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Abstract

We construct two types of equilibrium dynamics of infinite particle systems in a Riemannian
manifold X. These dynamics are analogs of the Glauber, respectively Kawasaki dynamics
of lattice spin systems. The Glauber dynamics now is a process where interacting particles
randomly appear and disappear, i.e., it is a birth-and-death process in X, while in the
Kawasaki dynamics interacting particles randomly jump over X. We establish conditions
on a priori explicitly given symmetrizing measures and generators of both dynamics under
which corresponding conservative Markov processes exist.
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1 Introduction

In the classical d-dimensional Ising model with spin space S = {−1, 1}, the Glauber
dynamics means that particles randomly change their spin value, which is called a
spin-flip. The generator of this dynamics is given by

(HGf)(σ) =
∑
x∈Zd

a(x, σ)(∇xf)(σ),

where
(∇xf)(σ) = f(σx)− f(σ),
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σx denoting the configuration σ in which the particle at site x has changed its spin
value. On the other hand, in the Kawasaki dynamics, pairs of neighboring particles
with different spins randomly exchange their spin values. A generator of this dynamics
is given by

(HKf)(σ) =
∑
x∈Zd

∑
y∈Zd, |x−y|=1

c(x, y, σ)(∇xyf)(σ),

where
(∇xyf)(σ) = f(σxy)− f(σ),

σxy denoting the configuration σ in which the particles at sites x and y have exchanged
their spin values. Under appropriate conditions on the coefficients a(x, σ) and c(x, y, σ),
the corresponding dynamics has a Gibbs measure as symmetrizing (hence invariant)
measure. We refer, e.g., to [4, 21, 25] for a discussion of the Glauber and Kawasaki
dynamics of lattice spin systems.

Let us now interpret a lattice system with spin space S = {−1, 1} as a model of a
lattice gas. Then σ(x) = 1 means that there is a particle at site x, while σ(x) = −1
means that the site x is empty. The Glauber dynamics of such a system means that,
at each site x, a particle randomly appears and disappears. Hence, this dynamics may
be interpreted as a birth-and-death process on Zd. A similar interpretation of the
Kawasaki dynamics yields that particles randomly jump from one site to another.

If we consider a continuous particle system, i.e., a system of particles which can
take any position in the Euclidean space Rd, then an analog of the Glauber dynamics
should be a process in which particles randomly appear and disappear in the space,
i.e., a spatial birth-and-death process. The generator of such a process is informally
given by the formula

(HGF )(γ) =
∑
x∈γ

d(x, γ)(D−
x F )(γ) +

∫
Rd

b(x, γ)(D+
x F )(γ) dx,

where
(D−

x F )(γ) = F (γ \ x)− F (γ), (D+
x F )(γ) = F (γ ∪ x)− F (γ). (1.1)

Here and below, for simplicity of notations, we just write x instead of {x}. The
coefficient d(x, γ) describes the rate at which the particle x of the configuration γ dies,
while b(x, γ) describes the rate at which, given the configuration γ, a new particle is
born at x.

Furthermore, an analog of the Kawasaki dynamics of continuous particles should
be a process in which particles randomly jump over the space Rd. The generator of
such a process is then informally given by

(HKF )(γ) =
∑
x∈γ

∫
Rd

c(x, y, γ)(D−+
xy F )(γ) dy,
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where
(D−+

xy F )(γ) = F (γ \ x ∪ y)− F (γ) (1.2)

and the coefficient c(x, y, γ) describes the rate at which the particle x of the configu-
ration γ jumps to y.

Spatial birth-and-death processes were first discussed by Preston in [28]. Under
some conditions on the birth and death rates, Preston proved the existence of such
processes in a bounded domain in Rd. Though the number of particles can be arbitrarily
large in this case, the total number of particles remains finite at any moment of time.
The problem of convergence of these processes to equilibrium was later studied in
[22, 26].

The problem of construction of a spatial birth-and-death process in the infinite
volume was initiated by Holley and Stroock in [13]. In fact, in that paper, birth-and-
death processes in bounded domains were analyzed in detail. Only in a very special
case of nearest neighbor birth-and-death processes on the real line, the existence of a
corresponding process on the whole space was proved and its properties were studied.
See also [5] for an extension of the uniqueness result of [13].

Glötzl [9, 10] derived conditions on the coefficients d(x, γ), b(x, γ), respectively
c(x, y, γ), under which the Glauber and Kawasaki generators are symmetric in the
space L2(µ), where µ is a given Gibbs measure. However, the problem of existence of
such dynamics was left open.

In the recent paper [3], Bertini, Cancrini, and Cesi studied the problem of existence
of a spectral gap for the Glauber dynamics in a bounded domain in Rd. They considered
a positive, finite range pair potential φ and an activity z > 0 which satisfy the condition
of low activity-high temperature regime. Then, with any bounded domain Λ ⊂ Rd and
a boundary condition η outside Λ, one may associate a finite volume Gibbs measure
µΛ,η. Bertini et al. considered the Glauber dynamics with death coefficient d(x, γ) = 1
and which has µΛ,η as symmetrizing measure (which uniquely determines the birth
coefficient b(x, γ)). It was shown that the generator of this dynamics has a spectral
gap on L2(µΛ,η) which is uniformly positive with respect to all bounded domains Λ
and boundary conditions η. A ramification of this result and its extension to hard core
potentials have been proposed by L. Wu [33].

By using the theory of Dirichlet forms [23, 24], an analog of the Glauber dynamics
from [3], but on the whole space (thus, involving infinite configurations) and for a quite
general pair potential φ, has been constructed in [15]. The coefficients of the generator
of this dynamics are given by

d(x, γ) = 1, b(x, γ) = exp

[
−

∑
y∈γ

φ(x, y)

]
,

and this dynamics has a Gibbs measure corresponding to the pair potential φ as sym-
metrizing (hence invariant) measure. The result about the spectral gap for a positive
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φ has also been extended in [15] to the infinite volume. We also refer to [11] for a
discussion of a scaling limit of equilibrium fluctuations of this dynamics.

It should be stressed that, till now, there has not been any proof of existence of a
Kawasaki-type dynamics of interacting continuous particle systems.

Thus, the aim of this paper is to present a general theorem on the existence of the
Glauber and Kawasaki dynamics of continuous particle systems which have a Gibbs
measure as symmetrizing (hence invariant) measure, and consider some examples of
these dynamics.

In Section 2, we fix a Riemannian manifold X as underlying space (the position
space of the particles) and the space Γ of all locally finite configurations in X. The
restriction to the Riemannian manifold case is mainly motivated by the necessity to
have constructive conditions for the existence of equilibrium states for interacting par-
ticle systems in X. Let us stress that all general statements of the paper (with minor
changes) remain valid for much more general underlying spaces.

We next recall the definition of a Gibbs measure µ on Γ which corresponds to a
relative energy E(x, γ) of the interaction between a particle x and a configuration γ.
About the measure µ we assume that it has correlation functions which satisfy the clas-
sical Ruelle bound. We also present some examples of a Gibbs measure corresponding
to a pair potential φ. It should be mentioned that, though in all examples we deal with
a pair potential φ, our general theory for existence of dynamics holds for a general
relative energy E(x, γ).

Next, in Section 3, under mild conditions on E(x, γ), we prove that there exist Hunt
processes MG and MK on Γ which are properly associated with the Dirichlet form of the
Glauber, respectively Kawasaki dynamics. In particular, MG and MK are conservative
Markov process on Γ with cadlag paths, and have µ as symmetrizing, hence invariant
measure. We also characterize these processes in terms of corresponding martingale
problems. Furthermore, we discuss the explicit form of the L2(µ)-generator of this
process on the set of continuous bounded cylinder functions. However, this generator
can only be written down under stronger conditions on E(x, γ), which however still
admit a singularilty of E(x, γ). In this section, we use the theory of Dirichlet forms
[23], and in particular, some ideas and techniques developed in [15, 16, 24, 29].

Throughout Section 3, we formulate our results for both dynamics, while proving
them only in the case of the Kawasaki dynamics. This is connected with the fact that
the proofs in the Glauber case are quite similar to, and simpler than the corresponding
proofs for the Kawasaki dynamics.

