we also denote by x in the sequel).If we equip M with the quotient topology w.r.t. �M , M is a seond ountable Hausdor�spae.We de�ne for every x0 = (x01; � � � ; x0n) 2 Rn the restrition �Mx0 of �M to (x01; x01+r1)�� � ��(x0n; x0n + rn). We an use the harts (�Mx0 )�1 to de�ne a (quite natural) di�erentiablestruture on M . We de�ne the global vetor �elds �Mx1 ; � � � ; �Mxn to be the images of�x1 ; � � � ; �xn under the di�erential mappings of �Mx0 , x0 2 Rn . Of ourse, we denote byC1(M) the spae of in�nitely often di�erentiable funtions on M .Moreover, we de�ne the manifold E to be the produt manifold E := M � Rn . Thismanifold is the state spae for our proess. We de�ne � := �M � idRn : R2n ! E(i.e. �(x; v) := ([x℄; v), (x; v) 2 R2n) and moreover for x0 2 Rn we de�ne �x0 := �Mx0�idRn .�x0 is the restrition of � to (x01; x01 + r1) � � � � � (x0n; x0n + rn) � Rn . The global vetor�elds �Ex1 ; � � � ; �Exn ; �Ev1 ; � � � ; �Evn are de�ned in the same way as the orresponding vetor�elds on M . We de�ne rEv , rEx , rMx , �Ev et. in the same way as the notations we�xed above. Let C10 (E) denote the set of all in�nitely often di�erentiable funtions onE having ompat support.We onsider any mapping � on M also as a mapping on E = M � Rn by de�ning�(x; v) := �(x), x 2M , v 2 Rn .Remark 3.2. It is easy to see that there is a ountable set G of nonnegative funtionsin C10 (E) suh that the open sets fx 2 Eju(x) > 0g, u 2 G form a base of the topologyon E. Of ourse, this implies that �(C(E)) = B(E).3.1.2. L2-spaes on E and M . With the help of the mappings �Mx0 , x0 2 Rn , it is alsopossible to transfer the Lebesgue measure dx on Rn to the manifoldM , or, to be preise,to the measurable spae (M;B(M)):De�nition 3.3. Let x0 2 Rn . For A 2 E we de�ne dxM (A) := dx �(�Mx0 )�1(A)�, i.e. wede�ne dxM to be the image measure of dx under �Mx0 .Clearly, this de�nition is independent of the hoie of x0.By the de�nition of dxM the set �M (fM) ontains already the total mass. Hene, ifwe de�ne for any funtion f : fM ! R another funtion �̂Mf : �M (fM) ! R by�̂Mf := f Æ (�M0 )�1, the mapping �̂M leads to a bijetion �M between dx-lasses offuntions on fM and dxM -lasses of funtions on M .Moreover, it is lear that �M : L2(fM ; dx) ! L2(M ; dxM ) is a unitary transformation.



N-PARTICLE LANGEVIN DYNAMICS 11Note that �̂M maps C1per(fM) bijetively onto C1(M) (in the obvious sense: eah fun-tion in C1(M) is uniquely determined by its restrition to �M (fM)), hene �M mapsC1per(fM) � L2(fM ; dx) bijetively onto C1(M) � L2(M ; dxM ).We de�ne on (E;B(E)) the measure d(x; v)E to be the produt measure d(x; v)E :=dxM 
 dv, where dv denotes the Lebesgue measure on Rn . We de�ne mappings �̂, �for E analogously to �̂M and �M for M , and learly we get similar results as above.Moreover, note that � also gives a one-to-one-orrespondene between measures � on(E;B(E)) whih are absolutely ontinuous w.r.t. d(x; v)E withm = d�d(x;v)E , and measurese� on ( eE;B( eE)) whih are absolutely ontinuous w.r.t. d(x; v) suh that em = de�d(x;v) , in thesense that �(em) = m. For suh a pair �; e� of measures learly � : L2( eE; e�)! L2(E;�)is also a unitary transformation. Clearly � and �M (and their inverses) transform anym-dissipative operator into an m-dissipative operator, the semigroup orresponding tothe former one into the semigroup orresponding to the latter one et. Moreover theytransform Dirihlet operators into Dirihlet operators, positivity preserving operatorsinto positivity preserving operators et.Remark 3.4. For e�; � as above any onsiderations about (di�erential operators on) thespaes L2( eE; e�), C1per;0( eE) are also valid for (the orresponding di�erential operators on)L2(E;�) and C10 (E), as long as we do not have to inlude global topologial propertiesof E or eE, whih is e.g. important to prove quasi-regularity of a generalized Dirihletform on L2(E;�) (f. De�nition 2.5).We de�ne H1;1(M) := �MH1;1per (fM )Remark 3.5. The above de�nition of H1;1(M) is easily veri�ed to be independent ofthe hoie of the natural hart used in the de�nition of �̂ and hene of �. It onsistsexatly of those funtions f :M ! R in L1(M;dxM ) whih ful�ll(3.2) ZM f�Exi dxM = �ZM fi dxM for all  2 C1(M)for some f1; � � � ; fn 2 L1(M;dxM ).3.1.3. The Langevin equation on E. We onsider the stohasti di�erential equation(3.3) d(Xt; Vt) = �Vtrvdt� (rx�M (Xt))rvdt+ Vtrxdt+ nXk=1r2� �EvkdBktwhih has to be understood in the sense of [Swa00℄. (Bt)t�0 = (B1t ; � � � ; Bnt )t�0 denotesn-dimensional Brownian motion. We have to hoose a onnetion on E to state this Itôstohasti equation properly. Of ourse, we use the onnetion resulting from the naturalRiemannian metri d on E de�ned by d(�i; �j) = Æij when i; j 2 fx1; � � � ; xn; v1; � � � ; vng.To stay onsistent with [Swa00℄ we would have to use C1 potentials. But a solutionof (3.3) in the sense of the orresponding martingale problem (see below) an also bede�ned for more general potentials. We later speify the type of potentials �M we want



12 FLORIAN CONRAD, MARTIN GROTHAUSto onsider.Let (Xt; Vt)t�0 be an E-valued stohasti proess with law P de�ned on a measurablespae (
;M), equipped with a �ltration (Ft)t�0. P is said to solve (3.3) in the sense ofthe orresponding martingale problem if it ful�ls the martingale problem for the operator(LE; C10 (E)), whih is de�ned by(3.4) (LEf)(x; v) = ��Ev f(x; v)� vrEv f(x; v) + vrEx f(x; v)� (rMx �M (x))rEv f(x; v)for f 2 C10 (E). This means, that for any f 2 C10 (E) the proess (M [f ℄t )t�0 de�ned byM [f ℄t := f(Xt)� f(X0)� Z t0 Lf(Xs) dsis an (Ft)t�0-martingale wrt. P . The image measure P Æ (X0; V0)�1 of P under (X0; V0)is alled the initial distribution of the solution. Our aim is to �nd solutions of (3.3) inthe sense of the orresponding martingale problem for many initial distributions.Remark 3.6. Assume that � : Rn ! R is suh that its (weak) partial derivatives (existand) are measurable and bounded. If we onsider the Langevin equation on R2n (f.(1.1)), we �nd that the operator orresponding to it via the Itô formula (f. [Dur96,2.10.2℄) is given by(3.5) L := ��v � vrv + vrx � (rx�)rv:Let us (also in the sequel) onsider this operator to be ating on C1per ;0( eE). Then, if� = (�̂M )�1�M , it orresponds to (LE ; C10 (E)) in the sense of Remark 3.4. Thus wean assume that (3.3) is a reasonable formulation of the Langevin equation on E.The type of potentials �, �M we want to deal with is desribed by the followingondition:Condition 3.7. � 2 H1;1per (fM) and �M = �M�(2 H1;1(M)).Below, �, �M always denote funtions as in 3.7. Note that when onsidering theoperator LE (or L) on L2(E;�) (or L2( eE; e�)) suh that � (or e�) is equivalent to themeasure d(x; v)E (or d(x; v)), we do not need to �x versions of �M (or �) and its weakpartial derivatives to obtain well-de�nedness of the operator LE (or L).We have to hoose an appropriate measure to �x the L2 spae on whih we onsiderthe generator LE to be de�ned. We use the measure �, de�ned by(3.6) d�d(x; v)E (x; v) = e��v2=2e���M (x):Exept for normalization, � is the anonial Gibbs measure, whih is well-known as aandidate for being an invariant measure for the dynamis.In order to apply Theorem 2.9 to obtain a generalized Dirihlet form orresponding toLE we have to prove that (LE ; C10 (E)) is an m-dissipative operator on L2(E;�), with �given as in (3.6), and that its losure is a Dirihlet operator.