Finally, in Section 4 we consider some examples of Glauber and Kawasaki dynamics.
Let us conclude this section with the following remarks. First, we note that, in a

bounded domain, both the Glauber and Kawasaki dynamics can be described as jump
Markov processes. However, in the infinite volume, both dynamics do not belong to
this class, since in any time interval [0, t], each dynamics has an infinite number of
jumps.
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We also note that, though the construction of the Glauber dynamics and that of
the Kawasaki dynamics look quite similar, there is a drastic difference between them
in that (at least heuristically) the law of conservation of the number of particles holds
for the Kawasaki dynamics, and does not for the Glauber dynamics. We, therefore,
cannot expect a spectral gap for the generator of the Kawasaki dynamics in the infinite
volume.

Furthermore, the Glauber and Kawasaki dynamics have different sets of symmetriz-
ing measures. Indeed, the set of symmetrizing measures of a given Glauber dynamics
consists of all grand-canonical Gibbs measures corresponding to a given relative energy
of interaction and a fixed activity parameter z > 0. On the other hand, the set of
symmetrizing measures for a given Kawasaki dynamics consists of all Gibbs measures
as above, but corresponding to any activity parameter z > 0. This fact makes it espe-
cially interesting to study the hydrodynamic behavior of the Kawasaki dynamics, cf.
[7, 32].

Finally, let us note a similarity between the Kawasaki dynamics and the diffusion
dynamics of continuous particle systems [1, 24, 12, 16]. Namely, both types of dynanics
have conserved particle numbers and the same set of symmetrizing measures. There-
fore, just as in the diffusion case, it is natural to study the scaling limit of equilibrium
fluctuations for the Kawasaki dynamics, which is the subject of [17].

2 Gibbs measures on configuration spaces

Let X be a connected oriented C∞ manifold. We denote the Riemannian distance on
X by dist. Let B(X) denote the Borel σ-algebra on X and m the volume measure on
X.

The configuration space Γ := ΓX over X is defined as the set of all subsets of X
which are locally finite:

Γ :=
{
γ ⊂ X : |γΛ| <∞ for each compact Λ ⊂ X

}
,

where | · | denotes the cardinality of a set and γΛ := γ ∩Λ. One can identify any γ ∈ Γ
with the positive Radon measure

∑
x∈γ εx ∈ M(X), where εx is the Dirac measure

with mass at x,
∑

x∈∅ εx:=zero measure, and M(X) stands for the set of all positive
Radon measures on B(X). The space Γ can be endowed with the relative topology as
a subset of the space M(X) with the vague topology, i.e., the weakest topology on Γ
with respect to which all maps

Γ 3 γ 7→ 〈f, γ〉 :=

∫
X

f(x) γ(dx) =
∑
x∈γ

f(x), f ∈ C0(X),

are continuous. Here, C0(X) is the space of all continuous real-valued functions on X
with compact support. We shall denote the Borel σ-algebra on Γ by B(Γ).
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Now we proceed to consider Gibbs measures on Γ. For γ ∈ Γ and x ∈ X, we consider
a relative energy E(x, γ) ∈ (−∞,+∞] of interaction between a particle located at x
and the configuration γ. We suppose that the mapping E is measurable.

A probability measure µ on (Γ,B(Γ)) is called a (grand-canonical) Gibbs measure
corresponding to activity z > 0 and the relative energy E if it satisfies the Georgii–
Nguyen–Zessin identity ([27, Theorem 2], see also [19, Theorem 2.2.4]):∫

Γ

µ(dγ)

∫
X

γ(dx)F (x, γ) =

∫
Γ

µ(dγ)

∫
X

zm(dx) exp [−E(x, γ)]F (x, γ ∪ x) (2.1)

for any measurable function F : X × Γ → [0,+∞]. Let G(z, E) denote the set of all
Gibbs measures corresponding to z and E.

In particular, if E(x, γ) ≡ 0, then (2.1) is the Mecke identity, which holds if and
only if µ is the Poisson measure πz with intensity measure zm(dx).

We assume that

E(x, γ) ∈ R for m⊗ µ-a.e. (x, γ) ∈ X × Γ. (2.2)

Furthermore, we assume that, for any n ∈ N, there exists a non-negative measurable
symmetric function k

(n)
µ on Xn such that, for any measurable symmetric function f (n) :

Xn → [0,∞],∫
Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)µ(dγ)

=
1

n!

∫
Xn

f (n)(x1, . . . , xn)k(n)
µ (x1, . . . , xn)m(dx1) · · ·m(dxn), (2.3)

and
∀(x1, . . . , xn) ∈ Xn : k(n)

µ (x1, . . . , xn) ≤ ξn, (2.4)

where ξ > 0 is independent of n. The functions k
(n)
µ , n ∈ N, are called the correlation

functions of the measure µ, while (2.4) is called the Ruelle bound.
Notice that any probability measure µ on (Γ,B(Γ)) satisfyng the Ruelle bound has

all local moments finite, i.e.,∫
Γ

〈f, γ〉n µ(dγ) <∞, f ∈ C0(X), f ≥ 0, n ∈ N. (2.5)

Let us give examples of a Gibbs measure corresponding to a pair potential φ and
satisfying the above assumptions.

Let φ : X2 → (−∞,+∞] be a symmetric measurable function such that φ(x, y) ∈ R
for any x, y ∈ X, x 6= y. For each x ∈ X and γ ∈ Γ, we define

E(x, γ) :=

{∑
y∈γ φ(x, y), if

∑
y∈γ |φ(x, y)| <∞,

+∞, otherwise.

Let us formulate some conditions on the pair potential φ.
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(S) (Stability) There exists B ≥ 0 such that, for any γ ∈ Γ, |γ| <∞,∑
{x,y}⊂γ

φ(x, y) ≥ −B|γ|.

(I) (Integrability) We have

C := sup
x∈X

∫
X

| exp[−φ(x, y)]− 1|m(dy) <∞.

(F) (Finite range) There exists R > 0 such that

φ(x, y) = 0 if dist(x, y) ≥ R.

Note that if φ satisfies (F), then E(x, γ) ∈ R for any γ ∈ Γ and x ∈ X \ γ.

Theorem 2.1 ([14, 19, 20]) 1) Let (S), (I), and (F) hold, and let z > 0 be such that

z <
1

2e
(e2BC)−1,

where B and C are as in (S) and (I), respectively. Then there exists a Gibbs measure

µ ∈ G(z, E) whose correlation functions k
(n)
µ exist and satisfy the Ruelle bound.

2) Let φ be a non-negative potential which fulfills (I) and (F). Then for each z > 0,

there exists a Gibbs measure µ ∈ G(z, E) whose correlation functions k
(n)
µ exist and

satisfy the Ruelle bound.

Assume now that X = Rd, d ∈ N, and assume that φ is translation invariant,
i.e., φ(x, y) = φ̃(x − y), where φ̃ : R → (−∞,∞] is such that φ̃(x) ∈ R for x 6= 0 and
φ̃(−x) = φ̃(x) for all x ∈ Rd. In this case, the conditions on z and φ can be significantly
weakened. First, we note that the condition (I) now looks as follows:

C :=

∫
Rd

| exp[−φ̃(x)]− 1|m(dx) <∞.

For the notion of a superstable, lower regular potential and the notion of a tempered
Gibbs measure, appearing in the following theorem, see [31].

Theorem 2.2 ([30, 31]) Assume that X = Rd and φ is translation invariant.
1) Let (S) and (I) hold and let z > 0 be such that

z <
1

e
(e2BC)−1,
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where B and C are as in (S) and (I), respectively. Then there exists a Gibbs measure
µ ∈ G(z, E) whose correlation functions exist and satisfy the Ruelle bound.

2) Let φ be a non-negative potential which fulfills (I). Then, for each z > 0, there
exists a Gibbs measure µ ∈ G(z, E) whose correlation functions exist and satisfy the
Ruelle bound.