N-PARTICLE LANGEVIN DYNAMICS 13Clearly, by Remark 3.4 we an as well onsider the operator (L;C1per ;0( eE)), de�ned asin (3.5), on L2( eE; e�), where de�d(x;v) = e��v2=2e���(x).It is moreover easy to see that we an de�ne M̂ = (0; r̂1)�� � �� (0; r̂n), Ê = M̂ �Rn and�̂ : M̂ ! R suh that the problem of proving essential m-dissipativity of (L;C1per ;0( eE))and the Dirihlet property of its losure is equivalent to proving these properties for(�v � vrv + vrx � (rx�̂)rv; C1per ;0(Ê)) in L2(Ê; �̂), where d�̂d(x;v) := e�v2=2��̂(x). Thisshows that we may assume that � = 1 and  = 1.3.2. Perturbations of essentially m-dissipative operators. Before going on wemake some onsiderations about perturbations of essentially m-dissipative operators.Let H be a Hilbert spae with inner produt (�; �)H and orresponding norm k � kH. Weall an operator (L;D(L)) on H essentially m-dissipative, if its losure is m-dissipative(and thus generates a C0 ontration semigroup). This means that its losure (L;D(L))ful�lls (Lu; u)H � 0 for all u 2 D(L) (dissipativity) and Range(1 � L) = H. Essen-tial m-dissipativity of (L;D(L)) is equivalent to (Lu; u)H � 0 for all u 2 D(L) andRange(1� L) = H.The best known result on perturbations of (essentially) m-dissipative operators is Theo-rem 3.9 below (we slightly hanged the \usual" assertion in order to be able to apply itdiretly below). We need the following de�nition.De�nition 3.8. Let (A;D(A)), (B;D(B)) be linear operators on H. B is said to beA-bounded, if D(B) � D(A) and there exist real numbers a; b � 0 suh that(3.7) kBfkH � akAfkH + bkfkHfor all f 2 D(A). The number inf fa � 0j(3.7) holds for some b � 0g is then alled theA-bound of B.Theorem 3.9. Let (A;D) be an essentially m-dissipative operator on H and (B;D) bedissipative. Assume that B is A-bounded with A-bound less than 1. Then (A+B;D) isessentially m-dissipative.For the proof of Theorem 3.9 we refer to [Dav80, Corollary 3.8, Lemma 3.9 and Prob-lem 3.10℄.A suÆient ondition for A-boundedness is given in the following lemma, whih is easyto prove.Lemma 3.10. Let (A;D(A)); (B;D(B)) be linear operators on H suh that D(B) �D(A) and for some M � 0 it holdskBfk2H � hAf; fiH +Mkfk2H for all f 2 D(A):Then B is A-bounded with A-bound 0.The idea for Lemma 3.12 below is taken from [Lei01, Lemma 2.1℄. The situation weonsider is that H an be represented as the diret sum of orthogonal subspaes in a waywhih allows A, B to be restrited to these subspaes suh that for the restritions wean apply Theorem 3.9.



14 FLORIAN CONRAD, MARTIN GROTHAUSDe�nition 3.11. A sequene (Pn)n2N of ontinuous linear operators on H is alled aomplete orthogonal family, if every Pn, n 2 N, is an orthogonal projetion suh that forn;m 2 N, n 6=m, it holds PnPm = 0 and for every f 2 H it holds f =P1n=1 Pnf .Lemma 3.12. Let (A;D) be an essentially m-dissipative operator and (B;D) be dissi-pative. Suppose that there is a omplete orthogonal family (Pn)n2N � L(H) suh that forall n 2 N PnD � D;PnA = APn;PnB = BPn:De�ne An := APn; Bn := BPn, both with domain Dn := PnD � (PnH)\D, as operatorsin PnH. Assume that eah Bn is An-bounded with An-bound less than 1. Then (A+B;D)is essentially m-dissipative.Proof. Let n 2 N. Clearly An and Bn are dissipative. De�ne Cn := An + Bn, anddenote in the sequel by In the identity operator on PnH. Let f 2 H; " > 0, then byessential m-dissipativity of A there is g 2 D suh that k(I � A)g � fkH � ". Henek(In � An)Png � PnfkH = kPn[(I � A)g � f ℄kH � ". Thus Range(In � An) is densein PnH, whih proves that An is essentially m-dissipative. Consequently eah (Cn;Dn),n 2 N, is an essentially m-dissipative operator on PnH by Theorem 3.9.To show essential m-dissipativity of (A + B;D) let f 2 H; " > 0, then f = P1n=1 Pnf .We have to �nd g 2 D suh that k(I� (A+B))g�fkH � ". Choose N 2 N large enoughsuh that(3.8) f � NXn=1PnfH � "=2:Clearly, by essential m-dissipativity of (Cn;Dn) we �nd gn 2 Dn, 1 � n � N , suh that(3.9) kPnf � (In � Cn)gnkH � "2N :Let g :=PNi=1 gn, then g 2 D and (I� (A+B))g =PNi=1(I� (A+B))Png =PNi=1(In�Cn)gn. Hene by (3.8) and (3.9) we obtain k(I � (A+B))g � fkH � ". �3.3. The generator for the generalized Dirihlet form. In this setion we showthat, if the potential � ful�lls ondition 3.7, the di�erential operator L = �v � vrv +vrx�rx�(x)rv with domain C1per;0( eE) � L2( eE; e�), where de�d(x;v) = e�v2=2e��, is essen-tially m-dissipative and its losure is a Dirihlet operator. Clearly, by the onsiderationsin setion 3.1 the same then holds for (LE ; C10 (E)) (on L2(E;�), where LE is de�ned asin (3.4) and � is given by (3.6)). We �nd it onsiderably easy to prove in Setion 3.4 thatthe assoiated GDF is quasi-regular and ful�lls ondition (D3) in Theorem 2.9, sine wehave that the spae C10 (E) is a ore for the generator.Theorem 3.13. Let � be as in ondition 3.7, and de�ne the measure e� by de�d(x;v) = em,where em : eE ! R is given by em(x; v) := e�v2=2e��(x) for (x; v) 2 eE.



N-PARTICLE LANGEVIN DYNAMICS 15Then the operator L : C1per;0( eE)! L2( eE; e�), de�ned by(3.10) L = �v � vrv + vrx � (rx�)rvis essentially m-dissipative and its losure is a Dirihlet operator.Theorem 3.13 is shown in the ourse of this setion.At �rst we state some basi properties of L and its summands:Lemma 3.14. De�ne (L;C1per;0( eE)) as in Theorem 3.13. We deompose L by L =S + A, where (S;C1per;0( eE)) and (A;C1per;0( eE)) are de�ned by S := �v � vrv andA := vrx � (rx�)rv. It holds(i) S is symmetri and dissipative.(ii) A is antisymmetri.(iii) L is dissipative.Proof. Clearly, (iii) follows from (i) and (ii).To show (i), let f; g 2 C1per ;0( eE). We an use the Gaussian integral formula (f. [Alt02,A 6.8℄) and the fat that f and g have bounded support to obtain (Sf; g)L2( eE;e�) =�(rvf;rvg)L2( eE;e�) = (f; Sg)L2( eE;e�). Thus S is symmetri. Moreover, for all for f 2C1per ;0( eE) it holds (Sf; f)L2( eE;e�) = �(rvf;rvf)L2( eE;e�) � 0, whih shows that S isdissipative.Let us now prove (ii). Again by the Gaussian integral formula we �nd for f; g 2 C1per ;0( eE)(3.11) ((rx�)rvf; g)L2( eE;e�) = �(f; (rx�)rvg)L2( eE;e�) + Z eE(vrx�)f(x; v)g(x; v)de�and moreover, using Lemma 3.1(i),(vrxf; g)L2( eE;e�) = �(f; vrxg) + Z eE(vrx�)f(x; v)g(x; v)de�(3.12) +ZRn �ZfM vrx(fge��)(x; v) dx� e�v2 dv= �(f; vrxg) + Z eE(vrx�)f(x; v)g(x; v)de�;sine for �xed v 2 Rn the mapping x 7! f(x; v)g(x; v)e��(x) is periodi. By (3.11) and(3.12) we obtain that (Af; g) = �(f;Ag). �Remark 3.15. (i) We �nd by the above proof that neither vrx nor (rx�)rv isantisymmetri, but vrx � (1=2)v(rx�) and �(rx�)rv + (1=2)v(rx�) are.(ii) It is well-known (f. Lemma 3.17 below) that the losure of the symmetrioperator S = �v � vrv is an m-dissipative (Dirihlet) operator. Hene we startwith the operator S and onsider the rest of L as a perturbation. This seemsto be easy as far as we think about the last summand in (3.10) (we may useTheorem 3.9 for this). But vrx is not bounded by S, not even if it would bepossible to keep v bounded. This indiates that the lak of strit elliptiity of L