3) Let φ satisfy (I) and additionally let φ be a superstable, lower regular potential.
Then the set Gtemp(z, E) of all tempered Gibbs measures is non-empty and each measure
from Gtemp(z, E) has correlation functions which satisfy the Ruelle bound.

We also have the following lemma, which follows from (the proof of) [16, Lemma
3.1].

Lemma 2.1 Let X = Rd and let φ, z, and µ ∈ G(z, E) be as in one of the statements
of Theorem 2.2. Assume additionally that there exists r > 0 such that

sup
x∈B(r)c

φ̃(x) <∞,

where B(r) denotes the ball in Rd of radius r centered at the origin. Then (2.2) holds.

3 Existence results

In what follows, we shall consider a Gibbs measure µ ∈ G(z, E) as in Section 2, i.e.,
a probability measure µ on (Γ,B(Γ)) which satisfies (2.1)–(2.4). We introduce the set
FCb(C0(X),Γ) of all functions of the form

Γ 3 γ 7→ F (γ) = gF (〈ϕ1, γ〉, . . . , 〈ϕN , γ〉),

where N ∈ N, ϕ1, . . . , ϕN ∈ C0(X) and gF ∈ Cb(RN), where Cb(RN) denotes the set
of all continuous bounded functions on RN .

We consider measurable mappings

X × Γ 3 (x, γ) 7→ d(x, γ) ∈ [0,∞),

X ×X × Γ 3 (x, y, γ) 7→ c(x, y, γ) ∈ [0,∞).

We assume that, for each compact Λ ⊂ X,∫
Γ

µ(dγ)

∫
Λ

γ(dx)d(x, γ) <∞, (3.1)∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

m(dy)c(x, y, γ)(111Λ(x) + 111Λ(y)) <∞, (3.2)

where 111Λ denotes the indicator of Λ.
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For each function F : Γ → R, γ ∈ Γ, and x, y ∈ X, we recall the notations (1.1),
(1.2).

We define bilinear forms

EG(F,G) :=

∫
Γ

µ(dγ)

∫
X

γ(dx)d(x, γ)(D−
x F )(γ)(D−

x G)(γ), (3.3)

EK(F,G) :=

∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

zm(dy)c(x, y, γ)(D−+
xy F )(γ)(D−+

xy G)(γ), (3.4)

where F,G ∈ FCb(C0(X),Γ). Below we shall show that EK corresponds to a Glauber
dynamics and EK to a Kawasaki dynamics.

We note that, for any F ∈ FCb(C0(X),Γ), there exist a compact Λ ⊂ X and
C1 > 0 such that

|(D−
x F )(γ)| ≤ C1111Λ(x), |(D−+

xy F )(γ)| ≤ C1(111Λ(x) + 111Λ(y)), γ ∈ Γ, x, y ∈ X.

Therefore, by (3.1) and (3.2), the right hand sides of formulas (3.3) and (3.4) are
well-defined and finite.

Lemma 3.1 We have E](F,G) = 0 for all F,G ∈ FCb(C0(X),Γ) such that F = 0
µ-a.e., ] = G,K.

Proof. It suffices to show that, for F ∈ FCb(C0(X),Γ), F = 0 µ-a.e., we have
(D−+

x,y F )(γ) = 0 µ̃-a.e., where µ̃ is the measure on X ×X × Γ defined by

µ̃(dx, dy, dγ) := γ(dx) zm(dy)µ(dγ). (3.5)

Let Λ be a compact subset of X. We have:∫
Γ

µ(dγ)

∫
Λ

γ(dx)

∫
Λ

zm(dy)|F (γ)| =
∫

Γ

µ(dγ)|F (γ)|
∫

Λ

γ(dx)

∫
Λ

zm(dy) = 0,

which implies that F (γ) = 0 µ̃-a.e. Next, by (2.1) and (2.2),∫
Γ

µ(dγ)

∫
Λ

γ(dx)

∫
Λ

zm(dy)|F (γ \ x ∪ y)|

=

∫
Γ

µ(dγ)|F (γ)|
∫

Λ

γ(dx)

∫
Λ

zm(dy) exp[−E(y, γ) + E(x, γ \ x ∪ y)]. (3.6)

Since F is bounded, by (2.5), the integrals in (3.6) are finite. Therefore,

|F (γ)| exp[−E(y, γ) + E(x, γ \ x ∪ y)] <∞ for µ̃-a.e. (x, y, γ) ∈ X ×X × Γ. (3.7)

Since F = 0 µ-a.e., by (3.6) and (3.7), F (γ \ x ∪ y) = 0 µ̃-a.e. �

Thus, (EG,FCb(C0(X),Γ)) and (EK,FCb(C0(X),Γ)) are well-defined bilinear forms
on L2(Γ, µ).
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Lemma 3.2 The bilinear forms (EG,FCb(C0(X),Γ)) and (EK,FCb(C0(X),Γ)) are
closable on L2(Γ, µ) and their closures will be denoted by (EG, D(EG)), (EK, D(EK)),
respectively.

Proof. Let (Fn)∞n=1 be a sequence in FCb(C0(X),Γ) such that ‖Fn‖L2(µ) → 0 as n→∞
and

EK(Fn − Fk) → 0 as n, k →∞. (3.8)

To prove the closability of EK it suffices to show that there exists a subsequence
{Fnk

}∞k=1 such that EK(Fnk
) → 0 as k →∞.

Let Λ be a compact subset of X. By (2.5), we have∫
Γ

µ(dγ)

∫
Λ

γ(dx) |Fn(γ)| ≤ ‖Fn‖L2(µ)

(∫
Γ

〈111Λ, γ〉2 µ(dγ)

)1/2

→ 0 as n→∞.

Therefore, there exists a subsequence of (Fn)∞n=1, denoted by (F
(1)
n )∞n=1, such that

F
(1)
n (γ) → 0 for γ(dx)µ(dγ)-a.e. (x, γ) ∈ Λ × Γ. Hence, there exists a subsequence

(F
(2)
n )∞n=1 of (F

(1)
n )∞n=1 such that F

(2)
n (γ) → 0 for γ(dx)µ(dγ)-a.e. (x, γ) ∈ X × Γ.

Next, analogously to (3.6),∫
Γ

µ(dγ)

∫
Λ

γ(dx)

∫
Λ

zm(dy) exp[−E(y, γ) + E(x, γ \ x ∪ y)] |F (2)
n (γ \ x ∪ y)|

=

∫
Γ

µ(dγ)

∫
Λ

zm(dx)

∫
Λ

γ(dy)|Fn(γ)|

≤ ‖F (2)
n ‖L2(µ)zm(Λ)

(∫
Γ

〈111Λ, γ〉2 µ(dγ)

)1/2

→ 0 as n→∞.

By virtue of (2.2),

exp[−E(y, γ) + E(x, γ \ x ∪ y)] ∈ (0,+∞] for µ̃-a.e. (x, y, γ) ∈ X ×X × Γ.

Therefore, there exists a subsequence (F
(3)
n )∞n=1 of (F

(2)
n )∞n=1 such that F

(3)
n (γ\x∪y) → 0

for µ̃-a.e. (x, y, γ) ∈ X ×X × Γ, where the measure µ̃ is defined by (3.5).
Thus,

(D−+
xy F

(3)
n )(γ) → 0 as n→∞ for µ̃-a.e. (x, y, γ) ∈ X ×X × Γ. (3.9)

Now, by (3.9) and Fatou’s lemma

EK(F (3)
n ) =

∫
c(x, y, γ)(D−+

xy F
(3)
n )(γ)2 µ̃(dx, dy, dγ)

=

∫
c(x, y, γ)

(
(D−+

xy F
(3)
n )(γ)− lim

m→∞
(D−+

xy F
(3)
m )(γ)

)2

µ̃(dx, dy, dγ)
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≤ lim inf
m→∞

∫
c(x, y, γ)((D−+

xy F
(3)
n )(γ)− (D−+

xy F
(3)
m )(γ))2 µ̃(dx, dy, dγ)

= lim inf
m→∞

EK(F (3)
n − F (3)

m ),

which by (3.8) can be made arbitrarily small for n large enough. �

For the notion of a Dirichlet form, appearing in the following lemma, we refer to
e.g. [23, Chap. I, Sect. 4].

Lemma 3.3 (EG, D(EG) and (EK, D(EK)) are Dirichlet form on L2(Γ, µ).

Proof. On D(EK) we consider the norm ‖F‖D(EK) := (‖F‖2
L2(µ)+EK(F ))1/2, F ∈ D(EK).

For any F,G ∈ FCb(C0(X),Γ), we define

S(F,G)(x, y, γ) := c(x, y, γ)(D−+
xy F )(γ)(D−+

xy G)(γ), x, y ∈ X, γ ∈ Γ.

Using the Cauchy inequality, we conclude that S extends to a bilinear continuous
map from (D(EK), ‖ · ‖D(EK)) × (D(EK), ‖ · ‖D(EK)) into L1(X × X × Γ, µ̃). Let F ∈
D(EK) and consider any sequence (Fn)∞n=1 in FCb(C0(X),Γ) such that Fn → F in
(D(EK), ‖ · ‖D(EK)). In particular, Fn → F in L2(µ). Then, analogously to the proof of
Lemma 3.2, for some subsequence (Fnk

)∞k=1, we get

(D−+
xy Fnk

)(γ) → (D−+
xy F )(γ) for µ̃-a.e. (x, y, γ) ∈ X ×X × Γ.

Therefore, for any F,G ∈ D(EK),

S(F,G)(x, y, γ) := c(x, y, γ)(D−+
xy F )(γ)(D−+

xy G)(γ) for µ̃-a.e. (x, y, γ) ∈ X ×X × Γ
(3.10)

and

EK(F,G) =

∫
S(F,G)(x, y, γ) µ̃(dx, dy, dγ). (3.11)

Define R 3 x 7→ g(x):=(0∨ x)∧ 1. We again fix any F ∈ D(EK) and let (Fn)∞n=1 be
a sequence of functions from FCb(C0(X),Γ) such that Fn → F in (D(EK), ‖ · ‖D(EK)).
Consider the sequence (g(Fn))n∈N. We evidently have: g(Fn) ∈ FCb(C0(X),Γ) for
each n ∈ N and, by the dominated convergence theorem, g(Fn) → g(F ) as n → ∞
in L2(µ). Next, by the above argument, we have, for some subsequence (Fnk

)∞k=1,
(D−+

xy g(Fnk
))(γ) → (D−+

xy g(F ))(γ) as n→∞ for µ̃-a.e. (x, y, γ).
For any x, y ∈ R, we evidently have

|g(x)− g(y)| ≤ |x− y|. (3.12)

Therefore, the sequence c(x, y, γ)1/2(D−+
xy g(Fn))(γ), n ∈ N, is µ̃-uniformly square-

integrable, since so is the sequence c(x, y, γ)1/2(D−+
xy Fn)(γ), n ∈ N. Hence

c(x, y, γ)1/2(D−+
xy g(Fnk

))(γ) → c(x, y, γ)1/2(D−+
xy g(F ))(γ) as k →∞ in L2(µ̃).
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By (3.10) and (3.11), this yields: g(F ) ∈ D(EK).
Finally, by (3.10)–(3.12), EK(g(F )) ≤ EK(F ), which means that (EK, D(EK))) is a

Dirichlet form. �

We shall now need the bigger space
..

Γ consisting of all Z+ ∪ {∞}-valued Radon

measures on X (which is Polish, see e.g. [18]). Since Γ ⊂
..

Γ and B(
..

Γ) ∩ Γ = B(Γ), we

can consider µ as a measure on (
..

Γ,B(
..

Γ)) and correspondingly (E , D(E)) as a Dirichlet

form on L2(
..

Γ, µ).
For the notion of a quasi-regular Dirichlet form, appearing in the following lemma,

we refer to [23, Chap. IV, Sect. 3].

Lemma 3.4 (EG, D(EG)) and (EK, D(EK)) are quasi-regular Dirichlet forms on L2(
..

Γ, µ).

Proof. Analogously to [24, Proposition 4.1], it suffices to show that there exists a

bounded, complete metric ρ on
..

Γ generating the vague topology such that, for all

γ0 ∈
..

Γ, ρ(·, γ0) ∈ D(EK) and∫
X

γ(dx)

∫
X

zm(dy)S(ρ(·, γ0))(x, y, γ) ≤ η(γ) µ-a.e.

for some η ∈ L1(
..

Γ, µ) (independent of γ0). Here, S(F ):=S(F, F ). The proof below is a
modification of the proof of [24, Proposition 4.8] and the proof of [15, Proposition 3.2].

Fix any x0 ∈ X, let B(r) denote the open ball in X of radius r > 0 centered at x0.
For each k ∈ N, we define

gk(x) :=
2

3

(
1

2
− dist(x,B(k)) ∧ 1

2

)
, x ∈ X,

where dist(x,B(k)) denotes the distance from the point x to the ball B(k). Next, we
set

φk(x):=3gk(x), x ∈ X, k ∈ N.

Let ζ be a function in C1
b(R) such that 0 ≤ ζ ≤ 1 on [0,∞), ζ(t) = t on [−1/2, 1/2],

ζ ′ ∈ [0, 1] on [0,∞). For any fixed γ0 ∈
..

Γ and for any k, n ∈ N, (the restriction to Γ
of) the function

ζ

(
sup
j≤n

|〈φkgj, ·〉 − 〈φkgj, γ0〉|
)

belongs to FCb(C0(X),Γ) (note that 〈φkgj, γ0〉 is a constant). Furthermore, taking
into account that ζ ′ ∈ [0, 1] on [0,∞), we get from the mean value theorem, for each
γ ∈ Γ, x ∈ γ, and x ∈ X \ γ,

S

(
ζ

(
sup
j≤n

|〈φkgj, ·〉 − 〈φkgj, γ0〉|
))

(x, y, γ)
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≤ c(x, y, γ)

(
sup
j≤n

|〈φkgj, γ〉 − 〈φkgj, γ0〉 − (φkgj)(x) + (φkgj)(y)|

− sup
j≤n

|〈φkgj, γ〉 − 〈φkgj, γ0〉|
)2

≤ c(x, y, γ) sup
j≤n

| − (φkgj)(x) + (φkgj)(y)|2

≤ 2c(x, y, γ)

(
sup
j≤n

(φkgj)(x)
2 + sup

j≤n
(φkgj)(y)

2

)
≤ 2c(x, y, γ)(111B(k+1/2)(x) + 111B(k+1/2)(y)). (3.13)

For each k ∈ N, we define

Fk(γ, γ0) := ζ

(
sup
j∈N

|〈φkgj, γ〉 − 〈φkgj, γ0〉|
)
, γ, γ0 ∈

..

Γ.

Then, for a fixed γ0 ∈
..

Γ,

ζ

(
sup
j≤n

|〈φkgj, γ〉 − 〈φkgj, γ0〉|
)
→ Fk(γ, γ0)

as n→∞ for each γ ∈
..

Γ and in L2(µ). Hence, by (3.13) and the Banach–Alaoglu and
the Banach–Saks theorems (see e.g. [23, Appendix A.2]), Fk(·, γ0) ∈ D(EK) and

S(Fk(·, γ0))(x, y, γ) ≤ 2c(x, y, γ)(111B(k+1/2)(x) + 111B(k+1/2)(y)) µ̃-a.e.

Define

ck :=

(
1+2

∫
c(x, y, γ)(111B(k+1/2)(x)+111B(k+1/2)(y)) µ̃(dx, dy, dγ)

)−1/2

2−k/2, k ∈ N,

which are finite positive numbers by (3.2), and furthermore, ck → 0 as k →∞.
We define

ρ(γ1, γ2):= sup
k∈N

(
ckFk(γ1, γ2)

)
, γ1, γ2 ∈

..

Γ.

By [24, Theorem 3.6], ρ is a bounded, complete metric on
..

Γ generating the vague
topology.

Analogously to the above, we now conclude that, for any fixed γ0 ∈
..