16 FLORIAN CONRAD, MARTIN GROTHAUSauses diÆulties. (One of these diÆulties is the fat that L annot generatea oerive losed form (whih is not diÆult to prove). This fat fores us toapply the theory of generalized Dirihlet forms instead of [MR92℄.)(iii) In order to use a strategy as mentioned in (ii), it may be natural �rst to onsiderthe ase of potential free motion and then to add the inuene of the potential.Intuitively, if we \�x the positions" and just onsider the hanges the potential(and of ourse frition and stohasti perturbation) auses to the veloities, theintrodution of motion in x-diretion (this diretion did not even play any rolebefore) does not seem to be a small perturbation. So the question arises whihpart of L represents the free motion. Clearly, sine we are ating on L2( eE; e�),and sine e� depends on �, this part an not be the operator �v � vrv + vrx.The above remarks motivate us to de�ne a unitary transformation T whih enables usto get rid of e�. Consider T : L2( eE; e�) ! L2( eE; d(x; v))f 7! pemfIt is easily seen that it formally holdsTLT�1 = L0 := �v � v24 + n2 I + vrx �rx�rv:(We do not need to hek this here, f. Lemma 3.21.) Instead of thinking about how tomake this equation rigorous now, we �nd a domain of essential m-dissipativity for L0.Remark 3.16. (i) By Lemma 3.1 the unitary transformation T de�ned above mapsthe spae H1;1per (fM)
C10 (Rn) := spanf�
 'j� 2 H1;1per (fM ); ' 2 C10 (Rn)g ontoitself.If we an prove essential m-dissipativity of L0 on a domain D � H1;1per (fM) 
C10 (Rn), essential m-dissipativity of L0, de�ned on H1;1per (fM) 
 C10 (Rn), fol-lows diretly. In order to show essential m-dissipativity of (L;C1per ( eE)) we arethen left to prove that the domain of its losure (L;D(L)) ontains H1;1per (fM )
C10 (Rn) and that it indeed holds TLT�1f = L0f for f 2 H1;1per (fM )
 C10 (Rn).This is essentially what we do in Lemma 3.21 below.(ii) Note that the last two summands of L0 are both antisymmetri, when we de�neL0 e.g. on a subset of C1per ( eE) or H1;1per (fM) 
 C10 (Rn). This an be seen byarguments as in the proof of Lemma 3.14. Moreover, note that now rx�rv isexatly the part orresponding to the potential.Of ourse, we follow the strategy explained in Remark 3.15(ii),(iii) to prove essentialm-dissipativity of L0 on a suitable domain.



N-PARTICLE LANGEVIN DYNAMICS 17The basis funtions for invariant subspaes of the operators �xi , i = 1; � � � ; n, turn outto be useful. For z 2 Z, 1 � i � n, de�ne iz : (0; ri) ! Rx 7! 8>>><>>>: q 1ri if z = 0q 2ri os(z ix) if z > 0q 2ri sin(z ix) if z < 0where i := 2�=ri for 1 � i � n (here � denotes the Ludolph number). Note that(3.13) ( iz)0(x) = iz  i�z(x)for all z 2 Z; x 2 (0; ri). De�ne for z = (z1; � � � ; zn) 2 Zn the funtion  z : fM ! R by z(x) :=  1z1(x1) � � � nzn(xn), x = (x1; � � � ; xn) 2 fM .Clearly the funtions  z , z 2 Zn, form a omplete orthonormal system in L2(fM;dx) andD : = spanf z 
 'jz 2 Zn; ' 2 C10 (Rn)g= spanf(x; v) 7!  z(x)'(v)jz 2 Zn; ' 2 C10 (Rn)gforms a dense linear subspae of L2( eE; d(x; v)).The following is a well-known fat (it may be seen e.g. by [Tri80, x24℄ and [RS80,Theorem VIII.33℄).Lemma 3.17. The operator S0 : D ! L2( eE; d(x; v)) de�ned by S0 = �v � v24 + n2 I, isessentially m-dissipative.In the sequel we denote by (S0;D(S0)) the losure of (S0;D).Let us now onsider the potential-free ase:Lemma 3.18. The operator L00 : D ! L2( eE; dx) de�ned by L00 = �v � v24 + n2 I + vrx,is essentially m-dissipative.Proof. By k � k(x;v) and (�; �)(x;v) we denote the norm and inner produt of L2( eE; d(x; v))and denote by k � kv and (�; �)v the norm and inner produt of L2(Rn ; dv).Here we apply Lemma 3.12 to prove essential m-dissipativity.For z = (z1; � � � ; zn) 2 Nn0 we de�ne Iz := fz0 = (z01; � � � ; z0n) 2 Znj jz0ij = zi; i = 1; � � � ; ngand Dz := spanf z0 
 'jz0 2 Iz; ' 2 C10 (Rn)gClearly (Dz)z2Nn0 is a family of orthogonal subspaes of L2( eE; d(x; v)), suh that thelinear span of their union is dense. Hene the orthogonal projetions P z orresponding tothe losuresDz, z 2 Nn0 , form a omplete orthogonal family. It holds P zD = Dz � D andevery summand of (S0;D) ommutes with P z. Moreover, note that for z0 = (z01; � � � ; z0n) 2Zn and ' 2 C10 (Rn) it holds by (3.13)vrx( z 
 ') = v1(�x1 z)
 '+ � � � + vn(�xn z)
 '(3.14)



18 FLORIAN CONRAD, MARTIN GROTHAUS= nXi=1 iz0ivi z0i 
 'where we de�ne z0i := (z01; � � � ; z0i�1;�z0i; z0i+1; � � � ; z0n) for 1 � i � n. (3.14) shows thatP z also ommutes with (vrx;D).Let z 2 Nn0 and hoose an arbitrary element f := Pz02Iz  z0 
 'z0 of Dz (with 'z0 2C10 (Rn), z0 2 Iz). For z0 2 Iz it holdsnXi=1 kvi'z0k2v = (v2'z0 ; 'z0)v � (v2f; f)(x;v)and by (3.14) it followskvrxfk2(v;x) =  Xz02Iz nXi=1 izi z0i 
 (vi'z0)2(x;v) � C Xz02Iz nXi=1  z0i 
 (vi'z0)2v= C Xz02Iz nXi=1 vi'z02(x;v) � C Xz02Iz(v2f; f)(x;v)� 2nC(v2f; f)(x;v) � 4 � 2nC ���S + n2 I� f; f�(x;v)= 4 � 2nC(�Sf; f)(x;v) + 2 � n2nCkfk2(x;v)where C := maxfjziij2 j1 � i � ng. We an now apply Lemma 3.12 (and we use thenotations from this lemma): We use the omplete orthogonal family (P z)z2Nn0 givenabove and de�ne A := S0, B := vrx. By Lemma 3.17 (A;D) is essentially m-dissipativeand sine (B;D) is learly antisymmetri, it is dissipative. Our above onsiderations andLemma 3.10 imply that all the assumptions in Lemma 3.12 are ful�lled. Hene (L00;D)is essentially m-dissipative. �Next, we add the potential.Lemma 3.19. The operator L0 : D ! L2( eE; d(x; v)) de�ned by L0 = �v � v24 + vrx �rx�rv, is essentially m-dissipative.Proof. Clearly the operator ((rx�)rv;D) is dissipative (beause it is antisymmetri).Let C := max1�i�n k�xi�kL1( eE;d(x;v)). For f 2 D it holdsk(rx�)rvfk2L2( eE;d(x;v)) � C2(��vf; f)L2( eE;d(x;v))� C2 ���S0 + n2 I� f; f�L2( eE;d(x;v))= C2 ���L00 + n2 I� f; f�L2( eE;d(x;v))= C2(�L00f; f)L2( eE;d(x;v)) + C2n2 kfk2L2( eE;d(x;v))by antisymmetry of vrx. Lemma 3.18, Lemma 3.10 and Theorem 3.9 imply that L0 isessentially m-dissipative. �



N-PARTICLE LANGEVIN DYNAMICS 19Hene, the losure (L0;D(L0)) of (L0;D) is m-dissipative. Consequently, the sameholds for the losure (T�1L0T ;D(T�1L0T )) of (T�1L0T; T�1D). We already mentioned(though we did not prove it), that T�1L0T behaves formally like L, but we do not knowwhether it is an extension of (L;C1per;0) or not. Lemma 3.21 below answers this question.But �rst we need to make some further onsiderations about H1;1per (fM ). We denote byH1;2(fM) the spae of weakly di�erentiable funtions f : fM ! R, suh that f and allits partial derivatives are ontained in L2(fM ; dx). H1;2(fM) is a Hilbert spae w.r.t. thenorm k � k1;2 := k � kL2(fM ;dx) +Pni=1 k�xi � kL2(fM ;dx) (or the orresponding inner produt,denoted by (�; �)1;2) and the set C1(fM) \ H1;2(fM ) is dense in H1;2(fM) (f. [Alt02,Satz 1.24℄). Clearly H1;1per (fM ) � H1;1(fM) � H1;2(fM ), hene for any f 2 H1;1per (fM ) we�nd an approximating sequene (fk)k2N � C1(fM ) w.r.t. this norm. But we need thefollowing (slightly stronger) fat.Lemma 3.20. C1per(fM) is dense in H1;1per (fM) w.r.t. k � k1;2.Proof. Assume that there is f 2 H1;1per (fM ), suh that for all � 2 C1per (fM) it holds(�; f)1;2 = 0. We have to show that f = 0.It holds for all � 2 C1per (fM)0 = (�; f)1;2 = (�; f)L2(fM ;dx) + nXi=1(�xi�; �xif)L2(fM ;dx)= (���x�; f)L2(fM ;dx)by the Gaussian integral formula (f. [Alt02, A 6.8.2℄) and by periodiity of �i�, i =1; � � � ; n, and f . But the operator (I ��x; C1per (fM)) has learly dense range, sine thefuntions  z, z 2 Zn, are ontained in its domain and form a omplete orthonormalsystem of eigenfuntions of I ��x, suh that the orresponding eigenvalues are stritlypositive. Thus f = 0 and our assertion is shown. �Lemma 3.21. (T�1L0T ;D(T�1L0T )) is the losure of (L;C1per;0( eE)).Proof. Let (L;D(L)) be the losure of (L;C1per ;0( eE)). Our assertion is shown, if we anprove that the losed dissipative operator (L;D(L)) is an extension of the essentiallym-dissipative operator (T�1L0T; T�1D).It holds T�1D = spanf(e�=2 z) 
 ' jz 2 Zn; ' 2 C10 (Rn)g. Let z 2 Zn, ' 2 C10 (Rn).Sine  z 2 C1per (fM), we know by Lemma 3.1(i) that it holds � := e�=2 z 2 H1;1per (fM ).Hene by Lemma 3.20 there is a sequene (�k)k2N � C1per(fM) approximating � inH1;2per(fM ). Thus �k ! � and �xi�k ! �xi� in L2(fM ; dx) as k ! 1, hene (sine �is essentially bounded) in L2(fM ; e��dx). Consequently(�v � vrv + vrx �rx�rv) �n 
 '! (�v � vrv + vrx �rx�rv) � 
 'in L2( eE; e�) when n!1. This does not seem to be a surprising result, but it shows thatT�1D � D(L) and that L looks the same as L on T�1D (but, of ourse, we are dealing



20 FLORIAN CONRAD, MARTIN GROTHAUSwith weak derivatives of �
' (in x-diretion) now). This argumentation is valid for any� 2 H1;1per (fM ), ' 2 C10 (Rn).We have to show that �v � vrv + vrx� (rx�)rv = LjT�1D != T�1L0T . For f 2 T�1Dit holdsT�1��v � v24 + n2 I�Tf(3.15) = T�1��v � v24 + n2 I� (e�v2=4e��=2f)= T�1e��=2�rv �e�v2=4rvf � v2e�v2=4f�� v24 e�v2=4f + n2 e�v2=4f�= T�1e��=4e�v2=4��vf � vrvf � n2 f + v24 f � v24 f + n2 f�= �vf � vrvfMoreover, it holds by Lemma 3.1(ii)T�1vrxTf = T�1 �vrx(e�v2=4e��=2f)�(3.16) = T�1e�v2=4e��=2��12v(rx�)f + vrxf�= �vrxf � 12v(rx�)� fand by an analogous alulation we �nd that(3.17) T�1(rx�)rvTf = �(rx�)rv � 12v(rx�)� fThe equations (3.15), (3.16) and (3.17) omplete our proof. �We still have to show that the m-dissipative losure of (L;C1per ;0) is a Dirihlet oper-ator. Let us �rst prove the following lemma.Lemma 3.22. For the losure (L;D(L)) of (L;C1per;0( eE)) it holds 1 2 D(L) and L1 = 0.Proof. De�ne 1x : fM ! R by setting 1x(x) := 1 for all x 2 fM . Clearly for all ' 2C10 (Rn) it holds 1x 
 ' 2 C1per ;0(fM) and(3.18) L(1x 
 ')(x; v) = �v'(v) � vrv'(v) + (rx�(x))rv'(v) for (x; v) 2 eE:For m 2 N, let �m be an element of C10 (R) suh that �m(t) = 1 for t 2 [�m;m℄,�m(t) = 0 for t =2 [�m� 2;m + 2℄ and j�m(t)j � 1, j ddt�m(t)j � 1 and j d2dt2 �m(t)j � 1 forall t 2 R. We de�ne �m : Rn ! R by �m(v1; � � � ; vn) := Qni=1 �m(vi). By Lebesgue'sdominated onvergene theorem we obtain 1x 
 �m ! 1 in L2( eE; e�). We hoose C > 0suh that C � k�xi�kL1(fM) for every i = 1; � � � ; n. Thenj�v�m(v)� vrv�m(v) +rx�(x)rv�m(v)j � n+ nXi=1 jvij+ Cn



N-PARTICLE LANGEVIN DYNAMICS 21holds for e�-a.e. (x; v) 2 eE. Moreover, it holds �v�m(v)�vrv�m(v)+rx�(x)rv�m(v) =0 for v 2 [�m;m℄n, x 2 fM . Consequently, by Lebesgue's dominated onvergene theoremand (3.18), L(1x 
 �m)! 0 in L2( eE; e�), and the assertion follows. �Remark 3.23. Another idea to prove Lemma 3.22 is to onsider the operator (~L;D(~L)),where D(~L) := span(f1g [ C1per;0( eE)) and ~L1 := 0. If ~L is dissipative (whih is bydissipativity of L equivalent to (Lg; 1) = 0 for all g 2 C1per;0( eE)), this implies that thelosure of ~L is a losed dissipative extension of the essentially m-dissipative operatorL and hene equal to L. However, in the proof given above we did not use the m-dissipativity of (L;D(L)).Now we prove the Dirihlet property.Lemma 3.24. With the notations of Lemma 3.14 it holds(i) (Su; u+)L2( eE;e�) � 0 for all u 2 C1per;0( eE)(ii) (Au; u+)L2( eE;e�) = 0 for all u 2 C1per;0( eE)(iii) (Lu; u+)L2( eE;e�) � 0 for all u 2 D(L), where (L;D(L)) again denotes the losureof the operator (L;C1per;0( eE)) in L2( eE; e�).(iv) (Lu; (u� 1)+)L2( eE;e�) � 0 for all u 2 D(L)Proof. For eah " > 0 we hoose an in�nitely often di�erentiable funtion �" : R ! Rsuh that �"(�) = 0 for � 2 (�1; 0℄, 0 � �0"(�) � 1 for all � 2 R, �0"(x) = 1 for � � ".For u 2 C1per;0( eE) it learly holds �" Æ u 2 C1per;0( eE) for all " > 0. Hene by the proofof Lemma 3.14 we �nd that(Su; �" Æ u)L2( eE;e�) = � nXi=1(�viu; (�0" Æ u)�viu)L2( eE;e�) � 0sine �0" � 0. But sine learly �" Æ u! u+ in L2( eE; e�) as "! 0, (i) is shown.Moreover, Lemma 3.14 shows that(Au; �" Æ u)L2( eE;e�) = �(u;A(�" Æ u))L2( eE;e�)= �((�0" Æ u)u;Au)L2( eE;e�)Sine �" Æ u! u+ and (�0" Æ u)u! u+ in L2( eE; e�) as "! 0, we obtain(Au; u+)L2( eE;e�) = �(u+; Au)L2( eE;e�) = �(Au; u+)L2( eE;e�)hene (Au; u+) = 0 and (ii) is shown.By (i) and (ii) it holds (Lu; u+)L2( eE;e�) � 0 for u 2 C1per;0( eE). Clearly this propertyextends to the losure (L;D(L)). Thus (iii) holds.To prove (iv) we use (iii) and Lemma 3.22. Let u 2 D(L). Then also (u � 1) 2 D(L)and hene by (iii) it holds (L(u� 1); (u� 1)+)L2( eE;e�) � 0, and sine L1 = 0, we onlude(Lu; (u� 1)+)L2( eE;e�) � 0. �



22 FLORIAN CONRAD, MARTIN GROTHAUSProof of Theorem 3.13Follows by Lemma 3.19, Lemma 3.21 and Lemma 3.24(iv). �3.4. An N-partile Langevin dynamis. As we mentioned at the beginning of Setion3.3, we an now prove the existene of an assoiated proess without muh additionale�ort. For the proof of the following theorem we use notations and de�nitions fromSetion 2 and Setion 3.1 and we refer to onsiderations and results from Setions 4 and5 below. If A is a subset of an L2-spae of real-valued funtions, we de�ne Ab := A\L1.Theorem 3.25. Let �M be given as in Condition 3.7 and de�ne � by (3.6). Thenthe losure (LE ;D(LE)) of the essentially m-dissipative operator (LE ; C10 (E)) on H =L2(E;�), given by LE = ��Ev � vrEv + vrEx � (rMx �M )rEv is the generator of thequasi-regular GDFE : D(LE)�H [H�D(LE) ! R(u; v) 7! ( �(LEu; v)H if u 2 D(LE),v 2 H�(LEv; u)H if u 2 H,v 2 D(LE)whih ful�lls (D3) in Theorem 2.9. Hene there exists a �-tight speial standard proessM = (
;F�; (Xt; Vt)t�0; (P(x;v))(x;v)2E) whih is properly assoiated in the resolvent sensewith E and whih has the following properties:(i) For E-q.e. initial point (x; v) 2 E the proess M has P(x;v)-a.s. in�nite life time.(ii) For E-q.e. (x; v) 2 E the proess M has P(x;v)-a.s. ontinuous paths.(iii) For all f 2 D(LE)b the proess (M [f ℄t )t�0 de�ned by(3.19) M [f ℄t := � ~f(Xt; Vt)� ~f(X0; V0)� Z t0 LEf(Xs; Vs) ds�t�0is a martingale w.r.t. P(x;v) for E-q.e. (x; v) 2 E. Here ~f denotes an E-quasi-ontinuous �-version of f .(iv) For any measure � 2 P(E) whose ompletion maps every E-exeptional set to0 P� solves the martingale problem for LE on D(LE)b, i.e. for all f 2 D(LE)bthe proess (M [f ℄t )t�0 is an (Ft)t�0-martingale w.r.t. P�. This also holds if ~f in(3.19) is replaed by any �-version of f .(v) For any measure � 2 P(E) having an L2-integrable density w.r.t. � P� solves themartingale problem for LE on D(LE). Of ourse, this also holds if ~f is replaedby any �-version of f .(vi) If � in (v) is de�ned by � := 1�(E)�, then for all t � 0 it holds P� Æ X�1t = �,i.e. � is an invariant measure for M .Proof. We know by Theorem 3.13 and our onsiderations in Setion 3.1 that (LE ;D(LE))is an m-dissipative Dirihlet operator and hene E is a generalized Dirihlet form byLemma 2.2. By Remark 2.4 LE is the generator of E (f. De�nition 2.3). Now we provequasi-regularity (f. De�nition 2.5).For k 2 N we de�ne the ompat subset Fk :=M�[�k; k℄n � E. If we de�neD(LE)Fk :=fu 2 D(LE)ju(x; v) = 0 for all (x; v) 2 E n Fkg, it holds C10 (E) � SkD(LE)Fk , hene



N-PARTICLE LANGEVIN DYNAMICS 23by Remark 2.6(ii) (Fk)k2N is an E-nest onsisting of ompat sets. Hene (q1) is shown.(q2) is lear, sine the funtions in C10 (E) are, of ourse, E-quasi-ontinuous and forma dense subset of D(LE) w.r.t. graph norm. Finally, (q3) follows by Remark 3.2.Condition (D3) in Theorem 2.9 follows from the fat that C10 (E) is an algebra of boundedfuntions in D(LE) whih is dense in D(LE) w.r.t. the graph norm and from Proposition2.11.The properties (iii)-(v) are shown in Theorem 4.7, Corollary 4.9 and Corollary 4.11 inSetion 4 below, and (ii) is seen from Theorem 5.5 in Setion 5 below and Remark 3.2.Now we prove (i). By Lemma 3.22 we see that 1 2 D(LE) and LE1 = 0, hene, if(Tt)t�0 denotes the C0 ontration semigroup generated by LE, it holds Tt1 = 1 forall t � 0, hene for the transition semigroup (pt)t>0 of M it holds by Lemma 2.8(i)(pt1E)(x; v) = 1 �-a.e. for t > 0, hene by E-quasi-ontinuity of pt1 (f. Lemma 4.3below) and Remark 2.6(v) we obtain P(x;v)(t < �) = P(x;v)(Xt 2 E) = (pt1E)(x; v) = 1for E-q.e. (x; v) 2 E. Sine ountable unions of E-exeptional sets are E-exeptional, we�nd that P(x;v)(� =1) = 1 for E-q.e. (x; v) 2 E.Finally, we prove (vi). By Lemma 3.14 we �nd that C10 (E) � D(LE) and that it holdsL̂E = �v� vrv � vrx+(rx�M )rv, where L̂E denotes the restrition of LE to C10 (E).The unitary transformation Tv : L2(E;�) ! L2(E;�), de�ned by Tvf(x; v) := f(x;�v),transforms (LE ; C10 (E)) into (L̂E ; C10 (E)) and maps the onstant 1-funtion to itself.By Lemma 3.22 we onlude that 1 2 D(LE) and LE1 = 0. If (T̂t)t�0 denotes the adjointsemigroup to (Tt)t�0 (whih is the C0 ontration semigroup generated by LE), it followsthat T̂t1 = 1 for all t � 0. Consequently (Ttf; 1)L2(E;�) = (f; T̂t1)L2(E;�) = (f; 1)L2(E;�)for all f 2 L2(E;�). Thus for A 2 B(E); t � 0 it holdsP� ÆX�1t (A) = E� [1A(Xt)℄ = ZE pt1Ad�= (Tt1A; 1)L2(E;�) = (1A; 1)L2(E;�) = �(A);where 1A denotes the indiator funtion for A. This proves (vi). �Remark 3.26. Of ourse the unitary transformation Tv given in the proof of (vi) inthe above theorem enables us to �nd that also (L̂E; C10 ) is essentially m-dissipative andits losure is a Dirihlet operator. Moreover, learly the arguments given in the aboveproof are also valid for LE (whih, being an m-dissipative operator extending (L̂E; C10 ),is equal to the losure of this operator) and onsequently Theorem 3.25 holds also withLE replaed by L̂E .From the above theorem we obtain:Corollary 3.27. Consider the situation of Theorem 3.25. We assume that boundedversions of �i�M , i 2 I := fx1; � � � ; xn; v1; � � � ; vng, are �xed and onsider LE as anoperator on C20 (E) (ating pointwise). Then for E-q.e. initial point (x; v) 2 E the lawP(x;v) solves the martingale problem for LE on C20 (E).



24 FLORIAN CONRAD, MARTIN GROTHAUSProof. Let K � E be open and relatively ompat, i.e. bounded in v-diretion. We de�nek � kC2(K) := k � k1 +Xi2I k�i � k1 + Xi;j2I k�i�j � k1where kgk1 := maxx2K jg(x)j for g 2 C(K). The spae C2(K), equipped with the normk � kC2(K), is a separable Banah spae. Let Kl � E, l 2 N, be an inreasing sequeneof open and relatively ompat subsets suh that E = Sl2N Kl. Then we an hoose aountable set X of funtions in C20 (E) suh that X ontains a ountable dense subsetof C2(Kl) for eah l 2 N (in the sense of taking restritions). Sine ountable unionsof E-exeptional sets are E-exeptional, there is an E-exeptional set N � E suh thatP(x;v) solves the martingale problem for LE on X for all (x; v) 2 E nN , i.e., (M [g℄t )t�0 isa martingale w.r.t. P(x;v) for all (x; v) 2 E nN; g 2 X .Now, let f 2 C20 (E). There exists l 2 N suh that f 2 C2(Kl). Thus we �nd a sequene(fk)k2N in X \ C2(Kl) suh that fk ! f w.r.t. k � kC2(Kl) as k ! 1. Then it holdsjfk� f j ! 0 and jLEfk�LEf j ! 0 uniformly as k !1. Sine the kernels pt, t > 0, aresub-Markovian, also ptjf�fkj ! 0 and R t0 psjLEf�LEfkj(�) ds! 0 uniformly as k !1for any t > 0. By onsiderations as in the proof of Corollary 4.11 below we onludethat also (M [f ℄t )t�0 is a martingale w.r.t. P(x;v) for (x; v) 2 E nN . Thus our assertion isshown. �Remark 3.28. We should onsider the question why we do not stay on eE to onstrutthe Langevin dynamis with periodi boundary ondition. Of ourse, the losure of(L;C1per ;0( eE)) (f. Theorem 3.13) an also be used to onstrut a generalized Dirihletform E 0 as in Theorem 3.25. Let us assume that E 0 is assoiated with a speial standardproess on eE, [0; r1) � � � � � [0; rn) � Rn or [0; r1℄ � � � � � [0; rn℄ � Rn . We may replaeeE by one of the latter domains, sine this does not a�et the orresponding L2-spaes.It is reasonable to assume that (for most initial points) with probability 1 our proesshits the periodi boundary, and, moreover, that it even rosses it, when hitting it e.g.for the �rst time. But then the proess annot be both right ontinuous and quasi-leftontinuous. Hene it is not speial standard (f. [MR92, De�nition IV.1.13℄). Thereforewe annot expet that it is possible to onstrut the Langevin dynamis diretly from E 0using Theorem 2.9.Remark 3.29. We note that the restrition �� of � (given in Setion 3.1.1) to eE0 :=[0; r1) � � � � � [0; rn) � Rn is a measurable bijetion, and also its inverse is measurable.Hene, using the proess M = (
;F�; (Xt; Vt)t�0; (P(x;v))(x;v)2E�) from Theorem 3.25we an de�ne another proess ~M := (
;F�; ( eXt; Vt)t�0; ( eP(x;v))(x;v)2 eE0) on eE0 by settingeP(x;v) := P�(x;v) and ( eXt; Vt) = ��1� (Xt; Vt). Note that as in Setion 3.1 we denote forx 2 fM the element [x℄ = �M (x) 2M also by x.Let the measure e� on eE be de�ned by de�d(x;v) := �̂�1 � d�d(x;v)E � (f. Setion 3.1.2). Wean assume e� to be extended to ~E0 by ontinuous extension of its density w.r.t. Lebesguemeasure. Sine the boundary of eE0 has e�-measure 0, we may identify L2( eE; e�) andL2( eE0; e�).