Γ, ρ(·, γ0) ∈
D(EK) and ∫

X

γ(dx)

∫
X

zm(dy)S(ρ(·, γ0))(x, y, γ) ≤ η(γ) µ-a.e.,

where

η(γ) := 2 sup
k∈N

(
c2k

∫
X

γ(dx)

∫
X

zm(dy)c(x, y, γ)(111B(k+1/2)(x) + 111B(k+1/2)(y))

)
.
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Finally,∫
Γ

η(γ)µ(dγ) ≤ 2
∞∑

k=1

c2k

∫
c(x, y, γ)(111B(k+1/2)(x) + 111B(k+1/2)(y)) µ̃(dx, dy, dγ)

≤
∞∑

k=1

2−k = 1.

Thus, the lemma is proved. �

For the notion of an exceptional set, appearing in the next proposition, we refer
e.g. to [23, Chap. III, Sect. 2].

Lemma 3.5 1) Assume that, for any compact Λ ⊂ X, we have∫
Γ

µ(dγ)

∫
Λ

zm(dx) exp[−2E(x, γ)]d(x, γ ∪ x)2 <∞. (3.14)

Then the set
..

Γ \ Γ is EG–exceptional.
2) Assume that c(x, y, γ) may be represented in the form

c(x, y, γ) = a(x, y)κ(x, y, γ), (3.15)

where a : X ×X → [0,∞] is measurable and satisfies

sup
x∈Λ

∫
X

a(x, y)m(dy) <∞, sup
y∈Λ

∫
X

a(x, y)m(dx) <∞ (3.16)

for any compact Λ ⊂ X, and κ : X ×X × Γ → [0,∞] is measurable and satisfies∫
Γ

µ(dγ)

∫
X

zm(dx)

∫
X

zm(dy)a(x, y) exp[−2E(x, γ)]κ(x, y, γ∪x)2(111Λ(x)+111Λ(y)) <∞

(3.17)

for any compact Λ ⊂ X. Then the set
..

Γ \ Γ is EK-exceptional.

Remark 3.1 Notice that, by (2.1) and the Cauchy inequality, condition (3.14), re-
spectively (3.15)–(3.17), is stronger than condition (3.1), respectively (3.2).

Proof of Lemma 3.5. We modify the proof of [29, Proposition 1 and Corollary 1] and
the proof of [15, Proposition 3.3] according to our situation.

It suffices to prove the result locally, i.e., to show that, for any fixed a ∈ X, there
exists a closed set Ba that is the closure of an open neighborhood of a and such that
the set

Na := {γ ∈
..

Γ : sup
x∈Ba

γ({x}) ≥ 2}
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is EK-exceptional. By [29, Lemma 1], we need to prove that there exists a sequence

un ∈ D(EK), n ∈ N, such that each un is a continuous function on
..

Γ, un → 111Na

pointwise as n→∞, and supn∈N EK(un) <∞.
So, we fix a ∈ X. There exists an open neighborhood B̃a of a which is diffeomorphic

to the open cube (−3,+3)d in Rd. We fix the corresponding coordinate system in B̃a

and we set Ba := [−1, 1]d.
Let f ∈ C0(R) be such that 111[0,1] ≤ f ≤ 111[−1/2,3/2). For any n ∈ N and i =

(i1, . . . , id) ∈ An := Zd ∩ [−n, n]d, we define a function f
(n)
i ∈ C0(X) by

f
(n)
i (x) :=

{∏d
k=1 f(nxk − ik), x ∈ B̃a,

0, otherwise.

Let also

I
(n)
i (x) :=

{∏d
k=1 111[−1/2,3/2)(nxk − ik), x ∈ B̃x,

0, otherwise,

and note that f
(n)
i ≤ I

(n)
i .

Let ψ ∈ C1
b(R) be such that 111[2,∞) ≤ ψ ≤ 111[1,∞) and 0 ≤ ψ′ ≤ 2111(1,∞). We define

continuous functions

..

Γ 3 γ 7→ un(γ):=ψ

(
sup
i∈An

〈f (n)
i , γ〉

)
, n ∈ N,

whose restriction to Γ belongs to FCb(C0(X),Γ). Evidently, un → 111Na pointwise as
n→∞.

By the mean value theorem, we have, for each γ ∈ Γ, x ∈ γ, y ∈ X \ γ, and for

some point Tn(x, y, γ) between supi∈An
〈f (n)

i , γ \ x ∪ y〉 and supi∈An
〈f (n)

i , γ〉:

S(un)(x, y, γ) = c(x, y, γ)ψ′(Tn(x, y, γ))2

(
sup
i∈An

〈f (n)
i , γ \ x ∪ y〉 − sup

i∈An

〈f (n)
i , γ〉

)2

≤ c(x, y, γ)ψ′(Tn(x, y, γ))2 sup
i∈An

|〈f (n)
i , γ \ x ∪ y〉 − 〈f (n)

i , γ〉|2

≤ 2c(x, y, γ)ψ′(Tn(x, y, γ))2

(
sup
i∈An

f
(n)
i (x)2 + sup

i∈An

f
(n)
i (y)2

)
≤ 2c(x, y, γ)ψ′(Tn(x, y, γ))2(111Na(x) + 111Na(y))

≤ 8c(x, y, γ)111(1,∞)(Tn(x, y, γ))(111Na(x) + 111Na(y))

≤ 8c(x, y, γ)111(1,∞)

(
sup
i∈An

(〈f (n)
i , γ〉+ f

(n)
i (y))

)
(111Na(x) + 111Na(y))

≤ 8c(x, y, γ)111(1,∞)

(
sup
i∈An

(〈I(n)
i , γ〉+ I

(n)
i (y))

)
(111Na(x) + 111Na(y))
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= 8c(x, y, γ)111[2,∞)

(
sup
i∈An

(〈I(n)
i , γ〉+ I

(n)
i (y))

)
(111Na(x) + 111Na(y))

≤ 8c(x, y, γ)
∑
i∈An

111[2,∞)(〈I(n)
i , γ〉+ I

(n)
i (γ))(111Na(x) + 111Na(y))

≤ 8c(x, y, γ)
∑
i∈An

(111[2,∞)(〈I(n)
i , γ〉) + 111[1,∞)(〈I(n)

i , γ〉)111
supp I

(n)
i

(y))(111Na(x) + 111Na(y)),

(3.18)

where we used that I
(n)
i is integer-valued. Since |An| = (2n+ 1)d, we get from (3.18):

EK(un) ≤ 8(2n+ 1)d sup
i∈An

∫
c(x, y, γ)(111[2,∞)(〈I(n)

i , γ〉) + 111[1,∞)(〈I(n)
i , γ〉)111

supp I
(n)
i

(y))

×(111Na(x) + 111Na(y)) µ̃(dx, dy, dγ)

= 8(2n+ 1)d sup
i∈An

∫
Γ

µ(dγ)

∫
X

zm(dx) exp[−E(x, γ)]

∫
X

zm(dy)c(x, y, γ ∪ x)

(111[2,∞)(〈I(n)
i , γ ∪ x〉) + 111[1,∞)(〈I(n)

i , γ ∪ x〉)111
supp I

(n)
i

(y))

≤ 8(2n+ 1)d sup
i∈An

∫
Γ

µ(dγ)

∫
X

zm(dx) exp[−E(x, γ)]

∫
X

zm(dy) c(x, y, γ ∪ x)

×(111[2,∞)(〈I(n)
i , γ〉) + 111[1,∞)(〈I(n)

i , γ〉)111
supp I

(n)
i

(x)

+ 111[1,∞)(〈I(n)
i , γ〉)111

supp I
(n)
i

(y) + 111
supp I

(n)
i

(x)111
supp I

(n)
i

(y))(111Na(x) + 111Na(y)). (3.19)

By using the Ruelle bound and the representation of the factorial moment densities
through correlation functions, see e.g. [6], Section 5.4, in particular formula (5.4.12),
we easily conclude that the following statement holds: There exist constants C2, C3 > 0
such that, for any set A ∈ B(X), A ⊂ B̃a, we have:

µ(|γA| ≥ 1) ≤ C2m(A),

µ(|γA| ≥ 2) ≤ C3m(A)2.

Therefore, there exist constants C4, C5 > 0 such that,

µ(|γ
supp I

(n)
i
| ≥ 1) ≤ C4

(
2

n

)d

,

µ(|γ
supp I

(n)
i
| ≥ 2) ≤ C5

(
2

n

)2d

, n ∈ N, i ∈ An. (3.20)

By (3.15)–(3.17), (3.19), (3.20), and the Cauchy inequality, we now easily conclude
that

sup
n∈N

EK(un) <∞,
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which implies the lemma. �
We now have the main result of this paper.

Theorem 3.1 Let ] = G,K. We have:
1) Assume that (3.14), respectively (3.15)–(3.17), holds. Then there exists a con-

servative Hunt process

M] = (ΩΩΩ],F], (F]
t)t≥0, (ΘΘΘ

]
t)t≥0, (X

](t))t≥0, (P
]
γ)γ∈Γ)

on Γ (see e.g. [23, p. 92]) which is properly associated with (E], D(E])), i.e., for all
(µ-versions of ) F ∈ L2(Γ, µ) and all t > 0 the function

Γ 3 γ 7→ p]
tF (γ):=

∫
ΩΩΩ

F (X](t)) dP]
γ (3.21)

is an E]-quasi-continuous version of exp(−tH])F , where (H], D(H])) is the generator
of (E], D(E])). M] is up to µ-equivalence unique (cf. [23, Chap. IV, Sect. 6]). In

particular, M] is µ-symmetric (i.e.,
∫
Gp]

tF dµ =
∫
F p]

tGdµ for all F,G : Γ → R+,
B(Γ)-measurable), so has µ as an invariant measure.

2) M] from 1) is up to µ-equivalence (cf. [23, Definition 6.3]) unique between all
Hunt processes M′ = (ΩΩΩ′,F′, (F′

t)t≥0, (ΘΘΘ
′
t)t≥0, (X

′(t))t≥0, (P
′
γ)γ∈Γ) on Γ having µ as

invariant measure and solving the martingale problem for (−H], D(H])), i.e., for all
G ∈ D(H])

G̃(X′(t))− G̃(X′(0)) +

∫ t

0

(H]G)(X′(s)) ds, t ≥ 0,

is an (F′
t)-martingale under P′

γ for E]-q.e. γ ∈ Γ. (Here, G̃ denotes an E]-quasi-
continuous version of G, cf. [23, Ch. IV, Proposition 3.3].)

Remark 3.2 In Theorem 3.1, M] can be taken canonical, i.e., ΩΩΩ] is the set of all cadlag
functions ω : [0,∞) → Γ (i.e., ω is right continuous on [0,∞) and has left limits on
(0,∞)), X](t)(ω):=ω(t), t ≥ 0, ω ∈ ΩΩΩ], (F]

t)t≥0 together with F] is the corresponding
minimum completed admissible family (cf. [8, Section 4.1]) and ΘΘΘ]

t, t ≥ 0, are the
corresponding natural time shifts.

Proof of Theorem 3.1. The first part of the theorem follows from Lemmas 3.3–3.5, the
fact that 1 ∈ D(E]) and E](1, 1) = 0, ] = G,K, and [23, Chap. IV, Theorem 3.5 and
Chap. V, Proposition 2.15]. The second part follows directly from (the proof of) [2,
Theorem 3.5]. �

Remark 3.3 It follows from Lemmas 3.3, 3.4 and the proof of Theorem 3.1 that,
if instead of (3.14), respectively (3.15)–(3.17), we only demand the weaker condition

(3.1), respectively (3.2), then Theorem 3.1 remains true with Γ replaced by
..

Γ.
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Let us now derive an explicit formula for the generator of EG, respectively EK.
However, this can only be done under stronger conditions on the coefficients d(x, γ)
and c(x, y, γ).

Using (2.1) and (2.2), we have, for F ∈ FCb(C0(X),Γ),

EK(F ) := EK(F, F )

=

∫
Γ

µ(dγ)

∫
X

zm(dy) exp[−E(y, γ) + E(y, γ)]

∫
X

γ(dx) c(x, y, γ)(D−+
xy F )(γ)2

=

∫
Γ

µ(dγ)

∫
X

γ(dy) exp[E(y, γ \ y)]
∫

X

(γ \ y)(dx)c(x, y, γ \ y)(F (γ \ x)− F (γ \ y))2

=

∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

(γ \ x)(dy) exp[E(y, γ \ y)]c(x, y, γ \ y)(F (γ \ x)− F (γ \ y))2

=

∫
Γ

µ(dγ)

∫
X

zm(dx) exp[−E(x, γ)]

∫
X

γ(dy) exp[E(y, γ \ y ∪ x)]

×c(x, y, γ \ y ∪ x)(F (γ)− F (γ \ y ∪ x))2

=

∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

zm(dy) c(y, x, γ \ x ∪ y)

× exp[−E(y, γ) + E(x, γ \ x ∪ y)](D−+
xy F )(γ)2. (3.22)

By (3.4) and (3.22), we have, for any F,G ∈ FCb(C0(X),Γ),

EK(F,G) =

∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

zm(dy) c̃(x, y, γ)(D−+
xy F )(γ)(D−+

xy G)(γ),

where

c̃(x, y, γ) =
1

2

(
c(x, y, γ) + c(y, x, γ \ x ∪ y) exp[−E(y, γ) + E(x, γ \ x ∪ y)]

)
. (3.23)

As easily seen, c̃ again satisfies the condition (3.2). Furthermore, c̃ evidently satisfies
the following identity:

c̃(x, y, γ) = c̃(y, x, γ \ x ∪ y) exp[−E(y, γ) + E(x, γ \ x ∪ y)],

so that ˜̃c = c̃.

Theorem 3.2 1) Assume that, for each compact Λ ⊂ X,∫
Λ

γ(dx)d(x, γ) ∈ L2(Γ, µ),∫
Λ

zm(dx)b(x, γ) ∈ L2(Γ, µ), (3.24)

18



where
b(x, γ) := exp[−E(x, γ)]d(x, γ ∪ x), x ∈ X, γ ∈ Γ. (3.25)

Then

EG(F,G) =

∫
Γ

(HGF )(γ)G(γ)µ(dγ), F,G ∈ FCb(C0(X),Γ), (3.26)

where

(HGF )(γ) = −
∫

X

zm(dx) b(x, γ)(D+
x F )(γ)−

∫
X

γ(dx) d(x, γ)(D−
x F )(γ) µ-a.e.

(3.27)
and HGF ∈ L2(Γ, µ). The Friedrichs’ extension of the operator (HG,FCb(C0(X),Γ))
in L2(Γ, µ) is (HG, D(HG)).

2) Assume that, for each compact Λ ⊂ X,∫
X

γ(dx)

∫
X

zm(dy) c̃(x, y, γ)(111Λ(x) + 111Λ(y)) ∈ L2(Γ, µ). (3.28)

Then

EK(F,K) =

∫
Γ

(HKF )(γ)G(γ)µ(dγ), F,G ∈ FCb(C0(X),Γ), (3.29)

where

(HKF )(γ) = −2

∫
X

γ(dx)

∫
X

zm(dy)c̃(x, y, γ)(D−+
xy F )(γ) µ-a.e. (3.30)

and HKF ∈ L2(Γ, µ). The Friedrichs’ extension of the operator (HK,FCb(C0(X),Γ))
in L2(Γ, µ) is (HK, D(HK)).

Proof. Formulas (3.26), (3.27), (3.29), and (3.30) follow from (2.1), (3.3), (3.4), (3.23),
and (3.25), analogously to (3.22). The facts that HGF ∈ L2(Γ, µ), HKF ∈ L2(Γ, µ)
trivially follow from (3.24) and (3.28), respectively. �

Remark 3.4 Let us fix an arbitrary activity z′ > 0 and suppose that there exists
ν ∈ G(z′, E) which satisfies our assumptions on a Gibbs measure. Then, it follows
from Theorem 3.2 that the operator (HK,FCb(C0(X),Γ)) constructed for the fixed
z > 0 is symmetric on L2(Γ, ν) and hence has a Friedrichs’ extension on this space. On
the other hand, by (3.27), the corresponding statement in the Glauber case case only
holds when z′ = z.
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4 Examples

Throughout this section, we shall always assume that a pair potential φ, an activity
z, and a corresponding Gibbs measure µ ∈ G(z, E) are either as in Theorem 2.1 or
as in Theorem 2.2. Furthermore, in the case X = Rd, we shall also suppose that the
condition of Lemma 2.1 is satisfied. Thus, in any case we have that φ is bounded from
below, satisfies (I), and∑

y∈γ

|φ(x, y)| <∞ for m⊗ µ-a.e. (x, γ) ∈ X × Γ.