N-PARTICLE LANGEVIN DYNAMICS 25Then for any f 2 D(L)b � L2( eE0; e�) (where (L;D(L)) is the losure of (L;C1per ;0),de�ned by L := ��v � vrv + vrx � (rx�)rv) and for any measure e� on ( eE0;B( eE0))whih is absolutely ontinuous w.r.t. e� the proessf( eXt; Vt)� f( eX0; V0)� Z t0 Lf( eXs; Vs) dsis a martingale w.r.t. the measure ePe� , whih is de�ned byePe�(A) := Z eE0 eP(x;v)(A) de�(x; v)= ZE P(x;v)(A) d�(x; v) = P�(A)for A 2 F�, where � is de�ned by d�d� := �̂ de�de� . The martingale property is seen bythe fats that the expetations eEe� and E� (orresponding to ePe� and P� , respetively)oinide and that f Æ ��1� = (�f) (�-a.e.). It follows that our proess is a solution of theLangevin equation (1.1) on eE0 in the sense of the orresponding martingale problem onD(L)b � C1per ;0( eE). Here, of ourse, we have to extend the funtions in the latter set toeE0. Note that if e� posseses an L2-integrable density w.r.t. e�, we may replae D(L)b byD(L). 4. The martingale problemLet E and m be as in Setion 2. Let E be a quasi-regular GDF on L2(E;m) (in thesense of De�nition 2.1) assoiated with a oerive losed form (A;V) and an operator(�;D(�)). Let M = (
;F�; (Xt)t�0; (Px)x2E�) be an m-tight speial standard proesswith life time �, properly assoiated with E in the resolvent sense (f. De�nition 2.7). By(Ft)t�0 we denote the natural �ltration for M . Let L, (Tt)t�0 and (G�)�>0 denote the C0ontration semigroup, the strongly ontinuous ontration resolvent and the generatorassoiated with E , respetively (f. De�nition 2.3). Moreover, we denote by (pt)t>0 and(R�)�>0 the transition semigroup and resolvent of M , respetively (f. (2.2) and (2.3)).We remember that proper assoiation of M with E implies that for any f 2 L2(E;m) withm-version f̂ the funtion ptf̂ is an m-version of Ttf and R�f̂ is an E-quasi-ontinuousm-version of (G�f)�>0 by Lemma 2.8.For any probability measure � on (E;B(E)) the probability measure P� on (
;F�) isde�ned by(4.1) P�(A) := ZE Px(A) d�(x)for A 2 F�.Throughout this setion we �x for every f 2 D(L) an E-quasi-ontinuous m-version ~f off (whih exists by Remark 2.6(iv)).In this setion we onsider the question whether M solves the martingale problem forthe generator (L;D(L)) of E , i.e., we want to know, if for f 2 D(L) the proess (M [f ℄t )t�0



26 FLORIAN CONRAD, MARTIN GROTHAUSde�ned by(4.2) M [f ℄t := ~f(Xt)� ~f(X0)� Z t0 Lf(Xs) ds; t � 0;is an (Ft)t�0-martingale. Clearly, the answer to this question may depend on the initialdistribution we hoose. The answer might be `yes' if we onsider (M [f ℄t )t�0 w.r.t. to theprobability measures P� with probability measures � on (E;B(E)), whih are absolutelyontinuous w.r.t. m, but `no' if we hoose one of the probability measures Px, x 2 E.In fat, we annot expet that (M [f ℄t )t�0 is a martingale w.r.t. all Px, x 2 E, even if ~fis ontinuous, sine the proess M is onstruted only E-quasi-everywhere and triviallyextended (f. [Sta99, p.88℄).We prove that the martingale problem is solved in the P�-ase (see Corollary 4.11 below)if � has an L2-integrable density w.r.t. m. Moreover, we prove that in the Px-ase forany bounded f 2 D(L) (i.e. f possesses a bounded m-version) the proess (M [f ℄t )t�0 isan (Ft)t�0-martingale w.r.t. Px for E-q.e. x 2 E (f. Theorem 4.7 below; this setiononsists mainly of its proof).Note that by now we annot even be sure that (M [f ℄t )t�0 is well de�ned, sine Lf is onlydetermined up to a set of m-measure zero (f. [AR95, De�nition 3.1℄). We need to showthat the third summand in (4.2) exists a.s. and is moreover a.s. (w.r.t. to a probabilitymeasure P� or Px) independent of the m-version we hoose.The argument we use to prove this is taken from [PR02, Thm 7.4(ii)℄.Lemma 4.1. Let g 2 L2(E;m), with m-version ĝ, t � 0. ThenZ t0 psjĝj(x) ds � etR1jĝj(x); for all x 2 E;In partiular, R t0 psĝ(�) ds exists E-q.e. and is independent of the m-version ĝ we hoose.More preisely, the integrals of two di�erentm-versions di�er at most on an E-exeptionalset. Moreover, it is an element of L2(E;m) whih ontinuously depends on g 2 L2(E;m).Proof. The inequality follows diretly from Fubini's theorem and the de�nition of R1 andps, s > 0.Sine R1jĝj is by Lemma 2.8(ii) E-quasi-ontinous, it is �nite E-q.e.. Thus, the E-q.e. ex-istene of the integral is proven.For two m-versions ĝ1; ĝ2 of g it holds(4.3) ����Z t0 psĝ1(x)� psĝ2(x) ds���� � etR1jĝ1 � ĝ2j(x); for all x 2 E:This is equal to 0m-a.e., sineR1jĝ1�ĝ2j(x) is anm-version ofG1jg1�g2j = 0 2 L2(E;m).Thus by Remark 2.6(v) it is equal to 0 E-q.e.. This proves the E-q.e. independene ofthe m-version ĝ.For (di�erent) g1; g2 2 L2(E;m) with m-versions ĝ1; ĝ2 it also holds (4.3). By squaringand integrating w.r.t. m we obtain the last assertion, sine G1 is a ontinuous linearoperator on L2(E;m). �Remark 4.2. Let g, ĝ be as in Lemma 4.1.



N-PARTICLE LANGEVIN DYNAMICS 27(i) Clearly the mapping (t; !) 7! Xt(!), ! 2 
, t � 0, is B([0;1))
F� measurable,where B([0;1)) denotes the Borel-�-�eld on [0;1). Sine by Fubini's theoremEx Z t0 ĝ(Xs) ds = Z t0 psĝ(x) dswhenever the integral on the right-hand side exists, the above lemma shows thatfor E-q.e. x 2 E the integral R t0 ĝ(Xs) ds exists Px-a.s. and is Px-a.s. independentof the m-version we hoose (whih has to be understood in a similar way as inLemma 4.1).(ii) Note that the E-q.e. existene of R t0 psĝ(�) ds for any t � 0 implies that all theintegrals R t0 psĝ(x) ds, t � 0, exist for x outside an E-exeptional set (i.e., thisE-exeptional set an be hosen independently of t � 0), sine ountable unionsof E-exeptional sets are E-exeptional.(iii) Clearly, by (ii) the integrals R t0 ĝ(Xs) ds, t � 0, exist P�-a.s. for all � 2 P(E�)suh that any E-exeptional set is ontained in a null set w.r.t. � (whih holdse.g. if � is absolutely ontinuous w.r.t. m, see Remark 2.6(i)).We need some more \tehnial information" to proeed.Lemma 4.3. Let f 2 D(L). Thenps ~f is E-quasi-ontinuous for all s > 0,and if f is bounded (i.e. f has a bounded m-version), the funtion ~f is bounded E-q.e. andthe mapping s 7! ps ~f(x)is for E-q.e. x 2 E right ontinuous and bounded on [0;1).Proof. Let h := (I � L)f and hoose an m-version ĥ of h. Clearly f = G1h and hene~f = R1ĥ holdsm-a.e.. Applying Lemma 2.8(ii) and Remark 2.6(v) we see that this holdseven E-q.e.. Lemma 2.12 implies that for E-q.e. x 2 E the paths (Xt)t�0 do Px-a.s. not hitthe E-exeptional set where ~f 6= R1ĥ, hene for these x it holds (ps ~f)(x) = Ex[ ~f(Xt)℄ =Ex[R1ĥ(Xt)℄ = (psR1ĥ)(x). Consequently, for s > 0, by Fubini's theorem it holdsps ~f(x) = psR1ĥ(x) = R1psĥ(x) for those x 2 E, for whih additionally R1psjĥj(x) <1. But sine this funtion is E-quasi-ontinuous by Lemma 2.8(ii), it is �nite E-q.e.,onsequently ps ~f and the E-q.. funtion R1psĥ oinide E-q.e.. Thus, ps ~f is E-quasi-ontinuous.To prove the seond assertion, let f have anm-version whih is bounded in absolute valueby C > 0. Then learly ( ~f ^ C) _ (�C) is a bounded E-quasi-ontinuous m-version off , hene by Remark 2.6(v) it di�ers from ~f only on an E-exeptional set. Consequently~f = ( ~f ^ C) _ (�C) E-q.e. proving that j ~f j � C holds E-q.e.Together with quasi-ontinuity of ~f this enables us to �nd an E-nest (Fk)k2N suh that~f is ontinuous on eah Fk, k 2 N, and j ~f(z)j � C for all z 2 Sk2N Fk. By Lemma 2.12we know that for E-q.e. x 2 E it holds(4.4) Px( limk!1�F k � �) = 1:



28 FLORIAN CONRAD, MARTIN GROTHAUSNow let ! 2 
 be suh that limk!1 �F k (!) � �(!). Then for any 0 � r < �(!) we �ndk 2 N suh that r < �F k (!), onsequently Xs(!) 2 Fk for all s 2 [0; r). But this impliesthat s 7! ~f(Xs(!)) is right ontinuous and bounded by C on [0; r), hene on [0; �), siner < � was hosen arbitrarily. Sine Xs(!) = � for all s � �(!) (remember that everyfuntion f : E ! R is extended to E� by f(�) = 0) we obtain right ontinuity on [0;1).By this and (4.4) we have shown that for E-q.e. x 2 E the proess ( ~f(Xs))s�0 is rightontinuous and bounded by C Px-a.s.. Hene Lebesgue's dominated onvergene theoremimplies that for those x the funtion s 7! Ex ~f(Xs) = ps ~f(x) is right ontinuous. �To prove the martingale property of Mt we �rst observe that for ! 2 
M [f ℄t+s(!)�M [f ℄t (!) = f(Xt+s(!))� f(Xt(!))� Z t+st Lf(Xr(!)) dr(4.5) = M [f ℄s Æ �t(!)if the integral exists. By Remark 4.2(ii),(i) this is true (for all t; s � 0) Px-a.s. for E-q.e. x 2 E. �t : 
! 
 denotes the time shift operator (f. [Sta99, De�nition IV.1.1℄).Equation (4.5) together with the Markov property of M leads to the following usefullemma.Lemma 4.4. Let f 2 D(L) be bounded. Suppose that for all t > 0 it holds(4.6) ExM [f ℄t = 0 E-q.e. x 2 EThen (M [f ℄t )t�0 is an (Ft)t�0-martingale w.r.t. Pz for E-q.e. z 2 E.Proof. From (4.6) we obtain for E-q.e. x 2 E(4.7) ExM [f ℄t = 0 8t 2 Q \ [0;1)Note that for all t > 0 and for E-q.e. x 2 E it holds ExM [f ℄t = pt ~f(x) � ~f(x) �R t0 psLf(x)ds. This is seen from the de�nition of (pt)t>0 (f. (2.2)), Remark 4.2(ii)(implying the existene of the third summand E-q.e.) and Fubini's theorem.The mapping t 7! pt ~f(x)� ~f(x)�R t0 psLf(x)ds is right ontinuous for E-q.e. x 2 E: The�rst summand is right ontinuous by Lemma 4.3, the seond is onstant and the integralfuntion in the third summand is, of ourse, ontinuous.Consequently, we obtain from (4.7) that for E-q.e. x 2 E it holds(4.8) ExM [f ℄t = 0 8t 2 [0;1)Now, as mentioned before, by (4.5) and the Markov property of M, it holds for E-q.e. z 2 E Ez[M [f ℄t+s �M [f ℄t jFt℄ = EXt [M [f ℄s ℄ Pz-a.s. for all t; s � 0If this is shown to be 0 Pz-a.s. for E-q.e. z 2 E and all t; s � 0 we are done.But this beomes lear, when we again as in the proof of Lemma 4.3 apply Lemma 2.12:Sine (4.8) holds for E-q.e. x 2 E, the exeptional set, where it is not ful�lled, is forE-q.e. initial point z 2 E not hit by the proess. �



N-PARTICLE LANGEVIN DYNAMICS 29Now, for a bounded f 2 D(L) and t > 0 it remains to show that for E-q.e. x 2 E itholds(4.9) ExM [f ℄t = pt ~f(x)� ~f(x)� Z t0 (psLf)(x) ds != 0We know that this is true in the sense of L2-funtions, if we replae \p" by \T":Ttf � f = Z t0 (TsLf) ds:We also know that pt ~f is an m-version of Ttf , so it is reasonable to proveLemma 4.5. Let g 2 L2(E;m) with m-version ĝ. It holdsZ t0 (psĝ)(x)ds = �Z t0 Tsg ds� (x)for m-a.e. x 2 E.Proof. We use a similar argument as in the proof of Lemma 2.8(i) (taken from [FOT94,Proof of Theorem 4.2.3℄). Let v 2 L2(E;m), v � 0. We already know by Lemma 4.1 thatR t0 (psĝ)(�) ds 2 L2(E;m), and this still remains true with psĝ replaed by jpsĝj. Sineonsequently �R t0 (jpsĝj)(�) ds; v�L2(E;m) <1, we an apply Fubini's theorem to obtain�Z t0 psĝ(�) ds; v�L2(E;m) = Z t0 (psĝ; v)L2(E;m) ds = Z t0 (Tsg; v)L2(E;m) ds;where we used the fat that psĝ is an m-version of Tsg. But sine R t0 Tsg ds exists asa Riemann integral and the mapping (�; v)L2(E;m) from L2(E;m) to R is a ontinuouslinear funtional, we obtain�Z t0 psĝ(�) ds; v�L2(E;m) = �Z t0 Tsg ds; v�L2(E;m)for any nonnegative v 2 L2(E;m), hene for any v 2 L2(E;m). This implies our asser-tion. �By now we only know that (4.9) is ful�lled for m-a.e. x 2 E. But sine the �rst twosummands are E-q.. (see Lemma 4.3), we are in view of Remark 2.6(v) �nally left toprove the following lemma. The proof is mainly taken from [AKR03, Lemma 5.1(iii)℄.Lemma 4.6. Let f 2 L2(E;m) with m-version f̂ . ThenZ t0 psf̂(�) dsis E-quasi-ontinuous.Proof. We may assume at �rst for onveniene that f̂ � 0, suh that throughout thisproof we only integrate over nonnegative funtions.By Remark 4.2(ii) (and E-quasi-ontinuity of R1f̂), we know that psf̂(x) 2 L1lo([0;1))and R1f̂(x) < 1 for E-q.e. x 2 E. Let x 2 E be suh that both holds, then by



30 FLORIAN CONRAD, MARTIN GROTHAUS[Wer02, Satz A.1.10℄ we �nd that the funtion t 7! et R t0 e�spsf̂(x) ds is loally absolutelyontinuous and, moreover, that we an apply the produt rule and the fundamentaltheorem of alulus (and thus integration by parts) to obtainZ t0 psf̂(x) ds = Z t0 ese�spsf̂(x)ds= �et Z t0 e�spsf̂(x) ds� 0�� Z t0 es Z s0 e�rprf̂(x) dr ds:Sine for any s � 0Z s0 e�rprf̂(x) dr = (R1f̂)(x)� Z 1s e�rprf̂(x) dr= (R1f̂)(x)� Z 10 e�(r+s)pr+sf̂(x) dr= (R1f̂)(x)� e�s(R1psf̂)(x);we obtain Z t0 psf̂(x) ds = et(R1f̂)(x)� (R1ptf̂)(x) � Z t0 es(R1f̂)(x) ds(4.10) +Z t0 (R1psf̂)(x) ds= (R1f̂)(x)� (R1ptf̂)(x) + Z t0 (R1psf̂)(x) ds:Clearly, by Lemma 2.8(ii), R1f̂ and R1ptf̂ are E-quasi-ontinuous. Fubini's theoremimplies Z t0 (R1psf̂)(x) ds = R1�Z t0 psf̂(�) ds� (x)Consequently, sine by Lemma 4.1 R t0 psf̂(�) ds 2 L2(E;m), we an again apply Lemma2.8(ii) to �nd that also the last summand in (4.10) is E-quasi-ontinuous.Hene we have shown the assertion for f̂ � 0, whih immediately extends to the ase ofgeneral f̂ . �This ompletes the proof of the following theorem.Theorem 4.7. Let f 2 D(L) be bounded and denote by ~f an E-quasi-ontinuous m-version of f . Then for E-q.e. x 2 E the proess (M [f ℄t )t�0 de�ned by (4.2) is an (Ft)t�0-martingale w.r.t. the probability measure Px.Remark 4.8. Note that the only fat keeping us away from extending Theorem 4.7 togeneral f 2 D(L) is that we did not prove right ontinuity of t 7! ptf(x) E-q.e. for thosef (f. Lemma 4.3).This result also yields (in view of (4.1) and Remark 4.2(iii)) a similar result for theP�-ase for bounded f 2 D(L), but quite general � 2 P(E):