By (2.1), the latter easily implies that, for µ-a.e. γ ∈ Γ and for each x ∈ γ,∑
y∈γ\x

|φ(x, y)| <∞.

We shall now consider some examples of coefficients d(x, γ) and c(x, y, γ) for which
the conditions of Theorems 3.1, 3.2 are satisfied.

4.1 Glauber dynamics

For each s ∈ [0, 1], we define

d(x, γ) = ds(x, γ) := exp

[
s

∑
y∈γ\x

φ(x, y)

]
.

By (3.25), we then have

b(x, γ) = bs(x, γ) = exp

[
(s− 1)

∑
y∈γ

φ(x, y)

]
.

In particular, for s = 0,

d0(x, γ) = 1, b0(x, γ) = exp

[
−

∑
y∈γ

φ(x, y)

]
,

and for s = 1,

d1(x, γ) = exp

[ ∑
y∈γ\x

φ(x, y)

]
, b1(x, γ) = 1.

Proposition 4.1 1) For each s ∈ [0, 1], the coefficient ds satisfies (3.14).
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2) For each s ∈ [0, 1/2], the coefficients ds, bs satisfy (3.24). Furthermore, for each
s ∈ (1/2, 1], (3.24) is satisfied if additionally

sup
x∈Λ

∫
X

|e(2s−1)φ(x,y) − 1|m(dy) <∞ (4.1)

for each compact Λ ⊂ X.

Proof. 1) By (2.3), we have for each s ∈ [0, 1]:∫
Γ

µ(dγ)

∫
Λ

zm(dx) exp[−2E(x, γ)]ds(x, γ ∪ x)2

=

∫
Λ

zm(dx)

∫
Γ

µ(dγ) exp

[
2(s− 1)

∑
y∈γ

φ(x, y)

]
=

∫
Λ

zm(dx)

∫
Γ

µ(dγ)
∏
y∈γ

(1 + (exp[2(s− 1)φ(x, y)]− 1))

=

∫
Λ

zm(dx)

∫
Γ

µ(dγ)

(
1 +

∞∑
n=1

∑
{y1,...,yn}⊂γ

n∏
i=1

(exp[2(s− 1)φ(x, yi)]− 1)

)

=

∫
Λ

zm(dx)

(
1 +

∞∑
n=1

∫
Xn

n∏
i=1

(exp[2(s− 1)φ(x, yi)]− 1)

×k(n)
µ (y1, . . . , yn)m(dy1) · · ·m(dyn)

)
. (4.2)

By (2.4), (I), and the boundedness of φ from below, we have:∫
Λ

zm(dx)

(
1 +

∞∑
n=1

∫
Xn

n∏
i=1

| exp[2(s− 1)φ(x, yi)]− 1|

×k(n)
µ (y1, . . . , yn)m(dy1) · · ·m(dyn)

)
≤

∫
Λ

zm(dx) exp

[
ξ

∫
X

| exp[2(s− 1)φ(x, y)]− 1|m(dy)

]
≤

∫
Λ

zm(dx) exp

[
ξ

∫
X

| exp[−2φ(x, y)]− 1|m(dy)

]
≤

∫
Λ

zm(dx) exp

[
ξ

∫
X

| exp[−φ(x, y)]− 1|m(dy)

+

∫
X

exp[−φ(x, y)]| exp[−φ(x, y)]− 1|m(dy)

]
<∞. (4.3)

Thus, by (4.2) and (4.3), condition (3.14) is satisfied.
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2) By (2.1), we have: ∫
Γ

( ∫
Λ

γ(dx)ds(x, γ)

)2

µ(dγ)

=

∫
Γ

µ(dγ)

∫
Λ

γ(dx)ds(x, γ)
2 +

∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

(γ \ x)(dy)ds(x, γ)ds(y, γ)

=

∫
Γ

µ(dγ)

∫
Λ

zm(dx) exp

[
(2s− 1)

∑
y∈γ

φ(x, y)

]
+

∫
Γ

µ(dγ)

∫
Λ

zm(dx)

∫
Λ

zm(dy) exp

[
(s− 1)

∑
x′∈γ

φ(x, x′)

+ (s− 1)
∑
y′∈γ

φ(y, y′)− φ(x, y)

]
=

∫
Λ

zm(dx)

∫
Γ

µ(dγ) exp

[
(2s− 1)

∑
y∈γ

φ(x, y)

]
+

∫
Λ

zm(dx)

∫
Λ

zm(dy) exp[−φ(x, y)]

∫
Γ

µ(dγ)

× exp

[∑
u∈γ

((s− 1)φ(x, u) + (s− 1)φ(y, u))

]
. (4.4)

Analogously to (4.2), (4.3), the first summand in (4.4) is finite. Indeed,

sup
x∈Λ

∫
X

| exp[(2s− 1)φ(x, y)]− 1|m(dy) <∞

for s ∈ [0, 1/2] by (I), and for s ∈ (1/2, 1] by (4.1).
To show the finiteness of the second summand in (4.4), we first note that∫

Λ

zm(dx)

∫
Λ

zm(dy) exp[−φ(x, y)]

≤
∫

Λ

zm(dx)

∫
X

zm(dy)| exp[−φ(x, y)]− 1|+m(Λ)2 <∞

by (I). Therefore, it suffices to show that

sup
x∈Λ

sup
y∈Λ

∫
X

| exp[(s− 1)φ(x, u) + (s− 1)φ(y, u)]− 1|m(du) <∞.

But this follows from (I), the boundedness of φ from below, and the estimate∫
X

| exp[(s− 1)φ(x, u) + (s− 1)φ(y, u)]− 1|m(du)
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≤
∫

X

| exp[(s− 1)φ(x, u)]− 1|m(du)

+

∫
X

exp[(s− 1)φ(x, u)]| exp[(s− 1)φ(y, u)]− 1|m(du).

Finally, the second condition in (3.24) trivially follows from the above estimates.
�

Proposition 4.2 Assume that d(x, γ) is γ(dx)µ(dγ)-a.s. bounded and b(x, γ) is m⊗µ-
a.s. bounded. Then (3.14) and (3.24) are satisfied.

Proof. (3.14) follows from the estimates (4.2), (4.3) with s = 0. The condition (3.24)
is now trivially satisfied. �

As an example of a Glauber dynamics with bounded coefficients, one can consider
the following one: for s ∈ [0, 1]

d(x, y) = ds(x, y) :=
s

1 + exp[−E(x, γ \ x)]
+

(1− s) exp[E(x, γ \ x)]
1 + exp[E(x, γ \ x)]

,

b(x, y) = bs(x, y) :=
s exp[−E(x, γ)]

1 + exp[−E(x, γ)]
+

1− s

1 + exp[E(x, γ)]
.

4.2 Kawasaki dynamics

Let a : X2 → R be a symmetric measurable function which satisfies (3.16).

Remark 4.1 In the case X = Rd, it is natural to suppose that the function a is
translation invariant, i.e., a(x, y) = A(x − y) for some A : X → R, A(−x) = A(x),
x ∈ Rd, in which case (3.16) is equivalent to the integrability of A.

For s ∈ [0, 1] we define

κ(x, y, γ) = κs(x, y, γ) := exp[sE(x, γ \ x)− (1− s)E(y, γ)],

and
c(x, y, γ) = cs(x, y, γ) := a(x, y)κs(x, y, γ).

We evidently have c̃s(x, y, γ) = cs(x, y, γ).