N-PARTICLE LANGEVIN DYNAMICS 31Corollary 4.9. Let � 2 P(E) be suh that any E-exeptional set is ontained in a nullset w.r.t. �. Let f 2 D(L) be bounded and denote again by ~f an E-quasi-ontinuousm-version of f . Then the proess (M [f ℄t )t�0 de�ned by (4.2) is an (Ft)t�0-martingalew.r.t. P�.Before we state the result for the P�-ase we announed at the beginning of thissetion, we make the following remark.Remark 4.10. Let � be a probability measure on E suh that � has a density w.r.t. mwhih is L2-integrable w.r.t. m. Then by the Cauhy-Shwarz inequality in L2(E;m) itholds L2(E;m) � L1(E;�) ontinuously.Corollary 4.11. Let � 2 P(E) have an L2-integrable density w.r.t. m and let f 2 D(L)with E-quasi-ontinuous m-version ~f . Then w.r.t. the probability measure P� given as in(4.1) the proess (M [f ℄t )t�0 de�ned by (4.2) is an (Ft)t�0-martingale.Proof. Let s; t � 0. We have to show that(4.11) E�[M [f ℄t+s �M [f ℄t jFt℄ = 0 P�-a.s.:If f 2 D(L) is bounded this is true by Corollary 4.9.So, let f 2 D(L) be unbounded. De�ne g := (I � L)f , then f = G1g, and setting gn :=(g ^ n) _ (�n), n 2 N, the property that G1 is sub-Markovian implies that fn := G1gnis m-a.e. bounded (in absolute value) for all n 2 N. Moreover, sine gn ! g 2 L2(E;m)it follows fn = G1gn ! G1g = f in D(L) w.r.t. the graph norm as n!1. (This showsthat the bounded D(L)-funtions form a dense subset of D(L).)It holds for n 2 NE�[jE�(M [f ℄t+s �M [f ℄t jFt)j℄= E� h���E�(M [f ℄t+s �M [fn℄t+s � (M [f ℄t �M [fn℄t )jFt)���i� E�[jM [f ℄t+s �M [fn℄t+s j℄ +E�[jM [f ℄t �M [fn℄t j℄;where we applied (4.11) for fn. Let Lf , dLfn denote m-versions of Lf;Lfn 2 L2(E;m),n 2 N. For any r � 0 we obtainE�[jM [f ℄r �M [fn℄r j℄ = kE�[jM [f ℄r �M [fn℄r j℄ kL1(E;�)(4.12) � kprj ~f � ~fnj kL1(E;�) + k ~f � ~fnkL1(E;�)+E� Z r0 jLf(Xs)�dLfn(Xs)j dsL1(E;�)= kprj ~f � ~fnj kL1(E;�) + k ~f � ~fnkL1(E;�)+Z r0 kpsjLf �dLfnj kL1(E;�) ds� 2Ckf � fnkL2(E;m) + CrkLf � LfnkL2(E;m) n!1�! 0for some C > 0. Here we used Fubini's theorem, Remark 4.10, and the fats that psĝ isan m-version of Tsg for all g 2 L2(E;m) with m-version ĝ and that Ts is a ontrationfor s � 0. We onlude that (4.11) holds for general f 2 D(L). �



32 FLORIAN CONRAD, MARTIN GROTHAUSRemark 4.12. Note that in the P�-ase (with � being absolutely ontinuous w.r.t. m)we ould hoose any m-version f̂ of f 2 D(L) and de�neM [f̂ ℄t := f̂(Xt)� f̂(X0)� Z t0 Lf(Xs) dsfor t � 0, to obtain a martingale, sineE�[jE�(M [f̂ ℄t+s �M [f̂ ℄t jFt)j℄= E� h���E�(M [f̂ ℄t+s �M [f ℄t+s � (M [f̂ ℄t �M [f ℄t )jFt)���i� E�[jM [f̂ ℄t+s �M [f ℄t+sj℄ +E�[jM [f̂ ℄t �M [f ℄t j℄and having another look at (4.12) we see that this is equal to 0.5. The diffusion property for loal generatorsIn this setion we give a ondition for the generator (L;D(L)) of a quasi-regulargeneralized Dirihlet form E on L2(E;m) ensuring that an m-tight speial standardproess M = (
;F�; (Xt)t�0; (Pz)z2E�) with life time �, whih is properly assoiatedwith E in the resolvent sense (f. De�nition 2.7), is a di�usion in the sense that(5.1) Px( (Xt)t�0 is ontinuous on [0; �) ) = 1 for E-q.e. x 2 E:Let again (Tt)t�0 and (G�)�>0 be the C0 ontration semigroup and the strongly ontinu-ous ontration resolvent assoiated with L, and let (pt)t>0 and (R�)�>0 be the transitionsemigroup and resolvent of M . (Ft)t�0 denotes again the natural �ltration for M . Fortehnial reasons it makes sense to set X1 := � (as in [MR92, p.89℄).To prove ontinuity of (Xt)t�0 w.r.t. Px for an x 2 E, we use the following lemma.Exept of one argument its proof is the same as the proof of [MR92, Theorem V.1.5(p.153)℄.Lemma 5.1. Let U be a base of the topology of E. Suppose that for every U 2 U it holds(5.2) Pz(X�U 2 U) = 0 for E-q.e. z 2 E n U:Then (5.1) is valid.Proof. Let K � E be ompat and metrizable. Then U \K := fU \KjU 2 Ug formsa base of the topology of K. Sine K is seond ountable, it is strongly Lindel�of (f.[Sh73, p.104℄) and thus any element of a ountable base of K is a ountable union ofelements in U \K. Thus there exists a ountable subset UK � U suh that also UK \Kis a base of the topology of K. Hene, if (Kj)j2N is an E-nest of ompat metrizablesubsets of E, whih exists by quasi-regularity of E (f. [MR92, Proof of Theorem V.1.5and Remark IV.3.2(iii)℄), the set Û := Sj2N UKj is suh that Û \ Kj is a base of thetopology of Kj for every j 2 N and (5.2) holds for every U 2 Û . The rest follows as in[MR92, Theorem V.1.5℄. �



N-PARTICLE LANGEVIN DYNAMICS 33Remark 5.2. Note that, of ourse, the argument in the above proof is not neessary inthe situation of Setion 3, where we know that (5.2) holds for a ountable base of thetopology of the seond ountable manifold E. It is inluded to avoid a ase di�erentiationwhen stating Theorem 5.5 below.The idea to prove the ondition given in 5.1 is also taken from [MR92, Lemma V.1.8℄.Sine we are dealing with a speial ase here (f. the assumptions in Theorem 5.5 and seealso Remark 5.7), we do not need to transfer the omplete argumentation from [MR92,Setion V.1℄. We �rst prove the following lemma (f. [MR92, p. 129℄).Lemma 5.3. Let f 2 L2(E;m) with m-version f̂ , and let � be an (Ft)t�0-stopping time,then it holds for E-q.e. z 2 E(5.3) Ez[e��R1f̂(X�)℄ = Ez �Z 1� e�tf̂(Xt) dt� :Proof. If f̂ is bounded, we an use the strong Markov property (f. [MR92, De�nitionIV.1.8, Exerise IV.1.9℄) to deriveEz he��R1f̂(X�)i = Ez �e��EX� �Z 10 e�tf̂(Xt) dt�� = Ez �e�� Z 10 e�tf̂(Xt+�) dt�= Ez �e�� Z 1� e�(t��)f̂(Xt) dt� = Ez �Z 1� e�tf̂(Xt) dt�Consequently, by the monotone onvergene theorem, (5.3) holds also for funtions f̂ 2B+. Sine for L2-integrable positive Borel funtions f̂ we know thatEz Z 1� e�tf̂(Xt) dt � R1f̂(z) <1 E-q.e. z 2 Eby E-quasi-ontinuity of R�f (f. Lemma 2.8), for any f 2 L2(E;m) with m-version f̂the integrals/expetations in (5.3) exist E-q.e. and (5.3) holds. �Lemma 5.4. Let U � E, U open, and assume that there exists u 2 D(L) with E-q..m-version ~u, suh that ~u = 0 E-q.e. on E n U , ~u > 0 E-q.e on U and Lu = 0 m-a.e. onE n U .Then it holds Pz(X�U 2 U) = 0 E-q.e. on E n UProof. Let f := (I � L)u. By our assumptions we an hoose an m-version f̂ of f suhthat f̂(x) = 0 for all x 2 EnU . Aording to Remark 2.6(v) we an assume that ~u = R1f̂ ,sine R1f̂ is E-quasi-ontinuous by Lemma 2.8(ii). Then by Lemma 5.3 it holdsEz[e��U ~u(X�U )℄ = Ez[e��UR1f̂(X�U )℄(5.4) = Ez Z 1�U e�tf̂(Xt) dt= Ez Z 10 e�tf̂(Xt) dt = R1f̂(z) = ~u(z) = 0
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