Proposition 4.3 1) For each s ∈ [0, 1], as and κs satisfy (3.17).
2) Assume that the function a is bounded. Then, for each s ∈ [0, 1/2], the coefficient

cs satisfies (3.28). Furthermore, for each s ∈ (1/2, 1], (3.28) is satisfied if additionally

sup
x∈X

∫
X

| exp[(2s− 1)φ(x, y)]− 1|m(dy) <∞. (4.5)
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Proof. 1) We have ∫
Γ

µ(dγ)

∫
X

zm(dx)

∫
Z

zm(dy)a(x, y)

× exp[−2E(x, γ) + 2sE(x, γ)− 2(1− s)E(y, γ ∪ x)](111Λ(x) + 111Λ(y))

=

∫
X

zm(dx)

∫
X

zm(dy)a(x, y) exp[−2(1− s)φ(x, y)](111Λ(x) + 111Λ(y))

×
∫

Γ

µ(dγ) exp

[
− 2(1− s)

∑
u∈γ

(φ(x, u) + φ(y, u))

]
. (4.6)

Analogously to (4.2) and (4.3), by using (3.16), (I), and the boundedness of φ from
below, we can now easily show that the expression in (4.6) is finite.

2) Analogously to (4.2), (4.3) and using (4.5), we have:∫
Γ

µ(dγ)

( ∫
X

γ(dx)

∫
X

zm(dy)cs(x, y, γ)(111Λ(x) + 111Λ(y))

)2

=

∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

zm(dy)

∫
X

zm(dy′)cs(x, y, γ)cs(x, y
′, γ)

×(111Λ(x) + 111Λ(y))(111Λ(x) + 111Λ(y′))

+

∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

(γ \ x)(dx′)
∫

X

zm(dy)

∫
X

zm(dy′)

×cs(x, y, γ)cs(x′, y′, γ)(111Λ(x) + 111Λ(y))(111Λ(x′) + 111Λ(y′))

=

∫
Γ

µ(dγ)

∫
X

zm(dx)

∫
X

zm(dy)

∫
X

zm(dy′) exp[−E(x, γ)]

×cs(x, y, γ ∪ x)cs(x, y′, γ ∪ x)(111Λ(x) + 111Λ(y))(111Λ(x) + 111Λ(y′))

+

∫
Γ

µ(dγ)

∫
X

zm(dx)

∫
X

zm(dx′)

∫
X

zm(dy)

∫
X

zm(dy′)

× exp[−E(x, γ)− E(x′, γ)− φ(x, x′)]

×cs(x, y, γ ∪ x ∪ x′)cs(x′, y′, γ ∪ x ∪ x′)(111Λ(x) + 111Λ(y))(111Λ(x′) + 111Λ(y′))

=

∫
X

zm(dx)

∫
X

zm(dy)

∫
X

zm(dy′)a(x, y)a(x, y′)(111Λ(x) + 111Λ(y))(111Λ(x) + 111Λ(y′))

× exp[−(1− s)φ(x, y)− (1− s)φ(x, y′)]

×
∫

Γ

µ(dγ) exp

[∑
u∈γ

(
(2s− 1)φ(x, u)− (1− s)φ(y, u)− (1− s)φ(y′, u)

)]
+

∫
X

zm(dx)

∫
X

zm(dx′)

∫
X

zm(dy)

∫
X

zm(dy′)a(x, y)a(x′, y′)

×(111Λ(x) + 111Λ(y))(111Λ(x′) + 111Λ(y′))

× exp[(2s− 1)φ(x, x′)− (1− s)φ(x, y)− (1− s)φ(x′, y)
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− (1− s)φ(x, y′)− (1− s)φ(x′, y′)]

×
∫

Γ

µ(dγ) exp

[∑
u∈γ

−(1− s)(φ(x, u) + φ(x′, u) + φ(y, u) + φ(y′, u))

]
≤ C6

( ∫
X

zm(dx)

∫
X

zm(dy)

∫
X

zm(dy′)a(x, y)a(x, y′)(111Λ(x) + 111Λ(y))(111Λ(x) + 111Λ(y′))

× exp

[
ξ sup

x∈X
sup
y∈X

sup
y′∈X

∫
X

| exp[(2s− 1)φ(x, u)

− (1− s)φ(y, u)− (1− s)φ(y′, u)]− 1|m(du)

]
+

∫
X

zm(dx)

∫
X

zm(dx′)

∫
X

zm(dy)

∫
X

zm(dy′)a(x, y)a(x′, y′)

×(111Λ(x) + 111Λ(y))(111Λ(x′) + 111Λ(y′)) exp[(2s− 1)φ(x, x′)]

× exp

[
ξ sup

x∈X
sup
x′∈X

sup
y∈X

sup
y′∈X

∫
X

| exp[−(1− s)(φ(x, u) + φ(x′, u)

+ φ(y, u) + φ(y′, u))]− 1|m(du)

])
≤ C7

( ∫
X

zm(dx)

∫
X

zm(dy)

∫
X

zm(dy′)a(x, y)a(x, y′)(111Λ(x) + 111Λ(y))(111Λ(x) + 111Λ(y′))

+

∫
X

zm(dx)

∫
X

zm(dx′)

∫
X

zm(dy)

∫
X

zm(dy′)a(x, y)a(x′, y′)

×(111Λ(x) + 111Λ(y))(111Λ(x′) + 111Λ(y′))| exp[(2s− 1)φ(x, x′)]− 1|

+

( ∫
X

zm(dx)

∫
X

zm(dy)a(x, y)(111Λ(x) + 111Λ(y))

)2)
, (4.7)

where C6, C7 > 0. Using (I), (3.16), (4.5), and the boundedness of a, we easily conclude
that the expression in (4.7) is finite. Indeed, for example, we have:∫

X

zm(dx)

∫
X

zm(dx′)

∫
Λ

zm(dy)

∫
Λ

zm(dy′)a(x, y)a(x′, y′)| exp[(2s− 1)φ(x, x′)]− 1|

≤
(

sup
(u,v)∈X2

a(u, v)

) ∫
Λ

zm(dy)

∫
Λ

zm(dy′)

×
∫

X

zm(dx)a(x, y)

∫
X

zm(dx′)| exp[(2s− 1)φ(x, x′)]− 1| <∞.

Thus, the proposition is proved. �

Let us now present a straightforward generalization of the above result. Let now
a : X2 → R be a measurable function which satisfies (3.16) (and which is not necessarily
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symmetric). For u, v ∈ [0, 1], we define

κ(x, y, γ) = κu,v(x, y, γ) := exp[uE(x, γ \ x)− (1− v)E(y, γ)],

and
c(x, y, γ) = cu,v(x, y, γ) := a(x, y)κu,v(x, y, γ).

In particular, for u = v, we get the previous example of a Kawasaki dynamics. Note
also that, for u = 0 and v = 1, we get

c0,1(x, y, γ) = a(x, y).

By (3.23), we have

c̃u,v(x, y, γ) =
1

2

(
a(x, y) exp[uE(x, γ \ x)− (1− v)E(y, γ)]

+ a(y, x) exp[vE(x, γ \ x)− (1− u)E(y, γ)]
)
.

Absolutely analogously to Proposition 4.3, one can prove its following generaliza-
tion.

Proposition 4.4 1) For each u, v ∈ [0, 1], au,v and κu,v satisfy (3.17).
2) Assume that the function a is bounded. Then, (3.28) is satisfied if

sup
x∈X

∫
X

| exp[(2(u ∨ v)− 1)φ(x, y)]− 1|m(dy) <∞.
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Probab. Statist. 38 (2002) 385–436.
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stochastic dynamics in classical continuous systems, Ann. Prob. 31 (2003), 1494–
1532.

[13] R. A. Holley, D. W. Stroock, Nearest neighbor birth and death processes on the
real line, Acta Math. 140 (1978) 103–154.

[14] Yu. G. Kondratiev, T. Kuna, J. L. Silva, Marked Gibbs measures via cluster
expansion, Methods Funct. Anal. Topology 4 (1998), no. 4, 50–81.

[15] Yu. G. Kondratiev, E. Lytvynov, Glauber dynamics of continuous particle systems,
to appear in Ann. Inst. H. Poincaré Probab. Statist.
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